WO2020215639A1 - 柔性模组结构及显示装置 - Google Patents

柔性模组结构及显示装置 Download PDF

Info

Publication number
WO2020215639A1
WO2020215639A1 PCT/CN2019/113462 CN2019113462W WO2020215639A1 WO 2020215639 A1 WO2020215639 A1 WO 2020215639A1 CN 2019113462 W CN2019113462 W CN 2019113462W WO 2020215639 A1 WO2020215639 A1 WO 2020215639A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
module structure
flexible module
resistance element
flexible
Prior art date
Application number
PCT/CN2019/113462
Other languages
English (en)
French (fr)
Inventor
刘仁杰
陈玲艳
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Priority to EP19926512.5A priority Critical patent/EP3896680A4/en
Priority to KR1020217020658A priority patent/KR102520525B1/ko
Priority to JP2021540433A priority patent/JP7149429B2/ja
Publication of WO2020215639A1 publication Critical patent/WO2020215639A1/zh
Priority to US17/314,365 priority patent/US20210270684A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/225Measuring circuits therefor
    • G01L1/2262Measuring circuits therefor involving simple electrical bridges
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/225Measuring circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the embodiments of the present application relate to the field of flexibility, in particular to a flexible module structure and a display device.
  • the so-called flexible module is a module structure that can be bent and deformed at a certain angle and can be restored to its original shape after the bending deformation.
  • the existing flexible module structure usually includes a laminated multilayer structure.
  • the adjacent layer structures are prone to peeling and debonding, and even some of the flexible module structure is damaged and invalidated.
  • the purpose of the embodiments of the present application is to provide a flexible module structure and a display device, so as to reduce the possibility of peeling and debonding between adjacent layer structures during the bending deformation process.
  • an embodiment of the present application provides a flexible module structure, including: a flexible panel with a foldable part, a rotating shaft mechanism attached to the surface of the foldable part, and at least partly disposed on the
  • the strain gauge device of the foldable part, the rotating shaft mechanism includes a fitting surface that is attached to the surface of the foldable part, and when the foldable part is bent and deformed, the strain gauge device acquires the foldable part According to the amount of deformation, the shaft mechanism reduces the distance between the neutral surface of the shaft mechanism and the bonding surface.
  • An embodiment of the present application also provides a display device including the aforementioned flexible module structure, a thin film encapsulation layer disposed above the flexible module structure, and a light-transmitting layer disposed above the thin film encapsulation layer.
  • the embodiment of the application includes a flexible panel, a rotating shaft mechanism and a strain gauge device.
  • the flexible panel has a bendable foldable part, and the rotating shaft mechanism is arranged on the surface of the foldable part and is connected to the foldable part via the bonding surface.
  • the surface is attached, the strain gauge device is set on the foldable part. When the foldable part is bent and deformed, it will drive the shaft mechanism and the strain gauge device to deform at the same time.
  • the strain gauge device can obtain the deformation of the foldable part, and The deformation amount is sent to the rotation axis mechanism, and the rotation axis mechanism adjusts its own deformation according to the magnitude of the deformation amount, so that the distance between the neutral surface of the rotation axis mechanism and the bonding surface is less than or equal to a preset threshold. Since the length of the neutral surface of the shaft mechanism does not change during the deformation process of the shaft mechanism, the neutral surface of the shaft mechanism does not generate deformation stress. In addition, the smaller the distance between the shaft mechanism and the neutral surface, the smaller the deformation stress it receives. The shaft mechanism reduces the distance between the neutral surface of the shaft mechanism and the bonding surface, so that The deformation stress of the bonding surface is small.
  • the bonding surface does not produce deformation stress, thereby reducing or even eliminating the pressure applied by the hinge mechanism to the flexible panel.
  • the purpose of reducing the possibility of peeling and debonding between the flexible panel and the rotating shaft mechanism during the bending deformation process is realized.
  • the strain gauge device includes a strain unit and a voltage collection unit electrically connected to the strain unit.
  • the voltage collection unit obtains a voltage change value, and the voltage change value is obtained according to the voltage
  • the change value obtains the resistance change value of the strain unit, and the deformation amount is obtained according to the resistance change value.
  • the set strain gauge device includes a strain unit and a voltage acquisition unit electrically connected to the strain unit, and uses the characteristic that the resistance of the strain unit changes with the change of its shape to obtain the deformation amount of the foldable part, and its structure is relatively simple.
  • the four resistance elements are connected to form a Wheatstone bridge circuit.
  • the four resistance elements are connected to form a Wheatstone bridge circuit.
  • the connection relationship is relatively simple, and it can prevent the resistance value from being too large/too small due to the deformation of the strain resistance element, and the current in the circuit is too small/too large, protecting the circuit At the same time, the accuracy of the voltage variation collected by the voltage collecting unit is improved.
  • the number of the strain resistance element is one, and one strain resistance element is arranged in a quarter bridge manner.
  • the number of strain resistance elements is one, which can effectively reduce the cost.
  • one strain resistance element is arranged in a quarter bridge manner, and its connection relationship is relatively simple, which can effectively simplify the manufacturing process.
  • the number of the strain resistance elements is two, and the two strain resistance elements are arranged in a half-bridge manner. Two strain resistance elements can effectively perform temperature compensation and improve the accuracy of the measurement results; in addition, the two strain resistance elements are set in a half-bridge manner, which can further improve the accuracy of the measurement results.
  • the number of the strain resistance elements is four, and the four strain resistance elements are arranged in a full bridge manner.
  • the four strain resistance elements can effectively perform temperature compensation and improve the accuracy of the measurement results; in addition, the four strain resistance elements are set in a full bridge mode, which can further improve the accuracy of the measurement results.
  • the flexible panel is a flexible display panel
  • the flexible display panel includes a pixel unit
  • the strain gauge device is electrically connected to a driving circuit of the pixel unit. Electrically connecting the strain gauge device with the drive circuit of the pixel unit can effectively utilize the circuit structure of the flexible display panel itself, without additional power supply circuits for the strain gauge device, effectively simplifying the flexible module structure and reducing the flexible module The preparation cost and process requirements of the structure.
  • the rotation axis mechanism includes a strain surface disposed opposite to the bonding surface, and the rotation axis mechanism includes a recess extending from the strain surface toward the bonding surface.
  • the shaft mechanism is provided with a recess extending from the strain surface toward the bonding surface. When the shaft mechanism is bent and deformed, the recessed part can effectively reduce the stress of the strain surface and make the neutral surface approach the bonding surface.
  • FIG. 1 is a schematic structural diagram of a flexible module structure provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the circuit structure of the strain unit in the flexible module structure provided by the embodiment of the present application;
  • FIG. 3 is a schematic diagram of an arrangement position of a strain resistance element in a flexible module structure provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram after adding strain resistance elements to the flexible module structure provided in FIG. 3;
  • FIG. 5 is a schematic diagram of the structure after adding a strain resistance element to the flexible module structure provided in FIG. 3;
  • FIG. 6 is a schematic diagram of the structure after changing the position of the strain resistance element in the flexible module structure provided in FIG. 5; FIG.
  • FIG. 7 is a schematic structural diagram after adding strain resistance elements to the flexible module structure provided in FIG. 5;
  • Fig. 8 is a schematic structural diagram after changing the position of the strain resistance element in the flexible module structure provided in Fig. 7;
  • FIG. 9 is a schematic diagram of the structure after changing the position of the strain resistance element in the flexible module structure provided in FIG. 7;
  • FIG. 10 is a schematic cross-sectional view of the turning mechanism in the flexible module structure provided by the embodiment of the present application.
  • FIG. 11 is a schematic flowchart of the working principle of the flexible module structure provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of the display device provided by the present application.
  • the flexible module structure has the problem of peeling and debonding between adjacent layer structures during the continuous bending or crimping process, causing damage to the flexible module.
  • the flexible module structure includes a flexible panel 10, a rotating shaft mechanism 20, and a strain gauge device 30.
  • the flexible panel 10 includes a flexible For the foldable foldable portion 11, the rotating shaft mechanism 20 is attached to the surface of the foldable portion 11, and the strain gauge device 30 is at least partially provided on the foldable portion 11.
  • the rotating shaft mechanism 20 includes a surface attached to the foldable portion 11 Fitting surface 21.
  • the strain gauge device 30 can be embedded in the foldable part 11 as shown in FIG.
  • the strain gauge device 30 obtains the deformation amount of the foldable part 11 and feeds it back to the shaft mechanism 20.
  • the shaft mechanism 20 adjusts its own deformation according to the amount of deformation and reduces the neutrality of the shaft mechanism 20 The distance between the surface and the bonding surface 21. In this embodiment, the smaller the distance between the neutral surface of the shaft mechanism 20 and the bonding surface 21 is, the smaller the pressure of the shaft mechanism 20 on the foldable portion 11 can be.
  • the neutral surface of the shaft mechanism 20 overlaps with the bonding surface 21, that is, the bonding surface 21 is not Under the strain force, the pressure on the foldable portion 11 will not be generated.
  • the so-called neutral surface refers to that when the hinge mechanism 20 undergoes bending deformation of the foldable portion 11, the surface on the side facing the bending direction is compressed, and the surface on the side away from the bending direction is stretched. Between compression and compression, there is a surface whose length does not change, that is, the neutral surface; since the length of the neutral surface does not change, when the hinge mechanism 20 is deformed by the foldable portion 11, the neutral surface is neither Under tension and without compression, no bending stress will be generated, and the parts of the shaft mechanism 20 located on both sides of the neutral plane will generate tensile and compressive stresses due to tension and compression respectively; The shorter the distance between the sexual surfaces, the smaller the deformation, and the smaller the tensile stress/compressive stress generated by the part of the corresponding rotating shaft mechanism 20.
  • the flexible module structure provided by the embodiment of the present application is provided with a strain gauge device 30 on the foldable portion 11 of the flexible panel 10.
  • the strain gauge device 30 obtains the amount of deformation of the foldable portion 11, and the rotating shaft mechanism 20 adjusts the shaft mechanism according to the amount of deformation obtained by the foldable part 11 to reduce the distance between the neutral surface of the shaft mechanism 20 and the bonding surface 21.
  • the distance between the neutral surface of the shaft mechanism 20 and the bonding surface 21 is smaller, so that the tensile stress/compressive stress generated by the shaft mechanism 20 at the bonding surface 21 is reduced, and the pressure of the shaft mechanism 20 on the foldable portion 11 is also reduced. Reduce, thereby reducing or even eliminating the pressure applied by the hinge mechanism 20 to the flexible panel 10, so as to reduce the possibility of peeling and debonding between the flexible panel 10 and the hinge mechanism 20 during the bending process.
  • the rotating shaft mechanism 20 includes a power member 22 and an elastic member 23 connected to each other.
  • the strain gauge device 30 obtains the deformation amount of the foldable portion 11, it will feedback the acquired deformation amount of the foldable portion 11 to the power part 22, and the power part 22 is based on the foldable part.
  • the amount of deformation of 11 adjusts the elastic member 23 to reduce the distance between the neutral surface of the shaft mechanism 20 and the bonding surface 21. For example, when the shaft mechanism 20 is bent internally and the bonding surface 21 of the shaft mechanism 20 is stretched, the bonding surface 21 is located on the stretched side of the neutral surface of the shaft mechanism 20, and a tensile stress to restore the original shape is generated.
  • the power element 22 adjusts the elastic element 23 so that the elastic element 23 generates an elastic force that is opposite to the tensile stress direction.
  • the elastic force generated by the elastic element 23 offsets part or all of the tensile stress generated by the deformation of the shaft mechanism 20.
  • the stress is offset by the elastic force generated by the elastic member 23, resulting in an imbalance between the tensile stress and the compressive stress generated on both sides of the neutral surface of the shaft mechanism 20.
  • the tensile stress is less than the compressive stress. Under the action of the compressive stress, the center of the shaft mechanism 20
  • the sexual surface moves toward the stretched side, that is, the distance between the neutral surface of the rotating shaft mechanism 20 and the bonding surface 21 is less than or equal to the preset threshold.
  • the power member 22 is a motor
  • the elastic member 23 is a torsion spring. Setting the power part as a motor and the elastic part as a torsion spring has lower cost.
  • the strain gauge device 30 includes a strain unit 31 and a voltage acquisition unit 32 electrically connected to the strain unit 31, wherein the resistance value of the strain unit 31 changes as its shape changes, and the foldable portion 11
  • the voltage acquisition unit 32 acquires the voltage change value in the circuit, acquires the resistance change value of the strain unit 31 according to the voltage change value, acquires the deformation amount of the strain unit 31 according to the resistance change value, and obtains the deformation amount of the strain unit 31 according to the shape of the strain unit 31
  • the variable acquires the amount of deformation of the foldable portion 11.
  • the setting strain gauge device 30 includes a strain unit 31 and a voltage acquisition unit 32 electrically connected to the strain unit 31. Using the feature that the resistance of the strain unit 31 changes with the change of its shape, the deformation of the foldable portion 11 is obtained, and its structure It's relatively simple.
  • the strain unit 31 includes at least four resistance elements: a first resistance element 311, a second resistance element 312, a third resistance element 313, and a fourth resistance element 314, wherein the first resistance The element 311 and the second resistance element 312 are connected in series, and the third resistance element 313 and the fourth resistance element 314 are connected in series to form a first arm and a second arm in series with each other in a Wheatstone bridge circuit, and a third arm and In the fourth arm, both ends of the voltage collecting unit 32 are electrically connected to the connection point of the first resistance element 311 and the second resistance element 312, and the third resistance element 313 and the fourth resistance element 314, respectively.
  • the four resistance elements include at least one strain resistance element, and the fourth resistance element 314 is set as a strain resistance element.
  • the foregoing is only a specific structural example of the strain unit 31 in this embodiment, and does not constitute a limitation. In other embodiments of the present application, the deformation of the foldable portion 11 may also be obtained through other structures, such as using Deformation sensors of other principles are not listed here.
  • the fourth resistance element 314 is a strain gauge.
  • the fourth resistance element 314 being a strain gauge is only a specific structural example in this embodiment and does not constitute a limitation. In other embodiments of the present application, the fourth resistance element 314 may also be other specific elements. Do not list them all.
  • the first resistance element 311, the second resistance element 312, the third resistance element 313, and the fourth resistance element 314 are connected to form a Wheatstone bridge circuit.
  • the first resistance element 311, the second resistance element 312, the third resistance element 313, and the fourth resistance element 314 are connected to form a Wheatstone bridge circuit.
  • the connection relationship is relatively simple and can prevent the resistance of the fourth resistance element 314 from being deformed. If the value is too large/too small, the current in the circuit is too small/too large. While protecting the circuit, the accuracy of the voltage variation collected by the voltage collecting unit 32 is improved. In the following, taking only one strain resistance element including the fourth resistance element 314 as an example, the calculation of the deformation amount L of the fourth resistance element 314 will be described as an example.
  • the resistance values of the element 313 and the fourth resistance element 314 are R1, R2, R3, and R4, respectively, the voltage of the voltage source EX is VEX, and the voltage value collected by the voltage acquisition unit 32 is V 0 , according to the circuit principle of the Wheatstone bridge. :
  • l is the initial length of the fourth resistance element 31
  • s is the cross-sectional area of the fourth resistance element 31
  • is the strain constant of the fourth resistance element 314.
  • the first resistance element 311, the second resistance element 312, the third resistance element 313, and the fourth resistance element 314 are connected to form a Wheatstone bridge circuit. Only the first resistance element 311, the second resistance element 312, and the third resistance element 312 in this embodiment An example of a specific electrical connection structure of the resistance element 313 and the fourth resistance element 314 is not a limitation. In other embodiments of the present application, it may also be other circuit connection structures, which will not be listed here. .
  • the number of the strain resistance element is one. As shown in FIG. 3, taking the strain resistance element as the first resistance element 311 as an example, the strain resistance element 311 is arranged in a quarter bridge manner. The number of strain resistance elements is one, which can effectively reduce the cost. In addition, one strain resistance element is arranged in a quarter bridge manner, and its connection relationship is relatively simple, which can effectively simplify the manufacturing process.
  • the same specification of the strain resistance element 40 can be set on the flexible panel 10 for comparison, thereby eliminating the temperature response of the variable resistance element.
  • the influence of the resistance value improves the measurement accuracy of the deformation amount of the foldable portion 11.
  • the flexible panel 10 is a flexible display panel
  • the flexible display panel 10 includes a pixel unit
  • the strain gauge device 30 is electrically connected to the driving circuit of the pixel unit.
  • the strain gauge device 30 is electrically connected to the drive circuit of the pixel unit, and the pixel drive circuit of the flexible display panel itself is directly supplied with power to the corresponding gauge device 30, so that no additional strain gauge device 30 is needed.
  • the power supply circuit With the power supply circuit, the effective flexible module structure 100 is simplified, and the manufacturing cost and process requirements of the flexible module structure are reduced.
  • the embodiment of the present application also provides a flexible module structure.
  • the strain unit 31 includes two strain resistance elements, a first resistance element 311 and a second resistance element 312.
  • the two strain resistance elements are set as the first resistance element 311 and the second resistance element 312 respectively, wherein the first resistance element 311 and the second resistance element 312 are arranged in a half-bridge manner.
  • the first resistance element 311 and the second resistance element 312 are arranged in the same plane.
  • the first resistance element 311 and the second resistance element 312 are oppositely arranged in two planes. Regardless of whether the first resistance element 311 and the second resistance element 3121 are arranged in the same plane or oppositely arranged in two planes, the technical effect of measuring the amount of deformation of the foldable part 11 can be achieved, which can be flexibly selected according to actual conditions.
  • the first resistance element 311 and the second resistance element 312 are arranged on two arms of the Wheatstone bridge connected in series.
  • the two arms of the first resistance element 311 and the second resistance element 312 arranged in series with each other in the Wheatstone bridge are only a specific application example, which does not constitute a limitation.
  • the first resistance element 311 and the second resistance element 312 are arranged on two arms of the Wheatstone bridge in parallel, etc., which will not be listed here.
  • the provision of two strain resistance units, the first resistance element 311 and the second resistance element 312, can compare with each other, effectively perform temperature compensation, and improve the accuracy of the measurement results; in addition, the first resistance element 311 and the second resistance element 312 Setting in the way of half-bridge can further improve the accuracy of the measurement results.
  • the embodiment of the present application also relates to a flexible module structure.
  • the first resistance element 311, the second resistance element 312, the third resistance element 313, and the fourth resistance element 314 are all strain resistance elements.
  • the four strain resistance elements are set up in a full bridge connection.
  • the first resistance element 311, the second resistance element 312, the third resistance element 313, and the fourth resistance element 314 are arranged opposite to each other.
  • the first resistance element 311 and the third resistance element 313 are arranged in the same plane, and the first resistance element 311 and the fourth resistance element 314 extend in the same direction.
  • the second resistance element 312 and the fourth resistance element 314 The second resistance element 312 and the fourth resistance element 314 extend in the same direction; the first resistance element 311 and the second resistance element 312 are arranged oppositely, and the third resistance element 313 and the fourth resistance element 314 are oppositely arranged .
  • FIG. 7 the first resistance element 311 and the third resistance element 313 are arranged in the same plane, and the first resistance element 311 and the fourth resistance element 314 extend in the same direction.
  • the second resistance element 312 and the fourth resistance element 314 extend in the same direction; the first resistance element 311 and the second resistance element 312 are arranged oppositely, and the third resistance element 313 and the fourth resistance element 314 are oppositely arranged .
  • the first resistance element 311 and the fourth resistance element 314 are arranged in the same plane, and the extension directions of the first resistance element 311 and the fourth resistance element 314 are different, and the second resistance element 312 and the third resistance element 314
  • the resistance element 313 is arranged in the same plane, and the extension directions of the second resistance element 312 and the third resistance element 313 are different; the first resistance element 311 and the second resistance element 312 are arranged oppositely, and the third resistance element 313 and the fourth resistance element 313 are opposite to each other.
  • the elements 314 are arranged oppositely. Or, as shown in FIG.
  • the first resistance element 311 and the second resistance element 312 are arranged in the same plane, and the first resistance element 311 and the second resistance element 312 extend in different directions, and the third resistance element 313 and the fourth resistance element 313
  • the resistance element 314 is arranged in the same plane, and the extension directions of the third resistance element 313 and the fourth resistance element 314 are not the same; the first resistance element 311 and the third resistance element 313 are arranged oppositely, and the second resistance element 312 and the fourth resistance element The elements 314 are arranged oppositely.
  • the arrangement of the first resistance element 311, the second resistance element 312, the third resistance element 313, and the fourth resistance element 314 opposite each other is only a specific application example of this embodiment and does not constitute a limitation. In the embodiment, other setting methods may also be used, which are not listed here.
  • the present embodiment Since only the installation method of the strain gauge device in the embodiment is changed, the present embodiment has the same technical effect for the other unchanged parts, which will not be repeated here.
  • four strain resistance units are provided, which can compare with each other and effectively perform temperature compensation, thereby improving the accuracy of the measurement results; in addition, the four strain resistance elements are set in a full-bridge manner. Compared with the quarter bridge in the embodiment and the half bridge in the second embodiment, the accuracy of the measurement result can be further improved.
  • the bridging method shown in Figure 3 has axial strain and bending strain, the installation position is unilateral installation, and the number of wires is 2 or 3;
  • the bridging method shown in Figure 4 has axial strain and Bending strain, temperature compensation can be performed, the installation position is unilateral installation, the number of wiring is 3;
  • the bridge method shown in Figure 5 has axial strain and bending strain, temperature compensation and lateral sensitivity compensation can be performed, and the installation position is Single-side installation, the number of wiring is 3;
  • the bridging method shown in Figure 6 has bending strain, can be temperature compensated, the installation position is opposite side installation, the number of wiring is 3;
  • the bridging method shown in Figure 7 has bending Strain, temperature compensation can be carried out, the installation position is opposite side installation, the number of wiring is 4;
  • the bridging method shown in Figure 8 has bending strain, temperature compensation and lateral sensitivity compensation can be carried out, the installation position is opposite side installation, The number of wiring is 4;
  • the bridging method shown in Figure 9
  • the rotation axis mechanism 20 includes a strain surface 24 disposed opposite to the bonding surface 21, and the rotation axis mechanism 20 includes a recess 25 extending from the strain surface 24 toward the bonding surface 21.
  • the shape of the recess 25 can be any shape such as a square, a cone, etc., which will not be listed here.
  • the recess 25 is a groove parallel to the bending axis of the foldable portion 11.
  • the bending axis is the extension direction of the bending axis when the foldable portion is bent.
  • the shaft mechanism 20 is provided with a recess 25 extending from the strain surface 24 toward the bonding surface 21.
  • the recess 25 can effectively reduce the strain surface The stress of 24 makes the neutral surface of the shaft mechanism 20 approach the bonding surface 21.
  • Step S101 The strain gauge device 30 collects the amount of deformation of the foldable portion 11.
  • strain gauge device 30 collecting the deformation amount of the foldable portion 11 has been specifically described in the embodiment, and will not be repeated here.
  • Step S102 the strain gauge device 30 sends the collected deformation amount of the foldable part 11 to the power part 22.
  • Step S103 The power member 22 adjusts the elastic member 23 according to the received deformation amount of the foldable portion 11, so that the distance between the neutral surface of the rotating shaft mechanism 20 and the bonding surface 21 is less than a preset threshold.
  • the power member 22 adjusts the elastic member 23 according to the received deformation amount of the foldable portion 11, so that the distance between the neutral surface of the shaft mechanism 20 and the bonding surface 21 is less than the preset threshold.
  • the embodiment of the present application relates to a display device, as shown in FIG. 12, comprising: the flexible module structure 100 provided above, a thin film encapsulation layer 200 disposed above the flexible module structure 100, and the thin film encapsulation layer The light-transmitting layer 300 above 200.
  • a polarizer 400 can also be provided on the thin film encapsulation layer 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种柔性模组结构(100)及显示装置,其中,柔性模组结构(100)包括:具有可折叠部(11)的柔性面板(10)、与可折叠部(11)表面贴合的转轴机构(20)、以及至少部分设置于可折叠部(11)的应变规装置(30),转轴机构(20)包括与可折叠部(11)表面贴合的贴合面(21),在可折叠部(11)发生弯折形变时,应变规装置(30)获取可折叠部(11)的形变量并反馈至转轴机构(20),转轴机构(20)根据形变量减小转轴机构(20)的中性面与贴合面(21)的距离。

Description

柔性模组结构及显示装置
交叉引用
本申请引用于2019年04月22日递交的名称为“柔性模组结构及显示装置”的第201910323557.1号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请实施例涉及柔性领域,特别涉及一种柔性模组结构及显示装置。
背景技术
随着可弯折显示屏等柔性技术的发展,柔性模组的应用越来越广泛。所谓柔性模组,即可进行一定角度的弯折形变且弯折形变后可恢复原状的一种模组结构。
然而,现有的柔性模组结构通常包括层叠的多层结构。在实际应用中,柔性模组结构在不断的弯折或者卷曲过程中,相邻的层结构之间容易出现剥离脱粘,甚至使得部分柔性模组结构损坏失效。
申请内容
本申请实施例的目的在于提供一种柔性模组结构及显示装置,以实现降低弯折形变过程中相邻的层结构之间出现剥离脱粘的可能性的目的。
为解决上述技术问题,本申请的实施例提供了一种柔性模组结构,包括:具有可折叠部的柔性面板、与所述可折叠部表面贴合的转轴机构、以及至少部分设置于所述可折叠部的应变规装置,所述转轴机构包括与所述可折叠部表面 贴合的贴合面,在所述可折叠部发生弯折形变时,所述应变规装置获取所述可折叠部的形变量,所述转轴机构根据所述形变量减小所述转轴机构的中性面与所述贴合面的距离。
本申请的实施例还提供了一种显示装置,包括如前述的柔性模组结构、设置于所述柔性模组结构上方的薄膜封装层、以及设置于所述薄膜封装层上方的透光层。
本申请实施例,包括柔性面板、转轴机构和应变规装置,其中,柔性面板具有可弯折的可折叠部,转轴机构设置在可折叠部的表面上、并经由贴合面与可折叠部的表面贴合,应变规装置设置在可折叠部上,在可折叠部发生弯折形变时,会带动转轴机构和应变规装置同时发生形变,应变规装置可以获取到可折叠部的形变量,并将形变量发送至转轴机构,转轴机构根据形变量的大小值对自身形变进行调节、使得转轴机构的中性面与贴合面的距离小于或等于预设阈值。由于转轴机构的形变过程中转轴机构的中性面的长度并未发生变化,因此转轴机构的中性面并不会产生形变应力。此外,转轴机构中与中性面的距离越小的部分、其所受到的形变应力也越小,通过转轴机构减小所述转轴机构的中性面与所述贴合面的距离,从而使得贴合面的形变应力较小甚至当转轴机构的中性面与贴合面的距离减小为零时,贴合面不产生形变应力,从而减少甚至消除转轴机构施加给柔性面板的压力,以实现降低弯折形变过程中柔性面板和转轴机构之间出现剥离脱粘的可能性的目的。
另外,所述应变规装置包括应变单元、以及与所述应变单元电连接的电压采集单元,在所述可折叠部发生弯折形变时,所述电压采集单元获取电压变化值,根据所述电压变化值获取所述应变单元的电阻变化值,根据所述电阻变 化值获取所述形变量。设置应变规装置包括应变单元和与应变单元电连接的电压采集单元,利用应变单元的电阻随着其形状的变化而变化的特征,获取可折叠部的形变量,其结构较为简单。
另外,所述四个电阻元件连接形成惠斯通电桥电路。将四个电阻元件连接形成惠斯通电桥电路,其连接关系较为简单,且可以防止由于应变电阻元件发生形变导致电阻值过大/过小、电路中的电流过小/过大,保护电路的同时,提升电压采集单元采集的电压变化量的准确性。
另外,所述应变电阻元件数量为一个,一个所述应变电阻元件按照四分之一桥接的方式进行设置。应变电阻元件的数量为一个,可以有效的降低成本,此外,一个应变电阻元件按照四分之一桥接的方式进行设置,其连接关系较为简单,可以有效的简化制作过程。
另外,所述应变电阻元件数量为两个,两个所述应变电阻元件按照半桥接的方式进行设置。应变电阻元件数量的两个,可以有效的进行温度补偿,提升测量结果的准确性;此外,两个应变电阻元件按照半桥接的方式进行设置,可以进一步的提升测量结果的准确性。
另外,所述应变电阻元件数量为四个,四个所述应变电阻元件按照全桥接的方式进行设置。应变电阻元件数量的四个,可以有效的进行温度补偿,提升测量结果的准确性;此外,四个应变电阻元件按照全桥接的方式进行设置,可以更进一步的提升测量结果的准确性。
另外,所述柔性面板为柔性显示面板,所述柔性显示面板包括像素单元,所述应变规装置与所述像素单元的驱动电路电连接。将应变规装置与像素单元的驱动电路电连接,可以有效的利用柔性显示面板自身的电路结构,无需额外 为应变规装置设置供电电路,有效的对柔性模组结构进行简化,降低了柔性模组结构的制备成本和工艺要求。
另外,所述转轴机构包括与所述贴合面相对设置的应变面,所述转轴机构包括自所述应变面朝向所述贴合面延伸的凹陷。转轴机构上设置自应变面朝向贴合面延伸的凹陷,当转轴机构发生弯折形变时,凹陷部分可以有效的减小应变面的应力,使中性面朝向贴合面靠近。
附图说明
图1是本申请实施例所提供的柔性模组结构的结构示意图;
图2是本申请实施例所提供的柔性模组结构中应变单元的电路结构示意图;
图3是本申请实施例所提供的柔性模组结构中应变电阻元件的一种设置位置示意图;
图4是在图3所提供的柔性模组结构中增加了应变电阻元件后的结构示意图;
图5是在图3所提供的柔性模组结构中增加了应变电阻元件后的结构示意图;
图6是在图5所提供的柔性模组结构中改变了应变电阻元件的位置后的结构示意图;
图7是在图5所提供的柔性模组结构中增加了应变电阻元件后的结构示意图;
图8是在图7所提供的柔性模组结构中改变了应变电阻元件的位置后的 结构示意图;
图9是在图7所提供的柔性模组结构中改变了应变电阻元件的位置后的结构示意图;
图10是本申请实施例所提供的柔性模组结构中转折机构的剖面示意图;
图11是本申请实施例所提供的柔性模组结构的工作原理的流程示意图;
图12是本申请所提供的显示装置的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请的各实施例进行清楚、完整的描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其他实施例,都属于本申请保护的范围。
柔性模组结构有在不断的弯折或者卷曲过程中,相邻的层结构之间容易出现剥离脱粘的问题,对柔性模组造成破坏。
基于以上原因,本申请实施例提供了一种柔性模组结构及显示装置,如图1所示,柔性模组结构包括柔性面板10、转轴机构20和应变规装置30,柔性面板10包括可弯折的可折叠部11,转轴机构20贴合设置在可折叠部11的表面,应变规装置30至少部分设置于可折叠部11,其中,转轴机构20包括与可折叠部11的表面贴合的贴合面21。应变规装置30可以是如图1所示嵌设在可折叠部11内部,也可以是贴设在可折叠部11的表面,还可以是部分嵌设在可折叠部11内部,部分贴设在可折叠部11的表面,具体可以根据实际需要进 行灵活的设置,在此不进行限定。在可折叠部发生弯折形变时,应变规装置30获取可折叠部11的形变量并反馈至转轴机构20,转轴机构20根据形变量对自身的形变进行调节,减小转轴机构20的中性面与贴合面21的距离。在本实施例中,转轴机构20的中性面与贴合面21的距离越小,可以使得转轴机构20对可折叠部11的压力越小。进一步的,在本实施例中,当转轴机构20的中性面与贴合面21的距离减小为0时,转轴机构20的中性面与贴合面21重合,即贴合面21不受应变力,也就不会产生对可折叠部11的压力。
所谓中性面,指的是,转轴机构20随可折叠部11发生弯折形变时,朝向弯折方向的一侧表面被压缩、远离弯折方向的一侧表面被拉伸,而在拉伸与压缩之间,存在长度不发生变化的一个面、即为中性面;由于中性面的长度未发生变化,因此转轴机构20随可折叠部11发生弯折形变时,中性面既不受拉、也不受压,并不会产生弯折应力,而转轴机构20位于中性面两侧的部分分别会由于拉伸和压缩而产生拉伸应力和压缩应力;转轴机构20中与中性面距离越近的部分形变越小,相应转轴机构20中该部分产生的拉伸应力/压缩应力也越小。
本申请实施例所提供的柔性模组结构在柔性面板10的可折叠部11设置应变规装置30,当可折叠部11发生形变时,应变规装置30获取可折叠部11的形变量,转轴机构20根据可折叠部11获取的形变量对转轴机构进行调节,减小转轴机构20的中性面与贴合面21的距离。较小转轴机构20的中性面与贴合面21的距离,从而使得转轴机构20在贴合面21处产生的拉伸应力/压缩应力减小,转轴机构20对可折叠部11的压力也减小,从而减少甚至消除转轴机构20施加给柔性面板10的压力,以实现降低弯折过程中柔性面板10和转轴机构20之间出现剥离脱粘的可能性的目的。
此外,在本实施例中,转轴机构20包括相互连接的动力件22和弹性件23。可折叠部11发生弯折形变时,应变规装置30获取到可折叠部11的形变量后,会将获取到的可折叠部11的形变量反馈至动力件22,动力件22根据可折叠部11的形变量调节弹性件23,以减小转轴机构20的中性面与贴合面21的距离。例如,当转轴机构20发生内弯折,转轴机构20的贴合面21被拉伸时,贴合面21位于转轴机构20中性面的拉伸侧,产生恢复原状的拉伸应力,则通过动力件22调节弹性件23,使得弹性件23产生与拉伸应力方向相反的弹力,通过弹性件23产生的弹力抵消部分或全部转轴机构20由于形变产生的拉伸应力,由于部分或全部拉伸应力被弹性件23产生的弹力抵消,导致转轴机构20中性面两侧分别产生的拉伸应力和压缩应力不平衡,拉伸应力小于压缩应力,在压缩应力的作用下,转轴机构20的中性面朝向被拉伸的一侧移动,即使得转轴机构20的中性面与贴合面21的距离小于或等于预设阈值。
在本实施例中,动力件22为马达,弹性件23为扭力弹簧。设置动力件为马达、弹性件为扭力弹簧,其成本较低。
在本实施例中,应变规装置30包括应变单元31和与应变单元31电连接的电压采集单元32,其中,应变单元31的电阻值随着其形状的变化而发生变化,在可折叠部11发生弯折形变时,电压采集单元32获取电路中的电压变化值,根据电压变化值获取应变单元31的电阻变化值,根据电阻变化值获取应变单元31的形变量,并根据应变单元31的形变量获取可折叠部11的形变量。设置应变规装置30包括应变单元31和与应变单元31电连接的电压采集单元32,利用应变单元31的电阻随着其形状的变化而变化的特征,获取可折叠部11的形变量,其结构较为简单。
在本实施例中,如图2所示,应变单元31至少包括第一电阻元件311、第二电阻元件312、第三电阻元件313以及第四电阻元件314四个电阻元件,其中,第一电阻元件311和第二电阻元件312串联,第三电阻元件313和第四电阻元件314串联,以形成惠斯通电桥电路中相互串联的第一臂和第二臂、以及相互串联的第三臂和第四臂,电压采集单元32的两端分别与第一电阻元件311和第二电阻元件312的连接点、以及第三电阻元件313和第四电阻元件314电连接。四个电阻元件中至少包括一个应变电阻元件,设定第四电阻元件314为应变电阻元件。上述仅为本实施例中应变单元31的一种具体的结构举例,并不构成限定,在本申请的其他实施例中,也可以是通过其他的结构获取可折叠部11的形变量,如利用其他原理的形变传感器等,在此不进行一一列举。
在本实施例中,第四电阻元件314为应变片。第四电阻元件314为应变片仅为本实施例中的一种具体的结构举例,并不构成限定,在本申请的其他实施例中,第四电阻元件314也可以是其他具体元件,在此不进行一一列举。
进一步的,在本实施例中,第一电阻元件311、第二电阻元件312、第三电阻元件313以及第四电阻元件314连接形成惠斯通电桥电路。将第一电阻元件311、第二电阻元件312、第三电阻元件313以及第四电阻元件314连接形成惠斯通电桥电路,其连接关系较为简单且可以防止由于第四电阻元件314由于形变使得电阻值过大/过小,导致电路中的电流过小/过大,保护电路的同时,提升电压采集单元32采集的电压变化量的准确性。下面,以仅包含第四电阻元件314一个应变电阻元件为例,对第四电阻元件314的形变量L的求取进行举例说明,设第一电阻元件311、第二电阻元件312、第三电阻元件313以及第四电阻元件314的电阻值分别为R1、R2、R3和R4,,电压源EX电压为VEX,电 压采集单元32采集的电压值为V 0,根据惠斯通电桥的电路原理可知:
Figure PCTCN2019113462-appb-000001
未发生形变时,根据第四电阻元件314的阻值和长度的关系可知
Figure PCTCN2019113462-appb-000002
其中,l为第四电阻元件314的初始长度,s为第四电阻元件314的横截面积,ρ为第四电阻元件314的应变常量。
可折叠部11发生弯折形变后、第四电阻元件314的形变量L可由式
Figure PCTCN2019113462-appb-000003
求出。进而求得第四电阻元件314的形变量和长度的比值,从而求取可折叠部11的长度和该比值的乘积,将乘积减去可折叠部11的长度,求得可弯折部11的形变量Δ?。根据转轴机构的厚度t,可以根据式ΔL=π·t+Δl求得转轴机构需要调节的形变量ΔL。
第一电阻元件311、第二电阻元件312、第三电阻元件313以及第四电阻元件314连接形成惠斯通电桥电路仅为本实施例中第一电阻元件311、第二电阻元件312、第三电阻元件313以及第四电阻元件314的一种具体的电连接的结构举例,并不构成限定,在本申请的其他实施例中,也可以是其他的电路连接结构,在此不进行一一列举。
在本实施例中,应变电阻元件数量为一个,如图3所示,以应变电阻元件为第一电阻元件311为例,应变电阻元件311按照四分之一桥接的方式进行设置。应变电阻元件的数量为一个,可以有效的降低成本,此外,一个应变电阻元件按照四分之一桥接的方式进行设置,其连接关系较为简单,可以有效的简化制作过程。
如图4所示,在本实施例中,为了消除温度对应变电阻元件的阻值的影响,在柔性面板10上可以设置相同规格的应变电阻元件40进行对照,从而消 除温度对应变电阻元件的阻值的影响,提升可折叠部11的形变量的测量精度。
进一步的,在本实施例中,柔性面板10为柔性显示面板,柔性显示面板10包括像素单元,应变规装置30与像素单元的驱动电路电连接。当柔性面板10为柔性显示面板时,设置应变规装置30与像素单元的驱动电路电连接,直接通过柔性显示面板自身的像素驱动电路对应变规装置30进行供电,从而无需额外为应变规装置30设置供电电路,有效的柔性模组结构100进行了简化,降低了柔性模组结构的制备成本和工艺要求。
本申请实施例还提供了一种柔性模组结构。其中,应变单元31包含第一电阻元件311和第二电阻元件312两个应变电阻元件。
如图5所示,设定两个应变电阻元件分别为第一电阻元件311和第二电阻元件312,其中,第一电阻元件311和第二电阻元件312按照半桥接的方式进行设置。第一电阻元件311和第二电阻元件312设置在同一平面内。
进一步的,如图6所示,第一电阻元件311和第二电阻元件312相对设置在两个平面内。无论第一电阻元件311和第二电阻元件3121设置在同一平面内还是相对设置在两个平面内均可以达到测量可折叠部11的形变量的技术效果,具体可以根据实际进行灵活的选用。
第一电阻元件311和第二电阻元件312设置于惠斯通电桥相互串联的两个臂。在本实施例中,第一电阻元件311和第二电阻元件312设置于惠斯通电桥相互串联的两个臂仅为一种具体的应用举例,并不构成限定,在本申请的其他实施例中,也可以是其他的设置方式,如第一电阻元件311和第二电阻元件312设置于惠斯通电桥相互并联的两个臂等,在此不进行一一列举。
由于仅改变了实施例中应变规装置的安装方式,对于其他未改变的部分, 本实施例具有相同的技术效果,在此不进行赘述。此外,设置第一电阻元件311和第二电阻元件312两个应变电阻单元,可以相互对照、有效的进行温度补偿,提升测量结果的准确性;此外,第一电阻元件311和第二电阻元件312按照半桥接的方式进行设置,可以进一步的提升测量结果的准确性。
本申请的实施例还涉及一种柔性模组结构。其中,第一电阻元件311、第二电阻元件312、第三电阻元件313以及第四电阻元件314均为应变电阻元件。
四个应变电阻元件按照全桥接的方式进行设置。
第一电阻元件311、第二电阻元件312、第三电阻元件313以及第四电阻元件314两两相对设置。
如图7所示,第一电阻元件311和第三电阻元件313设置在同一平面内、且第一电阻元件311和第四电阻元件314延伸方向相同,第二电阻元件312和第四电阻元件314设置在同一平面内、且第二电阻元件312和第四电阻元件314的延伸方向相同;第一电阻元件311和第二电阻元件312相对设置,第三电阻元件313和第四电阻元件314相对设置。或者,如图8所示,第一电阻元件311和第四电阻元件314设置在同一平面内、且第一电阻元件311和第四电阻元件314延伸方向不相同,第二电阻元件312和第三电阻元件313设置在同一平面内、且第二电阻元件312和第三电阻元件313的延伸方向不相同;第一电阻元件311和第二电阻元件312相对设置,第三电阻元件313和第四电阻元件314相对设置。或者,如图9所示,第一电阻元件311和第二电阻元件312设置在同一平面内、且第一电阻元件311和第二电阻元件312延伸方向不相同,第三电阻元件313和第四电阻元件314设置在同一平面内、且第三电阻元件313和 第四电阻元件314的延伸方向不相同;第一电阻元件311和第三电阻元件313相对设置,第二电阻元件312和第四电阻元件314相对设置。
第一电阻元件311、第二电阻元件312、第三电阻元件313以及第四电阻元件314两两相对设置仅为本实施例的一种具体的应用举例,并不构成限定,在本申请的其他实施例中,也可以是其他的设置方法,在此不进行一一列举。
由于仅改变了实施例中应变规装置的安装方式,对于其他未改变的部分,本实施例具有相同的技术效果,在此不进行赘述。此外,本申请第三实施例中,设置四个应变电阻单元,可以相互对照、有效的进行温度补偿,提升测量结果的准确性;此外,四个应变电阻元件按照全桥接的方式进行设置,相较于实施例中的四分之一桥接和第二实施例中的半桥接,可以更进一步的提升测量结果的准确性。
下面,结合表一对上述实施例中所涉及的应变规装置30的桥接方法的性质进行说明,本领域技术人员可以根据实际需要进行灵活的选用。各个桥接方法的性质如下表所示,其中,Y表示具备该性质,N表示不具备该性质。
表一
Figure PCTCN2019113462-appb-000004
Figure PCTCN2019113462-appb-000005
如表一所示,图3所示的桥接方法具有轴向应变和弯曲应变、安装位置为单边安装,配线数量为2条或3条;图4所示的桥接方法具有轴向应变和弯曲应变、可以进行温度补偿、安装位置为单边安装,配线数量为3条;图5所示的桥接方法具有轴向应变和弯曲应变、可以进行温度补偿和横向敏感度补偿、安装位置为单边安装,配线数量为3条;图6所示的桥接方法具有弯曲应变、可以进行温度补偿、安装位置为对边安装,配线数量为3条;图7所示的桥接方法具有弯曲应变、可以进行温度补偿、安装位置为对边安装,配线数量为4条;图8所示的桥接方法具有弯曲应变、可以进行温度补偿和横向敏感度补偿、安装位置为对边边安装,配线数量为4条;图9所示的桥接方法具有轴向应变、可以进行温度补偿和横向敏感度补偿、安装位置为对边安装,配线数量为4条。
本申请的实施例涉及一种柔性模组结构。如图10所示,转轴机构20包括与贴合面21相对设置的应变面24,转轴机构20包括自应变面24朝向贴合面21延伸的凹陷25。
凹陷25的形状可以为方形、锥形等任意形状,在此不进行一一列举。
进一步的,在本实施例中,凹陷25为与可折叠部11弯折轴向平行的凹槽。具体的,弯折轴向为可折叠部发生弯折时的弯折轴的延伸方向。
由于在保留实施例全部技术效果的同时,在转轴机构20上设置自应变面24朝向贴合面21延伸的凹陷25,当转轴机构20发生弯折形变时,凹陷25可以有效的减小应变面24的应力,使转轴机构20的中性面朝向贴合面21靠近。
下面,对本申请实施例所提供的柔性模组结构的工作原理进行说明,下述仅为本申请实施例所提供的柔性模组结构中各部件详细的工作原理的流程的说明,并不构成限定,具体步骤如图11所示,包括以下步骤:
步骤S101:应变规装置30采集可折叠部11的形变量。
应变规装置30采集可折叠部11的形变量的具体实现形式在实施例中已进行了具体的说明,在此不再赘述。
步骤S102:应变规装置30将采集的可折叠部11的形变量发送至动力件22。
步骤S103:动力件22根据接收到的可折叠部11的形变量对弹性件23进行调节,使得转轴机构20的中性面与贴合面21的距离小于预设阈值。
动力件22根据接收到的可折叠部11的形变量对弹性件23进行调节,使得转轴机构20的中性面与贴合面21的距离小于预设阈值的具体实现形式已在实施例中已进行了具体的说明,在此不再赘述。
本申请的实施例涉及一种显示装置,如图12所示,包括:如上述所提供的柔性模组结构100、设置于柔性模组结构100上方的薄膜封装层200、以及设置于薄膜封装层200上方的透光层300。
进一步的,还可在薄膜封装层200上方设置偏光片400。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,如两个或多个实施例相结合等方式,而不偏离本申请的精神和范围。

Claims (17)

  1. 一种柔性模组结构,其中,包括:具有可折叠部的柔性面板、与所述可折叠部表面贴合的转轴机构、以及至少部分设置于所述可折叠部的应变规装置,所述转轴机构包括与所述可折叠部表面贴合的贴合面,在所述可折叠部发生弯折形变时,所述应变规装置获取所述可折叠部的形变量并反馈至所述转轴机构,所述转轴机构根据所述形变量减小所述转轴机构的中性面与所述贴合面的距离。
  2. 根据权利要求1所述的柔性模组结构,其中,所述应变规装置包括应变单元、以及与所述应变单元电连接的电压采集单元,在所述可折叠部发生弯折形变时,所述电压采集单元获取电压变化值,根据所述电压变化值获取所述应变单元的电阻变化值,并根据所述电阻变化值获取所述形变量。
  3. 根据权利要求2所述的柔性模组结构,其中,所述应变单元包括至少四个电阻元件,所述四个电阻元件中至少包括一个应变电阻元件。
  4. 根据权利要求3所述的柔性模组结构,其中,所述四个电阻元件连接形成惠斯通电桥电路。
  5. 根据权利要求4所述的柔性模组结构,其中,惠斯通电桥电路包括相互串联的第一臂和第二臂、以及相互串联的第三臂和第四臂,所述电压采集单元的两端分别与所述第一臂和所述第二臂的连接点、以及所述第三臂和所述第四臂的连接点电连接。
  6. 根据权利要求3所述的柔性模组结构,其中,所述应变电阻元件数量为一个,一个所述应变电阻元件按照四分之一桥接的方式进行设置。
  7. 根据权利要求3所述的柔性模组结构,其中,所述应变电阻元件数量为两个,两个所述应变电阻元件按照半桥接的方式进行设置。
  8. 根据权利要求7所述的柔性模组结构,其中,两个所述应变电阻元件设置于惠斯通电桥相互串联的两个臂。
  9. 根据权利要求7所述的柔性模组结构,其中,两个所述应变电阻元件相对设置在所述可折叠部相对的两个表面。
  10. 根据权利要求3所述的柔性模组结构,其中,所述应变电阻元件数量为四个,四个所述应变电阻元件按照全桥接的方式进行设置。
  11. 根据权利要求10所述的柔性模组结构,其中,四个所述应变电阻元件两两相对设置在所述可折叠部相对的两个表面。
  12. 根据权利要求1至11中任一项所述的柔性模组结构,其中,所述柔性面板为柔性显示面板,所述柔性显示面板包括像素单元,所述应变规装置与所述像素单元的驱动电路电连接。
  13. 根据权利要求1所述的柔性模组结构,其中,所述转轴机构包括相互连接的动力件和弹性件,所述动力件根据所述形变量调节所述弹性件、以减小所述转轴机构的中性面与所述贴合面的距离。
  14. 根据权利要求13所述的柔性模组结构,其中,所述动力件为马达,所述弹性件为扭力弹簧。
  15. 根据权利要求1所述的柔性模组结构,其中,所述转轴机构包括与所述贴合面相对设置的应变面,所述转轴机构包括自所述应变面朝向所述贴合面 延伸的凹陷。
  16. 根据权利要求15所述的柔性模组结构,其中,所述凹陷为与所述可折叠部的弯折轴向平行的凹槽。
  17. 一种显示装置,其中,包括:如权利要求1至16中任一项所述的柔性模组结构、设置于所述柔性模组结构上方的薄膜封装层、以及设置于所述薄膜封装层上方的透光层。
PCT/CN2019/113462 2019-04-22 2019-10-25 柔性模组结构及显示装置 WO2020215639A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19926512.5A EP3896680A4 (en) 2019-04-22 2019-10-25 FLEXIBLE MODULE STRUCTURE AND DISPLAY DEVICE
KR1020217020658A KR102520525B1 (ko) 2019-04-22 2019-10-25 플렉시블 모듈 구조 및 디스플레이 장치
JP2021540433A JP7149429B2 (ja) 2019-04-22 2019-10-25 フレキシブルモジュール構造及び表示装置
US17/314,365 US20210270684A1 (en) 2019-04-22 2021-05-07 Flexible module and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910323557.1A CN110060573B (zh) 2019-04-22 2019-04-22 柔性模组结构及显示装置
CN201910323557.1 2019-04-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/314,365 Continuation US20210270684A1 (en) 2019-04-22 2021-05-07 Flexible module and display device

Publications (1)

Publication Number Publication Date
WO2020215639A1 true WO2020215639A1 (zh) 2020-10-29

Family

ID=67320054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113462 WO2020215639A1 (zh) 2019-04-22 2019-10-25 柔性模组结构及显示装置

Country Status (7)

Country Link
US (1) US20210270684A1 (zh)
EP (1) EP3896680A4 (zh)
JP (1) JP7149429B2 (zh)
KR (1) KR102520525B1 (zh)
CN (1) CN110060573B (zh)
TW (1) TWI725622B (zh)
WO (1) WO2020215639A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110060573B (zh) * 2019-04-22 2020-12-29 昆山国显光电有限公司 柔性模组结构及显示装置
CN110726363B (zh) * 2019-10-14 2021-11-02 武汉华星光电半导体显示技术有限公司 一种显示装置及其制作方法
CN112783272A (zh) * 2021-01-27 2021-05-11 维沃移动通信有限公司 检测方法及装置
CN114038331A (zh) * 2021-11-30 2022-02-11 长沙惠科光电有限公司 显示面板和显示设备
CN116935742A (zh) * 2022-03-30 2023-10-24 华为技术有限公司 一种折叠屏辅助装置及其制作方法和相关设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845700A (zh) * 2014-11-19 2016-08-10 财团法人工业技术研究院 可挠性电子装置
CN106505156A (zh) * 2015-08-31 2017-03-15 乐金显示有限公司 有机发光显示装置
CN106773185A (zh) * 2017-02-06 2017-05-31 东旭(昆山)显示材料有限公司 间隙调整装置、滚轮器间隙调整方法及检测其滚轮变形的方法
CN107195253A (zh) * 2017-07-26 2017-09-22 武汉天马微电子有限公司 可折叠柔性显示装置
TWI622832B (zh) * 2017-05-23 2018-05-01 元太科技工業股份有限公司 承載裝置及顯示器
CN108447433A (zh) * 2018-02-28 2018-08-24 厦门天马微电子有限公司 曲面显示面板及其应力检测及电压调节方法
CN109584725A (zh) * 2019-01-02 2019-04-05 上海天马有机发光显示技术有限公司 一种显示面板及显示装置
CN208737802U (zh) * 2018-08-21 2019-04-12 深圳市柔宇科技有限公司 电子装置及其柔性显示装置
CN110060573A (zh) * 2019-04-22 2019-07-26 昆山国显光电有限公司 柔性模组结构及显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879615B1 (ko) * 2011-11-23 2018-07-19 삼성전자주식회사 디스플레이 장치 및 그의 제어 방법
KR101903053B1 (ko) 2012-07-10 2018-11-23 삼성디스플레이 주식회사 플렉서블 디스플레이 장치
EP2912650B1 (en) 2012-10-25 2018-12-05 LG Electronics Inc. Display device
KR102118403B1 (ko) * 2013-05-08 2020-06-03 삼성전자주식회사 연성 기기, 연성 기기의 형상 감지 장치, 방법 및 컴퓨터 판독 가능한 기록 매체
US9886084B2 (en) * 2014-11-11 2018-02-06 Intel Corporation User input via elastic deformation of a material
TWI623855B (zh) * 2014-11-13 2018-05-11 柔性顯示裝置操作控制方法
US9741772B2 (en) * 2014-12-26 2017-08-22 Lg Display Co., Ltd. Display device comprising bending sensor
KR20160089164A (ko) 2015-01-19 2016-07-27 삼성전자주식회사 플렉서블 디바이스의 디스플레이의 형상을 제어하는 방법 및 플렉서블 디바이스
KR102375085B1 (ko) * 2015-04-30 2022-03-17 삼성디스플레이 주식회사 표시 장치
KR102396458B1 (ko) * 2015-08-26 2022-05-10 엘지디스플레이 주식회사 연성 표시장치
CN106910427B (zh) * 2017-02-23 2019-11-22 武汉华星光电技术有限公司 一种显示器及其柔性显示屏的平展方法
CN206756350U (zh) * 2017-03-15 2017-12-15 北京中航兴盛测控技术有限公司 薄膜应变式扭矩传感器
CN106910842B (zh) 2017-04-17 2019-01-15 京东方科技集团股份有限公司 一种封装结构、柔性显示基板和柔性显示装置
US10649267B2 (en) * 2017-07-19 2020-05-12 Innolux Corporation Display device and manufacturing method thereof
CN108447401B (zh) * 2018-03-28 2020-06-05 武汉华星光电技术有限公司 柔性显示装置及柔性显示屏的形变补偿方法
CN108766246A (zh) * 2018-07-18 2018-11-06 昆山国显光电有限公司 显示面板及显示装置
CN109148534B (zh) * 2018-08-21 2021-01-15 武汉华星光电半导体显示技术有限公司 显示面板以及电子装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845700A (zh) * 2014-11-19 2016-08-10 财团法人工业技术研究院 可挠性电子装置
CN106505156A (zh) * 2015-08-31 2017-03-15 乐金显示有限公司 有机发光显示装置
CN106773185A (zh) * 2017-02-06 2017-05-31 东旭(昆山)显示材料有限公司 间隙调整装置、滚轮器间隙调整方法及检测其滚轮变形的方法
TWI622832B (zh) * 2017-05-23 2018-05-01 元太科技工業股份有限公司 承載裝置及顯示器
CN107195253A (zh) * 2017-07-26 2017-09-22 武汉天马微电子有限公司 可折叠柔性显示装置
CN108447433A (zh) * 2018-02-28 2018-08-24 厦门天马微电子有限公司 曲面显示面板及其应力检测及电压调节方法
CN208737802U (zh) * 2018-08-21 2019-04-12 深圳市柔宇科技有限公司 电子装置及其柔性显示装置
CN109584725A (zh) * 2019-01-02 2019-04-05 上海天马有机发光显示技术有限公司 一种显示面板及显示装置
CN110060573A (zh) * 2019-04-22 2019-07-26 昆山国显光电有限公司 柔性模组结构及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3896680A4 *

Also Published As

Publication number Publication date
CN110060573A (zh) 2019-07-26
EP3896680A4 (en) 2022-02-23
JP7149429B2 (ja) 2022-10-06
TW202013327A (zh) 2020-04-01
US20210270684A1 (en) 2021-09-02
TWI725622B (zh) 2021-04-21
CN110060573B (zh) 2020-12-29
JP2022518199A (ja) 2022-03-14
KR102520525B1 (ko) 2023-04-12
EP3896680A1 (en) 2021-10-20
KR20210091329A (ko) 2021-07-21

Similar Documents

Publication Publication Date Title
WO2020215639A1 (zh) 柔性模组结构及显示装置
US10585456B2 (en) Flexible display device having bending sensing device
TWI238686B (en) Flexible substrate, LCD module using same, and manufacturing method of same
CN106482631B (zh) 柔性显示装置
TW518547B (en) Liquid crystal display and its inspecting method
WO2012080811A1 (ja) 半導体圧力センサ
US10304874B2 (en) Flexible display substrate, flexible display device, and method for repairing the same
JP2008168423A (ja) 回転型memsデバイス
CN102095894B (zh) 用于校准加速度传感器的方法和加速度传感器
WO2020224333A1 (zh) 柔性显示面板、柔性显示装置及其形变检测方法
WO2018226829A1 (en) Foldable computing device with bend limit layer consisting of a plurality of segments
WO2022134904A1 (zh) 一种基于薄膜溅射的抗过载扭矩传感器
CN109387312A (zh) 一种测力拉杆系统
Enser et al. Printed strain gauges embedded in organic coatings
CN112284580B (zh) 一种基于机械超材料结构的压力传感器
CN110277026B (zh) 显示面板及其制备方法、显示装置
JP2009198337A (ja) センサ装置
CN104570514B (zh) 电极结构及液晶显示面板
CN108469698A (zh) 一种液晶显示模组全贴合制作方法
JP2010197219A (ja) センサデバイスおよび計測システム
CN110275239B (zh) 一种偏光片、显示面板及显示面板的制备方法
CN110361115B (zh) 压电感测模块、压电感测模块检测的方法及其压电感应检测系统
KR20220076112A (ko) 신축 디스플레이 패널 장치 및 이의 영상 보정 방법
CN107340866B (zh) 一种显示面板、显示装置及加速度检测方法
CN219417868U (zh) 一种光纤扫描器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217020658

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021540433

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019926512

Country of ref document: EP

Effective date: 20210715

NENP Non-entry into the national phase

Ref country code: DE