WO2022134904A1 - 一种基于薄膜溅射的抗过载扭矩传感器 - Google Patents

一种基于薄膜溅射的抗过载扭矩传感器 Download PDF

Info

Publication number
WO2022134904A1
WO2022134904A1 PCT/CN2021/129669 CN2021129669W WO2022134904A1 WO 2022134904 A1 WO2022134904 A1 WO 2022134904A1 CN 2021129669 W CN2021129669 W CN 2021129669W WO 2022134904 A1 WO2022134904 A1 WO 2022134904A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
resistor
thin film
elastic body
annular
Prior art date
Application number
PCT/CN2021/129669
Other languages
English (en)
French (fr)
Inventor
姜鑫
高波
屈文轩
潘婷
蔺露
Original Assignee
陕西电器研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西电器研究所 filed Critical 陕西电器研究所
Priority to US17/714,078 priority Critical patent/US20220299389A1/en
Publication of WO2022134904A1 publication Critical patent/WO2022134904A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/108Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving resistance strain gauges

Definitions

  • the invention belongs to the technical field of electronic sensing weighing instruments, in particular to an anti-overload torque sensor based on thin film sputtering.
  • the purpose of the torque sensor is to measure the physical quantity of one-dimensional torque.
  • Resistance strain sensor is the most used torque sensor at home and abroad. It adopts the traditional method of attaching strain gauges on the surface of elastic beams. When physical quantities such as torque act on the elastic beams, it will cause changes in the stress and strain of the components, and then cause changes in the resistance of the resistance strain gauges. This kind of sensor is widely used in the measurement of torque.
  • the overload requirement of the currently known torque sensor is mostly double overload.
  • the working condition of the sensor is five times the overload or even higher, the elastic beam of the sensor will reach the yield limit of the material itself and be damaged, resulting in the failure of the sensor. Therefore, the usage requirements cannot be met.
  • the present invention provides an anti-overload torque sensor based on thin film sputtering, which adopts a sputtering coating process to make a sensitive thin film, and is provided with an anti-torsion limit structure.
  • the anti-torque The limit structure can play the role of anti-overload protection elastic beam.
  • An anti-overload torque sensor based on thin film sputtering comprising: an output cable, a circuit board, a backing column, a casing, an elastic body, a strain beam and a thin film strain gauge;
  • the casing is an annular casing
  • the elastic body is an annular plate, and the annular plate is sequentially divided into three coaxial annular structures from the inside to the outside, namely: an inner edge segment, a mounting ring segment and an outer edge segment; the inner edge segment Two opposite annular gaps are processed between the mounting ring segment, so that the two annular gaps are the first annular gap and the second annular gap respectively; both ends of each annular gap are provided with outward extending
  • the two linear gaps of the first annular gap and the two linear gaps of the second annular gap are one-to-one opposite and parallel to form two linear gap groups, wherein the middle of the first annular gap is machined with C
  • a convex-shaped gap is used as an anti-torsion limit structure; a rectangular protrusion integrally formed with the elastic body is provided between the two linear gaps of each linear gap group, as a strain beam, the two strain beams are located on the mounting ring segment of the elastic body; let the symmetry axis of each strain beam perpendicular to its width direction be the symmetry
  • the thin film strain gauge includes four strain resistances
  • the overall connection relationship is as follows: the housing is coaxially mounted on the mounting ring segment of the elastomer; the circuit board is located in the annular cavity of the housing, and is mounted on the mounting ring segment of the elastomer through a cushion column; the output One end of the cable is welded on the circuit board, and the other end is connected to an external electrical connector;
  • the two thin film strain gauges are respectively located on the two strain beams; the four strain resistances of each thin film strain gauge are sputtered on the corresponding strain beams by sputtering coating technology, and the four strain resistances are along the symmetry axis A is symmetrically distributed in pairs;
  • the two thin film strain gauges be thin film strain gauge A and thin film strain gauge B respectively
  • the four strain resistances of thin film strain gauge A are resistor R1-1, resistor R2-3, resistor R1-4 and resistor R2-2 respectively
  • the diagonal distribution of resistance R1-1 and resistance R1-4 and the diagonal distribution of resistance R2-3 and resistance R2-2
  • the four strain resistances of thin film strain gauge B are resistance R1-3, resistance R2-1, resistance R1-2 and resistor R2-4, and resistor R1-3 and resistor R1-2 are diagonally distributed, and resistor R2-1 and resistor R2-4 are diagonally distributed;
  • the circuit board is a bridge circuit board, and forms a main Wheatstone bridge with the resistor R1-1, the resistor R1-4, the resistor R1-3 and the resistor R1-2, and the resistor R2-3 and the resistor R2 respectively.
  • Resistor R2-1 and resistor R2-4 form a Wheatstone bridge;
  • the circuit board is connected with the output cable, supplies power to the main Wheatstone bridge and the backup Wheatstone bridge through the output cable, and passes the electrical signals of the main Wheatstone bridge and the backup Wheatstone bridge through the output cable cable output.
  • the included angle between the symmetry axis of each strain resistance and the symmetry axis A of the strain beam is 45°.
  • main Wheatstone bridge and the backup Wheatstone bridge are both full-bridge equal-arm bridges.
  • through holes are processed on both the inner edge section and the outer edge section of the elastic body.
  • the upper end of the casing is open, and the lower end is provided with a connecting rod, which connects the inner cylinder and the outer cylinder of the annular casing into one body;
  • the upper cover plate is installed on the upper end of the casing and closes the opening of the casing.
  • the strain resistances of the thin film strain gauges of the present invention are all sensitive thin films made by sputtering coating technology.
  • the film is directly prepared on the substrate, and the internal stress of the two films is well matched by controlling the thickness of the single-layer film, so that the strain resistance has the characteristics of small internal stress, strong adhesion, high dielectric strength and good compactness; Therefore, compared with traditional strain gauges, thin strain gauges have the characteristics of long life, good stability, high precision, and strong dynamic response, and the temperature range that thin film strain gauges can adapt to is -70°C-200°C.
  • the temperature range of the strain gauge is -30°C-100°C, and the temperature range that the present invention can adapt to is larger.
  • the elastic body of the present invention is provided with an anti-torsion limit structure.
  • the anti-torsion limit structure that is, the edges on both sides of the corners of the C-shaped convex gaps, contact the elastic body.
  • the inner edge segment of the elastic body is no longer twisted relative to the outer edge segment, and the torsion of the inner edge segment of the elastic body is limited, which plays an overload protection role, prevents the inner edge segment of the elastic body from being damaged due to excessive twisting, and protects the elastic beam.
  • the anti-torsion limiting structure of the present invention has anti-overload protection for positive torque and negative torque.
  • the present invention can change the C-shaped size of the C-shaped convex gap according to the size of the set threshold, and then adjust the distance of the torsion stroke of the inner edge section of the elastic body relative to the outer edge section, so as to meet different anti-overload requirements. Requirements for the use of the required sensor.
  • the Wheatstone bridge of the present invention adopts a full-bridge equal-arm bridge, the sensitivity of the full-bridge equal-arm bridge is the highest, the parameters of each bridge arm of the equal-arm bridge are consistent, and the influences of various interferences are easily offset each other, Guarantee the accuracy of the whole machine.
  • Fig. 1 is the structure composition diagram of the present invention
  • Fig. 2 is the A-A sectional view of Fig. 1;
  • Fig. 3 is the C-C sectional view of Fig. 1;
  • Figure 4 is a composition diagram of an elastic body, a strain beam and a thin film strain gauge
  • Fig. 5 is the A-A sectional view of Fig. 4;
  • Figure 6 is a schematic diagram of the installation of four strain resistances of the thin film strain gauge A
  • FIG. 7 is a schematic diagram of the installation of four strain resistances of the thin film strain gauge B.
  • Fig. 8 is the working principle diagram of Wheatstone bridge
  • 1-output cable 2-upper cover, 3-circuit board, 4-pad column, 5-shell, 6-elastic body, 7-strain beam, 8-film strain gauge, 9-C-shaped convex Raised gap.
  • This embodiment provides an anti-overload torque sensor based on thin film sputtering, referring to Figures 1-3, including: an output cable 1, an upper cover 2, a circuit board 3, a cushion 4, a casing 5, an elastic body 6. Strain beam 7 and thin film strain gauge 8;
  • the casing 5 is an annular casing, the upper end of the annular casing is open, and a connecting rod is installed at the lower end to connect the inner cylinder and the outer cylinder of the annular casing into one body; in this embodiment, the casing 5 To be the remaining C-shaped casing after being cut off by a plane parallel to its axis, and the space formed by the cut portion is used to install external components;
  • the elastic body 6 is an annular plate, and the annular plate is divided into three coaxial annular structures from the inside to the outside, namely: the inner edge section, the installation ring section and the outer edge segment; two opposite annular gaps are machined between the inner edge segment and the mounting ring segment, so that the two annular gaps are the first annular gap and the second annular gap respectively; Both ends are provided with linear gaps extending outward, and the two linear gaps of the first annular gap are opposite to and parallel to the two linear gaps of the second annular gap, forming two linear gap groups, wherein the first annular gap is A C-shaped convex gap 9 is processed in the middle of the annular gap as a torsion limit structure; through holes for mounting the sensor on the outer part are processed on the inner and outer edge segments; each straight line There are rectangular protrusions integrally formed with the elastic body 6 between the two linear gaps of the gap group.
  • the two strain beams 7 are located on the installation ring segment of the elastic body 6;
  • the symmetry axis perpendicular to the width direction of each strain beam 7 is the symmetry axis A, then the symmetry axes A of the two strain beams 7 coincide;
  • the thin film strain gauge 8 includes four strain resistances
  • the overall connection relationship is as follows: the upper cover plate 2 is mounted on the upper end of the casing 5 by screws to close the opening of the casing 5;
  • the lower end of the housing 5 is coaxially mounted on the mounting ring segment of the elastic body 6;
  • the circuit board 3 is located in the annular cavity of the housing 5, and is installed on the installation ring segment of the elastic body 6 through the spacer 4;
  • One end of the output cable 1 is welded on the circuit board 3, and the other end is connected to the corresponding electrical connector according to different requirements;
  • the two thin film strain gauges 8 are respectively located on the two strain beams 7; the four strain resistances of each thin film strain gauge 8 are sputtered on the corresponding strain beams 7 by sputtering coating technology to form a sensitive thin film, Since the symmetry axis A of the strain beam 7 is the region with the largest strain, the four strain resistances are symmetrically distributed along the symmetry axis A, and the angle between the symmetry axis of each strain resistance and the symmetry axis A of the strain beam 7 is 45°;
  • the two thin film strain gauges 8 are respectively thin film strain gauge A and thin film strain gauge B
  • the four strain resistances of thin film strain gauge A are respectively resistance R1-1, resistance R2-3, resistance R1-4 and resistance R2-2, and resistance R1-1 and resistance R1-4 are diagonally distributed, and resistance R2-3 and resistance R2-2 are diagonally distributed
  • the four strain resistances of thin film strain gauge B are resistance R1- 3.
  • Resistor R2-1, resistor R1-2 and resistor R2-4, and resistor R1-3 and resistor R1-2 are diagonally distributed, and resistor R2-1 and resistor R2-4 are diagonally distributed;
  • the circuit board 3 is a bridge circuit board, and forms a main Wheatstone bridge with the resistor R1-1, the resistor R1-4, the resistor R1-3 and the resistor R1-2, and the resistor R2-3, the resistor R1-3 and the resistor R1-2 respectively form a main Wheatstone bridge.
  • R2-2, resistor R2-1 and resistor R2-4 form a backup Wheatstone bridge, that is, two sets of Wheatstone bridge circuits; and the main Wheatstone bridge and the backup Wheatstone bridge are full-bridge equal-arm power circuits bridge;
  • the circuit board 3 is connected to the output cable 1 , supplies power to the two sets of Wheatstone bridge circuits through the output cable 1 , and outputs the electrical signals of the two sets of Wheatstone bridge circuits through the output cable 1 .
  • the four resistors of the Wheatstone bridge are divided into four bridge arms, namely R1, R2, R3 and R4.
  • R1, R2, R3 and R4 are sequentially connected to form a closed loop, and the connection point between R1 and R4 is point a.
  • the connection point between R1 and R2 is point b
  • the connection point between R2 and R3 is point c
  • the connection point between R3 and R4 is point d
  • the diagonal ac is the bridge end
  • bd is the output end
  • the bridge is called a full-bridge type, and this embodiment adopts a full-bridge type equal-arm bridge;
  • the output terminal After the power supply voltage U i is applied to the bridge terminal through the circuit board 3, the output terminal generates an output voltage U 0 , and the output voltage U 0 is output through the output cable 1; when the sensor is subjected to a torque load, the resistance of the bridge arm If the value changes, the output voltage U 0 of the output terminal also changes correspondingly, and the formula of the output voltage U 0 is:
  • R1 is the resistance value of R1
  • ⁇ R1 is the resistance change value of R1
  • R2 is the resistance value of R2
  • ⁇ R2 is the resistance change value of R2
  • R3 is the resistance value of R3
  • ⁇ R3 is the resistance value of R3 Change value
  • R4 is the resistance value of R4
  • ⁇ R4 is the resistance change value of R4 .
  • the manufacturing steps of the sensor are:
  • Step 1 after cleaning, grinding and polishing, film deposition, strain pattern making, film stabilization heat treatment, pad making and other process steps on the surface of the mounting ring segment of the elastic body 6, the strain resistance of the film strain gauge 8 is sputtered on the elastic body. the surface of the strained beam 7 of the body 6;
  • Step 2 the elastic body 6 is installed on the lower end of the casing 5, the circuit board 3 is installed in the casing 5, and the circuit board 3 is fixed on the elastic body 6 through the spacer 4, and the upper cover plate 2 is fixed on the casing by screws. the upper end of body 5;
  • Step 3 one end of the output cable 1 is welded on the circuit board 3, and the other end is welded with the electrical connector as required.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Force In General (AREA)

Abstract

一种基于薄膜溅射的抗过载扭矩传感器,包括输出线缆(1)、电路板(3)、垫柱(4)、壳体(5)、弹性体(6)、应变梁(7)及薄膜应变计(8);弹性体(6)为环状板,环状板由内到外顺序为内缘段、安装环段及外缘段;安装环段设有一体成型的矩形凸起,作为应变梁(7);壳体(5)同轴安装在弹性体(6)的安装环段上;电路板(3)位于壳体(5)的环形腔内,并通过垫柱(4)安装在弹性体(6)的安装环段上;输出线缆(1)的一端焊接在电路板(3)上,另一端与外部的电连接器连接;两个薄膜应变计(8)的应变电阻均通过溅射镀膜工艺技术溅射在弹性体(6)的应变梁(7)上。抗过载扭矩传感器采用溅射镀膜工艺制成敏感薄膜,并设有抗扭限位结构,当扭矩载荷超过设定阈值时候,抗扭限位结构能够起到抗过载保护弹性梁作用。

Description

一种基于薄膜溅射的抗过载扭矩传感器 技术领域
本发明属于电子感测衡器技术领域,具体涉及一种基于薄膜溅射的抗过载扭矩传感器。
背景技术
扭矩传感器的用途是测量一维扭矩物理量。电阻应变式传感器是目前国内外使用最多的一种扭矩传感器。它采用在弹性梁表面贴应变片的传统方法,当扭矩等物理量作用于弹性梁时,会导致元件应力和应变的变化,进而引起电阻应变片电阻的变化,电阻的变化经电路处理后以电信号的方式输出,此种传感器广泛使用在扭矩的测量上。
但目前公知的扭矩传感器多采用传统应变片粘贴方式,传统应变片的寿命、稳定性、精度、动态响应和抗振能力等性能较低,且传统应变片的温度范围为-30℃-100℃,温度范围更窄无法满足使用要求。
目前公知的扭矩传感器的过载要求多为一倍过载,当传感器的使用工况为五倍过载甚至更高时,传感器的弹性梁会达到材料本身的屈服极限,发生破坏,从而导致传感器失效。因此无法满足使用要求。
发明内容
有鉴于此,本发明提供了一种基于薄膜溅射的抗过载扭矩传感器,采用溅射镀膜工艺制成敏感薄膜,并设有抗扭限位结构,当扭矩载荷超过设定阈值时候,抗扭限位结构能够起到抗过载保护弹性梁作用。
本发明是通过下述技术方案实现的:
一种基于薄膜溅射的抗过载扭矩传感器,包括:输出线缆、电路板、垫柱、壳体、弹性体、应变梁及薄膜应变计;
所述壳体为环形壳体;
所述弹性体为环状板,所述环状板由内到外顺序分为三个同轴的环状结构,分别为:内缘段、安装环段及外缘段;所述内缘段与安装环段之间加工有两个相对的环状间隙,令两个环状间隙分别为第一环状间隙和第二环状间隙;每个环状间隙的两端均设有向外延伸的直线间隙,第一环状间隙的两个直线间隙与第二环状间隙的两个直线间隙一一相对且平行,形成两个直线间隙组,其中,第一环状间隙的中部加工有C形凸起状间隙,作为抗扭限位结构; 每个直线间隙组的两个直线间隙之间均设有与所述弹性体一体成型的矩形凸起,作为应变梁,两个所述应变梁均位于弹性体的安装环段上;令每个应变梁的与其宽度方向垂直的对称轴为对称轴A,则两个应变梁的对称轴A重合;
所述薄膜应变计包括四个应变电阻;
整体连接关系如下:所述壳体同轴安装在弹性体的安装环段上;所述电路板位于壳体的环形腔内,并通过垫柱安装在弹性体的安装环段上;所述输出线缆的一端焊接在电路板上,另一端与外部的电连接器连接;
两个所述薄膜应变计分别位于两个应变梁上;每个薄膜应变计的四个应变电阻均通过溅射镀膜工技术溅射在对应的应变梁上,四个应变电阻沿所述对称轴A两两对称分布;
其中,令两个薄膜应变计分别为薄膜应变计A和薄膜应变计B,薄膜应变计A的四个应变电阻分别为电阻R1-1、电阻R2-3、电阻R1-4及电阻R2-2,且电阻R1-1和电阻R1-4对角分布,电阻R2-3和电阻R2-2对角分布;薄膜应变计B的四个应变电阻分别为电阻R1-3、电阻R2-1、电阻R1-2及电阻R2-4,且电阻R1-3和电阻R1-2对角分布,电阻R2-1和电阻R2-4对角分布;
所述电路板为组桥电路板,分别与所述电阻R1-1、电阻R1-4、电阻R1-3和电阻R1-2组成主惠斯通电桥,与所述电阻R2-3、电阻R2-2、电阻R2-1和电阻R2-4组成备惠斯通电桥;
所述电路板与输出线缆相连接,通过输出线缆给主惠斯通电桥和备惠斯通电桥供电,并将主惠斯通电桥和备惠斯通电桥的电信号通过所述输出线缆输出。
进一步的,每个所述应变电阻的对称轴与应变梁对称轴A的夹角均为45°。
进一步的,所述主惠斯通电桥和备惠斯通电桥均为全桥式等臂电桥。
进一步的,所述弹性体的内缘段和外缘段上均加工有通孔。
进一步的,还包括上盖板;
所述壳体的上端开口,下端安装有连杆,将所述环形壳体的内筒和外筒连接为一体;
所述上盖板安装在壳体的上端,将壳体的开口封闭。
有益效果:(1)本发明的薄膜应变计的应变电阻均为采用溅射镀膜工艺而制成的敏感薄膜,溅射镀膜原理是采用低能加速器轰击,动能转换搬迁原子淀积薄膜技术,将纳米薄膜直接制备在基材之上,通过控制单层膜层厚度使两种薄膜的内应力得到良好的匹配,使应变电阻具有内应力小、附着力强、绝缘强度高、致密性好的特点;因此相比于传统应变片,薄应变应变计具有寿命高、稳定性好、精度高、动态响应强等特点,且薄膜应变计能够适应的温度范围为-70℃-200℃,相比于传统应变片的温度范围为-30℃-100℃,本发明能够适应的温度范围更大。
(2)本发明的弹性体设有抗扭限位结构,当扭矩载荷超过设定阈值时候,抗扭限位结构即C形凸起状间隙的拐角处的两侧边缘相接触,使得弹性体的内缘段不再相对于外缘段进行扭转,对弹性体的内缘段的扭转进行限位,起到了过载保护作用,防止弹性体的内缘段扭转过度发生损坏,并保护弹性梁作用,且本发明的抗扭限位结构对于正向扭矩和负向扭矩均有抗过载保护。
(3)本发明能够根据设定阈值的大小改变C形凸起状间隙的C形尺寸,进而调整弹性体的内缘段相对于外缘段进行扭转的行程的距离,从而可以满足不同抗过载要求的传感器的使用要求。
(4)本发明的惠斯通电桥采用全桥式等臂电桥,全桥式等臂电桥的灵敏度最高,等臂电桥的各桥臂参数一致,各种干扰的影响容易相互抵消,保证整机精度。
附图说明
图1为本发明结构组成图;
图2为图1的A-A剖面图;
图3为图1的C-C剖面图;
图4为弹性体、应变梁及薄膜应变计的组成图;
图5为图4的A-A剖面图;
图6为薄膜应变计A的四个应变电阻安装示意图;
图7为薄膜应变计B的四个应变电阻安装示意图;
图8为惠斯通电桥的工作原理图;
其中,1-输出线缆,2-上盖板,3-电路板,4-垫柱,5-壳体、6-弹性体,7-应变梁,8-薄膜应变计,9-C形凸起状间隙。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本实施例提供了一种基于薄膜溅射的抗过载扭矩传感器,参见附图1-3,包括:输出线缆1、上盖板2、电路板3、垫柱4、壳体5、弹性体6、应变梁7及薄膜应变计8;
所述壳体5为环形壳体,所述环形壳体的上端开口,下端安装有连杆,将所述环形壳体的内筒和外筒连接为一体;在本实施例中,壳体5为被与其轴线平行的平面截去部分后,剩下的C形壳体,被截去部分形成的空间用于安装外部部件;
参见附图4-5,所述弹性体6为环状板,所述环状板由内到外顺序分为三个同轴的环状 结构,分别为:内缘段、安装环段及外缘段;所述内缘段与安装环段之间加工有两个相对的环状间隙,令两个环状间隙分别为第一环状间隙和第二环状间隙;每个环状间隙的两端均设有向外延伸的直线间隙,第一环状间隙的两个直线间隙与第二环状间隙的两个直线间隙一一相对且平行,形成两个直线间隙组,其中,第一环状间隙的中部加工有C形凸起状间隙9,作为抗扭限位结构;所述内缘段和外缘段上均加工有用于将传感器安装在外部部件上的通孔;每个直线间隙组的两个直线间隙之间均设有与所述弹性体6一体成型的矩形凸起,作为应变梁7,两个所述应变梁7均位于弹性体6的安装环段上;令每个应变梁7的与其宽度方向垂直的对称轴为对称轴A,则两个应变梁7的对称轴A重合;
所述薄膜应变计8包括四个应变电阻;
整体连接关系如下:所述上盖板2通过螺钉安装在壳体5的上端,将壳体5的开口封闭;
所述壳体5的下端同轴安装在弹性体6的安装环段上;
所述电路板3位于壳体5的环形腔内,并通过垫柱4安装在弹性体6的安装环段上;
所述输出线缆1的一端焊接在电路板3上,另一端根据不同需求与对应的电连接器连接;
两个所述薄膜应变计8分别位于在两个应变梁7上;每个薄膜应变计8的四个应变电阻均通过溅射镀膜工技术溅射在对应的应变梁7上,形成敏感薄膜,由于应变梁7的对称轴A上为应变最大区域,因此,四个应变电阻沿所述对称轴A两两对称分布,每个应变电阻的对称轴与应变梁7对称轴A的夹角均为45°;
其中,参见附图6-7,令两个薄膜应变计8分别为薄膜应变计A和薄膜应变计B,薄膜应变计A的四个应变电阻分别为电阻R1-1、电阻R2-3、电阻R1-4及电阻R2-2,且电阻R1-1和电阻R1-4对角分布,电阻R2-3和电阻R2-2对角分布;薄膜应变计B的四个应变电阻分别为电阻R1-3、电阻R2-1、电阻R1-2及电阻R2-4,且电阻R1-3和电阻R1-2对角分布,电阻R2-1和电阻R2-4对角分布;
所述电路板3为组桥电路板,分别与所述电阻R1-1、电阻R1-4、电阻R1-3和电阻R1-2组成主惠斯通电桥,与所述电阻R2-3、电阻R2-2、电阻R2-1和电阻R2-4组成备惠斯通电桥,即组成两组惠斯通电桥电路;且主惠斯通电桥和备惠斯通电桥均为全桥式等臂电桥;
所述电路板3与输出线缆1相连接,通过输出线缆1给两组惠斯通电桥电路供电,并将两组惠斯通电桥电路的电信号通过所述输出线缆1输出。
工作原理:当所述传感器受到正向或负向的扭矩载荷,即给弹性体6的外缘段或内缘段施加扭矩载荷时,由于所述环状间隙的存在,使得弹性体6的内缘段与外缘段发生相对形变,令弹性体6外缘段固定不动,则弹性体6的内缘段发生相对于外缘段的扭转,进而带动安装在内缘段与安装环段之间的应变梁7发生形变,进而使得应变梁7上的薄膜应变计8的应变 电阻发生形变,产生电阻值变化,进而导致主惠斯通电桥和备惠斯通电桥输出的电压发生变化,根据所述电压变化,可以计算出所述扭矩载荷的大小。
其中,当所述扭矩载荷达到设定阈值时,所述第一环状间隙的C形凸起状间隙9的拐角处的两侧边缘相接触,使得弹性体6的内缘段不再相对于外缘段进行扭转,对弹性体6的内缘段的扭转进行限位,起到了过载保护作用,防止弹性体6的内缘段扭转过度发生损坏;
参见附图8,所述惠斯通电桥的原理如下:
令惠斯通电桥的四个电阻分为四个桥臂,分别为R1、R2、R3及R4,R1、R2、R3和R4顺序连接为封闭回路,R1和R4之间的连接点为a点,R1和R2之间的连接点为b点,R2和R3之间的连接点为c点,R3和R4之间的连接点为d点;对角ac为供桥端,bd为输出端;当四个桥臂均发生电阻值变化的电桥称为全桥式,本实施例采用全桥式等臂电桥;
通过电路板3在供桥端施加供电电压U i后,输出端产生输出电压U 0,且所述输出电压U 0通过输出线缆1输出;当所述传感器受到扭矩载荷时,桥臂的电阻值发生变化,则输出端的输出电压U 0也发生相应的变化,则所述输出电压U 0的公式为:
Figure PCTCN2021129669-appb-000001
其中,R 1为R1的电阻值,ΔR 1为R1的电阻变化值,R 2为R2的电阻值,ΔR 2为R2的电阻变化值,R 3为R3的电阻值,ΔR 3为R3的电阻变化值,R 4为R4的电阻值,ΔR 4为R4的电阻变化值。
所述传感器的制作步骤为:
步骤1,对弹性体6的安装环段表面进行清洗、研磨抛光、薄膜沉积、应变图形制作、薄膜稳定化热处理、焊盘制作等工艺步骤后,将薄膜应变计8的应变电阻溅射在弹性体6的应变梁7的表面;
步骤2,将弹性体6安装在壳体5的下端,电路板3安装在壳体5内,并通过垫柱4将电路板3固定在弹性体6上,上盖板2通过螺钉固定在壳体5的上端;
步骤3,将输出线缆1的一端焊接在电路板3上,另一端根据需求与电连接器焊接。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种基于薄膜溅射的抗过载扭矩传感器,其特征在于,包括:输出线缆(1)、电路板(3)、垫柱(4)、壳体(5)、弹性体(6)、应变梁(7)及薄膜应变计(8);
    所述壳体(5)为环形壳体;
    所述弹性体(6)为环状板,所述环状板由内到外顺序分为三个同轴的环状结构,分别为:内缘段、安装环段及外缘段;所述内缘段与安装环段之间加工有两个相对的环状间隙,令两个环状间隙分别为第一环状间隙和第二环状间隙;每个环状间隙的两端均设有向外延伸的直线间隙,第一环状间隙的两个直线间隙与第二环状间隙的两个直线间隙一一相对且平行,形成两个直线间隙组,其中,第一环状间隙的中部加工有C形凸起状间隙(9),作为抗扭限位结构;每个直线间隙组的两个直线间隙之间均设有与所述弹性体(6)一体成型的矩形凸起,作为应变梁(7),两个所述应变梁(7)均位于弹性体(6)的安装环段上;令每个应变梁(7)的与其宽度方向垂直的对称轴为对称轴A,则两个应变梁(7)的对称轴A重合;
    所述薄膜应变计(8)包括四个应变电阻;
    整体连接关系如下:所述壳体(5)同轴安装在弹性体(6)的安装环段上;所述电路板(3)位于壳体(5)的环形腔内,并通过垫柱(4)安装在弹性体(6)的安装环段上;所述输出线缆(1)的一端焊接在电路板(3)上,另一端与外部的电连接器连接;
    两个所述薄膜应变计(8)分别位于两个应变梁(7)上;每个薄膜应变计(8)的四个应变电阻均通过溅射镀膜工技术溅射在对应的应变梁(7)上,四个应变电阻沿所述对称轴A两两对称分布;
    其中,令两个薄膜应变计(8)分别为薄膜应变计A和薄膜应变计B,薄膜应变计A的四个应变电阻分别为电阻R1-1、电阻R2-3、电阻R1-4及电阻R2-2,且电阻R1-1和电阻R1-4对角分布,电阻R2-3和电阻R2-2对角分布;薄膜应变计B的四个应变电阻分别为电阻R1-3、电阻R2-1、电阻R1-2及电阻R2-4,且电阻R1-3和电阻R1-2对角分布,电阻R2-1和电阻R2-4对角分布;
    所述电路板(3)为组桥电路板,分别与所述电阻R1-1、电阻R1-4、电阻R1-3和电阻R1-2组成主惠斯通电桥,与所述电阻R2-3、电阻R2-2、电阻R2-1和电阻R2-4组成备惠斯通电桥;
    所述电路板(3)与输出线缆(1)相连接,通过输出线缆(1)给主惠斯通电桥和备惠斯通电桥供电,并将主惠斯通电桥和备惠斯通电桥的电信号通过所述输出线缆(1)输出。
  2. 如权利要求1所述的一种基于薄膜溅射的抗过载扭矩传感器,其特征在于,每个所述应变电阻的对称轴与应变梁(7)对称轴A的夹角均为45°。
  3. 如权利要求1所述的一种基于薄膜溅射的抗过载扭矩传感器,其特征在于,所述主惠 斯通电桥和备惠斯通电桥均为全桥式等臂电桥。
  4. 如权利要求1所述的一种基于薄膜溅射的抗过载扭矩传感器,其特征在于,所述弹性体(6)的内缘段和外缘段上均加工有通孔。
  5. 如权利要求1所述的一种基于薄膜溅射的抗过载扭矩传感器,其特征在于,还包括上盖板(2);
    所述壳体(5)的上端开口,下端安装有连杆,将所述环形壳体的内筒和外筒连接为一体;
    所述上盖板(2)安装在壳体(5)的上端,将壳体(5)的开口封闭。
PCT/CN2021/129669 2020-12-21 2021-11-10 一种基于薄膜溅射的抗过载扭矩传感器 WO2022134904A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/714,078 US20220299389A1 (en) 2020-12-21 2022-04-05 Anti-overload torque sensor based on thin film sputtering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011519048.5A CN112611489A (zh) 2020-12-21 2020-12-21 一种基于薄膜溅射的抗过载扭矩传感器
CN202011519048.5 2020-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/714,078 Continuation US20220299389A1 (en) 2020-12-21 2022-04-05 Anti-overload torque sensor based on thin film sputtering

Publications (1)

Publication Number Publication Date
WO2022134904A1 true WO2022134904A1 (zh) 2022-06-30

Family

ID=75243828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129669 WO2022134904A1 (zh) 2020-12-21 2021-11-10 一种基于薄膜溅射的抗过载扭矩传感器

Country Status (3)

Country Link
US (1) US20220299389A1 (zh)
CN (1) CN112611489A (zh)
WO (1) WO2022134904A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116005083A (zh) * 2023-03-23 2023-04-25 松诺盟科技有限公司 一种用于扭矩轴的非晶材料、扭矩轴及扭矩传感器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112611489A (zh) * 2020-12-21 2021-04-06 陕西电器研究所 一种基于薄膜溅射的抗过载扭矩传感器
CN113465802B (zh) * 2021-06-10 2022-12-02 北京思灵机器人科技有限责任公司 力矩传感器
CN114777970B (zh) * 2022-05-23 2023-04-11 电子科技大学 高刚度测力刀柄上基于柔性电路板的薄膜应变计电桥电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235926A (zh) * 2010-03-30 2011-11-09 索尼公司 扭矩传感器和机器人装置
CN106768538A (zh) * 2017-03-15 2017-05-31 北京中航兴盛测控技术有限公司 薄膜应变式扭矩传感器
CN206756350U (zh) * 2017-03-15 2017-12-15 北京中航兴盛测控技术有限公司 薄膜应变式扭矩传感器
CN207622899U (zh) * 2017-11-27 2018-07-17 陕西电器研究所 一种三余度的薄膜压力敏感元件
US20180209860A1 (en) * 2015-07-29 2018-07-26 Tri-Force Management Corporation Torque sensor
CN109813475A (zh) * 2019-03-29 2019-05-28 溱者(上海)智能科技有限公司 一种扭矩测量装置的结构件与过载保护机构
CN209979107U (zh) * 2019-03-29 2020-01-21 溱者(上海)智能科技有限公司 一种扭矩测量装置及其结构件与过载保护机构
CN112611489A (zh) * 2020-12-21 2021-04-06 陕西电器研究所 一种基于薄膜溅射的抗过载扭矩传感器

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526700A (en) * 1995-09-29 1996-06-18 Akeel; Hadi A. Six component force gage
WO1999028716A1 (en) * 1997-11-26 1999-06-10 Litens Automotive Partnership Load sensor
US6324919B1 (en) * 1998-02-04 2001-12-04 Michigan Scientific Corporation Multi-axis wheel load transducer
JP4680566B2 (ja) * 2004-10-26 2011-05-11 本田技研工業株式会社 多軸力センサチップとこれを用いた多軸力センサ
EP1953814B1 (en) * 2005-11-25 2017-09-06 Panasonic Intellectual Property Management Co., Ltd. Wafer level package structure and method for manufacturing same
JP5007083B2 (ja) * 2006-08-08 2012-08-22 本田技研工業株式会社 力覚センサ用チップ
JP5652775B2 (ja) * 2009-05-29 2015-01-14 トレックス・セミコンダクター株式会社 加速度センサー素子およびこれを有する加速度センサー
EP2667202B1 (en) * 2011-01-20 2019-05-08 Panasonic Intellectual Property Management Co., Ltd. Acceleration sensor
EP2708865B1 (en) * 2011-05-09 2019-09-04 NTN Corporation Sensor-equipped wheel bearing
DE102014210379B4 (de) * 2014-06-02 2016-03-24 Kuka Roboter Gmbh Drehmomentsensor und Verfahren zum Erfassen von an oder in einem Gelenk eines Gelenkarmroboters auftretenden Drehmomenten
CN105675097A (zh) * 2016-03-23 2016-06-15 无锡研测技术有限公司 一种冗余称重传感器
DE102016012324A1 (de) * 2016-10-17 2018-04-19 Franka Emika Gmbh Drehmomentsensorvorrichtung und Verfahren zum Erfassen von Drehmomenten
CN106525313A (zh) * 2016-12-30 2017-03-22 安徽中航电子科技发展有限公司 穿轴式张力传感器
CN206725134U (zh) * 2017-03-15 2017-12-08 北京中航兴盛测控技术有限公司 基于溅射薄膜技术的高性能扭矩传感器
IT201700071798A1 (it) * 2017-06-27 2018-12-27 St Microelectronics Srl Sensore di forza multiassiale, metodo di fabbricazione del sensore di forza multiassiale, e metodo di funzionamento del sensore di forza multiassiale
CN111742205B (zh) * 2018-02-21 2022-03-22 阿尔卑斯阿尔派株式会社 转矩传感器
JP6968739B2 (ja) * 2018-03-29 2021-11-17 日本電産コパル電子株式会社 トルクセンサ
JP6976892B2 (ja) * 2018-03-29 2021-12-08 日本電産コパル電子株式会社 トルクセンサ
US20230010885A1 (en) * 2019-12-13 2023-01-12 Nagano Keiki Co., Ltd. Torque sensor
JP7343450B2 (ja) * 2020-06-29 2023-09-12 トヨタ自動車株式会社 力覚センサ
CN112798151A (zh) * 2021-01-26 2021-05-14 松诺盟科技有限公司 扭矩传感器力臂结构及扭矩传感器
US11892364B2 (en) * 2022-02-10 2024-02-06 Ati Industrial Automation, Inc. Torque sensor using coupled loads and fewer strain gages
JP2023125099A (ja) * 2022-02-28 2023-09-07 長野計器株式会社 トルクセンサ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235926A (zh) * 2010-03-30 2011-11-09 索尼公司 扭矩传感器和机器人装置
US20180209860A1 (en) * 2015-07-29 2018-07-26 Tri-Force Management Corporation Torque sensor
CN106768538A (zh) * 2017-03-15 2017-05-31 北京中航兴盛测控技术有限公司 薄膜应变式扭矩传感器
CN206756350U (zh) * 2017-03-15 2017-12-15 北京中航兴盛测控技术有限公司 薄膜应变式扭矩传感器
CN207622899U (zh) * 2017-11-27 2018-07-17 陕西电器研究所 一种三余度的薄膜压力敏感元件
CN109813475A (zh) * 2019-03-29 2019-05-28 溱者(上海)智能科技有限公司 一种扭矩测量装置的结构件与过载保护机构
CN209979107U (zh) * 2019-03-29 2020-01-21 溱者(上海)智能科技有限公司 一种扭矩测量装置及其结构件与过载保护机构
CN112611489A (zh) * 2020-12-21 2021-04-06 陕西电器研究所 一种基于薄膜溅射的抗过载扭矩传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116005083A (zh) * 2023-03-23 2023-04-25 松诺盟科技有限公司 一种用于扭矩轴的非晶材料、扭矩轴及扭矩传感器
CN116005083B (zh) * 2023-03-23 2023-06-27 松诺盟科技有限公司 一种用于扭矩轴的非晶材料、扭矩轴及扭矩传感器

Also Published As

Publication number Publication date
US20220299389A1 (en) 2022-09-22
CN112611489A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2022134904A1 (zh) 一种基于薄膜溅射的抗过载扭矩传感器
CN101566514B (zh) 集成温度的薄膜压力传感器
CN107101755B (zh) 一种应变式三维力传感器
CA1144386A (en) Geometric balance adjustment of thin film strain gage sensors
US7343808B2 (en) Line pressure compensated differential pressure transducer assembly
CN100357716C (zh) 具有保护装置的电阻应变式传感器
KR20090087847A (ko) 반도체 감왜 센서
CN203490009U (zh) 低量程溅射薄膜型测力传感器
CN110736421A (zh) 用于弹性体应变测量的薄膜应变计及制备方法
CN111238361A (zh) 石墨烯温度应变传感器
JPS5952727A (ja) 半導体圧力センサ
CN114720028A (zh) 一种基于薄膜溅射技术的一体式多维力传感器
CN105509936A (zh) 一种可适应月面环境的薄膜溅射力传感器
CN116121721B (zh) 一种纳米应变薄膜、轮辐力传感器及其制备方法
CN214224409U (zh) 双量程测力传感器
CN210198632U (zh) 一种双量程压力传感器
CN201772965U (zh) Soi机油压力传感器
RU2469437C1 (ru) Интегральный преобразователь давления с одним жестким центром
CN113848001B (zh) 一种rf谐振压力传感器
CN215893504U (zh) 一种传感器用电阻应变计
CN220690315U (zh) 一种厚膜敏感元器件
CN217304218U (zh) 柔性压力传感器
CN211346684U (zh) 石墨烯温度应变传感器
RU2469436C1 (ru) Интегральный преобразователь давления с тремя жесткими центрами
CN113777775B (zh) 一种高可靠性压电指向调节机构及其实现方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908904

Country of ref document: EP

Kind code of ref document: A1