WO2023005769A1 - 聚合物和稠化剂及其制备方法 - Google Patents

聚合物和稠化剂及其制备方法 Download PDF

Info

Publication number
WO2023005769A1
WO2023005769A1 PCT/CN2022/106824 CN2022106824W WO2023005769A1 WO 2023005769 A1 WO2023005769 A1 WO 2023005769A1 CN 2022106824 W CN2022106824 W CN 2022106824W WO 2023005769 A1 WO2023005769 A1 WO 2023005769A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
hydrogen
structural unit
thickener
polymer
Prior art date
Application number
PCT/CN2022/106824
Other languages
English (en)
French (fr)
Inventor
丁士东
刘芳慧
王海涛
蒋廷学
魏娟明
姚奕明
沈子齐
黄静
王立双
Original Assignee
中国石油化工股份有限公司
中石化石油工程技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110872134.2A external-priority patent/CN115677942A/zh
Priority claimed from CN202110872132.3A external-priority patent/CN115678529A/zh
Priority claimed from CN202110874712.6A external-priority patent/CN115678532A/zh
Application filed by 中国石油化工股份有限公司, 中石化石油工程技术研究院有限公司 filed Critical 中国石油化工股份有限公司
Priority to CN202280050980.9A priority Critical patent/CN117897420A/zh
Publication of WO2023005769A1 publication Critical patent/WO2023005769A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds

Definitions

  • the invention relates to the technical field of oilfield chemistry, in particular to a polymer, a thickener and a preparation method thereof.
  • the fracturing fluid system for ultra-deep formation stimulation is mainly divided into three categories: bio-based fracturing fluid, natural polymer and synthetic polymer mixed fracturing fluid, and synthetic polymer fracturing fluid.
  • the maximum operating temperature of the first two types of fracturing fluid systems is about 200°C, and the maximum temperature reported for the synthetic polymer fracturing fluid system is 240°C, so the synthetic polymer fracturing fluid system has more application potential.
  • these three fracturing fluid systems all have the problems of high base fluid viscosity and high pump injection friction, which seriously affect the site construction efficiency (Xu Minjie, Guan Baoshan, Liu Ping, Yang Yanli, Wang Haiyan, Xu Xu, Wang Liwei, Huang Gaochuan.
  • the developed new fracturing fluid system should also have the performance of low friction and online mixing.
  • the ultra-deep oil and gas reservoirs developed in China are mainly high-temperature carbonate rocks, and most wells need acid fracturing to build production, and need to use different fracturing fluids such as slick water, glue, gelling acid or cross-linking acid for composite fracturing cracked construction.
  • fracturing fluids such as slick water, glue, gelling acid or cross-linking acid for composite fracturing cracked construction.
  • drag-reducing agents for slippery water are mostly synthetic polymers
  • thickeners for glue are mostly modified guar gum
  • gelling acids and cross-linking acids require acid-resistant thickeners, resulting in a wide variety of on-site construction liquids.
  • a large number of liquid storage tanks need to be configured separately, the configuration process is very cumbersome, and there are also problems such as poor compatibility between various liquids.
  • the object of the present invention is to provide a kind of new polymer and thickener and preparation method thereof.
  • the thickener containing the polymer of the present invention has acid resistance and temperature resistance, can realize the integration of the thickener in the process of full fracturing or acid fracturing, solves the problem of poor compatibility between different fracturing fluids, and is convenient for on-site liquid mixing construction, and can be used for stimulation of deep-ultra-deep oil and gas reservoirs.
  • the thickener provided by the invention can not only meet the demand for fracturing of high-temperature reservoirs, but also can effectively simplify the on-site liquid mixing construction procedure, and has very broad application prospects and economic benefits.
  • the first aspect of the present invention provides a kind of polymer, described polymer contains the structural unit shown in formula (1), the structural unit shown in formula (2), the structural unit shown in formula (3) and formula ( 4) The structural unit shown,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently Hydrogen or C1 ⁇ C10 straight chain or branched chain alkyl;
  • X is a C1-C10 straight-chain or branched alkylene group
  • M is hydrogen or an alkali metal.
  • the second aspect of the present invention provides a thickener, which comprises the aforementioned polymer.
  • the third aspect of the present invention provides a method for preparing a thickener, the preparation method comprising: under polymerization conditions and in the presence of an initiator, polymerizing monomers in an organic solvent and an auxiliary agent; wherein,
  • the polymerized monomers include: monomers shown in formula (I), monomers shown in formula (II), monomers shown in formula (III) and monomers shown in formula (IV),
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently Hydrogen or C1 ⁇ C10 straight chain or branched chain alkyl;
  • X is a C1-C10 straight-chain or branched alkylene group
  • M is hydrogen or an alkali metal.
  • polymer provided by the present invention and thickener and preparation method thereof obtain following beneficial effect:
  • the polymer provided by the present invention is a polymer of a novel structure, and the polymer contains four structural units shown in formula (1), formula (2), formula (3) and formula (4), which can fully exert The respective performance characteristics can be achieved, and a good synergistic effect can be produced, thereby ensuring that the polymer has better temperature resistance and stronger crosslinking ability. Due to the special molecular structure of the polymer, it has good sand suspension, drag reduction and retarding effects at ultra-high temperature.
  • the thickener comprising the polymer provided by the present invention can be used for the thickening of slick water, glue, cross-linked fracturing fluid and acid fluid with different viscosities, thereby realizing the integration of thickeners for various fracturing fluids, It reduces the amount of on-site equipment, solves the problem of poor compatibility between different liquids, can meet the needs of ultra-high temperature reservoir reconstruction, and has broad application prospects.
  • the preparation method of the thickener provided by the present invention is simple, easy to operate, easy to control, convenient for on-site liquid mixing construction, and can realize online mixing.
  • the problem of poor compatibility between them can be applied to large-scale reconstruction construction, which solves the problem of high viscosity of base fluid and difficult pumping.
  • Fig. 1 is the infrared spectrogram of the thickener obtained in Example 1 of the present invention.
  • the first aspect of the present invention provides a polymer, the polymer contains a structural unit shown in formula (1), a structural unit shown in formula (2), a structural unit shown in formula (3) and a structure shown in formula (4) unit,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently Hydrogen or C1 ⁇ C10 straight chain or branched chain alkyl;
  • X is a C1-C10 straight-chain or branched alkylene group
  • M is hydrogen or an alkali metal.
  • examples of the C1-C10 straight-chain or branched-chain alkyl groups can be, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, t- Butyl, n-pentyl, isopentyl, tert-pentyl, neopentyl, n-hexyl, isohexyl, n-heptyl, isoheptyl, 2-methylhexyl, 2-ethylhexyl, 1-methylheptyl Any one of 2-methylheptyl, n-octyl, isooctyl, n-nonyl, isononyl and 3,5,5-trimethylhexyl.
  • examples of the C1-C10 linear or branched alkylene groups may be, for example, methylene, 1,2-ethylene, n-propylene, isopropylene, n-butylene , isobutylene, n-pentylene, isopentylene, n-hexylene, isohexylene, n-heptylene, isoheptylene, 2-methylhexylene, 2-ethylhexylene, 1 any one of methylheptylene, 2-methylheptylene, n-octylene, isooctylene and n-nonylene.
  • R 15 can be located at various positions on the benzene ring in formula (4), that is, it can be located at the ortho or meta position of the aldehyde group.
  • an example of the alkali metal may be any one of Li, Na and K, for example.
  • R 1 , R 2 and R 3 in formula (1) are each independently hydrogen or C1-C6 linear or branched chain alkyl, more preferably hydrogen or C1-C4 linear or branched Branched alkyl; more preferably hydrogen, methyl or ethyl.
  • R 1 , R 2 and R 3 in formula (1) are all hydrogen, at this time, the structural unit represented by formula (1) may be a structural unit derived from acrylamide.
  • R 4 , R 5 and R 6 in formula (2) are each independently hydrogen or C1-C6 linear or branched chain alkyl; more preferably hydrogen or C1-C4 linear or branched Branched alkyl; more preferably hydrogen, methyl or ethyl.
  • R 4 , R 5 and R 6 in formula (2) are all hydrogen, and at this time, the structural unit represented by formula (2) may be a structural unit derived from acrylic acid.
  • R 7 , R 8 , R 9 , R 10 and R 11 in formula (3) are each independently hydrogen or C1-C6 linear or branched chain alkyl; more preferably hydrogen or C1 ⁇ C4 linear or branched alkyl; more preferably hydrogen, methyl or ethyl.
  • X in the formula (3) is a C1-C6 straight-chain or branched alkylene group, more preferably a C1-C3 straight-chain or branched chain alkylene group, more preferably a methylene group or a 1,2- Ethylene.
  • M in formula (3) is hydrogen or sodium, more preferably hydrogen.
  • R 7 , R 8 and R 9 in formula (3) are all hydrogen, R 10 and R 11 are all methyl, X is methylene, and M is hydrogen.
  • the structural unit represented by formula (3) may be a structural unit derived from acrylic acid-2-acrylamide-2-methylpropanesulfonic acid (AMPS).
  • R 12 , R 13 , R 14 and R 15 in formula (4) are each independently hydrogen or C1-C6 linear or branched alkyl, preferably hydrogen or C1-C4 linear Chain or branched alkyl; more preferably hydrogen, methyl or ethyl.
  • R 12 , R 13 , R 14 and R 15 in formula (4) are all hydrogen, at this time, the structural unit shown in formula (4) can be derived from p-acryloxy Structural unit of benzaldehyde.
  • the polymer of the present invention contains four kinds of structural units shown in formula (1), formula (2), formula (3) and formula (4), which has not only fully exerted its respective performance characteristics, but also can produce good synergistic effect, thereby It is ensured that the polymer has better temperature resistance and stronger crosslinking ability.
  • the polymer thickener introduced into the structural unit represented by formula (4) can be cross-linked with the organic zirconium cross-linking agent, and at the same time satisfies the preparation of cross-linked fracturing fluid and cross-linked acid.
  • the structural units shown in formula (4) can provide cross-linking groups, have physical and chemical double cross-linking effects, increase the number of cross-linking sites, and endow the cross-linked jelly with excellent temperature and shear resistance, and Sand carrying and retarding properties.
  • the cross-linked fracturing fluid jelly can make the cross-linked fracturing fluid have good temperature resistance and shear resistance, while the cross-linked jelly acid can improve the temperature and retardation performance of the acid liquid, and realize the use of fracturing fluid-acid liquid Integration of thickeners.
  • the molar ratio of the structural unit represented by formula (1), the structural unit represented by formula (2), the structural unit represented by formula (3) and the structural unit represented by formula (4) is 65-74:1 ⁇ 10:19 ⁇ 21:0.5 ⁇ 1.
  • the molar ratio of each structural unit is calculated by the amount of feed.
  • the polymer in addition to the structural unit represented by the above formula (1), the structural unit represented by the formula (2), the structural unit represented by the formula (3) and the structural unit represented by the formula (4), the polymer In addition, it also contains structural units shown in formula (5),
  • each of R 16 , R 17 and R 18 is independently hydrogen or a C1-C4 linear or branched alkyl group; preferably hydrogen, methyl or ethyl; more preferably hydrogen.
  • the molar ratio of the structural unit represented by formula (1) to the structural unit represented by formula (5) is 65-74:2-4.
  • R 16 , R 17 and R 18 in formula (5) are all hydrogen, at this time, the structural unit shown in formula (5) can be a structure derived from polyoxyethylene acrylate unit.
  • introducing the structural unit represented by formula (5) into the polymer can improve the solubility of the polymer.
  • the polymer has better solubility.
  • the structural unit represented by the formula (2) in addition to the structural unit represented by the above formula (1), the structural unit represented by the formula (2), the structural unit represented by the formula (3), the structural unit represented by the formula (4) and In addition to the optional structural unit shown in formula (5), it also contains a structural unit shown in formula (6),
  • R 19 , R 20 and R 21 are each independently hydrogen or a C1-C6 linear or branched alkyl group.
  • each of R 19 , R 20 and R 21 is independently hydrogen or a C1-C4 linear or branched alkyl group; preferably hydrogen, methyl or ethyl; more preferably hydrogen.
  • R 19 , R 20 and R 21 in formula (6) are all hydrogen, and at this time, the structural unit represented by formula (6) may be a structural unit derived from vinylimidazole.
  • introducing the structural unit represented by formula (6) into the polymer will have a great impact on the alkali resistance of the polymer, and at the same time improve the viscoelasticity of the polymer.
  • the molar ratio of the structural unit represented by formula (1) to the structural unit represented by formula (6) is 65-74:0.5-1.
  • the molar ratio of the structural units shown in formula (1), formula (2), formula (3), formula (4), formula (5) and formula (6) is 65 ⁇ 74:1 ⁇ 10: 19 ⁇ 21:0.5 ⁇ 1:2 ⁇ 4:0.5 ⁇ 1, such as 74:1:21:0.5:3:0.5, 74:1:19:0.5:2:0.5, 72:8:21:0.9:3 :0.8, 65:10:19:1:4:1, 65:9:20:1:4:1, 67:8:20.5:1:3:0.5, 68:7:19.5:1:4:0.5 , 70:6:21:0.5:3.5:1, 70:5:20:1:3:1, and any value in the range of any two ratios.
  • the polymer is a random copolymer, and each structural unit is randomly distributed on the main chain.
  • the polymer has a viscosity average molecular weight of 12 million to 14 million.
  • the viscosity-average molecular weight of the polymer is measured by the Ubbelohde viscometer method.
  • the structural units are randomly distributed, and the polymer includes one or more structural formulas.
  • the polymer of the present invention is a random copolymer, and the above formula is only a structural representation of the polymerization of the six structural units, and the structural units formed by the six monomers are randomly distributed on the main chain.
  • the polymer provided by the embodiment of the present invention is a polymer with a new structure, containing six structures of formula (1), formula (2), formula (3), formula (4), formula (5) and formula (6) Units can not only give full play to their respective performance characteristics, but also produce good synergy, so that the polymer has good temperature resistance and shear resistance, instant solubility and viscoelasticity, and can improve the elasticity and shear recovery of fracturing fluid. Performance, temperature resistance, drag-reducing ability and sand-carrying ability can achieve good sand-suspending effect at ultra-high temperature, and are suitable for fracturing operations in reservoirs above 200 °C.
  • the preparation method of the polymer described in the first aspect of the present invention is not particularly limited, for example, it can be prepared by polymerizing the monomer corresponding to the above structural unit in a solvent under the conditions of the polymerization reaction and in the presence of an initiator.
  • the polymer preferably, the polymerization reaction conditions include: the temperature is 50°C-90°C, preferably 60°C-80°C; the time is 3-6h, preferably 4-5h; the pH is 5-11, preferably 6-10.
  • the initiator may be an azo initiator, such as at least one of azobisisobutylamidine hydrochloride sodium salt and azobisisobutylimidazoline hydrochloride sodium salt.
  • the specific preparation method can refer to the preparation method of the thickener in the third aspect below, and will not be described in detail here.
  • the second aspect of the present invention provides a thickener, which comprises the above-mentioned polymer.
  • the time for the thickener to dissolve in the clear water is less than 1 min.
  • the apparent viscosity of the slick water is greater than or equal to 10 mPa ⁇ s.
  • the drag reduction rate of the slick water is greater than or equal to 60%.
  • the liquid thickener refers to the powder obtained by dispersing the powder of the dry powder thickener into mineral oil containing a mineral dispersant.
  • the mineral oil is selected from at least one of 5# white oil, diesel oil and light crude oil.
  • the thickener of the present invention contains the above-mentioned polymers, which can realize online instant mixing, high temperature resistance, acid resistance and an integrated fracturing fluid that can be cross-linked in a broad-spectrum pH range. It can not only meet the fracturing requirements of high-temperature reservoirs, but also It can effectively simplify the on-site liquid mixing construction procedure, and has very broad application prospects and economic benefits.
  • the third aspect of the present invention provides a kind of preparation method of thickening agent, and described preparation method comprises:
  • the polymerized monomer is polymerized in an organic solvent and an auxiliary agent; wherein, the polymerized monomer includes: a monomer represented by formula (I), a monomer represented by formula (II) Show monomer, monomer shown in formula (III) and monomer shown in formula (IV),
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently Hydrogen or C1 ⁇ C10 straight chain or branched chain alkyl;
  • X is a C1-C10 straight-chain or branched alkylene group
  • M is hydrogen or an alkali metal.
  • R 15 can be located at various positions on the benzene ring in formula (IV), that is, it can be located at the ortho or meta position of the aldehyde group.
  • Examples of C1-C10 linear or branched alkyl groups, C1-C10 linear or branched alkylene groups, and alkali metals described in the third aspect of the present invention are as described above in the first aspect of the present invention , which will not be repeated here.
  • R 1 , R 2 and R 3 are all hydrogen, that is, the monomer represented by formula (I) is acrylamide.
  • R 4 , R 5 and R 6 are the same as the corresponding R 4 , R 5 and R 6 in formula (2) of the first aspect of the present invention, and in a particularly preferred
  • R 4 , R 5 and R 6 in formula (II) are all hydrogen, that is, the monomer represented by formula (II) is acrylic acid.
  • R 7 , R 8 , R 9 , R 10 , R 11 , X and M are preferably the same as R 7 , R 8 , R in formula (3) of the first aspect of the present invention.
  • 9 , R 10 , R 11 , X and M are the same, and in a particularly preferred embodiment of the present invention, R 7 , R 8 and R 9 in formula (III) are all hydrogen, R 10 and R 11 are both Methyl, X is methylene, M is hydrogen. That is, the monomer represented by formula (III) is acrylic acid-2-acrylamide-2-methylpropanesulfonic acid.
  • R 12 , R 13 , R 14 and R 15 are preferably the same as the corresponding R 12 , R 13 , R 14 and R 15 in formula (4) of the first aspect of the present invention, and in a particularly preferred embodiment of the present invention, in formula (IV), R 12 , R 13 , R 14 and R 15 are all hydrogen, that is, the monomer represented by formula (IV) is p-acryloyloxy Benzaldehyde.
  • p-acryloyloxybenzaldehyde can be obtained by condensation reaction of p-hydroxybenzaldehyde and acryloyl halide such as acryloyl chloride.
  • the molar ratio of monomers represented by formula (I), monomers represented by formula (II), monomers represented by formula (III) and monomers represented by formula (IV) is 65-74:1 ⁇ 10:19 ⁇ 21:0.5 ⁇ 1.
  • the polymerizable monomers include monomers represented by formula (I), monomers represented by formula (II), monomers represented by formula (III) and monomers represented by formula (IV) In addition, it also includes monomers shown in formula (V) and/or monomers shown in formula (VI),
  • R 16 , R 17 and R 18 are the same as the corresponding R 16 , R 17 and R 18 in formula (5) of the first aspect of the present invention, and in a particularly preferred
  • R 16 , R 17 and R 18 in formula (V) are all hydrogen, that is, the monomer represented by formula (V) is polyoxyethylene acrylate.
  • introducing the monomer represented by formula (V) into the polymer can improve the solubility of the polymer.
  • MOEA polyoxyethylene acrylate type polymerizable surfactant
  • R 19 , R 20 and R 21 are the same as the corresponding R 19 , R 20 and R 21 in formula (6) of the first aspect of the present invention, and in a particularly preferred
  • R 19 , R 20 and R 21 in the formula (VI) are all hydrogen, and at this time, the monomer represented by the formula (VI) is vinylimidazole.
  • introducing the monomer represented by formula (VI) into the polymer will greatly affect the alkali resistance of the polymer, and at the same time improve the viscoelasticity of the polymer.
  • the molar ratio of the monomers shown in formula (I), formula (II), formula (III), formula (IV), formula (V) and formula (VI) is 65 ⁇ 74:1 ⁇ 10: 19 ⁇ 21:0.5 ⁇ 1:2 ⁇ 4:0.5 ⁇ 1, such as 74:1:21:0.5:3:0.5, 74:1:19:0.5:2:0.5, 72:8:21:0.9:3 :0.8, 65:10:19:1:4:1, 65:9:20:1:4:1, 67:8:20.5:1:3:0.5, 68:7:19.5:1:4:0.5 , 70:6:21:0.5:3.5:1, 70:5:20:1:3:1, and any value in the range of any two ratios.
  • the preparation method of the thickener specifically includes the following steps:
  • the polymerized monomers include monomers represented by formula (I), monomers represented by formula (II), monomers represented by formula (III) and monomers represented by formula (IV)
  • the monomers in some preferred embodiments, also include: monomers represented by formula (V) and/or monomers represented by formula (VI).
  • the weight ratio of the polymerizable monomer to the organic solvent is 25-29:10-15.
  • the total weight of the polymerized monomers accounts for 25-29wt% of the total weight of the first solution, for example, 26wt%, 27wt%, 28wt%, and any value in the range composed of any two numerical values .
  • the weight of the organic solvent accounts for 10-15wt% of the total weight of the first solution, for example, 11wt%, 12wt%, 13wt%, 14wt%, and any value in the range composed of any two numerical values.
  • the organic solvent is at least one selected from N,N'-dimethylformamide, dimethyl sulfoxide, methanol and ethanol.
  • the chain transfer agent is at least one selected from sodium formate, potassium formate and isopropanol.
  • the amount of the added chain transfer agent is 0.03-0.15 wt%.
  • the complexing agent is selected from at least one of ethylenediaminetetraacetic acid disalt, ethylenediaminetetraacetic acid tetrasalt and triethylenetetraminepentaacetic acid salt; more preferably It is at least one of ethylenediaminetetraacetic acid disodium salt, ethylenediaminetetraacetic acid tetrasodium salt and diethylenetriaminepentaacetic acid pentasodium salt.
  • the amount of complexing agent added is 0.02-0.1 wt%.
  • the co-solvent is selected from at least one of urea, thiourea and ammonium chloride.
  • the amount of co-solvent added is 0.5-5 wt%.
  • the activator is at least one selected from N,N,N',N'-tetramethylethylenediamine, ethylenediamine and triethanolamine.
  • the amount of the activator added is 0.04-0.12 wt%.
  • the oxidizing agent is selected from at least one of ammonium persulfate, potassium persulfate and hydrogen peroxide.
  • the amount of the added oxidant is 0.01-0.15 wt%.
  • the reducing agent is at least one selected from sodium bisulfite, sodium sulfite and ferrous ammonium sulfate.
  • the amount of the added reducing agent is 0.005-0.05 wt%.
  • the initiator may be various initiators that are common in the art and capable of initiating the polymerization reaction of the monomer, for example, the initiator may be an azo initiator.
  • the water-soluble azo initiator is selected from at least one of azobisisobutylamidine hydrochloride and azobisisobutylimidazoline hydrochloride; preferably It is at least one of sodium salt or potassium salt; more preferably, the water-soluble azo initiator is selected from at least one of azobisisobutylamidine hydrochloride sodium salt and azobisisobutylimidazoline hydrochloride sodium salt A sort of.
  • the amount of the added water-soluble azo initiator is 0.01-0.08wt% based on the total weight of the polymerized monomer being 100wt%.
  • step S3 the third solution is placed in a nitrogen atmosphere.
  • the polymerization conditions include: the temperature is 50°C-90°C, preferably 60°C-80°C; the time is 3-6h, preferably 4-5h; the pH is 5-5h 11, preferably 6-10.
  • the polymerization reaction is an exothermic reaction, and the temperature of the system is controlled by a water bath. Therefore, the temperature change of the system should be closely observed after the polymerization reaction starts. ⁇ 5h.
  • step S4 the water-soluble azo initiator, reducing agent and oxidizing agent are prepared into aqueous solutions respectively before being mixed with the third solution. Use the scale to adjust.
  • the second solution is cooled to 5°C-10°C.
  • the second solution is placed in a water bath at 5° C. to 10° C. and cooled for 30 minutes.
  • the polymerization of some monomers will release heat, while the polymerization of some monomers will not release heat. Therefore, in order to facilitate the subsequent low-temperature polymerization, the second solution is cooled.
  • the third solution is cooled to 5°C-10°C.
  • the third solution is placed in a water bath at 5° C. to 10° C. and cooled for 30 minutes. In the process of adjusting the pH, exothermic phenomenon occurs, so the third solution is cooled to facilitate the subsequent low-temperature polymerization.
  • the preparation method further includes: S5, granulating, drying, pulverizing, and sieving the polymer jelly obtained in step S4 to obtain a dry powder thickener.
  • the drying conditions include: the temperature is 60°C to 80°C; the moisture content of the dried product is lower than 10wt%, more preferably the dried product has a low moisture content More preferably, the moisture content of the product after drying is less than 3 wt%.
  • the size of the granulation is 0.2-0.7 cm, preferably 0.3-0.5 cm.
  • the drying conditions include: the temperature is 60°C to 80°C; the moisture content of the product after drying is lower than 10wt%, preferably the moisture content of the product after drying is lower than 5wt%, and further preferably the moisture content of the dried product is lower than 3wt%.
  • the mesh size of the sieving is 20-70 mesh, more preferably 20-40 mesh.
  • step S5 the particle size of the dry powder thickener powder is less than 400 mesh.
  • the preparation method further includes: S6. Dispersing the powder of the dry powder thickener obtained in step S5 into mineral oil containing a mineral dispersant to obtain a liquid thickener.
  • step S6 the concentration of the liquid thickener is 20-40wt%.
  • the mineral oil is selected from at least one of 5# white oil, diesel oil and light crude oil.
  • the mineral dispersant is at least one of OP-10 (alkylphenol ethoxylate (10) ether), Span 40 and Tween 80.
  • the preparation method of the thickener provided by the invention is simple, convenient to operate and easy to control, and the product type (powder or liquid) can be customized according to on-site requirements.
  • the yield of the thickener can reach 95%-99%.
  • the high-temperature-resistant integrated thickener Due to the special molecular structure of the high-temperature-resistant integrated thickener, it not only has good acid resistance, temperature resistance and shear resistance, but also has instant solubility, which can realize online mixing, and at the same time, it can be adjusted by adjusting the concentration of thickener or solvent Different types of fracturing fluid systems are formed, which realizes the integrated configuration of high-temperature resistant fracturing fluid and acid fluid, which is suitable for large-scale reconstruction construction, and at the same time solves the problem of high viscosity of base fluid and difficult pumping.
  • the present invention also provides the application of the above-mentioned thickener or the thickener prepared by the above-mentioned preparation method in reservoir reconstruction, preferably the application in oil-gas reservoir reconstruction.
  • the reservoir conditions of the oil and gas reservoir include: a depth of 5000-12000 km, and a temperature of 150°C-250°C.
  • the application includes but not limited to: using the thickener to prepare slick water, glue solution, cross-linked fracturing fluid, gelling acid or cross-linked acid system with different viscosities.
  • the thickener of the present invention can be used for thickening slick water, glue, cross-linked fracturing fluid and acid solution with different viscosities, realizes the integration of thickeners, reduces the number of on-site equipment, and solves the problem of poor compatibility between different fracturing fluids , can meet the needs of ultra-high temperature reservoir reconstruction, and has broad market application prospects.
  • the present invention provides slick water, which contains the above-mentioned thickener.
  • slick water In addition to thickener, slick water generally also contains water, drainage aid and clay stabilizer, the contents are usually 0.05 ⁇ 1.2wt% thickener, 0.1 ⁇ 0.3wt% drainage aid and 0.1 ⁇ 0.3wt% clay stabilizer .
  • the slippery water is at least one selected from low-viscosity slippery water, medium-viscosity slippery water, high-viscosity slippery water and ultra-high-viscosity slippery water.
  • the 25°C viscosity of low-viscosity slippery water is 1-3 mPa ⁇ s
  • the 25°C viscosity of medium-viscosity slippery water is 3-18 mPa ⁇ s (excluding 3 mPa ⁇ s)
  • the 25°C viscosity of high-viscosity slippery water The viscosity of ultra-high viscosity slippery water at 25°C is 35-45mPa ⁇ s (excluding 35mPa ⁇ s).
  • the slick water is low-viscosity slick water
  • the low-viscosity slick water contains 0.05-0.1 wt% of the thickener based on the total weight of the low-viscosity slick water.
  • the slick water is medium-viscosity slick water, and the medium-viscosity slick water contains 0.1-0.15wt% (excluding 0.1wt%) of the thickened agent.
  • the slick water is high-viscosity slick water, and based on the total weight of the high-viscosity slick water, the high-viscosity slick water contains 0.15-0.25wt% (excluding 0.15wt%) of the thickened agent.
  • the slick water is ultra-high-viscosity slick water, based on the total weight of the ultra-high-viscosity slick water, the ultra-high-viscosity slick water contains 0.25-0.3wt% (excluding 0.25wt%) of all the thickener.
  • the present invention provides a glue solution, which contains the above-mentioned thickener.
  • the glue contains 0.3-0.8wt% of the thickener.
  • the glue In addition to the thickener, the glue generally also contains water, a drainage aid and a clay stabilizer, and the contents are usually 0.1-0.3 wt% of the drainage aid and 0.1-0.3 wt% of the clay stabilizer.
  • the present invention provides a cross-linked fracturing fluid, the cross-linked fracturing fluid comprises the above-mentioned thickener.
  • the raw materials for preparing the cross-linked fracturing fluid include: the thickener, drainage aid, clay stabilizer, gel breaker, cross-linking agent and water.
  • preparation raw materials of the cross-linked fracturing fluid include in parts by weight:
  • the preparation method of the cross-linked fracturing fluid includes:
  • the breaker is selected from at least one of ammonium persulfate, potassium persulfate and sodium sulfite.
  • the above-mentioned drainage aid can be prepared by conventional methods in the art, and in order to further improve the comprehensive performance of the drainage aid, preferably, the preparation raw materials of the drainage aid include betaine zwitterionic surfactant, poly Oxypropylene Polyoxyethylene Propylene Glycol Ether, Laureth Ether and Water.
  • the preparation raw materials of the drainage aid include:
  • betaine zwitterionic surfactant is lauryl amidopropyl betaine.
  • preparation method of the drainage aid comprises:
  • the betaine zwitterionic surfactant, polyoxypropylene polyoxyethylene propylene glycol ether and water are mixed and dissolved, and then mixed with lauryl alcohol polyoxyethylene ether to obtain a drainage aid.
  • step 1) after adding the thickener and the drainage aid to the water at the first stirring speed, stirring is carried out at the second stirring speed to obtain the fracturing fluid base fluid.
  • step 2) the crosslinking agent is added to the fracturing fluid base fluid, and stirred at a third stirring speed to obtain a crosslinked fracturing fluid.
  • first stirring speed, the second stirring speed and the third stirring speed are each independently selected from 300-1000 r/min.
  • the values of the first stirring speed, the second stirring speed and the third stirring speed are not limited, as long as the mixed liquid can form a vortex and achieve the purpose of sufficient mixing.
  • the stirring time at the second stirring speed is 1-3 minutes.
  • stirring time at the third stirring speed is 3-10 minutes.
  • the raw materials for the preparation of the crosslinking agent include organic zirconium, organic copper, polyhydric alcohol, organic carboxylate, polyhydric organic amine, anionic surfactant and water.
  • the raw materials for the preparation of the crosslinking agent include:
  • the molar ratio of organic zirconium to organic copper is 5:(1-5).
  • the organic zirconium is selected from at least one of zirconium acetate, zirconium propionate, zirconium lactate and zirconium acetylacetonate.
  • the organic copper is selected from at least one of copper lactate, copper acetate, copper acetylacetonate and copper propionate.
  • the polyhydric alcohol is selected from at least one of 1,2-propanediol, glycerol, ethylene glycol, xylitol, sorbitol and pentaerythritol.
  • the organic carboxylate is at least one selected from sodium lactate, sodium citrate, sodium tartrate, sodium gluconate, sodium malate and sodium oxalate.
  • the polyvalent organic amine is at least one selected from ethylenediamine, propylenediamine, polyethyleneimine, diethylenetriamine and triethylenetetramine.
  • the anionic surfactant is selected from sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium dodecylsulfonate, sodium lauryl alcohol polyoxyethylene ether sulfate and lauryl alcohol polyoxyethylene ether sulfate At least one of alkyl ammonium sulfates.
  • crosslinking agent of the present invention in addition to adding conventional polyols and organic ligands to ensure the solubility and high temperature resistance of the crosslinking agent, organic copper and organic carboxylate ligands are also introduced to increase the stability of the crosslinking compound and improve temperature resistance.
  • anionic surfactants can provide physical and chemical double cross-linking effects for the cross-linking agent, broaden the applicable pH range of the cross-linking agent and the shear resistance of the cross-linked jelly.
  • the preparation method of the crosslinking agent comprises:
  • A1 Mix organic zirconium, organic copper and water to obtain organic copper zirconium aqueous solution
  • A3. Mix and react the anionic surfactant and the first reaction solution to obtain the second reaction solution;
  • step A1 the temperature at which organic zirconium, organic copper and water are mixed is 20°C-30°C.
  • the reaction conditions include: a reaction temperature of 40° C. to 60° C., and a reaction time of 3 to 6 hours.
  • step A2 and before step A3 the temperature of the first reaction solution is adjusted to 20°C-30°C.
  • step A3 and before step A4 the temperature of the second reaction solution is adjusted to 20°C-30°C.
  • the preparation method of the cross-linking agent is simple, the dosage is small, and it can be used for high-temperature fracturing fluid and acid liquid cross-linking at the same time, and has a good prospect of popularization and application.
  • the crosslinking agent of the present invention has good stability and crosslinking performance. Under neutral conditions, it can be cross-linked without adjusting the pH to form a high-temperature fracturing fluid system with a temperature resistance of 220°C, and the delayed cross-linking time can reach 250s. It has good hanging performance, and the fracturing fluid has good temperature resistance and shear resistance Cutting performance, the tail stickiness can reach 250mPa ⁇ s.
  • the temperature and shear resistance and delayed crosslinking time of the cross-linked fracturing fluid are tested.
  • Tail viscosity refers to the viscosity of the system measured after shearing for 1 hour at a specified temperature and shear rate using a high temperature resistant rheometer.
  • thickener and crosslinking agent provided by the invention, various types of fracturing fluids with online instant mixing, high temperature resistance of 180°C to 200°C, and crosslinkability in a broad-spectrum pH range can be directly prepared.
  • the system when used together with cross-linking agent, the system has good hanging performance, and the temperature resistance and shear resistance will be significantly improved, which can be applied to different fracturing construction requirements and reduce the on-site cost.
  • the amount of equipment used broadens the scope of application of thickeners for fracturing fluids.
  • the present invention provides a gelling acid comprising the above-mentioned thickening agent.
  • the raw materials for the preparation of the gelling acid include hydrochloric acid, the thickener, iron ion stabilizer, corrosion inhibitor, drainage aid and gel breaker;
  • the raw materials for the preparation of the gelling acid include:
  • the remainder is water, and the sum of the parts by weight of water and the parts by weight of the remaining preparation raw materials is 100 parts.
  • the corrosion inhibitor is selected from at least one of imidazolines, quinoline quaternary ammonium salts, ketoaldeamine condensates and Mannich bases; more preferably, the corrosion inhibitor is selected from 1 - at least one of aminoethyl-2-pentadecyl imidazoline quaternary ammonium salt, 2-methylquinoline benzyl quaternary ammonium salt and formaldehyde/p-phenylenediamine/acetophenone condensate.
  • the iron ion stabilizer is an organic acid, more preferably at least one selected from citric acid, lactic acid, acetic acid, ethylenediaminetetraacetic acid and ascorbic acid.
  • the hydrochloric acid is derived from a hydrochloric acid solution with a weight concentration of 15-30 wt %; more preferably, the hydrochloric acid is derived from a hydrochloric acid solution with a weight concentration of 18-20 wt %.
  • the preparation method of the gelling acid comprises:
  • step 1) after adding the thickener to the hydrochloric acid solution at the first stirring speed, stirring is carried out at the second stirring speed to obtain the first acid solution.
  • step 2) iron ion stabilizers, corrosion inhibitors, gel breakers and drainage aids are sequentially added to the first acid solution, and the gelled mixture obtained by stirring at a second stirring speed acid.
  • the values of the first stirring speed and the second stirring speed are not limited, as long as the mixed liquid can form a vortex and achieve the purpose of sufficient mixing.
  • the first stirring speed and the second stirring speed are each independently selected from 300-1000 r/min.
  • stirring time at the second stirring speed is 1-3 minutes.
  • the present invention provides a cross-linked acid comprising the above-mentioned thickener.
  • the raw materials for the preparation of the cross-linked acid include hydrochloric acid, the thickener, iron ion stabilizer, corrosion inhibitor, gel breaker, drainage aid and cross-linking agent;
  • the raw materials for the preparation of the crosslinked acid include:
  • the remainder is water, and the sum of the parts by weight of water and the parts by weight of the remaining preparation raw materials is 100 parts.
  • the thickener, hydrochloric acid, iron ion stabilizer, corrosion inhibitor, gel breaker, crosslinking agent and drainage aid have been described above, and will not be repeated here.
  • the preparation method of the cross-linked acid comprises:
  • step 1) after adding the thickener to the hydrochloric acid solution at the first stirring speed, stirring is carried out at the second stirring speed to obtain the first acid solution.
  • step 2) iron ion stabilizers, corrosion inhibitors, gel breakers and drainage aids are sequentially added to the first acid solution, and the cross-linked mixture obtained by stirring at a second stirring speed Acid base fluid.
  • step 3 a cross-linking agent is added to the cross-linking acid base liquid, and stirred at a third stirring speed to obtain a cross-linking acid.
  • the values of the first stirring speed, the second stirring speed and the third stirring speed are not limited, as long as the mixed liquid can form a vortex and achieve the purpose of thorough mixing.
  • the first stirring speed, the second stirring speed and the third stirring speed are each independently selected from 300-1000 r/min.
  • stirring time at the second stirring speed is 1-3 minutes.
  • stirring time at the third stirring speed is 3-10 minutes.
  • the cross-linking agent of the present invention has good stability and cross-linking performance. It is used to cross-link under the hydrochloric acid solution with a mass concentration of 15% to 20% to form a cross-linking acid system at 200°C.
  • the delayed cross-linking time can reach 250s, which has good Excellent hanging performance, cross-linked acid tail viscosity reaches 180mPa ⁇ s.
  • both the cross-linked acid tail and the gelled acid tail are measured according to the industry standard SY/T 5107-2016, after shearing for 1 hour at 200°C and 170s -1 .
  • the thickener provided by the invention is used in conjunction with a crosslinking agent, which can satisfy the crosslinking of fracturing fluid and acid fluid at the same time, and increase the number of crosslinking sites through physical and chemical dual effects, thereby improving the resistance of crosslinked jelly (acid) Temperature and shear resistance, sand carrying and retarding ability.
  • the formed cross-linked fracturing fluid jelly can make the cross-linked fracturing fluid have good temperature resistance and shear resistance, while the cross-linked jelly acid can improve the temperature resistance and retarding performance of the acid liquid, and realize the fracturing fluid-
  • the integration of acid and liquid solves the problem of poor compatibility between different liquids.
  • the cross-linking agent can satisfy the cross-linking of the fracturing fluid and the acid liquid at the pH range of 3-10 at the same time.
  • the shear resistance and high-temperature self-repairing ability of the cross-linked jelly (acid) are improved, so that the cross-linked jelly (acid) has better temperature resistance.
  • the integration of fracturing fluid-acid fluid cross-linking agent is realized.
  • the above-mentioned slick water, the above-mentioned glue solution, the above-mentioned cross-linked fracturing fluid, the above-mentioned gelling acid or the above-mentioned cross-linked acid can be used in reservoir stimulation, preferably in oil and gas reservoir stimulation.
  • the reservoir conditions of the oil and gas reservoir include: the depth is 5000-12000 km, and the temperature is 150°C-250°C.
  • the p-acryloyloxybenzaldehyde monomer was prepared according to the following method: 0.5mol p-hydroxybenzaldehyde was dissolved in 500mL of dichloromethane in an ice bath, stirring conditions Under dry nitrogen, add 0.55 mol of acryloyl chloride to the mixed solution with a constant pressure funnel, continue to stir for 24 hours, and rotate to evaporate. The obtained product has a molecular weight of 178 as measured by mass spectrometry, indicating that the product is p-acryloyloxybenzaldehyde. body (FPA).
  • step 3 Add a certain amount of sodium carbonate to the solution obtained in step 2) to adjust the pH of the solution to 10 to obtain the mother liquor, put it in a water bath at 10°C and continue cooling for 30 minutes to lower the temperature to 10°C, and then introduce the mother liquor into the adiabatic polymerization device, and pass Nitrogen for 20 minutes;
  • the "mountain-shaped" absorption peak formed between 2900 and 3600 cm -1 is the combination of -OH associated with -COOH in the acrylic acid monomer and the characteristic absorption peak of the alkyl group in the polymer main chain.
  • the "peak-shaped” absorption peak formed between 400 and 800 cm -1 is the stretching vibration absorption peak of the "CH bond" in -CH 2 in the polymer main chain.
  • some bending vibrations from the "COC bond" in the polyoxyethylene acrylate monomer are compounded. There are obvious three peaks at 3000-3100cm -1 .
  • Example 2 The same preparation method as in Example 1 was adopted, except that the molar ratios n:o:q:y:p:x of the six monomers added in step 1) were different, see Table 3 for details.
  • Example 2 The same preparation method as in Example 1 was adopted, except that the m value of the polyoxyethylene acrylate polymerizable surfactant (MOEA) added in step 1) was different, see Table 3 for details.
  • MOEA polyoxyethylene acrylate polymerizable surfactant
  • Example 2 The same preparation method as in Example 1 was adopted, except that the molar ratios n:o:q:y:p:x of the six monomers added in step 1) were different, see Table 3 for details.
  • acrylamide monomer AM
  • acrylic acid monomer AA
  • acrylic acid-2-acrylamide-2-methylpropanesulfonic acid monomer AMPS
  • p-acryloyloxybenzaldehyde monomer FPA
  • the only difference is that no polyoxyethylene acrylate polymerizable surfactant is added to the polymerized monomer aqueous solution prepared in step 1), wherein the acrylamide monomer (AM) , acrylic acid monomer (AA), acrylic acid-2-acrylamide-2-methylpropanesulfonic acid monomer (AMPS), p-acryloxybenzaldehyde monomer (FPA) and vinylimidazole monomer (VI)
  • acrylamide monomer AM
  • acrylic acid monomer AA
  • AMPS acrylic acid-2-acrylamide-2-methylpropanesulfonic acid monomer
  • FPA acyloxybenzaldehyde monomer
  • FPA acyloxybenzaldehyde monomer
  • FPA p-acryloyloxybenzaldehyde monomer
  • AMPS acrylic acid-2-acrylamide-2-methylpropanesulfonic acid monomer
  • the 30 wt% liquid thickeners prepared in Examples 1-15 and Comparative Examples 1-2 were used to prepare acid fluid, slick water and cross-linked fracturing fluid, respectively.
  • Acid solution 30wt% liquid thickener is quickly added to the hydrochloric acid (HCl concentration is 36wt%) aqueous solution to which a corrosion inhibitor (SRAI-1, commercially available from Sinopec Petroleum Engineering Technology Research Institute) has been added, so that the polymer,
  • SRAI-1 a corrosion inhibitor
  • the contents of hydrochloric acid solution and corrosion inhibitor are 1wt% powder, 20wt% and 3wt% respectively.
  • cross-linking agent for cross-linking acid SRAC-2 organic zirconium cross-linking agent, a commercial product of Sinopec Petroleum Engineering Technology Research Institute
  • concentration of the thickener in the cross-linking acid is 1 wt%.
  • the thickener synthesized by the present invention has a dissolution time of less than 3 minutes in acid, which can realize online mixing of acid solution.
  • the viscosity of the cross-linked acid reaches more than 75mPa ⁇ s
  • the viscosity of the gelling acid reaches more than 30mPa ⁇ s
  • the gelling acid is placed for 10 days.
  • the viscosity reaches above 40mPa ⁇ s, which meets the performance requirements of the acid liquid system.
  • the apparent viscosity is measured according to the method of GB/T 16783.1-2014.
  • the thickener synthesized by the present invention dissolves in clear water for less than 1 minute, the apparent viscosity of the base liquid can reach more than 10 mPa ⁇ s, and the resistance reduction rate can reach more than 60%.
  • Cross-linked fracturing fluid quickly add 30wt% liquid thickener into clear water and stir evenly to obtain the fracturing fluid base fluid. Record the dissolution time under stirring conditions (stirring speed 450-800r/min), and use the ZNN-D6 six-speed rotational viscometer to measure the apparent viscosity of the fracturing fluid base fluid. Then add a cross-linking agent for fracturing fluid (SRAC-3 organic zirconium cross-linking agent, a commercial product of Sinopec Petroleum Engineering Technology Research Institute) to form a cross-linking fracturing fluid, and the concentration of the final thickener in the fracturing fluid is 0.45wt %.
  • SRAC-3 organic zirconium cross-linking agent a commercial product of Sinopec Petroleum Engineering Technology Research Institute
  • the temperature and shear resistance of the fracturing fluid was measured at 200°C and 170s -1 for 1 hour.
  • the dissolving time of the thickener synthesized by the present invention is less than 1 min, and the apparent viscosity of the formed fracturing fluid base fluid can reach 45 mPa ⁇ s or above.
  • the viscosity can reach 150mPa ⁇ s and above, meeting the performance requirements of high temperature fracturing fluid.
  • the dissolving time of the liquid thickener is less than 1min, which can realize the online mixing of acid liquid, and its other properties are equivalent to those of powder.
  • the thickener of the present invention can meet the requirements of gelling acid, cross-linked acid, slick water and cross-linked fracturing fluid for thickeners, so that thickeners can be realized.
  • the purpose of chemical agent integration greatly reduces the complexity of operation.
  • the thickener (dry powder) prepared by step 6) of Example 1 and Comparative Example 3 was prepared according to the following method according to the formula shown in Table 6 to prepare the cross-linked fracturing fluid:
  • Drainage aid and cross-linking agent are each prepared according to the following method:
  • the preparation method of the drainage aid 30 parts by weight of polyoxypropylene polyoxyethylene propylene glycol ether (PPE-1500, commercially available from Nantong Arches Chemical Co., Ltd.) and 20 parts by weight of lauryl amidopropyl betaine zwitterionic surfactant Dissolve in 49.5 parts by weight of water, stir until fully dissolved, then add 0.5 parts by weight of polyoxyethylene lauryl ether (MOA-4, commercially available from Nantong Arches Chemical Co., Ltd.) and continue to stir evenly to obtain a drainage aid.
  • PPE-1500 polyoxypropylene polyoxyethylene propylene glycol ether
  • MOA-4 polyoxyethylene lauryl ether
  • the preparation method of the crosslinking agent A1. Add 5 parts by weight of zirconium acetylacetonate and 2 parts by weight of copper acetylacetonate to 30 parts by weight of water, and fully stir and dissolve at 20°C to obtain an organic copper-zirconium aqueous solution;
  • A3 Add 10 parts by weight of sodium lauryl alcohol polyoxyethylene ether sulfate (AES, commercially available from Jinan Yingchu Chemical Technology Co., Ltd.) to the first reaction solution, stir and mix evenly to obtain the second reaction solution;
  • AES sodium lauryl alcohol polyoxyethylene ether sulfate
  • the cross-linked fracturing fluid provided by the present invention can achieve online speed matching, and the viscosity of the fracturing fluid after cross-linking can reach more than 650 mPa ⁇ s, and after high-temperature shearing at 200 °C, the viscosity can reach 150 mPa ⁇ s It is a fracturing fluid system that can be matched online quickly and has an adjustable cross-linking time, and has a good delayed cross-linking performance. It has broad application prospects in high-temperature reservoir compound acid fracturing.
  • the thickener provided by the present invention can be used in acid fluid, slick water and cross-linked fracturing fluid, and can meet the requirements of gelling acid, cross-linked acid, slick water and cross-linked fracturing fluid.
  • the requirements for thickeners such as fracturing fluids can be met, so that the purpose of using one thickener to meet various application scenarios can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及油田化学技术领域,公开了聚合物和稠化剂及其制备方法。所述聚合物含有式(1)所示结构单元、式(2)所示结构单元、式(3)所示结构单元和式(4)所示结构单元;其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14和R 15各自独立地为氢或C1~C10的直链或支链烷基;X为C1~C10的直链或支链亚烷基;M为氢或碱金属。本发明的稠化剂具有速溶性能,可用于不同黏度滑溜水、胶液、交联压裂液和酸液的增稠,实现了稠化剂的一体化,解决了不同压裂流体间配伍性差的难题。利用该稠化剂所制备的多种压裂液体系具有良好的耐温耐剪切性、携砂性及缓速性。

Description

聚合物和稠化剂及其制备方法
相关申请的交叉引用
本申请要求2021年07月30日提交的中国专利申请202110872134.2、202110872132.3和202110874712.6的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及油田化学技术领域,具体涉及聚合物和稠化剂及其制备方法。
背景技术
深层-特深层油气资源是目前国内勘探开发的重点领域,70%以上的井需要酸压/酸化建产,但特深层油气存在埋藏深、温度高、破裂压力高、施工摩阻大等问题,给储层改造技术带来了极大挑战。目前特深层改造用压裂液体系主要分为三类:生物基压裂液、天然高分子和合成聚合物混合压裂液及合成聚合物压裂液。前两类压裂液体系最高使用温度为200℃左右,合成聚合物压裂液体系报道最高温度为240℃,因此合成聚合物压裂液体系更具应用潜力。但是这三种压裂液体系都存在基液黏度高,泵注摩阻大的问题,严重影响现场施工效率(徐敏杰,管保山,刘萍,杨艳丽,王海燕,许可,王丽伟,黄高传.近十年国内超高温压裂液技术研究进展[J].油田化学,2018,35(04):721-725.)。因此,所开发的新型压裂液体系还应同时兼具低摩阻及在线混配的性能。
目前国内开发的特深层油气层以高温碳酸盐岩为主,大部分井需酸压改造建产,需要使用滑溜水、胶液、胶凝酸或交联酸等不同压裂流体进行复合压裂施工。例如,滑溜水用降阻剂多为合成聚合物,胶液用稠化剂多为改性胍胶,而胶凝酸和交联酸则需要使用耐酸稠化剂,导致现场施工液体种类繁多,需要大量储液罐分开配置,配置过程十分繁琐,还存在多种液体之间配伍性差等问题。
因此,开发一种耐高温一体化速溶稠化剂,实现全压裂或者酸压过程中稠化剂一体化,减少稠化剂种类,便于现场配液施工,并解决不同液体之间配伍性差的问题,具有重要意义和应用前景。
发明内容
鉴于上述现有技术中存在的问题,本发明的目的在于提供一种新的聚合物和稠化剂及其制备方法。包含本发明聚合物的稠化剂具有耐酸性和耐温性,能够实现全压裂或者酸压过程中稠化剂的一体化,解决了不同压裂流体间配伍性差的难 题,便于现场配液施工,可用于深层-特深层油气储层的改造增产。
本发明提供的稠化剂不仅能够满足高温储层压裂需求,还能够有效精简现场配液施工程序,具有十分广阔的应用前景和经济效益。
为了实现上述目的,本发明第一方面提供一种聚合物,所述聚合物含有式(1)所示结构单元、式(2)所示结构单元、式(3)所示结构单元和式(4)所示结构单元,
Figure PCTCN2022106824-appb-000001
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14和R 15各自独立地为氢或C1~C10的直链或支链烷基;
X为C1~C10的直链或支链亚烷基;
M为氢或碱金属。
本发明第二方面提供一种稠化剂,所述稠化剂包含前述的聚合物。
本发明第三方面提供一种稠化剂的制备方法,所述制备方法包括:在聚合反应条件下,在引发剂存在下,将聚合单体在有机溶剂和助剂中发生聚合反应;其中,所述聚合单体包括:式(I)所示单体、式(II)所示单体、式(III)所示单体和式(IV)所示单体,
Figure PCTCN2022106824-appb-000002
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14和R 15各自独立地为氢或C1~C10的直链或支链烷基;
X为C1~C10的直链或支链亚烷基;
M为氢或碱金属。
通过上述技术方案,本发明提供的聚合物和稠化剂及其制备方法获得以下有益的效果:
1)本发明提供的聚合物是一种新型结构的聚合物,该聚合物含有式(1)、式(2)、式(3)和式(4)所示四种结构单元,既充分发挥了各自的性能特点,又能够产生良好的协同作用,从而保证所述聚合物具有较好的耐温能力和较强的交联能力。由于该聚合物的特殊分子结构,在超高温下具有良好的悬砂、降阻和缓速效果。
2)本发明提供的包含该聚合物的稠化剂可用于不同黏度滑溜水、胶液、交联压裂液和酸液的增稠,从而实现多种压裂流体的稠化剂一体化,降低了现场设备用量,解决了不同液体间配伍性差的难题,能够满足超高温储层改造需求,具有广泛的应用前景。
3)本发明提供的稠化剂制备方法简单,操作方便,易于控制,便于现场配液施工,能够实现在线混配,产品类型(粉末或者液体)可根据现场需求进行定制,避免了不同液体之间配伍性差的问题,可适用于大规模改造施工,解决了基液黏度高,泵注困难的难题。
附图说明
图1是本发明实施例1得到的稠化剂的红外光谱图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供一种聚合物,所述聚合物含有式(1)所示结构单元、式(2)所示结构单元、式(3)所示结构单元和式(4)所示结构单元,
Figure PCTCN2022106824-appb-000003
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14和R 15各自独立地为氢或C1~C10的直链或支链烷基;
X为C1~C10的直链或支链亚烷基;
M为氢或碱金属。
本发明中,所述C1~C10的直链或支链烷基的实例,例如可以为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基、叔戊基、新戊基、正己基、异己基、正庚基、异庚基、2-甲基己基、2-乙基己基、1-甲基庚基、2-甲基庚基、正辛基、异辛基、正壬基、异壬基和3,5,5-三甲基己基中的 任意一种。
本发明中,所述C1~C10的直链或支链亚烷基的实例,例如可以为亚甲基、1,2-亚乙基、亚正丙基、亚异丙基、亚正丁基、亚异丁基、亚正戊基、亚异戊基、亚正己基、亚异己基、亚正庚基、亚异庚基、亚2-甲基己基、亚2-乙基己基、亚1-甲基庚基、亚2-甲基庚基、亚正辛基、亚异辛基和亚正壬基中的任意一种。
本发明中,R 15可以位于式(4)中苯环上的各个位置,即可以位于醛基的邻位或间位。
本发明中,所述碱金属的实例,例如可以为Li、Na和K中的任意一种。
在一些实施方式中,式(1)中的R 1、R 2和R 3各自独立地为氢或C1~C6的直链或支链烷基,更优选为氢或C1~C4的直链或支链烷基;进一步优选为氢、甲基或乙基。
在本发明一个特别优选的实施方式中,式(1)中的R 1、R 2和R 3均为氢,此时,式(1)所示结构单元可以为来自丙烯酰胺的结构单元。
在一些实施方式中,式(2)中的R 4、R 5和R 6各自独立地为氢或C1~C6的直链或支链烷基;更优选为氢或C1~C4的直链或支链烷基;进一步优选为氢、甲基或乙基。
在本发明一个特别优选的实施方式中,式(2)中的R 4、R 5和R 6均为氢,此时,式(2)所示结构单元可以为来自丙烯酸的结构单元。
在一些实施方式中,式(3)中的R 7、R 8、R 9、R 10和R 11各自独立地为氢或C1~C6的直链或支链烷基;更优选为氢或C1~C4的直链或支链烷基;进一步优选为氢、甲基或乙基。
另外,式(3)中的X为C1~C6的直链或支链亚烷基,更优选为C1~C3的直链或支链亚烷基,进一步优选为亚甲基或1,2-亚乙基。
另外,式(3)中的M为氢或钠,更优选为氢。
在本发明一个特别优选的实施方式中,式(3)中的R 7、R 8和R 9均为氢,R 10和R 11均为甲基,X为亚甲基,M为氢。此时,式(3)所示结构单元可以为来自丙烯酸-2-丙烯酰胺-2-甲基丙磺酸(AMPS)的结构单元。
在一些实施方式中,式(4)中的R 12、R 13、R 14和R 15各自独立地为氢或C1~C6的直链或支链烷基,优选为氢或C1~C4的直链或支链烷基;更优选为氢、甲基或乙基。
在本发明一个特别优选的实施方式中,式(4)中的R 12、R 13、R 14和R 15均为氢,此时,式(4)所示结构单元可以为来自对丙烯酰氧基苯甲醛的结构单元。
本发明的聚合物含有式(1)、式(2)、式(3)和式(4)所示四种结构单元,既充分发挥了各自的性能特点,又能够产生良好的协同作用,从而保证所述聚合物具有 较好的耐温能力和较强的交联能力。引入式(4)所示结构单元后的聚合物稠化剂能够与有机锆类交联剂进行交联,同时满足交联压裂液和交联酸的配制。可能的原因是,式(4)所示结构单元可提供交联基团,具有物理化学双重交联作用,提高交联位点数目,赋予交联冻胶优异的耐温耐剪切能力,以及携砂和缓速性能。交联压裂液冻胶能够使交联压裂液具有良好的耐温耐剪切能力,而交联冻胶酸则可提高酸液的耐温和缓速性能,实现压裂液-酸液用稠化剂的一体化。
在一些实施方式中,式(1)所示结构单元、式(2)所示结构单元、式(3)所示结构单元和式(4)所示结构单元的摩尔比为65~74:1~10:19~21:0.5~1。通过将上述四种结构单元的摩尔比限定在上述范围,能够进一步提高所述聚合物的抗温性能和交联性能。
本发明中,如无特别说明,各结构单元的摩尔比通过投料量计算得到。
在一些实施方式中,所述聚合物中除含有上述式(1)所示结构单元、式(2)所示结构单元、式(3)所示结构单元和式(4)所示结构单元之外,还含有式(5)所示结构单元,
Figure PCTCN2022106824-appb-000004
其中,R 16、R 17和R 18各自独立地为氢或C1~C6的直链或支链烷基;m为氧乙烯结构个数,m=6~10。
在一些优选实施方式中,R 16、R 17和R 18各自独立地为氢或C1~C4的直链或支链烷基;优选为氢、甲基或乙基;更优选为氢。
在一些优选实施方式中,式(1)所示结构单元与式(5)所示结构单元的摩尔比为65~74:2~4。
在本发明一个特别优选的实施方式中,式(5)中的R 16、R 17和R 18均为氢,此时,式(5)所示结构单元可以为来自丙烯酸聚氧乙烯酯的结构单元。
在本发明中,在聚合物中引入式(5)所示结构单元,可以提高聚合物的溶解性。在氧乙烯结构的个数m=6~10时,聚合物具有更好的溶解性。
在一些实施方式中,所述聚合物中除含有上述式(1)所示结构单元、式(2)所 示结构单元、式(3)所示结构单元、式(4)所示结构单元和任选的式(5)所示结构单元之外,还含有式(6)所示结构单元,
Figure PCTCN2022106824-appb-000005
其中,R 19、R 20和R 21各自独立地为氢或C1~C6的直链或支链烷基。
在一些优选实施方式中,R 19、R 20和R 21各自独立地为氢或C1~C4的直链或支链烷基;优选为氢、甲基或乙基;更优选为氢。
在本发明一个特别优选的实施方式中,式(6)中的R 19、R 20和R 21均为氢,此时,式(6)所示结构单元可以为来自乙烯基咪唑的结构单元。
在本发明中,在聚合物中引入式(6)所示结构单元,会对聚合物的抗碱性具有很大的影响,同时还能提高聚合物的黏弹性。
在一些优选实施方式中,式(1)所示结构单元与式(6)所示结构单元的摩尔比为65~74:0.5~1。
在本发明中,式(1)、式(2)、式(3)、式(4)、式(5)和式(6)所示结构单元的摩尔比为65~74:1~10:19~21:0.5~1:2~4:0.5~1,如74:1:21:0.5:3:0.5、74:1:19:0.5:2:0.5、72:8:21:0.9:3:0.8、65:10:19:1:4:1、65:9:20:1:4:1、67:8:20.5:1:3:0.5、68:7:19.5:1:4:0.5、70:6:21:0.5:3.5:1、70:5:20:1:3:1以及任意两个比例组成的范围中的任意值。
在本发明中,所述聚合物为无规共聚物,各结构单元在主链上呈随机分布。
在一些实施方式中,所述聚合物的粘均分子量为1200万~1400万。
在本发明中,聚合物的粘均分子量通过乌氏黏度计法测得。
在本发明一个特别优选的实施方式中,所述聚合物的结构如下式所示:
Figure PCTCN2022106824-appb-000006
式中,n、o、p、q、x、y分别为各结构单元的摩尔百分数,其中,n+o=75%,n=65%~74%;o=1%~10%;p+q+x+y=25%,q=19%~21%;p=2%~4%;x=0.5%~1%;y=0.5%~1%;m为氧乙烯结构个数,m=6~10。
在本发明中,即使是在同一制备条件下所得到的聚合物,其结构单元也是随机分布的,该聚合物包括一种或多种形式的结构式。
依据本发明,本发明的聚合物是无规共聚物,上式仅是这六种结构单元聚合后其中的一种结构示意式,六种单体形成的结构单元在主链上呈随机分布。
本发明实施方式提供的聚合物是一种新型结构的聚合物,含有式(1)、式(2)、式(3)、式(4)、式(5)和式(6)六种结构单元,既充分发挥了各自的性能特点,又能够产生良好的协同作用,使得该聚合物具有良好的耐温耐剪切性、速溶性和黏弹性,能够提高压裂液的弹性、剪切恢复性能、耐温能力、降阻能力和携砂能力,可实现超高温下良好的悬砂效果,适用于200℃以上储层的压裂施工。
此外,本发明第一方面所述聚合物的制备方法没有特别的限定,例如可以在聚合反应条件下,在引发剂存在下,使上述结构单元对应的单体在溶剂中发生聚合反应从而制备得到所述聚合物,优选地,该聚合反应条件包括:温度为50℃~90℃,优选为60℃~80℃;时间为3~6h,优选为4~5h;pH为5~11,优选为6~10。引发剂可以为偶氮类引发剂,例如偶氮二异丁脒盐酸钠盐和偶氮二异丁咪唑啉盐酸钠盐中的至少一种。具体的制备方法可参见下述第三方面的稠化剂的制备方法进行,此处不再详述。
本发明第二方面提供一种稠化剂,所述稠化剂包含上述的聚合物。
在一些实施方式中,将30wt%液体稠化剂加入清水中,形成聚合物浓度为0.09wt%的滑溜水时,所述稠化剂在清水中溶解时间小于1min。
在一些实施方式中,将30wt%液体稠化剂加入清水中,形成聚合物浓度为0.09wt%的滑溜水时,所述滑溜水的表观黏度大于等于10mPa·s。
在一些实施方式中,将30wt%液体稠化剂加入清水中,形成聚合物浓度为0.09wt%的滑溜水时,所述滑溜水的降阻率大于等于60%。
在本发明中,液体稠化剂是指将干粉状稠化剂的粉末分散到含矿物分散剂的矿物油中得到。所述矿物油选自5#白油、柴油和轻质原油中的至少一种。干粉状稠化剂及液体稠化剂的具体制备步骤请参见后面稠化剂的制备方法。
本发明的稠化剂包含上述聚合物,可实现在线速溶混配、耐高温、耐酸且可在广谱pH范围内交联的一体化压裂液,不仅能够满足高温储层压裂需求,还能够有效精简现场配液施工程序,具有十分广阔的应用前景和经济效益。
本发明第三方面提供一种稠化剂的制备方法,所述制备方法包括:
在聚合反应条件下,在引发剂存在下,将聚合单体在有机溶剂和助剂中发生聚合反应;其中,所述聚合单体包括:式(I)所示单体、式(II)所示单体、式(III)所示单体和式(IV)所示单体,
Figure PCTCN2022106824-appb-000007
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14和R 15各自独立地为氢或C1~C10的直链或支链烷基;
X为C1~C10的直链或支链亚烷基;
M为氢或碱金属。
本发明中,R 15可以位于式(IV)中苯环上的各个位置,即可以位于醛基的邻位或间位。
本发明第三方面所述的C1~C10的直链或支链烷基的实例、C1~C10的直链或支链亚烷基的实例以及碱金属的实例如上述本发明第一方面所述,此处不再赘述。
根据本发明,式(I)中,R 1、R 2和R 3的优选与本发明第一方面式(1)中对应的R 1、R 2和R 3相同,并且在本发明一个特别优选的实施方式中,式(I)中的R 1、R 2和R 3均为氢,也即,式(I)所示单体为丙烯酰胺。
根据本发明,式(II)中,R 4、R 5和R 6的优选与本发明第一方面式(2)中对应的R 4、R 5和R 6相同,并且在本发明一个特别优选的实施方式中,式(II)中的R 4、R 5和R 6均为氢,也即,式(II)所示单体为丙烯酸。
根据本发明,式(III)中,R 7、R 8、R 9、R 10、R 11、X和M的优选与本发明第一方面式(3)中对应的R 7、R 8、R 9、R 10、R 11、X和M相同,并且在本发明一个特别优选的实施方式中,式(III)中的R 7、R 8和R 9均为氢,R 10和R 11均为甲基,X为亚甲基,M为氢。也即,式(III)所示单体为丙烯酸-2-丙烯酰胺-2-甲基丙磺酸。
根据本发明,式(IV)中,R 12、R 13、R 14和R 15的优选与本发明第一方面式(4)中对应的R 12、R 13、R 14和R 15相同,并且在本发明一个特别优选的实施方式中,式(IV)中的,R 12、R 13、R 14和R 15均为氢,也即,式(IV)所示单体为对丙烯酰氧基苯甲醛。
在一些优选实施方式中,对丙烯酰氧基苯甲醛可以通过将对羟基苯甲醛与丙烯酰卤如丙烯酰氯经缩合反应得到。
在一些实施方式中,式(I)所示单体、式(II)所示单体、式(III)所示单体和式(IV)所示单体的摩尔比为65~74:1~10:19~21:0.5~1。通过将上述四种单体的摩尔比限定在上述范围,能够进一步提高所述聚合物的耐温性能和交联性能。
在一些实施方式中,所述聚合单体除包括上述式(I)所示单体、式(II)所示单体、式(III)所示单体和式(IV)所示单体之外,还包括式(V)所示单体和/或式(VI)所示单体,
Figure PCTCN2022106824-appb-000008
其中,R 16、R 17和R 18各自独立地为氢或C1~C6的直链或支链烷基;m为氧乙烯结构个数,m=6~10;R 19、R 20和R 21各自独立地为氢或C1~C6的直链或支链烷基。
根据本发明,式(V)中,R 16、R 17和R 18的优选与本发明第一方面式(5)中对应的R 16、R 17和R 18相同,并且在本发明一个特别优选的实施方式中,式(V)中的R 16、R 17和R 18均为氢,也即,式(V)所示单体为丙烯酸聚氧乙烯酯。
在本发明中,在聚合物中引入式(V)所示单体,可以提高聚合物的溶解性。式(V)所示结构单元是由丙烯酸聚氧乙烯酯型可聚合表面活性剂引入,优选地,丙烯酸聚氧乙烯酯型可聚合表面活性剂(MOEA)的CAS#9051-31-4,聚合度m=6~10,分子量为336.38~424.48。在氧乙烯结构的个数m=6~10时,聚合物具 有更好的溶解性。
根据本发明,式(VI)中,R 19、R 20和R 21的优选与本发明第一方面式(6)中对应的R 19、R 20和R 21相同,并且在本发明一个特别优选的实施方式中,式(VI)中的R 19、R 20和R 21均为氢,此时,式(VI)所示单体为乙烯基咪唑。
在本发明中,在聚合物中引入式(VI)所示单体,会对聚合物的抗碱性具有很大的影响,同时还能提高聚合物的黏弹性。
在本发明中,式(I)、式(II)、式(III)、式(IV)、式(V)和式(VI)所示单体的摩尔比为65~74:1~10:19~21:0.5~1:2~4:0.5~1,如74:1:21:0.5:3:0.5、74:1:19:0.5:2:0.5、72:8:21:0.9:3:0.8、65:10:19:1:4:1、65:9:20:1:4:1、67:8:20.5:1:3:0.5、68:7:19.5:1:4:0.5、70:6:21:0.5:3.5:1、70:5:20:1:3:1以及任意两个比例组成的范围中的任意值。
在本发明一个特别优选的实施方式中,所述稠化剂的制备方法具体包括以下步骤:
S1、将上述聚合单体、去离子水和有机溶剂混合,得到第一溶液;
S2、将所述第一溶液与链转移剂、络合剂、助溶剂和活化剂混合,得到第二溶液;
S3、调节第二溶液的pH为6~10,得到第三溶液;
S4、将所述第三溶液与水溶性偶氮类引发剂、还原剂和氧化剂混合并聚合,得到聚合胶状物。
在一些实施例中,在步骤S1中,所述聚合单体包括式(I)所示单体、式(II)所示单体、式(III)所示单体和式(IV)所示单体,在一些优选实施方式中,还包括:式(V)所示单体和/或式(VI)所示单体。
在一些实施例中,所述聚合单体与所述有机溶剂的重量比为25~29:10~15。在一些优选实施例中,所述聚合单体总重量占所述第一溶液总重量的25~29wt%,例如,26wt%、27wt%、28wt%以及任意两个数值组成的范围中的任意值。所述有机溶剂的重量占所述第一溶液总重量的10~15wt%,例如,11wt%、12wt%、13wt%、14wt%以及任意两个数值组成的范围中的任意值。
在一些优选实施例中,所述有机溶剂选自N,N'-二甲基甲酰胺、二甲基亚砜、甲醇和乙醇中的至少一种。
在一些实施例中,在步骤S2中,所述链转移剂选自甲酸钠、甲酸钾和异丙醇中的至少一种。
在一些优选实施例中,以聚合单体的总重量为100wt%计,加入的链转移剂的量为0.03~0.15wt%。
在一些实施例中,在步骤S2中,所述络合剂选自乙二胺四乙酸二盐、乙二胺四乙酸四盐和三乙烯四胺五乙酸盐中的至少一种;进一步优选为乙二胺四乙酸 二钠盐、乙二胺四乙酸四钠盐和二乙烯三胺五乙酸五钠盐中的至少一种。
在一些优选实施例中,以聚合单体的总重量为100wt%计,加入的络合剂的量为0.02~0.1wt%。
在一些实施例中,在步骤S2中,所述助溶剂选自尿素、硫脲和氯化铵中的至少一种。
在一些优选实施方式中,以聚合单体的总重量为100wt%计,加入的助溶剂的量为0.5~5wt%。
在一些实施例中,在步骤S2中,所述活化剂选自N,N,N’,N’-四甲基乙二胺、乙二胺和三乙醇胺中的至少一种。
在一些优选实施例中,以聚合单体的总重量为100wt%计,加入的活化剂的量为0.04~0.12wt%。
在一些实施例中,在步骤S4中,所述氧化剂选自中过硫酸铵、过硫酸钾和双氧水中的至少一种。
在一些优选实施例中,以聚合单体的总重量为100wt%计,加入的氧化剂的量为0.01~0.15wt%。
在一些实施例中,在步骤S4中,所述还原剂选自亚硫酸氢钠、亚硫酸钠和硫酸亚铁铵中的至少一种。
在一些优选实施例中,以聚合单体的总重量为100wt%计,加入的还原剂的量为0.005~0.05wt%。
本发明中,所述引发剂可以为本领域常见的能够引发所述单体发生聚合反应的各种引发剂,例如,所述引发剂可以为偶氮类引发剂。
在一些优选实施例中,在步骤S4中,所述水溶性偶氮类引发剂选自偶氮二异丁脒盐酸盐和偶氮二异丁咪唑啉盐酸盐中的至少一种;优选为钠盐或钾盐中的至少一种;更优选地,所述水溶性偶氮类引发剂选自偶氮二异丁脒盐酸钠盐和偶氮二异丁咪唑啉盐酸钠盐中的至少一种。
在一些优选实施例中,以聚合单体的总重量为100wt%计,加入的水溶性偶氮类引发剂的量为0.01~0.08wt%。
在一些实施例中,在步骤S3中,将所述第三溶液置于氮气环境中。
在一些实施例中,在步骤S4中,所述聚合的条件包括:温度为50℃~90℃,优选为60℃~80℃;时间为3~6h,优选为4~5h;pH为5~11,优选为6~10。
在本发明中,聚合反应为放热反应,通过水浴控制体系的温度,因此,在聚合反应开始后应密切观察体系温度变化,待体系温度上升至60℃~80℃时,开始保温并持续4~5h。
在一些实施例中,在步骤S4中,水溶性偶氮类引发剂、还原剂和氧化剂在 与第三溶液混合前,先分别配制成水溶液,配制溶液的浓度没有特别要求,可以根据实际需要和使用规模进行调整。
在一些优选实施例中,在步骤S2之后且步骤S3之前,将所述第二溶液冷却至5℃~10℃。例如,将所述第二溶液置于5℃~10℃的水浴中冷却30min。根据单体的种类,混合过程中有的单体聚合会放热,有的单体聚合不会放热,因此,为了有利于后续的低温聚合,对第二溶液进行冷却。
在一些优选实施例中,在步骤S3之后且步骤S4之前,将所述第三溶液冷却至5℃~10℃。例如,将所述第三溶液置于5℃~10℃的水浴中冷却30min。在调节pH的过程中会出现放热现象,因此对第三溶液进行冷却,以有利于后续的低温聚合。
在一些实施例中,所述制备方法还包括:S5、将步骤S4所得聚合胶状物造粒、烘干、粉碎、过筛,获得干粉状稠化剂。
在一些优选实施例中,在步骤S5中,所述烘干的条件包括:温度为60℃~80℃;烘干后的产物含水率低于10wt%,更优选烘干后的产物含水率低于5wt%,进一步优选烘干后的产物含水率低于3wt%。
在一些优选实施例中,在步骤S5中,所述造粒的尺寸为0.2~0.7cm,优选为0.3~0.5cm。
在一些优选实施例中,在步骤S5中,所述烘干的条件包括:温度为60℃~80℃;烘干后的产物含水率低于10wt%,优选烘干后的产物含水率低于5wt%,进一步优选烘干后的产物含水率低于3wt%。
在一些优选实施例中,在步骤S5中,所述过筛的目数为20~70目,更优选为20~40目。
在一些优选实施例中,步骤S5中,所述干粉状稠化剂粉末的粒径小于400目。
在一些实施例中,所述制备方法还进一步包括:S6、将步骤S5所得干粉状稠化剂的粉末分散到含矿物分散剂的矿物油中,得到液体稠化剂。
在一些优选实施例中,在步骤S6中,所述液体稠化剂的浓度为20~40wt%。
在一些优选实施例中,在步骤S6中,所述矿物油选自5#白油、柴油和轻质原油中的至少一种。
在一些优选实施例中,在步骤S6中,所述矿物分散剂为OP-10(烷基酚聚氧乙烯(10)醚)、司班40和吐温80中的至少一种。
本发明提供的稠化剂制备方法简单,操作方便,易于控制,产品类型(粉末或者液体)可根据现场需求进行定制。在本发明中,稠化剂的收率可达到95%~99%。
由于该耐高温一体化稠化剂的特殊分子结构,不仅具有良好的耐酸、耐温耐剪切性,还具备速溶性,可实现在线混配,同时可通过调节稠化剂的使用浓度或溶剂种类形成不同的压裂液体系,实现了耐高温压裂液和酸液的一体化配置,可适用于大规模改造施工,同时解决了基液黏度高,泵注困难的难题。
本发明还提供上述稠化剂或上述的制备方法制得的稠化剂在储层改造中的应用,优选为在油气储层改造中的应用。
在一些实施方式中,所述油气储层的储层条件包括:深度为5000~12000km,温度为150℃~250℃。
在一些实施方式中,所述应用包括但不限于:用所述稠化剂制备不同黏度的滑溜水、胶液、交联压裂液、胶凝酸或交联酸体系。
本发明的稠化剂可用于不同黏度滑溜水、胶液、交联压裂液和酸液的增稠,实现稠化剂一体化,降低现场设备数量,解决不同压裂流体间配伍性差的难题,能够满足超高温储层改造需求,具有广泛的市场应用前景。
本发明提供一种滑溜水,所述滑溜水包含上述稠化剂。
除了稠化剂,滑溜水一般还含有水、助排剂和黏土稳定剂,含量各自通常为0.05~1.2wt%稠化剂,0.1~0.3wt%助排剂和0.1~0.3wt%黏土稳定剂。
进一步地,所述滑溜水选自低黏滑溜水、中黏滑溜水、高黏滑溜水和超高黏滑溜水中的至少一种。
如本领域公知,低黏滑溜水的25℃黏度为1~3mPa·s,中黏滑溜水的25℃黏度为3~18mPa·s(不包括3mPa·s),高黏滑溜水的25℃黏度为18~35mPa·s(不包括18mPa·s),超高黏滑溜水的25℃黏度为35~45mPa·s(不包括35mPa·s)。
在一些实施方式中,所述滑溜水为低黏滑溜水,以低黏滑溜水的总重量计,所述低黏滑溜水含有0.05~0.1wt%的所述稠化剂。
在一些实施方式中,所述滑溜水为中黏滑溜水,以中黏滑溜水的总重量计,所述中黏滑溜水含有0.1~0.15wt%(不包括0.1wt%)的所述稠化剂。
在一些实施方式中,所述滑溜水为高黏滑溜水,以高黏滑溜水的总重量计,所述高黏滑溜水含有0.15~0.25wt%(不包括0.15wt%)的所述稠化剂。
在一些实施方式中,所述滑溜水为超高黏滑溜水,以超高黏滑溜水的总重量计,所述超高黏滑溜水含有0.25~0.3wt%(不包括0.25wt%)的所述稠化剂。
本发明提供一种胶液,所述胶液包含上述稠化剂。
进一步地,以胶液的总重量计,所述胶液含有0.3~0.8wt%的所述稠化剂。
除了稠化剂,胶液一般还含有水、助排剂和黏土稳定剂,含量各自通常为0.1~0.3wt%助排剂和0.1~0.3wt%黏土稳定剂。
本发明提供一种交联压裂液,所述交联压裂液包含上述稠化剂。
在一些实施方式中,所述交联压裂液的制备原料包括:所述稠化剂、助排剂、黏土稳定剂、破胶剂、交联剂和水。
进一步地,所述交联压裂液的制备原料以重量份数计,包括:
Figure PCTCN2022106824-appb-000009
进一步地,所述交联压裂液的制备方法,包括:
1)将所述稠化剂、助排剂、黏土稳定剂、破胶剂和水混合,得到压裂液基液;
2)将所述压裂液基液和所述交联剂混合,得到交联压裂液。
本发明中,可以采用本领域中的常用的黏土稳定剂和破胶剂。优选地,所述破胶剂选自过硫酸铵、过硫酸钾和亚硫酸钠中的至少一种。
本发明中,可以采用本领域中的常规方法制备上述助排剂,而为了进一步改善助排剂的综合性能,优选地,所述助排剂的制备原料包括甜菜碱两性离子表面活性剂、聚氧丙烯聚氧乙烯丙二醇醚、月桂醇聚氧乙烯醚和水。
进一步地,以重量份数计,所述助排剂的制备原料包括:
Figure PCTCN2022106824-appb-000010
进一步地,所述甜菜碱两性离子表面活性剂为月桂酰胺丙基甜菜碱。
进一步地,所述助排剂的制备方法包括:
将甜菜碱两性离子表面活性剂、聚氧丙烯聚氧乙烯丙二醇醚和水混合溶解后,再与月桂醇聚氧乙烯醚混合,得到助排剂。
更进一步地,步骤1)中,在第一搅拌速度下向水中加入所述稠化剂和所述助排剂后,在第二搅拌速度下进行搅拌,得到压裂液基液。
更进一步地,步骤2)中,向所述压裂液基液中加入所述交联剂,在第三搅拌速度下搅拌得到交联压裂液。
更进一步地,所述第一搅拌速度、所述第二搅拌速度和所述第三搅拌速度各自独立地选自300~1000r/min。在本发明的不同实施方式中,并不限定所述第一搅拌速度、第二搅拌速度和第三搅拌速度的数值,只要能够使混合的液体形成漩 涡、达到充分混合的目的即可。
更进一步地,在第二搅拌速度下搅拌的时间为1~3min。
更进一步地,在第三搅拌速度下搅拌的时间为3~10min。
在一些实施方式中,所述交联剂的制备原料包括有机锆、有机铜、多元醇、有机羧酸盐、多元有机胺、阴离子表面活性剂和水。
进一步地,以重量份数计,所述交联剂的制备原料包括:
Figure PCTCN2022106824-appb-000011
更进一步地,所述有机锆与有机铜的摩尔比为5:(1~5)。
更进一步地,所述有机锆选自乙酸锆、丙酸锆、乳酸锆和乙酰丙酮锆中的至少一种。
更进一步地,所述有机铜选自乳酸铜、乙酸铜、乙酰丙酮铜和丙酸铜中的至少一种。
更进一步地,所述多元醇选自1,2-丙二醇、丙三醇、乙二醇、木糖醇、山梨醇和季戊四醇中的至少一种。
更进一步地,所述有机羧酸盐选自乳酸钠、柠檬酸钠、酒石酸钠、葡萄糖酸钠、苹果酸钠和草酸钠中的至少一种。
更进一步地,所述多元有机胺选自乙二胺、丙二胺、聚乙烯亚胺、二乙烯三胺和三乙烯四胺中的至少一种。
更进一步地,所述阴离子表面活性剂选自十二烷基苯磺酸钠、十二烷基硫酸钠、十二烷基磺酸钠、十二烷基醇聚氧乙烯醚硫酸钠和十二烷基硫酸铵中的至少一种。
在本发明的交联剂中,除了加入常规的多元醇和有机配体保证交联剂的溶解性和耐高温能力,还引入有机铜和有机羧酸盐类配体,增加交联络合物的稳定性,并提升耐温能力。此外,阴离子表面活性剂的引入,可为交联剂提供物理化学双重交联作用,拓宽交联剂的pH适用范围和交联冻胶的耐剪切性能。
在一些实施方式中,所述交联剂的制备方法包括:
A1.将有机锆、有机铜和水混合,得到有机铜锆水溶液;
A2.将多元醇、有机羧酸盐和所述有机铜锆水溶液混合并反应,得到第一反 应液;
A3.将阴离子表面活性剂和所述第一反应液混合并反应,得到第二反应液;
A4.将多元有机胺与第二反应液混合并反应,得到所述交联剂。
进一步地,步骤A1中,有机锆、有机铜和水混合的温度为20℃~30℃。
进一步地,步骤A2中,反应的条件包括:反应温度40℃~60℃,反应时间3~6h。
进一步地,在步骤A2之后且步骤A3之前,将所述第一反应液的温度调节为20℃~30℃。
进一步地,在步骤A3之后且步骤A4之前,将所述第二反应液的温度调节为20℃~30℃。
在本发明中,该交联剂制备方法简单,用量少,可同时用于高温压裂液和酸液交联,具有良好的推广应用前景。
本发明的交联剂具有良好的稳定性能和交联性能。在中性条件下,无需调节pH即可交联形成耐温220℃的高温压裂液体系,延迟交联时间可达250s,具有良好的挑挂性能,压裂液具有良好的耐温耐剪切性能,尾黏可达到250mPa·s。
在本发明中,在常温常压条件下,用玻璃棒向上挑起,如果能挑起且不易断,则为挑挂性好;如果挑起时,容易断裂,则为挑挂易断;如果无法挑起,则为不能挑挂。挑挂性越好说明交联性能越好。
在本发明中,按照SY/T 5107-2016水基压裂液性能评价方法测试交联压裂液的耐温耐剪切性能和延迟交联时间。
尾黏是指采用耐高温流变仪,在指定温度和剪切速率下,剪切1h以后测得的体系黏度。
利用本发明所提供的稠化剂和交联剂,可直接制备具有在线速溶混配、耐180℃~200℃高温、广谱pH范围内可交联的各类压裂流体。此外,与单独使用稠化剂相比,与交联剂配合使用后,体系具有挑挂性好性,且耐温耐剪切能力将显著提升,可适用于不同压裂施工需求,降低了现场设备用量,拓宽了压裂液用稠化剂的适用范围。
本发明提供一种胶凝酸,所述胶凝酸包含上述稠化剂。
在一些实施方式中,所述胶凝酸的制备原料包括盐酸、所述稠化剂、铁离子稳定剂、缓蚀剂、助排剂和破胶剂;
进一步地,以重量份数计,所述胶凝酸的制备原料包括:
Figure PCTCN2022106824-appb-000012
Figure PCTCN2022106824-appb-000013
其余为水,水的重量份数与其余制备原料的重量份数之和为100份。
在本实施方式中,稠化剂、助排剂和破胶剂已在上文中描述,在此不再赘述。
更进一步地,所述缓蚀剂选自咪唑啉类、喹啉季铵盐类、酮醛胺缩合物和曼尼希碱中的至少一种;更优选地,所述缓蚀剂选自1-氨乙基-2-十五烷基咪唑啉季铵盐、2-甲基喹啉苄基季铵盐和甲醛/对苯二胺/苯乙酮缩合物中的至少一种。
更进一步地,所述铁离子稳定剂为有机酸,更优选自柠檬酸、乳酸、乙酸、乙二胺四乙酸和抗坏血酸中的至少一种。
更进一步地,所述盐酸来源于重量浓度为15~30wt%的盐酸溶液;更优选地,所述盐酸来源于重量浓度为18~20wt%的盐酸溶液。
在一些实施方式中,所述胶凝酸的制备方法包括:
1)将所述稠化剂、盐酸和水混合,得到第一酸液;
2)将所述第一酸液与铁离子稳定剂、缓蚀剂、破胶剂和助排剂混合,得到胶凝酸。
在一些优选实施方式中,步骤1)中,在第一搅拌速度下向盐酸溶液中加入稠化剂后,在第二搅拌速度下进行搅拌,得到第一酸液。
在一些优选实施方式中,步骤2)中,向所述第一酸液中依次加入铁离子稳定剂、缓蚀剂、破胶剂和助排剂,在第二搅拌速度下搅拌得的胶凝酸。
在本发明的不同实施方式中,并不限定所述第一搅拌速度和第二搅拌速度的数值,只要能够使混合的液体形成漩涡、达到充分混合的目的即可。优选地,所述第一搅拌速度和所述第二搅拌速度各自独立地选自300~1000r/min。
进一步地,在第二搅拌速度下搅拌的时间为1~3min。
本发明提供一种交联酸,所述交联酸包含上述稠化剂。
在一些实施方式中,所述交联酸的制备原料包括盐酸、所述稠化剂、铁离子稳定剂、缓蚀剂、破胶剂、助排剂和交联剂;
进一步地,以重量份数计,所述交联酸的制备原料包括:
Figure PCTCN2022106824-appb-000014
Figure PCTCN2022106824-appb-000015
其余为水,水的重量份数与其余制备原料的重量份数之和为100份。
在本实施方式中,稠化剂、盐酸、铁离子稳定剂、缓蚀剂、破胶剂、交联剂和助排剂已在上文中描述,在此不再赘述。
在一些实施方式中,所述交联酸的制备方法包括:
1)将所述稠化剂、盐酸和水混合,得到第一酸液;
2)将所述第一酸液与铁离子稳定剂、缓蚀剂、破胶剂和助排剂混合,得到交联酸基液;
3)将所述交联酸基液和交联剂混合,得到交联酸。
在一些优选实施方式中,步骤1)中,在第一搅拌速度下向盐酸溶液中加入稠化剂后,在第二搅拌速度下进行搅拌,得到第一酸液。
在一些优选实施方式中,步骤2)中,向所述第一酸液中依次加入铁离子稳定剂、缓蚀剂、破胶剂和助排剂,在第二搅拌速度下搅拌得的交联酸基液。
在一些优选实施方式中,步骤3)中,向所述交联酸基液中加入交联剂,在第三搅拌速度下搅拌得到交联酸。
在本发明的不同实施方式中,并不限定所述第一搅拌速度、第二搅拌速度和第三搅拌速度的数值,只要能够使混合的液体形成漩涡、达到充分混合的目的即可。优选地,所述第一搅拌速度、所述第二搅拌速度和所述第三搅拌速度各自独立地选自300~1000r/min。
进一步地,在第二搅拌速度下搅拌的时间为1~3min。
进一步地,在第三搅拌速度下搅拌的时间为3~10min。
本发明的交联剂具有良好的稳定性能和交联性能,利用其在15%~20%质量浓度的盐酸溶液下交联形成200℃交联酸体系,延迟交联时间可达250s,具有良好的挑挂性能,交联酸液尾黏达到180mPa·s。
在本发明中,交联酸尾黏和胶凝酸尾黏均依据行业标准SY/T 5107-2016,在200℃、170s -1剪切1h后测得。
本发明提供的稠化剂与交联剂配合使用,可同时满足压裂液和酸液的交联,通过物理化学双重作用提高交联位点数目,从而提高交联冻胶(酸)的耐温耐剪切性、携砂及缓速能力。所形成的交联压裂液冻胶能够使交联压裂液具有良好的耐温耐剪切能力,而交联冻胶酸则可提高酸液的耐温和缓速性能,实现压裂液-酸液一体化,从而解决不同液体之间配伍性差的问题。
在本发明中,交联剂可同时满足交联压裂液和酸液在pH为3~10范围内的交联。通过物理化学双重交联作用,提高交联冻胶(酸)的耐剪切性能和高温自 修复能力,使交联冻胶(酸)具有更好的耐温性能。配套本发明的稠化剂,实现了压裂液-酸液交联剂的一体化。
上述滑溜水、上述胶液、上述交联压裂液、上述胶凝酸或上述交联酸可用在储层改造中,优选为在油气储层改造中。进一步地,所述油气储层的储层条件包括:深度为5000~12000km,温度为150℃~250℃。
以下通过实施例对本发明进行详细说明,但本发明的保护范围并不限于下述说明。
以下实施例和对比例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购途径获得的常规产品。
涉及的各单体的CAS#和分子量如下表1所示:
表1
Figure PCTCN2022106824-appb-000016
在以下实施例中,如没有特殊说明,对丙烯酰氧基苯甲醛单体(FPA)均按照以下方法制备:在冰浴中将0.5mol对羟基苯甲醛溶解于500mL二氯甲烷中,搅拌条件下通入干燥氮气,用恒压漏斗将0.55mol丙烯酰氯加入到混合液中,持续搅拌24h,旋转蒸发,得到的产品通过质谱测得分子量为178,说明产品为对丙烯酰氧基苯甲醛单体(FPA)。
实施例1
1)配制聚合单体水溶液,其中,丙烯酰胺单体(AM)、丙烯酸单体(AA)、丙烯酸-2-丙烯酰胺-2-甲基丙磺酸单体(AMPS)、对丙烯酰氧基苯甲醛单体(FPA)、丙烯酸聚氧乙烯酯型可聚合表面活性剂(MOEA,m=7,分子量为380.43)和乙烯基咪唑单体(VI)按照n:o:q:y:p:x=74:1:21:0.5:3:0.5的摩尔比加入烧杯中,加入蒸馏水溶解,再加入甲醇得到第一溶液;其中,以重量百分数计,六种单体总量占第一溶液总重的25wt%,甲醇占第一溶液总重的10wt%;
2)向上述单体溶液中加入相对于单体溶液重量1wt%硫脲、0.05wt%甲酸钾、0.03wt%二乙烯三胺五乙酸五钠和0.05wt%的N,N,N’,N’-四甲基乙二胺,搅拌溶解均匀,放入10℃水浴中冷却30min,使温度降至10℃;
3)向步骤2)所得溶液中加入一定量的碳酸钠调节溶液pH为10,得到母液,放入10℃水浴中继续冷却30min,使温度降至10℃,将母液导入绝热聚合装置中,通氮气20min;
4)向母液中依次加入相对于母液重量0.02wt%偶氮二异丁咪唑啉盐酸钠、0.005wt%硫酸亚铁铵和0.01wt%双氧水的水溶液,继续通氮气20min到反应体系变粘稠,然后停止通氮气;
5)观察体系温度变化,待体系温度上升至60℃,保温4h;
6)将聚合得到的胶块取出造粒、在60℃下烘干至含水率为3wt%、粉碎、过20目筛,获得稠化剂干粉;
7)利用胶体磨将所得稠化剂粉末分散到含10%吐温80的5#白油中,形成30wt%分散液,研磨直到颗粒粒径小于400nm,得到液体稠化剂。
将步骤6)得到的稠化剂干粉用丙酮进行洗涤,去除未反应的单体,然后采用TENSOR 27型红外光谱仪(Bruker,德国)仪器来测得红外光谱图,如图1所示。从图1中可见,位于3400cm -1处的一个较为明显的出峰,认为是游离的-NH 2,位于1600cm -1处的两个吸收峰,分别为“C=O双键”伸缩振动和“N-H键”的弯曲振动。由于受到其他单体中羰基“C=O双键”的影响,在1400~1600cm -1的伸缩振动吸收峰无法准确观察。但是,位于1200~1400cm -1处的无法分开的宽峰,对应的是丙烯酸中-COOH的“C=O双键”还是较为清晰的。在2900~3600cm -1之间所形成的“山峰状”吸收峰,是丙烯酸单体中的-COOH中缔和的-OH与聚合物主链中烷基特征吸收峰所复合而成的。400~800cm -1之间所形成的“山峰状”吸收峰,是聚合物主链中的-CH 2中“C-H键”的伸缩振动吸收峰。另外,也复合一些来自于丙烯酸聚氧乙烯酯单体中“C-O-C键”的弯曲振动。在3000~3100cm -1处都出现了明显的三峰,虽然强度较弱,但是峰形较为明显,这是FPA单体中“苯环”的伸缩振动吸收峰。因此,可通过这三个连续位于3000~3100cm -1处的组峰来判断FPA的成功聚合。在900~1000cm -1处都存在一中等强度的吸收峰,这是AMPS单体中“磺酸基”中S=O双键的伸缩振动吸收峰。因此,可通过位于900~1000cm -1处的“S=O双键”的振动吸收峰来判断AMPS的成功聚合。在400cm -1以下出现较弱的吸收峰,其是来自于乙烯基咪唑的特征峰。可以判断乙烯基咪唑的成功聚合。综上,通过图1所示红外谱图可以判断得到了由上述六种单体形成的聚合物。经检测,聚合物的粘均分子量为1250万。
实施例2~4
采用与实施例1相同的制备方法,不同之处仅在于:六种单体的浓度、助溶剂、链转移剂、络合剂、活化剂、氧化剂、还原剂和水溶性偶氮类引发剂分别不同,详见表2。
表2
Figure PCTCN2022106824-appb-000017
实施例5~7
采用与实施例1相同的制备方法,不同之处仅在于:步骤1)中加入的六种单体的摩尔比n:o:q:y:p:x不同,详见表3。
实施例8~10
采用与实施例1相同的制备方法,不同之处仅在于:步骤1)中加入的丙烯酸聚氧乙烯酯型可聚合表面活性剂(MOEA)的m值不同,详见表3。
实施例11~12
采用与实施例1相同的制备方法,不同之处仅在于:步骤1)中加入的六种单体的摩尔比n:o:q:y:p:x不同,详见表3。
实施例13
采用与实施例1相同的制备方法,不同之处仅在于,步骤1)配制的聚合 单体水溶液中,未添加乙烯基咪唑单体(VI),其中,丙烯酰胺单体(AM)、丙烯酸单体(AA)、丙烯酸-2-丙烯酰胺-2-甲基丙磺酸单体(AMPS)、对丙烯酰氧基苯甲醛单体(FPA)和丙烯酸聚氧乙烯酯型可聚合表面活性剂(MOEA,m=7,分子量为380.43)的摩尔比为n:o:q:y:p=74:1:21:0.5:3。
实施例14
采用与实施例1相同的制备方法,不同之处仅在于,步骤1)配制的聚合单体水溶液中,未添加丙烯酸聚氧乙烯酯型可聚合表面活性剂,其中,丙烯酰胺单体(AM)、丙烯酸单体(AA)、丙烯酸-2-丙烯酰胺-2-甲基丙磺酸单体(AMPS)、对丙烯酰氧基苯甲醛单体(FPA)和乙烯基咪唑单体(VI)的摩尔比为n:o:q:y:x=74:1:21:0.5:0.5。
实施例15
采用与实施例1相同的制备方法,不同之处仅在于,步骤1)配制的聚合单体水溶液中,未添加丙烯酸聚氧乙烯酯型可聚合表面活性剂(MOEA,m=7,分子量为380.43)和乙烯基咪唑单体(VI),其中,丙烯酰胺单体(AM)、丙烯酸单体(AA)、丙烯酸-2-丙烯酰胺-2-甲基丙磺酸单体(AMPS)和对丙烯酰氧基苯甲醛单体(FPA)的摩尔比为n:o:q:y=74:1:21:0.5。
对比例1
采用与实施例1相同的制备方法,不同之处仅在于:步骤1)配制的聚合单体水溶液中,未添加对丙烯酰氧基苯甲醛单体(FPA),其中,丙烯酰胺单体(AM)、丙烯酸单体(AA)、丙烯酸-2-丙烯酰胺-2-甲基丙磺酸单体(AMPS)、丙烯酸聚氧乙烯酯型可聚合表面活性剂(MOEA,m=7,分子量为380.43)和乙烯基咪唑单体(VI)的摩尔比为n:o:q:p:x=74:1:21:3:0.5。
对比例2
采用与实施例1相同的制备方法,不同之处仅在于:步骤1)配制的聚合单体水溶液中,未添加丙烯酸-2-丙烯酰胺-2-甲基丙磺酸单体(AMPS),其中,丙烯酰胺单体(AM)、丙烯酸单体(AA)、对丙烯酰氧基苯甲醛单体(FPA)、丙烯酸聚氧乙烯酯型可聚合表面活性剂(MOEA,m=7,分子量为380.43)和乙烯基咪唑单体(VI)的摩尔比为n:o:y:p:x=74:1:0.5:3:0.5。
对比例3
在25℃下,将24.5g丙烯酰胺、17.5g丙烯酸、24.5g乙烯基吡咯烷酮以及37.5g的AMPS用100g水配制成溶液,用氢氧化钾(KOH)溶液调节溶液pH至7,控制温度不超过30℃,加入1g的1wt%的过硫酸钾(KPS)引发剂溶液得到单体水溶液。
向120g白油中加入10g乳化剂OP-10和15g乳化剂司班40,搅拌使乳化剂溶解均匀后,在搅拌的条件下,滴加上述单体水溶液进行乳化。乳化结束后,通入氮气30min以除去系统内的氧气,滴加10g的1wt%的亚硫酸氢钠水溶液开始反应,控制反应体系的温度不超过50℃,反应5h,得到乳白色的产物。
表3
序号 单体的摩尔比 m值
实施例1 n:o:q:y:p:x=74:1:21:0.5:3:0.5 7
实施例2 n:o:q:y:p:x=74:1:21:0.5:3:0.5 7
实施例3 n:o:q:y:p:x=74:1:21:0.5:3:0.5 7
实施例4 n:o:q:y:p:x=74:1:21:0.5:3:0.5 7
实施例5 n:o:q:y:p:x=65:9:20:1:4:1 7
实施例6 n:o:q:y:p:x=70:6:21:0.5:3.5:1 7
实施例7 n:o:q:y:p:x=67:8:20.5:1:3:0.5 7
实施例8 n:o:q:y:p:x=74:1:21:0.5:3:0.5 6
实施例9 n:o:q:y:p:x=74:1:21:0.5:3:0.5 8
实施例10 n:o:q:y:p:x=74:1:21:0.5:3:0.5 10
实施例11 n:o:q:y:p:x=60:15:10:8:5:2 7
实施例12 n:o:q:y:p:x=50:16:7:18:5:4 7
实施例13 n:o:q:y:p=74:1:21:0.5:3 7
实施例14 n:o:q:y:x=74:1:21:0.5:0.5 /
实施例15 n:o:q:y=74:1:21:0.5 /
对比例1 n:o:q:p:x=74:1:21:3:0.5 7
对比例2 n:o:y:p:x=74:1:0.5:3:0.5 7
应用例1
分别将实施例1~15和对比例1~2制备所得的30wt%液体稠化剂用于制备酸液、滑溜水和交联压裂液。
1)酸液:将30wt%液体稠化剂快速加入已添加缓蚀剂(SRAI-1,中石化石油工程技术研究院市售品)的盐酸(HCl浓度为36wt%)水溶液中,使聚合物、盐酸溶液和缓蚀剂的含量分别为1wt%粉末、20wt%和3wt%。记录搅拌条件下(搅拌速度450~800r/min)的溶解时间,得到胶凝酸,并利用ZNN-D6六速旋转黏度 计测定测量各胶凝酸的表观黏度。然后加入交联酸用交联剂(SRAC-2有机锆交联剂,中石化石油工程技术研究院市售品)形成交联酸,最终稠化剂在交联酸中的浓度为1wt%。
依据行业标准SY/T 5107-2016,在200℃、170s -1剪切1h,测量胶凝酸和交联酸的耐温耐剪切特性。酸液测试结果见表4。
表4酸液测试结果
Figure PCTCN2022106824-appb-000018
从表4可以看出,本发明合成的稠化剂在酸中溶解时间<3min,可实现在线混配酸液。经过200℃、170s -1剪切1h以后交联酸尾黏达到75mPa·s以上,经过200℃、170s -1剪切1h以后胶凝酸黏度达到30mPa·s以上,且胶凝酸放置10天后黏度达到40mPa·s以上,满足酸液体系性能要求。
2)滑溜水:将30wt%液体稠化剂快速加入清水中,搅拌均匀,形成滑溜水,最终聚合物在滑溜水中的浓度为0.09wt%。记录搅拌条件下(搅拌速度450~800r/min)的溶解时间,并利用ZNN-D6六速旋转黏度计测定测量滑溜水的表观黏度;利用摩阻仪测定滑溜水的降阻率,滑溜水测试结果见表5。
按照NB/T 14003.1-2015《页岩气压裂液第1部分:滑溜水性能指标及评价方法》测定滑溜水的降阻率。其中,滑溜水一定速率下流经一定长度和直径的管路时都会产生一定的压差,根据滑溜水与清水(实验室即为自来水)压差的差值和与清水压差的比值来计算滑溜水的降阻率。
表观黏度按照GB/T 16783.1-2014的方法测得。
表5滑溜水测试结果
序号 溶解时间/min 表观黏度/mPa·s 降阻率/%
实施例1 <1 19 75
实施例2 <1 18 75
实施例3 <1 18 73
实施例4 <1 17 74
实施例5 <1 15 72
实施例6 <1 16 73
实施例7 <1 16 74
实施例8 <1 15 72
实施例9 <1 16 75
实施例10 <1 15 73
实施例11 <1 13 67
实施例12 <1 10 61
实施例13 <1 12 66
实施例14 <1 11 63
实施例15 <1 10 64
对比例1 >3 5 48
对比例2 >3 6 50
对比例3 >5 4 40
从表5可以看出,本发明合成的稠化剂在清水中溶解时间小于1min,基液的表观黏度可达10mPa·s以上,降阻率可达60%以上。
3)交联压裂液:将30wt%液体稠化剂快速加入清水中,搅拌均匀,得到压裂液基液。记录搅拌条件下(搅拌速度450~800r/min)的溶解时间,并利用ZNN-D6六速旋转黏度计测定测量压裂液基液的表观黏度。然后加入压裂液用交联剂(SRAC-3有机锆交联剂,中石化石油工程技术研究院市售品)形成交联压裂液,最终稠化剂在压裂液中的浓度为0.45wt%。交联压裂液测试结果见表6。
依据行业标准SY/T 5107-2016,在200℃、170s -1剪切1h,测量压裂液的耐温耐剪切性能。
表6压裂液测试结果
Figure PCTCN2022106824-appb-000019
从表6可以看出,本发明合成的稠化剂溶解时间小于1min,形成的压裂液基液表观黏度可达45mPa·s及以上,交联压裂液经过200℃高温剪切以后尾黏可达150mPa·s及以上,满足高温压裂液性能要求。液体稠化剂的溶解时间小于1min可实现在线混配酸液,其它性能与粉末相当。
综合表4、表5和表6的结果可以看出,本发明的稠化剂能够满足胶凝酸、交联酸、滑溜水和交联压裂液对稠化剂的要求,从而能够实现稠化剂一体化的目的,大大降低操作复杂度。
应用例2
分别将实施例1的步骤6)和对比例3制备所得的稠化剂(干粉)按表6所示配方根据下述方法制备交联压裂液:
1)在500r/min的速度下向100重量份的水中加入稠化剂干粉和助排剂后,在700r/min速度下进行搅拌2min,得到压裂液基液;
2)向所述压裂液基液中加入上述交联剂,在700r/min速度下搅拌3min得到交联压裂液。
助排剂和交联剂各自均按照以下方法制备:
助排剂的制备方法:将30重量份聚氧丙烯聚氧乙烯丙二醇醚(PPE-1500,南通阿切斯化工有限公司市售品)和20重量份月桂酰胺丙基甜菜碱两性离子表 面活性剂溶于49.5重量份水中,搅拌至充分溶解,再加入0.5重量份月桂醇聚氧乙烯醚(MOA-4,南通阿切斯化工有限公司市售品)继续搅拌均匀后,得到助排剂。
交联剂的制备方法:A1.向30重量份水中加入5重量份乙酰丙酮锆和2重量份乙酰丙酮铜,20℃下充分搅拌溶解,得到有机铜锆水溶液;
A2.向有机铜锆水溶液中依次加入25重量份1,2-丙二醇和25重量份草酸钠,50℃恒温反应4h,得到第一反应液;
A3.向第一反应液中加入10重量份十二烷基醇聚氧乙烯醚硫酸钠(AES,济南英出化工科技有限公司市售品),搅拌混合均匀,得到第二反应液;
A4.向第二反应液的溶液中加入4重量份聚乙烯亚胺(CAS号:9002-98-6,湖北东曹化学科技有限公司),搅拌混合均匀,得到交联剂。
依据标准SY/T 5107-2016对交联压裂液的延迟交联时间和耐温耐剪切性能(200℃、170s -1剪切1h)进行评价,结果见表7。
表7交联压裂液及其性能测试结果
Figure PCTCN2022106824-appb-000020
从表7可以看出,本发明提供的交联压裂液可实现在线速配,压裂液交联后黏度可以达到650mPa·s以上,在200℃下经高温剪切后黏度可以达到150mPa·s以上,并且具有良好的延迟交联性能,是一种可在线速配且交联时间可调的压裂液体系,在高温储层复合酸压中具有广泛的应用前景。
通过表4至表7的结果可以看出,本发明提供的稠化剂可在酸液、滑溜水和交联压裂液中使用,能够满足胶凝酸、交联酸、滑溜水和交联压裂液等对稠化剂的要求,从而能够实现使用一种稠化剂满足各种应用场景的目的。
以上详细描述了本发明的优选实施方式,但是本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (16)

  1. 一种聚合物,其特征在于,所述聚合物含有式(1)所示结构单元、式(2)所示结构单元、式(3)所示结构单元和式(4)所示结构单元,
    Figure PCTCN2022106824-appb-100001
    其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14和R 15各自独立地为氢或C1~C10的直链或支链烷基;
    X为C1~C10的直链或支链亚烷基;
    M为氢或碱金属。
  2. 根据权利要求1所述的聚合物,其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14和R 15各自独立地为氢或C1~C6的直链或支链烷基,优选为氢或C1~C4的直链或支链烷基;更优选为氢、甲基或乙基;
    优选地,R 10和R 11各自独立地为甲基;
    优选地,X为C1~C6的直链或支链亚烷基,更优选为C1~C3的直链或支链亚烷基,进一步优选为亚甲基或1,2-亚乙基;
    优选地,M为氢或钠。
  3. 根据权利要求1或2所述的聚合物,其中,式(1)所示结构单元、式(2)所示结构单元、式(3)所示结构单元和式(4)所示结构单元的摩尔比为65~74:1~10:19~21:0.5~1。
  4. 根据权利要求1~3中任意一项所述的聚合物,其中,所述聚合物还含有式(5)所示结构单元,
    Figure PCTCN2022106824-appb-100002
    其中,R 16、R 17和R 18各自独立地为氢或C1~C6的直链或支链烷基;
    m为氧乙烯结构个数,m=6~10;
    优选地,R 16、R 17和R 18各自独立地为氢或C1~C4的直链或支链烷基;优选为氢、甲基或乙基;更优选为氢;
    优选地,式(1)所示结构单元与式(5)所示结构单元的摩尔比为65~74:2~4。
  5. 根据权利要求1~4中任意一项所述的聚合物,其中,所述聚合物还含有式(6)所示结构单元,
    Figure PCTCN2022106824-appb-100003
    其中,R 19、R 20和R 21各自独立地为氢或C1~C6的直链或支链烷基;
    优选地,R 19、R 20和R 21各自独立地为氢或C1~C4的直链或支链烷基;优选为氢、甲基或乙基;更优选为氢;
    优选地,式(1)所示结构单元与式(6)所示结构单元的摩尔比为65~74:0.5~1。
  6. 根据权利要求1~5中任意一项所述的聚合物,其中,所述聚合物的粘均分子量为1200万~1400万。
  7. 一种稠化剂,其特征在于,所述稠化剂包含权利要求1~6中任意一项所述的聚合物;
    优选地,将30wt%液体稠化剂加入清水中,形成聚合物浓度为0.09wt%的滑溜水时,所述稠化剂在清水中溶解时间小于1min,基液的表观黏度大于等于 10mPa·s,降阻率大于等于60%。
  8. 一种稠化剂的制备方法,其特征在于,所述制备方法包括:
    在聚合反应条件下,在引发剂存在下,将聚合单体在有机溶剂和助剂中发生聚合反应;其中,所述聚合单体包括:式(I)所示单体、式(II)所示单体、式(III)所示单体和式(IV)所示单体,
    Figure PCTCN2022106824-appb-100004
    其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14和R 15各自独立地为氢或C1~C10的直链或支链烷基;
    X为C1~C10的直链或支链亚烷基;
    M为氢或碱金属。
  9. 根据权利要求8所述的制备方法,其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14和R 15各自独立地为氢或C1~C6的直链或支链烷基,优选为氢或C1~C4的直链或支链烷基;更优选为氢、甲基或乙基;
    优选地,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 12、R 13、R 14和R 15各自独立地为氢;
    优选地,R 10和R 11各自独立地为甲基;
    优选地,X为C1~C6的直链或支链亚烷基,更优选为C1~C3的直链或支链亚烷基,进一步优选为亚甲基或1,2-亚乙基;
    优选地,M为氢或钠,更优选为氢;
    优选地,式(I)所示单体、式(II)所示单体、式(III)所示单体和式(IV)所示单体的摩尔比为65~74:1~10:19~21:0.5~1。
  10. 根据权利要求8或9所述的制备方法,其中,所述聚合单体还包括式(V)所示单体,
    Figure PCTCN2022106824-appb-100005
    其中,R 16、R 17和R 18各自独立地为氢或C1~C6的直链或支链烷基;
    m为氧乙烯结构个数,m=6~10;
    优选地,R 16、R 17和R 18各自独立地为氢或C1~C4的直链或支链烷基;优选为氢、甲基或乙基;更优选为氢;
    优选地,式(I)所示单体与式(V)所示单体的摩尔比为65~74:2~4。
  11. 根据权利要求8~10中任意一项所述的制备方法,其中,所述聚合单体还包括式(VI)所示单体,
    Figure PCTCN2022106824-appb-100006
    其中,R 19、R 20和R 21各自独立地为氢或C1~C6的直链或支链烷基;
    优选地,R 19、R 20和R 21各自独立地为氢或C1~C4的直链或支链烷基;优选为氢、甲基或乙基;更优选为氢;
    优选地,式(I)所示单体与式(VI)所示单体的摩尔比为65~74:0.5~1。
  12. 根据权利要求8~11中任意一项所述的制备方法,其中,所述聚合单体与所述有机溶剂的重量比为25~29:10~15;
    优选地,所述有机溶剂选自N,N'-二甲基甲酰胺、二甲基亚砜、甲醇和乙醇 中的至少一种。
  13. 根据权利要求8~12中任意一项所述的制备方法,其中,所述助剂包括链转移剂、络合剂、助溶剂、活化剂、还原剂和氧化剂;
    优选地,所述链转移剂选自甲酸钠、甲酸钾和异丙醇中的至少一种;
    优选地,所述络合剂选自乙二胺四乙酸二盐、乙二胺四乙酸四盐和三乙烯四胺五乙酸盐中的至少一种;
    优选地,所述助溶剂选自尿素、硫脲和氯化铵中的至少一种;
    优选地,所述活化剂选自N,N,N’,N’-四甲基乙二胺、乙二胺和三乙醇胺中的至少一种;
    优选地,所述还原剂选自亚硫酸氢钠、亚硫酸钠和硫酸亚铁铵中的至少一种;
    优选地,所述氧化剂选自中过硫酸铵、过硫酸钾和双氧水中的至少一种;
    优选地,所述引发剂为水溶性偶氮类引发剂,优选地,所述水溶性偶氮类引发剂选自偶氮二异丁脒盐酸盐和偶氮二异丁咪唑啉盐酸盐中的至少一种。
  14. 根据权利要求8~13中任意一项所述的制备方法,其中,所述的制备方法还包括:将所述聚合反应得到的聚合胶状物进行造粒、烘干、粉碎、过筛,获得干粉状稠化剂;
    优选地,所述烘干的温度为60℃~80℃;
    优选地,所述干粉状稠化剂粉末的含水率低于10wt%,优选低于5wt%,更优选低于3wt%;
    优选地,所述干粉状稠化剂粉末的粒径小于400目。
  15. 根据权利要求14所述的制备方法,其中,所述的制备方法还包括:将所述干粉状稠化剂的粉末分散到含矿物分散剂的矿物油中,得到液体稠化剂;
    优选地,所述液体稠化剂的浓度为20~40wt%;
    优选地,所述矿物油为5#白油、柴油和轻质原油中的至少一种;
    优选地,所述矿物分散剂为OP-10、司班40和吐温80中的至少一种。
  16. 根据权利要求8~15中任意一项所述的制备方法,其中,所述聚合反应条件包括:温度为50℃~90℃,优选为60℃~80℃;时间为3~6h,优选为4~5h;pH为5~11,优选为6~10。
PCT/CN2022/106824 2021-07-30 2022-07-20 聚合物和稠化剂及其制备方法 WO2023005769A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280050980.9A CN117897420A (zh) 2021-07-30 2022-07-20 聚合物和稠化剂及其制备方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110872134.2A CN115677942A (zh) 2021-07-30 2021-07-30 一种稠化剂及其制备方法和应用
CN202110872132.3 2021-07-30
CN202110872132.3A CN115678529A (zh) 2021-07-30 2021-07-30 一种压裂液及其制备方法和应用
CN202110872134.2 2021-07-30
CN202110874712.6A CN115678532A (zh) 2021-07-30 2021-07-30 一种交联剂及其制备方法和应用
CN202110874712.6 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023005769A1 true WO2023005769A1 (zh) 2023-02-02

Family

ID=85087479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106824 WO2023005769A1 (zh) 2021-07-30 2022-07-20 聚合物和稠化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN117897420A (zh)
WO (1) WO2023005769A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116102677A (zh) * 2023-04-04 2023-05-12 山东滨州昱诚化工科技有限公司 一种耐温型酸液稠化剂及其制备方法和应用
CN116144337A (zh) * 2023-02-28 2023-05-23 西南石油大学 一种水基速溶悬浮减阻剂及其制备方法
CN116239723A (zh) * 2023-04-13 2023-06-09 陕西日新石油化工有限公司 一种油田压裂液稠化剂及其制备方法
CN116751336A (zh) * 2023-08-15 2023-09-15 东营市百扬石油科技有限责任公司 一种耐温的乳液型压裂液稠化剂的制备方法
CN117069888A (zh) * 2023-10-12 2023-11-17 胜利油田方圆化工有限公司 一种抗盐压裂用聚合物稠化剂及其合成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131404A (zh) * 2013-02-17 2013-06-05 中国石油化工股份有限公司 两性离子型聚合物水基压裂液稠化剂及其制备方法
WO2014055342A1 (en) * 2012-10-05 2014-04-10 Meadwestvaco Corporation Traceable polymeric viscosifier compositions and methods of using
WO2015042026A1 (en) * 2013-09-18 2015-03-26 The Lubrizol Corporation High temperature stable linear polymers
CN104946227A (zh) * 2014-03-27 2015-09-30 中国石油化工股份有限公司 一种滑溜水减阻剂及其制备方法
CN105860951A (zh) * 2016-05-16 2016-08-17 中国石油化工股份有限公司 一种酸性聚合物压裂液及其制备方法
CN106146730A (zh) * 2015-03-25 2016-11-23 中国石油天然气股份有限公司 一种丙烯酰胺类聚合物增稠剂及其制备方法和压裂液
CN112521560A (zh) * 2020-12-07 2021-03-19 西安长庆化工集团有限公司 一种高效抗盐一剂两用稠化剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014055342A1 (en) * 2012-10-05 2014-04-10 Meadwestvaco Corporation Traceable polymeric viscosifier compositions and methods of using
CN103131404A (zh) * 2013-02-17 2013-06-05 中国石油化工股份有限公司 两性离子型聚合物水基压裂液稠化剂及其制备方法
WO2015042026A1 (en) * 2013-09-18 2015-03-26 The Lubrizol Corporation High temperature stable linear polymers
CN104946227A (zh) * 2014-03-27 2015-09-30 中国石油化工股份有限公司 一种滑溜水减阻剂及其制备方法
CN106146730A (zh) * 2015-03-25 2016-11-23 中国石油天然气股份有限公司 一种丙烯酰胺类聚合物增稠剂及其制备方法和压裂液
CN105860951A (zh) * 2016-05-16 2016-08-17 中国石油化工股份有限公司 一种酸性聚合物压裂液及其制备方法
CN112521560A (zh) * 2020-12-07 2021-03-19 西安长庆化工集团有限公司 一种高效抗盐一剂两用稠化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KHAKPOUR HOSSEIN; ABDOLLAHI MAHDI: "Rheological properties of acrylamide/butyl acrylate/2-acrylamido-2-methyl-1-propane sulfonic acid co- and terpolymers synthesized by heterogeneous and micellar methods", POLYMER BULLETIN, SPRINGER, HEIDELBERG., DE, vol. 74, no. 12, 4 April 2017 (2017-04-04), DE , pages 5145 - 5161, XP036340682, ISSN: 0170-0839, DOI: 10.1007/s00289-017-2009-z *
MA XIPING; YANG MIAO: "Synthesis and Performance Evaluation of Temperature-controlled Viscous Acid", RUSSIAN JOURNAL OF APPLIED CHEMISTRY, PLEIADES PUBLISHING, MOSCOW, vol. 92, no. 10, 1 October 2019 (2019-10-01), Moscow , pages 1447 - 1457, XP036965037, ISSN: 1070-4272, DOI: 10.1134/S107042721910015X *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144337A (zh) * 2023-02-28 2023-05-23 西南石油大学 一种水基速溶悬浮减阻剂及其制备方法
CN116102677A (zh) * 2023-04-04 2023-05-12 山东滨州昱诚化工科技有限公司 一种耐温型酸液稠化剂及其制备方法和应用
CN116102677B (zh) * 2023-04-04 2024-04-26 山东滨州昱诚化工科技有限公司 一种耐温型酸液稠化剂及其制备方法和应用
CN116239723A (zh) * 2023-04-13 2023-06-09 陕西日新石油化工有限公司 一种油田压裂液稠化剂及其制备方法
CN116751336A (zh) * 2023-08-15 2023-09-15 东营市百扬石油科技有限责任公司 一种耐温的乳液型压裂液稠化剂的制备方法
CN117069888A (zh) * 2023-10-12 2023-11-17 胜利油田方圆化工有限公司 一种抗盐压裂用聚合物稠化剂及其合成方法
CN117069888B (zh) * 2023-10-12 2024-01-23 胜利油田方圆化工有限公司 一种抗盐压裂用聚合物稠化剂及其合成方法

Also Published As

Publication number Publication date
CN117897420A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2023005769A1 (zh) 聚合物和稠化剂及其制备方法
CN102191027B (zh) 一种耐高温分散型油井水泥降失水剂及制备方法
CN106866881B (zh) 疏水缔合丙烯酰胺类聚合物乳液及其制备方法
CN111518239B (zh) 一种乳液型压裂液降阻剂及其制备方法
RU2722804C1 (ru) Загуститель на основе катионного полимера, способ его получения и термостойкая жидкость для гидроразрыва пласта, получаемая с его использованием
CN106589227B (zh) 高温高矿化度油藏聚丙烯酰胺驱油剂及其制备方法
CN105199043B (zh) 一种水溶性疏水缔合聚合物及其制备方法
CN103788289A (zh) 一种丙烯酰胺系共聚物及其制备方法和应用
CN112126422A (zh) 一种稳定性高的减阻剂及其制备方法和应用
CN108690597A (zh) 一种滑溜水压裂液
CN108484827B (zh) 一种在压裂中同时具有减阻及增稠性能且溶解迅速的乳液及其制备方法
CN113929801A (zh) 一种超高温度酸化压裂用稠化剂的制备方法
CN113667466A (zh) 一种基于改性聚丙烯酰胺的超分子压裂液及其制备方法
CN104974299B (zh) 一种压裂用降阻剂及其制备方法
CN104232055B (zh) 一种压裂液减阻剂及其制备方法
CN106317324B (zh) 制备减阻剂用稳定剂和页岩气压裂用减阻剂及它们的制备方法
CN112745454B (zh) 一种高温深井酸化用增稠剂及其制备方法
CN110713570A (zh) 一种用于酸化压裂的温敏型酸液稠化剂及其制备方法
CN110982507A (zh) 一种用于酸化压裂的酸液稠化剂及其制备方法和应用
US11655412B2 (en) Spherical organic nano boron crosslinker with PAMAM core and preparation method thereof, and gel fracturing fluid
CN106279524B (zh) 一种页岩气压裂用减阻剂的制备方法及压裂用减阻剂
CN115678532A (zh) 一种交联剂及其制备方法和应用
CN104974306B (zh) 一种压裂用降阻剂及其制备方法
CN113528114B (zh) 一种氯化钙加重胍胶压裂液体系及其制备方法和应用
CN104232056B (zh) 一种压裂液减阻剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848374

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280050980.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2024101461

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE