WO2021139627A1 - 参数上报方法及上行调度方法、设备及介质 - Google Patents

参数上报方法及上行调度方法、设备及介质 Download PDF

Info

Publication number
WO2021139627A1
WO2021139627A1 PCT/CN2021/070171 CN2021070171W WO2021139627A1 WO 2021139627 A1 WO2021139627 A1 WO 2021139627A1 CN 2021070171 W CN2021070171 W CN 2021070171W WO 2021139627 A1 WO2021139627 A1 WO 2021139627A1
Authority
WO
WIPO (PCT)
Prior art keywords
fdd
uplink
mode
transmission time
terminal device
Prior art date
Application number
PCT/CN2021/070171
Other languages
English (en)
French (fr)
Inventor
林辉
陈力
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021139627A1 publication Critical patent/WO2021139627A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the embodiment of the present invention relates to the field of communication technology, and in particular to a parameter reporting method and an uplink scheduling method, equipment and medium.
  • the method of reporting uplink data transmission capability parameters of other links enables the base station to obtain the uplink data transmission capability parameters of multiple links of the terminal equipment.
  • the embodiment of the present invention provides a parameter reporting method and an uplink scheduling method, device, and medium to solve the problem that the terminal device in the prior art cannot flexibly adjust the uplink data transmission capability parameter of each link.
  • the present invention is implemented as follows:
  • the first indication information is used to indicate the first maximum uplink transmission time ratio value supported by multiple links of the terminal device at the same time.
  • an embodiment of the present invention provides a network device, including:
  • the uplink scheduling module is configured to perform uplink scheduling on each link of the terminal device according to the first maximum uplink transmission time percentage value in the case of receiving the first indication information reported by the terminal device;
  • the first indication information is used to indicate the first maximum uplink transmission time ratio value supported by multiple links of the terminal device at the same time.
  • an embodiment of the present invention provides a network device, including a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program is executed by the processor, the implementation is as described in the second aspect. The steps of the uplink scheduling method.
  • an embodiment of the present invention provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the method for reporting parameters as described in the first aspect or as described in the second aspect is implemented. The steps of the uplink scheduling method described in the aspect.
  • multiple links simultaneously support the first maximum uplink transmission time ratio value at their respective maximum transmission powers, they can be reported to the network device to indicate that the multiple links of the terminal device support the first
  • the first indication information of the maximum uplink transmission time percentage so that the terminal device can flexibly report the uplink data transmission of each link according to the maximum uplink transmission time percentage supported by multiple links at their respective maximum transmission powers at the same time
  • the maximum uplink transmission time ratio in the capacity parameters so that the terminal equipment can flexibly adjust the uplink data transmission capacity parameters of multiple links, which solves the problem that the terminal equipment in the prior art cannot flexibly adjust the uplink data transmission of each link
  • the problem of ability parameters if multiple links simultaneously support the first maximum uplink transmission time ratio value at their respective maximum transmission powers, they can be reported to the network device to indicate that the multiple links of the terminal device support the first
  • the first indication information of the maximum uplink transmission time percentage so that the terminal device can flexibly report the uplink data transmission of each link according to the maximum uplink transmission time percentage supported by multiple links at their respective
  • Figure 2 is a schematic diagram of uplink data transmission parameters
  • Figure 3 is a schematic diagram of another uplink data transmission parameter
  • FIG. 4 is a schematic flowchart of an embodiment of a parameter reporting method provided by the present invention.
  • FIG. 5 is a schematic flowchart of an embodiment of an uplink scheduling method provided by the present invention.
  • Figure 6 is a schematic structural diagram of an embodiment of a terminal device provided by the present invention.
  • FIG. 7 is a schematic structural diagram of an embodiment of a network device provided by the present invention.
  • FIG. 8 is a schematic diagram of the hardware structure of an embodiment of a mobile terminal provided by the present invention.
  • the base station obtains the uplink data transmission capability parameters of multiple links of the terminal device.
  • the uplink transmission time ratio (UL Dutycycle) is usually controlled to achieve coverage enhancement, that is, UL Dutycycle is shortened to make UL Dutycycle ⁇ 100%, so as to use high data during effective data transmission.
  • the power is transmitted to achieve coverage enhancement, so as to ensure that the average radiation (for example: Specific Absorption Rate (SAR)) of the user equipment 110 calculated according to a certain long period (for example: 6 minutes commonly used for device authentication) does not exceed the standard. That is, it can be ensured that the overall radiation of the user equipment 110 does not exceed the standard.
  • SAR Specific Absorption Rate
  • Figure 2 shows a schematic diagram of uplink data transmission parameters.
  • Figure 3 shows a schematic diagram of another uplink data transmission parameter.
  • the UL Dutycycle supported by different high-power user equipment 110 is different at a specific power level, and the range of the UL Dutycycle may be 10%-100%.
  • the UL Dutycycle needs to be reported to the base station 120 as an uplink data transmission capability of the user equipment 110, which serves as a reference for the base station 120 to perform network scheduling and work of the user equipment 110.
  • the overall The radiation limit calculation formula can be:
  • user equipment 110 may have Long Term Evolution (LTE) frequency division dual Frequency Division Duplexing (FDD) links and New Radio (NR) Time Division Duplex (TDD) links can be based on the reference configuration parameters of the LTE FDD link (for example, maximum uplink transmission).
  • LTE Long Term Evolution
  • FDD Frequency Division Duplexing
  • NR New Radio
  • TDD Time Division Duplex
  • Fig. 4 shows a schematic flowchart of an embodiment of a parameter reporting method provided by the present invention.
  • the parameter reporting method shown in FIG. 4 may be executed by a terminal device, for example, the user equipment 110 shown in FIG. 1, where the terminal device may include multiple links.
  • the parameter reporting method may include:
  • multiple links simultaneously support the first maximum uplink transmission time ratio value at their respective maximum transmission powers, they can be reported to the network device to indicate that the multiple links of the terminal device support the first
  • the first indication information of the maximum uplink transmission time proportion so that the terminal device can flexibly report the uplink data transmission of each link according to the maximum uplink transmission time proportion supported by multiple links at their respective maximum transmission powers at the same time
  • the maximum uplink transmission time proportion in the capacity parameters so that the terminal equipment can flexibly adjust the uplink data transmission capacity parameters of multiple links, which solves the problem that the terminal equipment in the prior art cannot flexibly adjust the uplink data transmission of each link
  • the problem of ability parameters if multiple links simultaneously support the first maximum uplink transmission time ratio value at their respective maximum transmission powers, they can be reported to the network device to indicate that the multiple links of the terminal device support the first
  • the first indication information of the maximum uplink transmission time proportion so that the terminal device can flexibly report the uplink data transmission of each link according to the maximum uplink transmission time proportion supported by multiple links at their respective
  • the preset radiation limit and the maximum transmit power of each link can be used to determine the maximum transmit power of multiple links.
  • the maximum transmission power of each link may be the maximum transmission power preset by the terminal device.
  • the preset radiation limit can be the radiation limit preset by the terminal device, or it can be the radiation limit set by the user.
  • the first maximum uplink transmission time percentage value may be 100%, that is, the first maximum uplink transmission time percentage value is the full uplink transmission time percentage value.
  • the parameter value of the first indication information may specifically be Full_duty_supported, which can indicate that the maximum uplink transmission time ratio value supported by multiple links of the terminal device at the same time is 100%.
  • the parameter value of the first indication information may also specifically be Both100%, which can indicate that the maximum uplink transmission time ratio value supported by the two links of the terminal device at the same time is 100%.
  • the first maximum uplink transmission time ratio value is the total uplink transmission time ratio value, it can be expressed as:
  • the maximum uplink transmission time proportion of each link of the terminal device is 100%, or each link of the terminal device supports any uplink transmission time proportion.
  • the first maximum uplink transmission time ratio value may also be less than 100%, that is, the first maximum uplink transmission time ratio value is a partial uplink transmission time ratio value.
  • the parameter value of the first indication information may specifically be Both80%, which can indicate that the maximum uplink transmission time ratio value supported by the two links of the terminal device at the same time is 80%.
  • the first maximum uplink transmission time ratio value is the partial uplink transmission time ratio value, it can be expressed as:
  • the maximum uplink sending time proportion of each link of the terminal equipment is the value of the part of the uplink sending time proportion. For example, if the parameter value of the first indication information is Both80%, it may indicate that the maximum uplink transmission time ratio of the two links of the terminal device is both 80%.
  • the parameter reporting method may further include:
  • the first transmit power is used to perform the uplink on the target link For transmission, the first transmission power is equal to the maximum transmission power of the target link.
  • the target link can be any one of multiple links. If the proportion of the uplink transmission time scheduled by the network device on the target link is less than or equal to the first maximum uplink transmission time proportion value, it meets the requirements of the terminal device for high-power uplink data transmission, and the terminal device can transmit at the maximum transmission time of the target link The power is sent uplink on the target link, so that high-power terminal devices can maintain the maximum transmit power on the target link to achieve coverage enhancement.
  • the terminal equipment can perform uplink transmission on the link at 26dBm.
  • the second transmission power is used to perform uplink transmission on the target link, and the first 2.
  • the transmit power is less than the maximum transmit power of the target link.
  • the target link can be any one of multiple links. If the proportion of the uplink transmission time scheduled by the network device on the target link is greater than the first maximum uplink transmission time proportion value, it does not meet the requirements of the terminal device for high-power uplink data transmission, and the terminal device may be lower than the maximum value of the target link.
  • the transmit power of the transmit power is sent upstream on the target link, so as to prevent the overall radiation of high-power terminal equipment from exceeding the standard.
  • the first transmission power is 26dBm
  • the UL dutycycle under the first transmission power is 50%
  • the first transmission power is the maximum transmission power
  • the second transmission power is 23dBm. If the network equipment The uplink transmission time scheduled on the link accounts for more than 50%, and the terminal device can perform uplink transmission on the link at 23 dBm.
  • the multiple links of the terminal device may include a first link and a second link.
  • the first link is a link without reference configuration parameters
  • the second link is a link with reference configuration parameters.
  • the parameter reporting method may further include:
  • the range of the second maximum uplink transmission time percentage value may be 10% to 100%, which is not limited here.
  • the network device can determine the uplink data transmission capability of the first link of the terminal device according to the second maximum uplink transmission time ratio in the second indication information, and directly according to Determine the uplink data transmission capability of the second link of the terminal device with reference to the configuration parameters, thereby performing uplink scheduling on each first link of the terminal device according to the second maximum uplink transmission time percentage value, and according to the third maximum uplink transmission time percentage
  • the ratio performs uplink scheduling on each second link of the terminal equipment, so that the high-power terminal equipment can maintain the maximum transmission power.
  • the second link may include a frequency division duplex FDD link.
  • the parameter reporting method provided by the embodiment of the present invention is simple and feasible. It only needs to add the first maximum uplink transmission that is used to indicate that multiple links of the terminal device simultaneously support in the signaling for reporting the uplink data transmission capability of a high-power terminal device.
  • the first indication information of the time percentage value enables the network device to determine the maximum uplink transmission time percentage capability of the multiple links of the terminal device according to the first indication information, as a basis for network scheduling and terminal device behavior.
  • the multiple links include links in which the terminal device is in a working state in the multi-connection mode.
  • the multi-connection mode may specifically be ENDC including FDD links, uplink carrier aggregation, supplementary uplink (Supplementary uplink, SUL) and other various multi-connection modes that require high-power uplink multi-connection.
  • Fig. 5 shows a schematic flowchart of an embodiment of an uplink scheduling method provided by the present invention.
  • the uplink scheduling method shown in FIG. 5 may be executed by a network device, for example, the base station 120 shown in FIG. 1. As shown in Figure 5, the uplink scheduling method may include:
  • the first indication information is used to indicate the first maximum uplink transmission time ratio value supported by multiple links of the terminal device at the same time.
  • the specific method of S310 may include:
  • the uplink scheduling is performed on each link separately according to the first uplink transmission time proportion, and the first uplink transmission time proportion is less than or equal to the first maximum uplink transmission time proportion value.
  • the network device may perform uplink scheduling on each link with an uplink transmission time ratio less than or equal to 80%.
  • S310 when the first maximum uplink transmission time percentage value is 100%, in order to enable a high-power terminal device to maintain the maximum transmission power on multiple links, S310 may specifically include:
  • the multiple links of the terminal device may include a first link and a second link.
  • the first link is a link without reference configuration parameters
  • the second link is a link with reference configuration parameters.
  • Link Before performing uplink data transmission, the terminal device uses the above-mentioned overall radiation limit calculation formula, preset radiation limit, reference configuration parameters of the second link and the maximum transmit power of each first link to determine at least one first link.
  • a link supports the second maximum uplink transmission time ratio value at the same time under the respective maximum transmission power, and supports the second maximum uplink transmission time ratio value and the second maximum transmission time ratio value at the same time when the respective maximum transmission power of at least one first link is determined In the case that the link supports the third maximum uplink transmission time ratio value, the second indication information is reported to the network device.
  • the uplink scheduling method may further include:
  • the specific method for respectively performing uplink scheduling on the first link of the terminal device according to the second maximum uplink transmission time ratio value may include:
  • the first link is separately scheduled for uplink according to the third uplink transmission time proportion, and the third uplink transmission time proportion is less than or equal to the second maximum uplink transmission time proportion value.
  • the second link is separately scheduled for uplink according to the fourth uplink transmission time proportion, and the fourth uplink transmission time proportion is less than or equal to the third maximum uplink transmission time proportion value.
  • the uplink scheduling method provided by the embodiment of the present invention is simple and feasible.
  • the network device only needs to identify the first maximum value that is used to indicate the simultaneous support of multiple links of the terminal device in the signaling that the high-power terminal device performs the uplink data transmission capability report.
  • the first indication information of the uplink transmission time ratio value can determine the maximum uplink transmission time ratio capability of the multiple links of the terminal device according to the first indication information, which serves as a basis for network scheduling and terminal device behavior.
  • the multiple links include links in which the terminal device is in a working state in the multi-connection mode.
  • the multi-connection mode may specifically include various multi-connection modes including ENDC of the FDD link, uplink carrier aggregation, SUL, etc., which require high-power uplink multi-connection.
  • Duty LTE indicates the proportion of the uplink transmission time of the terminal device on the LTE link
  • Duty NR indicates the proportion of the uplink transmission time of the terminal device on the NR link.
  • the overall radiation for example: SAR
  • Fig. 6 shows a schematic structural diagram of an embodiment of a terminal device provided by the present invention.
  • the terminal device 400 shown in FIG. 6 may be the user equipment 110 shown in FIG. 1, where the terminal device 400 may include multiple links. As shown in FIG. 6, the terminal device 400 may include:
  • the information reporting module 410 is configured to report first indication information to the network device when multiple links simultaneously support the first maximum uplink transmission time ratio under their respective maximum transmission powers, and the first indication information is used to instruct the terminal The first maximum uplink transmission time percentage value supported by multiple links of the device at the same time.
  • multiple links simultaneously support the first maximum uplink transmission time ratio value at their respective maximum transmission powers, they can be reported to the network device to indicate that the multiple links of the terminal device support the first
  • the first indication information of the maximum uplink transmission time percentage so that the terminal device can flexibly report the uplink data transmission of each link according to the maximum uplink transmission time percentage supported by multiple links at their respective maximum transmission powers at the same time
  • the maximum uplink transmission time ratio in the capacity parameters so that the terminal equipment can flexibly adjust the uplink data transmission capacity parameters of multiple links, which solves the problem that the terminal equipment in the prior art cannot flexibly adjust the uplink data transmission of each link
  • the problem of ability parameters if multiple links simultaneously support the first maximum uplink transmission time ratio value at their respective maximum transmission powers, they can be reported to the network device to indicate that the multiple links of the terminal device support the first
  • the first indication information of the maximum uplink transmission time percentage so that the terminal device can flexibly report the uplink data transmission of each link according to the maximum uplink transmission time percentage supported by multiple links at their respective
  • the first maximum uplink transmission time percentage value is 100%, or the first maximum uplink transmission time percentage value is less than 100%.
  • the terminal device may further include:
  • the first sending module is used for target links in multiple links. If the proportion of the uplink transmission time scheduled by the network device on the target link is less than or equal to the first maximum uplink transmission time proportion, the first transmit power is Uplink transmission is performed on the target link, and the first transmission power is equal to the maximum transmission power of the target link.
  • the terminal device can transmit on the target link with the maximum transmission power of the target link, so that the high-power terminal device can maintain the maximum transmission power on the target link to achieve coverage enhancement.
  • the terminal device may further include:
  • the second sending module is used for target links among multiple links. If the proportion of the uplink transmission time scheduled by the network device on the target link is greater than the proportion of the first maximum uplink transmission time, the second transmission power is used in the target link Uplink transmission is performed on the road, and the second transmission power is less than the maximum transmission power of the target link.
  • the terminal device can perform uplink transmission on the target link with a transmission power lower than the maximum transmission power of the target link, so that the overall radiation of the high-power terminal device can be prevented from exceeding the standard.
  • the multiple links include links in which the terminal device is in a working state in the multi-connection mode.
  • the mobile terminal provided in the embodiment of the present invention can implement the various processes and effects achieved by the mobile terminal in the method embodiment of FIG. 4, and the implementation principles are similar. To avoid repetition, details are not described herein again.
  • Fig. 7 shows a schematic structural diagram of an embodiment of a network device provided by the present invention.
  • the uplink scheduling module 510 is configured to perform uplink scheduling on each link of the terminal device according to the first maximum uplink transmission time percentage value in the case of receiving the first indication information reported by the terminal device;
  • the first indication information is used to indicate the first maximum uplink transmission time ratio value supported by multiple links of the terminal device at the same time.
  • the network device after the network device receives the first indication information reported by the terminal device, it can separately perform uplink scheduling on each link of the terminal device according to the first maximum uplink transmission time ratio value, thereby enabling high power
  • the terminal equipment can maintain the maximum transmit power on multiple links to achieve coverage enhancement.
  • the uplink scheduling module 510 may be specifically used to:
  • the uplink scheduling is performed on each link separately according to the first uplink transmission time proportion, and the first uplink transmission time proportion is less than or equal to the first maximum uplink transmission time proportion value.
  • the multiple links include links in which the terminal device is in a working state in the multi-connection mode.
  • the multi-connection mode is any one of the following:
  • the embodiment of the present invention also provides a network device, including a processor, a memory, and a computer program stored in the memory and capable of running on the processor.
  • a network device including a processor, a memory, and a computer program stored in the memory and capable of running on the processor.
  • FIG. 8 is a schematic diagram of the hardware structure of an embodiment of a mobile terminal provided by the present invention.
  • the mobile terminal 600 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, and a memory 609 , Processor 610, and power supply 611.
  • a radio frequency unit 601 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, and a memory 609 , Processor 610, and power supply 611.
  • the mobile terminal may include more or fewer components than those shown in the figure, or a combination of certain components, or different components. Layout.
  • mobile terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wear
  • the processor 610 is configured to report first indication information to the network device when multiple links simultaneously support the first maximum uplink transmission time ratio value at their respective maximum transmission powers, where the first indication information is used to instruct the terminal device The first maximum uplink transmission time ratio supported by multiple links at the same time.
  • multiple links simultaneously support the first maximum uplink transmission time ratio value at their respective maximum transmission powers, they can be reported to the network device to indicate that the multiple links of the terminal device support the first
  • the first indication information of the maximum uplink transmission time percentage so that the terminal device can flexibly report the uplink data transmission of each link according to the maximum uplink transmission time percentage supported by multiple links at their respective maximum transmission powers at the same time
  • the maximum uplink transmission time ratio in the capacity parameters so that the terminal equipment can flexibly adjust the uplink data transmission capacity parameters of multiple links, which solves the problem that the terminal equipment in the prior art cannot flexibly adjust the uplink data transmission of each link
  • the problem of ability parameters if multiple links simultaneously support the first maximum uplink transmission time ratio value at their respective maximum transmission powers, they can be reported to the network device to indicate that the multiple links of the terminal device support the first
  • the first indication information of the maximum uplink transmission time percentage so that the terminal device can flexibly report the uplink data transmission of each link according to the maximum uplink transmission time percentage supported by multiple links at their respective
  • the radio frequency unit 601 can be used to receive and send signals during information transmission or communication. Specifically, the downlink data from the base station is received and processed by the processor 610; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 601 can also communicate with the network and other devices through a wireless communication system.
  • the audio output unit 603 can convert the audio data received by the radio frequency unit 601 or the network module 602 or stored in the memory 609 into audio signals and output them as sounds. Moreover, the audio output unit 603 may also provide audio output related to a specific function performed by the mobile terminal 600 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 603 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 604 is used to receive audio or video signals.
  • the input unit 604 may include a graphics processing unit (GPU) 6041 and a microphone 6042, and the graphics processor 6041 is used to capture images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 606.
  • the image frame processed by the graphics processor 6041 may be stored in the memory 609 (or other storage medium) or sent via the radio frequency unit 601 or the network module 602.
  • the microphone 6042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 601 for output in the case of a telephone call mode.
  • the mobile terminal 600 also includes at least one sensor 605, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 6061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 6061 and the display panel 6061 when the mobile terminal 600 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify the posture of the mobile terminal (such as horizontal and vertical screen switching, related games).
  • sensor 605 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 606 is used to display information input by the user or information provided to the user.
  • the display unit 606 may include a display panel 6061, and the display panel 6061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 607 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the mobile terminal.
  • the user input unit 607 includes a touch panel 6071 and other input devices 6072.
  • the touch panel 6071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 6071 or near the touch panel 6071. operating).
  • the touch panel 6071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 610, the command sent by the processor 610 is received and executed.
  • the touch panel 6071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 607 may also include other input devices 6072.
  • other input devices 6072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 6071 can cover the display panel 6061.
  • the touch panel 6071 detects a touch operation on or near it, it is transmitted to the processor 610 to determine the type of the touch event, and then the processor 610 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 6061.
  • the touch panel 6071 and the display panel 6061 are used as two independent components to implement the input and output functions of the mobile terminal, in some embodiments, the touch panel 6071 and the display panel 6061 can be integrated
  • the implementation of the input and output functions of the mobile terminal is not specifically limited here.
  • the processor 610 is the control center of the mobile terminal. It uses various interfaces and lines to connect the various parts of the entire mobile terminal, runs or executes software programs and/or modules stored in the memory 609, and calls data stored in the memory 609. , Perform various functions of the mobile terminal and process data, so as to monitor the mobile terminal as a whole.
  • the processor 610 may include one or more processing units; preferably, the processor 610 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., and the modem
  • the processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 610.
  • the mobile terminal 600 may also include a power supply 611 (such as a battery) for supplying power to various components.
  • a power supply 611 (such as a battery) for supplying power to various components.
  • the power supply 611 may be logically connected to the processor 610 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the embodiment of the present invention also provides a mobile terminal, including a processor 610, a memory 609, and a computer program stored in the memory 609 and running on the processor 610.
  • a mobile terminal including a processor 610, a memory 609, and a computer program stored in the memory 609 and running on the processor 610.
  • the computer program is executed by the processor 610.
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the computer program is executed by a processor, each process of the above-mentioned parameter reporting method or uplink scheduling method embodiment is implemented, and can be To achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.
  • each block in the flowchart and/or block diagram and the combination of each block in the flowchart and/or block diagram can be implemented by a program or instruction.
  • These programs or instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device to generate a machine such that these programs or instructions are executed by the processor of the computer or other programmable data processing device Enables the realization of functions/actions specified in one or more blocks of the flowchart and/or block diagram.
  • Such a processor can be, but is not limited to, a general-purpose processor, a dedicated processor, a special application processor, or a field programmable logic circuit. It can also be understood that each block in the block diagram and/or flowchart and the combination of the blocks in the block diagram and/or flowchart can also be implemented by dedicated hardware that performs the specified function or action, or can be implemented by dedicated hardware and A combination of computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种参数上报方法及上行调度方法、设备及介质。其中,参数上报方法应用于终端设备,终端设备包括多条链路,该方法包括:在多条链路在各自的最大发射功率下同时支持第一最大上行发送时间占比值的情况下,向网络设备上报第一指示信息,第一指示信息用于指示终端设备的多条链路同时支持的第一最大上行发送时间占比值。

Description

参数上报方法及上行调度方法、设备及介质
相关申请的交叉引用
本申请要求享有于2020年01月09日提交的名称为“参数上报方法及上行调度方法、设备及介质”的中国专利申请202010023746.X的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种参数上报方法及上行调度方法、设备及介质。
背景技术
终端设备在多链路模式下,由于多条链路在终端设备的整体辐射指标上具有相互平衡的关系,为了使整体辐射指标不超标,会采用在一条链路具有固定的参考配置参数的基础上,上报其他链路的上行数据传输能力参数的方式,使基站获取终端设备的多条链路的上行数据传输能力参数。
但是,在这种情况下,具有参考配置参数的链路的上行数据传输能力参数将一直受限于所设定的参考配置参数,使得终端设备无法灵活地调整每条链路的上行数据传输能力参数。
发明内容
本发明实施例提供一种参数上报方法及上行调度方法、设备及介质,以解决现有技术中终端设备无法灵活地调整每条链路的上行数据传输能力参数的问题。
为了解决上述技术问题,本发明是这样实现的:
第一方面,本发明实施例提供了一种参数上报方法,应用于终端设备,终端设备包括多条链路,该方法包括:
在多条链路在各自的最大发射功率下同时支持第一最大上行发送时间占比值的情况下,向网络设备上报第一指示信息,第一指示信息用于指示终端设备的多条链路同时支持的第一最大上行发送时间占比值。
第二方面,本发明实施例提供了一种上行调度方法,应用于网络设备,包括:
在接收到终端设备上报的第一指示信息的情况下,根据第一最大上行发送时间占比值,分别对终端设备的每条链路进行上行调度;
其中,第一指示信息用于指示终端设备的多条链路同时支持的第一最大上行发送时间占比值。
第三方面,本发明实施例提供了一种终端设备,终端设备包括多条链路,该终端设备包括:
信息上报模块,用于在多条链路在各自的最大发射功率下同时支持第一最大上行发送时间占比值的情况下,向网络设备上报第一指示信息,第一指示信息用于指示终端设备的多条链路同时支持的第一最大上行发送时间占比值。
第四方面,本发明实施例提供了一种网络设备,包括:
上行调度模块,用于在接收到终端设备上报的第一指示信息的情况下,根据第一最大上行发送时间占比值,分别对终端设备的每条链路进行上行调度;
其中,第一指示信息用于指示终端设备的多条链路同时支持的第一最大上行发送时间占比值。
第五方面,本发明实施例提供了一种终端设备,终端设备包括多条链路,该终端设备包括处理器、存储器及存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现如第一方面所述的参数上报方法的步骤。
第六方面,本发明实施例提供了一种网络设备,包括处理器、存储器及存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现如第二方面所述的上行调度方法的步骤。
第七方面,本发明实施例提供了一种计算机可读存储介质,计算机可 读存储介质上存储计算机程序,计算机程序被处理器执行时实现如第一方面所述的参数上报方法或者如第二方面所述的上行调度方法的步骤。
在本发明实施例中,如果多条链路在各自的最大发射功率下同时支持第一最大上行发送时间占比值,则可以向网络设备上报用于指示终端设备的多条链路同时支持第一最大上行发送时间占比的第一指示信息,从而使终端设备可以根据多条链路在各自的最大发射功率下同时支持的最大上行发送时间占比,灵活地上报每条链路的上行数据传输能力参数中的最大上行发送时间占比,以使终端设备可以灵活地调整多条链路的上行数据传输能力参数,解决了现有技术中终端设备无法灵活地调整每条链路的上行数据传输能力参数的问题。
附图说明
从下面结合附图对本发明的具体实施方式的描述中可以更好地理解本发明。其中,相同或相似的附图标记表示相同或相似的特征。
图1为一种数据传输系统的网络架构图;
图2为一种上行数据传输参数的示意图;
图3为另一种上行数据传输参数的示意图;
图4为本发明提供的参数上报方法的一个实施例的流程示意图;
图5为本发明提供的上行调度方法的一个实施例的流程示意图;
图6为本发明提供的终端设备的一个实施例的结构示意图;
图7为本发明提供的网络设备的一个实施例的结构示意图;
图8为本发明提供的移动终端的一个实施例的硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前,终端设备在多链路模式下,由于多条链路在终端设备的整体辐射指标上具有相互平衡的关系,为了使整体辐射指标不超标,会采用在一条链路具有固定的参考配置参数的基础上,上报其他链路的上行数据传输能力参数的方式,使基站获取终端设备的多条链路的上行数据传输能力参数。
图1示出了一种数据传输系统的网络架构图。如图1所示,数据传输系统包括用户设备110和基站120。
一般情况下,针对高功率的用户设备110,通常采用控制上行发送时间占比(UL Dutycycle)的方式实现覆盖增强,即缩短UL Dutycycle,使UL Dutycycle<100%,以在有效数据传输期间采用高功率进行发送实现覆盖增强,从而保证按照一定的较长周期(例如:设备认证常用的6分钟)统计的用户设备110的平均辐射(例如:比吸收率(Specific Absorption Rate,SAR))不超标,即可以保证用户设备110的整体辐射不超标。
图2示出了一种上行数据传输参数的示意图。图3示出了另一种上行数据传输参数的示意图。
如图2所示,用户设备110在进行上行数据传输的过程中,发射功率为23dBm,ULdutycycle=100%。如图3所示,用户设备110在进行上行数据传输的过程中,发射功率为26dBm,ULdutycycle=50%。
可见,这两种情况在较长周期(例如6分钟)统计的辐射效果是相似的,而采用图3所示的上行数据传输参数的用户设备110,在有效数据传输期间可以采用较大的发射功率(例如26dBm)实现覆盖增强。
在保证用户设备110的整体辐射不超标的条件下,在特定的功率水平上,不同的高功率的用户设备110所支持的UL Dutycycle有所不同,UL Dutycycle的范围可以为10%~100%。在用户设备110进行上行数据传输之前,需要将UL Dutycycle作为一项用户设备110的上行数据传输能力上报给基站120,作为基站120进行网络调度和用户设备110工作的参考。
对于具有多条上行链路的用户设备110,由于辐射是多条链路综合作用的整体效果,因此需要衡量多条链路形成的组合情况,确保整体辐射不超过辐射限值要求,例如,整体辐射限值计算公式可以为:
duty1×Tx_power1+…+dutyN×Tx_powerN≤辐射限值
其中,dutyN为第N条链路的上行发送时间占比,Tx_powerN为第N条链路的发射功率。
以用户设备110具有第五代移动通信技术(5th-Generation,5G)ENDC(E-UTRA/NR Dual Connectivity)双连接为例,用户设备110可以具有长期演进(Long Term Evolution,LTE)频分双工(Frequency Division Duplexing,FDD)链路和新空口(New Radio,NR)时分双工(Time Division Duplex,TDD)链路,可以在LTE FDD链路的参考配置参数的基础上(例如最大上行发送时间占比LTE_FDD_max_UL_dutycycle=60%和最大发射功率LTE_Tx_power=23dBm等),定义NRTDD链路在具有一定最大发射功率NR_Tx_power时的最大上行发送时间占比NR_max_UL_dutycycle为用户设备110的上行数据传输能力参数。从而使基站120可以将“LTE FDD链路的参考配置参数”和“NRTDD链路的上行数据传输能力参数”共同作为网络调度和用户设备110工作的参考。
由此,在用户设备110上报行数据传输能力参数时,仅上报可以动态调整的NR TDD链路的上行数据传输能力参数,使得具有参考配置参数的LTE FDD链路的上行数据传输能力一直受限于所设定的参考配置参数,导致终端设备无法灵活地调整每条链路的上行数据传输能力参数。
图4示出了本发明提供的参数上报方法的一个实施例的流程示意图。
在本发明一些实施例中,图4所示的参数上报方法可以由终端设备执行,例如,图1所示的用户设备110,其中,终端设备可以包括多条链路。如图4所示,该参数上报方法可以包括:
S210、在多条链路在各自的最大发射功率下同时支持第一最大上行发送时间占比值的情况下,向网络设备上报第一指示信息,第一指示信息用于指示终端设备的多条链路同时支持的第一最大上行发送时间占比值。
在本发明实施例中,如果多条链路在各自的最大发射功率下同时支持第一最大上行发送时间占比值,则可以向网络设备上报用于指示终端设备的多条链路同时支持第一最大上行发送时间占比的第一指示信息,从而使 终端设备可以根据多条链路在各自的最大发射功率下同时支持的最大上行发送时间占比,灵活地上报每条链路的上行数据传输能力参数中的最大上行发送时间占比,以使终端设备可以灵活地调整多条链路的上行数据传输能力参数,解决了现有技术中终端设备无法灵活地调整每条链路的上行数据传输能力参数的问题。
在本发明一些实施例中,在S210之前,可以利用上述的整体辐射限值计算公式、预设的辐射限值和每条链路的最大发射功率,确定多条链路在各自的最大发射功率下同时支持的第一最大上行发送时间占比值。
其中,每条链路的最大发射功率可以为终端设备预先设定的最大发射功率。预设的辐射限值可以为终端设备预先设定的辐射限值,也可以为用户设定的辐射限值。
在本发明一些实施例中,在S210中,终端设备向网络设备上报的第一指示信息可以指示终端设备的多条链路同时支持的第一最大上行发送时间占比值,以使网络设备能够根据第一最大上行发送时间占比值确定终端设备的上行数据传输能力,从而使网络设备根据第一最大上行发送时间占比值对终端设备的每条链路进行上行调度,以使高功率的终端设备能够维持最大发射功率。
在本发明一些实施例中,第一最大上行发送时间占比值可以为100%,即第一最大上行发送时间占比值为完全上行发送时间占比值。例如,在终端设备具有两条以上链路时,第一指示信息的参数值可以具体为Full_duty_supported,能够指示终端设备的多条链路同时支持的最大上行发送时间占比值为100%。再例如,在终端设备具有两条链路时,第一指示信息的参数值也可以具体为Both100%,能够指示终端设备的两条链路同时支持的最大上行发送时间占比值为100%。
若第一最大上行发送时间占比值为完全上行发送时间占比值,则可以表示:
终端设备的每条链路的最大上行发送时间占比均为100%,或者,终端设备的每条链路均支持任意的上行发送时间占比。
在本发明另一些实施例中,第一最大上行发送时间占比值也可以小于 100%,即第一最大上行发送时间占比值为部分上行发送时间占比值。例如,在终端设备具有两条链路时,第一指示信息的参数值可以具体为Both80%,能够指示终端设备的两条链路同时支持的最大上行发送时间占比值为80%。
若第一最大上行发送时间占比值为部分上行发送时间占比值,则可以表示:
终端设备的每条链路的最大上行发送时间占比均为该部分上行发送时间占比值。例如,第一指示信息的参数值为Both80%,则可以表示终端设备的两条链路的最大上行发送时间占比均为80%。
其中,部分上行发送时间占比的范围可以大于等于10%且小于100%,在此不做限制。
在本发明一些实施例中,在S210之后,该参数上报方法还可以包括:
针对多条链路中的目标链路,若网络设备在该目标链路调度的上行发送时间占比小于或等于第一最大上行发送时间占比值,以第一发射功率在目标链路上进行上行发送,第一发射功率等于目标链路的最大发射功率。
其中,目标链路可以为多条链路中的任意一条链路。如果网络设备在目标链路调度的上行发送时间占比小于或等于第一最大上行发送时间占比值,则符合终端设备进行高功率的上行数据传输的要求,终端设备可以以目标链路的最大发射功率在目标链路上进行上行发送,从而使高功率的终端设备能够在目标链路上维持最大发射功率,以实现覆盖增强。
例如,对于终端设备的任意一条链路,其第一发射功率为26dBm,ULdutycycle=50%,第一发射功率为最大发射功率,如果网络设备在该链路调度的上行发送时间占比小于或等于50%,则终端设备可以以26dBm在该链路上进行上行发送。
在本发明另一些实施例中,在S210之后,该参数上报方法还可以包括:
针对多条链路中的目标链路,若网络设备在目标链路调度的上行发送时间占比大于第一最大上行发送时间占比值,以第二发射功率在目标链路 上进行上行发送,第二发射功率小于目标链路的最大发射功率。
其中,目标链路可以为多条链路中的任意一条链路。如果网络设备在目标链路调度的上行发送时间占比大于第一最大上行发送时间占比值,则不符合终端设备进行高功率的上行数据传输的要求,终端设备可以以低于目标链路的最大发射功率的发射功率,在目标链路上进行上行发送,从而能够避免高功率的终端设备的整体辐射超标。
例如,对于终端设备的任意一条链路,其第一发射功率为26dBm,第一发射功率下的ULdutycycle=50%,第一发射功率为最大发射功率,其第二发射功率为23dBm,如果网络设备在该链路调度的上行发送时间占比大于50%,则终端设备可以以23dBm在该链路上进行上行发送。
在本发明另一些实施例中,终端设备的多条链路可以包括第一链路和第二链路,第一链路为不具有参考配置参数的链路,第二链路为具有参考配置参数的链路。终端设备在进行上行数据传输之前,可以利用上述的整体辐射限值计算公式、预设的辐射限值、第二链路的参考配置参数和每条第一链路的最大发射功率,确定至少一条第一链路在各自的最大发射功率下同时支持的第二最大上行发送时间占比值。
在这些实施例中,该参数上报方法还可以包括:
在确定至少一条第一链路各自的最大发射功率下同时支持第二最大上行发送时间占比值且第二链路支持第三最大上行发送时间占比值的情况下,向网络设备上报第二指示信息,第二指示信息用于指示至少一条第一链路同时支持的第二最大上行发送时间占比值,其中,参考配置参数包括第三最大上行发送时间占比值。
在本发明一些实施例中,第二最大上行发送时间占比值的范围可以为10%~100%,在此不做限制。
具体地,终端设备向网络设备上报第二指示信息后,网络设备能够根据第二指示信息中的第二最大上行发送时间占比值确定终端设备的第一链路的上行数据传输能力,并且直接根据参考配置参数确定终端设备的第二链路的上行数据传输能力,从而根据第二最大上行发送时间占比值对终端设备的每条第一链路进行上行调度,并且根据第三最大上行发送时间占比 值对终端设备的每条第二链路进行上行调度,以使高功率的终端设备能够维持最大发射功率。
在本发明一些实施例中,第二链路可以包括频分双工FDD链路。
本发明实施例提供的参数上报方法简单可行,仅需在高功率的终端设备进行上行数据传输能力上报的信令中,增加用于指示终端设备的多条链路同时支持的第一最大上行发送时间占比值的第一指示信息,使网络设备能够根据第一指示信息确定终端设备的多条链路的最大上行发送时间占比能力,作为网络调度和终端设备行为的依据。
在本发明一些实施例中,多条链路包括终端设备在多连接模式下处于工作状态的链路。其中,多连接模式可以具体为包含FDD链路的ENDC、上行载波聚合、辅助上行(Supplementary uplink,SUL)等各种需要实现上行多连接高功率的多连接模式。
具体地,多连接模式为下列中的任一种:
第四代移动通信技术(4th-Generation,4G)FDD-时分双工(Time Division Duplex,TDD)双连接ENDC模式;
5G FDD-TDD双连接ENDC模式;
4G FDD-FDD双连接ENDC模式;
5G FDD-FDD双连接ENDC模式;
5G FDD-TDD上行载波聚合模式;
5G FDD-FDD上行载波聚合模式;
4G FDD-TDD上行载波聚合模式;
4G FDD-FDD上行载波聚合模式;
5G FDD-TDD辅助上行SUL模式;
5G FDD-FDD辅助上行SUL模式。
综上所述,本发明实施例能够在多条链路在各自的最大发射功率下同时支持完全上行发送时间占比值或部分上行发送时间占比值时,实现对终端设备的多条链路的上行数据传输能力的上报,能够简单可行地灵活上报每条链路的上行数据传输能力参数中的最大上行发送时间占比值。
图5示出了本发明提供的上行调度方法的一个实施例的流程示意图。
在本发明一些实施例中,图5所示的上行调度方法可以由网络设备执行,例如,图1所示的基站120。如图5所示,该上行调度方法可以包括:
S310、在接收到终端设备上报的第一指示信息的情况下,根据第一最大上行发送时间占比值,分别对终端设备的每条链路进行上行调度。
其中,第一指示信息用于指示终端设备的多条链路同时支持的第一最大上行发送时间占比值。
在本发明实施例中,在网络设备接收到终端设备上报的第一指示信息之后,能够根据第一最大上行发送时间占比值,分别对终端设备的每条链路进行上行调度,从而使高功率的终端设备能够在多条链路上均维持最大发射功率,以实现覆盖增强。
在本发明一些实施例中,第一最大上行发送时间占比值可以为100%,或者,第一最大上行发送时间占比值可以小于100%。
在本发明一些实施例中,第一最大上行发送时间占比值小于100%时,为了使高功率的终端设备能够在多条链路上均维持最大发射功率,S310的具体方法可以包括:
以第一上行发送时间占比分别对每条链路进行上行调度,第一上行发送时间占比小于或等于第一最大上行发送时间占比值。
例如,若第一指示信息的参数值为Both80%,则网络设备可以以小于或者等于80%的上行发送时间占比分别对每条链路进行上行调度。
在本发明一些实施例中,第一最大上行发送时间占比值为100%时,为了使高功率的终端设备能够在多条链路上均维持最大发射功率,S310具体可以包括:
以第一上行发送时间占比分别对每条链路进行上行调度,第一上行发送时间占比小于或等于第一最大上行发送时间占比值;
或者
以第二上行发送时间占比分别对每条链路进行上行调度,第二上行发送时间占比小于网络设备的预设最大上行发送时间占比值。
例如,若第一指示信息的参数值为Full_duty_supported,则网络设备 可以以小于或者等于100%的上行发送时间占比分别对每条链路进行上行调度。再例如,若第一指示信息的参数值为Full_duty_supported,并且网络设备具有预设最大上行发送时间占比值,则网络设备可以以小于或者等于预设最大上行发送时间占比值的任意上行发送时间占比分别对每条链路进行上行调度。
在本发明一些实施例中,终端设备的多条链路可以包括第一链路和第二链路,第一链路为不具有参考配置参数的链路,第二链路为具有参考配置参数的链路。终端设备在进行上行数据传输之前,利用上述的整体辐射限值计算公式、预设的辐射限值、第二链路的参考配置参数和每条第一链路的最大发射功率,确定至少一条第一链路在各自的最大发射功率下同时支持的第二最大上行发送时间占比值,并且在确定至少一条第一链路各自的最大发射功率下同时支持第二最大上行发送时间占比值且第二链路支持第三最大上行发送时间占比值的情况下,向网络设备上报了第二指示信息。
在这些实施例中,该上行调度方法还可以包括:
在接收到终端设备上报的第二指示信息的情况下,根据第二最大上行发送时间占比值,分别对终端设备的第一链路进行上行调度,并且,根据第三最大上行发送时间占比值,分别对终端设备的第二链路进行上行调度;
其中,第二指示信息用于指示至少一条第一链路同时支持的第二最大上行发送时间占比值,参考配置参数包括第三最大上行发送时间占比值。
具体地,根据第二最大上行发送时间占比值分别对终端设备的第一链路进行上行调度的具体方法可以包括:
以第三上行发送时间占比分别对第一链路进行上行调度,第三上行发送时间占比小于或等于第二最大上行发送时间占比值。
具体地,根据第三最大上行发送时间占比值分别对终端设备的第二链路进行上行调度的具体方法可以包括:
以第四上行发送时间占比分别对第二链路进行上行调度,第四上行发送时间占比小于或等于第三最大上行发送时间占比值。
在本发明一些实施例中,第二链路可以包括频分双工FDD链路。
本发明实施例提供的上行调度方法简单可行,网络设备仅需在高功率的终端设备进行上行数据传输能力上报的信令中,识别用于指示终端设备的多条链路同时支持的第一最大上行发送时间占比值的第一指示信息,便能够根据第一指示信息确定终端设备的多条链路的最大上行发送时间占比能力,作为网络调度和终端设备行为的依据。
在本发明一些实施例中,多条链路包括终端设备在多连接模式下处于工作状态的链路。其中,多连接模式可以具体为包含FDD链路的ENDC、上行载波聚合、SUL等各种需要实现上行多连接高功率的多连接模式。
具体地,多连接模式为下列中的任一种:
4GFDD-TDD双连接ENDC模式;
5G FDD-TDD双连接ENDC模式;
4G FDD-FDD双连接ENDC模式;
5G FDD-FDD双连接ENDC模式;
5G FDD-TDD上行载波聚合模式;
5G FDD-FDD上行载波聚合模式;
4G FDD-TDD上行载波聚合模式;
4G FDD-FDD上行载波聚合模式;
5G FDD-TDD辅助上行SUL模式;
5G FDD-FDD辅助上行SUL模式。
以下提供举例对终端设备进行参数上报和网络设备进行上行调度的具体方法进行说明。
对于ENDC双连接终端设备,假设Plte表示终端设备在LTE链路的最大发射功率,Pnr表示终端设备在NR链路的最大发射功率,Ptotal表示终端设备的总体最大发射功率。Duty LTE表示终端设备在LTE链路的上行发送时间占比,Duty NR表示终端设备在NR链路的上行发送时间占比值。
举例一:对于Plte=23dBm,Pnr=23dBm,Ptotal=26dBm的高功率终端设备,例如采用DutyLTE=60%,Plte=23dBm作为LTE FDD链路的参考配 置参数,基于该参考配置参数,确定NR链路的最大上行发送时间占比能力NR_max_UL_dutycycle,并上报NR_max_UL_dutycycle的指示信息。其中,NR_max_UL_dutycycle∈{60%,70%,80%,90%,100,Full_duty_supported}。
对于NR_max_UL_dutycycle∈[60%,100%]的情况,表示终端设备在Duty LTE<=60%,Plte=23dBm;Duty NR<=NR_max_UL_dutycycle,Pnr=23dBm;Ptotal=26dBm的场景下可以实现整体辐射(例如:SAR)不超标。对于NR_max_UL_dutycycle=Full_duty_supported的情况,表示终端设备具备在两条连接中同时支持“完全上行发送时间占比”,并且实现整体辐射(例如:SAR)不超标的能力。
网络设备在接收到指示信息后,如果确定NR_max_UL_dutycycle∈[60%,100%],则以Duty LTE<=60%对LTE FDD链路进行上行调度,并且以Duty NR<=NR_max_UL_dutycycle对NR链路进行上行调度。网络设备在接收到指示信息后,如果确定NR_max_UL_dutycycle=Full_duty_supported,则可以以下列任一种方式对终端设备的LTE FDD链路和NR链路进行上行调度:
1、以小于网络设备的预设最大上行发送时间占比的任意上行发送时间占比对LTE FDD链路和NR链路进行上行调度;
2、以Duty LTE<=100%和Duty NR<=100%分别对LTE FDD链路和NR链路进行上行调度。
举例二:对于Plte=23dBm,Pnr=23dBm,Ptotal=26dBm的高功率终端设备,例如采用Duty LTE=60%,Plte=23dBm作为LTE FDD链路的参考配置参数,基于该参考配置参数,确定NR链路的最大上行发送时间占比能力NR_max_UL_dutycycle,并上报NR_max_UL_dutycycle的指示信息。NR_max_UL_dutycycle∈{40%,50%,60%,70%,80%,90%,100%,Both80%,Full_duty_supported}。
其中,与举例一中不同的是,对于NR_max_UL_dutycycle=Both80%的情况,表示终端设备在Duty LTE=80%,Plte=23dBm;Duty NR=80%, Pnr=23dBm;Ptotal=26dBm的场景下可以实现整体辐射(例如:SAR)不超标。
网络设备在接收到指示信息后,如果确定NR_max_UL_dutycycle=Both80%,则以Duty LTE<=60%对LTE FDD链路进行上行调度,并且以Duty NR<=NR_max_UL_dutycycle对NR链路进行上行调度。
图6示出了本发明提供的终端设备的一个实施例的结构示意图。
在本发明一些实施例中,图6所示的终端设备400可以为图1所示的用户设备110,其中,终端设备400可以包括多条链路。如图6所示,该终端设备400可以包括:
信息上报模块410,用于在多条链路在各自的最大发射功率下同时支持第一最大上行发送时间占比值的情况下,向网络设备上报第一指示信息,第一指示信息用于指示终端设备的多条链路同时支持的第一最大上行发送时间占比值。
在本发明实施例中,如果多条链路在各自的最大发射功率下同时支持第一最大上行发送时间占比值,则可以向网络设备上报用于指示终端设备的多条链路同时支持第一最大上行发送时间占比的第一指示信息,从而使终端设备可以根据多条链路在各自的最大发射功率下同时支持的最大上行发送时间占比,灵活地上报每条链路的上行数据传输能力参数中的最大上行发送时间占比,以使终端设备可以灵活地调整多条链路的上行数据传输能力参数,解决了现有技术中终端设备无法灵活地调整每条链路的上行数据传输能力参数的问题。
在本发明一些实施例中,第一最大上行发送时间占比值为100%,或者,第一最大上行发送时间占比值小于100%。
在本发明一些实施例中,该终端设备还可以包括:
第一发送模块,用于针对多条链路中的目标链路,若网络设备在目标链路调度的上行发送时间占比小于或等于第一最大上行发送时间占比值,以第一发射功率在目标链路上进行上行发送,第一发射功率等于目标链路的最大发射功率。
因此,终端设备可以以目标链路的最大发射功率在目标链路上进行上 行发送,从而使高功率的终端设备能够在目标链路上维持最大发射功率,以实现覆盖增强。
在本发明一些实施例中,该终端设备还可以包括:
第二发送模块,用于针对多条链路中的目标链路,若网络设备在目标链路调度的上行发送时间占比大于第一最大上行发送时间占比,以第二发射功率在目标链路上进行上行发送,第二发射功率小于目标链路的最大发射功率。
因此,终端设备可以以低于目标链路的最大发射功率的发射功率,在目标链路上进行上行发送,从而能够避免高功率的终端设备的整体辐射超标。
在本发明一些实施例中,多条链路包括终端设备在多连接模式下处于工作状态的链路。
具体地,多连接模式为下列中的任一种:
4G FDD-TDD双连接ENDC模式;
5G FDD-TDD双连接ENDC模式;
4G FDD-FDD双连接ENDC模式;
5G FDD-FDD双连接ENDC模式;
5G FDD-TDD上行载波聚合模式;
5G FDD-FDD上行载波聚合模式;
4G FDD-TDD上行载波聚合模式;
4G FDD-FDD上行载波聚合模式;
5G FDD-TDD辅助上行SUL模式;
5G FDD-FDD辅助上行SUL模式。
需要说明的是,本发明实施例提供的移动终端能够实现图4的方法实施例中移动终端实现的各个过程和效果,并且实现原理相似,为避免重复,这里不再赘述。
图7示出了本发明提供的网络设备的一个实施例的结构示意图。
在本发明一些实施例中,图7所示的网络设备执行可以为图1所示的基站120。如图7所示,该网络设备500可以包括:
上行调度模块510,用于在接收到终端设备上报的第一指示信息的情况下,根据第一最大上行发送时间占比值,分别对终端设备的每条链路进行上行调度;
其中,第一指示信息用于指示终端设备的多条链路同时支持的第一最大上行发送时间占比值。
在本发明实施例中,在网络设备接收到终端设备上报的第一指示信息之后,能够根据第一最大上行发送时间占比值,分别对终端设备的每条链路进行上行调度,从而使高功率的终端设备能够在多条链路上均维持最大发射功率,以实现覆盖增强。
在本发明一些实施例中,第一最大上行发送时间占比值为100%,或者,第一最大上行发送时间占比值小于100%。
在本发明一些实施例中,上行调度模块510可以具体用于:
以第一上行发送时间占比分别对每条链路进行上行调度,第一上行发送时间占比小于或等于第一最大上行发送时间占比值。
在本发明一些实施例中,多条链路包括终端设备在多连接模式下处于工作状态的链路。
具体地,多连接模式为下列中的任一种:
4G FDD-TDD双连接ENDC模式;
5G FDD-TDD双连接ENDC模式;
4G FDD-FDD双连接ENDC模式;
5G FDD-FDD双连接ENDC模式;
5G FDD-TDD上行载波聚合模式;
5G FDD-FDD上行载波聚合模式;
4G FDD-TDD上行载波聚合模式;
4G FDD-FDD上行载波聚合模式;
5G FDD-TDD辅助上行SUL模式;
5G FDD-FDD辅助上行SUL模式。
需要说明的是,本发明实施例提供的网络设备能够实现图5的方法实施例中网络设备实现的各个过程和效果,并且实现原理相似,为避免重 复,这里不再赘述。
本发明实施例还提供了一种网络设备,包括处理器、存储器及存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述上行调度方法实施例的各个过程和步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
图8为本发明提供的移动终端的一个实施例的硬件结构示意图。如图8所示,该移动终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609、处理器610、以及电源611等部件。本领域技术人员可以理解,图8中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,移动终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元601包括多条链路;
处理器610,用于在多条链路在各自的最大发射功率下同时支持第一最大上行发送时间占比值的情况下,向网络设备上报第一指示信息,第一指示信息用于指示终端设备的多条链路同时支持的第一最大上行发送时间占比值。
在本发明实施例中,如果多条链路在各自的最大发射功率下同时支持第一最大上行发送时间占比值,则可以向网络设备上报用于指示终端设备的多条链路同时支持第一最大上行发送时间占比的第一指示信息,从而使终端设备可以根据多条链路在各自的最大发射功率下同时支持的最大上行发送时间占比,灵活地上报每条链路的上行数据传输能力参数中的最大上行发送时间占比,以使终端设备可以灵活地调整多条链路的上行数据传输能力参数,解决了现有技术中终端设备无法灵活地调整每条链路的上行数据传输能力参数的问题。
应理解的是,本发明实施例中,射频单元601可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给 处理器610处理;另外,将上行的数据发送给基站。通常,射频单元601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元601还可以通过无线通信系统与网络和其他设备通信。
移动终端通过网络模块602为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元603可以将射频单元601或网络模块602接收的或者在存储器609中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元603还可以提供与移动终端600执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元603包括扬声器、蜂鸣器以及受话器等。
输入单元604用于接收音频或视频信号。输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元606上。经图形处理器6041处理后的图像帧可以存储在存储器609(或其它存储介质)中或者经由射频单元601或网络模块602进行发送。麦克风6042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元601发送到移动通信基站的格式输出。
移动终端600还包括至少一种传感器605,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板6061的亮度,接近传感器可在移动终端600移动到耳边时,关闭显示面板6061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器605还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、 温度计、红外线传感器等,在此不再赘述。
显示单元606用于显示由用户输入的信息或提供给用户的信息。显示单元606可包括显示面板6061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板6061。
用户输入单元607可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元607包括触控面板6071以及其他输入设备6072。触控面板6071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板6071上或在触控面板6071附近的操作)。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器610,接收处理器610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板6071。除了触控面板6071,用户输入单元607还可以包括其他输入设备6072。具体地,其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板6071可覆盖在显示面板6061上,当触控面板6071检测到在其上或附近的触摸操作后,传送给处理器610以确定触摸事件的类型,随后处理器610根据触摸事件的类型在显示面板6061上提供相应的视觉输出。虽然在图8中,触控面板6071与显示面板6061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板6071与显示面板6061集成而实现移动终端的输入和输出功能,具体此处不做限定。
接口单元608为外部装置与移动终端600连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端 口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元608可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端600内的一个或多个元件或者可以用于在移动终端600和外部装置之间传输数据。
存储器609可用于存储软件程序以及各种数据。存储器609可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器609可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器610是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器609内的软件程序和/或模块,以及调用存储在存储器609内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器610可包括一个或多个处理单元;优选的,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
移动终端600还可以包括给各个部件供电的电源611(比如电池),优选的,电源611可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,移动终端600包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种移动终端,包括处理器610,存储器609,存储在存储器609上并可在所述处理器610上运行的计算机程序,该计算机程序被处理器610执行时实现上述参数上报方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述参数上报方 法或者上行调度方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面参考根据本申请的实施例的方法、装置(系统)和机器程序产品的流程图和/或框图描述了本申请的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由程序或指令实现。这些程序或指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些程序或指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (27)

  1. 一种参数上报方法,应用于终端设备,所述终端设备包括多条链路,所述方法包括:
    在多条所述链路在各自的最大发射功率下同时支持第一最大上行发送时间占比值的情况下,向网络设备上报第一指示信息,所述第一指示信息用于指示所述终端设备的多条所述链路同时支持的所述第一最大上行发送时间占比值。
  2. 根据权利要求1所述的方法,其中,所述第一最大上行发送时间占比值为100%,或者,所述第一最大上行发送时间占比值小于100%。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    针对多条所述链路中的目标链路,若所述网络设备在所述目标链路调度的上行发送时间占比小于或等于所述第一最大上行发送时间占比值,以第一发射功率在所述目标链路上进行上行发送,所述第一发射功率等于所述目标链路的最大发射功率。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:
    针对多条所述链路中的目标链路,若所述网络设备在所述目标链路调度的上行发送时间占比大于所述第一最大上行发送时间占比值,以第二发射功率在所述目标链路上进行上行发送,所述第二发射功率小于所述目标链路的最大发射功率。
  5. 根据权利要求1-4任一项所述的方法,其中,多条所述链路包括所述终端设备在多连接模式下处于工作状态的链路。
  6. 根据权利要求5所述的方法,其中,所述多连接模式为下列中的任一种:
    4G FDD-TDD双连接ENDC模式;
    5G FDD-TDD双连接ENDC模式;
    4G FDD-FDD双连接ENDC模式;
    5G FDD-FDD双连接ENDC模式;
    5G FDD-TDD上行载波聚合模式;
    5G FDD-FDD上行载波聚合模式;
    4G FDD-TDD上行载波聚合模式;
    4G FDD-FDD上行载波聚合模式;
    5G FDD-TDD辅助上行SUL模式;
    5G FDD-FDD辅助上行SUL模式。
  7. 一种上行调度方法,应用于网络设备,包括:
    在接收到终端设备上报的第一指示信息的情况下,根据第一最大上行发送时间占比值,分别对所述终端设备的每条链路进行上行调度;
    其中,所述第一指示信息用于指示所述终端设备的多条所述链路同时支持的所述第一最大上行发送时间占比值。
  8. 根据权利要求7所述的方法,其中,所述第一最大上行发送时间占比值为100%,或者,所述第一最大上行发送时间占比值小于100%。
  9. 根据权利要求7所述的方法,其中,所述根据第一最大上行发送时间占比值,分别对所述终端设备的每条链路进行上行调度,包括:
    以第一上行发送时间占比分别对每条所述链路进行上行调度,所述第一上行发送时间占比小于或等于所述第一最大上行发送时间占比值。
  10. 根据权利要求7-9任一项所述的方法,其中,多条所述链路包括所述终端设备在多连接模式下处于工作状态的链路。
  11. 根据权利要求10所述的方法,其中,所述多连接模式为下列中的任一种:
    4G FDD-TDD双连接ENDC模式;
    5G FDD-TDD双连接ENDC模式;
    4G FDD-FDD双连接ENDC模式;
    5G FDD-FDD双连接ENDC模式;
    5G FDD-TDD上行载波聚合模式;
    5G FDD-FDD上行载波聚合模式;
    4G FDD-TDD上行载波聚合模式;
    4G FDD-FDD上行载波聚合模式;
    5G FDD-TDD辅助上行SUL模式;
    5G FDD-FDD辅助上行SUL模式。
  12. 一种终端设备,所述终端设备包括多条链路,所述终端设备包括:
    信息上报模块,用于在多条所述链路在各自的最大发射功率下同时支持第一最大上行发送时间占比值的情况下,向网络设备上报第一指示信息,所述第一指示信息用于指示所述终端设备的多条所述链路同时支持的所述第一最大上行发送时间占比值。
  13. 根据权利要求12所述的终端设备,其中,所述第一最大上行发送时间占比值为100%,或者,所述第一最大上行发送时间占比值小于100%。
  14. 根据权利要求12所述的终端设备,其中,还包括:
    第一发送模块,用于针对多条所述链路中的目标链路,若所述网络设备在所述目标链路调度的上行发送时间占比小于或等于所述第一最大上行发送时间占比值,以第一发射功率在所述目标链路上进行上行发送,所述第一发射功率等于所述目标链路的最大发射功率。
  15. 根据权利要求12所述的终端设备,其中,还包括:
    第二发送模块,用于针对多条所述链路中的目标链路,若所述网络设备在所述目标链路调度的上行发送时间占比大于所述第一最大上行发送时间占比值,以第二发射功率在所述目标链路上进行上行发送,所述第二发射功率小于所述目标链路的最大发射功率。
  16. 根据权利要求12-15任一项所述的终端设备,其中,多条所述链路包括所述终端设备在多连接模式下处于工作状态的链路。
  17. 根据权利要求16所述的终端设备,其中,所述多连接模式为下列中的任一种:
    4G FDD-TDD双连接ENDC模式;
    5G FDD-TDD双连接ENDC模式;
    4G FDD-FDD双连接ENDC模式;
    5G FDD-FDD双连接ENDC模式;
    5G FDD-TDD上行载波聚合模式;
    5G FDD-FDD上行载波聚合模式;
    4G FDD-TDD上行载波聚合模式;
    4G FDD-FDD上行载波聚合模式;
    5G FDD-TDD辅助上行SUL模式;
    5G FDD-FDD辅助上行SUL模式。
  18. 一种网络设备,包括:
    上行调度模块,用于在接收到终端设备上报的第一指示信息的情况下,根据第一最大上行发送时间占比值,分别对所述终端设备的每条链路进行上行调度;
    其中,所述第一指示信息用于指示所述终端设备的多条所述链路同时支持的所述第一最大上行发送时间占比值。
  19. 根据权利要求18所述的网络设备,其中,所述第一最大上行发送时间占比值为100%,或者,所述第一最大上行发送时间占比值小于100%。
  20. 根据权利要求18所述的网络设备,其中,所述上行调度模块具体用于:
    以第一上行发送时间占比分别对每条所述链路进行上行调度,所述第一上行发送时间占比小于或等于所述第一最大上行发送时间占比值。
  21. 根据权利要求18-20任一项所述的方法,其中,多条所述链路包括所述终端设备在多连接模式下处于工作状态的链路。
  22. 根据权利要求21所述的方法,其中,所述多连接模式为下列中的任一种:
    4G FDD-TDD双连接ENDC模式;
    5G FDD-TDD双连接ENDC模式;
    4G FDD-FDD双连接ENDC模式;
    5G FDD-FDD双连接ENDC模式;
    5G FDD-TDD上行载波聚合模式;
    5G FDD-FDD上行载波聚合模式;
    4G FDD-TDD上行载波聚合模式;
    4G FDD-FDD上行载波聚合模式;
    5G FDD-TDD辅助上行SUL模式;
    5G FDD-FDD辅助上行SUL模式。
  23. 一种终端设备,所述终端设备包括多条链路,所述终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至6中任一项所述的参数上报方法的步骤。
  24. 一种网络设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求7至11中任一项所述的上行调度方法的步骤。
  25. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6中任一项所述的参数上报方法或者如权利要求7至11中任一项所述的上行调度方法。
  26. 一种设备,所述设备被配置成用于执行如权利要求1至6中任一项所述的参数上报方法,或权利要求7至11中任一项所述的上行调度方法。
  27. 一种计算机程序产品,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至6中任一项所述的参数上报方法,或权利要求7至11中任一项所述的上行调度方法。
PCT/CN2021/070171 2020-01-09 2021-01-04 参数上报方法及上行调度方法、设备及介质 WO2021139627A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010023746.XA CN113099542B (zh) 2020-01-09 2020-01-09 参数上报方法及上行调度方法、设备及介质
CN202010023746.X 2020-01-09

Publications (1)

Publication Number Publication Date
WO2021139627A1 true WO2021139627A1 (zh) 2021-07-15

Family

ID=76663539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070171 WO2021139627A1 (zh) 2020-01-09 2021-01-04 参数上报方法及上行调度方法、设备及介质

Country Status (2)

Country Link
CN (1) CN113099542B (zh)
WO (1) WO2021139627A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115623571A (zh) * 2021-07-13 2023-01-17 维沃移动通信有限公司 能力上报方法、装置、终端及网络侧设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018059519A1 (zh) * 2016-09-30 2018-04-05 中兴通讯股份有限公司 终端能力的协调处理、协调方法及装置、终端、基站
CN109451819A (zh) * 2018-01-23 2019-03-08 北京小米移动软件有限公司 信息上报方法及装置
CN110049563A (zh) * 2019-03-15 2019-07-23 华为技术有限公司 一种过热指示方法以及相关设备
CN110536466A (zh) * 2019-08-16 2019-12-03 中兴通讯股份有限公司 数据传输方法、装置和系统
CN110662240A (zh) * 2018-06-29 2020-01-07 中国移动通信有限公司研究院 发射功率的指示方法、接收方法、网络设备和接入设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9515808B2 (en) * 2011-07-26 2016-12-06 Qualcomm Incorporated Transmission of control information in a wireless network with carrier aggregation
CN111034312A (zh) * 2017-10-13 2020-04-17 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
CN110351054B (zh) * 2018-04-04 2021-01-22 中国移动通信有限公司研究院 信息传输方法、装置、网络设备及终端
CN111543092B (zh) * 2018-05-14 2021-11-16 Oppo广东移动通信有限公司 一种终端功率等级的调整方法及装置、计算机存储介质
CN110225575B (zh) * 2019-05-03 2021-02-23 华为技术有限公司 传输功率控制方法、相关设备及系统
CN110381576A (zh) * 2019-06-10 2019-10-25 华为技术有限公司 功率配置方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018059519A1 (zh) * 2016-09-30 2018-04-05 中兴通讯股份有限公司 终端能力的协调处理、协调方法及装置、终端、基站
CN109451819A (zh) * 2018-01-23 2019-03-08 北京小米移动软件有限公司 信息上报方法及装置
CN110662240A (zh) * 2018-06-29 2020-01-07 中国移动通信有限公司研究院 发射功率的指示方法、接收方法、网络设备和接入设备
CN110049563A (zh) * 2019-03-15 2019-07-23 华为技术有限公司 一种过热指示方法以及相关设备
CN110536466A (zh) * 2019-08-16 2019-12-03 中兴通讯股份有限公司 数据传输方法、装置和系统

Also Published As

Publication number Publication date
CN113099542A (zh) 2021-07-09
CN113099542B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2021004350A1 (zh) 发射天线的切换方法及终端设备
WO2021098706A1 (zh) 一种供电电路、供电方法及电子设备
US11641606B2 (en) Resource configuration method, mobile terminal, network-side device, and medium
US11582655B2 (en) Condition handover cancellation method and communication equipment
US20210360636A1 (en) Method for transmitting indication signal, terminal and network device
WO2021057965A1 (zh) 能力参数确定方法、上行调度方法、终端和网络侧设备
WO2021088843A1 (zh) 小区管理方法、小区管理配置方法、终端和网络侧设备
CN109743737B (zh) 一种降低多种网络共存干扰的方法、终端及基站
US20210092630A1 (en) Method for cell management, terminal, and network-side device
WO2021004522A1 (zh) 调度请求发送方法、调度请求接收方法、终端和网络设备
WO2021175178A1 (zh) 功率余量报告上报方法及终端
US20230006711A1 (en) Audio transmission method and electronic device
WO2022166877A1 (zh) Wi-Fi上行数据发送方法、装置、电子设备及存储介质
EP3761724B1 (en) Power configuration method and terminal
US20210219247A1 (en) Power headroom reporting method and terminal device
US20210204294A1 (en) Communication method for mobile terminal and mobile terminal
WO2021139627A1 (zh) 参数上报方法及上行调度方法、设备及介质
WO2021000778A1 (zh) 上行发送丢弃方法、上行发送丢弃配置方法及相关设备
WO2020216258A1 (zh) 天线调节方法、装置及终端
US20220272666A1 (en) Feedback information transmission method and apparatus, device, and medium
US20210219325A1 (en) Information indicating method, indication receiving method, terminal, and network-side device
WO2021197149A1 (zh) 终端能力上报、确定方法、终端及通信设备
US11445399B2 (en) Indication method for measurement result, terminal, and base station
US20230015703A1 (en) Cell handover method, cell handover processing method, terminal, and network device
US20220248463A1 (en) Listen-before-talk failure processing method, terminal, and network side device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21738813

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21738813

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21738813

Country of ref document: EP

Kind code of ref document: A1