WO2020215451A1 - 一种压裂液用纳米液体破坏剂及其制备方法 - Google Patents

一种压裂液用纳米液体破坏剂及其制备方法 Download PDF

Info

Publication number
WO2020215451A1
WO2020215451A1 PCT/CN2019/090060 CN2019090060W WO2020215451A1 WO 2020215451 A1 WO2020215451 A1 WO 2020215451A1 CN 2019090060 W CN2019090060 W CN 2019090060W WO 2020215451 A1 WO2020215451 A1 WO 2020215451A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
liquid
fracturing fluid
breaker
fracturing
Prior art date
Application number
PCT/CN2019/090060
Other languages
English (en)
French (fr)
Inventor
任山
王继宇
郭建春
唐朝钧
张绍彬
刘斌
侯向前
寇将
卢聪
张淑青
王梦莹
康毅
Original Assignee
成都劳恩普斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都劳恩普斯科技有限公司 filed Critical 成都劳恩普斯科技有限公司
Publication of WO2020215451A1 publication Critical patent/WO2020215451A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • C09K8/685Compositions based on water or polar solvents containing organic compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/70Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
    • C09K8/706Encapsulated breakers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/26Gel breakers other than bacteria or enzymes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/32Anticorrosion additives

Definitions

  • the invention relates to an oil and gas field fracturing fluid system, in particular to a nano-liquid destroyer for fracturing fluid and a preparation method thereof.
  • the fracturing fluid mainly plays the function of carrying proppant and making fractures in the process of stimulation and reconstruction.
  • the ideal fracturing fluid should not cause damage to the reservoir after entering the reservoir; there is a large amount of polymer thick in the fracturing fluid.
  • the chemical agent has a good thickening effect.
  • the gel must be completely broken and flow back, otherwise a large number of polymer fragments will be generated and the formation will be blocked, causing serious reservoir damage.
  • the cracking is added during the construction process. Glue is used to degrade thickener molecules to reduce damage.
  • CN105419773A discloses an anti-high-temperature delayed gel breaker and a preparation method thereof; adopts a core-shell structure, and its shell material is inorganic materials such as silicon dioxide, aluminum silicate, calcium silicate, etc., which has a long action time and is difficult to dissolve the shell material. Not suitable for fracturing fluid gel breaking.
  • CN1303462 discloses a encapsulated gel breaker, a composition and a method of use; a hydrolyzable and degradable polymer is used to coat the breaker. This technology can extend the final viscosity reduction time, but is compatible with fracturing fluid The effect of delay in the initial contact is not obvious.
  • CN107001924A discloses an internal polymer breaker for viscoelastic surfactant-based fluids; used for ves type viscoelastic surfactant gel breaking.
  • the delayed breaking agent is a copolymer containing acidic monomers, nonionic monomers and associative monomers.
  • CN107033869A discloses a nano delayed gel breaker and a preparation method thereof; using inorganic material nano mesoporous silica as a carrier, the gel breaker is loaded into the mesoporous channels to form a nano delayed gel breaker. Slow release in the pores to achieve delayed gel breaking.
  • a solid capsule breaker In oil fields, a solid capsule breaker is usually prepared by wrapping a layer of high molecular polymer on the surface of the breaker to solve the problem of too fast gel breaking.
  • the high molecular polymer used as the coating layer has residues that cannot be water-soluble. Produce residual damage.
  • the breaker cannot guarantee 100% of the package, so there is still the problem of breaking the glue in advance.
  • this method cannot solve the problem of complete scission of polymer molecular chains.
  • the present invention provides a safe and stable nano-liquid breaking agent that can completely degrade polymer molecules and delay gel breaking. And its preparation method.
  • a nano-liquid breaking agent for fracturing fluid which is made of the following components by weight ratio: peroxide 5.2%-16.4%; gemini surfactant: 2.3%-10%; non-ionic emulsifier 8.4%-16.0% Auxiliary additives: 1.9-4.4%; solvent: 62.5-78.5%;
  • the structure of the nano-liquid breaker for fracturing fluid is that a nonionic emulsifier and gemini surfactant form a mixed micelle or a closed double-layer structure Vesicles, peroxide and inner layer structure form ion pairs and are encapsulated in micelles or vesicles;
  • the size of the mixed micelles or vesicles of the nano-liquid breaker for the fracturing fluid is nanometer level, specifically 15- Between 100nm.
  • the peroxide is one or more persulfates.
  • gemini surfactant is a symmetric dicationic type, and the structural formula is:
  • the non-ionic emulsifiers are TX series TX-4, TX-10, TX-30, EL series EL-10, EL-20, EL-30, EL-60, EL-90, alkyl glycosides APG1214, APG0810 Wait for one or more of them.
  • the auxiliary additives are Tween series T20, T40, T60, T80, T85, flat plus series O-10, O-20, O-30, O-40, O-50, O-60, OP series OP-5
  • the solvent is water.
  • the heating rate in S1 is controlled at 2-3°C/min.
  • the stirring speed in S1 is 120-160r/min.
  • Peroxide has strong oxidizing properties. Under certain conditions, it will release oxygen free radicals, causing the polymer carbon chain to be oxidized and broken and decomposed, causing its apparent viscosity to drop significantly, thereby achieving the purpose of gel breaking. In order to achieve the purpose of delaying the breakage of the peroxide, the stability of the peroxide must be appropriately increased. The stability of different peroxides is different, which is determined by the type and structure of its counterion.
  • ammonium persulfate Take ammonium persulfate as an example. Combine ammonium persulfate with cationic gemini surfactant to cause ion exchange in water. Because the double cationic head group of cationic gemini has stronger binding ability with persulfate, it is in water Obtain the persulfate gemini quaternary ammonium salt, thereby increasing the stability of persulfate.
  • an appropriate nonionic emulsifier is added to the aqueous solution of such amphiphilic molecules to form a mixed micelle system. The system further self-assembles in water to form mixed micelles or vesicles, which have a closed double-layer structure and partially persulfate The roots are wrapped inside the micelles, further increasing its stability. When it is added to the fracturing fluid system, its concentration is continuously diluted to slowly release persulfate to achieve the purpose of delaying gel breaking. The principle is shown in Figure 1.
  • the present invention has the following beneficial effects:
  • the nano-liquid breaking agent for fracturing fluid of the present invention is a water-in-water nano-capsule dispersion emulsion.
  • the invention can delay gel breaking for 0.1-2h in an environment of 40-120°C, and meets the requirements of water-based fracturing fluid (containing polymer pressure Fracturing fluid and guar gum fracturing fluid) fracturing construction requirements.
  • the invention has the characteristics of good storage stability at room temperature, weak corrosiveness, long shelf life, good delayed gel breaking effect and the like.
  • the invention has the ability to stand still for 6 months at normal temperature and pressure without breaking the emulsion, and through the protection of persulfate by the mixed micelles, it has the ability to not fail for a long time, and can effectively reduce the corrosivity of its aqueous solution to metals. Its storage and use safety has also been greatly improved.
  • Figure 1 is a schematic diagram of the binding principle of persulfate, cationic gemini and non-ionic molecules
  • Figure 2 is a transmission electron micrograph of the nano-liquid breaking agent
  • Figure 3 is an analysis diagram of the particle size of the nano-liquid breaker micelles
  • Figure 4 is a rheological comparison chart of nano-liquid breaker and conventional breaker
  • Figure 5 shows the molecular weight distribution diagram of conventional gel breaker and nano-liquid breaker after gel breaking
  • Figure 6 is a comparison diagram of core passing conditions of conventional gel breaker (left) and nano-liquid breaker (right).
  • the particle size distribution of the system is a typical normal distribution, and the PDI is only equal to 0.095, indicating that its particle size distribution is very Narrow, the average particle size is about 40nm, these data basically correspond to the data of transmission electron microscope photos. Therefore, all this shows that our synthesized nano-liquid breaker for fracturing fluid is a stable nano-emulsion.
  • the influence of the breaker on the viscosity and drag reduction rate of the fracturing fluid was measured: Compared with the conventional breaker, the nano-liquid breaker has good compatibility with the system. It has little effect on the viscosity of the base fluid and little effect on the resistance reduction rate. As shown in table 2.
  • Breaker type Addition of breaker ppm
  • Reduce water resistance mPa.s
  • Resistance reduction rate % Not added 0 2.59 71.35 8% ammonium persulfate aqueous solution 100 2.37 68.63 8% ammonium persulfate aqueous solution 1000 2.08 66.79
  • Example 3 10 2.59 70.96
  • Example 3 100 2.47 71.91
  • Example 3 1000 2.38 71.22
  • the present invention was applied to different types of polymer thickeners for gel breaking adaptability test, and the test results are shown in Table 3.
  • the present invention can all The glue is broken completely.
  • the invention is suitable for polymer thickeners and guar gum fracturing fluids with different ion types and different molecular weights.
  • the molecular weight of the polymer fracturing fluid is significantly reduced after the gel is broken, the molecular weight distribution is narrower, and the core damage is significantly reduced.
  • the damage data is shown in Table 4.
  • the liquid delayed breaker prepared by the invention can effectively maintain the stability of the aqueous solution of the oxidized breaker due to its strong binding ability with the breaker component.
  • the nano-liquid late breaker (initial effective content of ammonium persulfate 15.6%) of Example 1 of the present invention was placed at a constant temperature of 20°C for 30 days.
  • the effective content of ammonium persulfate was determined to be 14.7%, and its effective content was only reduced 5.8%.
  • the nano-liquid late breaker (initial effective content of ammonium persulfate 5.2%) of the present invention was placed at a constant temperature of 20°C for 30 days.
  • the effective content of ammonium persulfate was determined to be 5.1%, and its effective content was only reduced 1.9%.
  • the nano-liquid late breaker of Example 3 of the present invention (the initial effective content of ammonium persulfate is 8%), placed at a constant temperature of 20°C for 30 days, the effective content of ammonium persulfate is determined to be 7.7%, and its effective content is only reduced 3.8%.
  • the nano-liquid late breaker (initial effective content of ammonium persulfate 16.4%) of Example 4 of the present invention was placed at a constant temperature of 20°C for 30 days, and the effective content of ammonium persulfate was determined to be 15.4%, and its effective content was only reduced 6.1%.
  • the product of the present invention can effectively inhibit the corrosion of the oxidized gel breaker aqueous solution to steel. Taking the 8% ammonium persulfate aqueous solution formula as a control, the corrosion performance test of N80 steel sheet shows that the corrosion of the nano liquid breaker for fracturing fluid The rate is reduced by more than 90%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Colloid Chemistry (AREA)

Abstract

本发明公开了一种压裂液用纳米液体破坏剂及其制备方法,所述压裂液用纳米液体破坏剂由以下重量比的组分制成,过氧化物5.2%-16.4%;双子表面活性剂:2.3%-10%;非离子乳化剂8.4%-16.0%;辅助添加剂:1.9-4.4%;溶剂:62.5-78.5%;所述压裂液用纳米液体破坏剂的结构为,非离子乳化剂与双子表面活性剂形成具有封闭双层结构的混合胶束或囊泡,过氧化物与内层结构组成离子对并被包裹在胶束或者囊泡内部;所述压裂液用纳米液体破坏剂的混合胶束或囊泡尺寸为纳米级,具体为15-100nm之间。本发明可满足聚合物压裂液和胍胶压裂液的破胶要求,并且具有室温存放稳定性好、腐蚀性弱、保存期长、延迟破胶效果好等特点。

Description

一种压裂液用纳米液体破坏剂及其制备方法 技术领域
本发明涉及油气田压裂液体系,具体而言涉及一种压裂液用纳米液体破坏剂及其制备方法。
背景技术
压裂液在增产改造过程中主要起到携带支撑剂及造缝的功能,理想的压裂液在进入储层后不应当对储层造成伤害;在压裂液中存在着大量的聚合物稠化剂,具有良好的增稠作用,在压裂施工结束后必须彻底破胶返排,否则会产生大量的聚合物碎片并堵塞地层,带来严重的储层伤害,通常在施工过程中添加破胶剂用于降解稠化剂分子,达到降低伤害的目的。
以过硫酸铵为代表的强氧化剂在油田上作为破胶剂应用最为广泛,在施工时与压裂液同步注入地层。但是这类强氧化剂本身在存储、运输和井场使用时有安全隐患,配制成水溶液也存在腐蚀和胀桶等安全隐患;作为破胶剂与压裂液混合时便与聚合物发生反应,严重时会引起成砂堵,同时也会增加施工摩阻;另外常规的破胶剂虽然能够降低压裂液粘度,但并不能彻底降解聚合物分子,不彻底断链的稠化剂分子会在储层浓缩并堵塞地层带来显著的伤害。
CN105419773A公布了一种抗高温延迟破胶剂及其制备方法;采用核壳结构,其外壳材料为二氧化硅、硅酸铝以及硅酸钙等无机材料,作用时间长,且外壳材料溶解困难,不适合于压裂液破胶使用。
CN1303462公布了一种包胶破胶剂、组合物及其使用方法;采用可水解降解的高分子聚合物对破胶剂进行涂层处理,该技术能够延长最终降粘时间,但是与压裂液接触初期延迟效果不明显。
CN107001924A公布了一种用于粘弹性表面活性剂基流体的内部聚合物破坏剂;用于ves类粘弹性表面活性剂凝胶破胶。其延迟破坏剂为包含酸性单体、非离子单体和缔合单体的共聚物。
CN107033869A公布了一种纳米延迟破胶剂及其制备方法;采用无机材料纳米介孔二氧化硅为载体,将破胶剂载入到介孔孔道中形成纳米延迟破胶剂,破胶剂从介孔孔道中缓慢释放实现延迟破胶。
油田上通常采用在破胶剂表面包裹一层高分子聚合物制备成固体胶囊破胶剂的方式来解决破胶过快的问题,然而作为包裹层的高分子聚合物存在不能水溶的残渣,会产生残渣伤害。 且由于生产工艺的限制,破胶剂不能保证100%被包裹,故仍然存在着提前破胶的问题。且此方式并不能解决聚合物分子链彻底断链的问题。
发明内容
为了解决上述现有技术存在的压裂液提前破胶以及聚合物分子链不能彻底断链的问题,本发明提供一种安全稳定同时能够彻底降解聚合物分子且能够延迟破胶的纳米液体破坏剂及其制备方法。
为了实现上述目的,本发明采用如下技术方案:
一种压裂液用纳米液体破坏剂,由以下重量比的组分制成:过氧化物5.2%-16.4%;双子表面活性剂:2.3%-10%;非离子乳化剂8.4%-16.0%;辅助添加剂:1.9-4.4%;溶剂:62.5-78.5%;所述压裂液用纳米液体破坏剂的结构为,非离子乳化剂与双子表面活性剂形成具有封闭双层结构的混合胶束或囊泡,过氧化物与内层结构组成离子对并被包裹在胶束或者囊泡内部;所述压裂液用纳米液体破坏剂的混合胶束或囊泡尺寸为纳米级,具体为15-100nm之间。
所述过氧化物为一种或多种过硫酸盐。
所述双子表面活性剂为对称双阳离子型,结构式为:
Figure PCTCN2019090060-appb-000001
其中m=8~18,n=2~8。
所述非离子乳化剂为TX系列TX-4、TX-10、TX-30,EL系列EL-10、EL-20、EL-30、EL-60、EL-90,烷基糖苷类APG1214、APG0810等其中的一种或多种。
所述辅助添加剂为吐温系列T20、T40、T60、T80、T85,平平加系列O-10、O-20、O-30、O-40、O-50、O-60,OP系列OP-5、OP-10、OP-20、OP-30、OP-50、OP-80等其中的一种或多种,在辅助形成胶束及囊泡结构的同时,使用时还具备一定的增加稠化剂配制的基液粘度的功能。
所述溶剂为水。
上述压裂液用纳米液体破坏剂的制备方法:
S1.双子表面活性剂投入到反应釜中,升温至80-90℃充分加热融化后,开启搅拌并缓慢的投入5-16倍质量的溶剂,控制温度在60-80℃,加溶剂完毕后停止加热,将非离子乳化剂投入到反应釜中,通过乳化泵建立内循环,同时开启制冷将控制反应釜中液体温度在30±2℃;
S2.将过氧化物与溶剂配置成溶液并加入辅助添加剂搅拌均匀,并在机械搅拌下缓慢滴入 S1所得溶液中,滴加时间控制在50-70min,完毕后继续剪切搅拌反应10min,整个过程保持乳化泵及搅拌开启,即可得到压裂液用纳米液体破坏剂。
S1中升温过程控制升温速率在2-3℃/min。
S1中搅拌速度为120-160r/min。
本发明基本原理:
过氧化物具有强氧化性,在一定条件下会释放出氧自由基,导致聚合物碳链被氧化并断裂分解,造成其表观粘度大幅下降,从而达到破胶目的。为了实现过氧化物延迟破胶的目的,必须适当增加过氧化物的稳定性。不同的过氧化物的稳定性是不同的,这是由其反离子的种类和结构所决定的。
以过硫酸铵为例,将过硫酸铵与阳离子双子表面活性剂相结合,使其在水中发生离子交换,由于阳离子双子的双阳离子头基与过硫酸根具有更强的结合能力,因此在水中得到过硫酸双子季铵盐,从而增加其中过硫酸根的稳定性。同时,在这类两亲分子的水溶液中加入适当非离子乳化剂从而形成混合胶束体系,该体系在水中进一步自组装形成混合胶束或囊泡,具有封闭的双层结构,将部分过硫酸根包裹进胶束内部,进一步增加其稳定性。当其加入压裂液体系时,由于其浓度的不断被稀释从而缓慢释放出过硫酸根以到达延迟破胶目的。原理如图1所示。
与现有技术相比,本发明的有益效果在于:
本发明压裂液用纳米液体破坏剂为一种水包水型纳米胶囊分散乳液,本发明在40-120℃环境中可延迟破胶0.1-2h,满足水基压裂液(含聚合物压裂液和胍胶压裂液)压裂施工要求。另外本发明具有室温存放稳定性好、腐蚀性弱、保存期长、延迟破胶效果好等特点。本发明具有在常温常压下静止放置6个月不破乳能力,并且通过混合胶束对过硫酸根的保护,使其具有长期不失效的能力,且能够有效降低其水溶液对金属的腐蚀性,其存放和使用安全性也得到大大的提高。
附图说明
图1为过硫酸根、阳离子双子及非离子分子的结合原理示意图;
图2为纳米液体破坏剂的透射电镜图;
图3为纳米液体破坏剂胶束粒径分析图;
图4为纳米液体破坏剂与常规破胶剂的流变对比图;
图5为常规破胶剂与纳米液体破坏剂破胶后分子量分布图;
图6为常规破胶剂(左)与纳米液体破坏剂(右)破胶液岩心通过情况对比图。
具体实施方式
下面结合实施例对本发明作进一步的描述,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域的普通技术人员在没有做出创造性劳动前提下所获得的其他所有实施例,都属于本发明的保护范围。
实施例1
S1.将1.6g阳离子双子8-3-8型[C 8H 17(CH 3) 2N(CH 2) 3N(CH 3) 2C 8H 17Br 2)]投入到反应釜中,升温至80-90℃充分加热融化后,升温过程控制升温速率为3℃/min,开启搅拌并缓慢的投入10g水,搅拌速度为120r/min,控制温度在60-80℃,加水完毕后停止加热,将4g非离子乳化剂TX-30投入到反应釜中,通过乳化泵建立内循环,同时开启制冷将控制反应釜中液体温度在30±2℃;
S2.将15g含有5g过硫酸铵的水溶液中加入辅助添加剂1g OP-30、0.4g OS-15,搅拌均匀,并在机械搅拌下缓慢滴入S1所得溶液中,滴加时间控制在50-70min,完毕后继续剪切搅拌反应10min,整个过程保持乳化泵及搅拌开启,即可得到压裂液用纳米液体破坏剂。
实施例2
将2.5g阳离子双子12-4-12型[C 12H 25(CH 3) 2N(CH 2) 4N(CH 3) 2C 12H 25Br 2)]投入到反应釜中,升温至80-90℃充分加热融化后,升温过程控制升温速率为2℃/min,开启搅拌并缓慢的投入30g水,搅拌速度为160r/min,控制温度在60-80℃,加水完毕后停止加热,将4g非离子乳化剂EL-60投入到反应釜中,通过乳化泵建立内循环,同时开启制冷将控制反应釜中液体温度在30±2℃;
S2.将10g含有2.5g过硫酸铵的水溶液中加入辅助添加剂1.3g OS-15搅拌均匀,并在机械搅拌下缓慢滴入S1所得溶液中,滴加时间控制在50-70min,完毕后继续剪切搅拌反应10min,整个过程保持乳化泵及搅拌开启,即可得到压裂液用纳米液体破坏剂。
实施例3
S1.将5g阳离子双子16-5-16型[C 16H 33(CH 3) 2N(CH 2) 5N(CH 3) 2C 16H 33Br 2)]投入到反应釜中,升温至80-90℃充分加热融化后,升温过程控制升温速率为3℃/min,开启搅拌并缓慢的投入25.3g水,搅拌速度为140r/min,控制温度在60-80℃,加水完毕后停止加热,将8g非离子乳化剂APG1214投入到反应釜中,通过乳化泵建立内循环,同时开启制冷将控制反应釜中液体温度在30±2℃;
S2.将10g含有4g过硫酸铵的水溶液中加入辅助添加剂1.5gT20、0.2g平平加O-10,搅拌均匀,并在机械搅拌下缓慢滴入S1所得溶液中,滴加时间控制在50-70min,完毕后继续剪切搅拌反应10min,整个过程保持乳化泵及搅拌开启,即可得到压裂液用纳米液体破坏剂。
实施例4
S1.将1g阳离子双子18-8-18型[C 18H 37(CH 3) 2N(CH 2) 8N(CH 3) 2C 18H 37Br 2)]投入到反应釜中,升温至80-90℃充分加热融化后,升温过程控制升温速率为2.5℃/min,开启搅拌并缓慢的投入16g水,搅拌速度为150r/min,控制温度在60-80℃,加水完毕后停止加热,将5g非离子乳化剂TX-10投入到反应釜中,通过乳化泵建立内循环,同时开启制冷将控制反应釜中液体温度在30±2℃;
S2.将20g含有7g过硫酸铵的水溶液中加入0.8g辅助添加剂平平加O-50,搅拌均匀,并在机械搅拌下缓慢滴入S1所得溶液中,滴加时间控制在50-70min,完毕后继续剪切搅拌反应10min,整个过程保持乳化泵及搅拌开启,即可得到压裂液用纳米液体破坏剂。
对本发明得到压裂液用纳米液体破坏剂进行表观和性能测试,以下为性能测试结果。
一、压裂液用纳米液体破坏剂的微观形态
我们对所合成的压裂液用纳米液体破坏剂进行了微观形态表征。如图2所示,从该乳液的透射电镜照片中我们可以清楚的看到,该压裂液用纳米液体破坏剂是非常均匀的球形胶束体系,胶束粒径在15-100nm之间,主要集中在30-50nm之间,是典型的纳米乳液体系。另外通过激光粒度仪对该压裂液用纳米液体破坏剂进行粒度分析也可以看到(图3),该体系粒径分布呈典型的正态分布,PDI仅等于0.095,说明其粒径分布非常窄,平均粒径约为40nm,这些数据基本和透射电镜照片的数据相对应。因此,这都说明我们所合成压裂液用纳米液体破坏剂为稳定的纳米乳液。
二、延迟破胶特性
如图4及表1所示,配制0.3%聚丙烯酰胺稠化剂基液+0.3%交联剂,同时加入0.1%破胶剂制备冻胶,在90℃、170s -1剪切速率下,流变数据表明:加入常规破胶剂的冻胶在极短的时间内即产生作用导致粘度迅速下降,不利于支撑剂携带,2.5h后,破胶液粘度4.85mPa.s;与常规破胶剂相比,采用纳米液体破坏剂做破胶剂初期不降粘,延迟效果明显,将有利于支撑剂携带,2.5h后,破胶液粘度2.31mPa.s。
表1纳米液体破坏剂与常规破胶剂对流变的影响
Figure PCTCN2019090060-appb-000002
三、对压裂液粘度及降阻率的影响
以0.1%稠化剂为例,在30℃的条件下,测定破胶剂对压裂液粘度及降阻率的影响:与常 规破胶剂相比,纳米液体破坏剂与体系配伍性好,对基液粘度影响小,对降阻率影响小。如表2所示。
表2纳米液体破坏剂与常规破胶剂性能比较
破胶剂类型 破胶剂加量(ppm) 降阻水粘度(mPa.s) 降阻率(%)
未添加 0 2.59 71.35
8%过硫酸铵水溶液 100 2.37 68.63
8%过硫酸铵水溶液 1000 2.08 66.79
实施例3 10 2.59 70.96
实施例3 100 2.47 71.91
实施例3 1000 2.38 71.22
四、破胶效果
将本发明用于不同类型的聚合物稠化剂进行破胶适应性测试,测试结果如表3所示。
从表3可以看出,无论是非离子、阳离子还是阴离子型的聚合物稠化剂,或者是不同分子量的聚合物稠化剂,或者是不同种类的胍胶稠化剂,本发明均能将其破胶完全。本发明适用于不同离子类型、不同分子量的聚合物稠化剂和胍胶压裂液。
表3不同温度下纳米液体破坏剂对不同聚合物的破胶效果
Figure PCTCN2019090060-appb-000003
Figure PCTCN2019090060-appb-000004
五、破胶液岩心伤害
如图5和图6所示,聚合物压裂液破胶后分子量显著降低,分子量分布更窄,岩心伤害显著降低,伤害数据如表4所示。
表4常规破胶剂与纳米液体破坏剂对岩心伤害率对比
Figure PCTCN2019090060-appb-000005
六、存储稳定性
采用本发明制备的液体延迟破坏剂由于其与破胶组分的强结合能力,能够有效的保持氧化类破胶剂水溶液的稳定性。
以8%过硫酸铵水溶液为对照,在20℃恒温条件下放置30天有效含量衰减至2.14%,其有效含量降低了73.25%。
本发明实施例1的纳米液体迟破坏剂(过硫酸铵初始有效含量15.6%),在20℃恒温条件下放置30天,经测定其中过硫酸铵有效含量为14.7%,其有效含量仅仅降低了5.8%。
本发明实施例2的纳米液体迟破坏剂(过硫酸铵初始有效含量5.2%),在20℃恒温条件下放置30天,经测定其中过硫酸铵有效含量为5.1%,其有效含量仅仅降低了1.9%。
本发明实施例3的纳米液体迟破坏剂(过硫酸铵初始有效含量8%),在20℃恒温条件下放置30天,经测定其中过硫酸铵有效含量为7.7%,其有效含量仅仅降低了3.8%。
本发明实施例4的纳米液体迟破坏剂(过硫酸铵初始有效含量16.4%),在20℃恒温条件下放置30天,经测定其中过硫酸铵有效含量为15.4%,其有效含量仅仅降低了6.1%。
七、腐蚀性能
本发明产品能够有效抑制氧化类破胶剂水溶液对钢材的腐蚀性,以8%过硫酸铵水溶液配方为对照,N80钢片腐蚀性能测试表明制备成压裂液用纳米液体破坏剂后,其腐蚀速率降低了90%以上。
表5常规破胶剂与压裂液用纳米液体破坏剂腐蚀性能
Figure PCTCN2019090060-appb-000006

Claims (9)

  1. 一种压裂液用纳米液体破坏剂,其特征在于,由以下重量比的组分制成:过氧化物5.2%-16.4%;双子表面活性剂:2.3%-10%;非离子乳化剂8.4%-16.0%;辅助添加剂:1.9-4.4%;溶剂:62.5-78.5%;所述压裂液用纳米液体破坏剂的结构为,非离子乳化剂与双子表面活性剂形成具有封闭双层结构的混合胶束或囊泡,过氧化物与内层结构组成离子对并被包裹在胶束或者囊泡内部;所述压裂液用纳米液体破坏剂的混合胶束或囊泡尺寸为纳米级,具体为15-100nm之间。
  2. 根据权利要求1所述的一种压裂液用纳米液体破坏剂,其特征在于,所述过氧化物为一种或多种过硫酸盐。
  3. 根据权利要求1所述的一种压裂液用纳米液体破坏剂,其特征在于,所述双子表面活性剂为对称双阳离子型,结构式为:
    Figure PCTCN2019090060-appb-100001
    其中m=8~18,n=2~8。
  4. 根据权利要求1所述的一种压裂液用纳米液体破坏剂,其特征在于,所述非离子乳化剂为TX系列TX-4、TX-10、TX-30,EL系列EL-10、EL-20、EL-30、EL-60、EL-90,烷基糖苷类APG1214、APG0810其中的一种或多种。
  5. 根据权利要求1所述的一种压裂液用纳米液体破坏剂,其特征在于,所述辅助添加剂为OP系列OP-5、OP-10、OP-20、OP-30、OP-50、OP-80,吐温系列T20、T40、T60、T80、T85,平平加系列O-10、O-20、O-30、O-40、O-50、O-60,OS-15其中的一种或多种。
  6. 根据权利要求1所述的一种压裂液用纳米液体破坏剂,其特征在于,所述溶剂为水。
  7. 如权利要求1-6任一项所述的压裂液用纳米液体破坏剂的制备方法,其特征在于,包括以下步骤:S1.双子表面活性剂投入到反应釜中,升温至80-90℃充分加热融化后,开启搅拌并缓慢的投入5-16倍质量的溶剂,控制温度在60-80℃,加溶剂完毕后停止加热,将非离子乳化剂投入到反应釜中,通过乳化泵建立内循环,同时开启制冷将控制反应釜中液体温度在30±2℃;
    S2.将过氧化物与溶剂配置成溶液并加入辅助添加剂搅拌均匀,并在机械搅拌下缓慢滴入S1所得溶液中,滴加时间控制在50-70min,完毕后继续剪切搅拌反应10min,整个过程保持乳化泵及搅拌开启,即可得到压裂液用纳米液体破坏剂。
  8. 如权利要求7所述的压裂液用纳米液体破坏剂的制备方法,其特征在于,S1中升温过程控制升温速率在2-3℃/min。
  9. 如权利要求7所述的压裂液用纳米液体破坏剂的制备方法,其特征在于,S1中搅拌速度为120-160r/min。
PCT/CN2019/090060 2019-04-26 2019-06-05 一种压裂液用纳米液体破坏剂及其制备方法 WO2020215451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910355616.3A CN110003879B (zh) 2019-04-26 2019-04-26 一种压裂液用纳米液体破坏剂及其制备方法
CN201910355616.3 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020215451A1 true WO2020215451A1 (zh) 2020-10-29

Family

ID=67174993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090060 WO2020215451A1 (zh) 2019-04-26 2019-06-05 一种压裂液用纳米液体破坏剂及其制备方法

Country Status (2)

Country Link
CN (1) CN110003879B (zh)
WO (1) WO2020215451A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940703B (zh) * 2021-02-03 2022-10-28 中国石油化工股份有限公司 一种压裂液低温破胶剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130324445A1 (en) * 2012-05-31 2013-12-05 Baker Hughes Incorporated Microemulsion and Nanoemulsion Breaker Fluids With Organic Peroxides
CN105062452A (zh) * 2015-07-15 2015-11-18 国勘石油技术有限公司 破乳助排剂、其制备方法和油田储层的处理方法
CN105363384A (zh) * 2015-12-09 2016-03-02 聊城大学 温敏性蠕虫状胶束体系及用途
CN106520109A (zh) * 2016-10-11 2017-03-22 常州市鼎日环保科技有限公司 一种纳米颗粒改性清洁压裂液的制备方法
CN107236532A (zh) * 2017-06-19 2017-10-10 四川银宇化工科技有限公司 一种新型清洁压裂液及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105623637A (zh) * 2014-11-10 2016-06-01 中国石油化工股份有限公司 一种无碱入井液保护体系及使用方法
CN104327825B (zh) * 2014-11-28 2017-07-21 中国石油化工股份有限公司胜利油田分公司采油工艺研究院 一种用于提高压裂液返排率的微乳液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130324445A1 (en) * 2012-05-31 2013-12-05 Baker Hughes Incorporated Microemulsion and Nanoemulsion Breaker Fluids With Organic Peroxides
CN105062452A (zh) * 2015-07-15 2015-11-18 国勘石油技术有限公司 破乳助排剂、其制备方法和油田储层的处理方法
CN105363384A (zh) * 2015-12-09 2016-03-02 聊城大学 温敏性蠕虫状胶束体系及用途
CN106520109A (zh) * 2016-10-11 2017-03-22 常州市鼎日环保科技有限公司 一种纳米颗粒改性清洁压裂液的制备方法
CN107236532A (zh) * 2017-06-19 2017-10-10 四川银宇化工科技有限公司 一种新型清洁压裂液及其制备方法

Also Published As

Publication number Publication date
CN110003879B (zh) 2021-02-19
CN110003879A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN105143392B (zh) 基于缔合聚合物并且基于不稳定表面活性剂的压裂液
WO2023005769A1 (zh) 聚合物和稠化剂及其制备方法
CN107337762A (zh) 一种疏水缔合交联聚合物微球、制备方法和应用
WO2019024476A1 (zh) 一种稠油活化剂及其制备方法与应用
CN104710973A (zh) 一种无残渣聚合物压裂液
CN111205390A (zh) 一体化自交联乳液型压裂液增稠剂、其制备方法及应用
CN112940703B (zh) 一种压裂液低温破胶剂及其制备方法
CN103113862B (zh) 两性离子聚磺超高温钻井液
NO148787B (no) Blanding til syrebehandling av poroese undergrunnsformasjoner og anvendelse av samme
CN111334264A (zh) 一种暂堵剂及其制备方法
WO2020215451A1 (zh) 一种压裂液用纳米液体破坏剂及其制备方法
CN112126422B (zh) 一种稳定性高的减阻剂及其制备方法和应用
CN104449617A (zh) 一种阴离子聚丙烯酰胺水包水乳液堵水调剖剂及其制备方法和使用用法
CN112745822A (zh) 一种聚合物压裂液高效低温破胶剂及其制备方法
CN115160805B (zh) 高粘乳化沥青及其制备方法
CN112851856A (zh) 一种耐盐型聚合物微球封堵剂及其制备方法
CN115594795A (zh) 一种耐盐耐温压裂液稠化剂及其制备方法以及压裂液
CN105385434A (zh) 一种聚合物清洁压裂液及其配制方法
CN105567196A (zh) 增韧兼有弱缓凝及控失水作用的胶乳外加剂及制备方法
US7806185B2 (en) Treatment fluids comprising friction reducers and antiflocculation additives and associated methods
US8697613B2 (en) Treatment fluids comprising friction reducers and antiflocculation additives and associated methods
CN111205396B (zh) 接枝改性黄原胶及其制备方法和应用
CN107739602A (zh) 一种马来酸酐改性胍胶稠化剂和压裂液及其制备方法
CN114195927B (zh) 稠化剂、形成其的组合物、乳状液聚合物、压裂液体系及其应用
CN107163875A (zh) 一种木材用耐侯胶粘剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925973

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19925973

Country of ref document: EP

Kind code of ref document: A1