WO2020216212A1 - 超声波雾化片及其制造工艺 - Google Patents

超声波雾化片及其制造工艺 Download PDF

Info

Publication number
WO2020216212A1
WO2020216212A1 PCT/CN2020/085890 CN2020085890W WO2020216212A1 WO 2020216212 A1 WO2020216212 A1 WO 2020216212A1 CN 2020085890 W CN2020085890 W CN 2020085890W WO 2020216212 A1 WO2020216212 A1 WO 2020216212A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric ceramic
film
sheet
ceramic sheet
copper foil
Prior art date
Application number
PCT/CN2020/085890
Other languages
English (en)
French (fr)
Inventor
郑瑶
苏秋红
粟松万
Original Assignee
深圳市尚进电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市尚进电子科技有限公司 filed Critical 深圳市尚进电子科技有限公司
Priority to EP20795057.7A priority Critical patent/EP3957405A4/en
Priority to JP2021560341A priority patent/JP2022530329A/ja
Publication of WO2020216212A1 publication Critical patent/WO2020216212A1/zh
Priority to US17/485,422 priority patent/US20220008949A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0638Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices
    • B05B17/0646Vibrating plates, i.e. plates being directly subjected to the vibrations, e.g. having a piezoelectric transducer attached thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0661Transducer materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0651Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of circular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/0666Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface used as a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • B32B37/1292Application of adhesive selectively, e.g. in stripes, in patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • B32B37/182Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/14Printing or colouring
    • B32B38/145Printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1808Handling of layers or the laminate characterised by the laying up of the layers
    • B32B38/1816Cross feeding of one or more of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/047Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0843Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses, catheter

Definitions

  • This application relates to the technical field of ultrasonic atomization, in particular to an ultrasonic atomization sheet and its manufacturing process.
  • ultrasonic atomization technology has solved some of the shortcomings of the original application, such as energy consumption has been greatly reduced, and fog The particles are reduced, the consistency of the fog particles is good, and so on.
  • the main structure of the traditional ultrasonic atomization sheet consists of a piezoelectric ceramic sheet 10, a stainless steel sheet 20 with a large number of micrometer-sized holes in the center of the circle, a wire 30 welded to one electrode of the piezoelectric ceramic sheet, and Another wire 40 on the stainless steel sheet metal is formed, and the piezoelectric ceramic sheet and the stainless steel sheet metal are connected by an adhesive.
  • the center of the metal material is stamped or other methods to produce a curved surface
  • the piezoelectric ceramic deformation is transmitted to the metal plane and tensile stress is generated at the center of the circle, the curved surface Will produce movement perpendicular to the plane direction.
  • the metal will continue to beat the liquid. Because the compression rate of the liquid is not high, when the liquid is beaten at the center of the metal circle, it will generate a lot of pressure on the surface of the liquid. If there is an opening on the arc surface of the metal center, it will appear that when the metal hits the liquid surface, the liquid will generate a certain pressure due to local pressure. The pressure of the liquid will be released from the position of the opening, so that a part of the liquid will splash from the position of the hole. Come out to achieve the purpose of atomization.
  • the traditional ultrasonic atomization sheet generally has the following shortcomings:
  • the adhesive Since the adhesive is manually dispensed, the shape of the adhesive after the piezoelectric ceramic and stainless steel sheet is bonded is unpredictable, so it is inconvenient to use the schematic diagram to mark its position and shape, and because of the wire of another electrode It is welded to the stainless steel sheet, so the conductivity of the adhesive is required.
  • the adhesive must have good electrical conductivity; and because the carrier that transmits the deformation energy is a chemical adhesive, and the electrical conductivity of the adhesive The performance cannot be compared with the metal material, so there is a certain resistance, which leads to the current transmission loss;
  • the power requirement of the punching equipment is relatively high.
  • the punching equipment needs enough energy to form conical holes on the surface of the metal.
  • the heat conduction speed is fast. Therefore, due to the uneven heat transfer during the punching process, a lot of splashing metal residues will be generated, and some metal residues will appear in a semi-molten state and adhere to the inner wall of the hole, so the inner wall and edge of the mesh are very Roughness affects the efficiency of liquid passage.
  • the atomizer sheet is working, the repeated deformation of the metal will easily form a stress concentration point on the rough surface, causing the metal to break; because more metal residues are generated during the drilling process. After drilling, the metal flakes must be cleaned for a long time to form a large amount of waste water containing heavy metal particles;
  • the high temperature generated during the wire welding process can easily lead to failure of some areas of the piezoelectric ceramic sheet.
  • the failure temperature of conventional piezoelectric ceramics is only 250°C, but the local temperature of the wire welding process can reach 380°C, resulting in piezoelectric ceramics Some areas failed due to high temperature, which led to poor product consistency;
  • the stainless steel sheet is not an ideal welding material, whether the solderability between its surface and the solder is poor, it is necessary to use acidic chemicals to corrode the protruding part of the stainless steel sheet before welding the wire on the stainless steel sheet.
  • the local surface becomes rough, which improves the weldability.
  • the welding strength is still not high, and it is easy to form bad contact, which affects the conductivity and is also easy to fall off; and the acid chemicals are in the use process
  • the medium risk is relatively high, and the formed pollutants are not easy to handle, and the process does not meet environmental protection requirements;
  • One of the technical problems solved by the present application is to provide an ultrasonic atomizing sheet that has low requirements on the force of deformation of the piezoelectric ceramic sheet, low difficulty in processing the atomization hole, and stable product quality.
  • an embodiment of the present application provides an ultrasonic atomization sheet, including a piezoelectric ceramic sheet and at least one composite plate, the composite plate is fixed on one side of the piezoelectric ceramic sheet, and the composite plate includes a substrate And a conductive layer, the conductive layer is in contact with the piezoelectric ceramic sheet, the substrate is provided with atomization holes; the substrate is a polymer film.
  • the substrate is a PI film
  • the conductive layer is a copper foil
  • the substrate is a PI film
  • the conductive layer is a stainless steel sheet.
  • the base material of the first composite board is a first PI film
  • the conductive layer is a first copper foil
  • the first copper foil is fixed on one side of the piezoelectric ceramic sheet
  • the substrate of the second composite board is a second PI film
  • the conductive layer is a second copper foil
  • the second copper foil is fixed on the piezoelectric ceramic
  • the second PI film is provided with atomizing holes; a part of the first copper foil is used as the first electrode of the piezoelectric ceramic sheet, and a part of the second copper foil is used as the piezoelectric ceramic sheet The second electrode.
  • the first composite plate further includes a third PI film, and the third PI film is fixed on the first electrode; the second composite plate further includes a fourth PI film, The fourth PI film is fixed on the second electrode; the third PI film is fixedly connected to the fourth PI film.
  • the second composite board further includes a fifth PI film, which covers the second copper foil and is opposite to the central cavity of the piezoelectric ceramic sheet.
  • the composite board is a third composite board;
  • the base material of the third composite board is a sixth PI film,
  • the conductive layer is a third copper foil, and the third copper
  • the foil is fixed on the bottom surface of the piezoelectric ceramic sheet, and the sixth PI film is provided with atomizing holes; a part of the third copper foil serves as the first electrode of the piezoelectric ceramic sheet, and the top surface of the piezoelectric ceramic sheet
  • the substrate includes a circular part capable of covering the central cavity of the piezoelectric ceramic sheet and a tail part connected to the circular part;
  • the conductive layer includes a ring part and a tail part connected to the ring part ;
  • the circular part of the substrate is connected with the annular part of the conductive layer, and the tail of the substrate is connected with the tail of the conductive layer.
  • the circular part of the substrate is provided with an atomization hole area, and the atomization hole area is provided with a micron-sized atomization hole.
  • the atomization hole area is an arc-shaped boss protruding toward the piezoelectric ceramic sheet.
  • the conductive layer is fixedly connected to the piezoelectric ceramic sheet through a lead-free solder paste layer.
  • the conductive layer is fixedly connected to the piezoelectric ceramic sheet through a pressure thermosetting conductive adhesive film.
  • the inner diameter of the atomization hole on the side close to the piezoelectric ceramic sheet is smaller than the inner diameter of the side far from the piezoelectric ceramic sheet.
  • the inner diameter of the atomization hole on the side close to the piezoelectric ceramic sheet is 2 ⁇ m to 8 ⁇ m, and the inner diameter of the atomization hole on the side away from the piezoelectric ceramic sheet is 20 ⁇ m to 60 ⁇ m.
  • this application also provides a manufacturing process of the above-mentioned ultrasonic atomization sheet, including:
  • the lead-free solder paste is printed on the top and bottom surfaces of the piezoelectric ceramic sheet through a screen printing or dispensing process to form a lead-free solder paste layer;
  • the ultrasonic atomization sheet provided in this application is composed of a piezoelectric ceramic sheet and a composite plate.
  • the composite plate includes a substrate and a conductive layer.
  • the substrate uses a polymer film.
  • the piezoelectric ceramic sheet The force required to produce deformation is low. Piezoelectric ceramic sheets can pull the polymer membrane to produce deformation with less energy; at the same time, the difficulty of punching is reduced, and metal residue splashing will not occur, thereby eliminating the efficiency of metal residues passing through the liquid.
  • the undesirable effect of the metal also solves the problem that metals are prone to fracture; in addition, since long-term cleaning is not required to remove metal residues, the process is simplified, and heavy metal pollution is also avoided. More importantly, when used in the medical field, polymer membranes are safer than stainless steel sheets.
  • Fig. 1 is a schematic diagram of the structure of an atomizing sheet in the prior art
  • FIG. 2 is a schematic diagram of the three-dimensional structure of the ultrasonic atomizing sheet provided by the first embodiment of the present application;
  • FIG. 3 is a schematic cross-sectional view of the ultrasonic atomizing sheet provided by the first embodiment of the present application.
  • FIG. 4 is a schematic diagram of the structure of the atomizing hole of the ultrasonic atomizing sheet provided by an embodiment of the present application;
  • FIG. 5 is a schematic cross-sectional view of an ultrasonic atomizing sheet provided by the second embodiment of the present application.
  • FIG. 6 is a schematic diagram of a rough process flow of an ultrasonic atomizing sheet provided by an embodiment of the present invention.
  • FIG. 7 is a more specific process flow diagram of the ultrasonic atomization sheet provided by an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the process flow of a traditional ultrasonic atomizing sheet
  • Figure 9 is a schematic diagram of the structure of an ultrasonic atomizing sheet prepared by lead-free solder paste
  • Figure 10 is a schematic diagram of the structure of an ultrasonic atomization sheet prepared by SMT glue.
  • the ultrasonic atomization sheet in the prior art uses stainless steel flakes, which has high hardness, so the force required for the deformation of piezoelectric ceramics is relatively high; processing on stainless steel metal flakes Atomizing holes require higher power for punching equipment. Due to the fast heat conduction speed of metal, a lot of splashing metal residues will be generated during the punching process due to uneven heat transfer, and some metal residues will appear half way. The molten state is attached to the inner wall of the hole, so the inner wall and edge of the mesh are very rough, which affects the efficiency of liquid passage. At the same time, when the atomizer is working, the repeated deformation of the metal will easily form stress concentration points on the rough surface. The metal is broken; because there are more metal residues during the punching process, the metal flakes must be cleaned for a long time after punching, and a large amount of waste water containing heavy metal particles is formed.
  • an embodiment of the present application provides an ultrasonic atomization sheet, which includes a piezoelectric ceramic sheet and at least one composite plate, the composite plate is fixed on one side of the piezoelectric ceramic sheet, and the composite plate includes a substrate and a conductive layer.
  • the conductive layer is in contact with the piezoelectric ceramic sheet, the substrate is provided with atomization holes; the substrate is a polymer film.
  • the embodiment of the application provides an ultrasonic atomizing sheet.
  • the base material adopts a polymer film instead of the traditional stainless steel sheet.
  • the force required for deformation is lower, and the piezoelectric ceramic sheet generates less energy.
  • the polymer film can be pulled to produce deformation; at the same time, the difficulty of punching is reduced, and metal residue splashing will not occur, thereby eliminating the adverse effect of metal residue on the efficiency of liquid passage, and also solving the problem of easy metal fracture; It takes a long time to clean to remove metal residues, simplify the process and avoid heavy metal pollution. More importantly, when used in the medical field, polymer membranes are safer than stainless steel sheets.
  • the direct use of a composite board with a substrate and a conductive layer structure can simplify the manufacturing process and facilitate automated production.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • FIG. 2 is a schematic diagram of the three-dimensional structure of the ultrasonic atomizing sheet provided by the first embodiment of the present application
  • FIG. 3 is a schematic cross-sectional view of the ultrasonic atomizing sheet provided by the first embodiment of the present application.
  • the ultrasonic atomizing sheet provided by this embodiment includes a piezoelectric ceramic sheet 3, a first composite plate 1 and a second composite plate 5.
  • the first composite plate 1 and the second composite plate 5 are all FPC materials.
  • the FPC material is an integral part. During the manufacturing process of the product, it can be purchased directly, and then the atomization hole can be processed on the basis of it.
  • the piezoelectric ceramic sheet 3 has a ring shape and can deform regularly after being energized.
  • the first composite board 1 includes a first PI film 11, a first copper foil 12 and a third PI film 13.
  • PI film refers to a polyimide film, and can also be a modified material, such as thermoplastic polyimide (TPI) or a polymer film material with similar properties.
  • TPI thermoplastic polyimide
  • the first PI film 11 and the first copper foil 12 have similar shapes, and both include an annular portion and a rectangular portion.
  • the annular portion of the first PI film 11 is fixedly connected to the annular portion of the first copper foil 12, and the annular portion of the second PI film 51 The portion is fixedly connected to the annular portion of the second copper foil 52.
  • the annular portion of the first copper foil 12 is fixed on the top surface of the piezoelectric ceramic sheet 3, and the rectangular portion of the first copper foil 12 can be used as the first electrode of the piezoelectric ceramic sheet 3. Specifically, the first copper foil 12 can be fixedly connected to the piezoelectric ceramic sheet 3 through the first lead-free solder paste layer 2.
  • the third PI film 13 is fixed on the rectangular portion of the first copper foil 12, that is, on the first electrode; and the third PI film 13 and the first PI film 11 are respectively located on opposite surfaces of the first copper foil 12.
  • the second composite board 5 includes a second PI film 51, a second copper foil 52 and a fourth PI film 53.
  • the second copper foil 52 has the same shape as the first copper foil 12, including a ring portion and a rectangular portion; the ring portion of the second copper foil 52 is fixed on the bottom surface of the piezoelectric ceramic sheet 3, and the rectangular portion of the second copper foil 52 It can be used as the second electrode of the piezoelectric ceramic sheet 3. Specifically, the second copper foil 52 is fixedly connected to the piezoelectric ceramic sheet 3 through the second lead-free solder paste layer 4.
  • the first lead-free solder paste layer 2 and the second lead-free solder paste layer 4 have the following functions:
  • Welding function welding the ring-shaped piezoelectric ceramics and the copper foil of FPC together; usually use low-temperature lead-free solder, and the welding temperature is not higher than 180°C;
  • the function of deformation energy transfer is to transfer the deformation energy generated by the annular piezoelectric ceramic during the electrification process to the copper foil and PI film, so that the mesh of the PI film produces a deformation movement perpendicular to the surface of the product.
  • the second PI film 51 includes a circular part capable of covering the central cavity of the piezoelectric ceramic sheet 3 and a tail connected to the circular part; the circular part of the second PI film 51 is fixed to the annular part of the second copper foil 52 Connected, the tail of the second PI film 51 is fixedly connected to the rectangular part of the second copper foil 52.
  • the circular part of the substrate is provided with an atomization hole area 511, and the atomization hole area 511 is provided with a micron-scale atomization hole 510.
  • the fourth PI film 53 is fixed on the rectangular portion of the second copper foil 52, that is, on the second electrode; and the fourth PI film 53 and the second PI film 51 are respectively located on opposite surfaces of the second copper foil 52.
  • the fourth PI film 53 and the third PI film 13 are pressed tightly, which helps to connect the first composite board 1 and the second composite board 5 together, thereby increasing the stability of the ultrasonic atomizing sheet and improving the service life; and , Can be used for insulation between the first electrode and the second electrode; in addition, the conductive planes of the first composite board 1 and the second composite board 5 are made parallel, which has good AC signal coupling ability, so that the spatial radiation of the product can be obtained. The effective reduction.
  • a certain frequency of AC voltage is applied to the first copper foil 12 and the second copper foil 52.
  • the frequency of the AC voltage is assumed to be 108KHz.
  • the voltage is connected to the electric ceramic sheet through the first copper foil 12 and the second copper foil 52.
  • the piezoelectric ceramic sheet 3 is controlled by an external electric field to produce a regular deformation consistent with the input frequency.
  • the energy of the deformation is transmitted to the first copper foil 12 and the second copper foil 52 through the lead-free solder paste, and the second copper foil 52 and the second copper foil 52
  • the two PI films 51 themselves are pressed together, so the deformation energy of the second copper foil 52 is concentrated on the second PI film 51, and the atomization zone of the second PI film 51 produces a reciprocating motion consistent with the input frequency, and the direction of motion It is perpendicular to the surface of the ultrasonic atomization sheet.
  • the lower surface of the second PI film 51 is in contact with the liquid to be atomized, and the liquid is sprayed along the position of the atomization hole 510 while being squeezed by the second PI film 51, thereby Form water mist.
  • FIG. 4 is a schematic diagram of the structure of the atomization hole of the ultrasonic atomization sheet provided by an embodiment of the present application.
  • the inner diameter of the atomization hole 510 on the side close to the piezoelectric ceramic sheet 3 is smaller than the inner diameter of the side far from the piezoelectric ceramic sheet 3.
  • the inner diameter of the atomizing hole 510 on the side close to the piezoelectric ceramic sheet 3 is 2 ⁇ m to 8 ⁇ m
  • the inner diameter of the atomizing hole 510 on the side away from the piezoelectric ceramic sheet 3 is 20 ⁇ m to 60 ⁇ m.
  • the second PI film 51 is a kind of polymer plastic material, so it has good plasticity and only requires a small amount of energy when using laser drilling equipment for drilling. That is, the material can be completely volatilized during the laser drilling process, the surface after the drilling is smooth, the resistance of the liquid in the process of passing through the hole is small, and the fogging efficiency is high;
  • the second PI film 51 can be completely volatilized during the punching process, so there is no need to clean after the punching process.
  • the edge of the hole is smooth, and the fatigue life of the material itself is better than that of metal, so it is repeated in the working process of the atomizer. Deformation will not produce obvious stress concentration points, and the risk of material fracture is not easy to appear.
  • the overall working life of the atomizer has been greatly improved;
  • the ultrasonic atomizing sheet provided in this embodiment not only reduces the material, but also greatly reduces the manufacturing process, so that the manufacturing cost of the product is reduced, and the productivity per unit time is improved;
  • the second PI film 51 itself has very good chemical resistance, and very good biocompatibility, which greatly broadens the application occasions of the atomized sheet, and has very good safety in the medical field.
  • the traditional stainless steel sheet reduces its own strength after the hole is opened, and there is a risk of cracking under the action of fatigue. Once the stainless steel sheet breaks, the debris generated will follow the atomized liquid If it enters the human body, it will seriously damage the health of the body; and the second PI film 51 of this embodiment, firstly, is not easy to rupture; secondly, even if it ruptures, it will not cause damage to the body after entering the human body.
  • Fig. 5 is a schematic cross-sectional view of an ultrasonic atomizing sheet provided by a second embodiment of the present application.
  • the ultrasonic atomization sheet provided by the second embodiment of the present application includes a piezoelectric ceramic sheet 3, a first composite plate 1 and a second composite plate 5.
  • the first composite board 1 and the second composite board 5 are made of FPC.
  • the second composite plate 5 further includes a fifth PI film 54.
  • the fifth PI film 54 has a ring shape.
  • the fifth PI film 54 covers the annular portion of the second copper foil 52, and the fifth PI film 54 and the second PI film 51 are respectively located on opposite surfaces of the second copper foil 52.
  • the inner diameter of the annular portion of the second copper foil 52 is smaller than the inner diameter of the piezoelectric ceramic sheet 3, and the outer diameter of the fifth PI film 54 is smaller than the inner diameter of the piezoelectric ceramic sheet 3 and larger than the diameter of the arc-shaped boss 512.
  • This design makes the ring area of the second copper foil 52 larger, and at the same time, in order to prevent the enlarged part of the second copper foil 52 from corroding, the fifth PI film 54 is used to shield part of the excess area; The benefit is that the deformation energy of the piezoelectric ceramic sheet 3 can be more transmitted through the second copper foil 52.
  • the second embodiment of the ultrasonic atomization sheet provided by the second difference:
  • the first copper foil 12 can be fixedly connected to the piezoelectric ceramic sheet 3 through a first pressure thermosetting conductive adhesive film
  • the second copper foil 52 can be fixedly connected to the piezoelectric ceramic sheet 3 through a second pressure thermosetting conductive adhesive film.
  • Thermosetting conductive adhesive film is SMT adhesive.
  • the piezoelectric ceramic sheet 3 without electrodes can be used, which reduces the purchase cost of the piezoelectric ceramic sheet 3.
  • the SMT glue is an insulating adhesive, it is in the manufacturing process There is no need to worry about the short circuit of the electrode, even if the overflow of glue does not affect the performance of the product, the fault tolerance of the production process is improved.
  • the second PI film 51 will be tightened.
  • the PI film has the best flatness and the energy conversion efficiency of the atomizing sheet is further improved.
  • the third difference of the ultrasonic atomization sheet provided by the second embodiment is that the second PI film 51 is provided with an arc-shaped boss 512.
  • the circular portion of the second PI film 51 is provided with an atomization hole area 511, the atomization hole area 511 is an arc-shaped boss 512 protruding toward the piezoelectric ceramic sheet 3, and the atomization hole area 511 is provided with Micron atomization hole 510.
  • the second PI film 51 is a kind of polymer plastic material, so it has good plasticity and can be easily shaped by heating or other methods, so the arc-shaped boss 512 can be easily shaped.
  • a certain frequency of AC voltage is applied to the first copper foil 12 and the second copper foil 52.
  • the frequency of the AC voltage is assumed to be 108KHz.
  • the voltage is connected to the electric ceramic sheet through the first copper foil 12 and the second copper foil 52.
  • the piezoelectric ceramic sheet 3 is controlled by an external electric field to produce a regular deformation consistent with the input frequency.
  • the energy of the deformation is transmitted to the first copper foil 12 and the second copper foil 52 through the lead-free solder paste, and the second copper foil 52 and the second copper foil 52
  • the two PI films 51 themselves are laminated together, so the deformation energy of the second copper foil 52 is concentrated on the second PI film 51.
  • the center of the second PI film 51 is provided with an arc-shaped boss 512, and the atomization hole 510 is in the arc In the area of the arc-shaped boss 512, at this time, the arc-shaped boss 512 produces a reciprocating motion consistent with the input frequency, and the direction of motion is perpendicular to the surface of the ultrasonic atomization sheet.
  • two composite boards are provided.
  • one composite board may also be used, which is referred to as the third composite board.
  • the base material of the third composite board is a sixth PI film
  • the conductive layer is a sixth copper foil
  • the sixth copper foil is fixed on the bottom surface of the piezoelectric ceramic sheet
  • the sixth PI film is provided with atomizing holes
  • a part of the sixth copper foil is used as the first electrode of the piezoelectric ceramic sheet
  • a second electrode is provided on the top surface of the piezoelectric ceramic sheet.
  • the base material of the composite board is PI film
  • the conductive layer is copper foil, that is, all are FPC materials.
  • the composite board can also be: the substrate is a PI film, and the conductive layer is a stainless steel sheet; or other similar polymer film + metal conductive layer materials.
  • the metal conductive layer material can be an alloy material such as titanium alloy.
  • Table 1 Comparison table of materials used between the atomizing sheet of the present invention and the traditional atomizing sheet
  • the materials of the ultrasonic atomization sheet of the present invention and the traditional ultrasonic atomization sheet have a good mature manufacturing process for both the main and auxiliary materials; however, the materials used in the present invention comply with environmental protection specifications.
  • the traditional ultrasonic atomizing film uses chemicals that are not in accordance with environmental protection technology.
  • the traditional ultrasonic atomizing film has doubled the material types; the complexity of the material types leads to the traditional ultrasonic atomizing film The manufacturing process is more complicated.
  • FIG. 6 is a schematic diagram of a rough process flow of an ultrasonic atomizing sheet provided by an embodiment of the present invention.
  • the manufacturing process of the ultrasonic atomizing sheet includes:
  • the lead-free solder paste is printed on the top and bottom surfaces of the piezoelectric ceramic sheet through screen printing or dispensing process to form a lead-free solder paste layer;
  • FIG. 7 is a more specific process flow diagram of an ultrasonic atomization sheet provided by an embodiment of the present invention
  • FIG. 8 is a process flow diagram of a traditional ultrasonic atomization sheet.
  • the wire welding in the preparation process of the traditional ultrasonic atomization sheet relies heavily on skilled welding workers. Due to the poor weldability of the stainless steel metal material, the welding efficiency is not high, and the high temperature generated during the welding process can easily damage the piezoelectric ceramics. ;
  • the traditional ultrasonic atomization film preparation process requires a large amount of transit storage, and the process is too complicated, resulting in a large demand for the site, increasing the production capacity and reducing the space utilization rate;
  • the ultrasonic atomizing sheet preparation process of the present invention uses robots in part of the process to realize the automation of the production line, which can realize the fully streamlined production of the production line, and all the processes can realize the same rhythm operation.
  • the production efficiency per unit time has been greatly improved.
  • the requirements for space are extremely low, and production capacity can be managed flexibly.
  • the space utilization rate is increased, reducing site costs, and the most important thing is the pollutants produced by the new atomizer during the production process.
  • the new atomized sheet preparation process requires very little equipment types. Only laser drilling equipment and reflow soldering equipment are needed, and the construction cost of the production line has been significantly reduced.
  • Table 2 Comparison table of the atomized film of the present invention and the traditional atomized film
  • the piezoelectric ceramic sheet can be deformed by applying a voltage on the electrodes on both sides of the piezoelectric ceramic sheet.
  • the ceramic of the piezoelectric ceramic sheet is a non-conductor.
  • the reason for the deformation is the space charge field generated by the voltage on the electrode; therefore, the characteristics of the piezoelectric ceramic sheet can be understood as when the first composite plate and the second composite plate are attached to the two sides of the piezoelectric ceramic sheet, even Without connecting with the electrodes, applying voltage to the metal layers in the first and second composite plates can also form a space charge field on both sides of the piezoelectric ceramic sheet to produce deformation.
  • the piezoelectric ceramic sheet covered by the electrode that is, the piezoelectric ceramic sheet has no metal electrode coating on both sides, is placed between the first composite board and the second composite board, and the insulating adhesive is used to bond it. Play the role of transmitting the deformation force, and at the same time play the role of fixing the first composite plate and the second composite plate on the two sides of the piezoelectric ceramic sheet. At this time, applying voltage to the conductive metal layer can cause the piezoelectric ceramic sheet to deform. In addition, the deformation energy will be transferred from the adhesive to the second composite board to utilize its energy.
  • the copper foil layers of the first composite board and the second composite board can be understood as piezoelectric ceramic electrodes.
  • piezoelectric ceramic sheets without electrodes can be used, which reduces the purchase cost of piezoelectric ceramic sheets. Insulating adhesive, so there is no need to worry about the problem of electrode short circuit during the manufacturing process. Even if the glue overflows, it will not affect the product performance and improve the fault tolerance of the production process;
  • Figure 9 is a schematic diagram of the structure of an ultrasonic atomizing sheet prepared by lead-free solder paste
  • Figure 10 is a schematic diagram of the structure of an ultrasonic atomization sheet prepared by SMT glue.
  • Figure 9 and Figure 10 hide other layers of the product, such as PI film layer, etc.
  • piezoelectric ceramic electrode layers A3 and A5 have been added and installed Numbered in sequence, please see Table 3 for the details of each layer:
  • the ultrasonic atomizing sheet and manufacturing process provided by this application have the following advantages:
  • the ultrasonic atomization sheet provided by this application and the traditional ultrasonic atomization sheet both the main material and auxiliary materials have a good mature manufacturing process, but the materials used in this application comply with environmental protection specifications, and The traditional ultrasonic atomization sheet uses chemicals that are not in accordance with environmental protection technology, and at the same time doubles the material;
  • the second PI film is a kind of polymer plastic material, so it has good plasticity. It can be easily shaped by heating and other methods, so the arc at the center of the circle can be easily formed, and the The material needs only a small amount of energy when using laser drilling equipment for drilling. The material can be completely volatilized during the laser drilling process. The surface after drilling is smooth and the liquid resistance is small during the process of passing through the hole. , High fogging efficiency;
  • the second PI film can be completely volatilized during the punching process, so there is no need to clean after the punching process.
  • the edge of the hole is smooth, and the fatigue life of the material itself is better than that of metal, so repeated deformation during the working process of the atomizer There is no obvious stress concentration point, and the risk of material fracture is not easy to occur, and the overall working life of the atomizer is greatly improved;
  • the second PI film itself has very good chemical resistance, and very good biocompatibility, which greatly broadens the application of atomized tablets, and has very good safety in the medical field;
  • the ultrasonic atomizing sheet prepared in this application not only reduces the material, but also greatly reduces the manufacturing process, so that the manufacturing cost of the product is reduced, and the productivity per unit time is increased;
  • the preparation process of the ultrasonic atomizing film of this application uses robots in part of the process to realize the automation of the production line, which can realize the fully streamlined production of the production line, and all the processes can achieve the same rhythm.
  • the production efficiency per unit time has been greatly improved.
  • the space requirement is extremely low, the production capacity can be managed flexibly, and the space utilization rate is increased when the production capacity is further increased, and the site cost is reduced.
  • the most important thing is that the mesh ultrasonic atomizing sheet of the present invention is in production
  • the pollutants produced in the process are extremely low, and it is a very environmentally friendly preparation process.
  • the preparation process of the mesh ultrasonic atomization sheet of the present invention requires very little equipment types, and only requires laser drilling equipment and reflow soldering equipment. However, the construction cost of the production line has been significantly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Special Spraying Apparatus (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

一种超声波雾化片及其制造工艺,其中,超声波雾化片包括压电陶瓷片(10)以及至少一复合板(1、5),复合板(1、5)固定在压电陶瓷片(10)的一侧,复合板(1、5)包括基材(11、51)以及导电层(12、52),导电层(12、52)与压电陶瓷片(10)接触,基材(51)上设有雾化孔;基材(11、51)为高分子膜。相比不锈钢薄片,采用高分子膜作为基材,对压电陶瓷片产生形变的力度要求较低,压电陶瓷片产生较小的能量即可拉动高分子膜产生形变;打孔的难度降低,也不会发生金属残渣飞溅,进而消除金属残渣对液体通过效率的不良影响,也解决了金属易出现断裂的问题;在应用于医疗领域时,高分子膜比不锈钢薄片更安全。

Description

超声波雾化片及其制造工艺 技术领域
本申请涉及超声波雾化技术领域,具体地涉及一种超声波雾化片及其制造工艺。
背景技术
目前市场上网孔式雾化驱动技术已经趋于成熟,更多行业开始导入超声波雾化技术,通过超声波雾化技术的导入解决了原先应用中的一些缺点,例如能耗得到大幅度降低,出雾颗粒缩小,出雾颗粒的一致性好等等。
如图1所示,传统超声波雾化片的主要结构由压电陶瓷片10、圆心部位有大量微米级小孔的不锈钢金属薄片20、焊接在压电陶瓷片一个电极上的导线30和焊接在不锈钢金属薄片上的另外一条导线40组成,压电陶瓷片与不锈钢金属薄片通过粘合剂连接。
其工作原理如下:
当压电陶瓷片的两个电极间施加电压的情况下会产生扩张的形变,当驱动电压为交流信号的时候压压电陶瓷会产生和交流信号频率一致的反复形变。在压电陶瓷的平面上粘接一层薄金属材料,当给压电陶瓷的电极上施加电压的时候,压电陶瓷产生的形变会通过粘和材料传递到金属平面上,此时会在金属材料的圆形处产生一个应力点,如果将金属材料的圆心通过冲压或其它方法产生制造出一个弧面,当压电陶瓷形变传递到金属平面上并在圆心处产生拉升应力的时候弧面就会产生垂直于平面方向的运动。
此时如果将金属的底面和液体产生接触则金属会不断的拍打液体,由于液体的压缩率不高,因此当金属的圆心处拍打液体的时候回在液体的表面产生很大的压力,如果在金属圆心的弧面有开孔的话就会出现当金属拍打液体表面的时候液体由于局部受压从而产生一定的压力,液体的压力会从开孔的 位置释放,从而使一部分液体从孔的位置飞溅出来,实现雾化目的。
但是,传统的超声波雾化片普遍存在以下缺点:
1、由于形变能量是传递到不锈钢金属薄片上,且不锈钢金属材料的硬度较高,因此对压电陶瓷产生形变的力度要求较高,需要压电陶瓷产生更大的能量来拉动不锈钢金属薄片产生形变;
2、由于粘合剂是通过人工点胶的方式因此粘合剂在压电陶瓷和不锈钢金属薄片粘合后的形状无法预计,因此不便使用示意图标识其位置和形状,且由于另外一个电极的导线是焊接到不锈钢金属薄片上,因此对粘合剂的导电率做出了要求,粘合剂必须具备良好的导电性能;而由于传递形变能量的载体是化学粘合剂,且粘合剂的导电性能无法和金属材料相比因此存在一定的电阻,导致了电流的传递损耗;
3、由于微米级的网孔是需要加工在不锈钢金属薄片上,因此对打孔设备的功率要求较高,打孔设备需足够的能量才能在金属的表面构成圆锥形状的孔,且由于金属的导热速度较快,因此在打孔的过程中因为热量传递的不均匀会产生很多飞溅的金属残渣,且部分金属残渣会呈现半熔融状态附着在孔的内壁,因此其网孔的内壁和边缘十分粗糙,影响了液体通过的效率,同时当雾化片在工作的过程中金属反复的形变容易在粗糙的表面形成应力集中点,导致金属出现断裂;由于打孔过程中产生的金属残渣较多因此打孔后必须对金属薄片进行长时间的清洗,形成大量含有重金属颗粒的废水;
4、导线焊接的过程产生的高温容易导致压电陶瓷片的部分区域出现失效,常规压电陶瓷的失效温度仅为250℃,但是导线焊接过程的局部温度能够达到380℃,从而导致压电陶瓷部分区域因为高温出现失效,进而导致了产品整体的一致性差;
5、由于不锈钢薄片并不属于理想的焊接材料,其表面和焊锡之间可焊性是否差,因此在不锈钢薄片上焊接导线需要事先使用酸性化学药剂将突出部分的不锈钢薄片位置进行腐蚀,从而使局部表面变得粗糙,提高可焊性,但是其实焊接过程中由于材料本身可焊性差还是会导致焊接强度不高,容易形 成不良接触,影响导电的同时也容易脱落;且酸性化学药剂在使用过程中危险性较大,并且形成的污染物不易处理,工艺不符合环保要求;
6、产品在实际生产的过程中存在工艺流程过长,生产复杂度比较高,且部分工艺难以实现自动化制造。
综上所述,现有技术中缺少一种新的超声波雾化片及其制造工艺,以克服传统雾化片的上述诸多缺陷。
发明内容
本申请解决的技术问题之一是提供一种对压电陶瓷片产生形变的力度要求低、雾化孔加工难度低、产品质量稳定的超声波雾化片。
为解决上述技术问题,本申请实施例提供一种超声波雾化片,包括压电陶瓷片以及至少一复合板,所述复合板固定在压电陶瓷片的一侧,所述复合板包括基材以及导电层,所述导电层与压电陶瓷片接触,所述基材上设有雾化孔;所述基材为高分子膜。
在上述技术方案中,进一步的,所述基材为PI膜,所述导电层为铜箔。
在上述技术方案中,进一步的,所述基材为PI膜,所述导电层为不锈钢片。
在上述技术方案中,进一步的,包括两块复合板,分别为第一复合板和第二复合板;所述第一复合板的基材为第一PI膜,导电层为第一铜箔,所述第一铜箔固定在压电陶瓷片的一侧;所述第二复合板的基材为第二PI膜,导电层为第二铜箔,所述第二铜箔固定在压电陶瓷片的另一侧;所述第二PI膜上设有雾化孔;所述第一铜箔的一部分作为压电陶瓷片的第一电极,所述第二铜箔的一部分作为压电陶瓷片的第二电极。
在上述技术方案中,进一步的,所述第一复合板还包括第三PI膜,所述第三PI膜固定在所述第一电极上;所述第二复合板还包括第四PI膜,所述第四PI膜固定在所述第二电极上;所述第三PI膜与第四PI膜固定连接。
在上述技术方案中,进一步的,所述第二复合板还包括第五PI膜,所述第五PI膜覆盖在第二铜箔上,且与压电陶瓷片的中心空腔相对。
在上述技术方案中,进一步的,所述复合板共一块,为第三复合板;所述第三复合板的基材为第六PI膜,导电层为第三铜箔,所述第三铜箔固定在压电陶瓷片的底面,所述第六PI膜上设有雾化孔;所述第三铜箔的一部分作为压电陶瓷片的第一电极,所述压电陶瓷片的顶面上设有作为第二电极的第四铜箔。
在上述技术方案中,进一步的,所述基材包括能够覆盖压电陶瓷片中心空腔的圆形部以及与圆形部连接的尾部;所述导电层包括环形部以及与环形部连接的尾部;所述基材的圆形部与导电层的环形部连接,所述基材的尾部与导电层的尾部连接。
在上述技术方案中,进一步的,所述基材的圆形部上设有雾化孔区,雾化孔区内设有微米级雾化孔。
在上述技术方案中,进一步的,所述雾化孔区为向压电陶瓷片方向凸出的弧形凸台。
在上述技术方案中,进一步的,所述导电层通过无铅锡膏层与压电陶瓷片固定连接。
在上述技术方案中,进一步的,所述导电层通过压力热固导电胶膜与压电陶瓷片固定连接。
在上述技术方案中,进一步的,所述雾化孔靠近压电陶瓷片一侧的内径小于远离压电陶瓷片一侧的内径。
在上述技术方案中,进一步的,所述雾化孔靠近压电陶瓷片一侧的内径为2μm~8μm,所述雾化孔远离压电陶瓷片一侧的内径为20μm~60μm。
此外,本申请还提供一种上述的超声波雾化片的制造工艺,包括:
S1,对第二复合板的第二PI膜激光打孔,形成雾化孔;
S2,将无铅锡膏通过丝网漏印或点胶工艺印刷到压电陶瓷片的顶面和底 面,形成无铅锡膏层;
S3,将第一复合板和第二复合板分别粘合在压电陶瓷片的顶面和底面;
S4,通过回流焊设备将第一复合板、第二复合板、压电陶瓷片进行固化。
本申请的技术方案具有以下有益效果:
本申请提供的种超声波雾化片,由压电陶瓷片和复合板构成,其中复合板包括基材以及导电层,基材采用高分子膜,相比于传统的不锈钢薄片,对压电陶瓷片产生形变的力度要求较低,压电陶瓷片产生较小的能量即可拉动高分子膜产生形变;同时,打孔的难度降低,也不会发生金属残渣飞溅,进而消除金属残渣对液体通过效率的不良影响,也解决了金属易出现断裂的问题;此外,由于不需要长时间的清洗以祛除金属残渣,简化了流程工艺,也避免的重金属污染。尤为重要的是,在应用于医疗领域时,高分子膜比不锈钢薄片更安全。
附图说明
图1是现有技术中的雾化片的结构示意图;
图2是本申请的第一实施例提供的超声波雾化片的立体结构示意图;
图3是本申请的第一实施例提供的超声波雾化片的剖面示意图;
图4是本申请的一实施例提供的超声波雾化片的雾化孔的结构示意图;
图5是本申请的第二实施例提供的超声波雾化片的剖面示意图;
图6为本发明的一实施例提供的超声波雾化片的粗略工艺流程示意图;
图7为本发明的一实施例提供的超声波雾化片的更具体的工艺流程示意图;
图8为传统式超声波雾化片的工艺流程示意图;
图9为通过无铅锡膏制备超声波雾化片的结构示意图;
图10为通过SMT胶制备超声波雾化片的结构示意图。
附图标记:
10-压电陶瓷片;20-不锈钢金属薄片;30-导线;40-导线。
1-第一复合板;2-第一无铅锡膏层;3-压电陶瓷片;4-第二无铅锡膏层;5-第二复合板;11-第一PI膜;12-第一铜箔;13-第三PI膜;51-第二PI膜;52-第二铜箔;53-第四PI膜;54-第五PI膜;510-雾化孔;511-雾化孔区;512-弧形凸台;
具体实施方式
本领域技术人员理解,如背景技术所言,现有技术中的超声波雾化片,采用了不锈钢薄片,硬度较高,因此对压电陶瓷产生形变的力度要求较高;在不锈钢金属薄片上加工雾化孔,对打孔设备的功率要求较高,由于金属的导热速度较快,因此在打孔的过程中因为热量传递的不均匀会产生很多飞溅的金属残渣,且部分金属残渣会呈现半熔融状态附着在孔的内壁,因此其网孔的内壁和边缘十分粗糙,影响了液体通过的效率,同时当雾化片在工作的过程中金属反复的形变容易在粗糙的表面形成应力集中点,导致金属出现断裂;由于打孔过程中产生的金属残渣较多因此打孔后必须对金属薄片进行长时间的清洗,形成大量含有重金属颗粒的废水。
为此,本申请实施例提供一种超声波雾化片,包括压电陶瓷片以及至少一复合板,所述复合板固定在压电陶瓷片的一侧,所述复合板包括基材以及导电层,所述导电层与压电陶瓷片接触,所述基材上设有雾化孔;所述基材为高分子膜。
本申请实施例提供一种超声波雾化片,基材采用高分子膜代替传统的不锈钢薄片,相比于对压电陶瓷片产生形变的力度要求较低,压电陶瓷片产生较小的能量即可拉动高分子膜产生形变;同时,打孔的难度降低,也不会发 生金属残渣飞溅,进而消除金属残渣对液体通过效率的不良影响,也解决了金属易出现断裂的问题;此外,由于不需要长时间的清洗以祛除金属残渣,简化了流程工艺,也避免的重金属污染。尤为重要的是,在应用于医疗领域时,高分子膜比不锈钢薄片更安全。
此外,直接利用基材加导电层结构的复合板,能够简化制作工艺,利于实现自动化生产。
为使本申请的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本申请的具体实施例做详细的说明。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
第一实施例
图2是本申请的第一实施例提供的超声波雾化片的立体结构示意图;图3是本申请的第一实施例提供的超声波雾化片的剖面示意图。
如图2和图3所示,本实施例提供的超声波雾化片,包括压电陶瓷片3、 第一复合板1以及第二复合板5,所述第一复合板1和第二复合板5均为FPC材质。FPC材质为整体零件,产品的制造过程中,可直接采购,再在其基础上加工雾化孔。
压电陶瓷片3为环形,在通电后能够发生规律性形变。
第一复合板1包括第一PI膜11、第一铜箔12以及第三PI膜13。
PI膜指聚酰亚胺薄膜,也可以是其改性材料,例如热塑性聚酰亚胺(TPI)或者类似性能材料高分子类薄膜材料。
所述第一PI膜11和第一铜箔12形状相似,均包括环形部和矩形部,第一PI膜11的环形部与第一铜箔12环形部固定连接,第二PI膜51的环形部与第二铜箔52环形部固定连接。
所述第一铜箔12的环形部固定在压电陶瓷片3的顶面上,第一铜箔12的矩形部可作为压电陶瓷片3的第一电极。具体来说,第一铜箔12可通过第一无铅锡膏层2与压电陶瓷片3固定连接。
所述第三PI膜13固定在第一铜箔12的矩形部即第一电极上;且第三PI膜13和第一PI膜11分别位于第一铜箔12的相对面上。
第二复合板5的包括第二PI膜51、第二铜箔52以及第四PI膜53。
所述第二铜箔52的形状与第一铜箔12相同,包括环形部和矩形部;第二铜箔52的环形部固定在压电陶瓷片3的底面,第二铜箔52的矩形部可作为压电陶瓷片3的第二电极。具体来说,第二铜箔52通过第二无铅锡膏层4与压电陶瓷片3固定连接。
第一无铅锡膏层2和第二无铅锡膏层4具有以下作用:
1.焊接作用,将环形压电陶瓷和FPC的铜箔焊接到一起;通常情况下使用低温无铅焊锡,焊接温度不高于180℃;
2.导电的作用,将电压从FPC的铜箔传递到压电陶瓷的金属电极上,锡作为金属材料有非常良好的导电性能;
3.形变能量传递的作用,将环形压电陶瓷在通电过程中所产生的形变能量传递到铜箔和PI膜上,使PI膜的网孔处产生垂直于产品表面的形变运动。
所述第二PI膜51包括能够覆盖压电陶瓷片3中心空腔的圆形部以及与圆形部连接的尾部;第二PI膜51的圆形部与第二铜箔52的环形部固定连接,第二PI膜51的尾部与第二铜箔52的矩形部固定连接。所述基材的圆形部上设有雾化孔区511,雾化孔区511内设有微米级雾化孔510。
所述第四PI膜53固定在第二铜箔52的矩形部即第二电极上;且第四PI膜53和第二PI膜51分别位于第二铜箔52的相对面上。第四PI膜53与第三PI膜13压合贴紧,有助于将第一复合板1和第二复合板5连接在一起,从而增加超声波雾化片的稳固性,提升使用寿命;而且,能够用于第一电极和第二电极之间的绝缘;此外,还使得第一复合板1和第二复合板5导电平面平行,具有很好的交流信号耦合能力,使产品的空间辐射得到的有效降低。
本实施例提供的超声波雾化片,其工作原理如下:
将一定频率的交流电压施加于第一铜箔12和第二铜箔52上,交流电压的频率假设为108KHz,此时电压通过第一铜箔12和第二铜箔52接通电陶瓷片,压电陶瓷片3受到外部电场的控制产生和输入频率一致的规律性形变,形变的能量通过无铅锡膏传递到第一铜箔12和第二铜箔52上,第二铜箔52和第二PI膜51本身为压合一体,因此第二铜箔52的形变能量集中到了第二PI膜51上,第二PI膜51的雾化区产生了和输入频率一致的往复运动,且运动方向垂直于超声波雾化片的表面,此时第二PI膜51的下表面接触到需要雾化的液体,液体在受到第二PI膜51挤压的情况下沿雾化孔510的位置喷射,从而形成水雾。
图4是本申请的一实施例提供的超声波雾化片的雾化孔的结构示意图。
如图4所示,所述雾化孔510靠近压电陶瓷片3一侧的内径小于远离压电陶瓷片3一侧的内径。具体来说,雾化孔510靠近压电陶瓷片3一侧的内径为2μm~8μm,所述雾化孔510远离压电陶瓷片3一侧的内径为20μm~60μm。
本实施例提供的超声波雾化片,具有以下优点:
1、本实施例提供的超声波雾化片,第二PI膜51是属于高分子塑料材料的一种,因此其具有良好的可塑性,在使用激光打孔设备进行打孔时候仅需要很小的能量即可,该材料在激光打孔的过程中能够完全挥发,其打孔后的表面光滑,液体在通过孔的过程中阻力小,出雾效率高;
2、第二PI膜51在打孔的过程中能够完全挥发因此在打孔工艺过后可以无需清洗,孔的边缘光滑,材料本身的疲劳寿命比金属好,所以在雾化片工作过程中的反复形变不会产生明显的应力集中点,不易出现材料断裂等风险,雾化片的整体工作寿命得到了很大的提高;
3、本实施例提供的超声波雾化片,不仅减少了材料,还大幅度的减少了生产制造的流程,使产品的制造成本得到了降低,同时提高了单位时间的产能;
4、第二PI膜51本身具备非常好的耐化学药剂性能,和非常好的生物相容性使得雾化片的应用场合得到了很大的拓宽,应用于医疗领域的安全性非常好。
关于医疗领域的安全性:传统的不锈钢金属片由于开孔后,降低了自身的强度,再疲劳作用下,存在破裂的风险,而一旦不锈钢金属片破裂,其产生的碎屑随着雾化液体进入人体,会严重损害身体健康;而本实施例的第二PI膜51,首先,不容易破裂;其次,即使发生破裂,进入人体后,也不会对身体造成损失。
第二实施例
图5是本申请的第二实施例提供的超声波雾化片的剖面示意图。
如图5所示,本申请的第二实施例提供的超声波雾化片,与第一实施例相似,均包括压电陶瓷片3、第一复合板1以及第二复合板5,所述第一复合板1和第二复合板5均为FPC材质。
与第一实施例相比,第二实施例提供的超声波雾化片的区别之一:所述 第二复合板5还包括第五PI膜54。
第五PI膜54为环形。所述第五PI膜54覆盖在第二铜箔52的环形部,第五PI膜54与第二PI膜51分别位于第二铜箔52的相对面上。
第二铜箔52的环形部的内径尺寸小于压电陶瓷片3的内径尺寸,第五PI膜54的外径尺寸小于压电陶瓷片3的内径尺寸且大于弧形凸台512的直径。这样的设计,使得第二铜箔52的圆环面积更大,同时为了防止加大的部分第二铜箔52出现腐蚀问题使用了第五PI膜54对其部分多余面积进行了遮蔽;由此带来的好处是压电陶瓷片3的形变能量可以更多的通过第二铜箔52进行传递。
与第一实施例相比,第二实施例提供的超声波雾化片区别之二:
第一铜箔12可通过第一压力热固导电胶膜与压电陶瓷片3固定连接,第二铜箔52可通过第二压力热固导电胶膜与压电陶瓷片3固定连接。热固导电胶膜即SMT胶。
将无铅锡膏层替换为SMT胶,通过使用丝网印刷,或者点胶等设备将SMT胶涂覆于压电陶瓷片3的两面,再将压电陶瓷片3与第一复合板1和第二复合板5进行初步粘接,然后将其置于回流焊接设备中进行进一步固化,最终可得到与本发明工作完全一致的产品;可以理解为其工作原理和之前介绍一致,仅将粘合材料由无铅锡膏更换为SMT胶,并且制造流程完全不变;改良工艺的好处是可以进一步的降低产品的制造成本,SMT胶材料的操作温度也低于无铅锡膏,进一步降低压电陶瓷片3在焊接过程中产生的影响,同时可以使用未被覆电极的压电陶瓷片3,降低了压电陶瓷片3的采购成本,并且由于SMT胶是绝缘粘合剂,因此在制造过程中可无需担心电极短路的问题出现,即使出现溢胶也不会对产品性能造成影响,提高了生产工艺的容错性。
尤为重要的是,在压合SMT胶时,第二PI膜51会被绷紧,处于紧绷状态时PI膜的平整度最好且雾化片的能量转换效率更进一步的提高了。
与第一实施例相比,第二实施例提供的超声波雾化片区别之三:第二PI膜51设有弧形凸台512。
第二PI膜51的圆形部上设有雾化孔区511,所述雾化孔区511为向压电陶瓷片3方向凸出的弧形凸台512,雾化孔区511内设有微米级雾化孔510。
第二PI膜51是属于高分子塑料材料的一种,因此其具有良好的可塑性,通过加热等方法可以很容易的将其塑形,所以弧形凸台512可以很容易进行成型。
将一定频率的交流电压施加于第一铜箔12和第二铜箔52上,交流电压的频率假设为108KHz,此时电压通过第一铜箔12和第二铜箔52接通电陶瓷片,压电陶瓷片3受到外部电场的控制产生和输入频率一致的规律性形变,形变的能量通过无铅锡膏传递到第一铜箔12和第二铜箔52上,第二铜箔52和第二PI膜51本身为压合一体,因此第二铜箔52的形变能量集中到了第二PI膜51上,第二PI膜51圆心位置设有一个弧形凸台512,雾化孔510在弧形凸台512区域内,此时弧形凸台512区域产生了和输入频率一致的往复运动,且运动方向垂直于超声波雾化片的表面。
第三实施例
在第一实施例和第二实施例中,均设有两复合板,实际上也可采用一复合板,记为第三复合板。所述第三复合板的基材为第六PI膜,导电层为第六铜箔,所述第六铜箔固定在压电陶瓷片的底面,所述第六PI膜上设有雾化孔;所述第六铜箔的一部分作为压电陶瓷片的第一电极,所述压电陶瓷片的顶面上设有第二电极。
在第一实施例、第二实施例以及第三实施例中,复合板的基材均为PI膜,导电层为铜箔,即均是FPC材料。实际上,在其他实施中,复合板还可以为:基材为PI膜,导电层为不锈钢片;或者其他类似的高分子膜+金属导电层材料。金属导电层材料可以为钛合金等合金材料。
分析本申请提供的超声波雾化片与传统式超声波雾化片的结构差异,从零件和材料方面进行,得到表1:
表1:本发明雾化片与传统式雾化片使用材料对照表
Figure PCTCN2020085890-appb-000001
根据表1,可以看出本发明的超声波雾化片与传统的超声波雾化片的材料无论主要材料还是辅助材料都拥有良好的成熟制造工艺;但是本发明所使用的材料都符合环保的规范,而传统的超声波雾化片使用了不符合环保工艺的化学药剂,同时传统式的超声波雾化片还多出了一倍的材料种类;材料种类的的复杂程度导致了传统式超声波雾化片的制造流程的更复杂。
图6为本发明的一实施例提供的超声波雾化片的粗略工艺流程示意图;
如图6所示,本申请提供的超声波雾化片的制造工艺,包括:
S1,对第二复合板的第二PI膜激光打孔,形成雾化孔;
S2,将无铅锡膏通过丝网漏印或点胶工艺印刷到压电陶瓷片的顶面和底面,形成无铅锡膏层;
S3,将第一复合板和第二复合板分别初步粘合在压电陶瓷片的顶面和底面;
S4,通过回流焊设备将第一复合板、第二复合板、压电陶瓷片进行固化;
S5,检测,检测合格得到超声波雾化片。
图7为本发明的一实施例提供的超声波雾化片的更具体的工艺流程示意图;图8为传统式超声波雾化片的工艺流程示意图。
通过图7和图8的对比,可以看出,本申请提供的超声波雾化片不仅减少了材料还大幅度的减少了生产制造的流程,使产品的制造成本得到了降低,同时提高了单位时间的产能,具体差异如下:
传统式超声波雾化片制备过程中的清洗和烘烤工艺,由于清洗设备和烘烤设备都是非流水线设备,因此需产线积累一定的数量再通过人工转移至设备,并在设备中持续作业,此工艺造成了制造过程中的短板效应,导致了生产线需要大量的中转存储,且人工的需求量较大;
传统式超声波雾化片制备过程中的导线焊接严重依赖熟练的焊接工人,由于不锈钢金属材料的可焊性差,导致了焊接本身的效率不高,并且焊接过程中所产生的高温容易损坏压电陶瓷;
传统式超声波雾化片制备工艺由于需要大量的中转存储,且流程过于复杂导致了场地需求量大,提升产能的同时空间利用率下降严重;
传统式超声波雾化片对生产设备的种类要求较多,导致生产线的建设成本高,设备折旧导致成本较高;
反观本发明的超声波雾化片制备工艺通过部分流程使用机器人来实现产线的自动化可以实现产线完全流水化生产,所有的工艺均可实现同节奏运行单位时间的生产效率得到了很大的提高,对空间的要求极低,产能可以实现弹性化管理,产能进一步增加的情况下空间利用率提高了,降低了场地费用,最重要的是新的雾化片在生产的过程中产生的污染物极低,是一种十分环保的制备工艺,新的雾化片制备工艺对设备种类的需求极少,仅需激光打孔设备和回流焊设备即可,生产线的建设成本得到了明显的下降。
通过对比本发明超声波雾化片与传统式超声波雾化片的各自的特点,见可以得到本发明雾化片与传统式雾化片对照表,见表2;
表2:本发明雾化片与传统式雾化片对照表
Figure PCTCN2020085890-appb-000002
Figure PCTCN2020085890-appb-000003
Figure PCTCN2020085890-appb-000004
通过表2,可以看出,本发明通过对超声波雾化片进行材料、结构应用上的创新,带来了生产工艺上的进一步创新,最终得到了一款性能优于传统产品,且生产工艺更加环保的新产品。
需要说明的是,压电陶瓷片的工作原理如下:在压电陶瓷片的两面电极上施加电压即可使压电陶瓷片产生形变,同时由于压电陶瓷片的陶瓷本身为非导体,因此其产生形变的原因是电极上的电压所产生的空间电荷场导致的;因此压电陶瓷片的特性可以理解为当第一复合板和第二复合板贴合在压电陶瓷片的两面后,即使不和电极产生连接的情况下在第一复合板和第二复合板中的金属层施加电压也可以在压电陶瓷片的两面形成一个空间电荷场从而产生形变,基于以上原理我们可以使用一个未被覆电极的压电陶瓷片,即压电陶瓷片两面没有金属电极的涂层,将其置于第一复合板和第二复合板中间,同时使用绝缘粘合剂将其粘合,粘合剂起到传递形变力的作用,同时起到将第一复合板和第二复合板固定在压电陶瓷片两面的作用,此时将电压施加于导电金属层即可使压电陶瓷片产生形变,并且形变的能量会由粘合剂传递到第二复合板上从而利用其能量,在此应用中可以将第一复合板和第二复合板的铜箔层理解为压电陶瓷的电极。
基于以上原理同时为了简化工艺可做出如下优化:将无铅锡膏替换为“SMT胶”粘合剂,通过使用丝网印刷,或者点胶等设备将SMT胶涂覆于压电陶瓷片的两面,再将压电陶瓷片与第一复合板和第二复合板进行初步粘接,然后将其置于回流焊接设备中进行进一步固化,最终可得到与本发明工作完 全一致的产品;可以理解为其工作原理和之前介绍一致,仅将粘合材料由无铅锡膏更换为SMT胶,并且制造流程完全不变;改良工艺的好处是可以进一步的降低产品的制造成本,SMT胶材料的操作温度也低于无铅锡膏,进一步降低压电陶瓷片在焊接过程中产生的影响,同时可以使用未被覆电极的压电陶瓷片,降低了压电陶瓷片的采购成本,并且由于SMT胶是绝缘粘合剂,因此在制造过程中可无需担心电极短路的问题出现,即使出现溢胶也不会对产品性能造成影响,提高了生产工艺的容错性;
图9为通过无铅锡膏制备超声波雾化片的结构示意图;
图10为通过SMT胶制备超声波雾化片的结构示意图。
如图9和图10所示,图9、图10中隐藏了产品的其它层,例如PI膜层等,为了方便理解改进的位置添加了压电陶瓷片电极层A3、A5,并对其安装顺序进行了编号,各个层的明细请见表3:
表3:无铅锡膏制备雾化片与SMT胶制备雾化片对照表
Figure PCTCN2020085890-appb-000005
通过表3可以看出,通过使用SMT胶,降低了对压电陶瓷片的要求,不再需要压电陶瓷片具备导电涂层,同时SMT胶和压电陶瓷片的陶瓷本体均为绝缘材料,杜绝了焊接过程中由于溢胶等造成的电极短路故障;同时不对压电陶瓷片的工作性能产生影响。
综上所述,本申请提供的超声波雾化片及其制造工艺,具有以下优点:
1、在材料方面,本申请提供的超声波雾化片与传统的超声波雾化片,无 论主要材料还是辅助材料都拥有良好的成熟制造工艺,但是本申请所使用的材料都符合环保的规范,而传统的超声波雾化片使用了不符合环保工艺的化学药剂,同时还多出了一倍的材料;
2、第二PI膜是属于高分子塑料材料的一种,因此其具有良好的可塑性,通过加热等方法可以很容易的将其塑形,所以圆心处的弧面可以很容易进行成型,并且该材料在使用激光打孔设备进行打孔时候仅需要很小的能量即可,该材料在激光打孔的过程中能够完全挥发,其打孔后的表面光滑,液体在通过孔的过程中阻力小,出雾效率高;
3、第二PI膜在打孔的过程中能够完全挥发因此在打孔工艺过后可以无需清洗,孔的边缘光滑,材料本身的疲劳寿命比金属好,所以在雾化片工作过程中的反复形变不会产生明显的应力集中点,不易出现材料断裂等风险,雾化片的整体工作寿命得到了很大的提高;
4、第二PI膜本身具备非常好的耐化学药剂性能,和非常好的生物相容性使得雾化片的应用场合得到了很大的拓宽,应用于医疗领域的安全性非常好;
5、本申请制备的超声波雾化片不仅减少了材料还大幅度的减少了生产制造的流程,使产品的制造成本得到了降低,同时提高了单位时间的产能;
6、本申请超声波雾化片的制备工艺通过部分流程使用机器人来实现产线的自动化可以实现产线完全流水化生产,所有的工艺均可实现同节奏运行单位时间的生产效率得到了很大的提高,对空间的要求极低,产能可以实现弹性化管理,产能进一步增加的情况下空间利用率提高了,降低了场地费用,最重要的是本发明的网孔式超声发雾化片在生产的过程中产生的污染物极低,是一种十分环保的制备工艺,本发明网孔式超声雾化片的制备工艺对设备种类的需求极少,仅需激光打孔设备和回流焊设备即可,生产线的建设成本得到了明显的下降。
虽然本申请披露如上,但本申请并非限定于此。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各种更动与修改,因此本申请的保护范围应当以权利要求所限定的范围为准。

Claims (15)

  1. 一种超声波雾化片,其特征在于,包括压电陶瓷片以及至少一复合板,所述复合板固定在压电陶瓷片的一侧,所述复合板包括基材以及导电层,所述导电层与压电陶瓷片接触,所述基材上设有雾化孔;所述基材为高分子膜。
  2. 根据权利要求1所述的超声波雾化片,其特征在于,所述基材为PI膜,所述导电层为铜箔。
  3. 根据权利要求1所述的超声波雾化片,其特征在于,所述基材为PI膜,所述导电层为不锈钢片。
  4. 根据权利要求2所述的超声波雾化片,其特征在于,包括两块复合板,分别为第一复合板和第二复合板;所述第一复合板的基材为第一PI膜,导电层为第一铜箔,所述第一铜箔固定在压电陶瓷片的一侧;所述第二复合板的基材为第二PI膜,导电层为第二铜箔,所述第二铜箔固定在压电陶瓷片的另一侧;所述第二PI膜上设有雾化孔;所述第一铜箔的一部分作为压电陶瓷片的第一电极,所述第二铜箔的一部分作为压电陶瓷片的第二电极。
  5. 根据权利要求4所述的超声波雾化片,其特征在于,所述第一复合板还包括第三PI膜,所述第三PI膜固定在所述第一电极上;所述第二复合板还包括第四PI膜,所述第四PI膜固定在所述第二电极上;所述第三PI膜与第四PI膜固定连接。
  6. 根据权利要求4或5所述的超声波雾化片,其特征在于,所述第二复合板还包括第五PI膜,所述第五PI膜覆盖在第二铜箔上,且与压电陶瓷片的中心空腔相对。
  7. 根据权利要求1所述的超声波雾化片,其特征在于,所述复合板共一块,为第三复合板;所述第三复合板的基材为第六PI膜,导电层为第三铜箔,所述第三铜箔固定在压电陶瓷片的底面,所述第六PI膜上设有雾化孔;所述第三铜箔的一部分作为压电陶瓷片的第一电极,所述压电陶瓷片的顶面上设有作为第二电极的第四铜箔。
  8. 根据权利要求1所述的超声波雾化片,其特征在于,所述基材包括能够覆盖压电陶瓷片中心空腔的圆形部以及与圆形部连接的尾部;所述导电层 包括环形部以及与环形部连接的尾部;所述基材的圆形部与导电层的环形部连接,所述基材的尾部与导电层的尾部连接。
  9. 根据权利要求8所述的超声波雾化片,其特征在于,所述基材的圆形部上设有雾化孔区,雾化孔区内设有微米级雾化孔。
  10. 根据权利要求9所述的超声波雾化片,其特征在于,所述雾化孔区为向压电陶瓷片方向凸出的弧形凸台。
  11. 根据权利要求1所述的超声波雾化片,其特征在于,所述导电层通过无铅锡膏层与压电陶瓷片固定连接。
  12. 根据权利要求1所述的超声波雾化片,其特征在于,所述导电层通过压力热固导电胶膜与压电陶瓷片固定连接。
  13. 根据权利要求1所述的超声波雾化片,其特征在于,所述雾化孔靠近压电陶瓷片一侧的内径小于远离压电陶瓷片一侧的内径。
  14. 根据权利要求13所述的超声波雾化片,其特征在于,所述雾化孔靠近压电陶瓷片一侧的内径为2μm~8μm,所述雾化孔远离压电陶瓷片一侧的内径为20μm~60μm。
  15. 一种如权利要求2所述的超声波雾化片的制造工艺,其特征在于,包括:
    S1,对第二复合板的第二PI膜激光打孔,形成雾化孔;
    S2,将无铅锡膏通过丝网漏印或点胶工艺印刷到压电陶瓷片的顶面和底面,形成无铅锡膏层;
    S3,将第一复合板和第二复合板分别粘合在压电陶瓷片的顶面和底面;
    S4,通过回流焊设备将第一复合板、第二复合板、压电陶瓷片进行固化。
PCT/CN2020/085890 2019-04-24 2020-04-21 超声波雾化片及其制造工艺 WO2020216212A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20795057.7A EP3957405A4 (en) 2019-04-24 2020-04-21 ULTRASONIC ATOMIZATION FILM AND METHOD OF MANUFACTURE THEREOF
JP2021560341A JP2022530329A (ja) 2019-04-24 2020-04-21 超音波霧化シート及びその製造方法
US17/485,422 US20220008949A1 (en) 2019-04-24 2021-09-26 Ultrasonic atomization piece and manufacturing process thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910333186.5A CN110193442A (zh) 2019-04-24 2019-04-24 一种网孔式超声波雾化片及制造工艺
CN201910333186.5 2019-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/485,422 Continuation US20220008949A1 (en) 2019-04-24 2021-09-26 Ultrasonic atomization piece and manufacturing process thereof

Publications (1)

Publication Number Publication Date
WO2020216212A1 true WO2020216212A1 (zh) 2020-10-29

Family

ID=67752045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085890 WO2020216212A1 (zh) 2019-04-24 2020-04-21 超声波雾化片及其制造工艺

Country Status (5)

Country Link
US (1) US20220008949A1 (zh)
EP (1) EP3957405A4 (zh)
JP (1) JP2022530329A (zh)
CN (1) CN110193442A (zh)
WO (1) WO2020216212A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI818857B (zh) * 2023-01-18 2023-10-11 心誠鎂行動醫電股份有限公司 霧化模組

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193442A (zh) * 2019-04-24 2019-09-03 深圳市尚进电子科技有限公司 一种网孔式超声波雾化片及制造工艺
CN110324985B (zh) * 2019-07-10 2020-05-22 深圳市尚进电子科技有限公司 超声波雾化片生产工艺
CN111185339A (zh) * 2020-02-29 2020-05-22 桐乡清锋科技有限公司 兆赫兹无铅压电雾化元件
CN115534493A (zh) * 2022-10-20 2022-12-30 深圳市尚进电子科技有限公司 基于fpc柔性线路板的微网雾化片及其制造工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010075894A1 (en) * 2008-12-30 2010-07-08 Telecom Italia S.P.A. Acrylic adhesive for assembling elements contacting biological substances
CN106493032A (zh) * 2016-12-30 2017-03-15 杭州艾新医疗科技有限公司 一种复合雾化片及其制作方法
CN107427649A (zh) * 2015-02-16 2017-12-01 微邦科技股份有限公司 可分离式微雾化装置
CN110193442A (zh) * 2019-04-24 2019-09-03 深圳市尚进电子科技有限公司 一种网孔式超声波雾化片及制造工艺
CN110324985A (zh) * 2019-07-10 2019-10-11 深圳市尚进电子科技有限公司 超声波雾化片生产工艺
CN210411329U (zh) * 2019-04-24 2020-04-28 深圳市尚进电子科技有限公司 一种网孔式超声波雾化片

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304507A (ja) * 1993-04-23 1994-11-01 Koji Toda 超音波霧化装置
JP4674363B2 (ja) * 2005-06-27 2011-04-20 独立行政法人産業技術総合研究所 異常状態検出方法およびシート状圧電センサ
US20090242660A1 (en) * 2008-03-25 2009-10-01 Quatek Co., Ltd. Medical liquid droplet apparatus
TW201012551A (en) * 2008-09-25 2010-04-01 Micro Base Technology Corp Atomization device having packaging and fastening structures
WO2013155201A2 (en) * 2012-04-10 2013-10-17 Corinthian Ophthalmic, Inc. Spray ejector mechanisms and devices providing charge isolation and controllable droplet charge, and low dosage volume opthalmic administration
TWM450428U (zh) * 2012-10-19 2013-04-11 Microbase Technology Corp 噴孔片改良之霧化裝置
CN103594076B (zh) * 2013-11-20 2016-04-20 常州波速传感器有限公司 压电片结构
CN108926759A (zh) * 2017-05-22 2018-12-04 邻得膜科技(北京)有限公司 一种雾化片用核微孔膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010075894A1 (en) * 2008-12-30 2010-07-08 Telecom Italia S.P.A. Acrylic adhesive for assembling elements contacting biological substances
CN107427649A (zh) * 2015-02-16 2017-12-01 微邦科技股份有限公司 可分离式微雾化装置
CN106493032A (zh) * 2016-12-30 2017-03-15 杭州艾新医疗科技有限公司 一种复合雾化片及其制作方法
CN110193442A (zh) * 2019-04-24 2019-09-03 深圳市尚进电子科技有限公司 一种网孔式超声波雾化片及制造工艺
CN210411329U (zh) * 2019-04-24 2020-04-28 深圳市尚进电子科技有限公司 一种网孔式超声波雾化片
CN110324985A (zh) * 2019-07-10 2019-10-11 深圳市尚进电子科技有限公司 超声波雾化片生产工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3957405A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI818857B (zh) * 2023-01-18 2023-10-11 心誠鎂行動醫電股份有限公司 霧化模組

Also Published As

Publication number Publication date
EP3957405A4 (en) 2022-06-08
JP2022530329A (ja) 2022-06-29
EP3957405A1 (en) 2022-02-23
US20220008949A1 (en) 2022-01-13
CN110193442A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
WO2020216212A1 (zh) 超声波雾化片及其制造工艺
WO2021004117A1 (zh) 超声波雾化片的制造工艺
CN201172029Y (zh) 一种超声波微量雾化换能器
JP6389709B2 (ja) 超音波溶接ホーンおよび電解コンデンサの製造方法
CN109261428A (zh) 一种压电陶瓷雾化片
CN103594076B (zh) 压电片结构
CN203076135U (zh) 一种超声波雾化片
CN107457138A (zh) 一种微孔雾化片
CN109314500A (zh) 弹性波装置
CN105014175A (zh) 一种铝合金表面局部软钎料镀层制备方法
JP4765103B2 (ja) コンデンサ
WO2017120808A1 (zh) 一种alc pcb板的辅助焊接结构及其制备工艺
CN210411329U (zh) 一种网孔式超声波雾化片
CN206742369U (zh) 一种电池及电池组件
CN112867288B (zh) 一种acf导电胶膜结构及其热压方法、热压组件
CN210614154U (zh) 一种复合陶瓷超声波雾化片
CN202942997U (zh) 一种雾化装置
CN104467728B (zh) 一种晶体振荡器接地方法及晶体振荡器
TW202028940A (zh) 曲面自對位接合裝置及其方法
CN103779247B (zh) 一种将功率半导体模块端子焊接到基板的方法
CN114434039A (zh) 一种铜铝异材低温互连的焊料及焊接方法
CN202314767U (zh) 微孔雾化装置
CN207654266U (zh) 一种焊片及含其的超声洁牙机
CN214234714U (zh) 微孔雾化片以及超声雾化装置
CN208873470U (zh) 引脚结构及压电蜂鸣器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560341

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020795057

Country of ref document: EP

Effective date: 20211119