WO2020215517A1 - 基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法 - Google Patents

基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法 Download PDF

Info

Publication number
WO2020215517A1
WO2020215517A1 PCT/CN2019/098332 CN2019098332W WO2020215517A1 WO 2020215517 A1 WO2020215517 A1 WO 2020215517A1 CN 2019098332 W CN2019098332 W CN 2019098332W WO 2020215517 A1 WO2020215517 A1 WO 2020215517A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
input voltage
control parameter
buck
value
Prior art date
Application number
PCT/CN2019/098332
Other languages
English (en)
French (fr)
Inventor
张小平
张瑞瑞
吴智
Original Assignee
湖南科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南科技大学 filed Critical 湖南科技大学
Publication of WO2020215517A1 publication Critical patent/WO2020215517A1/zh
Priority to US17/096,766 priority Critical patent/US11201542B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits

Definitions

  • the invention belongs to the technical field of power electronics, and in particular relates to a method for determining the stability domain of a Buck-Boost converter control parameter based on segmented delay feedback control.
  • Buck-Boost converter has been widely used because of its simple structure, wide input voltage range, and buck-boost control.
  • the converter is a variable structure and strong nonlinear system, it will produce bifurcation and chaos under certain conditions, and cause problems such as excessive irregular electromagnetic noise and increased oscillation during the operation of the converter, which directly affects the converter’s performance. Stable operation. Therefore, it is of great significance to study effective chaos control methods for the converter to ensure the stable operation of the system.
  • the present invention provides a method for determining the stability region of Buck-Boost converter control parameters based on segmented delay feedback control.
  • the invention provides a method for determining the stability domain of Buck-Boost converter control parameters based on segmented delay feedback control.
  • the specific steps include:
  • Step 1 Taking the inductor current and capacitor voltage in the Buck-Boost converter as state variables, establish the state differential equations for the two different level states of the converter under the action of the pulse input voltage;
  • Step 2 According to the difference of Buck-Boost converter input voltage, correct the inductor reference current in the converter to obtain a new inductor reference current;
  • Step 3 Obtain the discrete iterative mapping model of the system according to the state differential equation described in step 1 and the new inductor reference current described in step 2;
  • Step 4 According to the discrete iterative mapping model obtained in step 3, when the converter adopts segmented delay feedback control under the action of pulse input voltage, any given value of its control parameter k 1 can be selected to obtain the control parameters when the system is running stably k ranges from 2 (k 2min, k 2max);
  • Step 5 Change the given value of the control parameter k 1 at a certain interval, and obtain the corresponding value range (k 2min , k 2max ) of the m groups of control parameters k 2 using the same method as described above;
  • Step 6 According to the obtained upper limit k 2max and lower limit k 2min of the control parameter k 2 of m groups and the corresponding control parameter k 1 value, the upper limit k 2max and k 1 value are obtained by numerical fitting method respectively and the functional relationship between the lower limit value 2min k k 1, two function formulas by the area bounded control parameter k is the k stability region. 1 and 2, the stabilization domain arbitrarily selected. 1 and k Both k 2 values can ensure the stable operation of the system.
  • the establishment of the state differential equation of the Buck-Boost converter in the step 1 specifically includes:
  • L, C and R are the inductance, capacitance and load resistance in the converter respectively.
  • the inductor reference current in the converter is corrected to obtain a new inductor reference current, which is specifically:
  • I'ref is the revised new inductor reference current
  • I ref is the initial value of the inductor reference current
  • k 1 and k 2 are the control parameters when the converter input voltage is high level U in1 and low level U in2 respectively
  • U C is the capacitor voltage
  • T is the switching period of the power switch Q.
  • Obtaining the discrete iterative mapping model of the system in the step 3 specifically includes:
  • Step (3-1) the formula (1) - (3) of the time discrete differential equations state, respectively, and i n u n represents the inductor current and capacitor voltage at the time nT.
  • the discrete equation is as follows:
  • Equation (1) Discretization can be expressed as:
  • Equation (2) Discretization can be expressed as:
  • Equation (3) Discretization can be expressed as:
  • Step (3-3) According to the power switch on time t n and the inductor current i n and the capacitor voltage u n at the time nT shown in formula (8), the discrete iterative mapping model of the system can be obtained, which is specifically expressed as:
  • M 1 (I n cos( ⁇ t m )+a sin( ⁇ t m ))
  • M 2 ( ⁇ I n +a ⁇ )cos( ⁇ t m )
  • M 3 (a ⁇ - ⁇ I n )sin( ⁇ t m )
  • t m Tt n
  • I n represents the new inductor reference current at nT.
  • the converter adopts segmented delay feedback control under the action of the pulse input voltage, and its control parameter k 1 is any given value to obtain the control when the system is stable in operation.
  • the value range of the parameter k 2 (k 2min , k 2max ) specifically includes the following steps:
  • Step (4-1) Set system parameters, including: pulse input voltage high level U in1 , low level U in2 , the initial value of the inductor reference current I ref , the maximum number of iterations N, the initial value of the control parameter k 1 k 1.0 , the initial value of the control parameter k 2 k of 2.0, the control parameter k Ak 2 delta 2, B maximum number of repetitions, the initial value of the count variable q is 0;
  • Step (4-2) Collect the pulse input voltage and capacitor voltage, and calculate the new reference current value of the inductor at nT according to the pulse input voltage level and formula (4):
  • u n u n-1 respectively, and represent the time nT and (n + 1) at time T capacitor voltage;
  • Step (4-3) Calculate the conduction time of the power switch in the nth switching cycle according to formula (8):
  • I n represents the new inductor reference current at nT
  • Step (4-4) According to formula (9), calculate (n+1) the inductor current i n+1 and the capacitor voltage u n+1 at time T:
  • M 1 (I n cos( ⁇ t m )+a sin( ⁇ t m ))
  • M 2 ( ⁇ I n +a ⁇ )cos( ⁇ t m )
  • M 3 (a ⁇ - ⁇ I n )sin( ⁇ t m )
  • t m Tt n
  • I n represents the new inductor reference current at nT;
  • Step (4-12): The control parameter k 2 is sequentially reduced by ⁇ k 2 on the basis of (k 2.0 -qB ⁇ k 2 ), and steps (4-2) to (4-5) are repeated to determine whether the system is operating stably, if so , Then set k 2max k 2 , and then execute step (4-13), otherwise execute step (4-14);
  • Step (4-13): Control parameters k 2 sequentially reduced ⁇ k 2, repeat steps (4-2) through step (4-5), it is determined whether the stable operation of the system, and if so, then let k 2min k 2, until the system Until it can't run stably, then go to step (4-15);
  • the given value of the control parameter k 1 is changed at a certain interval, and the corresponding value ranges (k 2min , k 2max ) of the m groups of control parameters k 2 are obtained using the same method described above.
  • the value interval ⁇ k 1 of the control parameter k 1 and the specific data of the m group of parameters can be determined as required.
  • a numerical fitting method is used to obtain the upper limit k 2max and k 2max respectively. 1 value and the functional relationship between the lower limit k 2min and k 1 value; the numerical fitting method preferentially adopts the least square method, and the obtained functional relationship is respectively:
  • a 1 , b 1 , c 1 , d 1 are coefficients respectively, and the coefficients are determined by the least square method.
  • a 2 , b 2 , c 2 , and d 2 are coefficients respectively, and the coefficients are determined by the least square method.
  • FIG. 1 is a diagram of the main circuit topology of the Buck-Boost converter of the present invention
  • Fig. 2 is a flowchart of a method for determining the stability region of Buck-Boost converter control parameters based on segmented delay feedback control provided by an embodiment of the present invention
  • FIG. 3 is a numerical simulation flowchart for obtaining the value range (k 2min , k 2max ) of the control parameter k 2 when the system is stably operating according to an embodiment of the present invention
  • FIG. 1 is a diagram of the main circuit topology of the Buck-Boost converter of the present invention.
  • the converter includes pulse power U in (including high level U in1 , low level U in2 ), power switch Q, inductor L, capacitor C, diode D and load resistance R.
  • FIG. 2 is a flow chart of a method for determining the stability region of Buck-Boost converter control parameters based on segmented delay feedback control provided by the present invention. The method includes the following steps:
  • Step 1 Taking the inductor current and capacitor voltage in the Buck-Boost converter as state variables, establish the state differential equations for the two different level states of the converter under the action of the pulse input voltage;
  • Step 2 According to the difference of Buck-Boost converter input voltage, correct the inductor reference current in the converter to obtain a new inductor reference current;
  • Step 3 Obtain the discrete iterative mapping model of the system according to the state differential equation described in step 1 and the new inductor reference current described in step 2;
  • Step 4 According to the discrete iterative mapping model obtained in step 3, when the converter adopts segmented delay feedback control under the action of pulse input voltage, any given value of its control parameter k 1 can be selected to obtain the control parameters when the system is running stably k ranges from 2 (k 2min, k 2ma);
  • Step 5 Change the given value of the control parameter k 1 at a certain interval, and obtain the corresponding value range (k 2min , k 2max ) of the m groups of control parameters k 2 using the same method as described above;
  • Step 6 According to the obtained upper limit k 2max and lower limit k 2min of the control parameter k 2 of m groups and the corresponding control parameter k 1 value, the upper limit k 2max and k 1 value are obtained by numerical fitting method respectively and the functional relationship between the lower limit value 2min k k 1, two function formulas by the area bounded control parameter k is the k stability region. 1 and 2, the stabilization domain arbitrarily selected. 1 and k Both k 2 values can ensure the stable operation of the system.
  • L, C and R are the inductance, capacitance and load resistance in the converter respectively.
  • the inductor reference current in the converter is corrected to obtain a new inductor reference current, which is specifically:
  • I'ref is the revised new inductor reference current
  • I ref is the initial value of the inductor reference current
  • k 1 and k 2 are the control parameters when the converter input voltage is high level U in1 and low level U in2 respectively
  • U C is the capacitor voltage
  • T is the switching period of the power switch Q.
  • Step (3-1) Discretize the state differential equation described in equations (1)-(3) in time to obtain:
  • Equation (1) Discretization can be expressed as:
  • Equation (2) Discretization can be expressed as:
  • Equation (3) Discretization can be expressed as:
  • the discrete iterative mapping model of the system can be expressed as:
  • M 1 (I n cos( ⁇ t m )+a sin( ⁇ t m ))
  • M 2 ( ⁇ I n +a ⁇ )cos( ⁇ t m )
  • M 3 (a ⁇ - ⁇ I n )sin( ⁇ t m )
  • t m Tt n
  • I n represents the new inductor reference current at nT.
  • FIG. 3 is a numerical simulation flowchart for obtaining the value range (k 2min , k 2max ) of the control parameter k 2 when the system is stably operating according to an embodiment of the present invention. Specific steps are as follows:
  • Step (4-1) Set system parameters, including: pulse input voltage high level U in1 , low level U in2 , the initial value of the inductor reference current I ref , the maximum number of iterations N, the initial value of the control parameter k 1 k 1.0 , the initial value of the control parameter k 2 k of 2.0, the control parameter k Ak 2 delta 2, B maximum number of repetitions, the initial value of the count variable q is 0;
  • Step (4-2) Collect the pulse input voltage and capacitor voltage, and calculate the new reference current value of the inductor at nT according to the pulse input voltage level and formula (4):
  • u n u n-1 respectively, and represent the time nT and (n + 1) at time T capacitor voltage;
  • Step (4-3) Calculate the conduction time of the power switch in the nth switching cycle according to formula (14):
  • I n represents the new inductor reference current at nT
  • Step (4-4) According to formula (15), calculate (n+1) the inductor current i n+1 and the capacitor voltage u n+1 at time T:
  • M 1 (I n cos( ⁇ t m )+a sin( ⁇ t m ))
  • M 2 ( ⁇ I n +a ⁇ )cos( ⁇ t m )
  • M 3 (a ⁇ - ⁇ I n )sin( ⁇ t m )
  • t m Tt n
  • I n represents the new inductor reference current at nT;
  • Step (4-12): The control parameter k 2 is sequentially reduced by ⁇ k 2 on the basis of (k 2.0 -qB ⁇ k 2 ), and steps (4-2) to (4-5) are repeated to determine whether the system is operating stably, if so , Then set k 2max k 2 , and then execute step (4-13), otherwise execute step (4-14);
  • Step (4-13): Control parameters k 2 sequentially reduced ⁇ k 2, repeat steps (4-2) through step (4-5), it is determined whether the stable operation of the system, and if so, then let k 2min k 2, until the system Until it can't run stably, then go to step (4-15);

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开一种基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法。所述方法为:以Buck-Boost变换器中电感电流和电容电压为状态变量,针对该变换器在脉冲输入电压作用下的两种不同电平状态,分别建立其状态微分方程;根据Buck-Boost变换器输入电压的不同,对变换器中电感参考电流进行修正,从而得到新的电感参考电流;根据上述状态微分方程和新的电感参考电流,获得系统的离散迭代映射模型;根据上述离散迭代映射模型,获得变换器在脉冲输入电压作用下采用分段延迟反馈控制实现系统稳定运行时其控制参数上、下限值对应的函数关系式,由所得函数关系式即可确定相应控制参数的稳定域范围。

Description

基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法 技术领域
本发明属于电力电子技术领域,尤其涉及一种基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法。
背景技术
Buck-Boost变换器因具有结构简单、输入电压范围宽、可实现升降压控制等优点而得到了广泛的应用。然而该变换器因属变结构强非线性系统,在一定条件下会产生分岔与混沌现象,并导致变换器运行中产生不规则电磁噪声过大、振荡加剧等问题,直接影响到变换器的稳定运行。因此,针对变换器研究有效的混沌控制方法以确保系统的稳定运行具有重要意义。
目前国内外在有关Buck-Boost变换器的混沌控制方面已开展了系列研究,提出了诸如OGY控制方法、非线性分段二次函数反馈控制法、参数共振微扰法等多种控制方法,取得了较好的控制效果,但上述方法都是针对变换器在输入为稳态直流电压下存在的混沌现象提出的,当变换器直接采用PWM整流电源作为输入电源时,即变换器输入电压为PWM调制的脉冲输入电压时存在的混沌现象则研究较少,目前只提出了一种分段延迟反馈控制法,该方法虽取得了较好的控制效果,但存在控制参数整定困难等不足,如果其控制参数选择不合适,则不能达到预期的混沌控制效果。因此针对变换器在脉冲输入电压作用下采用分段延迟反馈控制法时,如何在保证系统稳定运行的前提下研究确定其控制参数的变化规律,并进而确定其控制参数的稳定域范 围,对于确保系统的稳定运行具有重要意义。
发明内容
为达到上述技术目标,本发明提供一种基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法。
本发明提供的一种基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法。具体步骤包括:
步骤1:以Buck-Boost变换器中电感电流和电容电压为状态变量,针对该变换器在脉冲输入电压作用下的两种不同电平状态,分别建立其状态微分方程;
步骤2:根据Buck-Boost变换器输入电压的不同,对变换器中电感参考电流进行修正,从而得到新的电感参考电流;
步骤3:根据步骤1所述状态微分方程和步骤2所述新的电感参考电流,获得系统的离散迭代映射模型;
步骤4:根据步骤3所得离散迭代映射模型,针对变换器在脉冲输入电压作用下采用分段延迟反馈控制时,对其控制参数k 1任取一给定值,获得实现系统稳定运行时控制参数k 2的取值范围(k 2min,k 2max);
步骤5:按一定间距改变控制参数k 1的给定值,采用上述同样的方法获得m组控制参数k 2相应的取值范围(k 2min,k 2max);
步骤6:根据所获得的m组控制参数k 2的上限值k 2max和下限值k 2min以及相应的控制参数k 1值,采用数值拟合方法分别获得上限值k 2max与k 1值以及下限值k 2min与k 1值间的函数关系式,由上述两个函数关系式所界定的区域即为控制参数k 1和k 2的稳定域,在该稳定域内任意选取的k 1和k 2值均能保证系统 的稳定运行。
所述步骤1中建立所述Buck-Boost变换器的状态微分方程,具体包括:
以Buck-Boost变换器中电感电流i L和电容电压u C为状态变量,针对变换器在脉冲输入电压作用下的两种不同电平状态并根据变换器中功率开关管Q的两种不同工作状态,分别建立其状态微分方程,具体为:
状态一:功率开关Q导通:
当变换器的脉冲输入电压为高电平U in1时,系统状态微分方程为:
Figure PCTCN2019098332-appb-000001
当变换器的脉冲输入电压为低电平U in2时,系统状态微分方程为:
Figure PCTCN2019098332-appb-000002
状态二:功率开关Q断开:
此时变换器工作状态与输入电压无关,其系统状态微分方程为:
Figure PCTCN2019098332-appb-000003
其中:
Figure PCTCN2019098332-appb-000004
为系统状态向量,
Figure PCTCN2019098332-appb-000005
L、C和R分别为变换器中电感、电容及负载电阻。
所述步骤2中根据所述Buck-Boost变换器输入电压的不同,对变换器中电感参考电流进行修正,从而得到新的电感参考电流,具体为:
Figure PCTCN2019098332-appb-000006
其中:I' ref为修正后的新电感参考电流,I ref为电感参考电流初值,k 1、k 2分别为变换器输入电压为高电平U in1和低电平U in2时的控制参数,u C为电容电压,T为功率开关管Q的开关周期。
所述步骤3中获得所述系统的离散迭代映射模型,具体包括:
步骤(3-1):将式(1)-式(3)所述状态微分方程时间离散化,分别以i n和u n表示在nT时刻的电感电流和电容电压。离散方程具体如下:
式(1)离散化可表示为:
Figure PCTCN2019098332-appb-000007
式(2)离散化可表示为:
Figure PCTCN2019098332-appb-000008
式(3)离散化可表示为:
Figure PCTCN2019098332-appb-000009
其中:
Figure PCTCN2019098332-appb-000010
Figure PCTCN2019098332-appb-000011
步骤(3-2):根据nT时刻的电感电流、脉冲输入电压以及式(4)所示新电感参考电流,得到变换器中功率开关管第n个开关周期的导通时间t n为:
Figure PCTCN2019098332-appb-000012
其中:U in为变换器输入电压(当变换器输入电压为高电平时,U in=U in1;当变换器输入电压为低电平时,U in=U in2),I n表示nT时刻新电感参考电流,即:
Figure PCTCN2019098332-appb-000013
步骤(3-3):根据式(8)所示功率开关管导通时间t n及nT时刻的电感电流i n和电容电压u n,可得系统的离散迭代映射模型,具体表示为:
Figure PCTCN2019098332-appb-000014
其中:M 1=(I ncos(ωt m)+a sin(ωt m)),M 2=(τI n+aω)cos(ωt m),M 3=(aτ-ωI n)sin(ωt m),
Figure PCTCN2019098332-appb-000015
t m=T-t n,I n表示nT时刻新电感参考电流。
所述步骤4中根据所述系统离散迭代映射模型,针对变换器在脉冲输入电压作用下采用分段延迟反馈控制,对其控制参数k 1任取一给定值,获取实现系统稳定运行时控制参数k 2的取值范围(k 2min,k 2max),具体包括如下步骤:
步骤(4-1):设置系统参数,包括:脉冲输入电压高电平U in1、低电平U in2,电感参考电流初值I ref,最大迭代次数N,控制参数k 1的初始值k 1.0,控制参数k 2的初始值k 2.0,控制参数k 2的增量Δk 2,最大重复次数B,计数变量q的初始值为0;
步骤(4-2):采集脉冲输入电压和电容电压,根据脉冲输入电压电平并由公式(4)计算nT时刻电感的新参考电流值:
Figure PCTCN2019098332-appb-000016
其中:u n和u n-1分别表示nT时刻和(n+1)T时刻的电容电压;
步骤(4-3):根据公式(8)计算第n个开关周期内功率开关管的导通时间:
Figure PCTCN2019098332-appb-000017
其中:I n表示nT时刻新电感参考电流,U in为变换器输入电压(当变换器输入电压为高电平时,U in=U in1;当变换器输入电压为低电平时,U in=U in2);
步骤(4-4):根据公式(9),计算(n+1)T时刻的电感电流i n+1和电容电压u n+1
Figure PCTCN2019098332-appb-000018
其中:M 1=(I ncos(ωt m)+a sin(ωt m)),M 2=(τI n+aω)cos(ωt m),M 3=(aτ-ωI n)sin(ωt m),
Figure PCTCN2019098332-appb-000019
t m=T-t n,I n表示nT时刻新电感参考电流;
步骤(4-5):判断系统的输出响应i n+1和u n+1是否与i n和u n相等,若是,则表示系统运行稳定,执行步骤(4-7),否则执行步骤(4-6);
步骤(4-6):判断迭代次数n是否小于最大迭代次数N,若是,则n加1,然后返回步骤(4-2);否则执行步骤(4-9);
步骤(4-7):控制参数k 2在(k 2.0+qBΔk 2)的基础上依次增加Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2max=k 2,直到系统不能稳定运行为止,然后执行步骤(4-8);
步骤(4-8):控制参数k 2在(k 2.0-qBΔk 2)的基础上依次减小Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2min=k 2,直到系统不能稳定运行为止,然后执行步骤(4-15);
步骤(4-9):控制参数k 2在(k 2.0+qBΔk 2)的基础上依次增加Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2min=k 2,然 后执行步骤(4-10),否则执行步骤(4-11);
步骤(4-10):控制参数k 2依次增加Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2max=k 2,直到系统不能稳定运行为止,然后执行步骤(4-15);
步骤(4-11):判断重复次数是否小于B次,若是,则返回步骤(4-9),否则执行步骤(4-12);
步骤(4-12):控制参数k 2在(k 2.0-qBΔk 2)的基础上依次减小Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2max=k 2,然后执行步骤(4-13),否则执行步骤(4-14);
步骤(4-13):控制参数k 2依次减小Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2min=k 2,直到系统不能稳定运行为止,然后执行步骤(4-15);
步骤(4-14):判断重复次数是否小于B次,若是,则返回步骤(4-12),否则计数变量q增加1,然后返回步骤(4-2);
步骤(4-15):根据所得控制参数k 2的上限值k 2max和下限值k 2min,即获得实现系统稳定运行时控制参数k 2的取值范围(k 2min,k 2max)。
所述步骤5中,按一定间距改变控制参数k 1的给定值,采用上述同样的方法获得m组控制参数k 2相应的取值范围(k 2min,k 2max)。所述控制参数k 1的取值间距Δk 1和m组参数的具体数据可根据需要进行确定。
所述步骤6中,根据所述m组控制参数k 2的上限值k 2max和下限值k 2min以及相应的控制参数k 1值,采用数值拟合方法分别获得上限值k 2max与k 1 值以及下限值k 2min与k 1值间的函数关系式;所述数值拟合方法优先采用最小二乘法,所获得的函数关系式分别为:
(1)控制参数k 2上限值k 2max与k 1值间的函数关系式为:
Figure PCTCN2019098332-appb-000020
式中:a 1、b 1、c 1、d 1分别为系数,所述系数采用最小二乘法进行确定。
(2)控制参数k 2下限值k 2min与k 1值间的函数关系式为:
Figure PCTCN2019098332-appb-000021
式中:a 2、b 2、c 2、d 2分别为系数,所述系数采用最小二乘法进行确定。
附图说明
图1为本发明Buck-Boost变换器的主电路拓扑结构图
图2为本发明实施例提供的一种基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法流程图
图3为本发明实施例提供的一种获得实现系统稳定运行时控制参数k 2的取值范围(k 2min,k 2max)的数值仿真流程图
具体实施方式
下面结合附图和实施例对本发明做进一步具体的说明。
参见图1,为本发明Buck-Boost变换器的主电路拓扑结构图。该变换器包括脉冲电源U in(包括高电平U in1、低电平U in2)、功率开关Q、电感L、电容C、二极管D和负载电阻R。
参见图2,为本发明提供的一种基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法流程图。所述方法包括如下步骤:
步骤1:以Buck-Boost变换器中电感电流和电容电压为状态变量,针对该变换器在脉冲输入电压作用下的两种不同电平状态,分别建立其状态微分方程;
步骤2:根据Buck-Boost变换器输入电压的不同,对变换器中电感参考电流进行修正,从而得到新的电感参考电流;
步骤3:根据步骤1所述状态微分方程和步骤2所述新的电感参考电流,获得系统的离散迭代映射模型;
步骤4:根据步骤3所得离散迭代映射模型,针对变换器在脉冲输入电压作用下采用分段延迟反馈控制时,对其控制参数k 1任取一给定值,获得实现系统稳定运行时控制参数k 2的取值范围(k 2min,k 2ma);
步骤5:按一定间距改变控制参数k 1的给定值,采用上述同样的方法获得m组控制参数k 2相应的取值范围(k 2min,k 2max);
步骤6:根据所获得的m组控制参数k 2的上限值k 2max和下限值k 2min以及相应的控制参数k 1值,采用数值拟合方法分别获得上限值k 2max与k 1值以及下限值k 2min与k 1值间的函数关系式,由上述两个函数关系式所界定的区域即为控制参数k 1和k 2的稳定域,在该稳定域内任意选取的k 1和k 2值均能保证系统的稳定运行。
步骤1的实现方式:
以Buck-Boost变换器中电感电流i L和电容电压u C为状态变量,针对变换器在脉冲输入电压作用下的两种不同电平状态并根据变换器中功率开关管Q的两种不同工作状态,分别建立其状态微分方程,具体为:
状态一:功率开关Q导通:
当变换器的脉冲输入电压为高电平U in1时,系统状态微分方程为:
Figure PCTCN2019098332-appb-000022
当变换器的脉冲输入电压为低电平U in2时,系统状态微分方程为:
Figure PCTCN2019098332-appb-000023
状态二:功率开关Q断开:
此时变换器工作状态与输入电压无关,其系统状态微分方程为:
Figure PCTCN2019098332-appb-000024
其中:
Figure PCTCN2019098332-appb-000025
为系统状态向量,
Figure PCTCN2019098332-appb-000026
L、C和R分别为变换器中电感、电容及负载电阻。
步骤2的实现方式:
根据所述Buck-Boost变换器输入电压的不同,对变换器中电感参考电流进行修正,从而得到新的电感参考电流,具体为:
Figure PCTCN2019098332-appb-000027
其中:I' ref为修正后的新电感参考电流,I ref为电感参考电流初值,k 1、k 2分别为变换器输入电压为高电平U in1和低电平U in2时的控制参数,u C为电容电压,T为功率开关管Q的开关周期。
步骤3的实现方式:
步骤(3-1):将式(1)-式(3)所述状态微分方程时间离散化,可得:
x(n+1)=G 1x(n)+H 1U in1     (5)
x(n+1)=G 1x(n)+H 1U in2     (6)
x(n+1)=G 2x(n)      (7)
其中:
Figure PCTCN2019098332-appb-000028
计算可知:
Figure PCTCN2019098332-appb-000029
Figure PCTCN2019098332-appb-000030
其中:
Figure PCTCN2019098332-appb-000031
Figure PCTCN2019098332-appb-000032
分别以i n和u n表示在nT时刻的电感电流和电容电压。离散方程具体如下:
式(1)离散化可表示为:
Figure PCTCN2019098332-appb-000033
式(2)离散化可表示为:
Figure PCTCN2019098332-appb-000034
式(3)离散化可表示为:
Figure PCTCN2019098332-appb-000035
其中:
Figure PCTCN2019098332-appb-000036
Figure PCTCN2019098332-appb-000037
步骤(3-2):根据nT时刻的电感电流、脉冲输入电压、式(4)所示新电感参考电流以及式(10)所表示的离散化方程,可得:
Figure PCTCN2019098332-appb-000038
对式(13)求解得到变换器中功率开关管第n个开关周期的导通时间t n为:
Figure PCTCN2019098332-appb-000039
其中:U in为变换器输入电压(当变换器输入电压为高电平时,U in=U in1;当变换器输入电压为低电平时,U in=U in2),I n表示nT时刻新电感参考电流,即:
Figure PCTCN2019098332-appb-000040
步骤(3-3):根据式(14)所示功率开关管导通时间t n及nT时刻的电感电流i n和电容电压u n,以及式(10)-式(12),可得(nT+t n)时刻的电感电流i=I n,电容电压
Figure PCTCN2019098332-appb-000041
功率开关管关断时间t m=T-t n,从而可得(n+1)T时刻的电感电流
Figure PCTCN2019098332-appb-000042
电容电压
Figure PCTCN2019098332-appb-000043
故系统的离散迭代映射模型可表示为:
Figure PCTCN2019098332-appb-000044
其中:M 1=(I ncos(ωt m)+a sin(ωt m)),M 2=(τI n+aω)cos(ωt m),M 3=(aτ-ωI n)sin(ωt m),
Figure PCTCN2019098332-appb-000045
t m=T-t n,I n表示nT时刻新电感参考电流。
步骤4的实现方式。
参见图3,为本发明实施例提供的一种获得实现系统稳定运行时控制参 数k 2的取值范围(k 2min,k 2max)的数值仿真流程图。具体步骤如下:
步骤(4-1):设置系统参数,包括:脉冲输入电压高电平U in1、低电平U in2,电感参考电流初值I ref,最大迭代次数N,控制参数k 1的初始值k 1.0,控制参数k 2的初始值k 2.0,控制参数k 2的增量Δk 2,最大重复次数B,计数变量q的初始值为0;
步骤(4-2):采集脉冲输入电压和电容电压,根据脉冲输入电压电平并由公式(4)计算nT时刻电感的新参考电流值:
Figure PCTCN2019098332-appb-000046
其中:u n和u n-1分别表示nT时刻和(n+1)T时刻的电容电压;
步骤(4-3):根据公式(14)计算第n个开关周期内功率开关管的导通时间:
Figure PCTCN2019098332-appb-000047
其中:I n表示nT时刻新电感参考电流,U in为变换器输入电压(当变换器输入电压为高电平时,U in=U in1;当变换器输入电压为低电平时,U in=U in2);
步骤(4-4):根据公式(15),计算(n+1)T时刻的电感电流i n+1和电容电压u n+1
Figure PCTCN2019098332-appb-000048
其中:M 1=(I ncos(ωt m)+a sin(ωt m)),M 2=(τI n+aω)cos(ωt m),M 3=(aτ-ωI n)sin(ωt m),
Figure PCTCN2019098332-appb-000049
t m=T-t n,I n表示nT时刻新电感参考电流;
步骤(4-5):判断系统的输出响应i n+1和u n+1是否与i n和u n相等,若是, 则表示系统运行稳定,执行步骤(4-7),否则执行步骤(4-6);
步骤(4-6):判断迭代次数n是否小于最大迭代次数N,若是,则n加1,然后返回步骤(4-2);否则执行步骤(4-9);
步骤(4-7):控制参数k 2在(k 2.0+qBΔk 2)的基础上依次增加Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2max=k 2,直到系统不能稳定运行为止,然后执行步骤(4-8);
步骤(4-8):控制参数k 2在(k 2.0-qBΔk 2)的基础上依次减小Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2min=k 2,直到系统不能稳定运行为止,然后执行步骤(4-15);
步骤(4-9):控制参数k 2在(k 2.0+qBΔk 2)的基础上依次增加Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2min=k 2,然后执行步骤(4-10),否则执行步骤(4-11);
步骤(4-10):控制参数k 2依次增加Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2max=k 2,直到系统不能稳定运行为止,然后执行步骤(4-15);
步骤(4-11):判断重复次数是否小于B次,若是,则返回步骤(4-9),否则执行步骤(4-12);
步骤(4-12):控制参数k 2在(k 2.0-qBΔk 2)的基础上依次减小Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2max=k 2,然后执行步骤(4-13),否则执行步骤(4-14);
步骤(4-13):控制参数k 2依次减小Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2min=k 2,直到系统不能稳定运行为止, 然后执行步骤(4-15);
步骤(4-14):判断重复次数是否小于B次,若是,则返回步骤(4-12),否则计数变量q增加1,然后返回步骤(4-2);
步骤(4-15):根据所得控制参数k2的上限值k2max和下限值k2min,即获得实现系统稳定运行时控制参数k2的取值范围(k2min,k2max)。

Claims (7)

  1. 一种基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法,包括以下步骤:
    步骤1:以Buck-Boost变换器中电感电流和电容电压为状态变量,针对该变换器在脉冲输入电压作用下的两种不同电平状态,分别建立其状态微分方程;
    步骤2:根据Buck-Boost变换器输入电压的不同,对变换器中电感参考电流进行修正,从而得到新的电感参考电流;
    步骤3:根据步骤1所述状态微分方程和步骤2所述新的电感参考电流,获得系统的离散迭代映射模型;
    步骤4:根据步骤3所得离散迭代映射模型,针对变换器在脉冲输入电压作用下采用分段延迟反馈控制时,对其控制参数k 1任取一给定值,获得实现系统稳定运行时控制参数k 2的取值范围(k 2min,k 2ma);
    步骤5:按一定间距改变控制参数k 1的给定值,采用上述同样的方法获得m组控制参数k 2相应的取值范围(k 2min,k 2max);
    步骤6:根据所获得的m组控制参数k 2的上限值k 2max和下限值k 2min以及相应的控制参数k 1值,采用数值拟合方法分别获得上限值k 2max与k 1值以及下限值k 2min与k 1值间的函数关系式,由上述两个函数关系式所界定的区域即为控制参数k 1和k 2的稳定域,在该稳定域内任意选取的k 1和k 2值均能保证系统的稳定运行。
  2. 根据权利要求1所述的一种基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法,其特征在于:所述步骤1中建立所述Buck-Boost 变换器的状态微分方程,具体包括:
    以Buck-Boost变换器中电感电流i L和电容电压u C为状态变量,针对变换器在脉冲输入电压作用下的两种不同电平状态并根据变换器中功率开关管Q的两种不同工作状态,分别建立其状态微分方程,具体为:
    状态一:功率开关Q导通:
    当变换器的脉冲输入电压为高电平U in1时,系统状态微分方程为:
    Figure PCTCN2019098332-appb-100001
    当变换器的脉冲输入电压为低电平U in2时,系统状态微分方程为:
    Figure PCTCN2019098332-appb-100002
    状态二:功率开关Q断开:
    此时变换器工作状态与输入电压无关,其系统状态微分方程为:
    Figure PCTCN2019098332-appb-100003
    其中:
    Figure PCTCN2019098332-appb-100004
    为系统状态向量,
    Figure PCTCN2019098332-appb-100005
    L、C和R分别为变换器中电感、电容及负载电阻。
  3. 根据权利要求1所述的一种基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法,其特征在于:所述步骤2中根据所述Buck-Boost变换器输入电压的不同,对变换器中电感参考电流进行修正,从而得到新的电感参考电流,具体为:
    Figure PCTCN2019098332-appb-100006
    其中:I' ref为修正后的新电感参考电流,I ref为电感参考电流初值,k 1、k 2分别为变换器输入电压为高电平U in1和低电平U in2时的控制参数,u C为电 容电压,T为功率开关管Q的开关周期。
  4. 根据权利要求1所述的一种基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法,其特征在于:所述步骤3中获得所述系统的离散迭代映射模型,具体包括:
    步骤(3-1):将式(1)-式(3)所述状态微分方程时间离散化,分别以i n和u n表示在nT时刻的电感电流和电容电压。离散方程具体如下:
    式(1)离散化可表示为:
    Figure PCTCN2019098332-appb-100007
    式(2)离散化可表示为:
    Figure PCTCN2019098332-appb-100008
    式(3)离散化可表示为:
    Figure PCTCN2019098332-appb-100009
    其中:
    Figure PCTCN2019098332-appb-100010
    Figure PCTCN2019098332-appb-100011
    步骤(3-2):根据nT时刻的电感电流、脉冲输入电压以及式(4)所示新电感参考电流,得到变换器中功率开关管在第n个开关周期的导通时间t n为:
    Figure PCTCN2019098332-appb-100012
    其中:U in为变换器输入电压(当变换器输入电压为高电平时,U in=U in1;当变换器输入电压为低电平时,U in=U in2),I n表示nT时刻新电感参考电流,即:
    Figure PCTCN2019098332-appb-100013
    步骤(3-3):根据式(8)所示功率开关管导通时间t n及nT时刻的电感电流i n和电容电压u n,可得系统的离散迭代映射模型,具体表示为:
    Figure PCTCN2019098332-appb-100014
    其中:M 1=(I ncos(ωt m)+a sin(ωt m)),M 2=(τI n+aω)cos(ωt m),M 3=(aτ-ωI n)sin(ωt m),
    Figure PCTCN2019098332-appb-100015
    t m=T-t n,I n表示nT时刻新电感参考电流。
  5. 根据权利要求1所述的一种基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法,其特征在于:所述步骤4中根据所述系统离散迭代映射模型,针对变换器在脉冲输入电压作用下采用分段延迟反馈控制,对其控制参数k 1任取一给定值,获取实现系统稳定运行时控制参数k 2的取值范围(k 2min,k 2max),具体包括如下步骤:
    步骤(4-1):设置系统参数,包括:脉冲输入电压高电平U in1、低电平U in2,电感参考电流初值I ref,最大迭代次数N,控制参数k 1的初始值k 1.0,控制参数k 2的初始值k 2.0,控制参数k 2的增量Δk 2,最大重复次数B,计数变量q的初始值为0;
    步骤(4-2):采集脉冲输入电压和电容电压,根据脉冲输入电压电平并由公式(4)计算nT时刻电感的新参考电流值:
    Figure PCTCN2019098332-appb-100016
    其中:u n和u n-1分别表示nT时刻和(n-1)T时刻的电容电压;
    步骤(4-3):根据公式(8)计算第n个开关周期内功率开关管的导通时间:
    Figure PCTCN2019098332-appb-100017
    其中:I n表示nT时刻新电感参考电流,U in为变换器输入电压(当变换器输入电压为高电平时,U in=U in1;当变换器输入电压为低电平时,U in=U in2);
    步骤(4-4):根据公式(9),计算(n+1)T时刻的电感电流i n+1和电容电压u n+1
    Figure PCTCN2019098332-appb-100018
    其中:M 1=(I ncos(ωt m)+a sin(ωt m)),M 2=(τI n+aω)cos(ωt m),M 3=(aτ-ωI n)sin(ωt m),
    Figure PCTCN2019098332-appb-100019
    t m=T-t n,I n表示nT时刻新电感参考电流;
    步骤(4-5):判断系统的输出响应i n+1和u n+1是否与i n和u n相等,若是,则表示系统运行稳定,执行步骤(4-7),否则执行步骤(4-6);
    步骤(4-6):判断迭代次数n是否小于最大迭代次数N,若是,则n加1,然后返回步骤(4-2);否则执行步骤(4-9);
    步骤(4-7):控制参数k 2在(k 2.0+qBΔk 2)的基础上依次增加Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2max=k 2,直到系统不能稳定运行为止,然后执行步骤(4-8);
    步骤(4-8):控制参数k 2在(k 2.0-qBΔk 2)的基础上依次减小Δk 2,重复 步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2min=k 2,直到系统不能稳定运行为止,然后执行步骤(4-15);
    步骤(4-9):控制参数k 2在(k 2.0+qBΔk 2)的基础上依次增加Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2min=k 2,然后执行步骤(4-10),否则执行步骤(4-11);
    步骤(4-10):控制参数k 2依次增加Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2max=k 2,直到系统不能稳定运行为止,然后执行步骤(4-15);
    步骤(4-11):判断重复次数是否小于B次,若是,则返回步骤(4-9),否则执行步骤(4-12);
    步骤(4-12):控制参数k 2在(k 2.0-qBΔk 2)的基础上依次减小Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2max=k 2,然后执行步骤(4-13),否则执行步骤(4-14);
    步骤(4-13):控制参数k 2依次减小Δk 2,重复步骤(4-2)~步骤(4-5),判断系统是否稳定运行,若是,则令k 2min=k 2,直到系统不能稳定运行为止,然后执行步骤(4-15);
    步骤(4-14):判断重复次数是否小于B次,若是,则返回步骤(4-12),否则计数变量q增加1,然后返回步骤(4-2);
    步骤(4-15):根据所得控制参数k 2的上限值k 2max和下限值k 2min,即获得实现系统稳定运行时控制参数k 2的取值范围(k 2min,k 2max)。
  6. 根据权利要求1所述的一种基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法,其特征在于:所述步骤5中,按一定间 距改变控制参数k 1的给定值,采用上述同样的方法获得m组控制参数k 2相应的取值范围(k 2min,k 2max)。所述控制参数k 1的取值间距Δk 1和m组参数的具体数据可根据需要进行确定。
  7. 根据权利要求1所述的一种基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法,其特征在于:所述步骤6中,根据所述m组控制参数k 2的上限值k 2max和下限值k 2min以及相应的控制参数k 1值,采用数值拟合方法分别获得上限值k 2max与k 1值以及下限值k 2min与k 1值间的函数关系式;所述数值拟合方法优先采用最小二乘法,所获得的函数关系式分别为:
    (1)控制参数k 2上限值k 2max与k 1值间的函数关系式为:
    Figure PCTCN2019098332-appb-100020
    式中:a 1、b 1、c 1、d 1分别为系数,所述系数采用最小二乘法进行确定。
    (2)控制参数k 2下限值k 2min与k 1值间的函数关系式为:
    Figure PCTCN2019098332-appb-100021
    式中:a 2、b 2、c 2、d 2分别为系数,所述系数采用最小二乘法进行确定。
PCT/CN2019/098332 2019-04-25 2019-07-30 基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法 WO2020215517A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/096,766 US11201542B2 (en) 2019-04-25 2020-11-12 Method for determining stability range of control parameters of buck-boost converter based on segmented delay feedback control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910339504.9 2019-04-25
CN201910339504.9A CN110086339B (zh) 2019-04-25 2019-04-25 基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/096,766 Continuation US11201542B2 (en) 2019-04-25 2020-11-12 Method for determining stability range of control parameters of buck-boost converter based on segmented delay feedback control

Publications (1)

Publication Number Publication Date
WO2020215517A1 true WO2020215517A1 (zh) 2020-10-29

Family

ID=67416734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098332 WO2020215517A1 (zh) 2019-04-25 2019-07-30 基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法

Country Status (3)

Country Link
US (1) US11201542B2 (zh)
CN (1) CN110086339B (zh)
WO (1) WO2020215517A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782633A (zh) * 2020-12-24 2021-05-11 深圳市优优绿能电气有限公司 一种电感电流采样校准方法、系统和计算机可读存储介质
CN117294161B (zh) * 2023-11-24 2024-02-09 湖南科技大学 基于中频状态下Buck-Boost逆变器主电路参数稳定域确定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106655799A (zh) * 2016-11-30 2017-05-10 湖南科技大学 Buck‑Boost矩阵变换器稳定性判定方法及装置
CN106787697A (zh) * 2016-11-23 2017-05-31 湖南科技大学 Buck‑Boost变换器稳定性控制方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787697A (zh) * 2016-11-23 2017-05-31 湖南科技大学 Buck‑Boost变换器稳定性控制方法及装置
CN106655799A (zh) * 2016-11-30 2017-05-10 湖南科技大学 Buck‑Boost矩阵变换器稳定性判定方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI XIAOQIU , ZHANG XIAOPING: "Study on nonlinear characteristics of Buck-Boost converter in pulse input voltage", JOURNAL OF SYSTEM SIMULATION, vol. 29, no. 5, 8 May 2017 (2017-05-08), CN, pages 1021 - 1027, XP055747465, ISSN: 1004-731X, DOI: 10.16182/j.issn1004731x.joss.201705012 *
ZHANG XIAOPING ,LI XIAOQIU ,WU ZHI: "Study on stability of BBMC under voltage and current control mode", JOURNAL OF SYSTEM SIMULATION, vol. 30, no. 5, 8 May 2018 (2018-05-08), pages 1850 - 1856, XP055747459, ISSN: 1004-731X, DOI: 10.16182/j.issn1004731x.joss.201805030 *

Also Published As

Publication number Publication date
US11201542B2 (en) 2021-12-14
CN110086339A (zh) 2019-08-02
CN110086339B (zh) 2020-06-23
US20210067036A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
CN104426349B (zh) 功率因数校正电路及方法
Yan et al. Analysis and design of average current mode control using a describing-function-based equivalent circuit model
US9479047B2 (en) System and method for controlling a power supply with a feed forward controller
CN103916004A (zh) 一种功率因数校正电路及其控制电路和控制方法
CN205195552U (zh) 一种宽负载范围的功率因数校正变换器
WO2020215517A1 (zh) 基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法
WO2020206928A1 (zh) Boost AC-DC恒压电源的数字控制方法
Youssef et al. A review and performance evaluation of control techniques in resonant converters
CN203775025U (zh) 一种功率因数校正电路及其控制电路
US9252683B2 (en) Tracking converters with input output linearization control
CN109617405B (zh) 一种基于谐波状态空间的dc/dc变换器建模方法
CN108880225B (zh) 一种反激式pfc变换器的非线性建模方法
CN109143862B (zh) 基于参数自适应的降压型直流变换器固定时间滑模控制方法
Hu et al. Constant current control of DC electronic load based on boost topology
CN110492763B (zh) 提高三态Boost变换器功率因数的可变占空比控制方法
CN109768724B (zh) 选取开关电源控制电路的控制对象的方法
Adragna et al. Cycle-by-Cycle Average Input Current Control of Resonant Converters
Rudenko Analysis of DC-DC converters by averaging method based on Lagrange theorems
Janke et al. Large-signal input characteristics of selected DC–DC switching converters. Part I. Continuous conduction mode
CN210578261U (zh) 一种分数阶ky变换器
Chen et al. Flying capacitor voltages estimation in flying capacitor multilevel dc-dc converters based on peak inductor current detection and output voltage measurement
CN111082660B (zh) 基于ELM-PID的Buck变换器输出电压控制方法
CN110868066A (zh) 基于等速趋近率下dc-dc变换器滑模控制电路及方法
CN207218526U (zh) 一种DCMBoost功率因数校正变换器的控制电路
Love et al. Small signal model of a power electronic converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926464

Country of ref document: EP

Kind code of ref document: A1