WO2020215499A1 - 一种变频式的发动机 - Google Patents

一种变频式的发动机 Download PDF

Info

Publication number
WO2020215499A1
WO2020215499A1 PCT/CN2019/095984 CN2019095984W WO2020215499A1 WO 2020215499 A1 WO2020215499 A1 WO 2020215499A1 CN 2019095984 W CN2019095984 W CN 2019095984W WO 2020215499 A1 WO2020215499 A1 WO 2020215499A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
heat
condenser tube
air
tube
Prior art date
Application number
PCT/CN2019/095984
Other languages
English (en)
French (fr)
Inventor
虞文武
张波
陶国正
刘伟
Original Assignee
常州机电职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州机电职业技术学院 filed Critical 常州机电职业技术学院
Publication of WO2020215499A1 publication Critical patent/WO2020215499A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0021Construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0065Shape of casings for other machine parts and purposes, e.g. utilisation purposes, safety
    • F02F7/007Adaptations for cooling

Definitions

  • the invention relates to the field of engines, in particular to a variable frequency engine.
  • the radiator in the engine water cooling system consists of three parts: the water inlet chamber, the water outlet chamber and the radiator core. Coolant flows in the radiator core, and air passes outside the radiator core. The hot coolant becomes cold by dissipating heat to the air, and the cold air heats up by absorbing the heat from the coolant.
  • the radiator is also a heat exchanger.
  • Existing engine heat dissipation structures have certain defects. For example, multi-cylinder engines generally adopt integrated installation, connecting various parts of the engine (such as exhaust pipes, casings, oil cylinders, etc.) through water channels, and then dissipating heat. , The heat dissipation efficiency of this process is low, and it is easy to cause the temperature in the high temperature area to affect the components in the low temperature area.
  • the object of the present invention is to provide a variable frequency engine to solve the problems raised in the background art.
  • a frequency conversion engine comprising an upper casing and a lower casing, the upper casing and the lower casing are fixedly connected, the upper casing is a symmetrical structure, and the upper casing Covers protruding outward are fixedly installed on both sides, the upper end surface of the cover is fixedly installed with a valve structure, and the valve structure is a square box structure;
  • a valve adjusting mechanism is installed on the upper end surface of the valve structure, a cylinder set is provided in the valve structure, and an air port is opened in the cylinder set;
  • An air guide tube is fixedly installed on the air port.
  • the air guide tube has an arc structure.
  • One end of the air guide tube is provided with an exhaust hole.
  • the air guide tube is located in the inner cavity of the valve structure, and the exhaust hole is located on the outer side wall of the valve structure.
  • An exhaust pipe assembly is connected to the outside of the structure;
  • the exhaust pipe assembly includes a gas collecting pipe and a discharge pipe.
  • the gas collecting pipe has a square tube structure.
  • the gas collecting pipe is provided with an air port, the air port is connected with the exhaust hole, the air port is connected with the discharge pipe, and the adjacent exhaust pipes are connected with each other.
  • a guide tube is connected between the discharge pipe and the air port.
  • the guide tube has a variable cross-section structure, and a radiator is connected to the lower shell through a condenser tube.
  • the bottom of the lower shell has a convex arc structure, a semi-cylindrical convex part is fixedly installed on the side wall of the inner cavity of the lower shell, and a reinforcing rib is fixedly installed on the outer side wall of the convex part.
  • the condenser tube includes a first condenser tube and a second condenser tube.
  • the first condenser tube and the second condenser tube are both arranged in a semicircular manner.
  • the first condenser tube and the second condenser tube are in communication with each other.
  • the tube is located on the bottom end surface of the lower shell, and the second condenser tube is located on the side of the lower shell and is evenly distributed on the side wall of the convex portion.
  • the valve adjustment structure includes a valve and an adjustment shaft, the valve is fixedly connected with the adjustment shaft, the adjustment shaft is rotationally connected with the valve structure, the valve and the adjustment shaft are perpendicular to each other, and the valve is located in the port.
  • a first heat conducting fin is fixedly installed on the top of the inner cavity of the upper shell
  • a second heat conducting fin is fixedly installed on the outer end surface of the upper shell
  • the first heat generating fin and the second heat conducting fin are connected to each other.
  • the installation density of the first heat-conducting fin is greater than that of the second heat-conducting fin, the second heat-conducting fin has a triangular structure, and the angle between the second heat-conducting fin and the end surface of the upper shell is between 15-30 degrees.
  • it further includes a rotating shaft, the outer side wall of the rotating shaft is fixedly connected with a driving wheel, and the inner side of the rotating shaft is fixedly connected with a crankshaft.
  • one of the cylinder sets is provided with two air ports, and the air guide pipes on the cylinder set are staggered.
  • the radiator includes a waterproof valve, a coolant adding pump, a through pipe and a fan cover;
  • a plate radiator, a waterproof valve, a coolant adding pump, and a through pipe are installed in the inner cavity of the radiator to communicate with the plate radiator.
  • the fan cover is embedded on the outer surface of the radiator, a filter plate is installed on the inner surface of the fan cover, and a heat dissipation fan is fixedly installed on the outside of the fan cover.
  • the frequency conversion engine of the present invention divides the heat dissipation area, focusing on the exhaust pipe, valve structure and upper and lower shells. Each area performs independent heat dissipation without affecting each other. In this way, for each independent area, The heat dissipation efficiency has been improved, especially when it comes to frequency conversion engines, forming a good periodic heat dissipation effect;
  • variable frequency engine of the present invention for a multi-cylinder engine, a gas collecting pipe is used for collection first, and then a separate pipeline is used for drainage. The most important thing is to adopt a variable cross-section structure between the two The guide tube is connected;
  • each independent pipe itself can use a larger contact area with the exhaust gas to dissipate heat, and then merge into the pipeline of the next stage, thereby reducing the temperature of the exhaust gas after the round.
  • the effect is to form a turbulent effect in the exhaust gas flow channel, change the speed and direction of the exhaust gas, increase the turbulence of the exhaust gas itself, and thereby improve the heat exchange efficiency of the exhaust gas.
  • Figure 1 is a schematic diagram of the overall structure of the present invention.
  • Figure 2 is a schematic diagram of the upper shell structure of the present invention.
  • Fig. 3 is a schematic diagram of the lower housing structure of the present invention.
  • Figure 4 is a schematic diagram of the valve structure of the present invention.
  • Figure 5 is a schematic diagram of the airway structure of the present invention.
  • Figure 6 is a schematic diagram of the structure of the radiator of the present invention.
  • Figure 7 is a schematic diagram of the exhaust pipe structure of the present invention.
  • the present invention provides a variable frequency engine as shown in Figures 1-7, comprising an upper casing 8 and a lower casing 2, the upper casing 8 and the lower casing 2 are fixedly connected, as shown in Figs. 1 and 2 ,
  • the upper shell 8 has a symmetrical structure. Both sides of the upper shell 8 are fixedly installed with outwardly protruding covers.
  • the advantage of the symmetrical structure of the upper shell 8 is that it is beneficial to the stability of the airflow inside the engine, because the upper The inside of both sides of the shell is a cylinder structure, which will cause air pressure when the cylinder is working.
  • the symmetrical structure is beneficial to the air pressure difference on both sides of the link.
  • the valve adjusting structure includes a valve 7 and an adjusting shaft 6.
  • the valve 7 is fixedly connected with the adjusting shaft 6, the adjusting shaft 6 is rotatably connected with the valve structure 9, the valve 7 and the adjusting shaft 6 are perpendicular to each other, and the valve 7 is located in the air inlet 94.
  • the valve adjusting structure is externally arranged on the outside of the engine casing to make it work independently, and the heat generated by it will not burden the engine's own heat dissipation function.
  • It also includes a rotating shaft 4, the outer wall of the rotating shaft 4 is fixedly connected with a driving wheel 3, the inner side of the rotating shaft 4 is fixedly connected with a crankshaft, and the crankshaft cooperates with a cylinder for transmission to drive the rotating shaft 4 and the driving wheel 3 to rotate, converting heat energy into mechanical energy.
  • the top of the inner cavity of the upper shell 8 is fixedly installed with a first thermally conductive fin 83, and the outer end surface of the upper shell 8 is fixedly installed with a second thermally conductive fin 81.
  • the two thermally conductive fins 81 are connected to each other.
  • the mounting density of the first thermally conductive fins 83 is greater than that of the second thermally conductive fins 81.
  • the second thermally conductive fins 81 have a triangular structure. The angle is between 15-30 degrees.
  • the hot air pool rises to the top of the upper shell 8, and the first heat conducting fin 83
  • the first heat-conducting fin 83 enlarges its contact area with a larger density setting, thereby improving heat exchange efficiency, and transferring heat energy to the external second heat-conducting fin 81 for natural heat dissipation, which is worth mentioning
  • the heat conduction fins installed here and the condenser tube installed in the lower shell form a synergy. The reason is that the hot air after the initial heat dissipation of the condenser tube acts on the heat conduction fins, and the heat transfer efficiency will be higher.
  • the bottom of the lower shell 2 is a convex arc structure
  • the side wall of the inner cavity of the lower shell 2 is fixedly mounted with a convex part 24 of a semi-cylindrical structure
  • the outer side wall of the convex part 24 The condensing tube includes a first condensing tube 21 and a second condensing tube 23.
  • the first condensing tube 21 and the second condensing tube 23 are arranged in a semicircular manner.
  • the first condensing tube 21 and the second condensing tube 23 are in communication with each other, the first condenser tube 21 is located on the bottom end surface of the lower shell 2, and the second condenser tube 23 is located on the side of the lower shell 2 and is evenly distributed on the side wall of the convex portion 24.
  • the structure of the lower shell 2 provides an installation platform with a larger contact area for the condenser tube.
  • the normal hot gas flow channel should be introduced from the top of the upper shell 8 on both sides, and the direct contact is the lower shell 2.
  • the bottom end surface, and the arc-shaped bottom end surface helps to divert the hot air. In the diversion, the hot air will follow the surface of the lower shell 2 and diffuse in an equal pressure manner, thereby exchanging heat with the condenser tube. After the heat exchange, the hot air will continue. It merges into the top middle of the upper shell 8.
  • a valve structure 9 is fixedly installed on the upper end surface of the cover body.
  • the valve structure 9 is a square box structure.
  • the upper end surface of the valve structure 9 is equipped with a valve adjustment mechanism.
  • the valve structure 9 is provided with a cylinder set 82, such as As shown in Figure 5, the cylinder kit 82 is provided with an air port 821, and an air guide tube 93 is fixedly installed on the air port 821.
  • the air guide tube 93 has an arc structure.
  • One end of the air guide tube 93 is provided with an exhaust hole 91.
  • the air guide tube 93 is located in the valve structure In the inner cavity of 9, the exhaust hole 91 is located on the outer side wall of the valve structure 9.
  • the function of the air duct 93 is to guide the exhaust gas discharged from each independent air port 821 and integrate all the exhaust gas outlets on both sides of the valve structure 9. Convenient collection and concentrated heat source on the side wall.
  • One cylinder assembly 82 is provided with two air ports 821, and the air ducts 93 on the cylinder assembly 82 are installed in a staggered manner.
  • each air port 821 individually corresponds to an air duct 93, and heat insulation between the air ducts 93 is beneficial to prevent the heat energy from leaking out, and is also beneficial to divert the exhaust gas.
  • the lower housing 2 is connected to the radiator 10 through a condenser tube. Since the upper and lower housings jointly enclose the engine cavity, and there are cylinder components on the upper part of the housing, the air pressure is relatively high, even hot air will be It is pressed to the lower part of the engine cavity, so the heat dissipation effect of adding a condenser tube to the lower shell is better.
  • the radiator 10 includes a waterproof valve 11, a coolant addition pump 13, a through pipe 12, and a fan cover 14.
  • a plate radiator is installed in the inner cavity of the radiator 10, and the waterproof valve 11, the coolant addition pump 13 and the through pipe 12 are all In communication with the plate radiator, a fan cover 14 is embedded on the outer surface of the radiator 10, a filter plate is installed on the inner surface of the fan cover 14, and a heat dissipation fan is fixedly installed on the outer side of the fan cover 14.
  • the radiator 10 is essentially an improvement on the basis of the existing plate radiator.
  • the cooling liquid output by the condenser tube in the lower housing 2 is centrally exchanged, and the radiator 10 is in an independent unit.
  • the structure of the coolant adding pump 13 is additionally added. In practical applications, this structure is easier to manage.
  • the existing engine cooling system such as a car
  • an exhaust pipe assembly 910 is connected to the outside of the valve structure 9.
  • the exhaust pipe 910 assembly includes a gas collecting pipe 96 and a discharge pipe 95.
  • the gas collecting pipe 96 has a square tube structure, and the gas collecting pipe 96 is provided with an air inlet. 94.
  • the air inlet 94 is butted with the exhaust hole 91, the air inlet 94 is connected with the discharge pipe 95, the adjacent exhaust pipes 95 are butted with each other, and a guide pipe 92 is connected between the discharge pipe 95 and the air inlet 94 to guide
  • the tube 92 has a variable cross-section structure.
  • the function of the guide tube 92 is to form a turbulent effect in the exhaust gas flow channel, change the speed and direction of the exhaust gas, increase the turbulence of the exhaust gas itself, and thereby improve the heat exchange efficiency of the exhaust gas. It is worth mentioning that there is no additional heat-conducting component at the discharge pipe 95 because, in actual work, SCR exhaust gas treatment equipment will be added here. This equipment requires a certain temperature when processing the exhaust gas, and after the structure dissipates heat The temperature can be used directly here.
  • the heat dissipation of the exhaust end is divided into two main areas.
  • One is the inside of the valve structure 9 and the exhaust pipe 910.
  • two ports 821 are opened on the cylinder kit 82, and the air guide pipe 93 is used in two pairs.
  • the two air ports 821 are used to separate the exhaust gas to separate the exhaust gas to both sides of the valve structure 9.
  • exhaust pipes 910 are used to centrally discharge the exhaust gas ends on both sides of the valve structure 9. In this stage, the overall exhaust gas is divided into three times, which improves its heat dissipation efficiency and adapts to the working process of the variable frequency engine.
  • the second is the heat dissipation of the engine cavity, which mainly includes two aspects.
  • the first is the heat dissipation of the upper casing 8.
  • the inner and outer sides of the upper casing 8 are respectively installed with fins that contact and conduct heat;
  • the second is the lower casing 2.
  • the two technical means cooperate with each other to conform to the distribution of hot air flow inside the engine and improve the heat dissipation effect of the engine shell. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

一种变频式的发动机,包括上壳体(8)以及下壳体(2),上壳体(8)为对称式结构,上壳体(8)的两侧均固定安装有向外凸出的罩体,罩体的上端面固定安装有气门结构(9),气门结构(9)为方箱式结构,气门结构(9)的上端面安装有气门调节机构,气门结构(9)内设有气缸套件(82),气缸套件(82)内开设有气口(821),气口(821)上固定安装有导气管(93),导气管(93)的一端开设有排气孔(91),气门结构(9)的外侧连接有排气管(910)组件。

Description

一种变频式的发动机 技术领域
本发明涉及发动机领域,特别涉及一种变频式的发动机。
背景技术
发动机水冷系统中的散热器由进水室、出水室及散热器芯等三部分构成。冷却液在散热器芯内流动,空气在散热器芯外通过。热的冷却液由于向空气散热而变冷,冷空气则因吸收冷却液散出的热量而升温,散热器也是一个热交换器。现有的发动机散热结构存在一定的缺陷,例如,多缸式发动机,一般采用集成式安装,将发动机的各部件(比如排气管、壳体、油缸等)通过水路连接在一起,再进行散热,此过程散热效率低,而且容易导致高温区域的温度影响低温区域组件。
因此,发明一种变频式的发动机来解决上述问题很有必要。
发明内容
本发明的目的在于提供一种变频式的发动机,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种变频式的发动机,包括上壳体以及下壳体,上壳体与下壳体固定连接,上壳体为对称式结构,上壳体的两侧均固定安装有向外凸出的罩体,罩体的上端面固定安装有气门结构,气门结构为方箱式结构;
所述气门结构的上端面安装有气门调节机构,气门结构内设有气缸套件,气缸套件内开设有气口;
所述气口上固定安装有导气管,导气管为弧形结构,导气管的一端开设有排气孔,导气管位于气门结构的内腔中,排气孔位于气门结构的外部侧壁上,气门结构的外侧连接有排气管组件;
所述排气管组件包括有集气管以及排放管,集气管为方形管结构,集气 管上开设有气口,气口与排气孔对接,气口与排放管连通,相邻的排气管相互对接,且在排放管与气口之间还连接有导向管,导向管为变截面式结构,下壳体上通过冷凝管连接有散热器。
优选的,所述下壳体的底部为外凸的弧形结构,下壳体内腔的侧壁上固定安装有半圆柱体结构的凸部,凸部的外部侧壁上固定安装有加强筋。
优选的,所述冷凝管包括有第一冷凝管和第二冷凝管,第一冷凝管和第二冷凝管均呈半圆式排布,第一冷凝管与第二冷凝管相互连通,第一冷凝管位于下壳体的底部端面,第二冷凝管位于下壳体的侧部,且均匀分布于凸部的侧壁上。
优选的,所述气门调节结构包括气门以及调节轴,气门与调节轴固定连接,调节轴与气门结构转动连接,气门与调节轴相互垂直,气门位于气口内。
优选的,所述上壳体的内腔顶部固定安装有第一导热翅片,上壳体的外侧端面上固定安装有第二导热翅片,第一发热翅片与第二导热翅片相互连接;
第一导热翅片的安装密度大于第二导热翅片,第二导热翅片为三角型结构,且第二导热翅片与上壳体端面的角度在15-30度之间。
优选的,还包括转轴,转轴外侧壁上固定连接有驱动轮,转轴的内侧固定连接有曲轴。
优选的,一个所述气缸套件上设有两个气口,气缸套件上的导气管交错安装。
优选的,所述散热器包括有防水阀、冷却液添加泵、通管以及风扇罩;
散热器的内腔中安装有板式散热器、防水阀、冷却液添加泵以及通管均与板式散热器连通。
优选的,所述风扇罩嵌设在散热器的外表面,风扇罩的内侧表面安装有滤板,风扇罩的外侧固定安装有散热风扇。
本发明的技术效果和优点:
1、本发明的变频式发动机将散热区域进行划分,重点放在排气管、气门结构以及上下壳体上,各区域进行独立散热,互不影响,如此一来,对每个独立的区域,散热效率得到了提高,尤其是涉及变频式发动机,形成一个良好的周期性的散热效果;
2、本发明的变频式发动机在排气管结构上,对于多缸式发动机,先采用集气管进行收集,再采用独立的管道进行引流,最重要的是在两者之间采用变截面式结构的导向管进行对接;
3、本发明的变频式发动机在工作中,每根独立的管道自身可以利用与废气较大接触面积进行散热,再汇入下一阶段的管道中,从而降低回合后的废气温度,另外导向管的作用在于,在废气流道中形成扰流作用,改变废气的速度与方向,增加废气自身的湍流度,从而提高废气的换热效率。
附图说明
图1为本发明整体结构示意图。
图2为本发明上壳体结构示意图。
图3为本发明下壳体结构示意图。
图4为本发明气门结构示意图。
图5为本发明导气管结构示意图。
图6为本发明散热器结构示意图。
图7为本发明排气管结构示意图。
图中:2、下壳体;21、第一冷凝管;23、第二冷凝管;24、凸部;3、驱动轮;4、转轴;6、调节轴;7、气门;8、上壳体;81、第二导热翅片;82、气缸套件;821、气口;83第一导热翅片;9、气门结构;91、排气孔;910、排气管;92.导向管;93、导气管;94、入气口;95、排放管;96、集气管;10、散热器;11、防水阀;12、通管;13、冷却液添加泵;14、风扇罩。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了如图1-7所示的一种变频式的发动机,包括上壳体8以及下壳体2,上壳体8与下壳体2固定连接,如图1以及图2所示,上壳体8为对称式结构,上壳体8的两侧均固定安装有向外凸出的罩体,上壳体8对称式结构的好处在于,有利于发动机内部气流的稳定,因为上壳体两侧内部为气缸结构,在气缸工作时,会造成气压,对称结构有利于环节两侧的气压差。
气门调节结构包括气门7以及调节轴6气门7与调节轴6固定连接,调节轴6与气门结构9转动连接,气门7与调节轴6相互垂直,气门7位于入气口94内。参照图1,将气门调节结构外置与发动机壳体的外侧,使其独立工作,其产生的热能不会对发动机自身的散热功能造成负担。
还包括转轴4,转轴4外侧壁上固定连接有驱动轮3,转轴4的内侧固定连接有曲轴,曲轴配合气缸进行传动从而带动转轴4以及驱动轮3进行旋转,将热能转化成机械能。
如图2所示,上壳体8的内腔顶部固定安装有第一导热翅片83,上壳体8的外侧端面上固定安装有第二导热翅片81,第一发热翅片83与第二导热翅片81相互连接,第一导热翅片83的安装密度大于第二导热翅片81,第二导热翅片81为三角型结构,且第二导热翅片81与上壳体8端面的角度在15-30度之间。参照图1以及图2所示,从腔体内的热气流场进行考虑,在被下壳体冷凝管携带走一部分热量之后,热气汇中上升至上壳体8的顶部,与第一导热翅片83直接接触,第一导热翅片83通过较大密度的设置扩大与其的接触面积,从而提高换热效率,并将热能传导至外置的第二导热翅片81上,进 行自然散热,值得一提的是该处安装的导热翅片与下壳体内安装的冷凝管形成了协同作用,原因为,在冷凝管进行初步散热之后的热空气作用于导热翅片上,其传热效率会更高。
如图3所示,下壳体2的底部为外凸的弧形结构,下壳体2内腔的侧壁上固定安装有半圆柱体结构的凸部24,凸部24的外部侧壁上固定安装有加强筋,冷凝管包括有第一冷凝管21和第二冷凝管23,第一冷凝管21和第二冷凝管23均呈半圆式排布,第一冷凝管21与第二冷凝管23相互连通,第一冷凝管21位于下壳体2的底部端面,第二冷凝管23位于下壳体2的侧部,且均匀分布于凸部24的侧壁上。下壳体2的结构给冷凝管提供了一个接触面积更大的安装平台,正常热气的流道应是,从上壳体8的顶部两侧对中导入,直接接触的是下壳体2的底端面,而设置成弧形的底端面有助于热气进行分流,在分流中热气会跟随下壳体2表面进行等压式扩散,从而与冷凝管进行换热,换热后的热气会继续汇入上壳体8的顶端中部。
如图4所示,罩体的上端面固定安装有气门结构9,气门结构9为方箱式结构,气门结构9的上端面安装有气门调节机构,气门结构9内设有气缸套件82,如图5所示,气缸套件82内开设有气口821,气口821上固定安装有导气管93,导气管93为弧形结构,导气管93的一端开设有排气孔91,导气管93位于气门结构9的内腔中,排气孔91位于气门结构9的外部侧壁上,导气管93的作用在于对每个独立气口821排放的废气进行导出,并将废气出口全部整合在气门结构9的两侧壁上方便收集以及热源集中。
一个气缸套件82上设有两个气口821,气缸套件82上的导气管93交错安装。参照图5,每个气口821单独对应一个导气管93,导气管93之间进行隔热,有利于阻止热能外泄,并且还有利于对尾气进行分流。
如图6所示,下壳体2上通过冷凝管连接有散热器10,由于上下壳体共同围设出发动机腔体,并且在其上部有气缸组件,气压较大,即使是热气也 会被压向发动机腔体下部,所以在下壳体上增设冷凝管的散热效果更佳好。
散热器10包括有防水阀11、冷却液添加泵13、通管12以及风扇罩14,散热器10的内腔中安装有板式散热器,防水阀11、冷却液添加泵13以及通管12均与板式散热器连通,风扇罩14嵌设在散热器10的外表面,风扇罩14的内侧表面安装有滤板,风扇罩14的外侧固定安装有散热风扇。参照图6,该散热器10实质上是在现有的板式散热器的基础上进行的改进,对下壳体2内冷凝管输出的冷却液进行集中换热,并且在散热器10独立单元内额外增加了冷却液添加泵13结构,在实际应用中,该结构更易于管理,原因在于,现有的发动机散热系统例如汽车中,会将冷却液口添加在发动机机体上,如果出现泄漏的情况会对内部的电器件造成不良影响,而本发明中的散热器10,可单独安装在特定位置,可与发动机本体分隔设置,互不影响。
如图7所示,气门结构9的外侧连接有排气管组件910,排气管910组件包括有集气管96以及排放管95,集气管96为方形管结构,集气管96上开设有入气口94,入气口94与排气孔91对接,入气口94与排放管95连通,相邻的排气管95相互对接,且在排放管95与入气口94之间还连接有导向管92,导向管92为变截面式结构,导向管92的作用在于,在废气流道中形成扰流作用,改变废气的速度与方向,增加废气自身的湍流度,从而提高废气的换热效率。值得一提的是,排放管95处不额外增设导热组件,是因为,在实际工作中,会在此处添加SCR尾气处理设备,该设备在处理尾气时需要一定的温度,而该结构散热后的温度即可直接用于此处。
本发明工作原理:
主要包括两个区域的散热工作:一是排气端的散热。
排气端的散热又分为两个主要区域,一是气门结构9内部以及排气管910处,在气门结构9内部主要是在气缸套件82上开设两个气口821,再使用导气管93对两个气口821进行单独地引流,并将尾气分流到气门结构9的两侧, 最后采用排气管910分别对气门结构9两侧的尾气端进行集中排放。此阶段中对尾气整体相当于分流三次,提高其散热效率,并适应变频发动机的工作流程。
二是对发动机腔体的散热,主要也是包括两个方面,一是对上壳体8的散热,在上壳体8的内外两侧分别安装相互接触导热的翅片;二是在下壳体2内安装顺应壳体结构的冷凝管,并将冷凝管连接至散热器10中,进行集中换热处理,两个技术手段相互协同,顺应发动机内部热气流场分布,提高对发动机壳体的散热效果。
最后应说明的是:以上仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种变频式的发动机,包括上壳体(8)以及下壳体(2),其特征在于:所述上壳体(8)与下壳体(2)固定连接,上壳体(8)为对称式结构,上壳体(8)的两侧均固定安装有向外凸出的罩体,罩体的上端面固定安装有气门结构(9),气门结构(9)为方箱式结构;
    所述气门结构(9)的上端面安装有气门调节机构,气门结构(9)内设有气缸套件(82),气缸套件(82)内开设有气口(821);
    所述气口(821)上固定安装有导气管(93),导气管(93)为弧形结构,导气管(93)的一端开设有排气孔(91),导气管(93)位于气门结构(9)的内腔中,排气孔(91)位于气门结构(9)的外部侧壁上,气门结构(9)的外侧连接有排气管组件(910);
    所述排气管(910)组件包括有集气管(96)以及排放管(95),集气管(96)为方形管结构,集气管(96)上开设有入气口(94),入气口(94)与排气孔(91)对接,入气口(94)与排放管(95)连通,相邻的排气管(95)相互对接,且在排放管(95)与入气口(94)之间还连接有导向管(92),导向管(92)为变截面式结构,下壳体(2)上通过冷凝管连接有散热器(10)。
  2. 根据权利要求1的一种变频式的发动机,其特征在于:所述下壳体(2)的底部为外凸的弧形结构,下壳体(2)内腔的侧壁上固定安装有半圆柱体结构的凸部(24),凸部(24)的外部侧壁上固定安装有加强筋。
  3. 根据权利要求2的一种变频式的发动机,其特征在于:所述冷凝管包括有第一冷凝管(21)和第二冷凝管(23),第一冷凝管(21)和第二冷凝管(23)均呈半圆式排布,第一冷凝管(21)与第二冷凝管(23)相互连通,第一冷凝管(21)位于下壳体(2)的底部端面,第二冷凝管(23)位于下壳体(2)的侧部,且均匀分布于凸部(24)的侧壁上。
  4. 根据权利要求1的一种变频式的发动机,其特征在于:所述气门调节结构包括气门(7)以及调节轴(6),气门(7)与调节轴(6)固定连接, 调节轴(6)与气门结构(9)转动连接,气门(7)与调节轴(6)相互垂直,气门(7)位于入气口(94)内。
  5. 根据权利要求1的一种变频式的发动机,其特征在于:所述上壳体(8)的内腔顶部固定安装有第一导热翅片(83),上壳体(8)的外侧端面上固定安装有第二导热翅片(81),第一发热翅片(83)与第二导热翅片(81)相互连接;
    第一导热翅片(83)的安装密度大于第二导热翅片(81),第二导热翅片(81)为三角型结构,且第二导热翅片(81)与上壳体(8)端面的角度在15-30度之间。
  6. 根据权利要求1的一种变频式的发动机,其特征在于:还包括转轴(4),转轴(4)外侧壁上固定连接有驱动轮(3),转轴(4)的内侧固定连接有曲轴。
  7. 根据权利要求1的一种变频式的发动机,其特征在于:一个所述气缸套件(82)上设有两个气口(821),气缸套件(82)上的导气管(93)交错安装。
  8. 根据权利要求1的一种变频式的发动机,其特征在于:所述散热器(10)包括有防水阀(11)、冷却液添加泵(13)、通管(12)以及风扇罩(14);
    散热器(10)的内腔中安装有板式散热器、防水阀(11)、冷却液添加泵(13)以及通管(12)均与板式散热器连通。
  9. 根据权利要求8的一种变频式的发动机,其特征在于:所述风扇罩(14)嵌设在散热器(10)的外表面,风扇罩(14)的内侧表面安装有滤板,风扇罩(14)的外侧固定安装有散热风扇。
PCT/CN2019/095984 2019-04-25 2019-07-15 一种变频式的发动机 WO2020215499A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910338149.3 2019-04-25
CN201910338149.3A CN110080903A (zh) 2019-04-25 2019-04-25 一种变频式的发动机

Publications (1)

Publication Number Publication Date
WO2020215499A1 true WO2020215499A1 (zh) 2020-10-29

Family

ID=67416687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095984 WO2020215499A1 (zh) 2019-04-25 2019-07-15 一种变频式的发动机

Country Status (2)

Country Link
CN (1) CN110080903A (zh)
WO (1) WO2020215499A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952648A1 (de) * 1998-10-23 2000-05-11 Leistritz Abgastech Luftspaltisolierter Schalenkrümmer
US6308680B1 (en) * 2000-09-21 2001-10-30 General Motors Corporation Engine block crankshaft bearings
CN102705095A (zh) * 2012-06-27 2012-10-03 无锡开普动力有限公司 多缸v型水冷柴油发动机的机体
CN105971763A (zh) * 2016-07-01 2016-09-28 无锡雨德智能物联网科技有限公司 一种具有风水冷却功能的发动机外壳

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580328B2 (ja) * 2005-11-29 2010-11-10 日野自動車株式会社 エンジンの潤滑構造
JP5515977B2 (ja) * 2010-03-31 2014-06-11 マツダ株式会社 多気筒エンジンの排気装置
US20120006287A1 (en) * 2010-07-12 2012-01-12 Gm Global Technology Operations, Inc. Engine assembly with integrated exhaust manifold
CN208310913U (zh) * 2018-05-15 2019-01-01 重庆大江动力设备制造有限公司 一种曲轴箱箱体散热结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952648A1 (de) * 1998-10-23 2000-05-11 Leistritz Abgastech Luftspaltisolierter Schalenkrümmer
US6308680B1 (en) * 2000-09-21 2001-10-30 General Motors Corporation Engine block crankshaft bearings
CN102705095A (zh) * 2012-06-27 2012-10-03 无锡开普动力有限公司 多缸v型水冷柴油发动机的机体
CN105971763A (zh) * 2016-07-01 2016-09-28 无锡雨德智能物联网科技有限公司 一种具有风水冷却功能的发动机外壳

Also Published As

Publication number Publication date
CN110080903A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
KR101317373B1 (ko) 열교환기
WO2022021483A1 (zh) 一种液冷散热结构和变速箱壳体
CN108964317A (zh) 一种用于无人机驱动电机的定子绕组散热结构
CN106016504A (zh) 一种变频空调用散热器及变频空调器
WO2020215499A1 (zh) 一种变频式的发动机
CN205942576U (zh) 一种双冷却自降温式计算机主机箱
CN114721483B (zh) 一种计算机机箱用的自冷却散热装置
CN209544095U (zh) 新型铝合金散热型电力变压器
CN215578100U (zh) 一种电压无级补偿型可控配电变压器
CN206111359U (zh) 一种摩托车风水双冷发动机的气缸体
CN110471513A (zh) 一种散热器组件、风冷散热器以及空调设备
CN210668001U (zh) 一种输变电变压器用风冷却器
JPS6019949Y2 (ja) 回転式オイルク−ラ
CN208793549U (zh) 一种工程车辆用液力变矩器
CN111810286A (zh) 集装箱发电机组的排风散热装置
CN216714528U (zh) 一种高效船用柴油机空气冷却器
CN219577698U (zh) 一种电源防水散热装置
CN207920711U (zh) 一种发动机冷却泵
CN210959257U (zh) 一种具有高效散热功能的电动执行器
CN220965455U (zh) 风电设备用散热装置及海上风电系统
CN218408019U (zh) 一种液压管路用冷却器
CN111472872B (zh) 一种热交换管冷却式发动机排气装置
CN218862730U (zh) 一种气液两相双路径组合式内燃机发电机组热交换器
CN212927993U (zh) 一种柴油发电机组润滑油冷却装置
CN210087437U (zh) 一种散热性好的发动机油底壳

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926361

Country of ref document: EP

Kind code of ref document: A1