WO2020215398A1 - Oled显示面板及其制作方法 - Google Patents

Oled显示面板及其制作方法 Download PDF

Info

Publication number
WO2020215398A1
WO2020215398A1 PCT/CN2019/086820 CN2019086820W WO2020215398A1 WO 2020215398 A1 WO2020215398 A1 WO 2020215398A1 CN 2019086820 W CN2019086820 W CN 2019086820W WO 2020215398 A1 WO2020215398 A1 WO 2020215398A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
anode
display panel
oled display
Prior art date
Application number
PCT/CN2019/086820
Other languages
English (en)
French (fr)
Inventor
何昆鹏
任章淳
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020215398A1 publication Critical patent/WO2020215398A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the invention relates to the field of display technology, in particular to an OLED display panel and a manufacturing method thereof.
  • flat-panel display devices such as liquid crystal display panels and organic light-emitting diode display panels have gradually replaced cathode ray tube displays.
  • the OLED display panel has many advantages such as self-luminescence, low driving voltage, low luminous efficiency, short response time, high definition and contrast, nearly 180-degree viewing angle, wide operating temperature range, flexible display and large-area full-color display, etc. , Recognized by the industry as the most promising display device.
  • FIG. 1 is a schematic diagram of the structure of an OLED display panel in the prior art.
  • the common way of making OLED display panels is to deposit red, green, and blue resistive layers through a vacuum thermal evaporation process, and an OLED light-emitting layer is arranged on the color resistive layer.
  • the advantages are simple and mature process and easy operation.
  • higher-precision masks and precise alignment are required to prepare high-resolution displays, resulting in lower productivity and higher costs; and the number of layers of each structure of the existing OLED display panel is large, such as light-shielding layer and flat layer , Pixel defining layer, etc., it is more difficult to improve the yield, and the patterning of these layers also requires more photomasks, more complicated processes, and higher production costs.
  • the purpose of the present invention is to provide an OLED display panel and a manufacturing method thereof.
  • the OLED display panel adopts a top-gate emitting device, which only requires 8-11 yellow light manufacturing processes. Compared with the 13 yellow light manufacturing processes commonly used in the prior art, the present invention reduces 2-5 manufacturing processes. The quantity, production time, and production consumables have been greatly reduced, thereby greatly reducing the production cost of vapor-deposited OLED backplanes.
  • an OLED display panel which includes: a base substrate; a color filter layer provided on the base substrate; a flat layer covering the color filter layer; An anode and a light-shielding layer arranged on the flat layer; a buffer layer covering the anode and the light-shielding layer, and the buffer layer has an opening at a position corresponding to the color film layer; An active layer, a gate insulating layer, and a gate stacked on the buffer layer; one covering the buffer layer, the active layer, the gate insulating layer and the gate The interlayer insulating layer; the source and drain provided on the interlayer insulating layer, wherein the source is in contact with the light shielding layer through a via hole; the material of the light shielding layer is a non-transparent metal Or conductive material.
  • the present invention provides an OLED display panel.
  • the OLED display panel includes: a base substrate; a color filter layer arranged on the base substrate; a flat layer covering the color filter layer; an anode and an anode laminated on the flat layer Light-shielding layer; a buffer layer covering the anode and the light-shielding layer, and the buffer layer and the color film layer corresponding to the position has an opening.
  • the OLED display panel further includes: an active layer, a gate insulating layer, and a gate stacked on the buffer layer in sequence; a layer covering the buffer layer, The active layer, the gate insulating layer and the interlayer insulating layer on the gate; the source and drain provided on the interlayer insulating layer, wherein the source is connected to the gate through a via hole
  • the light shielding layer is in contact.
  • the OLED display panel further includes: a pixel defining layer arranged on the interlayer insulating layer, the buffer layer, the source electrode and the drain electrode; and a pixel defining layer arranged on the A light-emitting layer on the anode and corresponding to the color filter layer; a cathode covering the pixel defining layer and the light-emitting layer.
  • the material of the light shielding layer is opaque metal or conductive material.
  • the light emitting layer includes a white light organic light emitting device, and the material of the cathode is a conductive reflective material.
  • a method for manufacturing the above-mentioned OLED display panel which includes the following steps: (1) Providing a base substrate, and disposing a color film layer on the base substrate. In the process of film layer, the same mask is used to translate a set distance multiple times to form color resist blocks of different colors; (2) cover a flat layer on the color film layer; (3) in the flat An anode and a light-shielding layer are stacked on the layers, wherein a half-tone mask process is used to expose a part of the anode at a position corresponding to the color film layer, and the anode and the light-shielding layer are made at one time through a half-tone mask process; And (4) covering the anode and the light shielding layer with a buffer layer, and the buffer layer has an opening at a position corresponding to the color filter layer, so that a part of the anode corresponding to the opening position is exposed.
  • the manufacturing method includes: (5) stacking an active layer, a gate insulating layer, and a gate on the buffer layer in sequence, and making the gate The polar insulating layer and the gate are completed through the same photomask; (6) covering the buffer layer, the active layer, the gate insulating layer and the gate with an inter-insulating layer; and ( 7) A source electrode and a drain electrode are arranged on the interlayer insulating layer, wherein the source electrode is in contact with the light shielding layer through a via hole.
  • the manufacturing method after step (7) includes: (8) forming a pixel defining layer on the interlayer insulating layer, the buffer layer, and the source and drain electrodes , So as to avoid performing a patterning operation of a passivation layer; (9) setting a light-emitting layer on the anode and at a position corresponding to the color filter layer; and (10) setting a light emitting layer on the pixel defining layer and the A cathode is covered on the light-emitting layer.
  • the material of the light shielding layer in step (3) is non-transparent metal or conductive material.
  • the light emitting layer includes a white light organic light emitting device, and the material of the cathode is a conductive reflective material.
  • the advantage of the present invention is that the OLED display panel of the present invention adopts top-gate emitting devices, which only requires 8-11 yellow light manufacturing processes. Compared with the conventional 13 yellow light manufacturing processes, the present invention reduces 2 -5 manufacturing processes, greatly reducing the number of masks, manufacturing time, and manufacturing consumables, thereby greatly reducing the manufacturing cost of vapor-deposited OLED backplanes. At the same time, due to the reduction in manufacturing processes, the quality of OLED backplanes is also improved to a certain extent. rate.
  • FIG. 1 is a schematic diagram of the structure of an OLED display panel in the prior art.
  • FIG. 2 is a schematic structural diagram of an OLED display panel in an embodiment of the present invention.
  • FIG. 3 is a flowchart of the steps of a manufacturing method of an OLED display panel in an embodiment of the present invention.
  • 4A to 4J are process flow diagrams of the manufacturing method of the OLED display panel in the embodiment of the present invention.
  • the embodiment of the present invention provides an OLED display panel and a manufacturing method thereof. The detailed description will be given below.
  • FIG. 2 is a schematic structural diagram of an OLED display panel in an embodiment of the present invention.
  • the invention provides an OLED display panel.
  • the OLED display panel includes: a base substrate 11, a color filter layer 12 and a flat layer 13.
  • the base substrate 11 is a glass substrate, which is not limited to this in other implementations, and may be a plastic substrate, a polyimide (PI) substrate, or the like.
  • PI polyimide
  • the color filter layer 12 is disposed on the base substrate 11.
  • the color film layer 12 includes a red color resist block R, a green color resist block G, and a blue color resist block B.
  • the flat layer 13 covers the entire surface of the color filter layer 12.
  • the flat layer 13 is an organic film layer that covers the entire surface and does not need to be made by a photomask.
  • the OLED display panel further includes: anode 14, light shielding layer 15, buffer layer 16, active layer 17, gate insulating layer 18, gate 19, interlayer insulating layer 20, source 21 and drain 22, pixel definition Layer 23 and cathode 24.
  • the anode 14 is arranged on the flat layer 13.
  • the anode 14 is a transparent conductive film in the form of ITO, IZO, or the like.
  • the light shielding layer 15 is made of opaque metal or conductive material such as copper and molybdenum.
  • the anode 14 and the light-shielding layer 15 can be manufactured at one time through a halftone mask process, wherein the light-shielding layer 15 partially covers the anode 14, that is, part of the anode 14 is in an exposed state.
  • the buffer layer 16 covers the anode 14 and the light shielding layer 15, and the buffer layer 16 has an opening at a position corresponding to the color filter layer 12.
  • the material of the buffer layer 16 is silicon oxide, but is not limited to silicon oxide.
  • the active layer 17, the gate insulating layer 18 and the gate are sequentially stacked on the buffer layer 16.
  • the active layer 17 is amorphous silicon or oxide semiconductor, but is not limited to these two types of semiconductors.
  • the material of the gate insulating layer 18 is silicon oxide, but is not limited thereto.
  • the material of the gate 19 is conductive materials such as copper, aluminum, molybdenum, and titanium, but is not limited to these materials.
  • the interlayer insulating layer 20 covers the buffer layer 16, the active layer 17, the gate insulating layer 18 and the gate 19.
  • the material of the interlayer insulating layer 20 is silicon oxide, but is not limited thereto.
  • the source electrode 21 and the drain electrode 22 are disposed on the interlayer insulating layer 20, wherein the source electrode 21 is in contact with the light shielding layer 15 through a via hole 31, and the via hole 31 penetrates the interlayer insulating layer.
  • the source 21 and the drain 22 are conductive film layers, and conductive materials such as copper, aluminum, molybdenum, and titanium can be used, but are not limited to these materials.
  • the anode 14 is made of indium tin oxide material with conductive characteristics. Therefore, when the source electrode 21 is in contact with the light shielding layer 15, The source 21 and the anode 14 are connected.
  • the pixel defining layer 23 is disposed on the interlayer insulating layer 20, the buffer layer 16, the source electrode 21 and the drain electrode 22.
  • the material of the pixel defining layer 23 is a positive or negative photosensitive resin material, which needs to be completed by a photomask.
  • the light-emitting layer is disposed on the anode 14 and at a position corresponding to the color filter layer.
  • the light-emitting layer includes a white light organic light-emitting device (ie, WOLED), which can be made by evaporation technology.
  • WOLED white light organic light-emitting device
  • the light-emitting layer may also be an RGB (red color resist block R, green color resist block G, and blue color resist block B) organic light emitting device.
  • RGB red color resist block R, green color resist block G, and blue color resist block B
  • the cathode 24 covers the pixel defining layer 23 and the light emitting layer.
  • the material of the cathode 24 is a conductive reflective material.
  • FIG. 3 is a flowchart of the steps of a manufacturing method of an OLED display panel in an embodiment of the present invention.
  • 4A to 4J are process flow diagrams of the manufacturing method of the OLED display panel in the embodiment of the present invention.
  • the present invention provides a method for manufacturing the above-mentioned OLED display panel.
  • the specific structure of the OLED display panel is as described above, and will not be repeated here.
  • the method includes the following steps:
  • step S310 providing a base substrate 11 on which a color filter layer 12 is disposed.
  • the base substrate 11 is a glass substrate, which is not limited to this in other implementations, and may be a plastic substrate, a polyimide (PI) substrate, or the like.
  • PI polyimide
  • the color filter layer 12 is disposed on the base substrate 11.
  • the color film layer 12 includes a red color resist block R, a green color resist block G, and a blue color resist block B.
  • One to three masks are required to make the color film layer 12. Among them, only one photomask is required to make the color film layer 12 as follows: first, a red resin layer is coated on the base substrate 11, and exposed through a photomask, and then developed and solid-baked to form a red color. Block. Secondly, the green resin layer is coated, and the green resin layer covers the red color resist block, and then the same photomask is translated for a set distance, and then exposed through the same photomask, and then developed and solid-baked process to form A green color block.
  • the blue resin layer is coated, and the blue resin layer covers the red color resist block and the green color resist block, and then the same mask is translated for a certain distance, and then exposed through the same mask, and then developed and Solid baking process to form a blue color block.
  • the process of making the color film layer 12 only one mask is needed. This can effectively reduce the number of masks.
  • step S320 cover a flat layer 13 on the color filter layer 12.
  • the flat layer 13 covers the entire surface of the color filter layer 12.
  • the flat layer 13 is an organic film layer that covers the entire surface and does not need to be made by a photomask.
  • step S330 forming an anode 14 and a light-shielding layer 15 on the flat layer 13, wherein a part of the anode 14 corresponding to the color film layer 12 is exposed through a halftone mask process.
  • the anode 14 is provided on the flat layer 13.
  • the anode 14 is a transparent conductive film in the form of ITO, IZO, or the like.
  • the light shielding layer 15 is made of opaque metal or conductive material such as copper and molybdenum.
  • the anode 14 and the light-shielding layer 15 can be manufactured at one time by a halftone mask process, that is, a photomask is required to complete, wherein the light-shielding layer 15 partially covers the anode 14 and a part of the anode 14 is exposed. .
  • step S320 and step S330 under the premise of guaranteeing the function of the anode 14, compared with the prior art that requires a flat layer 13 to be provided before the anode 14 is provided, one photomask step (ie, prior art Patterning of the flat layer).
  • step S340 cover a buffer layer 16 on the anode 14 and the light shielding layer 15, and the buffer layer 16 has an opening at a position corresponding to the color filter layer 12.
  • the material of the buffer layer 16 is silicon oxide, but not limited to silicon oxide. This step requires a photomask.
  • step S340 include:
  • step S350 an active layer 17, a gate insulating layer 18, and a gate 19 are sequentially stacked on the buffer layer 16.
  • the active layer 17 is amorphous silicon or oxide semiconductor, but is not limited to these two types of semiconductors. A photomask is required to make the active layer 17.
  • the material of the gate insulating layer 18 is silicon oxide, but is not limited thereto.
  • the material of the gate 19 is conductive materials such as copper, aluminum, molybdenum, and titanium, but is not limited to these materials.
  • the fabrication of the gate insulating layer 18 and the gate 19 can be done through the same photomask.
  • step S360 cover the buffer layer 16, the active layer 17, the gate insulating layer 18 and the gate 19 with an interlayer insulating layer 20.
  • the material of the interlayer insulating layer 20 is silicon oxide, but is not limited thereto.
  • it further includes providing a drain hole 32, a source hole 33, and a deep hole 31 (the deep hole 31 is used for the connection between the source 21 and the light shielding layer 15 described later, which can also be called For vias).
  • step S370 a source 21 and a drain 22 are provided on the interlayer insulating layer 20, wherein the source 21 is in contact with the light shielding layer 15 through a via 31.
  • the source 21 and the drain 22 are arranged on the interlayer insulating layer 20, and the source 21 and the drain 22 are conductive film layers, and conductive materials such as copper, aluminum, molybdenum, and titanium can be used, but are not limited to These materials.
  • a photomask is needed to make the source 21 and the drain 22.
  • the source electrode 21 is in contact with the light shielding layer 15 through a via hole 31, and the via hole 31 penetrates the interlayer insulating layer 20 and the buffer layer 16.
  • the source 21 and the drain 22 are conductive film layers made of conductive materials. Since the material of the light shielding layer 15 is non-transparent metal or conductive material, the anode 14 is made of indium tin oxide material with conductive characteristics. Therefore, when the source electrode 21 is in contact with the light shielding layer 15, The source 21 and the anode 14 are connected.
  • step S360 and step S370 in the process of connecting the drain 22 and the anode 14 can effectively reduce one photomask.
  • step S370 it includes:
  • step S380 forming a pixel defining layer 23 on the interlayer insulating layer 20, the buffer layer 16, the source electrode 21 and the drain electrode 22.
  • the pixel defining layer 23 is disposed on the interlayer insulating layer 20, the buffer layer 16, the source electrode 21 and the drain electrode 22.
  • the material of the pixel defining layer 23 is a positive or negative photosensitive resin material, which needs to be completed by a photomask.
  • the implementation of this step can effectively reduce one photomask (that is, the patterning of the passivation layer in the prior art).
  • step S390 a light-emitting layer is disposed on the anode 14 and at a position corresponding to the color filter layer.
  • the light-emitting layer is disposed on the anode 14 and at a position corresponding to the color filter layer.
  • the light-emitting layer includes a white light organic light-emitting device (ie WOLED), which can be made by evaporation technology.
  • WOLED white light organic light-emitting device
  • the light-emitting layer may also be an RGB (red color resist block R, green color resist block G, and blue color resist block B) organic light emitting device.
  • RGB red color resist block R, green color resist block G, and blue color resist block B
  • step S3100 covering a cathode 24 on the pixel defining layer 23 and the light emitting layer.
  • the material of the cathode 24 is a conductive reflective material.
  • step S3100 the process of implementing the cover plate can be performed. Since this step is familiar to those skilled in the art, it will not be repeated here.
  • the advantage of the present invention is that the OLED display panel of the present invention adopts top-gate emitting devices, which only requires 8-11 yellow light manufacturing processes. Compared with the conventional 13 yellow light manufacturing processes, the present invention reduces 2 -5 manufacturing processes, greatly reducing the number of masks, manufacturing time, and manufacturing consumables, thereby greatly reducing the manufacturing cost of vapor-deposited OLED backplanes. At the same time, due to the reduction in manufacturing processes, the quality of OLED backplanes is also improved to a certain extent. rate.
  • the subject of this application can be manufactured and used in industry and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明披露了一种OLED显示面板及其制作方法。所述OLED显示面板采用顶栅型发射器件,其仅需8-11道黄光制程,相较于现有常使用的13道黄光制程,本发明能够减少了2-5道制程,在光罩数量、制作时间、制作耗材等方面都大幅减少,从而大幅减少蒸镀OLED显示面板的制作成本。

Description

OLED显示面板及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种OLED显示面板及其制作方法。
背景技术
在显示技术领域,液晶显示面板和有机发光二极管显示面板等平板显示装置已经逐步取代阴极射线管显示器。
其中,OLED显示面板具有自发光、驱动电压低、发光效率低、响应时间短、清晰度与对比度高、近180度视角、使用温度范围宽、可实现柔性显示与大面积全色显示等诸多优点,被业界公认为最具有发展潜力的显示装置。
技术问题
图1是现有技术中的OLED显示面板的结构示意图。OLED显示面板制作的常用方式为通过真空热蒸镀工艺沉积红绿蓝色阻层并且色阻层上设置OLED发光层,优点是工艺简单成熟,操作简便。但是在制备高分辨率显示屏时需要更高精度掩模及精准的对位,导致产能较低、成本较高;而且现有OLED显示面板各个结构膜层数量较多,例如遮光层、平坦层、像素界定层等,良率提升难度较大,要将这些膜层的图案化也需要更多的光罩,较繁杂的工序,且制作成本较高。
因此,如何有效地减少使用光罩次数,减轻工序并降低制作成本成为了相关研究者的重要研究课题。
技术解决方案
本发明的目的在于,提供一种OLED显示面板及其制作方法。所述OLED显示面板采用顶栅型发射器件,其仅需8-11道黄光制程,相较于现有常使用的13道黄光制程,本发明减少了2-5道制程,在光罩数量、制作时间、制作耗材等方面都大幅减少,从而大幅减少蒸镀OLED背板的制作成本。
根据本发明的一方面,提供一种OLED显示面板,其包括:一衬底基板;一设置在所述衬底基板上的彩膜层;一覆盖于所述彩膜层上的平坦层;层叠设置在所述平坦层上的一阳极和一遮光层;一覆盖在所述阳极和所述遮光层上的缓冲层,且所述缓冲层与所述彩膜层对应的位置具有一开口;依次层叠设置在所述缓冲层上的一有源层、一栅极绝缘层和一栅极;一覆盖在所述缓冲层、所述有源层、所述栅极绝缘层和所述栅极上的层间绝缘层;设置在所述层间绝缘层上的源极和漏极,其中所述源极通过一过孔与所述遮光层相接触;所述遮光层的材料为非透明的金属或导电材料。
根据本发明的另一方面,本发明提供了一种OLED显示面板。所述OLED显示面板包括:一衬底基板;一设置在所述衬底基板上的彩膜层;一覆盖于所述彩膜层上的平坦层;层叠设置在所述平坦层上的阳极和遮光层;一覆盖在所述阳极和所述遮光层上的缓冲层,且所述缓冲层与所述彩膜层对应的位置具有一开口。
在本发明的一实施例中,所述OLED显示面板还包括:依次层叠设置在所述缓冲层上的一有源层、一栅极绝缘层和一栅极;一覆盖在所述缓冲层、所述有源层、所述栅极绝缘层和所述栅极上的层间绝缘层;设置在所述层间绝缘层上的源极和漏极,其中所述源极通过一过孔与所述遮光层相接触。
在本发明的一实施例中,所述OLED显示面板还包括:一设置在所述层间绝缘层、所述缓冲层、所述源极和漏极上的像素界定层;一设置在所述阳极上且与所述彩膜层相对应的发光层;一覆盖在所述像素界定层和所述发光层上的阴极。
在本发明的一实施例中,所述遮光层的材料为非透明的金属或导电材料。
在本发明的一实施例中,所述发光层包括白光有机发光器件,所述阴极的材料为导电性的反射材料。
根据本发明的又一方面,提供一种上述OLED显示面板的制作方法,其包括以下步骤:(1)提供一衬底基板,在所述衬底基板上设置一彩膜层,其中在制作彩膜层的过程中,利用同一道光罩经多次平移一设定距离以分别形成不同颜色的色阻块;(2)在所述彩膜层上覆盖一平坦层;(3)在所述平坦层上层叠地形成一阳极和遮光层,其中通过半色调掩模工艺以使与所述彩膜层对应的位置的部分阳极暴露,在制作阳极和遮光层时通过半色调掩模工艺一次完成;以及(4)在所述阳极和所述遮光层上覆盖一缓冲层,且所述缓冲层与所述彩膜层对应的位置具有一开口,使得与所述开口位置对应的部分阳极暴露。
在本发明的一实施例中,所述制作方法在步骤(4)之后包括:(5)在所述缓冲层上依次层叠设置有源层、栅极绝缘层和栅极,在制作所述栅极绝缘层和所述栅极通过同一道光罩完成;(6)在所述缓冲层、所述有源层、所述栅极绝缘层和所述栅极上覆盖一层间绝缘层;以及(7)在所述层间绝缘层上设置一源极和漏极,其中所述源极通过一过孔与所述遮光层相接触。
在本发明的一实施例中,所述制作方法在步骤(7)之后包括:(8)在所述层间绝缘层、所述缓冲层和所述源极和漏极上形成一像素界定层,从而避免执行一钝化层的图案化操作;(9)在所述阳极上且与所述彩膜层相对应的位置设置一发光层;以及(10)在在所述像素界定层和所述发光层上覆盖一阴极。
在本发明的一实施例中,在步骤(3)中的遮光层的材料为非透明的金属或导电材料。
在本发明的一实施例中,所述发光层包括白光有机发光器件,所述阴极的材料为导电性的反射材料。
有益效果
本发明的优点在于,本发明所述OLED显示面板采用顶栅型发射器件,其仅需8-11道黄光制程,相较于现有常使用的13道黄光制程,本发明减少了2-5道制程,在光罩数量、制作时间、制作耗材等方面都大幅减少,从而大幅减少蒸镀OLED背板的制作成本,同时由于制程减少,也在一定程度上提高了OLED背板的良率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中的OLED显示面板的结构示意图。
图2是本发明的一实施例中的OLED显示面板的结构示意图。
图3是本发明的一实施例中的OLED显示面板的制作方法的步骤流程图。
图4A至图4J是本发明的所述实施例中的OLED显示面板的制作方法的工艺流程图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书以及上述附图中的术语“第一”、“第二”、“第三”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应当理解,这样描述的对象在适当情况下可以互换。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
在本专利文档中,下文论述的附图以及用来描述本发明公开的原理的各实施例仅用于说明,而不应解释为限制本发明公开的范围。所属领域的技术人员将理解,本发明的原理可在任何适当布置的系统中实施。将详细说明示例性实施方式,在附图中示出了这些实施方式的实例。此外,将参考附图详细描述根据示例性实施例的终端。附图中的相同附图标号指代相同的元件。
本发明说明书中使用的术语仅用来描述特定实施方式,而并不意图显示本发明的概念。除非上下文中有明确不同的意义,否则,以单数形式使用的表达涵盖复数形式的表达。在本发明说明书中,应理解,诸如“包括”、“具有”以及“含有”等术语意图说明存在本发明说明书中揭示的特征、数字、步骤、动作或其组合的可能性,而并不意图排除可存在或可添加一个或多个其他特征、数字、步骤、动作或其组合的可能性。附图中的相同参考标号指代相同部分。
本发明实施例提供一种OLED显示面板及其制作方法。以下将分别进行详细说明。
参阅图2,图2是本发明的一实施例中的OLED显示面板的结构示意图。本发明提供了一种OLED显示面板。
所述OLED显示面板包括:一衬底基板11、一彩膜层12和一平坦层13。
其中,所述衬底基板11为玻璃基板,在其他部分实施中不限于此,可以为塑料基板、聚酰亚胺(PI)基板等。
所述彩膜层12设置在所述衬底基板11上。所述彩膜层12包括红色色阻块R、绿色色阻块G和蓝色色阻块B。
所述平坦层13整面覆盖在所述彩膜层12上。所述平坦层13为有机膜层,整面覆盖,无需光罩制成。
所述OLED显示面板还包括:阳极14、遮光层15、缓冲层16、有源层17、栅极绝缘层18、栅极19、层间绝缘层20、源极21和漏极22、像素界定层23和阴极24。
其中,所述阳极14设置在平坦层13上。所述阳极14为ITO、IZO等形式的透明的导电膜层。所述遮光层15为铜、钼等不透明的金属或导电材料。所述阳极14和所述遮光层15可以通过半色调掩模工艺一次完成制成,其中所述遮光层15部分覆盖在所述阳极14上,亦即,部分的阳极14呈暴露状态。
所述缓冲层16覆盖在所述阳极14和所述遮光层15上,且所述缓冲层16与所述彩膜层12对应的位置具有一开口。所述缓冲层16的材料为氧化硅,但不限于氧化硅。
所述有源层17、所述栅极绝缘层18和所述栅极依次层叠设置在所述缓冲层16上。所述有源层17为非晶硅、氧化物半导体,但不限于这两类半导体。所述栅极绝缘层18的材料为氧化硅,但不限于此。所述栅极19的材料为铜、铝、钼和钛等导电性材料,但不限于这些材料。
所述层间绝缘层20覆盖在所述缓冲层16、所述有源层17、所述栅极绝缘层18和所述栅极19上。所述层间绝缘层20的材料为氧化硅,但不限于此。所述源极21和漏极22设置在所述层间绝缘层20上,其中所述源极21通过一过孔31与所述遮光层15相接触,所述过孔31贯穿所述层间绝缘层20和所述缓冲层16。所述源极21和漏极22为导电膜层,可以采用铜、铝、钼和钛等导电材料,但不限于这些材料。由于所述遮光层15的材料为非透明的金属或导电材料,所述阳极14采用具有导电特性的氧化铟锡材料,因此,当所述源极21与所述遮光层15相接触时,所述源极21与所述阳极14导通。
所述像素界定层23设置在所述层间绝缘层20、所述缓冲层16、所述源极21和漏极22。所述像素界定层23的材料为正型或负型光敏树脂材料,其需要通过1道光罩完成。
所述发光层设置在所述阳极14上且与所述彩膜层相对应的位置。所述发光层包括包括白光有机发光器件(即WOLED),其可以通过蒸镀技术而制成。当然,在其他部分实施例中,所述发光层也可以为RGB(红色色阻块R、绿色色阻块G和蓝色色阻块B)有机发光器件。当蒸镀RGB有机发光器件时,可以选择使用彩膜层12(由于RGB有机器件无法提供充足的红光、绿光或蓝光),或选择不使用彩膜层12。
所述阴极24覆盖在所述像素界定层23和所述发光层上。所述阴极24的材料为导电性的反射材料。
参阅图3、图4A至图4J。图3是本发明的一实施例中的OLED显示面板的制作方法的步骤流程图。图4A至图4J是本发明的所述实施例中的OLED显示面板的制作方法的工艺流程图。
本发明提供一种上述OLED显示面板的制作方法。其中,所述OLED显示面板的具体结构如上文所述,在此不再一一赘述。
所述方法包括以下步骤:
参阅图4A,步骤S310:提供一衬底基板11,在所述衬底基板11上设置一彩膜层12。
所述衬底基板11为玻璃基板,在其他部分实施中不限于此,可以为塑料基板、聚酰亚胺(PI)基板等。
所述彩膜层12设置在所述衬底基板11上。所述彩膜层12即为包括红色色阻块R、绿色色阻块G和蓝色色阻块B。制作所述彩膜层12需要1至3道光罩制成。其中,制作彩膜层12只需1道光罩的方式如下:首先,在衬底基板11上涂布红色树脂层,并且通过一光罩进行曝光,之后通过显影和固烤制程以形成一红色色阻块。其次,涂布绿色树脂层,且绿色树脂层覆盖所述红色色阻块,然后将同一道光罩进行平移一设定距离,接着,通过同一道光罩进行曝光,之后通过显影和固烤制程以形成一绿色色阻块。同样,涂布蓝色树脂层,且蓝色树脂层覆盖所述红色色阻块和绿色色阻块,再将同一道光罩进行平移一定距离,接着,通过同一道光罩进行曝光,之后通过显影和固烤制程以形成一蓝色色阻块。在制作彩膜层12的过程中,仅需1道光罩即可完成。这样能够有效地减少光罩次数。
参阅图4B,步骤S320:在所述彩膜层12上覆盖一平坦层13。
所述平坦层13整面覆盖在所述彩膜层12上。所述平坦层13为有机膜层,整面覆盖,无需光罩制成。
参阅图4C,步骤S330:在所述平坦层13上层叠地形成一阳极14和遮光层15,其中通过半色调掩模工艺以使与所述彩膜层12对应的位置的部分阳极14暴露。
所述阳极14设置在平坦层13上。所述阳极14为ITO、IZO等形式的透明的导电膜层。所述遮光层15为铜、钼等不透明的金属或导电材料。所述阳极14和所述遮光层15可以通过半色调掩模工艺一次完成制成,即需要一道光罩完成,其中所述遮光层15部分覆盖在所述阳极14上,部分的阳极14暴暴露。通过步骤S320和步骤S330的实施,在保障提供阳极14功能的前提下,相较于现有技术在设置阳极14之前需设置一平坦层13的操作,能够减少一道光罩步骤(即现有技术对平坦层的图案化)。
参阅图4D,步骤S340:在所述阳极14和所述遮光层15上覆盖一缓冲层16,且所述缓冲层16与所述彩膜层12对应的位置具有一开口。
所述缓冲层16的材料为氧化硅,但不限于氧化硅,该步骤需要1道光罩。
在步骤S340之后包括:
参阅图4E和图4F,步骤S350:在所述缓冲层16上依次层叠设置一有源层17、一栅极绝缘层18和一栅极19。
所述有源层17为非晶硅、氧化物半导体,但不限于这两类半导体。制作所述有源层17需要一道光罩。
所述栅极绝缘层18的材料为氧化硅,但不限于此。所述栅极19的材料为铜、铝、钼和钛等导电性材料,但不限于这些材料。制作所述栅极绝缘层18和所述栅极19可以通过同一道光罩完成。
参阅图4G,步骤S360:在所述缓冲层16、所述有源层17、所述栅极绝缘层18和所述栅极19上覆盖一层间绝缘层20。
所述层间绝缘层20的材料为氧化硅,但不限于此。在此步骤中,进一步包括设置漏极孔32和源极孔33以及一深孔31(所述深孔31用于后文所述的源极21与所述遮光层15的连接,也可以称为过孔)。
在此步骤中,制作所述层间绝缘层20需要一道光罩。
参阅图4H,步骤S370:在所述层间绝缘层20上设置一源极21和漏极22,其中所述源极21通过一过孔31与所述遮光层15相接触。
所述源极21和漏极22设置在所述层间绝缘层20上,所述源极21和漏极22为导电膜层,可以采用铜、铝、钼和钛等导电材料,但不限于这些材料。制作源极21和漏极22需要一道光罩。
所述源极21通过一过孔31与所述遮光层15相接触,所述过孔31贯穿所述层间绝缘层20和所述缓冲层16。所述源极21和漏极22为导电膜层,采用导电材料制成。由于所述遮光层15的材料为非透明的金属或导电材料,所述阳极14采用具有导电特性的氧化铟锡材料,因此,当所述源极21与所述遮光层15相接触时,所述源极21与所述阳极14导通。
在此步骤中,制作源极21和漏极22的搭接需要一道光罩。步骤S360和步骤S370的实施,相较于现有技术,(在连接漏极22和阳极14过程中)能够有效地减少一道光罩。
在步骤S370之后包括:
参阅图4I,步骤S380:在所述层间绝缘层20、所述缓冲层16、所述源极21和漏极22上形成一像素界定层23。
所述像素界定层23设置在所述层间绝缘层20、所述缓冲层16、所述源极21和所述漏极22。所述像素界定层23的材料为正型或负型光敏树脂材料,其需要通过1道光罩完成。
相对于现有技术,该步骤的实施能够有效地减少一道光罩(即现有技术的对钝化层的图案化)。
参阅图4J,步骤S390:在所述阳极14且与所述彩膜层对应位置的设置一发光层。
所述发光层设置在所述阳极14上且与所述彩膜层相对应的位置。所述发光层包括白光有机发光器件(即WOLED),其可以通过蒸镀技术而制成。当然,在其他部分实施例中,所述发光层也可以为RGB(红色色阻块R、绿色色阻块G和蓝色色阻块B)有机发光器件。当蒸镀RGB有机发光器件时,可以选择使用彩膜层12(由于RGB有机器件无法提供充足的红光、绿光或蓝光),或选择不使用彩膜层12。
参阅图4J,步骤S3100:在在所述像素界定层23和所述发光层上覆盖一阴极24。
所述阴极24的材料为导电性的反射材料。
当然,在步骤S3100之后,可以进行实施盖板的制程。由于该步骤为本领域技术人员所通晓的,在此不在赘述。
本发明的优点在于,本发明所述OLED显示面板采用顶栅型发射器件,其仅需8-11道黄光制程,相较于现有常使用的13道黄光制程,本发明减少了2-5道制程,在光罩数量、制作时间、制作耗材等方面都大幅减少,从而大幅减少蒸镀OLED背板的制作成本,同时由于制程减少,也在一定程度上提高了OLED背板的良率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (11)

  1. 一种OLED显示面板,其包括:
    一衬底基板;
    一设置在所述衬底基板上的彩膜层;
    一覆盖于所述彩膜层上的平坦层;
    层叠设置在所述平坦层上的一阳极和一遮光层;
    一覆盖在所述阳极和所述遮光层上的缓冲层,且所述缓冲层与所述彩膜层对应的位置具有一开口;
    依次层叠设置在所述缓冲层上的一有源层、一栅极绝缘层和一栅极;
    一覆盖在所述缓冲层、所述有源层、所述栅极绝缘层和所述栅极上的层间绝缘层;
    设置在所述层间绝缘层上的源极和漏极,其中所述源极通过一过孔与所述遮光层相接触;
    所述遮光层的材料为非透明的金属或导电材料。
  2. 一种OLED显示面板,其包括:
    一衬底基板;
    一设置在所述衬底基板上的彩膜层;
    一覆盖于所述彩膜层上的平坦层;
    层叠设置在所述平坦层上的一阳极和一遮光层;
    一覆盖在所述阳极和所述遮光层上的缓冲层,且所述缓冲层与所述彩膜层对应的位置具有一开口。
  3. 根据权利要求2所述的OLED显示面板,其中所述OLED显示面板还包括:
    依次层叠设置在所述缓冲层上的一有源层、一栅极绝缘层和一栅极;
    一覆盖在所述缓冲层、所述有源层、所述栅极绝缘层和所述栅极上的层间绝缘层;
    设置在所述层间绝缘层上的源极和漏极,其中所述源极通过一过孔与所述遮光层相接触。
  4. 根据权利要求3所述的OLED显示面板,其中所述OLED显示面板还包括:
    一设置在所述层间绝缘层、所述缓冲层、所述源极和所述漏极上的像素界定层;
    一设置在所述阳极上且与所述彩膜层相对应的发光层;
    一覆盖在所述像素界定层和所述发光层上的阴极。
  5. 根据权利要求2所述的OLED显示面板,其中所述遮光层的材料为非透明的金属或导电材料。
  6. 根据权利要求4所述的OLED显示面板,其中所述发光层包括白光有机发光器件,所述阴极的材料为导电性的反射材料。
  7. 一种如权利要求2所述的OLED显示面板的制作方法,其包括以下步骤:
    (1)提供一衬底基板,在所述衬底基板上设置一彩膜层,其中在制作彩膜层的过程中,利用同一道光罩经多次平移一设定距离以分别形成不同颜色的色阻块;
    (2)在所述彩膜层上覆盖一平坦层;
    (3)在所述平坦层上层叠地形成一阳极和遮光层,其中通过半色调掩模工艺以使与所述彩膜层对应的位置的部分阳极暴露,在制作阳极和遮光层时通过半色调掩模工艺一次完成;以及
    在所述阳极和所述遮光层上覆盖一缓冲层,且所述缓冲层与所述彩膜层对应的位置具有一开口,使得与所述开口位置对应的部分阳极暴露。
  8. 根据权利要求7所述的制作方法,其中所述制作方法在步骤(4)之后包括:
    (5)在所述缓冲层上依次层叠设置一有源层、一栅极绝缘层和一栅极,在制作所述栅极绝缘层和所述栅极通过同一道光罩完成;
    (6)在所述缓冲层、所述有源层、所述栅极绝缘层和所述栅极上覆盖一层间绝缘层;以及
    (7)在所述层间绝缘层上设置源极和漏极,其中所述源极通过一过孔与所述遮光层相接触。
  9. 根据权利要求8所述的制作方法,其中所述制作方法在步骤(7)之后包括:
    (8)在所述层间绝缘层、所述缓冲层、所述源极和所述漏极上形成一像素界定层,从而避免执行一钝化层的图案化操作;
    (9)在所述阳极上且与所述彩膜层相对应的位置设置一发光层;以及
    (10)在所述像素界定层和所述发光层上覆盖一阴极。
  10. 根据权利要求7所述的制作方法,其中在步骤(3)中的遮光层的材料为非透明的金属或导电材料。
  11. 根据权利要求9所述的制作方法,其中所述发光层包括白光有机发光器件,所述阴极的材料为导电性的反射材料。
PCT/CN2019/086820 2019-04-24 2019-05-14 Oled显示面板及其制作方法 WO2020215398A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910332985.0 2019-04-24
CN201910332985.0A CN110098227B (zh) 2019-04-24 2019-04-24 Oled显示面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2020215398A1 true WO2020215398A1 (zh) 2020-10-29

Family

ID=67445760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086820 WO2020215398A1 (zh) 2019-04-24 2019-05-14 Oled显示面板及其制作方法

Country Status (2)

Country Link
CN (1) CN110098227B (zh)
WO (1) WO2020215398A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170126632A (ko) * 2016-05-10 2017-11-20 엘지디스플레이 주식회사 표시장치용 어레이기판 및 그 제조방법
CN107768412A (zh) * 2017-10-26 2018-03-06 京东方科技集团股份有限公司 显示基板及其制备方法和显示面板
CN107785405A (zh) * 2017-10-31 2018-03-09 京东方科技集团股份有限公司 阵列基板及其制备方法
CN107799570A (zh) * 2017-10-09 2018-03-13 深圳市华星光电半导体显示技术有限公司 顶栅自对准金属氧化物半导体tft及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005227A (ja) * 2003-06-16 2005-01-06 Hitachi Displays Ltd 有機el発光表示装置
CN104362170B (zh) * 2014-11-28 2017-04-12 京东方科技集团股份有限公司 一种有机电致发光显示器件、其驱动方法及相关装置
CN107885004B (zh) * 2017-12-06 2020-12-08 京东方科技集团股份有限公司 一种阵列基板、显示面板、显示装置及其制作工艺
CN108735792B (zh) * 2018-08-14 2020-07-31 京东方科技集团股份有限公司 底发射型oled阵列基板及其制作方法、显示面板、显示装置
CN109273498B (zh) * 2018-09-25 2021-01-26 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170126632A (ko) * 2016-05-10 2017-11-20 엘지디스플레이 주식회사 표시장치용 어레이기판 및 그 제조방법
CN107799570A (zh) * 2017-10-09 2018-03-13 深圳市华星光电半导体显示技术有限公司 顶栅自对准金属氧化物半导体tft及其制作方法
CN107768412A (zh) * 2017-10-26 2018-03-06 京东方科技集团股份有限公司 显示基板及其制备方法和显示面板
CN107785405A (zh) * 2017-10-31 2018-03-09 京东方科技集团股份有限公司 阵列基板及其制备方法

Also Published As

Publication number Publication date
CN110098227B (zh) 2021-07-06
CN110098227A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
US10784471B2 (en) Organic light emitting display device and method of making the same
WO2020206721A1 (zh) 显示面板及制作方法、显示模组
WO2022042059A1 (zh) Oled显示面板及其制备方法、显示装置
WO2020206810A1 (zh) 双面显示面板及其制备方法
WO2020199445A1 (zh) 一种oled显示器件及其制备方法
WO2020192083A1 (zh) 显示面板
WO2020192051A1 (zh) 显示面板及其制备方法
JP5323667B2 (ja) 有機電界発光素子及びその製造方法
WO2017118027A1 (zh) 发光二极管显示基板及其制作方法、显示装置
US10403696B2 (en) Organic light emitting display device and method of fabricating the same
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
WO2021238129A1 (zh) 显示面板及显示面板制作方法
KR20100068644A (ko) 상부발광 방식 유기전계 발광소자 및 이의 제조 방법
WO2020215615A1 (zh) 白光有机发光二极管显示器
WO2021017094A1 (zh) 一种阵列基板及 oled 显示装置
CN108376688A (zh) 一种感光组件及其制备方法、阵列基板、显示装置
WO2020056803A1 (zh) 显示面板及其制作方法、显示模组
WO2020239071A1 (zh) 显示基板及其制作方法、显示面板和显示装置
WO2021227029A1 (zh) 显示基板及其制备方法、显示装置
WO2020172953A1 (zh) Oled显示装置及其制作方法
WO2020113760A1 (zh) 显示面板及其制作方法、显示模组
WO2020220511A1 (zh) 有机发光显示面板
WO2022012235A1 (zh) 显示基板及其制备方法、显示装置
WO2020224010A1 (zh) Oled 显示面板及其制备方法
WO2021227040A1 (zh) 显示基板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926452

Country of ref document: EP

Kind code of ref document: A1