WO2020238446A1 - Srs的发送方法及移动终端 - Google Patents

Srs的发送方法及移动终端 Download PDF

Info

Publication number
WO2020238446A1
WO2020238446A1 PCT/CN2020/084763 CN2020084763W WO2020238446A1 WO 2020238446 A1 WO2020238446 A1 WO 2020238446A1 CN 2020084763 W CN2020084763 W CN 2020084763W WO 2020238446 A1 WO2020238446 A1 WO 2020238446A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
mobile terminal
transmission
moving speed
sending
Prior art date
Application number
PCT/CN2020/084763
Other languages
English (en)
French (fr)
Inventor
丁志龙
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020238446A1 publication Critical patent/WO2020238446A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a method for sending SRS and a mobile terminal.
  • 5G Fifth Generation
  • 5G a new air interface (New Radio, NR) mobile communication systems introduces several enhancements antenna, a substantial increase in spectral efficiency, cell coverage and system flexibility.
  • the digital signal processing technology and the spatial characteristics of signal transmission can be used to adjust the weight of the signal sent on each antenna element to achieve the correction of the signal propagation characteristics.
  • the beamforming technology generates spatially oriented beams by modifying the weight of the signal. This technology can increase the system capacity without significantly increasing the system complexity.
  • Beamforming technology can be divided into: codebook-based beamforming technology and channel reciprocity-based beamforming technology according to the feedback mode of channel information.
  • the base station uses the channel reciprocity to obtain the downlink channel information according to the sounding reference signal (SRS) sent in the uplink, and performs the calculation and calculation of the precoding matrix required for the downlink. select.
  • SRS sounding reference signal
  • the mobile terminal uses a fixed SRS transmission method to transmit SRS, which has low flexibility.
  • the embodiments of the present disclosure provide an SRS transmission method and a mobile terminal to solve the problem of low flexibility of SRS transmission in related technologies.
  • embodiments of the present disclosure provide a method for sending SRS, which includes:
  • the SRS is sent using the SRS sending mode corresponding to the moving speed.
  • the embodiments of the present disclosure also provide a mobile terminal, the mobile terminal including:
  • the sending module is used to send the SRS in the SRS sending mode corresponding to the moving speed.
  • the embodiments of the present disclosure also provide a mobile terminal.
  • the mobile terminal includes a processor, a memory, and a program that is stored on the memory and can run on the processor. When executed, the steps of the above-mentioned SRS sending method are realized.
  • the embodiments of the present disclosure also provide a computer-readable storage medium with a program stored on the computer-readable storage medium, and when the program is executed by a processor, the steps of the above-mentioned SRS sending method are realized.
  • the mobile terminal uses an SRS transmission mode corresponding to its own moving speed to transmit the SRS. That is to say, in the embodiment of the present disclosure, the mobile terminal can determine the sending mode of the SRS according to its own moving speed, so that the flexibility of SRS sending can be improved.
  • FIG. 1 is a schematic diagram of a radio frequency architecture provided by an embodiment of the present disclosure
  • Figure 2a is one of the schematic diagrams of sending 2T4R provided by an embodiment of the present disclosure
  • Figure 2b is the second schematic diagram of 2T4R transmission provided by an embodiment of the present disclosure.
  • Figure 2c is one of the schematic diagrams of sending 1T4R provided by an embodiment of the present disclosure.
  • Figure 2d is the second schematic diagram of 1T4R transmission provided by an embodiment of the present disclosure.
  • FIG. 3 is one of the flowcharts of the method for sending SRS provided by an embodiment of the present disclosure
  • FIG. 4 is the second flowchart of the method for sending SRS provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of determining a first threshold provided by an embodiment of the present disclosure.
  • Figure 6 is one of the structural diagrams of a mobile terminal provided by an embodiment of the present disclosure.
  • Fig. 7 is a second structural diagram of a mobile terminal provided by an embodiment of the present disclosure.
  • the SRS transmission method of the embodiment of the present disclosure may be applied to a mobile terminal provided with N antenna ports, where N is an integer greater than 1.
  • mobile terminals can be mobile phones, tablet computers (Tablet Personal Computer), laptop computers (Laptop Computer), personal digital assistants (Personal Digital Assistant, PDA), mobile Internet devices (Mobile Internet Device, MID), Wearable devices or vehicle-mounted devices, etc., it should be noted that the specific types of mobile terminals are not limited in the embodiments of the present disclosure.
  • 5G Fifth Generation
  • 5G a new air interface (New Radio, NR) mobile communication systems introduces several enhancements antenna, a substantial increase in spectral efficiency, cell coverage and system flexibility.
  • the digital signal processing technology and the spatial characteristics of signal transmission can be used to adjust the weight of the signal sent on each antenna element to achieve the correction of the signal propagation characteristics.
  • the beamforming technology generates spatially oriented beams by modifying the weight of the signal. This technology can increase the system capacity without significantly increasing the system complexity.
  • Beamforming technology can be divided into: codebook-based beamforming technology and channel reciprocity-based beamforming technology according to the feedback mode of channel information.
  • the network side device (such as the base station) determines the precoding codebook used for the next transmission.
  • the beamforming technology based on channel reciprocity uses the channel reciprocity to obtain the downlink channel information according to the sounding reference signal (Sounding Reference Signal, SRS) sent in the uplink, and performs the calculation and selection of the precoding matrix required for the downlink.
  • SRS Sounding Reference Signal
  • the beamforming scheme based on channel reciprocity does not require the mobile terminal to perform a special Precoding Matrix Indicator (PMI) feedback, and is more suitable for Time Division Duplex (TDD) systems.
  • PMI Precoding Matrix Indicator
  • the radio frequency structure of the mobile terminal mainly includes the following functional modules: baseband processor, sensor module, 5G modem, 5G radio frequency transceiver, 5G power amplifier (PA), 5G low noise amplifier (Low Noise Amplifier) , LNA), 4-pole (Pole, P) 4-throw (Throw, T) switch and antenna port (Antenna Port).
  • the baseband processor is mainly responsible for the processing of communication data, as well as the working status of the devices that control the radio frequency channel based on the interactive information with the network, such as the judgment of the NR SRS rotation scheme, the acquisition of mobile terminal movement speed information, and the decision to move according to the speed
  • the terminal selects the corresponding rotation scheme
  • the sensor module which may include an accelerometer, a gyroscope, a magnetometer, etc., is used to obtain the moving speed information of the mobile terminal.
  • the 5G modem modulates and demodulates the 5G signal, adjusts the mobile terminal's rotation mechanism according to the baseband processor's judgment on the mobile terminal's moving speed, and controls the working state of 4P4T;
  • 5G radio frequency transceiver up and down frequency conversion and drive amplification of 5G signals, and transmit SRS.
  • 5G PA amplifies the power of 5G radio frequency signals, and its index performance must meet the radio frequency index requirements of 5G.
  • 5G LNA amplifies the signal received by the mobile terminal so that the subsequent chip can process it.
  • 4P4T is used for mobile terminals to make 1 transmit (Transmit, T) 4 receive (R) and 2T4R round transmissions, and used to make 4 ⁇ 4 Multiple-Input Multiple-Output (MIMO).
  • MIMO Multiple-Input Multiple-Output
  • the radio frequency architecture also includes a power supply system for supplying power to various modules in the mobile terminal.
  • a PA module (PA Module including Duplexers, PAMiD) including a duplexer can be integrated with PA, filter, antenna switch and other devices.
  • the radio frequency architecture also includes the primary receiver (PRx) and the diversity receiver (DRx). It should be noted that the radio frequency architecture shown in FIG. 1 is only an example, and therefore does not limit the specific structure of the radio frequency architecture.
  • 2T4R includes two transmission (Tx) signals. As shown in Figures 2a and 2b, the mobile terminal can control one Tx signal to be transmitted on antenna ports (ANT) 0 and ANT2, and control the other Tx signal to be transmitted on ANT1 and ANT3.
  • ANT antenna ports
  • 2T4R a set of SRS resources, the set contains 2 SRS resources, each SRS resource corresponds to 2 different antenna ports, and 1 slot (Slot) can complete 2T4R transmission.
  • 1T4R includes a Tx signal, as shown in Figures 2c and 2d, this Tx signal can be switched to ANT0, ANT1, ANT2, and ANT3 through 4P4T to send.
  • each of the two SRS resource sets contains two SRS resources; in another implementation, one of the two SRS resource sets contains one SRS resource, and the other The SRS resource set contains 3 SRS resources. Since 1 Slot only contains 6 symbols and supports up to 3 SRS resource transmissions, at least 2 Slots are required to complete 1T4R transmission.
  • Physical Downlink Control Channel (PDCCH), Physical Uplink Shared Channel (PUSCH), Physical Uplink Control Channel (PUCCH), and ⁇ represents phase .
  • 2T4R Two PAs simultaneously transmit radio frequency signals.
  • 1T4R One PA transmits radio frequency signals, and the other PA does not work.
  • 2T4R consumes more power than 1T4R per unit time.
  • the mobile terminal determines the SRS rotation scheme according to the current moving speed, using 2T4R for the rotation scheme in a high-speed scene, and 1T4R for the rotation scheme in a low-speed scene. According to the moving speed of the mobile terminal, the rotation scheme can be switched reasonably to achieve the purpose of saving the power consumption of the mobile terminal.
  • FIG. 3 is one of the flowcharts of the SRS sending method provided by the embodiment of the present disclosure.
  • the SRS sending method may include the following steps 301 and 302.
  • Step 301 Obtain the moving speed of the mobile terminal.
  • the mobile terminal can obtain its own moving speed based on its own integrated sensor module, such as an accelerometer, a gyroscope, and a magnetometer, but it is not limited to this. It should be understood that the embodiments of the present disclosure do not limit the manner in which the mobile terminal obtains the moving speed.
  • Step 302 Send the SRS by using the SRS sending mode corresponding to the moving speed.
  • the mobile terminal may preset the corresponding relationship between the moving speed and the SRS transmission mode. In this way, after the mobile terminal obtains its own moving speed, it can determine the SRS transmission mode corresponding to the moving speed according to the foregoing corresponding relationship, and use the SRS transmission mode to transmit the SRS.
  • the mobile terminal uses an SRS transmission mode corresponding to its own moving speed to transmit the SRS. That is to say, in the embodiment of the present disclosure, the mobile terminal can determine the sending mode of the SRS according to its own moving speed, so that the flexibility of SRS sending can be improved.
  • the transmission speed of the SRS required by the mobile terminal to meet the beamforming requirements is different.
  • the transmission speed of the SRS required by the mobile terminal to meet the beamforming requirements is positively correlated with the moving speed of the mobile terminal. That is to say, when the mobile terminal is moving fast, the mobile terminal needs to send SRS at a higher speed to meet the beamforming requirements; when the mobile terminal is moving slowly, the mobile terminal needs to send the beamforming requirements.
  • the speed of SRS is relatively small.
  • the transmission speed of the SRS can at least satisfy the beamforming effect of the mobile terminal at the moving speed. Shaped demand.
  • FIG. 4 is the second flowchart of the SRS sending method provided by the embodiment of the present disclosure.
  • the main difference between this embodiment and the above-mentioned embodiment is that the SRS sending method corresponding to the moving speed is adopted for the The sending of SRS is further restricted, specifically: when the moving speed is greater than the first threshold, the SRS is sent in the first SRS sending mode; when the moving speed is less than or equal to the first threshold, The SRS is sent using the second SRS sending mode.
  • the SRS transmission method may include the following steps 401 to 403.
  • Step 401 Obtain the moving speed of the mobile terminal.
  • Step 402 When the moving speed is greater than the first threshold, use the first SRS transmission mode to send the SRS.
  • the sending speed of the SRS can meet the beamforming requirements of the mobile terminal at the moving speed.
  • Step 403 When the moving speed is less than or equal to the first threshold, use a second SRS transmission mode to send the SRS.
  • the sending speed of the SRS can meet the beamforming requirements of the mobile terminal at the moving speed. demand.
  • the number of PA paths of the power amplifier operated by the mobile terminal is greater than the number of PA paths operated by the mobile terminal when the second transmission mode is used to transmit SRS .
  • the PA is used to amplify the power of the radio frequency signal. Therefore, it is not difficult to understand that the PA path can be understood as the radio frequency signal transmission path. There are more working PA paths, which means that there are more radio frequency signal transmission paths. The sending speed is higher, but it also causes higher power consumption.
  • the transmission speed of the SRS when the moving speed is greater than the first threshold is greater than the transmission speed of the SRS when the moving speed is less than or equal to the first threshold.
  • the sending speed of the mobile terminal SRS is positively correlated with the moving speed of the mobile terminal, and the sending speed of the SRS can meet the beamforming requirements of the mobile terminal at the moving speed. Therefore, on the premise of meeting the beamforming requirements and obtaining a good beamforming effect, it can be maximized. Reduce the power consumption of mobile terminals.
  • the threshold used for comparison with the moving speed of the mobile terminal may be determined according to the current reception quality of the mobile terminal. That is, the mobile terminal can adjust the threshold value used for comparison with the moving speed of the mobile terminal according to the current quality of the mobile terminal. In this way, the SRS sending mode determined according to the moving speed of the mobile terminal can better meet the requirements for sending SRS.
  • the method before the sending the SRS in the SRS sending manner corresponding to the moving speed, the method further includes:
  • the first threshold is determined according to the transmission and reception quality of the mobile terminal.
  • the first threshold is determined according to the current transmission and reception quality of the mobile terminal.
  • the determining the first threshold value according to the current transmission and reception quality of the mobile terminal includes:
  • the moving speed threshold is positively correlated with the first sending and receiving quality level, that is, the higher the first sending and receiving quality level is, the higher the moving speed threshold is;
  • the sending and receiving quality of the mobile terminal matches the sending and receiving quality level.
  • the mobile terminal may be preset with a corresponding relationship between the transmission and reception quality level and the moving speed threshold.
  • the foregoing corresponding relationship may include two or more transmission and reception quality levels, each transmission and reception quality level corresponds to a moving speed threshold, and each transmission and reception quality level corresponds to a transmission and reception quality range.
  • the moving speed threshold in the above-mentioned corresponding relationship is positively correlated with the transmission and reception quality level. That is to say, the higher the transmission quality level, the higher the corresponding moving speed threshold.
  • the mobile terminal after acquiring the current transmission and reception quality, can determine the transmission and reception quality level corresponding to the transmission and reception quality range that it falls into (ie, match), and determine the moving speed threshold corresponding to the transmission and reception quality as the first threshold.
  • the mobile terminal may preset three transmission and reception quality levels, namely, the transmission and reception quality level is low (poor transmission and reception quality), the transmission and reception quality level is intermediate (the transmission and reception quality is average), and the transmission and reception quality is high (the transmission and reception quality is good).
  • the low level corresponds to the moving speed threshold A
  • the middle level corresponds to the moving speed threshold B
  • the high level corresponds to the moving speed threshold C
  • the moving speed threshold A ⁇ the moving speed threshold B ⁇ the moving speed threshold C
  • the moving speed threshold A is 10 kilometers/hour (km/ h)
  • the moving speed threshold B is 60km/h
  • the moving speed threshold C is 200km/h.
  • the moving speed threshold value corresponding to the first transmission and reception quality level is determined as the first threshold value.
  • the first threshold may be updated to the moving speed threshold A.
  • the SRS is sent in the first SRS transmission mode, and the moving speed of the mobile terminal is less than or equal to the moving speed threshold A, and the SRS is sent in the second SRS sending mode.
  • the first threshold may be updated to the moving speed threshold B.
  • the SRS is sent in the first SRS transmission mode, and the moving speed of the mobile terminal is less than or equal to the moving speed threshold B, and the SRS is sent in the second SRS transmission mode.
  • the first threshold may be updated to the moving speed threshold C.
  • the moving speed of the mobile terminal is greater than the moving speed threshold C
  • the SRS is sent in the first SRS transmission mode
  • the moving speed of the mobile terminal is less than or equal to the moving speed threshold C
  • the SRS is sent in the second SRS sending mode.
  • the mobile terminal can directly preset the corresponding relationship between the transmission and reception quality range and the moving speed threshold. In this way, after the mobile terminal obtains the current transmission and reception quality, it can directly fall into the moving speed threshold corresponding to the transmission and reception quality range. It is determined as the first threshold value, so that the speed of determining the first threshold value can be increased.
  • the transmission and reception quality may be characterized based on any one of the following: mobile terminal received signal strength, mobile terminal throughput, mobile terminal delay, base station saturation, and mobile terminal packet loss rate.
  • the received signal strength of the mobile terminal is positively correlated with the quality of receiving and sending, that is, the higher the receiving signal strength of the mobile terminal, the better the receiving and sending quality.
  • the throughput of a mobile terminal is positively correlated with the quality of receiving and sending, that is, the greater the throughput of the mobile terminal, the better the quality of receiving and sending.
  • the delay of the mobile terminal is negatively related to the quality of receiving and sending, that is, the smaller the delay of the mobile terminal, the better the quality of receiving and sending.
  • Base station saturation is negatively related to the quality of receiving and sending, that is, the lower the saturation of the base station, the better the quality of receiving and sending.
  • the packet loss rate of a mobile terminal is negatively related to the quality of receiving and sending, that is, the smaller the packet loss rate of the mobile terminal, the better the quality of receiving and sending.
  • the first SRS transmission mode is a two-transmit and four-receive 2T4R SRS transmission mode; the second SRS transmission mode is a one-transmit, four-receive 1T4R SRS transmission mode SRS transmission method.
  • the 2T4R scheme when the moving speed is greater than the first threshold, the 2T4R scheme is enabled, two PAs are controlled to work, and SRS is transmitted using two antenna ports; when the moving speed is less than or equal to the first Threshold, enable the 1T4R solution, only control one PA to work, and use one antenna port to send SRS. In this way, not only can the beamforming requirements be met, but also a good beamforming effect can be obtained, and when the moving speed is less than or equal to the first threshold, only one PA is controlled to work and the other PA does not work, thereby reducing movement Terminal power consumption.
  • the mobile terminal when the mobile terminal supports M SRS transmission modes, and M is an integer greater than 2, the mobile terminal can compare the moving speed of the mobile terminal with M-1 thresholds, and preset each The possible correspondence between the comparison result and the SRS transmission mode, so that the SRS transmission mode can be determined according to the actual comparison result.
  • the SRS transmission speed of the SRS transmission mode corresponding to the comparison result can be smaller on the premise that the beamforming requirements are met, so as to not only meet the beamforming requirements, but also minimize the movement.
  • the power consumption of the terminal can be smaller on the premise that the beamforming requirements are met, so as to not only meet the beamforming requirements, but also minimize the movement.
  • the mobile terminal has 8 antenna ports and supports 3 SRS transmission modes, which are 1T8R SRS transmission mode, 2T8R SRS transmission mode, and 4T8R SRS transmission mode. Then the mobile terminal can preset threshold 1 and threshold 2.
  • Threshold 1 is less than threshold 2, and preset comparison result 1 corresponds to 1T8R SRS transmission mode, comparison result 2 corresponds to 2T8R SRS transmission mode, and comparison result 3 corresponds to 4T8R SRS transmission mode ,
  • the comparison result 1 is: the moving speed of the mobile terminal is less than or equal to the threshold 1;
  • the comparison result 2 is: the moving speed of the mobile terminal is greater than the threshold 1, and is less than or equal to the threshold 2;
  • the comparison result is: the moving speed of the mobile terminal is greater than Threshold 2.
  • the mobile terminal 600 includes:
  • the obtaining module 601 is used to obtain the moving speed of the mobile terminal
  • the sending module 602 is configured to send the SRS in an SRS sending manner corresponding to the moving speed.
  • the sending module 602 includes:
  • the first sending unit is configured to send the SRS in the first SRS sending mode when the moving speed is greater than the first threshold
  • a second sending unit configured to send SRS in a second SRS sending mode when the moving speed is less than or equal to the first threshold
  • the number of PA paths of the power amplifier operated by the mobile terminal is greater than the number of PA paths operated by the mobile terminal when the second transmission mode is used to transmit SRS .
  • the mobile terminal 600 further includes:
  • the determining module is configured to determine the first threshold value according to the transmission and reception quality of the mobile terminal before the SRS is transmitted in the SRS transmission manner corresponding to the moving speed.
  • the determining module is specifically used for:
  • the moving speed threshold is positively correlated with the first transmission and reception quality level
  • the first transmission and reception quality level is a transmission and reception quality level that matches the transmission and reception quality of the mobile terminal.
  • the transmission and reception quality is based on any one of the following characteristics: mobile terminal received signal strength, mobile terminal throughput, mobile terminal delay, base station saturation, and mobile terminal packet loss rate.
  • the first SRS transmission mode is a two-transmit and four-receive 2T4R SRS transmission mode; the second SRS transmission mode is a one-transmit, four-receive 1T4R SRS transmission mode SRS transmission method.
  • the mobile terminal 600 can implement each process in the method embodiments of the present disclosure and achieve the same beneficial effects. To avoid repetition, details are not repeated here.
  • FIG. 7 is a second structural diagram of a mobile terminal provided by an embodiment of the present disclosure.
  • the mobile terminal may be a schematic diagram of a hardware structure of a mobile terminal that implements various embodiments of the present disclosure.
  • the mobile terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, The processor 710, and the power supply 711 and other components.
  • a radio frequency unit 701 a radio frequency unit 701
  • a network module 702 an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709,
  • the processor 710, and the power supply 711 and other components Those skilled in the art can understand that the structure of the mobile terminal shown in FIG. 7 does not constitute a limitation on the mobile terminal.
  • the mobile terminal may include more or fewer components than those shown in the figure, or a combination of certain components, or different components. Layout.
  • mobile terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted mobile terminals, wearable devices, and pedometers.
  • the processor 710 is configured to obtain the moving speed of the mobile terminal; the radio frequency unit 701 is configured to send the SRS in an SRS transmission manner corresponding to the moving speed.
  • the radio frequency unit 701 is also used for:
  • the SRS is sent in the first SRS sending mode
  • the SRS is sent in a second SRS sending mode
  • the number of PA paths of the power amplifier operated by the mobile terminal is greater than the number of PA paths operated by the mobile terminal when the second transmission mode is used to transmit SRS .
  • processor 710 is further configured to:
  • the first threshold is determined according to the transmission and reception quality of the mobile terminal.
  • processor 710 is further configured to:
  • the moving speed threshold is positively correlated with the first transmission and reception quality level
  • the first transmission and reception quality level is a transmission and reception quality level that matches the transmission and reception quality of the mobile terminal.
  • the transceiving quality is based on any one of the following characteristics: mobile terminal received signal strength, mobile terminal throughput, mobile terminal delay, base station saturation, and mobile terminal packet loss rate.
  • the first SRS transmission mode is a two-transmit and four-receive 2T4R SRS transmission mode; the second SRS transmission mode is a one-transmit, four-receive 1T4R SRS transmission mode SRS transmission method.
  • the above-mentioned mobile terminal 700 in this embodiment can implement each process in the method embodiment in the embodiment of the present disclosure and achieve the same beneficial effects. To avoid repetition, details are not repeated here.
  • the radio frequency unit 701 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 710; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 701 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 701 can also communicate with the network and other devices through a wireless communication system.
  • the mobile terminal provides users with wireless broadband Internet access through the network module 702, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 703 may convert the audio data received by the radio frequency unit 701 or the network module 702 or stored in the memory 709 into audio signals and output them as sounds. Moreover, the audio output unit 703 may also provide audio output related to a specific function performed by the mobile terminal 700 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 703 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 704 is used to receive audio or video signals.
  • the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is used for the image of a still picture or video obtained by an image capture device (such as a camera) in the video capture mode or the image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 706.
  • the image frame processed by the graphics processor 7041 may be stored in the memory 709 (or other storage medium) or sent via the radio frequency unit 701 or the network module 702.
  • the microphone 7042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 701 for output in the case of a telephone call mode.
  • the mobile terminal 700 also includes at least one sensor 705, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 7061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 7061 and the display panel 7061 when the mobile terminal 700 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify the posture of the mobile terminal (such as horizontal and vertical screen switching, related games) , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 705 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 706 is used to display information input by the user or information provided to the user.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 707 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the mobile terminal.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072.
  • the touch panel 7071 also known as the touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 7071 or near the touch panel 7071. operating).
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 710, the command sent by the processor 710 is received and executed.
  • the touch panel 7071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 707 may also include other input devices 7072.
  • other input devices 7072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 7071 can be overlaid on the display panel 7061.
  • the touch panel 7071 detects a touch operation on or near it, it is transmitted to the processor 710 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 7061.
  • the touch panel 7071 and the display panel 7061 are used as two independent components to implement the input and output functions of the mobile terminal, in some embodiments, the touch panel 7071 and the display panel 7061 can be integrated
  • the implementation of the input and output functions of the mobile terminal is not specifically limited here.
  • the interface unit 708 is an interface for connecting an external device with the mobile terminal 700.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 708 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the mobile terminal 700 or can be used to connect to the mobile terminal 700 and external Transfer data between devices.
  • the memory 709 can be used to store software programs and various data.
  • the memory 709 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 710 is the control center of the mobile terminal. It uses various interfaces and lines to connect the various parts of the entire mobile terminal. It runs or executes software programs and/or modules stored in the memory 709, and calls data stored in the memory 709. , Perform various functions of the mobile terminal and process data, so as to monitor the mobile terminal as a whole.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., and the modem
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 710.
  • the mobile terminal 700 may also include a power source 711 (such as a battery) for supplying power to various components.
  • a power source 711 such as a battery
  • the power source 711 may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the mobile terminal 700 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a mobile terminal, including a processor 710, a memory 709, and a program stored on the memory 709 and running on the processor 710. The program is executed when the processor 710 is executed.
  • a mobile terminal including a processor 710, a memory 709, and a program stored on the memory 709 and running on the processor 710. The program is executed when the processor 710 is executed.
  • the embodiment of the present disclosure also provides a computer-readable storage medium, and the computer-readable storage medium stores a program.
  • the program When the program is executed by a processor, each process of the foregoing SRS sending method embodiment is realized, and the same technical effect can be achieved. To avoid repetition, I won’t repeat it here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk ) Includes several instructions to make a mobile terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present disclosure.
  • a storage medium such as ROM/RAM, magnetic disk, optical disk

Abstract

本公开提供一种SRS的发送方法及移动终端,该方法包括:获取所述移动终端的移动速度;采用与所述移动速度对应的SRS发送方式发送SRS。

Description

SRS的发送方法及移动终端
相关申请的交叉引用
本申请主张在2019年5月29日在中国提交的中国专利申请No.201910455841.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种SRS的发送方法及移动终端。
背景技术
第五代(5 th Generation,5G)新空口(New Radio,NR)移动通信系统引入了多项天线增强技术,大幅提高了频谱效率、小区覆盖和系统灵活性。在多天线系统中,可以利用数字信号处理技术和信号传输的空间特性,调整各天线阵元上发送信号的权值,达到对信号传播特性的修正。波束赋形技术是通过修改信号的权值,产生空间定向的波束,该技术可以在不显著增加系统复杂度的情况下提高系统容量。
波束赋形技术可以根据信道信息的反馈方式分为:基于码本(Codebook based)的波束赋形技术和基于信道互易性的波束赋形技术。在基于信道互易性的波束赋形的方案中,基站根据上行发送的探测参考信号(Sounding Reference Signal,SRS),利用信道互易性得到下行信道信息,并进行下行需要的预编码矩阵计算与选择。目前,移动终端采用固定的SRS发送方式发送SRS,灵活度较低。
发明内容
本公开实施例提供一种SRS的发送方法及移动终端,以解决相关技术中SRS发送的灵活度较低的问题。
为解决上述问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种SRS的发送方法,该方法包括:
获取所述移动终端的移动速度;
采用与所述移动速度对应的SRS发送方式发送SRS。
第二方面,本公开实施例还提供一种移动终端,该移动终端包括:
获取模块,用于获取所述移动终端的移动速度;
发送模块,用于采用与所述移动速度对应的SRS发送方式发送SRS。
第三方面,本公开实施例还提供一种移动终端,该移动终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如上所述的SRS的发送方法的步骤。
第四方面,本公开实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如上所述的SRS的发送方法的步骤。
在本公开实施例中,移动终端采用与自身移动速度对应的SRS发送方式发送SRS。也就是说,在本公开实施例中,移动终端可以根据自身移动速度,确定SRS的发送方式,从而可以提高SRS发送的灵活度。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的射频架构的示意图;
图2a是本公开实施例提供的2T4R的发送示意图之一;
图2b是本公开实施例提供的2T4R的发送示意图之二;
图2c是本公开实施例提供的1T4R的发送示意图之一;
图2d是本公开实施例提供的1T4R的发送示意图之二;
图3是本公开实施例提供的SRS的发送方法的流程图之一;
图4是本公开实施例提供的SRS的发送方法的流程图之二;
图5是本公开实施例提供的第一阈值的确定示意图;
图6是本公开实施例提供的移动终端的结构图之一;
图7是本公开实施例提供的移动终端的结构图之二。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,本申请中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。
本公开实施例的SRS的发送方法可以应用于设有N个天线端口的移动终端,N为大于1的整数。在实际应用中,移动终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等,需要说明的是,在本公开实施例中并不限定移动终端的具体类型。
为了方便理解,以下对本公开实施例涉及的一些内容进行说明:
一、波束赋形技术。
第五代(5 th Generation,5G)新空口(New Radio,NR)移动通信系统引入了多项天线增强技术,大幅提高了频谱效率、小区覆盖和系统灵活性。在多天线系统中,可以利用数字信号处理技术和信号传输的空间特性,调整各天线阵元上发送信号的权值,达到对信号传播特性的修正。波束赋形技术是通过修改信号的权值,产生空间定向的波束,该技术可以在不显著增加系统复杂度的情况下提高系统容量。
波束赋形技术可以根据信道信息的反馈方式分为:基于码本(Codebook based)的波束赋形技术和基于信道互易性的波束赋形技术。基于码本的波束赋形技术,根据移动终端反馈的码本信息,由网络侧设备(如基站)确定下一次传输采用的预编码码本。基于信道互易性的波束赋形技术,根据上行发送的探测参考信号(Sounding Reference Signal,SRS),利用信道互易性得到下行信道信息,并进行下行需要的预编码矩阵计算与选择。可见,基于信道互易性的波束赋形方案,不需要移动终端进行专门的预编码矩阵指示(Precoding Matrix Indicator,PMI)反馈,更加适用于时分复用(Time Division Duplex,TDD)系统。
二、移动终端的射频架构。
如图1所示,移动终端的射频结构主要包括如下功能模块:基带处理器、传感器模块、5G调制解调器、5G射频收发机、5G功率放大器(Power Amplifier,PA)、5G低噪声放大器(Low Noise Amplifier,LNA)、4刀(Pole,P)4掷(Throw,T)开关和天线端口(Antenna Port)。
以下对各功能模块的功能进行说明。
基带处理器,主要负责通信数据的处理,以及根据和网络的交互信息,控制射频通路的器件的工作状态,如:NR SRS轮发方案的判断,获取移动终端移动速度信息等以及根据速度决定移动终端选择相应的轮发方案;
传感器模块,可以包括加速度计、陀螺仪、磁力计等,用于获取移动终端的移动速度信息。
5G调制解调器,对5G信号进行调制和解调,根据基带处理器对移动终端移动速度的判断,调整移动终端轮发机制,控制4P4T的工作状态;
5G射频收发机,对5G信号进行上下变频和驱动放大,发射SRS。
5G PA,对5G射频信号进行功率放大,其指标性能要能满足5G的射频指标要求。
5G LNA,放大移动终端接收的信号以便后级芯片能够处理。
4P4T,用于移动终端做1发(Transmit,T)4收(Receive,R)和2T4R轮发,并用于做4×4多输入多输出(Multiple-Input Multiple-Output,MIMO)。
射频架构还包括供电系统,用于给移动终端中的各个模块供电。
在图1中,包括双工器的PA模块(PA Module including Duplexers,PAMiD),其可以集成有PA,滤波器,天线开关等器件。射频架构还包括主集接收(PRx),分集接收(DRx)。需要说明的是,图1所示的射频架构仅为示例,并不因此限制射频架构的具体结构。
三、1T4R和2T4R。
轮发速度:
2T4R包括两路发射(Tx)信号,如图2a和2b所示,移动终端可以控制一路Tx信号在天线端口(ANT)0和ANT2发送,控制另一路Tx信号在ANT1和ANT3发送。
2T4R,1个SRS资源集合,该集合包含2个SRS资源,每个SRS资源对应2个不同天线端口,1个时隙(Slot)可以完成2T4R发送。
1T4R包括一路Tx信号,如图2c和2d所示,该路Tx信号可以通过4P4T分别切换至ANT0、ANT1、ANT2、ANT3发送。
1T4R,2个SRS资源集合。一种实现方式中,2个SRS资源集合中的每个SRS资源集合包含2个SRS资源;另一种实现方式中,2个SRS资源集合中的一个SRS资源集合包含1个SRS资源,另一个SRS资源集合包含3个SRS资源。由于1个Slot仅包含6个符号,最多支持3个SRS资源发送,因此,至少需要2个Slot才能完成1T4R发送。
结合上述分析,以及图2a和图2b可知,发射同样的SRS资源,2T4R比1T4R快一倍。
在图2a和图2b中,物理下行控制信道(Physical Downlink Control Channel,PDCCH),物理上行共享信道(Physical Uplink Shared Channel,PUSCH),物理上行控制信道(Physical Uplink Control Channel,PUCCH),α表示相位。
轮发耗电:
2T4R:两路PA同时发射射频信号。
1T4R:一路PA发射射频信号,另一路PA不工作。
根据上述分析可知,单位时间内2T4R比1T4R更耗电。
在基于信道互易性的波束赋形方案中,随着移动终端和网络侧设备之间的相对位置的变化,下行信道信息也会发生变化。在高速场景中,移动终端 需快速发送SRS获得更好的波束赋形,此时需使用2T4R进行轮发方案。但是,当移动终端处于低速场景中,1T4R便可满足良好的波束赋形效果。若移动终端在低速场景仍以2T4R发送SRS,将会造成不必要的资源浪费。
因此,在发明实施例中,移动终端根据当前的移动速度来决定SRS的轮发方案,在高速场景中使用2T4R进行轮发方案,在低速场景中使用1T4R进行轮发方案。根据移动终端的移动速度合理切换轮发方案,可达到节省移动终端功耗的目的。
以下对本公开实施例的SRS的发送方法进行说明。
参见图3,图3是本公开实施例提供的SRS的发送方法的流程图之一。如图3所示,SRS的发送方法可以包括以下步骤301和302。
步骤301、获取所述移动终端的移动速度。
由前述内容可知,移动终端可以基于自身集成的传感器模块,如加速度计、陀螺仪、磁力计等获取自身的移动速度,但不仅限于此。应理解的是,本公开实施例并不限制移动终端获取移动速度的方式。
步骤302、采用与所述移动速度对应的SRS发送方式发送SRS。
在本公开实施例中,移动终端可以预设移动速度与SRS发送方式的对应关系。这样,移动终端在获取自身的移动速度后,可以根据上述对应关系,确定该移动速度对应的SRS发送方式,并采用该SRS发送方式发送SRS。
本实施例的SRS的发送方法,移动终端采用与自身移动速度对应的SRS发送方式发送SRS。也就是说,在本公开实施例中,移动终端可以根据自身移动速度,确定SRS的发送方式,从而可以提高SRS发送的灵活度。
由前述内容可知,移动终端的移动速度不同时,移动终端满足波束赋形需求需要的SRS的发送速度不同。具体地,移动终端满足波束赋形需求需要的SRS的发送速度与移动终端的移动速度正相关。也就是说,当移动终端的移动速度较快时,移动终端满足波束赋形需求需要的发送SRS的速度较大;当移动终端的移动速度较慢时,移动终端满足波束赋形需求需要的发送SRS的速度较小。因此,在本公开实施例中,为了获得良好的波束赋形效果,采用与所述移动速度对应的SRS发送方式发送SRS时,SRS的发送速度至少可以满足移动终端在所述移动速度下波束赋形的需求。
请参见图4,图4是本公开实施例提供的SRS的发送方法的流程图之二,本实施例与上述实施例的主要区别在于,对所述采用与所述移动速度对应的SRS发送方式发送SRS作了进一步的限定,具体为:在所述移动速度大于第一阈值的情况下,采用第一SRS发送方式发送SRS;在所述移动速度小于或等于所述第一阈值的情况下,采用第二SRS发送方式发送SRS。
如图4所示,SRS的发送方法可以包括以下步骤401至403。
步骤401、获取所述移动终端的移动速度。
步骤402、在所述移动速度大于第一阈值的情况下,采用第一SRS发送方式发送SRS。
应理解的是,在所述移动速度大于第一阈值的情况下,采用第一SRS发送方式发送SRS时,SRS的发送速度可以满足移动终端在所述移动速度下波束赋形的需求。
步骤403、在所述移动速度小于或等于所述第一阈值的情况下,采用第二SRS发送方式发送SRS。
应理解的是,在所述移动速度小于或等于所述第一阈值的情况下,采用第二SRS发送方式发送SRS时,SRS的发送速度可以满足移动终端在所述移动速度下波束赋形的需求。
其中,在采用第一SRS发送方式发送SRS的情况下所述移动终端工作的功率放大器PA通路的数量,多于在采用第二发送方式发送SRS的情况下所述移动终端工作的PA通路的数量。
由前述内容可知,PA用于对射频信号进行功率放大,因此,不难理解,PA通路可以理解为射频信号发射通路,工作的PA通路较多,说明射频信号发射通路较多,从而射频信号的发送速度较大,但也会造成功耗较高。
在本实施例中,由于在采用第一SRS发送方式发送SRS的情况下所述移动终端工作的功率放大器PA通路的数量,多于在采用第二发送方式发送SRS的情况下所述移动终端工作的PA通路的数量,因此,在所述移动速度大于第一阈值的情况下SRS的发送速度,大于在所述移动速度小于或等于所述第一阈值的情况下SRS的发送速度。
可见,在本实施例中,移动终端SRS的发送速度与移动终端的移动速度 正相关,且SRS的发送速度可以满足移动终端在所述移动速度下波束赋形的需求。因此,可以在满足波束赋形需求,获得良好的波束赋形效果的前提下,可以最大程度地。降低移动终端的功耗。
在本实施例中,可选地,用于与移动终端的移动速度进行比较的阈值可以根据移动终端的当前接收质量确定。也就是说,移动终端可以根据移动终端的当前质量,调整用于与移动终端的移动速度进行比较的阈值。这样,根据移动终端的移动速度确定的SRS的发送方式,可以更好的满足发送SRS的需求。
可选地,所述采用与所述移动速度对应的SRS发送方式发送SRS之前,所述方法还包括:
根据所述移动终端的收发质量,确定所述第一阈值。
具体地,根据移动终端的当前收发质量,确定所述第一阈值。
一种实现方式中,可选地,所述根据所述移动终端的当前收发质量,确定所述第一阈值,包括:
在采用与所述移动速度对应的SRS发送方式发送SRS之前,将与第一收发质量等级对应的移动速度阈值确定为所述第一阈值;
其中,所述移动速度阈值与所述第一收发质量等级正相关,也就是说,所述第一收发质量等级越高,所述移动速度阈值越高;所述第一收发质量等级为与所述移动终端的收发质量匹配的收发质量等级。
移动终端可以预设有收发质量等级与移动速度阈值之间的对应关系。上述对应关系中可以包括两个或两个以上的收发质量等级,每个收发质量等级对应一个移动速度阈值,每个收发质量等级对应一个收发质量范围。
进一步地,上述对应关系中的移动速度阈值与收发质量等级正相关。也就是说,收发质量等级越高,其对应的移动速度阈值越高。
具体实现时,移动终端在获取当前收发质量后,可以确定其落入(即匹配)的收发质量范围对应的收发质量等级,并将该收发质量对应的移动速度阈值确定为所述第一阈值。
示例性的,移动终端可以预设有3个收发质量等级,分别为收发质量等级为低级(收发质量差),收发质量等级为中级(收发质量一般),收发质量为 高级(收发质量好)。低级对应移动速度阈值A,中级对应移动速度阈值B,高级对应移动速度阈值C,移动速度阈值A<移动速度阈值B<移动速度阈值C,如移动速度阈值A为10千米/时(km/h),移动速度阈值B为60km/h,移动速度阈值C为200km/h。
如图5所示,将与第一收发质量等级对应的移动速度阈值确定为所述第一阈值。
如果判定第一收发质量等级为低级,可以将第一阈值更新为移动速度阈值A。在收发质量差的情况下,移动终端的移动速度大于移动速度阈值A,采用第一SRS发送方式发送SRS,移动终端的移动速度小于或等于移动速度阈值A,采用第二SRS发送方式发送SRS。
如果判定第一收发质量等级为中级,可以将第一阈值更新为移动速度阈值B。在收发质量一般的情况下,移动终端的移动速度大于移动速度阈值B,采用第一SRS发送方式发送SRS,移动终端的移动速度小于或等于移动速度阈值B,采用第二SRS发送方式发送SRS。
如果判定第一收发质量等级为高级,可以将第一阈值更新为移动速度阈值C。在收发质量好的情况下,移动终端的移动速度大于移动速度阈值C,采用第一SRS发送方式发送SRS,移动终端的移动速度小于或等于移动速度阈值C,采用第二SRS发送方式发送SRS。
在其他实现方式中,移动终端可以直接预设收发质量范围与移动速度阈值的对应关系,这样,移动终端在获取当前收发质量后,可以直接将其落入的收发质量范围对应的移动速度阈值,确定为所述第一阈值,从而可以提高第一阈值确定的速度。
可选地,所述收发质量可以基于以下任意一项表征:移动终端接收信号强度、移动终端吞吐量、移动终端时延、基站饱和度和移动终端丢包率。
具体实现时,移动终端接收信号强度与收发质量正相关,也就是说,移动终端接收信号强度越高,收发质量越好。移动终端吞吐量与收发质量正相关,也就是说,移动终端吞吐量越大,收发质量越好。
移动终端时延与收发质量负相关,也就是说,移动终端时延越小,收发质量越好。基站饱和度与收发质量负相关,也就是说,基站饱和度越小,收发 质量越好。移动终端丢包率与收发质量负相关,也就是说,移动终端丢包率越小,收发质量越好。
可选地,在所述移动终端包括4个天线端口的情况下,所述第一SRS发送方式为二发四收2T4R的SRS发送方式;所述第二SRS发送方式为一发四收1T4R的SRS发送方式。
在本实施方式中,在所述移动速度大于第一阈值的情况下,启用2T4R方案,控制两路PA均工作,利用两个天线端口发送SRS;在所述移动速度小于或等于所述第一阈值,启用1T4R方案,仅控制一路PA工作,利用一个天线端口发送SRS。这样,不仅可以满足波束赋形需求,可以获得良好的波束赋形效果,且在所述移动速度小于或等于所述第一阈值,仅控制一路PA工作,另一路PA不工作,从而可降低移动终端功耗。
需要说明的是,在移动终端支持M个SRS发送方式,M为大于2的整数的情况下,移动终端可以将移动终端的移动速度与M-1个阈值进行比较,并预设有每一种可能的比较结果与SRS发送方式的对应关系,从而可以根据实际的比较结果确定SRS发送方式。
可选地,在上述对应关系中,比较结果对应的SRS发送方式的SRS发送速度可以在满足波束赋形需求的前提下越小,从而既可以满足波束赋形需求,还可以最大程度地降低移动终端的功耗。
示例性的,假设移动终端设有8个天线端口,支持3个SRS发送方式,分别为1T8R的SRS发送方式、2T8R的SRS发送方式和4T8R的SRS发送方式。则移动终端可以预设阈值1和阈值2,阈值1小于阈值2,并预设比较结果1对应1T8R的SRS发送方式,比较结果2对应2T8R的SRS发送方式,比较结果3对应4T8R的SRS发送方式,其中,比较结果1为:移动终端的移动速度小于或等于阈值1;比较结果2为:移动终端的移动速度大于阈值1,且小于或等于阈值2;比较结果为:移动终端的移动速度大于阈值2。
这样,不仅可以满足波束赋形需求,可以获得良好的波束赋形效果,且在所述移动速度较小的情况下,控制PA工作的数量较小,从而可降低移动终端功耗。
需要说明的是,本公开实施例中介绍的多种可选的实施方式,在不冲突 的情况下彼此可以相互结合实现,也可以单独实现,对此本公开实施例不作限定。
参见图6,图6是本公开实施例提供的移动终端的结构图之一。如图6所示,移动终端600包括:
获取模块601,用于获取所述移动终端的移动速度;
发送模块602,用于采用与所述移动速度对应的SRS发送方式发送SRS。
可选地,所述发送模块602,包括:
第一发送单元,用于在所述移动速度大于第一阈值的情况下,采用第一SRS发送方式发送SRS;
第二发送单元,用于在所述移动速度小于或等于所述第一阈值的情况下,采用第二SRS发送方式发送SRS;
其中,在采用第一SRS发送方式发送SRS的情况下所述移动终端工作的功率放大器PA通路的数量,多于在采用第二发送方式发送SRS的情况下所述移动终端工作的PA通路的数量。
可选地,所述移动终端600还包括:
确定模块,用于在采用与所述移动速度对应的SRS发送方式发送SRS之前,根据所述移动终端的收发质量,确定所述第一阈值。
可选地,所述确定模块,具体用于:
在采用与所述移动速度对应的SRS发送方式发送SRS之前,将与第一收发质量等级对应的移动速度阈值确定为所述第一阈值;
其中,所述移动速度阈值与所述第一收发质量等级正相关,所述第一收发质量等级为与所述移动终端的收发质量匹配的收发质量等级。
可选地,其中,所述收发质量基于以下任意一项表征:移动终端接收信号强度、移动终端吞吐量、移动终端时延、基站饱和度和移动终端丢包率。
可选地,在所述移动终端包括4个天线端口的情况下,所述第一SRS发送方式为二发四收2T4R的SRS发送方式;所述第二SRS发送方式为一发四收1T4R的SRS发送方式。
移动终端600能够实现本公开方法实施例中的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
请参考图7,图7是本公开实施例提供的移动终端的结构图之二,该移动终端可以为实现本公开各个实施例的一种移动终端的硬件结构示意图。如图7所示,移动终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、处理器710、以及电源711等部件。本领域技术人员可以理解,图7中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,移动终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载移动终端、可穿戴设备、以及计步器等。
其中,处理器710,用于获取所述移动终端的移动速度;射频单元701,用于采用与所述移动速度对应的SRS发送方式发送SRS。
可选地,射频单元701,还用于:
在所述移动速度大于第一阈值的情况下,采用第一SRS发送方式发送SRS;
在所述移动速度小于或等于所述第一阈值的情况下,采用第二SRS发送方式发送SRS;
其中,在采用第一SRS发送方式发送SRS的情况下所述移动终端工作的功率放大器PA通路的数量,多于在采用第二发送方式发送SRS的情况下所述移动终端工作的PA通路的数量。
可选地,处理器710,还用于:
根据所述移动终端的收发质量,确定所述第一阈值。
可选地,处理器710,还用于:
将与第一收发质量等级对应的移动速度阈值确定为所述第一阈值;
其中,所述移动速度阈值与所述第一收发质量等级正相关,所述第一收发质量等级为与所述移动终端的收发质量匹配的收发质量等级。
可选地,所述收发质量基于以下任意一项表征:移动终端接收信号强度、移动终端吞吐量、移动终端时延、基站饱和度和移动终端丢包率。
可选地,在所述移动终端包括4个天线端口的情况下,所述第一SRS发送方式为二发四收2T4R的SRS发送方式;所述第二SRS发送方式为一发四 收1T4R的SRS发送方式。
需要说明的是,本实施例中上述移动终端700可以实现本公开实施例中方法实施例中的各个过程,以及达到相同的有益效果,为避免重复,此处不再赘述。
应理解的是,本公开实施例中,射频单元701可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器710处理;另外,将上行的数据发送给基站。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元701还可以通过无线通信系统与网络和其他设备通信。
移动终端通过网络模块702为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元703可以将射频单元701或网络模块702接收的或者在存储器709中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元703还可以提供与移动终端700执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元703包括扬声器、蜂鸣器以及受话器等。
输入单元704用于接收音频或视频信号。输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元706上。经图形处理器7041处理后的图像帧可以存储在存储器709(或其它存储介质)中或者经由射频单元701或网络模块702进行发送。麦克风7042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元701发送到移动通信基站的格式输出。
移动终端700还包括至少一种传感器705,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板7061的亮度,接近传感器可在移动终端700移动到耳边时,关闭显示面板7061和/或背光。作为运动 传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器705还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元706用于显示由用户输入的信息或提供给用户的信息。显示单元706可包括显示面板7061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板7061。
用户输入单元707可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板7071上或在触控面板7071附近的操作)。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器710,接收处理器710发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板7071。除了触控面板7071,用户输入单元707还可以包括其他输入设备7072。具体地,其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板7071可覆盖在显示面板7061上,当触控面板7071检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类型,随后处理器710根据触摸事件的类型在显示面板7061上提供相应的视觉输出。虽然在图7中,触控面板7071与显示面板7061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板7071与显示面板7061集成而实现移动终端的输入和输出功能,具体此处 不做限定。
接口单元708为外部装置与移动终端700连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元708可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端700内的一个或多个元件或者可以用于在移动终端700和外部装置之间传输数据。
存储器709可用于存储软件程序以及各种数据。存储器709可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器710是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器709内的软件程序和/或模块,以及调用存储在存储器709内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器710可包括一个或多个处理单元;可选地,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
移动终端700还可以包括给各个部件供电的电源711(比如电池),可选地,电源711可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,移动终端700包括一些未示出的功能模块,在此不再赘述。
可选地,本公开实施例还提供一种移动终端,包括处理器710,存储器709,存储在存储器709上并可在所述处理器710上运行的程序,该程序被处理器710执行时实现上述SRS的发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有程序,该程序被处理器执行时实现上述SRS的发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台移动终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (14)

  1. 一种探测参考信号SRS的发送方法,应用于移动终端,其中,所述方法包括:
    获取所述移动终端的移动速度;
    采用与所述移动速度对应的SRS发送方式发送SRS。
  2. 根据权利要求1所述的方法,其中,所述采用与所述移动速度对应的SRS发送方式发送SRS,包括:
    在所述移动速度大于第一阈值的情况下,采用第一SRS发送方式发送SRS;
    在所述移动速度小于或等于所述第一阈值的情况下,采用第二SRS发送方式发送SRS;
    其中,在采用第一SRS发送方式发送SRS的情况下所述移动终端工作的功率放大器PA通路的数量,多于在采用第二发送方式发送SRS的情况下所述移动终端工作的PA通路的数量。
  3. 根据权利要求2所述的方法,其中,所述采用与所述移动速度对应的SRS发送方式发送SRS之前,所述方法还包括:
    根据所述移动终端的收发质量,确定所述第一阈值。
  4. 根据权利要求3所述的方法,其中,所述根据所述移动终端的当前收发质量,确定所述第一阈值,包括:
    将与第一收发质量等级对应的移动速度阈值确定为所述第一阈值;
    其中,所述移动速度阈值与所述第一收发质量等级正相关,所述第一收发质量等级为与所述移动终端的收发质量匹配的收发质量等级。
  5. 根据权利要求3或4所述的方法,其中,所述收发质量基于以下任意一项表征:移动终端接收信号强度、移动终端吞吐量、移动终端时延、基站饱和度和移动终端丢包率。
  6. 根据权利要求2所述的方法,其中,在所述移动终端包括4个天线端口的情况下,所述第一SRS发送方式为二发四收2T4R的SRS发送方式;所述第二SRS发送方式为一发四收1T4R的SRS发送方式。
  7. 一种移动终端,包括:
    获取模块,用于获取所述移动终端的移动速度;
    发送模块,用于采用与所述移动速度对应的SRS发送方式发送SRS。
  8. 根据权利要求7所述的移动终端,其中,所述发送模块,包括:
    第一发送单元,用于在所述移动速度大于第一阈值的情况下,采用第一SRS发送方式发送SRS;
    第二发送单元,用于在所述移动速度小于或等于所述第一阈值的情况下,采用第二SRS发送方式发送SRS;
    其中,在采用第一SRS发送方式发送SRS的情况下所述移动终端工作的功率放大器PA通路的数量,多于在采用第二发送方式发送SRS的情况下所述移动终端工作的PA通路的数量。
  9. 根据权利要求8所述的移动终端,还包括:
    确定模块,用于在采用与所述移动速度对应的SRS发送方式发送SRS之前,根据所述移动终端的收发质量,确定所述第一阈值。
  10. 根据权利要求9所述的移动终端,其中,所述确定模块,具体用于:
    在采用与所述移动速度对应的SRS发送方式发送SRS之前,将与第一收发质量等级对应的移动速度阈值确定为所述第一阈值;
    其中,所述移动速度阈值与所述第一收发质量等级正相关,所述第一收发质量等级为与所述移动终端的收发质量匹配的收发质量等级。
  11. 根据权利要求9或10所述的移动终端,其中,所述收发质量基于以下任意一项表征:移动终端接收信号强度、移动终端吞吐量、移动终端时延、基站饱和度和移动终端丢包率。
  12. 根据权利要求8所述的移动终端,其中,在所述移动终端包括4个天线端口的情况下,所述第一SRS发送方式为二发四收2T4R的SRS发送方式;所述第二SRS发送方式为一发四收1T4R的SRS发送方式。
  13. 一种移动终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至6中任一项所述的SRS的发送方法的步骤。
  14. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储 有程序,所述程序被处理器执行时实现如权利要求1至6中任一项所述的SRS的发送方法的步骤。
PCT/CN2020/084763 2019-05-29 2020-04-14 Srs的发送方法及移动终端 WO2020238446A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910455841.4 2019-05-29
CN201910455841.4A CN110213828B (zh) 2019-05-29 2019-05-29 Srs的发送方法及移动终端

Publications (1)

Publication Number Publication Date
WO2020238446A1 true WO2020238446A1 (zh) 2020-12-03

Family

ID=67789338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084763 WO2020238446A1 (zh) 2019-05-29 2020-04-14 Srs的发送方法及移动终端

Country Status (2)

Country Link
CN (1) CN110213828B (zh)
WO (1) WO2020238446A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213828B (zh) * 2019-05-29 2022-02-01 维沃移动通信有限公司 Srs的发送方法及移动终端
WO2021159289A1 (zh) * 2020-02-12 2021-08-19 北京小米移动软件有限公司 波束管理方法、装置、设备及存储介质
WO2021238538A1 (zh) * 2020-05-26 2021-12-02 Oppo广东移动通信有限公司 射频l-drx器件、射频收发系统和通信设备
CN113055030B (zh) * 2020-12-31 2022-11-01 芯讯通无线科技(上海)有限公司 探测参考信号传输电路、方法、装置、终端、基站、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103079217A (zh) * 2012-12-27 2013-05-01 华为技术有限公司 探测参考信号资源确定方法、装置及系统
CN107347005A (zh) * 2016-05-05 2017-11-14 华为技术有限公司 配置探测参考信号的方法和装置
WO2019043436A1 (en) * 2017-08-31 2019-03-07 Telefonaktiebolaget Lm Ericsson (Publ) SYSTEMS AND METHODS FOR ADAPTIVE SRS TRANSMISSION ANTENNA SELECTION
CN110213828A (zh) * 2019-05-29 2019-09-06 维沃移动通信有限公司 Srs的发送方法及移动终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101868625B1 (ko) * 2011-01-13 2018-06-18 엘지전자 주식회사 무선 통신 시스템에서 단말이 기지국으로 채널 상태 정보를 전송하는 방법 및 이를 위한 장치
CN103259580B (zh) * 2012-02-15 2015-12-02 电信科学技术研究院 一种多数据流波束赋形向量确定方法及装置
EP3443703B1 (en) * 2016-04-11 2023-11-01 Telefonaktiebolaget LM Ericsson (PUBL) Method and apparatus for facilitating reference signal transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103079217A (zh) * 2012-12-27 2013-05-01 华为技术有限公司 探测参考信号资源确定方法、装置及系统
CN107347005A (zh) * 2016-05-05 2017-11-14 华为技术有限公司 配置探测参考信号的方法和装置
WO2019043436A1 (en) * 2017-08-31 2019-03-07 Telefonaktiebolaget Lm Ericsson (Publ) SYSTEMS AND METHODS FOR ADAPTIVE SRS TRANSMISSION ANTENNA SELECTION
CN110213828A (zh) * 2019-05-29 2019-09-06 维沃移动通信有限公司 Srs的发送方法及移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INC.: "R1-1904511 Antenna switching for 6 SRS symbols in UpPTS", 3GPP TSG-RAN WG1 #96BIS, 12 April 2019 (2019-04-12), XP051699741, DOI: 20200618092609A *

Also Published As

Publication number Publication date
CN110213828A (zh) 2019-09-06
CN110213828B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN109361444B (zh) 一种发射天线的切换方法及终端设备
US11942979B2 (en) Network radio frequency structure, radio frequency control method, and electronic device
WO2021004350A1 (zh) 发射天线的切换方法及终端设备
WO2020238446A1 (zh) Srs的发送方法及移动终端
WO2020215965A1 (zh) 终端控制方法及终端
CN110113459B (zh) 一种天线控制方法和折叠屏终端
US11552686B2 (en) Beam reporting based on detection of a trigger event
CN109714064B (zh) 射频发射通路控制方法及用户终端
WO2021129525A1 (zh) 天线电路、电子设备及天线性能的调整方法
US11742915B2 (en) Method and apparatus for information processing, terminal, and communications device
WO2020216178A1 (zh) 功率检测电路及终端
US11936474B2 (en) Transmission antenna switching method and terminal device
WO2020238350A1 (zh) 天线控制方法及移动终端
WO2020216180A1 (zh) 功率检测电路及终端
WO2021013007A1 (zh) 测量方法、资源配置方法、终端和网络侧设备
WO2020215930A1 (zh) 干扰处理方法及移动终端
WO2021093707A1 (zh) 测量配置方法、装置及系统
US20220045810A1 (en) Method for indicating antenna panel information of terminal, network side device, and terminal
WO2022166877A1 (zh) Wi-Fi上行数据发送方法、装置、电子设备及存储介质
US20210204294A1 (en) Communication method for mobile terminal and mobile terminal
WO2021147763A1 (zh) 确定波束信息的方法、终端及网络设备
WO2020216258A1 (zh) 天线调节方法、装置及终端
US20220369293A1 (en) Beam information determining method, terminal, and network side device
WO2021160026A1 (zh) 波束报告方法、网络节点及终端
WO2021197149A1 (zh) 终端能力上报、确定方法、终端及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814131

Country of ref document: EP

Kind code of ref document: A1