CN117294161B - 基于中频状态下Buck-Boost逆变器主电路参数稳定域确定方法 - Google Patents

基于中频状态下Buck-Boost逆变器主电路参数稳定域确定方法 Download PDF

Info

Publication number
CN117294161B
CN117294161B CN202311575734.8A CN202311575734A CN117294161B CN 117294161 B CN117294161 B CN 117294161B CN 202311575734 A CN202311575734 A CN 202311575734A CN 117294161 B CN117294161 B CN 117294161B
Authority
CN
China
Prior art keywords
buck
state
boost inverter
parameter
intermediate frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311575734.8A
Other languages
English (en)
Other versions
CN117294161A (zh
Inventor
张小平
杨昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Science and Technology
Original Assignee
Hunan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Science and Technology filed Critical Hunan University of Science and Technology
Priority to CN202311575734.8A priority Critical patent/CN117294161B/zh
Publication of CN117294161A publication Critical patent/CN117294161A/zh
Application granted granted Critical
Publication of CN117294161B publication Critical patent/CN117294161B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种基于中频状态下Buck‑Boost逆变器主电路参数稳定域确定方法。所述方法步骤如下:以Buck‑Boost逆变器中电容电压和电感电流为状态变量,建立其工作于中频状态下的状态微分方程;根据上述所建立的中频状态微分方程,得到其离散迭代映射模型;根据所得离散迭代映射模型,运用数值仿真得到Buck‑Boost逆变器工作于中频状态下实现系统稳定运行时其主电路参数的取值范围,确保基于中频状态下Buck‑Boost逆变器的稳定运行,具有重大的经济价值,并为中频状态下Buck‑Boost逆变器的主电路参数优化设计奠定基础。

Description

基于中频状态下Buck-Boost逆变器主电路参数稳定域确定 方法
技术领域
本发明属于电力电子系统稳定性分析技术领域,具体涉及一种基于中频状态下Buck-Boost逆变器主电路参数稳定域确定方法。
背景技术
Buck-Boost逆变器属于变结构强非线性系统,在一定条件下会发生分岔与混沌现象,并导致逆变器运行时出现不明电磁噪声、间歇性振荡、临界运行突然崩溃等问题,因此对其开展稳定性研究以确保其稳定运行将具有重要意义。
专利“三相异步电机调速系统主电路参数稳定域确定方法”(专利号:ZL201911063367.7)针对基于Buck-Boost矩阵变换器(BBMC)的三相异步电机调速系统提出了其BBMC逆变级中主电路参数稳定域的确定方法;然而在上述调速系统中,因其BBMC工作于低频状态,在有关BBMC逆变级主电路参数稳定域建模与分析中将各主电路器件均看作理想器件,均未考虑各主电路器件等效电阻的影响;然而当Buck- Boost逆变器工作于中频状态后,因各主电路器件等效电阻的影响不能忽略,因而上述有关BBMC逆变级主电路参数稳定域的建模与分析方法已不适用。为此,针对Buck-Boost逆变器工作于中频状态下的系统稳定性展开研究并研究确定其主电路参数的取值范围,对于确保Buck-Boost逆变器工作于中频状态下的系统稳定运行具有重要意义。
发明内容
为了解决上述技术问题,本发明提供一种基于中频状态下Buck-Boost逆变器主电路参数稳定域确定方法,采用本发明可确定Buck-Boost逆变器工作于中频状态时其主电路参数的稳定域范围。
本发明解决上述技术问题的技术方案是:一种基于中频状态下Buck-Boost逆变器主电路参数稳定域确定方法,包括以下步骤:
步骤S1,以Buck-Boost逆变器中电容电压和电感电流为状态变量,建立其工作于中频状态下的状态微分方程;因Buck-Boost逆变器的三相电路完全相同,以A相为例,A相电路包括功率开关管Q 1、 Q 2、电感L 1、电容C 1、负载电阻R 1Q 1管的漏极与直流电源的正极连接,Q 1管的源极与电感L 1的一端和Q 2管的漏极连接,电感L 1的另一端与直流电源的负极连接,Q 2管的源极与电容C 1的一端相连,电容C 1的另一端与电感L 1的另一端连接,三相负载电阻采用星型连接;鉴于三相Buck-Boost逆变器各相主电路结构完全对称,电路中各对应主电路元器件参数完全相同,因而在下列计算中将各功率开关管的通态等效电阻为R on ,电感和电容的等效电阻分别为R L R c ,负载电阻为R;Buck-Boost逆变器A相电路的状态微分方程为:
状态I:Q 1导通,Q 2关断,A相电路状态微分方程为:
(1);
状态II:Q1关断,Q2导通,A相电路状态微分方程为:
(2);
式中为系统状态向量,E为变换器输入侧直流电压,A1和A2分别为状态矩 阵,B1和B2分别为输入矩阵,具体为:
其中Ron为功率开关管通态等效电阻,Rc为电容等效电阻,RL为电感等效电阻,L、C和R分别为变换器中电感、电容及负载电阻;
步骤S2,根据步骤S1所得Buck-Boost逆变器工作于中频状态下的状态微分方程,得到其离散迭代映射模型;
步骤S3,根据步骤S2获得的离散迭代映射模型,采用数值仿真得到Buck-Boost逆变器工作于中频状态下实现系统稳定运行时其主电路参数的取值范围。
优选地,步骤S2根据Buck-Boost逆变器工作于中频状态下的状态微分方程,得到其离散迭代映射模型,具体为:
将式(1)和式(2)离散化,得到变换器的离散迭代映射模型:
(3);
式中in+1和un+1分别为(n+1)T时刻变换器的电感电流和电容电压;T为变换器中功 率开关管的开关周期;ω、β、p、q、a、b、c均为中间变量,分别为:,;t1=dT为功率开关管在第(n +1)个开关周期T内的导通时间,t2=(1-d)T为功率开关管在第(n+1)个开关周期T内的关断 时间,d为功率开关的占空比,具体为:;in和un分别为nT时刻变换器的电感电 流和电容电压。
优选地,步骤S3根据步骤S2获得的离散迭代映射模型,采用数值仿真得到Buck-Boost逆变器工作于中频状态下实现系统稳定运行时其主电路参数的取值范围,其具体步骤为:
步骤S301,设置系统参数,包括:负载电阻R,电感L和电容C的等效电阻RL、RC,功率开 关管通态等效电阻Ron及开关周期T,最大迭代次数N,最大偏差,电感参考电流iLref,迭代次 数n初值为1;
步骤S302,选择Buck-Boost逆变器中电感和电容任一参数为变化参数X,另一个参数保持不变,令变化参数X初值为0,并取ΔX为变化参数步长;
步骤S303,通过式(3)计算得到(n+1)T时刻的电感电流in+1和电容电压un+1
步骤S304,判断是否同时满足;若是,则系统处于稳定状 态,执行步骤S307,否则,执行步骤S305
步骤S305,判断迭代次数n是否大于N,若是,则执行步骤S306;否则,迭代次数n加1,并返回步骤S303
步骤S306,变化参数X加上设定步长ΔX,迭代次数n返回为1,返回步骤S303
步骤S307,令此时对应的变化参数X为其下限值Xmin,即:Xmin=X;
步骤S308,令变化参数X以Xmin为初值依次递增,并根据步骤S303至步骤S306所述 方法判断系统在该参数下是否稳定,若是则继续递增,直到系统出现不稳定为止,令此时对 应的变化参数值为上限值,即:Xmax=X,从而得到系统稳定运行时该参数的取值范围(Xmin, Xmax)。
与现有技术相比,本发明的有益效果是:本发明以Buck-Boost逆变器中电容电压和电感电流为状态变量,建立其工作于中频状态下的状态微分方程;根据上述所建立的中频状态微分方程,得到其离散迭代映射模型;根据所得离散迭代映射模型,运用数值仿真得到中频状态下Buck-Boost逆变器稳定运行时的主电路参数取值范围,确保基于中频状态下Buck-Boost逆变器的稳定运行,具有重大的经济价值,并为中频状态下Buck-Boost逆变器的主电路参数优化设计奠定基础。
附图说明
图1为本发明中三相Buck-Boost逆变器主电路等效电路的拓扑结构图;
图2为本发明的流程图。
具体实施方式
下面结合附图和实施例对本发明做进一步的详细说明。
图1为本发明提供的三相Buck-Boost逆变器主电路等效电路的拓扑结构图。该变换器由3组结构完全相同的Buck-Boost升降压电路采用相位交错并联的方式构成,包括功率开关管Q1~Q6、电感L1~L3、电容C1~C3,三相负载电阻R1~R3,功率开关管通态等效电阻Ron1~Ron6,电容等效电阻Rc1~Rc3,电感等效电阻RL1~RL3;所述全控型功率开关拟采用MOS管;以A相电路为例:Q1管的漏极与直流电源的正极连接,Q1管的源极与电感L1的一端和Q2管的漏极连接,电感L1的另一端与直流电源的负极连接,Q2管的源极与电容C1的一端相连,电容C1的另一端与电感L1的另一端连接,三相负载电阻采用星型连接。
鉴于三相Buck-Boost逆变器各相主电路结构完全对称,电路中各对应主电路元器件参数完全相同,因而在下列计算中可设各功率开关管的通态等效电阻为Ron,电感和电容的等效电阻分别为RL和Rc
图2为本发明提供的一种基于中频状态下Buck-Boost逆变器主电路参数稳定域确定方法流程图。包括如下步骤:
步骤S1,鉴于Buck-Boost逆变器由三个结构相同的Buck-Boost DC/DC变换器组成,以A相为例,建立A相电路的状态微分方程,具体如下:
状态I:Q1导通,Q2关断,A相电路状态微分方程为:
(1);
状态II:Q1关断,Q2导通,A相电路状态微分方程为:
(2);
式中为系统状态向量,E为变换器输入侧直流电压,A1和A2分别为状态矩 阵,B1和B2分别为输入矩阵,具体为:
其中Ron为功率开关管通态等效电阻,Rc为电容等效电阻,RL为电感等效电阻,L、C和R分别为变换器中电感、电容及负载电阻。
步骤S2,根据步骤S1所得Buck-Boost逆变器工作于中频状态下的状态微分方程,得到其离散迭代映射模型,具体如下:
由式(1)、(2)得到变换器的离散迭代映射模型:
(3);
式中in+1和un+1分别为(n+1)T时刻变换器中的电感电流和电容电压;T为变换器中 功率开关管的开关周期;ω、β、p、q、a、b、c均为中间变量,分别为:,;t1=dT为功率开关管在第(n +1)个开关周期T内的导通时间,t2=(1-d)T为功率开关管在第(n+1)个开关周期T内的关断 时间,d为功率开关管的占空比,具体为:;in和un分别为nT时刻变换器的电感 电流和电容电压。
步骤S3,根据步骤S2获得的离散迭代映射模型,采用数值仿真得到基于中频状态下Buck-Boost逆变器稳定运行时其主电路参数的取值范围,其具体步骤为:
步骤S301,设置系统参数,包括:负载电阻R,电感L和电容C的等效电阻RL、RC,功率开 关管通态等效电阻Ron及开关周期T,最大迭代次数N,最大偏差,电感参考电流iLref,迭代次 数n初值为1;
步骤S302,选择Buck-Boost逆变器中电感和电容任一参数为变化参数X,另一个参数保持不变,令变化参数X初值为0,并取ΔX为变化参数步长;
步骤S303,通过式(3)计算得到(n+1)T时刻的电感电流in+1和电容电压un+1
步骤S304,判断是否同时满足;若是,则系统处于稳定状 态,执行步骤S307,否则,执行步骤S305
步骤S305,判断迭代次数n是否大于N,若是,则执行步骤S306;否则,迭代次数n加1,并返回步骤S303
步骤S306,变化参数X加上设定步长ΔX,迭代次数n返回为1,返回步骤S303
步骤S307,令此时对应的变化参数X为其下限值Xmin,即:Xmin=X;
步骤S308,令变化参数X以Xmin为初值依次递增,并根据步骤S303至步骤S306所述 方法判断系统在该参数下是否稳定,若是则继续递增,直到系统出现不稳定为止,令此时对 应的变化参数值为上限值,即:Xmax=X,从而得到系统稳定运行时该参数的取值范围(Xmin, Xmax);根据所确定的电感L和电容C取值范围,实现基于中频状态下Buck-Boost逆变器的稳 定运行。

Claims (1)

1.一种基于中频状态下Buck-Boost逆变器主电路参数稳定域确定方法,其特征在于,包括以下步骤:
S1,以Buck-Boost逆变器中电容电压和电感电流为状态变量,建立其工作于中频状态下的状态微分方程;因Buck-Boost逆变器的三相电路完全相同,其中A相电路包括功率开关管Q 1、 Q 2、电感L 1、电容C 1、负载电阻R 1Q 1管的漏极与直流电源的正极连接,Q 1管的源极与电感L 1的一端和Q 2管的漏极连接,电感L 1的另一端与直流电源的负极连接,Q 2管的源极与电容C 1的一端相连,电容C 1的另一端与电感L 1的另一端连接,三相负载电阻采用星型连接;鉴于三相Buck-Boost逆变器各相主电路结构完全对称,电路中各对应主电路元器件参数完全相同,因而在下列计算中将各功率开关管的通态等效电阻为R on ,电感和电容的等效电阻分别为R L R c ,负载电阻为R;Buck-Boost逆变器Buck-Boost逆变器A相电路的状态微分方程为:
状态I:Q 1导通,Q 2关断,A相电路状态微分方程为:
(1);
状态II:Q1关断,Q2导通,A相电路状态微分方程为:
(2);
式中:为系统状态向量,E为变换器输入侧直流电压,A1和A2分别为状态矩阵,B1和B2分别为输入矩阵,具体为:
,/>
,/>
其中Ron为功率开关管通态等效电阻,Rc为电容等效电阻,RL为电感等效电阻,L、C和R分别为变换器中电感、电容及负载电阻;
S2,根据步骤S1所得Buck-Boost逆变器工作于中频状态下的状态微分方程,得到其离散迭代映射模型;具体步骤如下:
将式(1)和式(2)离散化,得到变换器的离散迭代映射模型:
(3);
式中:in+1和un+1分别为(n+1)T时刻变换器中的电感电流和电容电压;T为变换器中功率开关管的开关周期;ω、β、p、q、a、b、c均为中间变量,分别为:,/>,,/>,/>,/>;t1=dT为功率开关管在第(n+1)个开关周期T内的导通时间,t2=(1-d)T为功率开关管在第(n+1)个开关周期T内的关断时间,d为功率开关的占空比,具体为:/>;iLref为电感参考电流,in和un分别为nT时刻变换器中的电感电流和电容电压;
S3,根据步骤S2获得的离散迭代映射模型,采用数值仿真得到Buck-Boost逆变器工作于中频状态下实现系统稳定运行时其主电路参数的取值范围;具体步骤如下:
步骤S301,设置系统参数,包括:负载电阻R,电感L和电容C的等效电阻RL、RC,功率开关管通态等效电阻Ron及开关周期T,最大迭代次数N,最大偏差,电感参考电流iLref,迭代次数n初值为1;
步骤S302,选择Buck-Boost逆变器中电感和电容任一参数为变化参数X,另一个参数保持不变,令变化参数X初值为0,并取ΔX为变化参数步长;
步骤S303,通过式(3)计算得到(n+1)T时刻的电感电流in+1和电容电压un+1
步骤S304,判断是否同时满足和/>;若是,则系统处于稳定状态,执行步骤S307,否则,执行步骤S305
步骤S305,判断迭代次数n是否大于N,若是,则执行步骤S306;否则,迭代次数n加1,并返回步骤S303
步骤S306,变化参数X加上设定步长ΔX,迭代次数n返回为1,返回步骤S303
步骤S307,令此时对应的变化参数X为其下限值Xmin,即:Xmin=X;
步骤S308,令变化参数X以Xmin为初值依次递增,并根据步骤S303至步骤S306所述方法判断系统在该参数下是否稳定,若是则继续递增,直到系统出现不稳定为止,令此时对应的变化参数值为上限值,即:Xmax=X,从而得到系统稳定运行时该参数的取值范围(Xmin, Xmax)。
CN202311575734.8A 2023-11-24 2023-11-24 基于中频状态下Buck-Boost逆变器主电路参数稳定域确定方法 Active CN117294161B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311575734.8A CN117294161B (zh) 2023-11-24 2023-11-24 基于中频状态下Buck-Boost逆变器主电路参数稳定域确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311575734.8A CN117294161B (zh) 2023-11-24 2023-11-24 基于中频状态下Buck-Boost逆变器主电路参数稳定域确定方法

Publications (2)

Publication Number Publication Date
CN117294161A CN117294161A (zh) 2023-12-26
CN117294161B true CN117294161B (zh) 2024-02-09

Family

ID=89241011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311575734.8A Active CN117294161B (zh) 2023-11-24 2023-11-24 基于中频状态下Buck-Boost逆变器主电路参数稳定域确定方法

Country Status (1)

Country Link
CN (1) CN117294161B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330091A (ja) * 2006-05-10 2007-12-20 Masatoshi Imori 共振回路から生成される直流電圧を安定化する帰還回路の構成法
CN110690842A (zh) * 2019-10-31 2020-01-14 湖南科技大学 三相异步电机调速系统主电路参数稳定域确定方法
CN115313899A (zh) * 2022-08-26 2022-11-08 湖南科技大学 一种低纹波可调直流稳压电源及其控制方法
CN116522580A (zh) * 2023-02-22 2023-08-01 广东轻工职业技术学院 一种Buck-Boost中频逆变主电路参数优选方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3010151B1 (en) * 2014-10-14 2020-09-02 Apple Inc. Method and apparatus for a buck converter with pulse width modulation and pulse frequency modulation mode
CN110086339B (zh) * 2019-04-25 2020-06-23 湖南科技大学 基于分段延迟反馈控制的Buck-Boost变换器控制参数稳定域确定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330091A (ja) * 2006-05-10 2007-12-20 Masatoshi Imori 共振回路から生成される直流電圧を安定化する帰還回路の構成法
CN110690842A (zh) * 2019-10-31 2020-01-14 湖南科技大学 三相异步电机调速系统主电路参数稳定域确定方法
CN115313899A (zh) * 2022-08-26 2022-11-08 湖南科技大学 一种低纹波可调直流稳压电源及其控制方法
CN116522580A (zh) * 2023-02-22 2023-08-01 广东轻工职业技术学院 一种Buck-Boost中频逆变主电路参数优选方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A novel low-ripple interleaved buck–boost converter with high efficiency and low oscillation for fuel-cell applications;Vahid Samavatian et al;《Electrical Power and Energy Systems》;第63卷;全文 *
Buck-Boost 矩阵变换器主电路参数随电流定额的自适应优选方法;刘继 等;信息与控制;第48卷(第5期);全文 *
高频磁集成Buck-Boost稳定运行参数域研究;熊山;刘晓;郝腾飞;;电力电子技术(第12期);全文 *

Also Published As

Publication number Publication date
CN117294161A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
CN113179024B (zh) 三移相双有源全桥直流变换器离散迭代预测控制模型
CN111600492A (zh) 一种双有源全桥直流变换器的效率优化控制方法
CN107070254A (zh) 一种Buck‑Boost矩阵变换器参数优化方法及装置
CN117294161B (zh) 基于中频状态下Buck-Boost逆变器主电路参数稳定域确定方法
Winter et al. Average model of a synchronous half-bridge DC/DC converter considering losses and dynamics
Rajakumari et al. Comparative analysis of DC-DC converters
CN111030454B (zh) 一种SIDO Buck开关变换器及数字控制方法
Zhu et al. Optimal fractional-order PID control of chaos in the fractional-order BUCK converter
CN111740632B (zh) 一种准z源逆变器离散时间平均模型预测控制装置及方法
CN116667682A (zh) 一种lcc谐振变换器的zvs条件优化及自适应死区控制方法
Reatti et al. PWM switch model of a buck-boost converter operated under discontinuous conduction mode
Podey et al. Stability analysis of DC-DC boost converter using sliding mode controller
Mobin et al. Simulation method for DSP-controlled active PFC high-frequency power converters
Shenbagalakshmi et al. Closed loop control of soft switched interleaved buck converter
Tripathi et al. Hardware-in-the-loop (hil) integrated design platform for high-frequency controller development of wbg power converters
CN109657338B (zh) 一种新颖的三相电压型变流器的逻辑切换建模方法
CN115496032A (zh) 一种碳化硅mosfet开关过程分析方法
Suciu et al. Switched capacitor fuzzy control for power factor correction in inductive circuits
CN116667638B (zh) 基于ZVS四开关Buck-Boost电路的线性-非线性峰值电流控制策略
Dhanasekar et al. Design and simulation of pi control for positive output triple lift Luo converter
CN112366937A (zh) 一种升降压Cuk双谐振开关电容变换器
Lu et al. Sigmoid Function Model for a PWM DC-DC Converter
Krishna et al. Design and analysis of PI like fuzzy logic controlled buck converter
Chen et al. System modeling and stability design for peak current-mode buck power converter
Eshtehardiha et al. Optimizing the classic controllers to improve the Cuk converter performance based on genetic algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant