WO2020215374A1 - 可折叠显示屏 - Google Patents

可折叠显示屏 Download PDF

Info

Publication number
WO2020215374A1
WO2020215374A1 PCT/CN2019/086140 CN2019086140W WO2020215374A1 WO 2020215374 A1 WO2020215374 A1 WO 2020215374A1 CN 2019086140 W CN2019086140 W CN 2019086140W WO 2020215374 A1 WO2020215374 A1 WO 2020215374A1
Authority
WO
WIPO (PCT)
Prior art keywords
display screen
foldable display
deformation
resistor
pressure sensor
Prior art date
Application number
PCT/CN2019/086140
Other languages
English (en)
French (fr)
Inventor
祐卫国
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/612,298 priority Critical patent/US20210360099A1/en
Publication of WO2020215374A1 publication Critical patent/WO2020215374A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/22Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • G01B7/20Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance formed by printed-circuit technique
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/964Piezoelectric touch switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0214Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • H04M1/0216Foldable in one direction, i.e. using a one degree of freedom hinge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • H04M1/0268Details of the structure or mounting of specific components for a display module assembly including a flexible display panel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/965Switches controlled by moving an element forming part of the switch
    • H03K17/975Switches controlled by moving an element forming part of the switch using a capacitive movable element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0214Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0241Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings using relative motion of the body parts to change the operational status of the telephone set, e.g. switching on/off, answering incoming call
    • H04M1/0245Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings using relative motion of the body parts to change the operational status of the telephone set, e.g. switching on/off, answering incoming call using open/close detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion

Definitions

  • This application relates to the field of electronic display, and in particular to a foldable display screen.
  • a foldable display device usually has a bending axis passing through the bending area of the display device, and the foldable display device can be folded around the bending axis of the bending area.
  • the state of the foldable display device needs to be detected.
  • the detection method in the prior art is to set a magnetic switch or light sensor switch near the camera of the display panel.
  • the magnetic switch or light sensor switch is triggered to turn off the screen.
  • the present application provides a foldable display screen, which can detect the bending state of the display screen without relying on external signals to avoid misjudgment.
  • the present application provides a foldable display screen, which includes a bendable area.
  • the bendable area includes a first surface located on the display surface of the display screen and opposite to the first surface. Set the second surface;
  • the foldable display screen has an unfolded state, a folded state and a half-folded state; wherein,
  • the foldable display screen includes a state detection unit for detecting the current state of the foldable display screen; the state detection unit includes a pressure sensor arranged in the bendable area, and is used for detecting the bendable The deformation state of the surface of the zone, and generate electrical signals representing different deformation states.
  • the bendable first surface and the second surface when in the unfolded state, are not deformed; when in the folded state, the first surface and the second surface are deformed and are located on the The angle between the display screens on both sides of the bendable area is 0 degrees; when in a half-folded state, the first surface and the second surface are deformed, and the display screens on both sides of the bendable area
  • the angle between the display surfaces is greater than 0 degrees and less than 180 degrees.
  • the foldable display screen according to claim 1 wherein the state detection unit further includes a processor for receiving and identifying the electrical signal sent by the pressure sensor, and according to The size of the electrical signal obtains the size of the included angle between the display surfaces of the display screens on both sides of the bendable area, and indicates the state of the foldable display screen.
  • the display surface of the foldable display screen includes a viewable area and a non-viewable area located on both sides of the viewable area or surrounding the viewable area; the pressure sensor is located in the The non-visual area of the display surface or the non-display surface.
  • the display surface of the foldable display screen includes a viewable area and a non-viewable area located on both sides of the viewable area or surrounding the viewable area; the pressure sensor is located in the In the visible area of the display surface of the foldable display screen, the pressure sensor is made of a transparent material.
  • the pressure sensor is a resistive pressure sensor.
  • the resistive pressure sensor includes a first deformation resistor.
  • the resistive pressure sensor further includes a first resistor, a second resistor, and a third resistor; the first resistor, the second resistor, and the third resistor are balance resistors with constant resistance.
  • the resistance value is equal to the resistance value when the first deformation resistance is not deformed; the first resistance, the second resistance and the third resistance and the first deformation resistance together form a first Wheatstone balanced bridge.
  • the first Wheatstone balanced bridge is located in a non-viewable area on one side of the display surface of the foldable display screen, and the geometric center of the first deformation resistor is The bending axes of the bending zone coincide.
  • the resistive pressure sensor further includes a second deformable resistor, and the second deformable resistor is located in a non-viewable area on the other side of the display surface of the foldable display screen.
  • the position of the first deformation resistor corresponds;
  • the resistive pressure sensor further includes a fourth resistor, a fifth resistor, and a sixth resistor; the fourth resistor, the fifth resistor, and the sixth resistor are balance resistors with a constant resistance value, and the resistance value is the same as that of the second deformation resistance.
  • the resistance values when the resistances are not deformed are equal; the fourth resistance, the fifth resistance and the sixth resistance and the second deformation resistance together form a second Wheatstone balanced bridge.
  • the first Wheatstone balanced bridge is located on the non-display surface of the foldable display screen, and the geometric center of the first deformation resistor and the bending axis of the bending zone For coincidence, the projection length along the bending axis of the bending zone is equal to the length of the bending axis of the bending zone.
  • the first Wheatstone balanced bridge is located on the display surface of the foldable display screen, the resistor constituting the first Wheatstone balanced bridge is made of a transparent material, and the The geometric center of a deformation resistor coincides with the bending axis of the bending zone, and its projection length along the bending axis direction of the bending zone is equal to the length of the bending axis of the bending zone.
  • the first deformation resistor when the foldable display screen is in an unfolded state, the first deformation resistor has a maximum resistance value, and the electrical signal detected by the processor at this time is the maximum voltage signal;
  • the first deformation resistor When the foldable display screen is in the folded state, the first deformation resistor has the minimum resistance value, and the electrical signal detected by the processor is the minimum voltage signal; Size, you can judge the current state of the foldable display screen.
  • the resistance of the first deformation resistor is between the maximum resistance and the minimum resistance, and the resistance of the first deformation resistance
  • the resistance value is negatively correlated with the bending angle of the foldable display screen; by comparing the magnitude of the voltage signal detected by the processor, the current folding angle of the foldable display screen can be determined.
  • the pressure sensor is a capacitive pressure sensor.
  • the capacitive pressure sensor includes a deformation capacitor.
  • the geometric center of the deformation capacitor coincides with the bending axis of the bending zone
  • the two polar plates of the deformation capacitor are respectively conductive layers printed on both sides of an organic elastic insulator.
  • the deformation capacitor when the foldable display screen is in the unfolded state, the deformation capacitor has a minimum capacitance value, and the electrical signal detected by the processor is the minimum voltage signal; When the folding display screen is in the folded state, the deformation capacitor has the maximum capacitance value. At this time, the electrical signal detected by the processor is the maximum voltage signal; by comparing the magnitude of the voltage signal detected by the processor, Determine the current state of the foldable display screen.
  • the capacitance value of the deformation capacitor is between the maximum capacitance value and the minimum capacitance value, and the capacitance value of the deformation capacitor is equal to
  • the bending angle of the foldable display screen is positively correlated; by comparing the magnitude of the voltage signal detected by the processor, the current folding angle of the foldable display screen can be determined.
  • the pressure sensor is a piezoelectric pressure sensor.
  • the piezoelectric pressure sensor includes a piezoelectric film.
  • the piezoelectric film includes a first surface, a second surface, a first electrode electrically connected to the first surface of the piezoelectric film, and a second surface connected to the piezoelectric film
  • the second electrode is electrically connected, the first electrode is close to the bendable area, and the second electrode is away from the bendable area.
  • the first surface and the second surface are not deformed, the surface stress is zero, and the first electrode and the second electrode are between The minimum voltage difference, at this time the electrical signal detected by the processor is the minimum piezoelectric signal;
  • the direction of the resultant compressive stress generated by the first surface is along the direction of the bending radius and perpendicular to the bending axis of the bending zone, pointing to the outside of the bending arc;
  • the absolute value of the stress resultant force is greater than the absolute value of the first surface compressive stress resultant force, and its direction is opposite to the direction of the first surface compressive stress resultant force;
  • the pressure applied to the surface of the piezoelectric film sensor is the first surface and the first surface
  • the sum of the compressive stress on the two surfaces is consistent with the direction of the resultant force of the compressive stress on the outer surface;
  • the electric charge inside the piezoelectric film is offset under the action of the pressure, and the positive and negative charges are respectively accumulated on the first surface of the piezoelectric film
  • the electrical signal detected by the processor at this time is the maximum piezoelectric signal.
  • the magnitude of the piezoelectric signal between the first surface and the second surface of the piezoelectric film is between the maximum piezoelectric signal and the minimum voltage.
  • the piezoelectric signal of the piezoelectric film is positively correlated with the bending angle of the foldable display; by comparing the magnitude of the voltage signal detected by the processor, the foldable can be determined The current folding angle of the display.
  • a pressure sensor is arranged on the bending axis of the bending area of the foldable display screen, so that the change in the bending state of the bending axis in the bending area can be converted into a change in electrical signal through the pressure sensor, and the display screen Detection of bending state.
  • This detection method does not need to rely on external light signals or magnetic signals. It is completely realized by the deformation of the display screen when it is bent, which can completely eliminate the interference of external factors on the detection results, and greatly improve the accuracy of detection. , To avoid misjudgment.
  • FIG. 1 is a schematic diagram of a display surface of a foldable display screen in an embodiment of the application
  • FIG. 2 is a schematic diagram of a non-display surface of the foldable display screen in FIG. 1;
  • FIG. 3 is a schematic diagram of a foldable display screen provided with a pressure sensor in Embodiment 1 of the application;
  • FIG. 4 is a schematic diagram of the specific structure of the pressure sensor in the foldable display screen provided with the pressure sensor in FIG. 3;
  • FIG. 5 is a schematic diagram of the principle of the pressure sensor in FIG. 4;
  • FIG. 6 is a schematic diagram of a foldable display screen provided with a pressure sensor in the second embodiment of the application;
  • FIG. 7 is a schematic diagram of a foldable display screen provided with a pressure sensor in the third embodiment of the application.
  • FIG. 8 is a schematic diagram of a foldable display screen provided with a pressure sensor in the fourth embodiment of the application.
  • FIG. 9 is a schematic diagram of a foldable display screen provided with a pressure sensor in Embodiment 5 of the application.
  • FIG. 10 is a schematic diagram of a foldable display screen provided with a pressure sensor in Embodiment 6 of the application;
  • Figure 11 is a schematic diagram of the principle of the pressure sensor in Figure 10.
  • FIG. 12 is a schematic diagram of a foldable display screen provided with a pressure sensor in the seventh embodiment of the application.
  • FIG. 13 is a schematic diagram of a foldable display screen provided with a pressure sensor in the eighth embodiment of the application.
  • Fig. 14 is a schematic diagram of the principle of the pressure sensor in Fig. 13.
  • FIG. 1 is a schematic diagram of a display surface of the foldable display screen 100 in an embodiment of the application
  • FIG. 2 is a schematic diagram of a non-display surface of the foldable display screen 100 in FIG. 1.
  • the foldable display screen 100 includes a bendable area 30, and the bendable area 30 has a bending axis 40 of the bending area parallel to an axis of the foldable display screen 100, and the bendable area
  • the folding area includes a first surface on the display surface of the display screen and a second surface opposite to the first surface.
  • the foldable display screen 100 has an unfolded state and a folded state.
  • the first surface and the second surface of the bendable area 30 are not deformed, and the display located on both sides of the bendable area 30
  • the angle between the display surfaces of the screen is 180 degrees; when in the folded state, the first surface and the second surface are deformed and are located between the display surfaces of the display screen on both sides of the bendable area 30
  • the included angle is 0 degrees.
  • the foldable display screen 100 includes a state detection unit for detecting the current state of the foldable display screen 100; the state detection unit includes a pressure sensor arranged in the bendable area 30 for detecting the The deformation state of the surface of the bendable area, and generate electrical signals representing different deformation states.
  • the foldable display screen 100 also has a half-folded state.
  • the first surface and the second surface are deformed, and one of the display surfaces of the display screen located on both sides of the bendable area 30
  • the angle between is greater than 0 degrees and less than 180 degrees.
  • the state detection unit further includes a processor 504 for receiving and identifying the electrical signal sent by the pressure sensor, and obtaining the display of the display screens on both sides of the bendable area 30 according to the magnitude of the electrical signal The size of the angle between the surfaces indicates the state of the foldable display screen 100.
  • the display surface of the foldable display screen 100 includes a viewing area 20 and a non-visual area 10 located on both sides of the viewing area 20 or surrounding the viewing area 20; the pressure sensor is located on the display surface The non-visual area 10 or the non-display surface.
  • the display surface of the foldable display screen 100 includes a viewing area 20 and a non-visual area 10 located on both sides of the viewing area 20 or surrounding the viewing area 20; the pressure sensor is located in the foldable display In the visible area 20 of the display surface of the screen 100, the pressure sensor is made of a transparent material.
  • the pressure sensor is a resistive pressure sensor.
  • the resistive pressure sensor includes a first deformation resistor 502.
  • the resistive pressure sensor further includes a first resistor R1, a second resistor R2, and a third resistor R3; the first resistor R1, the second resistor R2, and the third resistor R3
  • the resistor R3 is a balance resistor with a constant resistance value, and its resistance value is equal to the resistance value of the first deformation resistance 502 when it is not deformed; the first resistance R1, the second resistance R2, and the third resistance R3 are the same as the first resistance A deformation resistor 502 together constitutes the first Wheatstone balanced bridge.
  • FIG. 5 The principle diagram of the Wheatstone balanced bridge is shown in FIG. 5.
  • the first Wheatstone balanced bridge is located in the non-viewable area 10 on the side of the display surface of the foldable display screen 100, and the geometric center of the first deformation resistor 502 and the bending area The bending axis 40 coincides.
  • the first deformation resistor 502 When the foldable display screen 100 is in the unfolded state, the first deformation resistor 502 has the maximum resistance value, and the electrical signal detected by the processor 504 is the maximum voltage signal; when the foldable display screen When 100 is in the folded state, the first deformation resistor 502 has the minimum resistance value. At this time, the electrical signal detected by the processor 504 is the minimum voltage signal; by comparing the magnitude of the voltage signal detected by the processor 504 , The current state of the foldable display screen 100 can be determined.
  • the resistance value of the first deformation resistor 502 is between the maximum resistance value and the minimum resistance value, and the resistance value of the first deformation resistance 502 is equal to that of the
  • the bending angle of the foldable display screen 100 is negatively correlated; by comparing the magnitude of the voltage signal detected by the processor 504, the current folding angle of the foldable display screen 100 can be determined.
  • the resistive pressure sensor further includes a second deformation resistor 506, and the second deformation resistor 506 is located in the The non-viewable area 10 on the other side of the display surface of the foldable display screen 100 corresponds to the position of the first deformation resistor 502.
  • the resistive pressure sensor further includes a fourth resistor, a fifth resistor, and a sixth resistor (not shown in the figure); the fourth, fifth, and sixth resistors are A balance resistor with a constant resistance value is equal to the resistance value when the second deformation resistance is not deformed; the fourth resistance, the fifth resistance and the sixth resistance and the second deformation resistance together form a second Wheatstone balanced bridge.
  • FIG. 7 shows a third embodiment of the present application, in which the first Wheatstone balance bridge is located on the display surface of the foldable display screen 100 to form the first Wheatstone balance
  • the resistance of the bridge is made of transparent material
  • the geometric center of the first deformation resistor 508 coincides with the bending axis 40 of the bending zone
  • the projection length along the bending axis 40 of the bending zone is the same as that of the bending zone.
  • the length of the bending axis 40 of the zone is equal.
  • the number of the first deformation resistors is much larger than the number of the first deformation resistors in the first and second embodiments, and the variation range of the resistance value is also much larger than the deformation resistors in the previous embodiments, so it can be more accurate To measure the deformation angle of the display screen.
  • FIG. 8 shows the fourth embodiment of the present application.
  • the first Wheatstone balanced bridge is located on the non-display surface of the foldable display screen 100.
  • the geometric center of the first deformation resistor 508 coincides with the bending axis 40 of the bending zone, and its projection length along the bending axis 40 of the bending zone is the same as the bending axis of the bending zone.
  • the length of 40 is equal. The deformation angle of the display screen can be measured more accurately.
  • FIG. 9 shows the fifth embodiment of the present application.
  • the difference from the third and fourth embodiments is that the first deformation resistors 510 are distributed in a triangular fold line instead of a rectangular fold line.
  • the first deformation resistor can be arranged in various ways according to its material and properties. In addition to those shown in the above embodiments, various shapes such as sine wave arrangement and shock wave arrangement can also be included, which will not be repeated here.
  • the capacitive pressure sensor includes a deformation capacitor. Specifically, in this embodiment, it includes a first deformation capacitor 602 and a second deformation capacitor 604.
  • the first deformation capacitor 602 and the second deformation capacitor 604. They are respectively located in the non-visual area 10 on both sides of the visual area 20 of the display surface of the two polar plates of the foldable display screen.
  • the geometric centers of the first deformation capacitor 602 and the second deformation capacitor 604 coincide with the bending axis 40 of the bending area, and the two polar plates of the first deformation capacitor 602 and the second deformation capacitor 604 are printed Conductive layers on both sides of the organic elastic insulator.
  • the foldable display screen 100 includes a substrate 6024, a first insulating layer 6026, and a second insulating layer 6028.
  • the first deformation capacitor 602 includes a first electrode plate 6022 and a second electrode plate 6020.
  • the material of the first electrode plate 6022 and the second electrode plate 6020 can be metallic materials, such as TiAlTi Mesh, Pt, AgNW, etc.; it can also be non-metallic materials, such as high-resistance carbon paste, graphene film, carbon nanotubes, Organic conductive materials, etc.
  • the manufacturing process of the electrode plates of the first deformation capacitor 602 and the second deformation capacitor 604 includes: yellow light process, laser etching process, screen printing process and so on.
  • the deformation capacitor When the foldable display screen 100 is in the unfolded state, the deformation capacitor has the minimum capacitance value, and the electrical signal detected by the processor 504 is the minimum voltage signal; when the foldable display screen 100 is in the folded state In the state, the deformation capacitor has the maximum capacitance value. At this time, the electrical signal detected by the processor 504 is the maximum voltage signal; by comparing the magnitude of the voltage signal detected by the processor 504, the The current state of the foldable display screen 100.
  • the capacitance value of the deformation capacitor is between the maximum capacitance value and the minimum capacitance value, and the capacitance value of the deformation capacitor is equal to that of the foldable display screen 100
  • the bending angle is positively correlated; the current folding angle of the foldable display screen 100 can be determined by comparing the magnitude of the voltage signal detected by the processor 504.
  • Figure 12 shows the seventh embodiment of the present application.
  • the pressure sensor is required to provide a finer electrical signal. Therefore, it is necessary to increase The area of the capacitive pressure sensor.
  • the length of the variable capacitor 606 is equal to the length of the bendable area, covering the visible area 20 and the non-visible area 10.
  • the variable capacitor 606 is made of a transparent material.
  • the variable capacitor 606 may also be located on the non-display surface of the foldable display screen. In this case, the capacitive pressure sensor is not required to be made of transparent material.
  • the pressure sensor is a piezoelectric pressure sensor
  • the piezoelectric pressure sensor includes a piezoelectric film 704.
  • the piezoelectric film 704 includes a first surface, a second surface, a first electrical connection 7022 electrically connected to the first surface of the piezoelectric film, and a second electrical connection connected to the piezoelectric film.
  • the second electrode 7020 is electrically connected to the surface, the first electrode 7022 is close to the bendable area, and the second electrode 7020 is away from the bendable area.
  • the material of the piezoelectric film can be a metallic material, such as TiAlTi Mesh, Pt, AgNW, etc.; it can also be a non-metallic material, such as: high-resistance carbon paste, graphene film, carbon nanotube, organic conductive material, etc.
  • the manufacturing process of the piezoelectric film includes: yellow light process, laser etching process, screen printing process, etc.
  • the electrical signal detected by the processor 504 is the minimum piezoelectric signal.
  • the direction of the resultant force of the compressive stress generated on the first surface is along the bending radius direction and perpendicular to the bending axis 40 of the bending zone, pointing to the outside of the bending arc;
  • the absolute value of the resultant force of compressive stress is greater than the absolute value of the resultant force of compressive stress on the first surface, and its direction is opposite to the direction of the resultant force of compressive stress on the first surface;
  • the pressure applied to the surface of the piezoelectric film sensor is the first surface
  • the sum of the compressive stress on the second surface and the compressive stress on the outer surface is in the same direction as the resultant force of the compressive stress on the outer surface;
  • the electric charge inside the piezoelectric film is offset under the action of the pressure, and the positive and negative charges are respectively accumulated on the first piezoelectric film.
  • the electrical signal detected by the processor 504 at this time is the maximum piezoelectric signal.
  • the magnitude of the piezoelectric signal between the first surface and the second surface of the piezoelectric film is between the maximum piezoelectric signal and the minimum piezoelectric signal, and
  • the piezoelectric signal of the piezoelectric film is positively correlated with the bending angle of the foldable display screen 100; by comparing the magnitude of the voltage signal detected by the processor 504, the current value of the foldable display screen 100 can be determined Folding angle.
  • a pressure sensor is arranged on the bending axis of the bending area of the foldable display screen, so that the change in the bending state of the bending axis in the bending area can be converted into a change in electrical signal through the pressure sensor, and the display screen Detection of bending state.
  • This detection method does not need to rely on external light signals or magnetic signals. It is completely realized by the deformation of the display screen when it is bent, which can completely eliminate the interference of external factors on the detection results, and greatly improve the accuracy of detection. , To avoid misjudgment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Position Input By Displaying (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

一种可折叠显示屏(100),其包括可弯折区(30),可弯折区(30)包括位于显示屏(100)的显示面的第一表面以及与第一表面相对设置的第二表面;可折叠显示屏(100)具有展开状态和折叠状态。可折叠显示屏(100)包括设置于可弯折区(30)的压力传感器,用于检测可弯折区(30)表面的形变状态,并产生表示不同的形变状态的电信号。

Description

可折叠显示屏 技术领域
本申请涉及电子显示领域,尤其涉及一种可折叠显示屏。
背景技术
随着显示技术的不断发展,手机、平板电脑等便携式显示装置在生活中随处可见。大面积的显示屏能够提升用户的视觉体验,但是显示屏的扩大会使显示装置不便于携带,所以可折叠显示装置应运而生。
现有技术中,可折叠显示装置通常具有一个贯穿所述显示装置的弯折区的弯折轴,所述可折叠显示装置可围绕所述弯折区的弯折轴折叠。当需要根据所述可折叠显示装置的折叠状态对显示面板的显示情况以及触控功能进行调节时,就需要对上述可折叠显示装置状态进行检测。
技术问题
现有技术中的检测方法为在显示面板的摄像头附近设置磁力开关或光感应开关,显示面板折叠时,触发磁力开关或光感应开关,使屏幕关闭。这两种方法都是依赖检测外部状态判断显示面板的折叠状态,容易受到外界因素的干扰,形成误判。
技术解决方案
本申请提供一种可折叠显示屏,能够不依赖外界信号检测显示屏的弯折状态,避免误判。
为解决上述问题,本申请提供了一种可折叠显示屏,其包括可弯折区,所述可弯折区包括位于所述显示屏的显示面的第一表面以及与所述第一表面相对设置的第二表面;
所述可折叠显示屏具有展开状态、折叠状态和半折叠状态;其中,
所述可折叠显示屏包括状态检测单元,用于检测所述可折叠显示屏当前的状态;所述状态检测单元包括设置于所述可弯折区的压力传感器,用于检测所述可弯折区表面的形变状态,并产生表示不同的形变状态的电信号。
根据本申请的其中一个方面,处于展开状态时,所述可弯折的第一表面和第二表面不发生形变;处于折叠状态时,所述第一表面和第二表面发生形变,位于所述可弯折区两侧的显示屏之间的夹角为0度;处于半折叠状态时,所述第一表面和所述第二表面发生形变,位于所述可弯折区两侧的显示屏的显示面之间的夹角大于0度且小于180度。
根据本申请的其中一个方面,根据权利要求1所述的可折叠显示屏,其中,所述状态检测单元包括还包括处理器,用于接收并识别所述压力传感器所发出的电信号,并根据所述电信号的大小获得所述可弯折区两侧的显示屏的显示面之间的夹角的大小,指示所述可折叠显示屏幕所处的状态。
根据本申请的其中一个方面,所述可折叠显示屏的显示面包括可视区和位于所述可视区两侧或环绕所述可视区的非可视区;所述压力传感器位于所述显示面的非可视区或所述非显示面上。
根据本申请的其中一个方面,所述可折叠显示屏的显示面包括可视区和位于所述可视区两侧或环绕所述可视区的非可视区;所述压力传感器位于所述可折叠显示屏的显示面的可视区,所述压力传感器为透明材料。
根据本申请的其中一个方面,所述压力传感器为电阻式压力传感器。
根据本申请的其中一个方面,所述电阻式压力传感器包括第一形变电阻。
根据本申请的其中一个方面,所述电阻式压力传感器还包括第一电阻、第二电阻和第三电阻;所述第一电阻、第二电阻和第三电阻为阻值恒定的平衡电阻,其阻值与所述第一形变电阻未发生形变时的阻值相等;所述第一电阻、第二电阻和第三电阻与所述第一形变电阻共同构成第一惠斯通平衡电桥。
根据本申请的其中一个方面,所述第一惠斯通平衡电桥位于所述可折叠显示屏的显示面一侧的非可视区中,所述第一形变电阻的几何中心与所述弯折区的弯折轴重合。
根据本申请的其中一个方面,所述电阻式压力传感器还包括第二形变电阻,所述第二形变电阻位于所述可折叠显示屏的显示面另一侧的非可视区中,与所述第一形变电阻的位置对应;其中,
所述电阻式压力传感器还包括第四电阻、第五电阻和第六电阻;所述第四电阻、第五电阻和第六电阻为阻值恒定的平衡电阻,其阻值与所述第二形变电阻未发生形变时的阻值相等;所述第四电阻、第五电阻和第六电阻与所述第二形变电阻共同构成第二惠斯通平衡电桥。
根据本申请的其中一个方面,所述第一惠斯通平衡电桥位于所述可折叠显示屏的非显示面上,所述第一形变电阻的几何中心与所述弯折区的弯折轴重合,其沿弯折区的弯折轴方向的投影长度与所述弯折区的弯折轴的长度相等。
根据本申请的其中一个方面,所述第一惠斯通平衡电桥位于所述可折叠显示屏的显示面上,构成所述第一惠斯通平衡电桥的电阻为透明材料,所述第一形变电阻的几何中心与所述弯折区的弯折轴重合,其沿弯折区的弯折轴方向的投影长度与所述弯折区的弯折轴的长度相等。
根据本申请的其中一个方面,当所述可折叠显示屏处于展开状态时,所述第一形变电阻具有最大阻值,此时所述处理器所检测到的电信号为最大电压信号;当所述可折叠显示屏处于折叠状态时,所述第一形变电阻具有最小阻值,此时所述处理器所检测到的电信号为最小电压信号;通过比较所述处理器检测到的电压信号的大小,即可判断所述可折叠显示屏当前所处的状态。
根据本申请的其中一个方面,当所述可折叠显示屏处于半折叠状态时,所述第一形变电阻的阻值大小处于最大阻值和最小阻值之间,且所述第一形变电阻的阻值与所述可折叠显示屏的弯折角度负相关;通过比较所述处理器检测到的电压信号的大小,即可判断所述可折叠显示屏当前的折叠角度。
根据本申请的其中一个方面,所述压力传感器为电容式压力传感器。
根据本申请的其中一个方面,所述电容式压力传感器包括形变电容。
根据本申请的其中一个方面,所述形变电容的几何中心与所述弯折区的弯折轴重合,所述形变电容的两个极板分别为印刷在有机弹性绝缘体两侧的导电层。
根据本申请的其中一个方面,当所述可折叠显示屏处于展开状态时,所述形变电容具有最小电容值,此时所述处理器所检测到的电信号为最小电压信号;当所述可折叠显示屏处于折叠状态时,所述形变电容具有最大电容值,此时所述处理器所检测到的电信号为最大电压信号;通过比较所述处理器检测到的电压信号的大小,即可判断所述可折叠显示屏当前所处的状态。
根据本申请的其中一个方面,当所述可折叠显示屏处于半折叠状态时,所述形变电容的电容值大小处于最大电容值和最小电容值之间,且所述形变电容的电容值大小与所述可折叠显示屏的弯折角度正相关;通过比较所述处理器检测到的电压信号的大小,即可判断所述可折叠显示屏当前的折叠角度。
根据本申请的其中一个方面,所述压力传感器为压电式压力传感器。
根据本申请的其中一个方面,所述压电式压力传感器包括压电薄膜。
根据本申请的其中一个方面,所述压电薄膜包括第一表面、第二表面、与所述压电薄膜的第一表面电连接的第一电极,以及与所述压电薄膜的第二表面电连接的第二电极,所述第一电极紧贴所述可弯折区,所述第二电极远离所述可弯折区。
根据本申请的其中一个方面,当所述可折叠显示屏处于展开状态时,所述第一表面和第二表面不发生形变,表面应力为零,所述第一电极和第二电极之间具有最小电压差,此时所述处理器所检测到的电信号为最小压电信号;
当所述可折叠显示屏处于折叠状态时,第一表面产生的压应力合力方向沿弯折半径方向且垂直于弯折区的弯折轴,指向弯折圆弧外侧;第二表面产生的压应力合力的绝对值大于所述第一表面压应力合力的绝对值,且其方向与第一表面压应力合力的方向相反;施加于所述压电薄膜感应器表面的压力为第一表面和第二表面的压应力之和,与外表面的压应力合力方向一致;压电薄膜内部的电荷在所述压力的作用下发生偏移,正负电荷分别聚集到所述压电薄膜的第一表面和第二表面上,此时所述处理器所检测到的电信号为最大压电信号。
根据本申请的其中一个方面,当所述可折叠显示屏处于半折叠状态时,所述压电薄膜的第一表面和第二表面之间的压电信号的大小处于最大压电信号和最小压电信号之间,且所述压电薄膜的压电信号与所述可折叠显示屏的弯折角度正相关;通过比较所述处理器检测到的电压信号的大小,即可判断所述可折叠显示屏当前的折叠角度。
有益效果
本申请通过在可折叠显示屏的弯折区的弯折轴上设置压力传感器,从而能够将弯折区的弯折轴弯折状态的变化通过压力传感器转化为电信号的变化,完成对显示屏弯折状态的检测。这种检测方法不需要依赖外界的光信号或磁力信号,完全是检测通过弯折时显示屏本身的形变实现的,能够完全排除外界因素对检测结果的干扰,极大的提高了检测的准确性,避免误判。
附图说明
图1为本申请的一个实施例中的可折叠显示屏的显示面的示意图;
图2为图1中的可折叠显示屏的非显示面的示意图;
图3为本申请的实施例一中的设置有压力传感器的可折叠显示屏的示意图;
图4为图3中的设置有压力传感器的可折叠显示屏的中的压力传感器的具体结构示意图;
图5为图4中的压力传感器的原理示意图;
图6为本申请的实施例二中的设置有压力传感器的可折叠显示屏的示意图;
图7为本申请的实施例三中的设置有压力传感器的可折叠显示屏的示意图;
图8为本申请的实施例四中的设置有压力传感器的可折叠显示屏的示意图;
图9为本申请的实施例五中的设置有压力传感器的可折叠显示屏的示意图;
图10为本申请的实施例六中的设置有压力传感器的可折叠显示屏的示意图;
图11为图10中的压力传感器的原理示意图;
图12为本申请的实施例七中的设置有压力传感器的可折叠显示屏的示意图;
图13为本申请的实施例八中的设置有压力传感器的可折叠显示屏的示意图;
图14为图13中的压力传感器的原理示意图。
本申请的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请提供一种可折叠显示屏,能够不依赖外界信号检测显示屏的弯折状态,避免误判。参见图1,和图2,图1为本申请的一个实施例中的可折叠显示屏100的显示面的示意图,图2为图1中的可折叠显示屏100的非显示面的示意图。其中,所述可折叠显示屏100包括可弯折区30,所述可弯折区30具有与所述可折叠显示屏100的一条轴线平行的弯折区的弯折轴40,所述可弯折区包括位于所述显示屏的显示面的第一表面以及与所述第一表面相对设置的第二表面。
所述可折叠显示屏100具有展开状态和折叠状态,处于展开状态时,所述可弯折区30的第一表面和第二表面不发生形变,位于所述可弯折区30两侧的显示屏的显示面之间的夹角为180度;处于折叠状态时,所述第一表面和所述第二表面发生形变,位于所述可弯折区30两侧的显示屏的显示面之间的夹角为0度。
所述可折叠显示屏100包括状态检测单元,用于检测所述可折叠显示屏100当前的状态;所述状态检测单元包括设置于所述可弯折区30的压力传感器,用于检测所述可弯折区表面的形变状态,并产生表示不同的形变状态的电信号。
所述可折叠显示屏100还具有半折叠状态,处于半折叠状态时,所述第一表面和所述第二表面发生形变,位于所述可弯折区30两侧的显示屏的显示面之间的夹角大于0度且小于180度。
所述状态检测单元包括还包括处理器504,用于接收并识别所述压力传感器所发出的电信号,并根据所述电信号的大小获得所述可弯折区30两侧的显示屏的显示面之间的夹角的大小,指示所述可折叠显示屏100幕所处的状态。
所述可折叠显示屏100的显示面包括可视区20和位于所述可视区20两侧或环绕所述可视区20的非可视区10;所述压力传感器位于所述显示面的非可视区10或所述非显示面上。
所述可折叠显示屏100的显示面包括可视区20和位于所述可视区20两侧或环绕所述可视区20的非可视区10;所述压力传感器位于所述可折叠显示屏100的显示面的可视区20,所述压力传感器为透明材料。
参见图3,在本申请的实施例一中,所述压力传感器为电阻式压力传感器。如图3所示,所述电阻式压力传感器包括第一形变电阻502。
具体的,参见图4,在实施例一中,所述电阻式压力传感器还包括第一电阻R1、第二电阻R2和第三电阻R3;所述第一电阻R1、第二电阻R2和第三电阻R3为阻值恒定的平衡电阻,其阻值与所述第一形变电阻502未发生形变时的阻值相等;所述第一电阻R1、第二电阻R2和第三电阻R3与所述第一形变电阻502共同构成第一惠斯通平衡电桥。
所述惠斯通平衡电桥的原理图如图5所示。
其中,所述第一惠斯通平衡电桥位于所述可折叠显示屏100的显示面一侧的非可视区10中,所述第一形变电阻502的几何中心与所述弯折区的弯折轴40重合。
当所述可折叠显示屏100处于展开状态时,所述第一形变电阻502具有最大阻值,此时所述处理器504所检测到的电信号为最大电压信号;当所述可折叠显示屏100处于折叠状态时,所述第一形变电阻502具有最小阻值,此时所述处理器504所检测到的电信号为最小电压信号;通过比较所述处理器504检测到的电压信号的大小,即可判断所述可折叠显示屏100当前所处的状态。
当所述可折叠显示屏100处于半折叠状态时,所述第一形变电阻502的阻值大小处于最大阻值和最小阻值之间,且所述第一形变电阻502的阻值与所述可折叠显示屏100的弯折角度负相关;通过比较所述处理器504检测到的电压信号的大小,即可判断所述可折叠显示屏100当前的折叠角度。
图6示出了本申请的实施例二中的可折叠显示屏中的压力传感器的示意图,其中,所述电阻式压力传感器还包括第二形变电阻506,所述第二形变电阻506位于所述可折叠显示屏100的显示面另一侧的非可视区10中,与所述第一形变电阻502的位置对应。
具体的,在实施例二中,所述电阻式压力传感器还包括第四电阻、第五电阻和第六电阻(图中未示出);所述第四电阻、第五电阻和第六电阻为阻值恒定的平衡电阻,其阻值与所述第二形变电阻未发生形变时的阻值相等;所述第四电阻、第五电阻和第六电阻与所述第二形变电阻共同构成第二惠斯通平衡电桥。
参见图7,图7示出了本申请的实施例三,其中,所述第一惠斯通平衡电桥位于所述可折叠显示屏100的显示面上,构成所述第一惠斯通平衡电桥的电阻为透明材料,所述第一形变电阻508的几何中心与所述弯折区的弯折轴40重合,其沿弯折区的弯折轴40方向的投影长度与所述弯折区的弯折轴40的长度相等。本实施例中,所述第一形变电阻的数量远大于实施例一和二中的第一形变电阻的数量,其阻值的变化范围也远大于前述实施例中的形变电阻,因此能够更加准确的测量所述显示屏的形变角度。
参见图8,图8示出了本申请的实施例四,与实施例三不同的是,所述第一惠斯通平衡电桥位于所述可折叠显示屏100的非显示面上。同样的,所述第一形变电阻508的几何中心与所述弯折区的弯折轴40重合,其沿弯折区的弯折轴40方向的投影长度与所述弯折区的弯折轴40的长度相等。能够更加准确的测量所述显示屏的形变角度。
参见图9,图9示出了本申请的实施例五,其中,与实施例三和四不同的是,所述第一形变电阻510呈三角型折线分布,而非呈矩形折线分布。在实际中,所述第一形变电阻根据其材料和性质的不同,可以采取各种不同的排布方法。除了上述实施例中示出的,还可以包括正弦波式排列、冲击波状排列等各种形状,在此不再赘述。
参见图10,图10示出了本申请的实施例六,其中,所述压力传感器为电容式压力传感器。所述电容式压力传感器包括形变电容,具体的,在本实施例中,包括第一形变电容602和第二形变电容604。所述第一形变电容602和第二形变电容604。分别位于所述可折叠显示屏的两个极板的显示面的可视区20两侧的非可视区10中。所述第一形变电容602和第二形变电容604的几何中心与所述弯折区的弯折轴40重合,所述第一形变电容602和第二形变电容604的两个极板分别为印刷在有机弹性绝缘体两侧的导电层。
参见图11,图11为图10中的可折叠显示屏中的压力传感器的原理示意图。具体的,所述可折叠显示屏100包括基板6024、第一绝缘层6026和第二绝缘层6028。其中,所述第一形变电容602包括第一极板6022和第二极板6020。所述第一极板6022和第二极板6020的材料可以是金属材料,例如TiAlTi Mesh,Pt,AgNW等;也可以是非金属材料,例如:高阻碳浆,石墨烯薄膜,碳纳米管,有机导电材料等。所述第一形变电容602和第二形变电容604的极板的制作工艺包括:黄光工艺,激光刻蚀工艺,丝网印刷工艺等。
当所述可折叠显示屏100处于展开状态时,所述形变电容具有最小电容值,此时所述处理器504所检测到的电信号为最小电压信号;当所述可折叠显示屏100处于折叠状态时,所述形变电容具有最大电容值,此时所述处理器504所检测到的电信号为最大电压信号;通过比较所述处理器504检测到的电压信号的大小,即可判断所述可折叠显示屏100当前所处的状态。
当所述可折叠显示屏100处于半折叠状态时,所述形变电容的电容值大小处于最大电容值和最小电容值之间,且所述形变电容的电容值大小与所述可折叠显示屏100的弯折角度正相关;通过比较所述处理器504检测到的电压信号的大小,即可判断所述可折叠显示屏100当前的折叠角度。
参见图12,图12示出了本申请的实施例七,为了能精确的获取所述可折叠显示屏的弯折角度,需要所述压力传感器提供更为精细的电信号,因此,需要增大所述电容式压力传感器的面积。实施例七中,所述可变电容606的长度与所述可弯折区的长度相等,覆盖所述可视区20和非可视区10。为了不影响显示效果,所述可变电容606为透明材料。当然,所述可变电容606也可以位于所述可折叠显示屏的非显示面,此时则不要求所述电容式压力传感器为透明材料。
参见图13,图13示出了本申请的实施例八,所述压力传感器为压电式压力传感器,其中,所述压电式压力传感器包括压电薄膜704。具体的,参见图14,所述压电薄膜704包括第一表面、第二表面、与所述压电薄膜的第一表面电连接的第一电7022,以及与所述压电薄膜的第二表面电连接的第二电极7020,所述第一电极7022紧贴所述可弯折区,所述第二电极7020远离所述可弯折区。
所述压电薄膜的材料可以是金属材料,例如TiAlTi Mesh,Pt,AgNW等;也可以是非金属材料,例如:高阻碳浆,石墨烯薄膜,碳纳米管,有机导电材料等。所述压电薄膜的制作工艺包括:黄光工艺,激光刻蚀工艺,丝网印刷工艺等。
当所述可折叠显示屏100处于展开状态时,所述第一表面和第二表面不发生形变,表面应力为零,所述第一电极和第二电极之间具有最小电压差,此时所述处理器504所检测到的电信号为最小压电信号。
当所述可折叠显示屏100处于折叠状态时,第一表面产生的压应力合力方向沿弯折半径方向且垂直于弯折区的弯折轴40,指向弯折圆弧外侧;第二表面产生的压应力合力的绝对值大于所述第一表面压应力合力的绝对值,且其方向与第一表面压应力合力的方向相反;施加于所述压电薄膜感应器表面的压力为第一表面和第二表面的压应力之和,与外表面的压应力合力方向一致;压电薄膜内部的电荷在所述压力的作用下发生偏移,正负电荷分别聚集到所述压电薄膜的第一表面和第二表面上,此时所述处理器504所检测到的电信号为最大压电信号。
当所述可折叠显示屏100处于半折叠状态时,所述压电薄膜的第一表面和第二表面之间的压电信号的大小处于最大压电信号和最小压电信号之间,且所述压电薄膜的压电信号与所述可折叠显示屏100的弯折角度正相关;通过比较所述处理器504检测到的电压信号的大小,即可判断所述可折叠显示屏100当前的折叠角度。
本申请通过在可折叠显示屏的弯折区的弯折轴上设置压力传感器,从而能够将弯折区的弯折轴弯折状态的变化通过压力传感器转化为电信号的变化,完成对显示屏弯折状态的检测。这种检测方法不需要依赖外界的光信号或磁力信号,完全是检测通过弯折时显示屏本身的形变实现的,能够完全排除外界因素对检测结果的干扰,极大的提高了检测的准确性,避免误判。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (24)

  1. 一种可折叠显示屏,其中,所述可折叠显示屏包括可弯折区,所述可弯折区包括位于所述显示屏的显示面的第一表面以及与所述第一表面相对设置的第二表面;其中,
    所述可折叠显示屏具有展开状态、折叠状态和半折叠状态;其中,
    所述可折叠显示屏包括状态检测单元,用于检测所述可折叠显示屏当前的状态;所述状态检测单元包括设置于所述可弯折区的压力传感器,用于检测所述可弯折区表面的形变状态,并产生表示不同的形变状态的电信号。
  2. 根据权利要求1所述的可折叠显示屏,其中,处于展开状态时,所述可弯折的第一表面和第二表面不发生形变;
    处于折叠状态时,所述第一表面和第二表面发生形变,位于所述可弯折区两侧的显示屏之间的夹角为0度;
    处于半折叠状态时,所述第一表面和所述第二表面发生形变,位于所述可弯折区两侧的显示屏的显示面之间的夹角大于0度且小于180度。
  3. 根据权利要求1所述的可折叠显示屏,其中,所述状态检测单元还包括处理器,用于接收并识别所述压力传感器所发出的电信号,并根据所述电信号的大小获得所述可弯折区两侧的显示屏的显示面之间的夹角的大小,指示所述可折叠显示屏幕所处的状态。
  4. 根据权利要求1所述的可折叠显示屏,其中,所述可折叠显示屏的显示面包括可视区和位于所述可视区两侧或环绕所述可视区的非可视区;所述压力传感器位于所述显示面的非可视区或所述非显示面上。
  5. 根据权利要求4所述的可折叠显示屏,其中,所述可折叠显示屏的显示面包括可视区和位于所述可视区两侧或环绕所述可视区的非可视区;所述压力传感器位于所述可折叠显示屏的显示面的可视区,所述压力传感器为透明材料。
  6. 根据权利要求5所述的可折叠显示屏,其中,所述压力传感器为电阻式压力传感器。
  7. 根据权利要求6所述的可折叠显示屏,其中,所述电阻式压力传感器包括第一形变电阻。
  8. 根据权利要求7所述的可折叠显示屏,其中,所述电阻式压力传感器还包括第一电阻、第二电阻和第三电阻;所述第一电阻、第二电阻和第三电阻为阻值恒定的平衡电阻,其阻值与所述第一形变电阻未发生形变时的阻值相等;所述第一电阻、第二电阻和第三电阻与所述第一形变电阻共同构成第一惠斯通平衡电桥。
  9. 根据权利要求8所述的可折叠显示屏,其中,所述第一惠斯通平衡电桥位于所述可折叠显示屏的显示面一侧的非可视区中,所述第一形变电阻的几何中心与所述弯折区的弯折轴重合。
  10. 根据权利要求9所述的可折叠显示屏,其中,所述电阻式压力传感器还包括第二形变电阻,所述第二形变电阻位于所述可折叠显示屏的显示面另一侧的非可视区中,与所述第一形变电阻的位置对应;其中,
    所述电阻式压力传感器还包括第四电阻、第五电阻和第六电阻;所述第四电阻、第五电阻和第六电阻为阻值恒定的平衡电阻,其阻值与所述第二形变电阻未发生形变时的阻值相等;所述第四电阻、第五电阻和第六电阻与所述第二形变电阻共同构成第二惠斯通平衡电桥。
  11. 根据权利要求8所述的可折叠显示屏,其中,所述第一惠斯通平衡电桥位于所述可折叠显示屏的非显示面上,所述第一形变电阻的几何中心与所述弯折区的弯折轴重合,其沿弯折区的弯折轴方向的投影长度与所述弯折区的弯折轴的长度相等。
  12. 根据权利要求8所述的可折叠显示屏,其中,所述第一惠斯通平衡电桥位于所述可折叠显示屏的显示面上,构成所述第一惠斯通平衡电桥的电阻为透明材料,所述第一形变电阻的几何中心与所述弯折区的弯折轴重合,其沿弯折区的弯折轴方向的投影长度与所述弯折区的弯折轴的长度相等。
  13. 根据权利要求7所述的可折叠显示屏,其中,当所述可折叠显示屏处于展开状态时,所述第一形变电阻具有最大阻值,此时所述处理器所检测到的电信号为最大电压信号;当所述可折叠显示屏处于折叠状态时,所述第一形变电阻具有最小阻值,此时所述处理器所检测到的电信号为最小电压信号;通过比较所述处理器检测到的电压信号的大小,即可判断所述可折叠显示屏当前所处的状态。
  14. 根据权利要求7所述的可折叠显示屏,其中,当所述可折叠显示屏处于半折叠状态时,所述第一形变电阻的阻值大小处于最大阻值和最小阻值之间,且所述第一形变电阻的阻值与所述可折叠显示屏的弯折角度负相关;通过比较所述处理器检测到的电压信号的大小,即可判断所述可折叠显示屏当前的折叠角度。
  15. 根据权利要求5所述的可折叠显示屏,其中,所述压力传感器为电容式压力传感器。
  16. 根据权利要求15所述的可折叠显示屏,其中,所述电容式压力传感器包括形变电容。
  17. 根据权利要求16所述的可折叠显示屏,其中,所述形变电容的几何中心与所述弯折区的弯折轴重合,所述形变电容的两个极板分别为印刷在有机弹性绝缘体两侧的导电层。
  18. 根据权利要求17所述的可折叠显示屏,其中,当所述可折叠显示屏处于展开状态时,所述形变电容具有最小电容值,此时所述处理器所检测到的电信号为最小电压信号;当所述可折叠显示屏处于折叠状态时,所述形变电容具有最大电容值,此时所述处理器所检测到的电信号为最大电压信号;通过比较所述处理器检测到的电压信号的大小,即可判断所述可折叠显示屏当前所处的状态。
  19. 根据权利要求18所述的可折叠显示屏,其中,当所述可折叠显示屏处于半折叠状态时,所述形变电容的电容值大小处于最大电容值和最小电容值之间,且所述形变电容的电容值大小与所述可折叠显示屏的弯折角度正相关;通过比较所述处理器检测到的电压信号的大小,即可判断所述可折叠显示屏当前的折叠角度。
  20. 根据权利要求5所述的可折叠显示屏,其中,所述压力传感器为压电式压力传感器。
  21. 根据权利要求20所述的可折叠显示屏,其中,所述压电式压力传感器包括压电薄膜。
  22. 根据权利要求21所述的可折叠显示屏,其中,所述压电薄膜包括第一表面、第二表面、与所述压电薄膜的第一表面电连接的第一电极,以及与所述压电薄膜的第二表面电连接的第二电极,所述第一电极紧贴所述可弯折区,所述第二电极远离所述可弯折区。
  23. 根据权利要求22所述的可折叠显示屏,其中,
    当所述可折叠显示屏处于展开状态时,所述第一表面和第二表面不发生形变,表面应力为零,所述第一电极和第二电极之间具有最小电压差,此时所述处理器所检测到的电信号为最小压电信号;
    当所述可折叠显示屏处于折叠状态时,第一表面产生的压应力合力方向沿弯折半径方向且垂直于弯折区的弯折轴,指向弯折圆弧外侧;第二表面产生的压应力合力的绝对值大于所述第一表面压应力合力的绝对值,且其方向与第一表面压应力合力的方向相反;施加于所述压电薄膜感应器表面的压力为第一表面和第二表面的压应力之和,与外表面的压应力合力方向一致;压电薄膜内部的电荷在所述压力的作用下发生偏移,正负电荷分别聚集到所述压电薄膜的第一表面和第二表面上,此时所述处理器所检测到的电信号为最大压电信号。
  24. 根据权利要求23所述的可折叠显示屏,其中,当所述可折叠显示屏处于半折叠状态时,所述压电薄膜的第一表面和第二表面之间的压电信号的大小处于最大压电信号和最小压电信号之间,且所述压电薄膜的压电信号与所述可折叠显示屏的弯折角度正相关;通过比较所述处理器检测到的电压信号的大小,即可判断所述可折叠显示屏当前的折叠角度。
PCT/CN2019/086140 2019-04-22 2019-05-09 可折叠显示屏 WO2020215374A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/612,298 US20210360099A1 (en) 2019-04-22 2019-05-09 Foldable display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910321613.8 2019-04-22
CN201910321613.8A CN110109513A (zh) 2019-04-22 2019-04-22 可折叠显示屏

Publications (1)

Publication Number Publication Date
WO2020215374A1 true WO2020215374A1 (zh) 2020-10-29

Family

ID=67486065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086140 WO2020215374A1 (zh) 2019-04-22 2019-05-09 可折叠显示屏

Country Status (3)

Country Link
US (1) US20210360099A1 (zh)
CN (1) CN110109513A (zh)
WO (1) WO2020215374A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459579B (zh) * 2019-08-21 2022-01-25 京东方科技集团股份有限公司 一种柔性显示面板及其弯折检测方法
CN110491921B (zh) * 2019-08-22 2022-01-25 京东方科技集团股份有限公司 柔性显示面板及显示装置
CN110726363B (zh) * 2019-10-14 2021-11-02 武汉华星光电半导体显示技术有限公司 一种显示装置及其制作方法
CN110728916B (zh) * 2019-12-05 2022-03-01 京东方科技集团股份有限公司 一种折叠屏及显示装置
CN111147629B (zh) * 2019-12-10 2022-09-23 维沃移动通信有限公司 折叠屏的折叠角度检测方法和电子设备
CN111179752A (zh) * 2020-01-02 2020-05-19 京东方科技集团股份有限公司 柔性显示面板、可折叠显示设备及其控制方法
CN113141426B (zh) * 2020-01-19 2023-06-09 Oppo广东移动通信有限公司 可折叠壳体组件及可折叠电子设备
CN113141428B (zh) * 2020-01-20 2023-07-25 Oppo广东移动通信有限公司 可折叠电子设备及其控制方法
CN111508358A (zh) * 2020-04-26 2020-08-07 武汉华星光电半导体显示技术有限公司 显示装置
CN111580605A (zh) * 2020-05-06 2020-08-25 维沃移动通信有限公司 电子设备
CN111445803B (zh) * 2020-05-14 2023-04-14 京东方科技集团股份有限公司 显示装置
CN111722754A (zh) * 2020-06-19 2020-09-29 京东方科技集团股份有限公司 一种显示面板、其检测方法及显示装置
CN111816069B (zh) * 2020-06-30 2022-07-12 上海天马微电子有限公司 一种显示装置和显示装置的展平控制方法
WO2022024723A1 (ja) * 2020-07-30 2022-02-03 株式会社村田製作所 電子機器
CN112436046B (zh) * 2020-11-27 2022-04-08 武汉华星光电半导体显示技术有限公司 可折叠显示装置及可折叠显示装置的制备方法
KR20220127548A (ko) * 2021-03-11 2022-09-20 삼성전자주식회사 폴딩 상태를 검출하는 폴더블 전자 장치 및 그의 동작 방법
CN113542470B (zh) * 2021-07-21 2024-01-30 维沃移动通信有限公司 电子设备和电子设备的控制方法
CN116076166A (zh) * 2021-08-10 2023-05-05 京东方科技集团股份有限公司 可折叠显示装置及其驱动方法
CN113838373B (zh) * 2021-08-20 2023-10-24 京东方科技集团股份有限公司 显示面板、检测方法和显示装置
CN114675711A (zh) * 2022-03-28 2022-06-28 维沃移动通信有限公司 一种可折叠的电子设备和折叠角度检测方法
CN115118815B (zh) * 2022-08-29 2023-02-03 荣耀终端有限公司 防反折报警方法及相关装置
CN116915899B (zh) * 2023-09-08 2024-03-01 荣耀终端有限公司 一种检测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403839A (zh) * 2007-10-01 2009-04-08 兄弟工业株式会社 图像显示设备
CN105676965A (zh) * 2016-03-29 2016-06-15 上海天马微电子有限公司 可折叠显示装置
CN107195667A (zh) * 2017-06-30 2017-09-22 武汉天马微电子有限公司 一种柔性有机发光显示面板和电子设备
KR20180073730A (ko) * 2016-12-22 2018-07-03 엘지디스플레이 주식회사 벤드 센싱 회로, 폴더블 디스플레이 장치 및 그 구동 방법
CN108877526A (zh) * 2018-06-29 2018-11-23 上海天马有机发光显示技术有限公司 一种显示面板及弯折区域弯折程度的检测方法
CN109285864A (zh) * 2018-09-10 2019-01-29 上海天马微电子有限公司 柔性显示面板和显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629446B (zh) * 2012-03-22 2015-08-05 京东方科技集团股份有限公司 显示面板及其操作控制方法和显示装置
KR101721046B1 (ko) * 2012-04-08 2017-03-29 삼성전자주식회사 디스플레이 장치 및 그에 대한 제어 방법
KR102215080B1 (ko) * 2012-09-17 2021-02-10 삼성전자주식회사 플렉서블 디스플레이 장치 및 플렉서블 디스플레이 장치의 제어 방법
CN104461010B (zh) * 2014-12-23 2018-03-30 京东方科技集团股份有限公司 指令信号生成装置、柔性设备及弯曲监测方法
CN107331300B (zh) * 2017-07-21 2019-09-27 上海天马微电子有限公司 一种柔性显示面板和柔性显示装置
CN107195253B (zh) * 2017-07-26 2020-08-25 武汉天马微电子有限公司 可折叠柔性显示装置
CN208621082U (zh) * 2018-08-02 2019-03-19 上海麦歌恩微电子股份有限公司 基于惠斯通电桥的传感器信号放大及处理电路
CN109616020B (zh) * 2019-01-30 2021-12-03 京东方科技集团股份有限公司 柔性显示面板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403839A (zh) * 2007-10-01 2009-04-08 兄弟工业株式会社 图像显示设备
CN105676965A (zh) * 2016-03-29 2016-06-15 上海天马微电子有限公司 可折叠显示装置
KR20180073730A (ko) * 2016-12-22 2018-07-03 엘지디스플레이 주식회사 벤드 센싱 회로, 폴더블 디스플레이 장치 및 그 구동 방법
CN107195667A (zh) * 2017-06-30 2017-09-22 武汉天马微电子有限公司 一种柔性有机发光显示面板和电子设备
CN108877526A (zh) * 2018-06-29 2018-11-23 上海天马有机发光显示技术有限公司 一种显示面板及弯折区域弯折程度的检测方法
CN109285864A (zh) * 2018-09-10 2019-01-29 上海天马微电子有限公司 柔性显示面板和显示装置

Also Published As

Publication number Publication date
US20210360099A1 (en) 2021-11-18
CN110109513A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2020215374A1 (zh) 可折叠显示屏
TWI663386B (zh) 壓力感測器及顯示裝置
CN106066727B (zh) 触摸屏、触摸面板、显示装置以及电子仪器
CN106648236B (zh) 一种触控显示面板以及触控显示装置
TW200529168A (en) Touch sensor with linearized response
CN106249953B (zh) 一种压感触摸屏及显示装置
EP2372506A1 (en) Touch screen panel and display device having the same
KR102532769B1 (ko) 표시 장치
TW201333799A (zh) 觸控感測器及偵測方法
JP2013020370A (ja) 位置検出センサ、位置検出装置および位置検出方法
JP5220201B2 (ja) フライング・キャパシタを用いて、表面型静電容量方式タッチ・パネルの上の位置を測定する方法およびシステム
EP0817110A2 (en) Terminal device with touch screen
Ba et al. Self-powered trajectory-tracking microsystem based on electrode-miniaturized triboelectric nanogenerator
TW201516774A (zh) 觸摸點及觸摸壓力的檢測方法
CN106598347A (zh) 力感测装置及oled显示装置
CN108459762A (zh) 数字化仪及包括数字化仪的柔性显示装置
US10739923B2 (en) Touch panel member
US8803841B2 (en) Touch spot detecting method of touch panel
TWI776832B (zh) 觸控感應器及包含其之顯示裝置
TWI497370B (zh) 觸控面板
TWM541607U (zh) 壓力觸控感測裝置
US20170177112A1 (en) Capacitive touch sensor with z-shaped electrode pattern
KR20160080069A (ko) 터치 패널 및 이를 포함하는 표시 장치
JP7178972B2 (ja) タッチパネル及び表示装置
TWI512575B (zh) Single layer touch sensing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926377

Country of ref document: EP

Kind code of ref document: A1