WO2020213709A1 - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
WO2020213709A1
WO2020213709A1 PCT/JP2020/016852 JP2020016852W WO2020213709A1 WO 2020213709 A1 WO2020213709 A1 WO 2020213709A1 JP 2020016852 W JP2020016852 W JP 2020016852W WO 2020213709 A1 WO2020213709 A1 WO 2020213709A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
temperature
oil pump
oil
control unit
Prior art date
Application number
PCT/JP2020/016852
Other languages
English (en)
French (fr)
Inventor
慶介 福永
哲広 仁田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202080028765.XA priority Critical patent/CN113710532A/zh
Priority to DE112020002015.0T priority patent/DE112020002015T5/de
Priority to JP2021514232A priority patent/JPWO2020213709A1/ja
Priority to US17/601,836 priority patent/US20220216820A1/en
Publication of WO2020213709A1 publication Critical patent/WO2020213709A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0076Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0435Pressure control for supplying lubricant; Circuits or valves therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0436Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0445Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control for supply of different gearbox casings or sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0476Electric machines and gearing, i.e. joint lubrication or cooling or heating thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/485Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0447Control of lubricant levels, e.g. lubricant level control dependent on temperature

Definitions

  • the present invention relates to a drive device.
  • the present application claims priority based on Japanese Patent Application No. 2019-080342 filed on April 19, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 describes a driving device for a hybrid vehicle.
  • the oil contained in the case may be used as a lubricating oil for a speed reducer or the like in the drive device.
  • the lower the temperature the higher the viscosity of oil. Therefore, in a relatively low temperature environment, the viscosity of the oil may become too high, making it difficult for the oil to function as a lubricating oil for a speed reducer or the like. Therefore, there is a risk that the drive device may malfunction.
  • one of the objects of the present invention is to provide a drive device having a structure capable of suppressing the occurrence of defects in a relatively low temperature environment.
  • One aspect of the drive device of the present invention is a drive device that rotates an axle of a vehicle, the motor, a speed reducer connected to the motor, and a differential device connected to the motor via the speed reducer.
  • the motor, the speed reducing device, and the differential device are housed therein, a temperature sensor capable of detecting the temperature of the motor, and a control unit for controlling the motor.
  • the oil supplied to the transmission device is housed inside the housing.
  • the control unit limits the output of the motor based on the detection result of the temperature sensor.
  • FIG. 1 is a diagram showing a functional configuration of the vehicle drive system of the first embodiment.
  • FIG. 2 is a schematic configuration diagram schematically showing the driving device of the first embodiment.
  • FIG. 3 is a flowchart showing an example of a control procedure by the control unit of the first embodiment.
  • FIG. 4 is a flowchart showing a procedure for checking the operation of the oil pump by the control unit of the first embodiment.
  • FIG. 5 is a flowchart showing a procedure for controlling the flow rate of the oil pump by the control unit of the first embodiment.
  • FIG. 6 is a graph showing an example of a change in the duty ratio with respect to the temperature of the motor in the first embodiment.
  • FIG. 7 is a flowchart showing a procedure of after-run control by the control unit of the present embodiment.
  • FIG. 8 is a flowchart showing a procedure for controlling the flow rate of the oil pump by the control unit of the second embodiment.
  • FIG. 9 is a graph showing an example of a change in the duty ratio with respect
  • the vehicle drive system 100 shown in FIG. 1 is mounted on a vehicle and drives the vehicle.
  • the vehicle on which the vehicle drive system 100 of the present embodiment is mounted is a vehicle powered by a motor, such as a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHV), and an electric vehicle (EV).
  • the vehicle drive system 100 includes a drive device 1, a radiator 110, a refrigerant pump 120, a blower 130, and a vehicle control device 140. That is, the drive device 1, the radiator 110, the refrigerant pump 120, the blower 130, and the vehicle control device 140 are provided in the vehicle.
  • the radiator 110 cools the refrigerant W.
  • the refrigerant W is, for example, water.
  • the refrigerant pump 120 is an electric pump driven by electricity.
  • the refrigerant pump 120 sends the refrigerant W from the radiator 110 to the drive device 1 via the refrigerant flow path 150.
  • the refrigerant flow path 150 is a flow path that extends from the radiator 110 to the drive device 1 and returns to the radiator 110 again.
  • the refrigerant flow path 150 passes through the inside of the inverter unit 8 and the inside of the oil cooler 97, which will be described later.
  • the refrigerant W flowing through the refrigerant flow path 150 cools the oil O flowing in the control unit 70 and the oil cooler 97 provided in the inverter unit 8.
  • the blower 130 can blow air to the radiator 110. As a result, the blower 130 can cool the radiator 110.
  • the type of the blower 130 is not particularly limited as long as it can blow air to the radiator 110.
  • the blower 130 may be an axial fan, a centrifugal fan, or a blower.
  • the blower 130 is switched between a drive state and a stop state according to, for example, the temperature of the refrigerant W housed inside the radiator 110.
  • the air flow generated by the vehicle traveling is blown to the radiator 110, and the refrigerant W inside the radiator 110 is easily cooled.
  • the blower 130 is stopped, for example.
  • the refrigerant W inside the radiator 110 can be suitably cooled by blowing air to the radiator 110 with the blower 130 in the driving state.
  • the blower 130 may always be in the driving state regardless of the traveling state of the vehicle.
  • the vehicle control device 140 controls each device mounted on the vehicle.
  • the vehicle control device 140 controls the drive device 1, the refrigerant pump 120, and the blower device 130.
  • a signal from the ignition switch IGS provided in the vehicle is input to the vehicle control device 140.
  • the ignition switch IGS is a switch for switching between driving and stopping the driving device 1, and is operated directly or indirectly by the driver who drives the vehicle.
  • the vehicle control device 140 When the ignition switch IGS is turned from OFF to ON, the vehicle control device 140 sends a signal to the control unit 70 described later of the drive device 1 to drive the drive device 1 so that the vehicle can travel. On the other hand, the vehicle control device 140 sends a signal to the control unit 70 to stop the drive device 1 when the ignition switch IGS is turned from ON to OFF.
  • the drive device 1 is used as a power source for a vehicle powered by a motor, such as the hybrid electric vehicle (HEV), a plug-in hybrid vehicle (PHV), and an electric vehicle (EV) described above.
  • the drive device 1 includes a motor 2, a transmission device 3 having a speed reducer 4 and a differential device 5, a housing 6, an inverter unit 8, an oil pump 96, an oil cooler 97, and the like.
  • the housing 6 houses the motor 2 and the transmission device 3 inside.
  • the housing 6 includes a motor accommodating portion 81 that internally accommodates the motor 2, and a gear accommodating portion 82 that internally accommodates the speed reducing device 4 and the differential device 5.
  • the motor 2 is an inner rotor type motor.
  • the motor 2 has a rotor 20, a stator 30, and bearings 26 and 27.
  • the rotor 20 is rotatable about a motor shaft J1 extending in the horizontal direction.
  • the rotor 20 includes a shaft 21 and a rotor body 24.
  • the rotor body 24 has a rotor core and a rotor magnet fixed to the rotor core. The torque of the rotor 20 is transmitted to the speed reducer 4.
  • the horizontal direction in which the motor shaft J1 extends is referred to as "axial direction”
  • the radial direction centered on the motor shaft J1 is simply referred to as “diametrical direction”
  • the axial direction is, for example, the left-right direction of FIG. 2, which is the left-right direction of the vehicle, that is, the vehicle width direction.
  • the right side in FIG. 2 in the axial direction is simply referred to as “right side”
  • the left side in FIG. 2 in the axial direction is simply referred to as “left side”.
  • the vertical direction in FIG. 2 is referred to as the vertical direction
  • the upper side in FIG. 2 is referred to simply as the "upper side” as the vertical upper side
  • the lower side in FIG. 2 is simply referred to as the "lower side” as the vertical lower side.
  • the shaft 21 extends along the axial direction with the motor shaft J1 as the center.
  • the shaft 21 rotates about the motor shaft J1.
  • the shaft 21 is a hollow shaft provided with a hollow portion 22 inside.
  • the shaft 21 is provided with a communication hole 23.
  • the communication hole 23 extends in the radial direction and connects the hollow portion 22 and the outside of the shaft 21.
  • the shaft 21 extends across the motor accommodating portion 81 and the gear accommodating portion 82 of the housing 6. The left end of the shaft 21 projects into the gear accommodating portion 82. A first gear 41, which will be described later, of the speed reducer 4 is fixed to the left end of the shaft 21.
  • the shaft 21 is rotatably supported by bearings 26 and 27.
  • the stator 30 faces the rotor 20 in the radial direction with a gap. More specifically, the stator 30 is located radially outward of the rotor 20.
  • the stator 30 has a stator core 32 and a coil assembly 33.
  • the stator core 32 is fixed to the inner peripheral surface of the motor accommodating portion 81.
  • the stator core 32 has a cylindrical core back extending in the axial direction and a plurality of teeth extending radially inward from the core back.
  • the coil assembly 33 has a plurality of coils 31 attached to the stator core 32 along the circumferential direction.
  • the plurality of coils 31 are respectively mounted on each tooth of the stator core 32 via an insulator (not shown).
  • the plurality of coils 31 are arranged along the circumferential direction. More specifically, the plurality of coils 31 are arranged at equal intervals over one circumference along the circumferential direction.
  • the coil assembly 33 may have a binding member or the like that binds each coil 31, or may have a crossover connecting the coils 31 to each other.
  • the coil assembly 33 has coil ends 33a and 33b that project axially from the stator core 32.
  • the coil end 33a is a portion protruding to the right from the stator core 32.
  • the coil end 33b is a portion protruding to the left from the stator core 32.
  • the coil end 33a includes a portion of each coil 31 included in the coil assembly 33 that protrudes to the right of the stator core 32.
  • the coil end 33b includes a portion of each coil 31 included in the coil assembly 33 that protrudes to the left side of the stator core 32.
  • the coil ends 33a and 33b are annular around the motor shaft J1.
  • the coil ends 33a and 33b may include a binding member or the like that binds the coils 31, or may include a crossover connecting the coils 31 to each other.
  • Bearings 26 and 27 rotatably support the rotor 20.
  • the bearings 26 and 27 are, for example, ball bearings.
  • the bearing 26 is a bearing that rotatably supports a portion of the rotor 20 located on the right side of the stator core 32.
  • the bearing 26 supports a portion of the shaft 21 located on the right side of the portion to which the rotor body 24 is fixed.
  • the bearing 26 is held by a wall portion of the motor accommodating portion 81 that covers the right side of the rotor 20 and the stator 30.
  • the bearing 27 is a bearing that rotatably supports a portion of the rotor 20 located on the left side of the stator core 32.
  • the bearing 27 supports a portion of the shaft 21 located on the left side of the portion to which the rotor body 24 is fixed.
  • the bearing 27 is held by the partition wall 61c described later.
  • the motor 2 has a temperature sensor 71 capable of detecting the temperature of the motor 2. That is, the drive device 1 includes a temperature sensor 71.
  • the temperature of the motor 2 is, for example, the temperature of the coil 31 of the motor 2.
  • the temperature sensor 71 is embedded in, for example, the coil end 33a or the coil end 33b.
  • the type of the temperature sensor 71 is not particularly limited. The detection result of the temperature sensor 71 is sent to the control unit 70, which will be described later.
  • the speed reducer 4 is connected to the motor 2. More specifically, as shown in FIG. 2, the speed reducer 4 is connected to the left end of the shaft 21.
  • the speed reduction device 4 reduces the rotation speed of the motor 2 and increases the torque output from the motor 2 according to the reduction ratio.
  • the speed reducing device 4 transmits the torque output from the motor 2 to the differential device 5.
  • the reduction gear 4 has a first gear 41, a second gear 42, a third gear 43, and an intermediate shaft 45.
  • the first gear 41 is fixed to the outer peripheral surface at the left end of the shaft 21.
  • the first gear 41 rotates about the motor shaft J1 together with the shaft 21.
  • the intermediate shaft 45 extends along the intermediate shaft J2.
  • the intermediate shaft J2 is parallel to the motor shaft J1.
  • the intermediate shaft 45 rotates about the intermediate shaft J2.
  • the second gear 42 and the third gear 43 are fixed to the outer peripheral surface of the intermediate shaft 45.
  • the second gear 42 and the third gear 43 are connected via an intermediate shaft 45.
  • the second gear 42 and the third gear 43 rotate about the intermediate shaft J2.
  • the second gear 42 meshes with the first gear 41.
  • the third gear 43 meshes with the ring gear 51 described later of the differential device 5.
  • the outer diameter of the second gear 42 is larger than the outer diameter of the third gear 43.
  • the lower end of the second gear 42 is the lowermost portion of the speed reducer 4.
  • the torque output from the motor 2 is transmitted to the differential device 5 via the speed reducer 4. More specifically, the torque output from the motor 2 passes through the shaft 21, the first gear 41, the second gear 42, the intermediate shaft 45, and the third gear 43 in this order, and the ring gear 51 of the differential device 5 is used. Is transmitted to.
  • the gear ratio of each gear, the number of gears, and the like can be variously changed according to the required reduction ratio.
  • the speed reducer 4 is a parallel shaft gear type speed reducer in which the shaft cores of the gears are arranged in parallel.
  • the differential device 5 is connected to the speed reducer 4. As a result, the differential device 5 is connected to the motor 2 via the speed reducer 4.
  • the differential device 5 is a device for transmitting the torque output from the motor 2 to the wheels of the vehicle.
  • the differential device 5 transmits the same torque to the axles 55 of the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle turns.
  • the differential device 5 rotates the axle 55 around the differential shaft J3.
  • the drive device 1 rotates the axle 55 of the vehicle.
  • the differential shaft J3 extends in the left-right direction of the vehicle, that is, in the width direction of the vehicle. In this embodiment, the differential shaft J3 is parallel to the motor shaft J1.
  • the differential device 5 includes a ring gear 51, a gear housing (not shown), a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown).
  • the ring gear 51 is a gear that rotates around the differential shaft J3.
  • the ring gear 51 meshes with the third gear 43.
  • the lower end of the ring gear 51 is located below the speed reducer 4. In the present embodiment, the lower end of the ring gear 51 is the lowermost portion of the differential device 5.
  • the housing 6 is the outer housing of the drive device 1.
  • the housing 6 has a partition wall 61c that axially partitions the inside of the motor housing portion 81 and the inside of the gear housing portion 82.
  • the partition wall 61c is provided with a partition wall opening 68.
  • the inside of the motor accommodating portion 81 and the inside of the gear accommodating portion 82 are connected to each other via the partition wall opening 68.
  • Oil O is stored inside the housing 6. More specifically, the oil O is housed inside the motor housing part 81 and inside the gear housing part 82. An oil reservoir P in which the oil O is accumulated is provided in the lower region inside the gear accommodating portion 82. The oil level S of the oil sump P is located above the lower end of the ring gear 51. As a result, the lower end of the ring gear 51 is immersed in the oil O in the gear accommodating portion 82. The oil level S of the oil sump P is located below the differential shaft J3 and the axle 55.
  • the oil O in the oil sump P is sent to the inside of the motor accommodating portion 81 by the oil passage 90 described later.
  • the oil O sent to the inside of the motor accommodating portion 81 collects in the lower region inside the motor accommodating portion 81. At least a part of the oil O accumulated inside the motor accommodating portion 81 moves to the gear accommodating portion 82 via the partition wall opening 68 and returns to the oil sump P.
  • oil is stored inside a certain part means that the oil is located inside a certain part at least in a part while the motor is being driven, and the motor The oil does not have to be located inside a part when is stopped.
  • the fact that the oil O is stored inside the motor housing portion 81 means that the oil O is located inside the motor housing portion 81 at least in a part while the motor 2 is being driven.
  • all the oil O inside the motor accommodating portion 81 may have moved to the gear accommodating portion 82 through the partition wall opening 68.
  • a part of the oil O sent to the inside of the motor accommodating portion 81 by the oil passage 90 described later may remain inside the motor accommodating portion 81 when the motor 2 is stopped.
  • the lower end of the ring gear is immersed in the oil in the gear accommodating portion means that the lower end of the ring gear is at least partly while the motor is being driven. It suffices to be immersed in the oil in the gear housing so that the lower end of the ring gear is not immersed in the oil in the gear housing during part of the motor drive or while the motor is stopped. You may. For example, as a result of the oil O of the oil sump P being sent to the inside of the motor accommodating portion 81 by the oil passage 90 described later, the oil level S of the oil sump P is lowered, and the lower end of the ring gear 51 is temporarily removed. It may be in a state where it is not immersed in the oil O.
  • Oil O circulates in the oil passage 90 described later.
  • the oil O is used for lubricating the speed reducer 4 and the differential device 5. Further, the oil O is used for cooling the motor 2.
  • ATF Automatic Transmission Fluid
  • ATF Automatic Transmission Fluid
  • the bottom portion 82a of the gear accommodating portion 82 is located below the bottom portion 81a of the motor accommodating portion 81. Therefore, the oil O sent from the gear accommodating portion 82 into the motor accommodating portion 81 easily flows into the gear accommodating portion 82 through the partition wall opening 68.
  • the drive device 1 is provided with an oil passage 90 in which the oil O circulates inside the housing 6.
  • the oil passage 90 is a path of the oil O that supplies the oil O from the oil sump P to the motor 2 and leads the oil O to the oil sump P again.
  • the oil passage 90 is provided so as to straddle the inside of the motor accommodating portion 81 and the inside of the gear accommodating portion 82.
  • oil passage means an oil route. Therefore, the “oil passage” is a concept that includes not only a “flow path” that constantly creates a flow of oil in one direction, but also a path for temporarily retaining oil and a path for oil to drip.
  • the route for temporarily retaining the oil includes, for example, a reservoir for storing the oil.
  • the oil passage 90 has a first oil passage 91 and a second oil passage 92.
  • the first oil passage 91 and the second oil passage 92 circulate the oil O inside the housing 6, respectively.
  • the first oil passage 91 has a scooping path 91a, a shaft supply path 91b, an in-shaft path 91c, and an in-rotor path 91d.
  • a first reservoir 93 is provided in the path of the first oil passage 91.
  • the first reservoir 93 is provided in the gear accommodating portion 82.
  • the scooping path 91a is a path in which the oil O is scooped up from the oil reservoir P by the rotation of the ring gear 51 of the differential device 5 and the oil O is received in the first reservoir 93.
  • the first reservoir 93 opens upward.
  • the first reservoir 93 receives the oil O scooped up by the ring gear 51.
  • the first reservoir 93 is pumped up by the second gear 42 and the third gear 43 in addition to the ring gear 51. Also receives O.
  • the oil O pumped up by the ring gear 51 is also supplied to the speed reducing device 4 and the differential device 5.
  • the oil O contained inside the housing 6 is supplied to the transmission device 3.
  • the oil O supplied to the transmission device 3 is supplied as lubricating oil to the gear of the reduction gear 4 and the gear of the differential device 5.
  • the oil O pumped up by the ring gear 51 may be supplied to either the speed reducing device 4 or the differential device 5.
  • the shaft supply path 91b guides the oil O from the first reservoir 93 to the hollow portion 22 of the shaft 21.
  • the in-shaft path 91c is a path through which the oil O passes through the hollow portion 22 of the shaft 21.
  • the rotor inner path 91d is a path that passes through the inside of the rotor main body 24 from the communication hole 23 of the shaft 21 and scatters to the stator 30.
  • Oil O that has reached the stator 30 takes heat from the stator 30.
  • the oil O that has cooled the stator 30 is dropped on the lower side and accumulated in the lower region in the motor accommodating portion 81.
  • the oil O accumulated in the lower region in the motor accommodating portion 81 moves to the gear accommodating portion 82 through the partition wall opening 68 provided in the partition wall 61c.
  • the first oil passage 91 supplies the oil O to the rotor 20 and the stator 30.
  • the second oil passage 92 In the second oil passage 92, the oil O is pulled up from the oil sump P to the upper side of the stator 30 and supplied to the stator 30. That is, the second oil passage 92 supplies the oil O to the stator 30 from above the stator 30.
  • the second oil passage 92 is provided with an oil pump 96, an oil cooler 97, and a second reservoir 10.
  • the second oil passage 92 has a first flow path 92a, a second flow path 92b, and a third flow path 92c.
  • the first flow path 92a, the second flow path 92b, and the third flow path 92c are provided on the wall portion of the housing 6.
  • the first flow path 92a connects the oil sump P and the oil pump 96.
  • the second flow path 92b connects the oil pump 96 and the oil cooler 97.
  • the third flow path 92c extends upward from the oil cooler 97.
  • the third flow path 92c is provided on the wall portion of the motor accommodating portion 81.
  • the third flow path 92c has a supply port that opens inside the motor accommodating portion 81 on the upper side of the stator 30. The supply port supplies oil O to the inside of the motor accommodating portion 81.
  • the oil pump 96 is an electric pump driven by electricity.
  • the oil pump 96 sends the oil O housed inside the housing 6 to the motor 2.
  • the oil pump 96 sucks the oil O from the oil reservoir P through the first flow path 92a, and sucks up the oil O from the second flow path 92b, the oil cooler 97, the third flow path 92c, and the second reservoir.
  • Oil O is supplied to the motor 2 via 10.
  • the oil pump 96 has a motor unit 96a, a pump unit 96b, and a rotation sensor 72.
  • the pump unit 96b is rotated by the motor unit 96a.
  • the pump unit 96b has an inner rotor connected to the motor unit 96a and an outer rotor surrounding the inner rotor.
  • the oil pump 96 sends oil O to the motor 2 by rotating the pump unit 96b by the motor unit 96a.
  • the rotation sensor 72 can detect the rotation of the pump unit 96b.
  • the rotation sensor 72 can detect the rotation of the pump unit 96b rotated by the motor unit 96a by detecting the rotation of the motor unit 96a.
  • the type of the rotation sensor 72 is not particularly limited as long as the rotation of the pump unit 96b can be detected.
  • the rotation sensor 72 may be a magnetic sensor, a resolver, or an optical sensor.
  • the rotation sensor 72 may be a Hall element such as a Hall IC or a magnetoresistive element.
  • the rotation sensor 72 may directly detect the rotation of the pump unit 96b. The detection result of the rotation sensor 72 is sent to the control unit 70, which will be described later.
  • the oil cooler 97 cools the oil O passing through the second oil passage 92.
  • a second flow path 92b and a third flow path 92c are connected to the oil cooler 97.
  • the second flow path 92b and the third flow path 92c are connected via the internal flow path of the oil cooler 97.
  • the refrigerant pump 120 supplies the refrigerant W cooled by the radiator 110 to the oil cooler 97 via the refrigerant flow path 150.
  • the oil O passing through the inside of the oil cooler 97 is cooled by exchanging heat with the refrigerant W passing through the refrigerant flow path 150.
  • the oil O cooled by the oil cooler 97 is the oil O sent by the oil pump 96. That is, the refrigerant W sent from the refrigerant pump 120 cools the oil O sent by the oil pump 96 in the oil cooler 97.
  • the second reservoir 10 constitutes a part of the second oil passage 92.
  • the second reservoir 10 is located inside the motor accommodating portion 81.
  • the second reservoir 10 is located above the stator 30.
  • the second reservoir 10 is supported from below by the stator 30 and is provided in the motor 2.
  • the second reservoir 10 is made of, for example, a resin material.
  • the second reservoir 10 has a gutter shape that opens upward.
  • the second reservoir 10 stores the oil O.
  • the second reservoir 10 stores the oil O supplied into the motor accommodating portion 81 via the third flow path 92c.
  • the second reservoir 10 has a supply port 10a for supplying oil O to the coil ends 33a and 33b. As a result, the oil O stored in the second reservoir 10 can be supplied to the stator 30.
  • the oil O supplied from the second reservoir 10 to the stator 30 is dropped downward and accumulated in the lower region in the motor accommodating portion 81.
  • the oil O accumulated in the lower region in the motor accommodating portion 81 moves to the gear accommodating portion 82 through the partition wall opening 68 provided in the partition wall 61c.
  • the second oil passage 92 supplies the oil O to the stator 30.
  • the inverter unit 8 has a control unit 70. That is, the drive device 1 includes a control unit 70.
  • the control unit 70 is housed in the inverter case 8a.
  • the control unit 70 is cooled by the refrigerant W flowing through a part of the refrigerant flow path 150 provided in the inverter case 8a.
  • the control unit 70 controls the motor 2 and the motor unit 96a of the oil pump 96.
  • the control unit 70 has an inverter circuit that adjusts the electric power supplied to the motor 2. In the present embodiment, the control unit 70 performs control according to steps S1 to S6 shown in FIG.
  • step S2 the control unit 70 checks the operation of the oil pump 96.
  • the operation check of the oil pump 96 in step S2 in the present embodiment includes steps S2a to S2d.
  • step S2a the control unit 70 drives the oil pump 96 for the first predetermined time.
  • the first predetermined time is, for example, 5 seconds or more and 15 seconds or less.
  • step S2b the control unit 70 determines whether or not the oil pump 96 is operating normally. Specifically, the control unit 70 acquires the rotation speed of the pump unit 96b when the oil pump 96 is driven for the first predetermined time based on the rotation sensor 72, and the rotation speed of the pump unit 96b is within a predetermined range. Judge whether or not it is.
  • the predetermined range is, for example, a range within ⁇ 10% of the target rotation speed sent by the control unit 70 to the oil pump 96 as a command. That is, the predetermined range is, for example, the range of the rotation speed of the pump unit 96b that is allowed when a predetermined target rotation speed is input to the oil pump 96.
  • step S2c the control unit 70 determines the traveling mode of the vehicle to the normal traveling mode.
  • the control unit 70 performs step S3.
  • step S3 the control unit 70 drives the oil pump 96 to bring the vehicle into a runnable state.
  • Step S2d the control unit 70 determines the traveling mode of the vehicle to the limp home mode.
  • the limp home mode is a mode in which the output of the motor 2 is limited. That is, in the present embodiment, the control unit 70 limits the output of the motor 2 when it is determined that the operation of the oil pump 96 is abnormal based on the detection result of the rotation sensor 72.
  • the rotation speed of the pump unit 96b When the rotation speed of the pump unit 96b is out of the predetermined range, the rotation speed of the pump unit 96b is smaller than the predetermined range, and the rotation speed of the pump unit 96b is larger than the predetermined range. Including cases and. That is, in the present embodiment, in the control unit 70, the rotation speed of the pump unit 96b when the oil pump 96 is driven for the first predetermined time is equal to or higher than the predetermined rotation speed with respect to the target rotation speed input to the oil pump 96. If they are different, it is determined that the operation of the oil pump 96 is abnormal, and the output of the motor 2 is limited.
  • the predetermined rotation speed is a value equal to or greater than the error of the allowable rotation speed of the pump unit 96b with respect to the target rotation speed.
  • the predetermined rotation speed is, for example, a value of 10% or more of the target rotation speed. That is, the control unit 70 limits the output of the motor 2, for example, when the rotation speed of the pump unit 96b obtained based on the rotation sensor 72 is a value deviated by 10% or more from the target rotation speed. ..
  • the output of the motor 2 limited based on the detection result of the rotation sensor 72 includes the rotation speed of the motor 2 and the torque of the motor 2.
  • the limit of the output of the motor 2 in the limp home mode is such that the temperature of the motor 2 does not rise even if the motor 2 is not cooled by the oil pump 96. That is, in the limp home mode, the rotation speed and torque of the motor 2 are limited to relatively low values, and the speed and acceleration of the vehicle are limited to relatively low values.
  • the control unit 70 When the traveling mode is determined to be the limp home mode, the control unit 70 puts the vehicle into a traveling state with the output of the motor 2 limited. At this time, the control unit 70 may leave the oil pump 96, which does not operate normally, in a stopped state. In the limp home mode, the control unit 70 continues to limit the output of the motor 2 until the ignition switch IGS is turned off.
  • the control unit 70 limits the output of the motor 2 based on the detection result of the rotation sensor 72. Therefore, it is possible to limit the output of the motor 2 when the oil pump 96 is not operating normally. When the output of the motor 2 is limited, the amount of heat generated by the motor 2 is reduced.
  • control unit 70 limits the output of the motor 2 when it determines that the operation of the oil pump 96 is abnormal based on the detection result of the rotation sensor 72. Therefore, the output of the motor 2 can be preferably limited according to the operating state of the oil pump 96. Therefore, it is possible to preferably suppress the occurrence of a defect in the motor 2.
  • the control unit 70 has a rotation speed of the pump unit 96b when the oil pump 96 is driven for the first predetermined time, which is equal to or higher than a predetermined rotation speed with respect to the target rotation speed input to the oil pump 96. If they are different, it is determined that the operation of the oil pump 96 is abnormal, and the output of the motor 2 is limited. Therefore, the control unit 70 can easily determine that the operation of the oil pump 96 is abnormal based on the rotation speed of the pump unit 96b, and can more preferably limit the output of the motor 2. Therefore, it is possible to more preferably suppress the occurrence of a defect in the motor 2.
  • the output of the motor 2 limited based on the detection result of the rotation sensor 72 includes the rotation speed of the motor 2. Therefore, the rotation speed of the motor 2 can be limited to a relatively low value, and the temperature rise of the motor 2 can be suppressed more preferably.
  • the output of the motor 2 limited based on the detection result of the rotation sensor 72 includes the torque of the motor 2. Therefore, the torque of the motor 2 can be limited to a relatively low level, and the temperature rise of the motor 2 can be suppressed more preferably.
  • the control unit 70 checks the operation of the oil pump 96 in step S2 immediately after the ignition switch IGS of the vehicle is turned on, and determines the traveling mode of the vehicle. In other words, in the present embodiment, the control unit 70 determines whether or not to limit the output of the motor 2 immediately after the ignition switch IGS of the vehicle is turned on. Therefore, it is possible to select a traveling mode in which an abnormality in the oil pump 96 can be detected and a malfunction in the motor 2 can be suppressed before the vehicle starts traveling, that is, a limp home mode in the present embodiment. ..
  • immediateately after the ignition switch of the vehicle is turned on includes the period from when the ignition switch is turned on until the vehicle is in a runnable state.
  • step S4 the control unit 70 that has determined the traveling mode of the vehicle to the normal traveling mode and made the vehicle capable of traveling in step S3 then performs step S4.
  • step S4 the control unit 70 controls the flow rate of the oil pump 96 according to the temperature of the motor 2.
  • step S4 is always performed from the state in which the vehicle can travel to the time when the ignition switch IGS is turned off in step S5.
  • the control unit 70 controls the oil pump 96 by PWM (Pulse Width Modulation) control.
  • the control unit 70 controls the output of the oil pump 96 by adjusting the duty ratio of the pulse current supplied to the oil pump 96, and controls the flow rate of the oil O sent by the oil pump 96.
  • the larger the duty ratio of the pulse current supplied to the oil pump 96 the larger the output of the oil pump 96 and the larger the flow rate of the oil O sent by the oil pump 96.
  • the smaller the duty ratio of the pulse current supplied to the oil pump 96 the smaller the output of the oil pump 96 and the smaller the flow rate of the oil O sent by the oil pump 96.
  • the flow rate of oil O sent by the oil pump 96 is proportional to, for example, the duty ratio of the pulse current supplied to the oil pump 96.
  • the control unit 70 is provided in the inverter unit 8, and the detection result of the temperature sensor 71 is sent to the control unit 70. That is, the oil pump 96 can be directly controlled by the control unit 70 to which the detection result of the temperature sensor 71 is sent. Therefore, for example, the detection result of the temperature sensor 71 is sent from the control unit 70 to the vehicle control device 140, and the control of the oil pump 96 based on the temperature of the motor 2 is performed as compared with the case where the vehicle control device 140 controls the oil pump 96. The responsiveness can be improved. As a result, the oil pump 96 can be controlled more efficiently than when the vehicle control device 140 controls the oil pump 96. Therefore, the power consumption of the drive device 1 can be reduced, and the motor 2 can be suitably cooled by the oil pump 96.
  • the drive device 1 may include a flow rate sensor capable of detecting the flow rate of the oil O sent from the oil pump 96.
  • the control unit 70 may adjust the output of the oil pump 96 based on the detection result of the flow rate sensor, and adjust the flow rate of the oil O sent from the oil pump 96 to a desired flow rate.
  • the flow rate control of the oil pump 96 in step S4 of the present embodiment includes steps S4a to S4e.
  • step S4a the control unit 70 determines the operation mode of the oil pump 96 based on the temperature of the motor 2, and drives the oil pump 96 in the determined operation mode. Specifically, the control unit 70 acquires the temperature of the motor 2 based on the temperature sensor 71, and determines the operation mode of the oil pump 96 based on the temperature of the motor 2.
  • the operation modes of the oil pump 96 in this embodiment are the first mode CM1, the second mode CM2, the third mode CM3, the first linear change mode LM1, and the second linear change mode. LM2 and.
  • the control unit 70 sets the operation mode of the oil pump 96 to the first mode CM1 when the temperature of the motor 2 obtained based on the temperature sensor 71 is within the predetermined first temperature range TR1.
  • the first temperature range TR1 is a temperature range of 80 ° C. or lower.
  • the control unit 70 sets, for example, the duty ratio of the pulse current sent to the oil pump 96 to a constant value DR1.
  • the flow rate of the oil O sent by the oil pump 96 is, for example, the first flow rate.
  • the first flow rate is, for example, a predetermined flow rate as the flow rate of the oil O sent to the motor 2 when the vehicle travels in a normal state.
  • the control unit 70 sets the operation mode of the oil pump 96 to the second mode CM2 when the temperature of the motor 2 obtained based on the temperature sensor 71 is within the second temperature range TR2. ..
  • the second temperature range TR2 is a temperature range in which the temperature is higher than that of the first temperature range TR1.
  • the second temperature range TR2 is, for example, narrower than the first temperature range TR1.
  • the second temperature range TR2 is a temperature range of 100 ° C. or higher and 130 ° C. or lower.
  • the first temperature range TR1 and the second temperature range TR2 are provided at intervals from each other.
  • the difference between the minimum temperature in the second temperature range TR2 and the maximum temperature in the first temperature range TR1 is 5 ° C. or higher and 30 ° C. or lower. More specifically, in the present embodiment, the difference between the minimum temperature in the second temperature range TR2 and the maximum temperature in the first temperature range TR1 is 10 ° C. or higher and 20 ° C. or lower.
  • the maximum temperature in the first temperature range TR1 is 80 ° C.
  • the minimum temperature in the second temperature range TR2 is 100 ° C. That is, in the example of FIG. 6, the difference between the minimum temperature in the second temperature range TR2 and the maximum temperature in the first temperature range TR1 is 20 ° C.
  • the control unit 70 sets the duty ratio of the pulse current supplied to the oil pump 96 to a constant value DR2, for example.
  • the value DR2 is higher than the value DR1.
  • the duty ratio of the pulse current supplied to the oil pump 96 is the value DR2
  • the flow rate of the oil O sent by the oil pump 96 becomes, for example, a second flow rate larger than the first flow rate.
  • the output of the oil pump 96 in the second mode CM2 is larger than the output of the oil pump 96 in the first mode CM1.
  • the control unit 70 sets the operation mode of the oil pump 96 to the third mode CM3 when the temperature of the motor 2 obtained based on the temperature sensor 71 is within the third temperature range TR3. ..
  • the third temperature range TR3 is a temperature range in which the temperature is higher than that of the second temperature range TR2.
  • the third temperature range TR3 is wider than, for example, the second temperature range TR2.
  • the third temperature range TR3 is a temperature range of 140 ° C. or higher.
  • the second temperature range TR2 and the third temperature range TR3 are provided at intervals from each other.
  • the difference between the minimum temperature in the third temperature range TR3 and the maximum temperature in the second temperature range TR2 is 5 ° C. or higher and 30 ° C. or lower. More specifically, in the present embodiment, the difference between the minimum temperature in the third temperature range TR3 and the maximum temperature in the second temperature range TR2 is 10 ° C. or higher and 20 ° C. or lower.
  • the maximum temperature in the second temperature range TR2 is 130 ° C.
  • the minimum temperature in the third temperature range TR3 is 140 ° C. That is, in the example of FIG. 6, the difference between the minimum temperature in the third temperature range TR3 and the maximum temperature in the second temperature range TR2 is 10 ° C.
  • the control unit 70 sets the duty ratio of the pulse current supplied to the oil pump 96 to a constant value DR3, for example.
  • the value DR3 is higher than the value DR2.
  • the difference between the value DR3 and the value DR2 is, for example, smaller than the difference between the value DR2 and the value DR1.
  • the duty ratio of the pulse current supplied to the oil pump 96 is the value DR3
  • the flow rate of the oil O sent by the oil pump 96 becomes, for example, a third flow rate larger than the second flow rate.
  • the output of the oil pump 96 in the third mode CM3 is larger than the output of the oil pump 96 in the second mode CM2.
  • the first mode CM1, the second mode CM2, and the third mode CM3 are provided as the operation modes of the oil pump 96, and the output of the oil pump 96 is the first mode CM1.
  • the second mode CM2, and the third mode CM3 increase in this order.
  • the control unit 70 sets the operation mode of the oil pump 96 to the first mode CM1 when the temperature of the motor 2 is within the first temperature range TR1, and the temperature of the motor 2 is higher than the first temperature range TR1.
  • the operation mode of the oil pump 96 is set to the second mode CM2 when it is within the range TR2, and the operation mode of the oil pump 96 is set to the third mode when the temperature of the motor 2 is within the third temperature range TR3 which is higher than the second temperature range TR2.
  • Each temperature range in which each operation mode of the oil pump 96 described above is executed is determined based on, for example, a change in the temperature of the motor 2 due to a change in the running state of the vehicle on which the drive device 1 is mounted.
  • the first temperature range TR1 is determined based on, for example, the temperature range of the motor 2 when the vehicle travels on a flat ground in an environment where the air temperature is below room temperature.
  • the second temperature range TR2 is determined based on, for example, the temperature range of the motor 2 when the vehicle travels uphill in an environment where the temperature is below room temperature.
  • the third temperature range TR3 is determined based on, for example, the temperature range of the motor 2 when the vehicle travels uphill in an environment where the temperature is higher than room temperature.
  • Room temperature is, for example, a temperature range of 5 ° C. or higher and 35 ° C. or lower as defined in JIS Z 8703.
  • the operation mode is provided every predetermined temperature range, for example, 10 ° C. It is easier to reduce the number of operating modes of the oil pump 96 than in the case. Therefore, switching of the operation mode of the oil pump 96 is less likely to occur than when the operation mode is provided for each predetermined temperature range. As a result, it is possible to suppress frequent changes in the output of the oil pump 96, and it is possible to reduce the load on the oil pump 96. Therefore, the oil pump 96 can be controlled more efficiently.
  • the control unit 70 sets the operation mode of the oil pump 96 to the first linear change mode when the temperature of the motor 2 obtained based on the temperature sensor 71 is within the first intermediate temperature range TRa.
  • the first intermediate temperature range TRa is a temperature range in which the temperature is higher than the first temperature range TR1 and the temperature is lower than the second temperature range TR2. That is, the first intermediate temperature range TRa is a temperature range between the first temperature range TR1 and the second temperature range TR2.
  • the first intermediate temperature range TRa is, for example, narrower than the second temperature range TR2. In the example of FIG. 6, the first intermediate temperature range TRa is a temperature range higher than 80 ° C. and lower than 100 ° C.
  • the control unit 70 linearly changes the duty ratio of the pulse current supplied to the oil pump 96 according to the temperature change of the motor 2.
  • the duty ratio of the pulse current supplied to the oil pump 96 in the first linear change mode LM1 increases as the temperature of the motor 2 increases from the maximum temperature of the first temperature range TR1 to the minimum temperature of the second temperature range TR2.
  • the duty ratio value DR1 in the first mode CM1 to the duty ratio value DR2 in the second mode CM2 increase linearly.
  • the control unit 70 is a temperature sensor when the temperature of the motor 2 obtained based on the temperature sensor 71 is higher than the first temperature range TR1 and lower than the second temperature range TR2.
  • the output of the oil pump 96 is linearly increased. Therefore, when the temperature of the motor 2 is a temperature between the first temperature range TR1 and the second temperature range TR2, the flow rate of the oil O appropriately sent from the oil pump 96 to the motor 2 according to the temperature of the motor 2. Can be controlled. As a result, the motor 2 can be cooled more preferably. In addition, the oil pump 96 can be driven with energy efficiency.
  • the first temperature range TR1 and the second temperature range TR2 are provided at intervals. Therefore, even if the temperature of the motor 2 fluctuates to some extent, it becomes difficult to switch the operation mode of the oil pump 96 between the first mode CM1 and the second mode CM2. Thereby, for example, it is possible to suppress frequent switching between the first mode CM1 and the second mode CM2 within a short time. Therefore, it is possible to further suppress the load on the oil pump 96 and to prevent the operation of the oil pump 96 from becoming unstable.
  • the difference between the minimum temperature in the second temperature range TR2 and the maximum temperature in the first temperature range TR1 is 5 ° C. or higher and 30 ° C. or lower. Therefore, the first intermediate temperature range TRa can be set to a suitable range. Specifically, it is possible to prevent the first intermediate temperature range TRa from becoming too narrow. Therefore, even if the temperature of the motor 2 fluctuates to some extent, the operation mode of the oil pump 96 can be made more difficult to switch between the first mode CM1 and the second mode CM2. As a result, it is possible to more preferably suppress the load on the oil pump 96, and it is possible to further suppress the instability of the operation of the oil pump 96.
  • the difference between the minimum temperature in the second temperature range TR2 and the maximum temperature in the first temperature range TR1 is more preferably 10 ° C. or higher and 20 ° C. or lower.
  • the control unit 70 sets the operation mode of the oil pump 96 to the second linear change mode when the temperature of the motor 2 obtained based on the temperature sensor 71 is within the second intermediate temperature range TRb.
  • the second intermediate temperature range TRb is a temperature range in which the temperature is higher than the second temperature range TR2 and the temperature is lower than the third temperature range TR3. That is, the second intermediate temperature range TRb is a temperature range between the second temperature range TR2 and the third temperature range TR3.
  • the second intermediate temperature range TRb is narrower than, for example, the second temperature range TR2 and the first intermediate temperature range TRa. In the example of FIG. 6, the second intermediate temperature range TRb is a temperature range higher than 130 ° C. and lower than 140 ° C.
  • the first temperature range TR1, the first intermediate temperature range TRa, the second temperature range TR2, the second intermediate temperature range TRb, and the third temperature range TR3 are continuously provided in this order.
  • the control unit 70 linearly changes the duty ratio of the pulse current supplied to the oil pump 96 according to the temperature change of the motor 2.
  • the duty ratio of the pulse current supplied to the oil pump 96 in the second linear change mode LM2 increases as the temperature of the motor 2 increases from the maximum temperature of the second temperature range TR2 to the minimum temperature of the third temperature range TR3.
  • the duty ratio value DR2 in the second mode CM2 is linearly increased to the duty ratio value DR3 in the third mode CM3.
  • the control unit 70 is a temperature sensor when the temperature of the motor 2 obtained based on the temperature sensor 71 is higher than the second temperature range TR2 and lower than the third temperature range TR3. As the temperature of the motor 2 obtained based on 71 increases, the output of the oil pump 96 is linearly increased.
  • the control unit 70 is a temperature sensor when the temperature of the motor 2 obtained based on the temperature sensor 71 is higher than the second temperature range TR2 and lower than the third temperature range TR3.
  • the output of the oil pump 96 is linearly increased. Therefore, when the temperature of the motor 2 is a temperature between the second temperature range TR2 and the third temperature range TR3, the flow rate of the oil O appropriately sent from the oil pump 96 to the motor 2 according to the temperature of the motor 2. Can be controlled. As a result, the motor 2 can be cooled more preferably. In addition, the oil pump 96 can be driven with energy efficiency.
  • the second temperature range TR2 and the third temperature range TR3 are provided at intervals. Therefore, even if the temperature of the motor 2 fluctuates to some extent, it becomes difficult to switch the operation mode of the oil pump 96 between the second mode CM2 and the third mode CM3. Thereby, for example, it is possible to suppress frequent switching between the second mode CM2 and the third mode CM3 within a short time. Therefore, it is possible to further suppress the load on the oil pump 96 and to prevent the operation of the oil pump 96 from becoming unstable.
  • the difference between the minimum temperature in the third temperature range TR3 and the maximum temperature in the second temperature range TR2 is 5 ° C. or higher and 30 ° C. or lower. Therefore, the second intermediate temperature range TRb can be set to a suitable range. Specifically, it is possible to prevent the second intermediate temperature range TRb from becoming too narrow. Therefore, even if the temperature of the motor 2 fluctuates to some extent, the operation mode of the oil pump 96 can be made more difficult to switch between the second mode CM2 and the third mode CM3. As a result, it is possible to more preferably suppress the load on the oil pump 96, and it is possible to further suppress the instability of the operation of the oil pump 96.
  • the difference between the minimum temperature in the third temperature range TR3 and the maximum temperature in the second temperature range TR2 is more preferably 10 ° C. or higher and 20 ° C. or lower.
  • the control unit 70 determines whether or not the temperature of the motor 2 obtained based on the temperature sensor 71 is lower than the predetermined first temperature T1.
  • the first temperature T1 is a temperature within the first temperature range TR1.
  • the value of the first temperature T1 is, for example, ⁇ 20 ° C. or higher and ⁇ 5 ° C. or lower. In the example of FIG. 6, the value of the first temperature T1 is ⁇ 5 ° C.
  • step S4b When the temperature of the motor 2 is determined to be the first temperature T1 or higher in step S4b, the control unit 70 repeats step S4a. On the other hand, when it is determined in step S4b that the temperature of the motor 2 is lower than the first temperature T1, the control unit 70 performs step S4c. In step S4c, the control unit 70 limits the output of the motor 2. That is, in the present embodiment, the control unit 70 outputs the output of the motor 2 when the temperature of the motor 2 obtained based on the temperature sensor 71 is lower than the predetermined first temperature T1 in the first temperature range TR1. Restrict.
  • the output of the motor 2 limited based on the detection result of the temperature sensor 71 includes the torque of the motor 2 and the torque change rate of the motor 2.
  • the output limitation of the motor 2 based on the detection result of the temperature sensor 71 is limited to the gears even if the oil O as the lubricating oil is not supplied in the meshing of the gears in the reduction gear 4 and the differential gear 5. It is a limit that can suppress the burning.
  • the oil O housed in the housing 6 also has a relatively low temperature, and the viscosity of the oil O becomes relatively high. If the viscosity of the oil O becomes too high, it becomes difficult to form an oil film between the gears in which the oil O supplied to the transmission device 3 meshes with each other. Further, since it is difficult for the ring gear 51 to scoop up the oil O, the amount of the oil O itself supplied to the transmission device 3 is also reduced. As a result, there is a risk that the gears of the transmission device 3 may rub against each other and cause seizure.
  • the control unit 70 limits the output of the motor 2 based on the detection result of the temperature sensor 71. Therefore, by limiting the output of the motor 2 when the environment in which the vehicle travels is relatively low, it is possible to reduce the load applied between the gears of the transmission device 3. As a result, it is possible to prevent the gears from rubbing against each other in the transmission device 3 and causing seizure. Therefore, it is possible to prevent the drive device 1 from malfunctioning in a relatively low temperature environment.
  • control unit 70 limits the output of the motor 2 when the temperature of the motor 2 obtained based on the temperature sensor 71 is lower than the predetermined first temperature T1. Therefore, the output of the motor 2 can be limited in a relatively low temperature environment, and it is possible to prevent a malfunction of the drive device 1.
  • the output of the motor 2 limited based on the detection result of the temperature sensor 71 includes the torque of the motor 2. Therefore, the load applied between the gears of the transmission device 3 can be reduced, and the gears can be suitably suppressed from rubbing against each other and burning.
  • the output of the motor 2 limited based on the detection result of the temperature sensor 71 includes the torque change rate of the motor 2. Therefore, it is possible to prevent the torque of the motor 2 from suddenly increasing, and to prevent the gears that mesh with each other in the transmission device 3 from colliding strongly with each other. As a result, it is possible to more preferably suppress the gear of the transmission device 3 from burning.
  • the output of the motor 2 limited based on the detection result of the temperature sensor 71 does not include the rotation speed of the motor 2. Therefore, in a relatively low temperature environment, the acceleration of the vehicle is limited, while the speed of the vehicle is not limited. As a result, the speed of the vehicle can be gradually increased. Therefore, the vehicle can be smoothly driven while suppressing the occurrence of a defect in the drive device 1.
  • the first temperature range TR1 also includes a temperature lower than the first temperature T1. That is, in the present embodiment, the oil pump 96 continues to operate in the first mode CM1 even if the temperature of the motor 2 becomes lower than the first temperature T1. As a result, the oil O continues to circulate in the drive device 1 by the oil pump 96 even in a relatively low temperature environment. Therefore, the oil O can be supplied to the transmission device 3 by the oil pump 96 even in a relatively low temperature environment. Therefore, it is possible to further prevent the gears from rubbing against each other and seizure in the transmission device 3. Further, as the oil O circulates in the drive device 1, heat or the like generated by the motor 2 is applied to the oil O. Therefore, it is possible to prevent the temperature of the oil O from becoming too low, and it is possible to prevent the viscosity of the oil O from becoming too high.
  • step S4d the control unit 70 determines whether or not the temperature of the motor 2 obtained based on the temperature sensor 71 is equal to or higher than the second temperature T2.
  • the second temperature T2 is a temperature higher than the first temperature T1.
  • the second temperature T2 is a temperature within the first temperature range TR1.
  • the value of the second temperature T2 is, for example, ⁇ 10 ° C. or higher and 5 ° C. or lower. In the example of FIG. 6, the value of the second temperature T2 is 5 ° C.
  • step S4d When it is determined in step S4d that the temperature of the motor 2 is lower than the second temperature T2, the control unit 70 maintains the state in which the output of the motor 2 is restricted. On the other hand, when it is determined in step S4d that the temperature of the motor 2 is equal to or higher than the second temperature T2, the control unit 70 performs step S4e. In step S4e, the control unit 70 releases the limitation on the output of the motor 2. That is, in the present embodiment, the control unit 70 limits the output of the motor 2 and then limits the output of the motor 2 when the temperature of the motor 2 obtained based on the temperature sensor 71 is equal to or higher than the second temperature T2. To cancel.
  • the case where the temperature of the motor 2 becomes relatively high means that the temperature of the environment in which the vehicle travels rises, and the environment in which the vehicle travels remains in a relatively low temperature environment, and the rotation speed of the motor 2 is increased. This includes the case where the temperature of the motor 2 rises due to the rise or the like.
  • step S4e the control unit 70 returns to step S4a. After that, the control unit 70 repeatedly executes each of the steps S4a to S4e in the above-mentioned step S4 until the ignition switch IGS is turned off. In steps S4c, S4d, and S4e, the operation mode of the oil pump 96 is the first mode CM1.
  • step S6 the control unit 70 performs step S6 when the ignition switch IGS of the vehicle is turned off in step S5.
  • step S6 the control unit 70 performs after-run control.
  • the after-run control in step S6 of the present embodiment includes steps S6a to S6f.
  • step S6a the control unit 70 stops driving the motor 2.
  • step S6b the control unit 70 drives the oil pump 96, the refrigerant pump 120, and the blower 130. That is, in the present embodiment, the control unit 70 drives the oil pump 96 after the ignition switch IGS of the vehicle is turned off. Therefore, the oil O is sent to the motor 2 by the oil pump 96, so that the motor 2 is cooled. Therefore, the motor 2 can be cooled after the ignition switch IGS is turned off.
  • the ignition switch may be turned on again at a relatively short interval.
  • the temperature of the motor 2 mounted on the drive device 1 may remain relatively high, and after the ignition switch IGS is turned on again, the temperature may remain relatively high.
  • the output from the drive device 1 could not be obtained favorably.
  • the temperature of the motor 2 may become high immediately, and the output of the torque or the like of the motor 2 may be limited.
  • the acceleration of the vehicle may not be suitably obtained.
  • the control unit 70 can cool the motor 2 by driving the oil pump 96 after the ignition switch IGS of the vehicle is turned off. Therefore, the temperature of the motor 2 can be kept relatively low before the ignition switch is turned on again at a relatively short interval. Therefore, even when the ignition switch IGS is turned on at a relatively short interval after the ignition switch IGS is turned off, it is easy to preferably obtain the output from the drive device 1.
  • the control unit 70 drives the oil pump 96, the refrigerant pump 120, and the blower 130 after the ignition switch IGS of the vehicle is turned off.
  • the refrigerant W in the radiator 110 is cooled by the blower 130, and the cooled refrigerant W is sent to the oil cooler 97 by the refrigerant pump 120.
  • the oil O cooled by the oil cooler 97 by the refrigerant W is sent to the motor 2 by the oil pump 96, so that the motor 2 is cooled more preferably. Therefore, the motor 2 can be cooled more preferably after the ignition switch IGS is turned off.
  • the temperature of the motor 2 can be more preferably lowered before the ignition switch is turned on again at a relatively short interval.
  • the output from the drive device 1 can be more preferably obtained.
  • step S6b the control unit 70 continues to drive the oil pump 96, the refrigerant pump 120, and the blower 130 that were driven when the ignition switch IGS was turned off.
  • step S6b the control unit 70 turned off the ignition switch IGS of the oil pump 96, the refrigerant pump 120, and the blower 130, which were stopped when the ignition switch IGS was turned off.
  • the drive is started. For example, in the state where the ignition switch IGS is turned on in the present embodiment, the oil pump 96, the refrigerant pump 120, and the blower 130 are in the driven state. Therefore, in step S6b, the control unit 70 continues to drive the oil pump 96, the refrigerant pump 120, and the blower 130.
  • step S6b of the present embodiment the control unit 70 transmits a signal for driving the refrigerant pump 120 and the blower 130 to the vehicle control device 140.
  • the vehicle control device 140 drives the refrigerant pump 120 and the blower device 130. That is, in the present embodiment, the control unit 70 drives the refrigerant pump 120 and the blower 130 via the vehicle control device 140 after the ignition switch IGS is turned off.
  • step S6c the control unit 70 determines whether or not a second predetermined time has elapsed since the ignition switch IGS was turned off.
  • the second predetermined time is, for example, 10 seconds or more and 40 seconds or less.
  • the second predetermined time is, for example, a value obtained in advance by an experiment or the like.
  • step S6d the control unit 70 stops driving the oil pump 96, driving the refrigerant pump 120, and driving the blower 130. That is, the control unit 70 stops the drive of the oil pump 96, the drive of the refrigerant pump 120, and the drive of the blower 130 when a predetermined time has elapsed since the ignition switch IGS was turned off. In the present embodiment, the control unit 70 stops driving the refrigerant pump 120 and driving the blower 130 via the vehicle control device 140, as in the case of driving.
  • step S6e the control unit 70 determines whether or not the temperature of the motor 2 obtained based on the temperature sensor 71 is equal to or lower than the fourth temperature.
  • the fourth temperature is a relatively high temperature.
  • the value of the fourth temperature is, for example, the same as the value of the third temperature described above.
  • the value of the fourth temperature may be different from the value of the third temperature.
  • step S6e When it is determined in step S6e that the temperature of the motor 2 is higher than the fourth temperature, the control unit 70 continues to drive the oil pump 96, the refrigerant pump 120, and the blower 130. As a result, the temperature of the motor 2 can be set to the fourth temperature or lower.
  • step S6e determines whether or not the temperature change of the motor 2 per unit time is equal to or less than a predetermined threshold value.
  • the predetermined threshold value is, for example, about several ° C.
  • the temperature change of the motor 2 per unit time can be considered to be when the temperature of the motor 2 rises or when the temperature of the motor 2 falls.
  • the temperature of the motor 2 may rise with a delay after the drive of the motor 2 is stopped.
  • step S6f When it is determined in step S6f that the temperature change of the motor 2 per unit time is larger than a predetermined threshold value, the control unit 70 continues to drive the oil pump 96, the refrigerant pump 120, and the blower 130. .. As a result, the cooling of the motor 2 can be continued when the temperature change per unit time is relatively large.
  • step S6f when it is determined in step S6f that the temperature change of the motor 2 per unit time is equal to or less than a predetermined threshold value, the control unit 70 drives the oil pump 96, drives the refrigerant pump 120, and blows in step S6d. Stop driving 130. As a result, the after-run control in step S6 is completed.
  • the control unit 70 of the oil pump 96 is based on the detection result of the temperature sensor 71 after the ignition switch IGS is turned off.
  • the drive, the drive of the refrigerant pump 120, and the drive of the blower 130 are stopped. Therefore, the oil pump 96, the refrigerant pump 120, and the blower 130 can be driven to appropriately cool the motor 2 until the temperature of the motor 2 drops suitably.
  • the output from the drive device 1 can be more preferably obtained.
  • the control unit 70 determines the temperature of the motor 2 obtained based on the temperature sensor 71 after the ignition switch IGS is turned off.
  • the temperature is equal to or less than the fourth temperature and the temperature change of the motor 2 per unit time is equal to or less than a predetermined threshold value
  • the oil pump 96 is driven, the refrigerant pump 120 is driven, and the blower 130 is driven. To stop. Therefore, even if the temperature of the motor 2 becomes relatively low, the temperature of the motor 2 does not change while the cooling of the motor 2 is continued while the temperature of the motor 2 fluctuates relatively large. The cooling of the motor 2 can be completed.
  • the ignition switch IGS As a result, after the ignition switch IGS is turned off, it is easy to cool the motor 2 to the maximum that can be cooled by the oil pump 96 or the like, and it is possible to suppress excessive driving of the oil pump 96 or the like. Therefore, in the after-run control after the ignition switch IGS is turned off, the temperature of the motor 2 can be suitably lowered and the power consumption can be reduced.
  • the oil pump 96, the refrigerant pump 120, and the blower 130 are driven more than necessary, which may increase the power consumption in the after-run control.
  • the control unit 70 drives the oil pump 96, drives the refrigerant pump 120, and blows air when a second predetermined time has elapsed since the ignition switch IGS was turned off. Stop driving the device 130. Therefore, even if a problem occurs in the temperature sensor 71, the drive of the oil pump 96, the drive of the refrigerant pump 120, and the drive of the blower 130 can be stopped after the second predetermined time. As a result, it is possible to suppress driving the oil pump 96, the refrigerant pump 120, and the blower 130 more than necessary, and it is possible to suppress an increase in power consumption in the after-run control.
  • the flow rate control of the oil pump 96 in step S4A of the present embodiment includes steps S4Aa to S4Ag.
  • the operation mode of the oil pump 96 in the present embodiment includes the first mode CM1, the second mode CM2, and the first linear change mode LM1.
  • the operation mode of the oil pump 96 does not include the third mode CM3 and the second linear change mode LM2, unlike the first embodiment.
  • the control unit 70 sets the operation mode of the oil pump 96 to the first mode CM1, and sets the oil O flow rate sent by the oil pump 96 to the first flow rate.
  • step S4Ab the control unit 70 determines whether or not the temperature of the motor 2 is equal to or lower than the third temperature T3.
  • the third temperature T3 is a relatively high temperature.
  • the value of the third temperature T3 is, for example, 80 ° C. or higher and 100 ° C. or lower. In the example of FIG. 9, the value of the third temperature T3 is, for example, 80 ° C.
  • step S4Ab When it is determined in step S4Ab that the temperature of the motor 2 is higher than the third temperature T3, the control unit 70 performs step S4Ac.
  • step S4Ac the control unit 70 increases the flow rate of the oil O sent by the oil pump 96 based on the temperature of the motor 2 and the temperature change of the motor 2. As a result, when the temperature of the motor 2 is relatively high, the flow rate of the oil O sent to the motor 2 can be increased, and the motor 2 can be suitably cooled.
  • step S4Ac when the temperature change of the motor 2 per unit time is equal to or less than a predetermined value, the control unit 70 sets the operation mode of the oil pump 96 to the first linear change mode LM1, and the oil sent by the oil pump 96.
  • the flow rate of O is linearly changed from the first flow rate to the second flow rate according to the temperature of the motor 2.
  • the amount of oil O sent to the motor 2 can be adjusted according to the temperature of the motor 2. Therefore, the motor 2 can be suitably cooled with energy efficiency.
  • step S4Ac when the temperature change of the motor 2 per unit time is larger than a predetermined value, the control unit 70 sets the operation mode of the oil pump 96 to the first mode CM1 without going through the first linear change mode LM1. To the second mode CM2. As a result, the control unit 70 sets the flow rate of the oil O sent by the oil pump 96 to the second flow rate, which is larger than the first flow rate. Therefore, the rapid temperature rise of the motor 2 can be suppressed, and the motor 2 can be suitably cooled.
  • the graph shown in FIG. 9 shows a case where the temperature change of the motor 2 per unit time is equal to or less than a predetermined value in step S4Ac.
  • the first linear change mode LM1 is not provided, and the temperature range of the motor 2 in which the first mode CM1 is executed and the second The temperature range of the motor 2 in which the mode CM2 is executed is continuously provided with the third temperature T3 as a boundary.
  • step S4Ab when it is determined in step S4Ab that the temperature of the motor 2 is equal to or lower than the third temperature T3, the control unit 70 performs step S4Ad.
  • step S4Ad the control unit 70 determines whether or not the temperature of the motor 2 obtained based on the temperature sensor 71 is lower than the predetermined first temperature T1.
  • the first temperature T1 is a temperature lower than the third temperature T3.
  • the value of the first temperature T1 is, for example, ⁇ 20 ° C. or higher and ⁇ 5 ° C. or lower.
  • step S4Ad When the temperature of the motor 2 is determined to be the first temperature T1 or higher in step S4Ad, the control unit 70 maintains the flow rate of the oil O sent from the oil pump 96 to the motor 2 in step S4Aa at the first flow rate, or the first flow rate. And the step S4Ab is repeated.
  • step S4Ad when it is determined in step S4Ad that the temperature of the motor 2 is lower than the first temperature T1, the control unit 70 performs step S4Ae.
  • step S4Ae the control unit 70 stops driving the oil pump 96 and limits the output of the motor 2. That is, in the present embodiment, the control unit 70 stops driving the oil pump 96 when the temperature of the motor 2 obtained based on the temperature sensor 71 is lower than the predetermined first temperature T1.
  • the first mode CM1 is executed when the temperature of the motor 2 is within the temperature range of the first temperature T1 or more and the third temperature T3 or less.
  • the control unit 70 stops driving the oil pump 96 when the temperature of the motor 2 obtained based on the temperature sensor 71 is lower than the predetermined first temperature T1. If the viscosity of the oil O is relatively high in a relatively low temperature environment, it becomes difficult for the oil pump 96 to send the oil O to the motor 2, and the load on the oil pump 96 increases. Therefore, by stopping the drive of the oil pump 96, it is possible to suppress a large load from being applied to the oil pump 96, and it is possible to reduce the power consumption of the drive device 1. On the other hand, since the temperature of the motor 2 is relatively low, it is possible to prevent the motor 2 from malfunctioning due to heat even if the oil O is not sent by the oil pump 96. Therefore, by stopping the driving of the oil pump 96 when the temperature of the motor 2 is relatively low, it is possible to reduce the power consumption of the driving device 1 while suppressing the occurrence of a malfunction in the motor 2.
  • step S4Af the control unit 70 determines whether or not the temperature of the motor 2 obtained based on the temperature sensor 71 is equal to or higher than the second temperature T2.
  • the second temperature T2 is higher than the first temperature T1 and lower than the third temperature T3.
  • the value of the second temperature is, for example, ⁇ 10 ° C. or higher and 5 ° C. or lower.
  • step S4Af When it is determined in step S4Af that the temperature of the motor 2 is lower than the second temperature T2, the control unit 70 stops driving the oil pump 96 and maintains a state in which the output of the motor 2 is restricted. On the other hand, when it is determined in step S4Af that the temperature of the motor 2 is equal to or higher than the second temperature T2, the control unit 70 performs step S4Ag. In step S4Ag, the control unit 70 restarts the driving of the oil pump 96 and releases the limitation on the output of the motor 2. That is, in the present embodiment, after limiting the output of the motor 2, the control unit 70 drives the oil pump 96 when the temperature of the motor 2 obtained based on the temperature sensor 71 is equal to or higher than the second temperature T2. It restarts and releases the restriction on the output of the motor 2.
  • the viscosity of the oil O becomes relatively low, so that the oil O can be easily sent by the oil pump 96. Therefore, even if the driving of the oil pump 96 is restarted, the load applied to the oil pump 96 can be made relatively small. Further, the motor 2 can be suitably cooled by the oil O sent from the oil pump 96.
  • step S4Ag the control unit 70 returns to step S4Aa. That is, the flow rate of the oil O sent by the oil pump 96 when the drive is restarted in step S4Ag of the present embodiment is set to the first flow rate. After that, the control unit 70 repeatedly executes each step S4Aa to S4Ag in the above-mentioned step S4A until the ignition switch IGS is turned off.
  • the present invention is not limited to the above-described embodiment, and other configurations and methods may be adopted.
  • the control unit of the drive device limits the output of the motor based on the detection result of the rotation sensor
  • the output of the motor may be limited by any procedure and condition.
  • the control unit may determine that the operation of the oil pump is abnormal and limit the output of the motor when the rotation speed of the pump unit obtained based on the rotation sensor fluctuates irregularly. ..
  • the output of the motor which is limited based on the detection result of the rotation sensor, is not particularly limited, and may include the torque change rate of the motor, may not include the rotation speed of the motor, or may not include the torque of the motor. You may.
  • the operation check of the oil pump by the control unit may be performed other than immediately after the ignition switch of the vehicle is turned on.
  • the operation check of the oil pump by the control unit may be performed periodically between the time when the ignition switch of the vehicle is turned on and the time when the ignition switch of the vehicle is turned off.
  • the control unit does not have to limit the output of the motor based on the detection result of the rotation sensor.
  • the output of the motor may be limited by any procedure and condition.
  • the control unit may limit the output of the motor when the temperature of the motor obtained based on the temperature sensor is relatively high.
  • the output of the motor which is limited based on the detection result of the temperature sensor, is not particularly limited, and may include the rotation speed of the motor, may not include the torque of the motor, or may not include the torque change rate of the motor. You may.
  • the control unit does not have to stop driving the oil pump when limiting the output of the motor based on the detection result of the temperature sensor.
  • the control unit When the temperature of the motor obtained based on the temperature sensor is higher than the first temperature and lower than the second temperature, the control unit does not limit the output of the motor and stops the operation of the oil pump. Good. In this case, the control unit restarts the operation of the oil pump when the temperature of the motor becomes the second temperature or higher, and outputs the output of the motor when the temperature of the motor becomes lower than the first temperature. It may be restricted.
  • step S4 does not include steps S4b to S4e, and includes, for example, only step S4a.
  • the control unit of the drive device may drive the oil pump under any procedure and conditions when driving the oil pump, the refrigerant pump, and the blower device after the ignition switch of the vehicle is turned off.
  • the control unit may drive the oil pump, the refrigerant pump, and the blower after a certain period of time has passed after the ignition switch of the vehicle is turned off. Further, the control unit does not have to drive the refrigerant pump and the blower after the ignition switch of the vehicle is turned off.
  • the control unit may stop the drive of the oil pump, the drive of the refrigerant pump, and the drive of the blower under any conditions after the ignition switch of the vehicle is turned off.
  • the control unit may stop the drive of the oil pump, the drive of the refrigerant pump, and the drive of the blower regardless of the temperature of the motor after the ignition switch of the vehicle is turned off.
  • the control unit does not have to drive the oil pump after the ignition switch of the vehicle is turned off.

Abstract

本発明の駆動装置の一つの態様は、車両の車軸を回転させる駆動装置であって、モータと、モータに接続される減速装置を含む伝達装置と、モータおよび伝達装置を内部に収容するハウジングと、モータの温度を検出可能な温度センサと、モータを制御する制御部と、を備える。ハウジングの内部には、伝達装置に供給されるオイルが収容される。制御部は、温度センサの検出結果に基づいて、モータの出力を制限する。

Description

駆動装置
 本発明は、駆動装置に関する。本願は、2019年04月19日に出願された日本国特許出願第2019-080342号に基づき優先権を主張し、その内容をここに援用する。
 車両に搭載され、ケースの内部にオイルが収容される駆動装置が知られる。例えば、特許文献1には、ハイブリッド車両の駆動装置が記載される。
国際公開第2012/046307号
上記のような駆動装置においては、ケースの内部に収容されたオイルを、駆動装置における減速装置等の潤滑油として利用する場合がある。一般にオイルは、温度が低いほど粘度が高くなる。そのため、比較的低温の環境下ではオイルの粘度が高くなり過ぎて、オイルが減速装置等の潤滑油として機能しにくくなる場合がある。したがって、駆動装置に不具合が生じる虞があった。
 本発明は、上記事情に鑑みて、比較的低温の環境下において不具合が生じることを抑制できる構造を有する駆動装置を提供することを目的の一つとする。
 本発明の駆動装置の一つの態様は、車両の車軸を回転させる駆動装置であって、モータと、前記モータに接続される減速装置および前記減速装置を介して前記モータに接続される差動装置を有する伝達装置と、前記モータ、前記減速装置、および前記差動装置を内部に収容するハウジングと、前記モータの温度を検出可能な温度センサと、前記モータを制御する制御部と、を備える。前記ハウジングの内部には、前記伝達装置に供給されるオイルが収容される。前記制御部は、前記温度センサの検出結果に基づいて、前記モータの出力を制限する。
 本発明の一つの態様によれば、駆動装置において、比較的低温の環境下において不具合が生じることを抑制できる。
図1は、第1実施形態の車両駆動システムの機能構成を示す図である。 図2は、第1実施形態の駆動装置を模式的に示す概略構成図である。 図3は、第1実施形態の制御部による制御手順の一例を示すフローチャートである。 図4は、第1実施形態の制御部によるオイルポンプの動作チェックの手順を示すフローチャートである。 図5は、第1実施形態の制御部によるオイルポンプの流量制御の手順を示すフローチャートである。 図6は、第1実施形態におけるモータの温度に対するデューティ比の変化の一例を示すグラフである。 図7は、本実施形態の制御部によるアフターラン制御の手順を示すフローチャートである。 図8は、第2実施形態の制御部によるオイルポンプの流量制御の手順を示すフローチャートである。 図9は、第2実施形態におけるモータの温度に対するデューティ比の変化の一例を示すグラフである。
<第1実施形態>
 図1に示す車両駆動システム100は、車両に搭載され、車両を駆動する。本実施形態の車両駆動システム100が搭載される車両は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等、モータを動力源とする車両である。車両駆動システム100は、駆動装置1と、ラジエータ110と、冷媒ポンプ120と、送風装置130と、車両制御装置140と、を備える。すなわち、駆動装置1とラジエータ110と冷媒ポンプ120と送風装置130と車両制御装置140とは、車両に設けられる。ラジエータ110は、冷媒Wを冷却する。本実施形態において冷媒Wは、例えば、水である。
 冷媒ポンプ120は、電気により駆動する電動ポンプである。冷媒ポンプ120は、冷媒流路150を介して、ラジエータ110から冷媒Wを駆動装置1に送る。冷媒流路150は、ラジエータ110から駆動装置1に延びて、再びラジエータ110に戻る流路である。冷媒流路150は、後述するインバータユニット8の内部およびオイルクーラ97の内部を通る。冷媒流路150を流れる冷媒Wによって、インバータユニット8に設けられた後述する制御部70およびオイルクーラ97内を流れるオイルOが冷却される。
 送風装置130は、ラジエータ110に送風可能である。これにより、送風装置130は、ラジエータ110を冷却できる。送風装置130の種類は、ラジエータ110に送風可能であれば、特に限定されない。送風装置130は、軸流ファンであってもよいし、遠心ファンであってもよいし、ブロワであってもよい。
 送風装置130は、例えば、ラジエータ110の内部に収容された冷媒Wの温度に応じて、駆動状態と停止状態とが切り替えられる。例えば、車両が走行している場合、ラジエータ110には車両が走行することで生じる空気の流れが吹き付けられ、ラジエータ110の内部の冷媒Wは冷却されやすい。この場合、送風装置130は、例えば、停止状態とされる。一方、車両が停止している場合、上述したような空気の流れが生じにくいため、送風装置130を駆動状態としてラジエータ110に送風することで、ラジエータ110の内部の冷媒Wを好適に冷却できる。なお、送風装置130は、車両の走行状態によらず、常に駆動状態とされてもよい。
 車両制御装置140は、車両に搭載される各装置を制御する。本実施形態において車両制御装置140は、駆動装置1、冷媒ポンプ120、および送風装置130を制御する。車両制御装置140には、車両に設けられたイグニッションスイッチIGSからの信号が入力される。イグニッションスイッチIGSは、駆動装置1の駆動および停止を切り替えるスイッチであり、車両を運転する運転手によって直接的にまたは間接的に操作される。
 車両制御装置140は、イグニッションスイッチIGSがOFFからONになった場合に、駆動装置1の後述する制御部70に信号を送り、駆動装置1を駆動させて車両を走行可能な状態にする。一方、車両制御装置140は、イグニッションスイッチIGSがONからOFFになった場合に、制御部70に信号を送り、駆動装置1を停止させる。
 駆動装置1は、上述したハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等、モータを動力源とする車両の動力源として使用される。図2に示すように、駆動装置1は、モータ2と、減速装置4および差動装置5を有する伝達装置3と、ハウジング6と、インバータユニット8と、オイルポンプ96と、オイルクーラ97と、を備える。ハウジング6は、モータ2および伝達装置3を内部に収容する。ハウジング6は、モータ2を内部に収容するモータ収容部81と、減速装置4および差動装置5を内部に収容するギヤ収容部82と、を有する。
 本実施形態においてモータ2は、インナーロータ型のモータである。モータ2は、ロータ20と、ステータ30と、ベアリング26,27と、を有する。ロータ20は、水平方向に延びるモータ軸J1を中心として回転可能である。ロータ20は、シャフト21と、ロータ本体24と、を有する。図示は省略するが、ロータ本体24は、ロータコアと、ロータコアに固定されるロータマグネットと、を有する。ロータ20のトルクは、減速装置4に伝達される。
 なお、以下の説明においては、モータ軸J1が延びる水平方向を「軸方向」と呼び、モータ軸J1を中心とする径方向を単に「径方向」と呼び、モータ軸J1を中心とする周方向、すなわちモータ軸J1の軸回りを単に「周方向」と呼ぶ。本実施形態において軸方向は、例えば図2の左右方向であり、車両の左右方向、すなわち車幅方向である。また、以下の説明においては、軸方向のうち図2における右側を単に「右側」と呼び、軸方向のうち図2における左側を単に「左側」と呼ぶ。また、図2における上下方向を、鉛直方向とし、図2における上側を鉛直方向上側として単に「上側」と呼び、図2における下側を鉛直方向下側として単に「下側」と呼ぶ。
 シャフト21は、モータ軸J1を中心として軸方向に沿って延びる。シャフト21は、モータ軸J1を中心として回転する。シャフト21は、内部に中空部22が設けられた中空シャフトである。シャフト21には、連通孔23が設けられる。連通孔23は、径方向に延びて中空部22とシャフト21の外部とを繋ぐ。
 シャフト21は、ハウジング6のモータ収容部81とギヤ収容部82とに跨って延びる。シャフト21の左側の端部は、ギヤ収容部82の内部に突出する。シャフト21の左側の端部には、減速装置4の後述する第1のギヤ41が固定される。シャフト21は、ベアリング26,27により回転可能に支持される。
 ステータ30は、ロータ20と径方向に隙間を介して対向する。より詳細には、ステータ30は、ロータ20の径方向外側に位置する。ステータ30は、ステータコア32と、コイルアセンブリ33と、を有する。ステータコア32は、モータ収容部81の内周面に固定される。図示は省略するが、ステータコア32は、軸方向に延びる円筒状のコアバックと、コアバックから径方向内側に延びる複数のティースと、を有する。
 コイルアセンブリ33は、周方向に沿ってステータコア32に取り付けられる複数のコイル31を有する。複数のコイル31は、図示しないインシュレータを介してステータコア32の各ティースにそれぞれ装着される。複数のコイル31は、周方向に沿って配置される。より詳細には、複数のコイル31は、周方向に沿って一周に亘って等間隔に配置される。図示は省略するが、コイルアセンブリ33は、各コイル31を結束する結束部材等を有してもよいし、各コイル31同士を繋ぐ渡り線を有してもよい。
 コイルアセンブリ33は、ステータコア32から軸方向に突出するコイルエンド33a,33bを有する。コイルエンド33aは、ステータコア32から右側に突出する部分で
ある。コイルエンド33bは、ステータコア32から左側に突出する部分である。コイルエンド33aは、コイルアセンブリ33に含まれる各コイル31のうちステータコア32よりも右側に突出する部分を含む。コイルエンド33bは、コイルアセンブリ33に含まれる各コイル31のうちステータコア32よりも左側に突出する部分を含む。本実施形態においてコイルエンド33a,33bは、モータ軸J1を中心とする円環状である。図示は省略するが、コイルエンド33a,33bは、各コイル31を結束する結束部材等を含んでもよいし、各コイル31同士を繋ぐ渡り線を含んでもよい。
 ベアリング26,27は、ロータ20を回転可能に支持する。ベアリング26,27は、例えば、ボールベアリングである。ベアリング26は、ロータ20のうちステータコア32よりも右側に位置する部分を回転可能に支持するベアリングである。本実施形態においてベアリング26は、シャフト21のうちロータ本体24が固定される部分よりも右側に位置する部分を支持する。ベアリング26は、モータ収容部81のうちロータ20およびステータ30の右側を覆う壁部に保持される。
 ベアリング27は、ロータ20のうちステータコア32よりも左側に位置する部分を回転可能に支持するベアリングである。本実施形態においてベアリング27は、シャフト21のうちロータ本体24が固定される部分よりも左側に位置する部分を支持する。ベアリング27は、後述する隔壁61cに保持される。
 図1に示すように、モータ2は、モータ2の温度を検出可能な温度センサ71を有する。すなわち、駆動装置1は、温度センサ71を備える。本実施形態においてモータ2の温度とは、例えば、モータ2のうちコイル31の温度である。図示は省略するが、温度センサ71は、例えば、コイルエンド33aまたはコイルエンド33bに埋め込まれて配置される。温度センサ71の種類は、特に限定されない。温度センサ71の検出結果は、後述する制御部70に送られる。
 減速装置4は、モータ2に接続される。より詳細には、図2に示すように、減速装置4は、シャフト21の左側の端部に接続される。減速装置4は、モータ2の回転速度を減じて、モータ2から出力されるトルクを減速比に応じて増大させる。減速装置4は、モータ2から出力されるトルクを差動装置5へ伝達する。減速装置4は、第1のギヤ41と、第2のギヤ42と、第3のギヤ43と、中間シャフト45と、を有する。
 第1のギヤ41は、シャフト21の左側の端部における外周面に固定される。第1のギヤ41は、シャフト21とともに、モータ軸J1を中心に回転する。中間シャフト45は、中間軸J2に沿って延びる。本実施形態において中間軸J2は、モータ軸J1と平行である。中間シャフト45は、中間軸J2を中心として回転する。
 第2のギヤ42および第3のギヤ43は、中間シャフト45の外周面に固定される。第2のギヤ42と第3のギヤ43は、中間シャフト45を介して接続される。第2のギヤ42および第3のギヤ43は、中間軸J2を中心として回転する。第2のギヤ42は、第1のギヤ41に噛み合う。第3のギヤ43は、差動装置5の後述するリングギヤ51と噛み合う。第2のギヤ42の外径は、第3のギヤ43の外径よりも大きい。本実施形態において第2のギヤ42の下側の端部は、減速装置4のうちで最も下側に位置する部分である。
 モータ2から出力されるトルクは、減速装置4を介して差動装置5に伝達される。より詳細には、モータ2から出力されるトルクは、シャフト21、第1のギヤ41、第2のギヤ42、中間シャフト45および第3のギヤ43をこの順に介して差動装置5のリングギヤ51へ伝達される。各ギヤのギヤ比およびギヤの個数等は、必要とされる減速比に応じて種々変更可能である。本実施形態において減速装置4は、各ギヤの軸芯が平行に配置さ
れる平行軸歯車タイプの減速機である。
 差動装置5は、減速装置4に接続される。これにより、差動装置5は、減速装置4を介してモータ2に接続される。差動装置5は、モータ2から出力されるトルクを車両の車輪に伝達するための装置である。差動装置5は、車両の旋回時に、左右の車輪の速度差を吸収しつつ、左右両輪の車軸55に同トルクを伝える。差動装置5は、車軸55を差動軸J3回りに回転させる。これにより、駆動装置1は、車両の車軸55を回転させる。差動軸J3は、車両の左右方向、すなわち車両の車幅方向に延びる。本実施形態において差動軸J3は、モータ軸J1と平行である。
 差動装置5は、リングギヤ51と、図示しないギヤハウジングと、図示しない一対のピニオンギヤと、図示しないピニオンシャフトと、図示しない一対のサイドギヤと、を有する。リングギヤ51は、差動軸J3回りに回転するギヤである。リングギヤ51は、第3のギヤ43と噛み合う。これにより、リングギヤ51には、モータ2から出力されるトルクが減速装置4を介して伝えられる。リングギヤ51の下側の端部は、減速装置4よりも下側に位置する。本実施形態においてリングギヤ51の下側の端部は、差動装置5のうちで最も下側に位置する部分である。
 ハウジング6は、駆動装置1の外装筐体である。ハウジング6は、モータ収容部81の内部とギヤ収容部82の内部とを軸方向に区画する隔壁61cを有する。隔壁61cには、隔壁開口68が設けられる。モータ収容部81の内部とギヤ収容部82の内部とは、隔壁開口68を介して互いに繋がる。
 ハウジング6の内部には、オイルOが収容される。より詳細には、モータ収容部81の内部およびギヤ収容部82の内部には、オイルOが収容される。ギヤ収容部82の内部における下部領域には、オイルOが溜るオイル溜りPが設けられる。オイル溜りPの油面Sは、リングギヤ51の下側の端部よりも上側に位置する。これにより、リングギヤ51の下側の端部は、ギヤ収容部82内のオイルOに浸漬される。オイル溜りPの油面Sは、差動軸J3および車軸55よりも下側に位置する。
 オイル溜りPのオイルOは、後述する油路90によってモータ収容部81の内部に送られる。モータ収容部81の内部に送られたオイルOは、モータ収容部81の内部における下部領域に溜まる。モータ収容部81の内部に溜まったオイルOの少なくとも一部は、隔壁開口68を介してギヤ収容部82に移動し、オイル溜りPに戻る。
 なお、本明細書において「ある部分の内部にオイルが収容される」とは、モータが駆動している最中の少なくとも一部において、ある部分の内部にオイルが位置していればよく、モータが停止している際には、ある部分の内部にオイルが位置していなくてもよい。例えば、本実施形態においてモータ収容部81の内部にオイルOが収容されるとは、モータ2が駆動している最中の少なくとも一部において、モータ収容部81の内部にオイルOが位置していればよく、モータ2が停止している際においては、モータ収容部81の内部のオイルOがすべて隔壁開口68を通ってギヤ収容部82に移動してしまっていてもよい。なお、後述する油路90によってモータ収容部81の内部へと送られたオイルOの一部は、モータ2が停止した状態において、モータ収容部81の内部に残っていてもよい。
 また、本明細書において「リングギヤの下側の端部がギヤ収容部内のオイルに浸漬される」とは、モータが駆動している最中の少なくとも一部において、リングギヤの下側の端部がギヤ収容部内のオイルに浸漬されればよく、モータが駆動している最中またはモータが停止している間の一部において、リングギヤの下側の端部がギヤ収容部内のオイルに浸漬されなくてもよい。例えば、オイル溜りPのオイルOが後述する油路90によってモー
タ収容部81の内部に送られた結果として、オイル溜りPの油面Sが下がり、一時的にリングギヤ51の下側の端部がオイルOに浸漬しない状態となってもよい。
 オイルOは、後述する油路90内を循環する。オイルOは、減速装置4および差動装置5の潤滑用として使用される。また、オイルOは、モータ2の冷却用として使用される。オイルOとしては、潤滑油および冷却油の機能を奏するために、比較的粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のオイルを用いることが好ましい。
 ギヤ収容部82の底部82aは、モータ収容部81の底部81aよりも下側に位置する。そのため、ギヤ収容部82内からモータ収容部81内に送られたオイルOが隔壁開口68を介してギヤ収容部82内に流れやすい。
 駆動装置1には、ハウジング6の内部においてオイルOが循環する油路90が設けられる。油路90は、オイル溜りPからオイルOをモータ2に供給し、再びオイル溜りPに導くオイルOの経路である。油路90は、モータ収容部81の内部とギヤ収容部82の内部とに跨って設けられる。
 なお、本明細書において「油路」とは、オイルの経路を意味する。したがって、「油路」とは、定常的に一方向に向かうオイルの流動を作る「流路」のみならず、オイルを一時的に滞留させる経路およびオイルが滴り落ちる経路をも含む概念である。オイルを一時的に滞留させる経路とは、例えば、オイルを貯留するリザーバ等を含む。
 油路90は、第1の油路91と、第2の油路92と、を有する。第1の油路91および第2の油路92は、それぞれハウジング6の内部でオイルOを循環させる。第1の油路91は、かき上げ経路91aと、シャフト供給経路91bと、シャフト内経路91cと、ロータ内経路91dと、を有する。また、第1の油路91の経路中には、第1のリザーバ93が設けられる。第1のリザーバ93は、ギヤ収容部82内に設けられる。
 かき上げ経路91aは、差動装置5のリングギヤ51の回転によってオイル溜りPからオイルOをかき上げて、第1のリザーバ93でオイルOを受ける経路である。第1のリザーバ93は、上側に開口する。第1のリザーバ93は、リングギヤ51がかき上げたオイルOを受ける。また、モータ2の駆動直後などオイル溜りPの液面が高い場合等には、第1のリザーバ93は、リングギヤ51に加えて第2のギヤ42および第3のギヤ43によってかき上げられたオイルOも受ける。
 リングギヤ51によってかき上げられたオイルOは、減速装置4および差動装置5にも供給される。これにより、ハウジング6の内部に収容されたオイルOが伝達装置3に供給される。伝達装置3に供給されたオイルOは、減速装置4のギヤおよび差動装置5のギヤに潤滑油として供給される。なお、リングギヤ51によってかき上げられたオイルOは、減速装置4と差動装置5とのいずれか一方に供給されてもよい。
 シャフト供給経路91bは、第1のリザーバ93からシャフト21の中空部22にオイルOを誘導する。シャフト内経路91cは、シャフト21の中空部22内をオイルOが通過する経路である。ロータ内経路91dは、シャフト21の連通孔23からロータ本体24の内部を通過して、ステータ30に飛散する経路である。
 シャフト内経路91cにおいて、ロータ20の内部のオイルOには、ロータ20の回転に伴い遠心力が付与される。これにより、オイルOは、ロータ20から径方向外側に連続的に飛散する。また、オイルOの飛散に伴い、ロータ20内部の経路が負圧となり、第1
のリザーバ93に溜るオイルOが、ロータ20の内部に吸引され、ロータ20内部の経路にオイルOが満たされる。
 ステータ30に到達したオイルOは、ステータ30から熱を奪う。ステータ30を冷却したオイルOは、下側に滴下され、モータ収容部81内の下部領域に溜る。モータ収容部81内の下部領域に溜ったオイルOは、隔壁61cに設けられた隔壁開口68を介してギヤ収容部82に移動する。以上のようにして、第1の油路91は、オイルOをロータ20およびステータ30に供給する。
 第2の油路92においてオイルOは、オイル溜りPからステータ30の上側まで引き上げられてステータ30に供給される。すなわち、第2の油路92は、オイルOをステータ30の上側からステータ30に供給する。第2の油路92には、オイルポンプ96と、オイルクーラ97と、第2のリザーバ10と、が設けられる。第2の油路92は、第1の流路92aと、第2の流路92bと、第3の流路92cと、を有する。
 第1の流路92a、第2の流路92bおよび第3の流路92cは、ハウジング6の壁部に設けられる。第1の流路92aは、オイル溜りPとオイルポンプ96とを繋ぐ。第2の流路92bは、オイルポンプ96とオイルクーラ97とを繋ぐ。第3の流路92cは、オイルクーラ97から上側に延びる。第3の流路92cは、モータ収容部81の壁部に設けられる。図示は省略するが、第3の流路92cは、ステータ30の上側においてモータ収容部81の内部に開口する供給口を有する。当該供給口は、モータ収容部81の内部にオイルOを供給する。
 オイルポンプ96は、電気により駆動する電動ポンプである。オイルポンプ96は、ハウジング6の内部に収容されたオイルOをモータ2に送る。本実施形態においてオイルポンプ96は、第1の流路92aを介してオイル溜りPからオイルOを吸い上げて、第2の流路92b、オイルクーラ97、第3の流路92cおよび第2のリザーバ10を介して、オイルOをモータ2に供給する。図1に示すように、オイルポンプ96は、モータ部96aと、ポンプ部96bと、回転センサ72と、を有する。ポンプ部96bは、モータ部96aによって回転させられる。図示は省略するが、ポンプ部96bは、モータ部96aに接続されるインナーロータと、インナーロータを囲むアウターロータと、を有する。オイルポンプ96は、モータ部96aによってポンプ部96bを回転させることで、オイルOをモータ2に送る。
 回転センサ72は、ポンプ部96bの回転を検出可能である。本実施形態において回転センサ72は、モータ部96aの回転を検出することで、モータ部96aによって回転させられるポンプ部96bの回転を検出可能である。回転センサ72の種類は、ポンプ部96bの回転を検出可能ならば、特に限定されない。回転センサ72は、磁気センサであってもよいし、レゾルバであってもよいし、光学センサであってもよい。回転センサ72が磁気センサである場合、回転センサ72は、ホールIC等のホール素子であってもよいし、磁気抵抗素子であってもよい。なお、回転センサ72は、ポンプ部96bの回転を直接的に検出してもよい。回転センサ72の検出結果は、後述する制御部70に送られる。
 図2に示すように、オイルクーラ97は、第2の油路92を通過するオイルOを冷却する。オイルクーラ97には、第2の流路92bおよび第3の流路92cが接続される。第2の流路92bおよび第3の流路92cは、オイルクーラ97の内部流路を介して繋がる。図1に示すように、オイルクーラ97には、冷媒ポンプ120によって、ラジエータ110で冷却された冷媒Wが冷媒流路150を介して供給される。オイルクーラ97の内部を通過するオイルOは、冷媒流路150を通過する冷媒Wとの間で熱交換されて冷却される。オイルクーラ97によって冷却されるオイルOは、オイルポンプ96によって送られ
るオイルOである。すなわち、冷媒ポンプ120から送られる冷媒Wは、オイルクーラ97において、オイルポンプ96によって送られるオイルOを冷却する。
 図2に示すように、第2のリザーバ10は、第2の油路92の一部を構成する。第2のリザーバ10は、モータ収容部81の内部に位置する。第2のリザーバ10は、ステータ30の上側に位置する。第2のリザーバ10は、ステータ30によって下側から支持され、モータ2に設けられる。第2のリザーバ10は、例えば、樹脂材料から構成される。
 本実施形態において第2のリザーバ10は、上側に開口する樋状である。第2のリザーバ10は、オイルOを貯留する。本実施形態において第2のリザーバ10は、第3の流路92cを介してモータ収容部81内に供給されたオイルOを貯留する。第2のリザーバ10は、コイルエンド33a,33bにオイルOを供給する供給口10aを有する。これにより、第2のリザーバ10に貯留されたオイルOをステータ30に供給できる。
 第2のリザーバ10からステータ30に供給されたオイルOは、下側に滴下され、モータ収容部81内の下部領域に溜る。モータ収容部81内の下部領域に溜ったオイルOは、隔壁61cに設けられた隔壁開口68を介してギヤ収容部82に移動する。以上のようにして、第2の油路92は、オイルOをステータ30に供給する。
 図1に示すように、インバータユニット8は、制御部70を有する。すなわち、駆動装置1は、制御部70を備える。制御部70は、インバータケース8a内に収容される。制御部70は、インバータケース8aに設けられた冷媒流路150の一部を流れる冷媒Wによって冷却される。制御部70は、モータ2およびオイルポンプ96のモータ部96aを制御する。図示は省略するが、制御部70は、モータ2に供給される電力を調整するインバータ回路を有する。本実施形態において制御部70は、図3に示すステップS1~S6に沿った制御を行う。
 ステップS1において車両のイグニッションスイッチIGSがONにされると、制御部70は、ステップS2を行う。ステップS2において制御部70は、オイルポンプ96の動作チェックを行う。図4に示すように、本実施形態においてステップS2におけるオイルポンプ96の動作チェックは、ステップS2a~S2dを含む。
 ステップS2aにおいて制御部70は、オイルポンプ96を第1所定時間駆動する。第1所定時間は、例えば、5秒以上、15秒以下である。ステップS2bにおいて制御部70は、オイルポンプ96が正常に動作しているか否かを判断する。具体的に制御部70は、オイルポンプ96を第1所定時間駆動した際のポンプ部96bの回転数を、回転センサ72に基づいて取得し、ポンプ部96bの回転数が所定の範囲内となっているか否かを判断する。所定の範囲とは、例えば、制御部70が指令としてオイルポンプ96に送る目標回転数に対して±10%以内程度の範囲である。すなわち、所定の範囲とは、例えば、オイルポンプ96に所定の目標回転数が入力された場合において許容されるポンプ部96bの回転数の範囲である。
 ポンプ部96bの回転数が所定の範囲内となっている場合、制御部70は、オイルポンプ96が正常に動作していると判断し、ステップS2cを行う。ステップS2cにおいて制御部70は、車両の走行モードを、通常の走行モードに決定する。走行モードを通常の走行モードに決定した場合、制御部70は、ステップS3を行う。ステップS3において制御部70は、オイルポンプ96を駆動し、車両を走行可能な状態にする。
 一方、ポンプ部96bの回転数が所定の範囲内から外れている場合、制御部70は、オイルポンプ96が正常に動作していないと判断し、ステップS2dを行う。ステップS2
dにおいて制御部70は、車両の走行モードをリンプホームモードに決定する。リンプホームモードは、モータ2の出力が制限されるモードである。すなわち、本実施形態において制御部70は、回転センサ72の検出結果に基づいて、オイルポンプ96の動作が異常だと判断した場合に、モータ2の出力を制限する。
 ポンプ部96bの回転数が所定の範囲内から外れている場合とは、ポンプ部96bの回転数が所定の範囲内よりも小さい場合と、ポンプ部96bの回転数が所定の範囲内よりも大きい場合と、を含む。すなわち、本実施形態において制御部70は、オイルポンプ96を第1所定時間駆動させた際におけるポンプ部96bの回転数が、オイルポンプ96に入力される目標回転数に対して所定の回転数以上異なる場合に、オイルポンプ96の動作が異常だと判断し、モータ2の出力を制限する。
 ここで、所定の回転数とは、目標回転数に対して、許容されるポンプ部96bの回転数の誤差以上の値である。所定の回転数は、例えば、目標回転数の10%以上の値である。すなわち、制御部70は、例えば、回転センサ72に基づいて得られたポンプ部96bの回転数が目標回転数に対して10%以上ずれた値であった場合に、モータ2の出力を制限する。
 本実施形態において回転センサ72の検出結果に基づいて制限されるモータ2の出力は、モータ2の回転数およびモータ2のトルクを含む。モータ2のトルクおよびモータ2の回転数が制限されることで、車両の速度および加速度が制限される。リンプホームモードにおけるモータ2の出力の制限は、オイルポンプ96によってモータ2の冷却を行わなくても、モータ2の温度が上昇しない程度の制限である。すなわち、リンプホームモードにおいて、モータ2の回転数およびトルクは比較的低い値に制限され、車両の速度および加速度は比較的低い値に制限される。
 走行モードをリンプホームモードに決定した場合、制御部70は、モータ2の出力を制限した状態で、車両を走行可能な状態にする。このとき、制御部70は、正常に動作しないオイルポンプ96を停止した状態のままとしてもよい。リンプホームモードにおいて制御部70は、イグニッションスイッチIGSがOFFにされるまでモータ2の出力を制限し続ける。
 例えば、オイルポンプ96が正常に動作していない場合、モータ2へのオイルOの供給に不具合が生じ、モータ2の冷却が不十分になる虞がある。そのため、モータ2の温度が過剰に高くなり、モータ2に不具合が生じる虞がある。これに対して、本実施形態によれば、上述したように制御部70は、回転センサ72の検出結果に基づいて、モータ2の出力を制限する。そのため、オイルポンプ96が正常に動作していない場合に、モータ2の出力を制限することが可能である。モータ2の出力が制限される場合、モータ2における発熱量が少なくなる。これにより、オイルポンプ96が正常に動作していなくても、モータ2の温度が上昇することを抑制でき、モータ2の温度が過剰に高くなることを抑制できる。したがって、モータ2に不具合が生じることを抑制できる。また、モータ2の出力を制限しつつも、車両を走行させることができるため、モータ2の損傷を抑制しつつ、車両を所望の場所まで移動させることができる。
 本実施形態では、制御部70は、回転センサ72の検出結果に基づいてオイルポンプ96の動作が異常だと判断した場合に、モータ2の出力を制限する。そのため、オイルポンプ96の動作状態に応じて、モータ2の出力の制限を好適に行うことができる。したがって、モータ2に不具合が生じることを好適に抑制できる。
 また、本実施形態では、制御部70は、オイルポンプ96を第1所定時間駆動した際に
おけるポンプ部96bの回転数が、オイルポンプ96に入力される目標回転数に対して所定の回転数以上異なる場合に、オイルポンプ96の動作が異常だと判断し、モータ2の出力を制限する。そのため、制御部70は、ポンプ部96bの回転数に基づいてオイルポンプ96の動作が異常であることを容易に判断しやすく、モータ2の出力の制限をより好適に行うことができる。したがって、モータ2に不具合が生じることをより好適に抑制できる。
 また、本実施形態によれば、回転センサ72の検出結果に基づいて制限されるモータ2の出力は、モータ2の回転数を含む。そのため、モータ2の回転数を比較的低く制限することができ、モータ2の温度上昇をより好適に抑制できる。
 また、本実施形態によれば、回転センサ72の検出結果に基づいて制限されるモータ2の出力は、モータ2のトルクを含む。そのため、モータ2のトルクを比較的低く制限することができ、モータ2の温度上昇をより好適に抑制できる。
 また、モータ2の回転数が制限される場合、リングギヤ51によってオイルOがかき上げられにくくなり、伝達装置3に潤滑油としてのオイルOが供給されにくくなる。そのため、伝達装置3におけるギヤ同士が擦れて焼きつきが生じる虞がある。これに対して、モータ2のトルクを制限することで、伝達装置3のギヤ同士の間に加えられる負荷を小さくできる。これにより、潤滑油としてのオイルOが供給されなくても、ギヤ同士が擦れて焼きつくことを抑制できる。
 以上に説明したように、本実施形態において制御部70は、車両のイグニッションスイッチIGSがONにされた直後のステップS2において、オイルポンプ96の動作チェックを行い、車両の走行モードを決定する。言い換えれば、本実施形態において制御部70は、車両のイグニッションスイッチIGSがONにされた直後に、モータ2の出力を制限するか否かを判断する。そのため、車両の走行を開始する前に、オイルポンプ96の異常を検出することができ、モータ2に不具合が生じることを抑制できる走行モード、すなわち本実施形態ではリンプホームモードを選択することができる。
 なお、本明細書において「車両のイグニッションスイッチがONにされた直後」とは、イグニッションスイッチがONにされてから、車両が走行可能な状態とされるまでの間の期間を含む。
 図3に示すように、車両の走行モードを通常の走行モードに決定し、ステップS3において車両を走行可能な状態にした制御部70は、次にステップS4を行う。ステップS4において制御部70は、モータ2の温度に応じて、オイルポンプ96の流量を制御する。本実施形態においてステップS4は、車両が走行可能な状態となってからステップS5においてイグニッションスイッチIGSがOFFにされるまでの間、常時行われる。
 本実施形態において制御部70は、PWM(Pulse Width Modulation)制御によってオイルポンプ96を制御する。制御部70は、オイルポンプ96に供給されるパルス電流のデューティ比を調整することで、オイルポンプ96の出力を制御し、オイルポンプ96が送るオイルOの流量を制御する。オイルポンプ96に供給されるパルス電流のデューティ比が大きいほど、オイルポンプ96の出力は大きくなり、オイルポンプ96が送るオイルOの流量は大きくなる。オイルポンプ96に供給されるパルス電流のデューティ比が小さいほど、オイルポンプ96の出力は小さくなり、オイルポンプ96が送るオイルOの流量は小さくなる。オイルポンプ96が送るオイルOの流量は、例えば、オイルポンプ96に供給されるパルス電流のデューティ比に比例する。
 ここで、例えば、駆動装置1の消費電力を低減すること、およびモータ2を好適に冷却すること等の観点から、オイルポンプ96をより効率よく制御することが求められていた。これに対して、本実施形態によれば、制御部70はインバータユニット8に設けられ、かつ、制御部70には、温度センサ71の検出結果が送られる。つまり、温度センサ71の検出結果が送られる制御部70によって、直接的にオイルポンプ96を制御できる。そのため、例えば制御部70から温度センサ71の検出結果を車両制御装置140に送り、オイルポンプ96の制御を車両制御装置140が行う場合に比べて、モータ2の温度に基づくオイルポンプ96の制御の応答性を向上できる。これにより、オイルポンプ96の制御を車両制御装置140が行う場合に比べて、オイルポンプ96をより効率よく制御できる。したがって、駆動装置1の消費電力を低減でき、かつ、オイルポンプ96によってモータ2を好適に冷却できる。
 なお、駆動装置1は、オイルポンプ96から送られるオイルOの流量を検出可能な流量センサを備えてもよい。この場合、制御部70は、流量センサの検出結果に基づいて、オイルポンプ96の出力を調整し、オイルポンプ96から送られるオイルOの流量を所望する流量に調整してもよい。
 図5に示すように、本実施形態のステップS4におけるオイルポンプ96の流量制御は、ステップS4a~S4eを含む。ステップS4aにおいて制御部70は、モータ2の温度に基づいて、オイルポンプ96の動作モードを決定し、決定した動作モードでオイルポンプ96を駆動する。具体的に、制御部70は、モータ2の温度を温度センサ71に基づいて取得し、モータ2の温度に基づいて、オイルポンプ96の動作モードを決定する。図6に示すように、本実施形態においてオイルポンプ96の動作モードは、第1モードCM1と、第2モードCM2と、第3モードCM3と、第1線形変化モードLM1と、第2線形変化モードLM2と、を含む。
 本実施形態において制御部70は、温度センサ71に基づいて得られたモータ2の温度が、所定の第1温度範囲TR1内の温度である場合に、オイルポンプ96の動作モードを第1モードCM1にする。図6の例では、第1温度範囲TR1は、80℃以下の温度範囲である。第1モードCM1において制御部70は、例えば、オイルポンプ96に送られるパルス電流のデューティ比を一定の値DR1にする。オイルポンプ96に供給されるパルス電流のデューティ比が値DR1の場合、オイルポンプ96が送るオイルOの流量は、例えば、第1流量になる。第1流量は、例えば、車両が通常の状態において走行する場合に、モータ2に送られるオイルOの流量として予め決められた流量である。
 本実施形態において制御部70は、温度センサ71に基づいて得られたモータ2の温度が、第2温度範囲TR2内の温度である場合に、オイルポンプ96の動作モードを第2モードCM2にする。第2温度範囲TR2は、第1温度範囲TR1よりも温度が高い温度範囲である。第2温度範囲TR2は、例えば、第1温度範囲TR1よりも狭い。図6の例では、第2温度範囲TR2は、100℃以上、130℃以下の温度範囲である。
 本実施形態において第1温度範囲TR1と第2温度範囲TR2とは、互いに間隔を空けて設けられる。本実施形態において第2温度範囲TR2内の最低温度と第1温度範囲TR1内の最高温度との差は、5℃以上、30℃以下である。より詳細には、本実施形態において第2温度範囲TR2内の最低温度と第1温度範囲TR1内の最高温度との差は、10℃以上、20℃以下である。図6の例では、第1温度範囲TR1内の最高温度は80℃であり、第2温度範囲TR2内の最低温度は100℃である。つまり、図6の例では、第2温度範囲TR2内の最低温度と第1温度範囲TR1内の最高温度との差は、20℃である。
 第2モードCM2において制御部70は、例えば、オイルポンプ96に供給されるパルス電流のデューティ比を一定の値DR2にする。値DR2は、値DR1よりも高い値である。オイルポンプ96に供給されるパルス電流のデューティ比が値DR2の場合、オイルポンプ96が送るオイルOの流量は、例えば、第1流量よりも大きい第2流量になる。このように、第2モードCM2におけるオイルポンプ96の出力は、第1モードCM1におけるオイルポンプ96の出力よりも大きい。
 本実施形態において制御部70は、温度センサ71に基づいて得られたモータ2の温度が、第3温度範囲TR3内の温度である場合に、オイルポンプ96の動作モードを第3モードCM3にする。第3温度範囲TR3は、第2温度範囲TR2よりも温度が高い温度範囲である。第3温度範囲TR3は、例えば、第2温度範囲TR2よりも広い。図6の例では、第3温度範囲TR3は、140℃以上の温度範囲である。
 本実施形態において第2温度範囲TR2と第3温度範囲TR3とは、互いに間隔を空けて設けられる。本実施形態において第3温度範囲TR3内の最低温度と第2温度範囲TR2内の最高温度との差は、5℃以上、30℃以下である。より詳細には、本実施形態において第3温度範囲TR3内の最低温度と第2温度範囲TR2内の最高温度との差は、10℃以上、20℃以下である。図6の例では、第2温度範囲TR2内の最高温度は130℃であり、第3温度範囲TR3内の最低温度は140℃である。つまり、図6の例では、第3温度範囲TR3内の最低温度と第2温度範囲TR2内の最高温度との差は、10℃である。
 第3モードCM3において制御部70は、例えば、オイルポンプ96に供給されるパルス電流のデューティ比を一定の値DR3にする。値DR3は、値DR2よりも高い値である。値DR3と値DR2との差は、例えば、値DR2と値DR1との差よりも小さい。オイルポンプ96に供給されるパルス電流のデューティ比が値DR3の場合、オイルポンプ96が送るオイルOの流量は、例えば、第2流量よりも大きい第3流量になる。このように、第3モードCM3におけるオイルポンプ96の出力は、第2モードCM2におけるオイルポンプ96の出力よりも大きい。
 以上のように、本実施形態によれば、オイルポンプ96の動作モードとして、第1モードCM1、第2モードCM2、および第3モードCM3が設けられ、オイルポンプ96の出力は、第1モードCM1、第2モードCM2、第3モードCM3の順で大きくなる。また、制御部70は、モータ2の温度が第1温度範囲TR1内の場合にオイルポンプ96の動作モードを第1モードCM1にし、モータ2の温度が第1温度範囲TR1よりも高い第2温度範囲TR2内の場合にオイルポンプ96の動作モードを第2モードCM2にし、モータ2の温度が第2温度範囲TR2よりも高い第3温度範囲TR3内の場合にオイルポンプ96の動作モードを第3モードCM3にする。そのため、モータ2の温度が高くなった場合に、オイルポンプ96の動作モードが、オイルポンプ96の出力が大きい動作モードに切り換えられる。これにより、モータ2の温度が高くなった場合に、モータ2に送られるオイルOの流量を好適に増加できる。したがって、モータ2を好適に冷却できる。また、モータ2の温度が低くなった場合にはオイルポンプ96の出力を小さくできるため、オイルポンプ96をエネルギ効率よく駆動することができる。つまり、オイルポンプ96をより効率よく制御できる。
 上述したオイルポンプ96の各動作モードが実行される各温度範囲は、例えば、駆動装置1が搭載される車両の走行状態の変化に起因したモータ2の温度の変化に基づいて決められる。第1温度範囲TR1は、例えば、気温が常温以下の環境において車両が平地を走行する際におけるモータ2の温度範囲に基づいて決められる。第2温度範囲TR2は、例えば、気温が常温以下の環境において車両が上り坂を走行する際におけるモータ2の温度
範囲に基づいて決められる。第3温度範囲TR3は、例えば、気温が常温よりも高い環境において車両が上り坂を走行する際におけるモータ2の温度範囲に基づいて決められる。常温は、例えば、JIS Z 8703に規定された5℃以上、35℃以下の温度範囲である。
 このように、車両の走行状態の変化に起因したモータ2の温度変化に基づいて、各動作モードが実行される温度範囲を決めることで、所定の温度幅、例えば10℃ごとに動作モードを設ける場合よりも、オイルポンプ96の動作モードの数を少なくしやすい。そのため、所定の温度幅ごとに動作モードを設ける場合よりも、オイルポンプ96の動作モードの切り換えが起こりにくい。これにより、オイルポンプ96の出力が頻繁に変化することを抑制でき、オイルポンプ96に負荷が掛かりにくくできる。したがって、オイルポンプ96をより効率よく制御できる。
 本実施形態において制御部70は、温度センサ71に基づいて得られたモータ2の温度が、第1中間温度範囲TRa内の温度である場合に、オイルポンプ96の動作モードを第1線形変化モードLM1にする。第1中間温度範囲TRaは、第1温度範囲TR1よりも温度が高く、かつ、第2温度範囲TR2よりも温度が低い温度範囲である。つまり、第1中間温度範囲TRaは、第1温度範囲TR1と第2温度範囲TR2との間の温度範囲である。第1中間温度範囲TRaは、例えば、第2温度範囲TR2よりも狭い。図6の例では、第1中間温度範囲TRaは、80℃よりも高く、100℃よりも低い温度範囲である。
 第1線形変化モードLM1において制御部70は、オイルポンプ96に供給されるパルス電流のデューティ比をモータ2の温度変化に応じて線形に変化させる。第1線形変化モードLM1においてオイルポンプ96に供給されるパルス電流のデューティ比は、モータ2の温度が第1温度範囲TR1の最高温度から第2温度範囲TR2の最低温度に向かって大きくなるのに従って、第1モードCM1におけるデューティ比の値DR1から第2モードCM2におけるデューティ比の値DR2まで線形に大きくなる。
 このように、本実施形態において制御部70は、温度センサ71に基づいて得られたモータ2の温度が第1温度範囲TR1よりも高く、かつ、第2温度範囲TR2よりも低い場合、温度センサ71に基づいて得られたモータ2の温度が高くなるのに従って、オイルポンプ96の出力を線形に上昇させる。そのため、モータ2の温度が第1温度範囲TR1と第2温度範囲TR2との間の温度である場合に、モータ2の温度に応じて好適にオイルポンプ96からモータ2に送られるオイルOの流量を制御できる。これにより、モータ2をより好適に冷却できる。また、オイルポンプ96をエネルギ効率よく駆動することができる。
 また、第1中間温度範囲TRaが設けられることで、第1温度範囲TR1と第2温度範囲TR2とが間隔を空けて設けられる。そのため、モータ2の温度が多少変動しても、オイルポンプ96の動作モードが第1モードCM1と第2モードCM2との間で切り換えられにくくなる。これにより、例えば短い時間内で第1モードCM1と第2モードCM2とが頻繁に切り換わることを抑制できる。したがって、オイルポンプ96に負荷が掛かることをより抑制でき、かつ、オイルポンプ96の動作が不安定になることを抑制できる。
 また、本実施形態によれば、第2温度範囲TR2内の最低温度と第1温度範囲TR1内の最高温度との差は、5℃以上、30℃以下である。そのため、第1中間温度範囲TRaを好適な範囲にできる。具体的には、第1中間温度範囲TRaが狭くなり過ぎることを抑制できる。そのため、モータ2の温度が多少変動しても、オイルポンプ96の動作モードが第1モードCM1と第2モードCM2との間でより切り換えられにくくできる。これにより、オイルポンプ96に負荷が掛かることをより好適に抑制でき、かつ、オイルポンプ
96の動作が不安定になることをより抑制できる。また、第1中間温度範囲TRaが広くなり過ぎることを抑制できる。そのため、モータ2の温度が或る程度大きく変化する場合等に、第1モードCM1と第2モードCM2との間でオイルポンプ96の動作モードが切り換えられる際の応答性が低下することを抑制できる。
 第2温度範囲TR2内の最低温度と第1温度範囲TR1内の最高温度との差は、10℃以上、20℃以下であることがより好ましい。第2温度範囲TR2内の最低温度と第1温度範囲TR1内の最高温度との差をこのような数値範囲内にすることで、オイルポンプ96に負荷が掛かることをさらに好適に抑制でき、かつ、オイルポンプ96の動作が不安定になることをさらに抑制できる。また、第1モードCM1と第2モードCM2との間でオイルポンプ96の動作モードが切り換えられる際の応答性が低下することをさらに抑制できる。
 本実施形態において制御部70は、温度センサ71に基づいて得られたモータ2の温度が、第2中間温度範囲TRb内の温度である場合に、オイルポンプ96の動作モードを第2線形変化モードLM2にする。第2中間温度範囲TRbは、第2温度範囲TR2よりも温度が高く、かつ、第3温度範囲TR3よりも温度が低い温度範囲である。つまり、第2中間温度範囲TRbは、第2温度範囲TR2と第3温度範囲TR3との間の温度範囲である。第2中間温度範囲TRbは、例えば、第2温度範囲TR2および第1中間温度範囲TRaよりも狭い。図6の例では、第2中間温度範囲TRbは、130℃よりも高く、140℃よりも低い温度範囲である。本実施形態において第1温度範囲TR1と第1中間温度範囲TRaと第2温度範囲TR2と第2中間温度範囲TRbと第3温度範囲TR3とは、この順に連続して設けられる。
 第2線形変化モードLM2において制御部70は、オイルポンプ96に供給されるパルス電流のデューティ比をモータ2の温度変化に応じて線形に変化させる。第2線形変化モードLM2においてオイルポンプ96に供給されるパルス電流のデューティ比は、モータ2の温度が第2温度範囲TR2の最高温度から第3温度範囲TR3の最低温度に向かって大きくなるのに従って、第2モードCM2におけるデューティ比の値DR2から第3モードCM3におけるデューティ比の値DR3まで線形に大きくなる。このように、本実施形態において制御部70は、温度センサ71に基づいて得られたモータ2の温度が第2温度範囲TR2よりも高く、かつ、第3温度範囲TR3よりも低い場合、温度センサ71に基づいて得られたモータ2の温度が高くなるのに従って、オイルポンプ96の出力を線形に上昇させる。
 このように、本実施形態において制御部70は、温度センサ71に基づいて得られたモータ2の温度が第2温度範囲TR2よりも高く、かつ、第3温度範囲TR3よりも低い場合、温度センサ71に基づいて得られたモータ2の温度が高くなるのに従って、オイルポンプ96の出力を線形に上昇させる。そのため、モータ2の温度が第2温度範囲TR2と第3温度範囲TR3との間の温度である場合に、モータ2の温度に応じて好適にオイルポンプ96からモータ2に送られるオイルOの流量を制御できる。これにより、モータ2をより好適に冷却できる。また、オイルポンプ96をエネルギ効率よく駆動することができる。
 また、第2中間温度範囲TRbが設けられることで、第2温度範囲TR2と第3温度範囲TR3とが間隔を空けて設けられる。そのため、モータ2の温度が多少変動しても、オイルポンプ96の動作モードが第2モードCM2と第3モードCM3との間で切り換えられにくくなる。これにより、例えば短い時間内で第2モードCM2と第3モードCM3とが頻繁に切り換わることを抑制できる。したがって、オイルポンプ96に負荷が掛かることをより抑制でき、かつ、オイルポンプ96の動作が不安定になることを抑制できる。
 また、本実施形態によれば、第3温度範囲TR3内の最低温度と第2温度範囲TR2内の最高温度との差は、5℃以上、30℃以下である。そのため、第2中間温度範囲TRbを好適な範囲にできる。具体的には、第2中間温度範囲TRbが狭くなり過ぎることを抑制できる。そのため、モータ2の温度が多少変動しても、オイルポンプ96の動作モードが第2モードCM2と第3モードCM3との間でより切り換えられにくくできる。これにより、オイルポンプ96に負荷が掛かることをより好適に抑制でき、かつ、オイルポンプ96の動作が不安定になることをより抑制できる。また、第2中間温度範囲TRbが広くなり過ぎることを抑制できる。そのため、モータ2の温度が或る程度大きく変化する場合等に、第2モードCM2と第3モードCM3との間でオイルポンプ96の動作モードが切り換えられる際の応答性が低下することを抑制できる。
 第3温度範囲TR3内の最低温度と第2温度範囲TR2内の最高温度との差は、10℃以上、20℃以下であることがより好ましい。第3温度範囲TR3内の最低温度と第2温度範囲TR2内の最高温度との差をこのような数値範囲内にすることで、オイルポンプ96に負荷が掛かることをさらに好適に抑制でき、かつ、オイルポンプ96の動作が不安定になることをさらに抑制できる。また、第2モードCM2と第3モードCM3との間でオイルポンプ96の動作モードが切り換えられる際の応答性が低下することをさらに抑制できる。
 図5に示すように、ステップS4bにおいて制御部70は、温度センサ71に基づいて得られたモータ2の温度が所定の第1温度T1よりも低いか否かを判断する。第1温度T1は、第1温度範囲TR1内の温度である。第1温度T1の値は、例えば、-20℃以上、-5℃以下である。図6の例では、第1温度T1の値は、-5℃である。
 ステップS4bにおいてモータ2の温度が第1温度T1以上と判断した場合、制御部70は、ステップS4aを繰り返す。一方、ステップS4bにおいてモータ2の温度が第1温度T1よりも低いと判断した場合、制御部70は、ステップS4cを行う。ステップS4cにおいて制御部70は、モータ2の出力を制限する。すなわち、本実施形態において制御部70は、温度センサ71に基づいて得られたモータ2の温度が、第1温度範囲TR1内の所定の第1温度T1よりも低い場合に、モータ2の出力を制限する。
 本実施形態において温度センサ71の検出結果に基づいて制限されるモータ2の出力は、モータ2のトルクおよびモータ2のトルク変化率を含む。モータ2のトルクおよびモータ2のトルク変化率が制限されることで、車両の加速度および加速度の急激な上昇が制限される。本実施形態において温度センサ71の検出結果に基づいたモータ2の出力の制限は、減速装置4および差動装置5における各ギヤの噛み合いにおいて、潤滑油としてのオイルOが供給されなくても、ギヤが焼きつくことを抑制できる程度の制限である。
 ここで、モータ2の温度が比較的低い場合には、車両が走行する環境が比較的低温となっている。そのため、ハウジング6に収容されるオイルOも比較的低温となり、オイルOの粘度が比較的高くなる。オイルOの粘度が高くなり過ぎると、伝達装置3に供給されたオイルOが噛み合うギヤ同士の間に油膜を作りにくくなる。また、リングギヤ51によってオイルOをかき上げにくいため、伝達装置3に供給されるオイルO自体の量も少なくなる。これらにより、伝達装置3においてギヤ同士が擦れて焼きつきが生じる虞があった。
 これに対して、本実施形態によれば、上述したように制御部70は、温度センサ71の検出結果に基づいて、モータ2の出力を制限する。そのため、車両が走行する環境が比較的低温である場合にモータ2の出力を制限することで、伝達装置3のギヤ同士の間に加えられる負荷を小さくすることが可能となる。これにより、伝達装置3においてギヤ同士が
擦れて焼きつきが生じることを抑制できる。したがって、比較的低温の環境下において駆動装置1に不具合が生じることを抑制できる。
 本実施形態では、制御部70は、温度センサ71に基づいて得られたモータ2の温度が、所定の第1温度T1よりも低い場合に、モータ2の出力を制限する。そのため、比較的低温の環境下においてモータ2の出力を制限することができ、駆動装置1に不具合が生じることを抑制できる。
 また、本実施形態によれば、温度センサ71の検出結果に基づいて制限されるモータ2の出力は、モータ2のトルクを含む。そのため、伝達装置3のギヤ同士の間に加えられる負荷を小さくでき、ギヤ同士が擦れて焼きつくことを好適に抑制できる。
 また、本実施形態によれば、温度センサ71の検出結果に基づいて制限されるモータ2の出力は、モータ2のトルク変化率を含む。そのため、モータ2のトルクが急激に上昇することが抑制され、伝達装置3において互いに噛み合うギヤ同士が強く衝突することを抑制できる。これにより、伝達装置3のギヤが焼きつくことをより好適に抑制できる。
 本実施形態において温度センサ71の検出結果に基づいて制限されるモータ2の出力は、モータ2の回転数を含まない。そのため、比較的低温の環境下において、車両の加速が制限される一方で、車両の速度は制限されない。これにより、徐々に車両の速度を大きくすることができる。したがって、駆動装置1に不具合が生じることを抑制しつつ、車両を円滑に走行させることができる。
 本実施形態では、第1温度範囲TR1は、第1温度T1よりも低い温度も含む。つまり、本実施形態では、モータ2の温度が第1温度T1より低くなっても、オイルポンプ96は、第1モードCM1で動作し続ける。これにより、比較的低温の環境下においても、オイルポンプ96によってオイルOが駆動装置1内で循環し続ける。したがって、比較的低温の環境下においても、オイルポンプ96によって伝達装置3にオイルOを供給することができる。そのため、伝達装置3においてギヤ同士が擦れて焼きつきが生じることをより抑制できる。また、オイルOが駆動装置1内を循環することで、オイルOにはモータ2で生じる熱等が加えられる。そのため、オイルOの温度が低くなり過ぎることを抑制でき、オイルOの粘度が高くなり過ぎることを抑制できる。
 図5に示すように、ステップS4cにおいてモータ2の出力を制限した後、制御部70は、ステップS4dを行う。ステップS4dにおいて制御部70は、温度センサ71に基づいて得られたモータ2の温度が第2温度T2以上か否かを判断する。第2温度T2は、第1温度T1よりも高い温度である。第2温度T2は、第1温度範囲TR1内の温度である。第2温度T2の値は、例えば、-10℃以上、5℃以下である。図6の例では、第2温度T2の値は、5℃である。
 ステップS4dにおいてモータ2の温度が第2温度T2よりも低いと判断した場合、制御部70は、モータ2の出力が制限された状態を維持する。一方、ステップS4dにおいてモータ2の温度が第2温度T2以上であると判断した場合、制御部70は、ステップS4eを行う。ステップS4eにおいて制御部70は、モータ2の出力の制限を解除する。すなわち、本実施形態において制御部70は、モータ2の出力を制限した後、温度センサ71に基づいて得られたモータ2の温度が第2温度T2以上である場合に、モータ2の出力の制限を解除する。
 ここで、モータ2の温度が比較的高くなった場合、モータ2からの発熱により駆動装置1全体の温度も上昇する。そのため、オイルOの温度も上昇し、オイルOの粘度も比較的
低くなる。これにより、伝達装置3における噛み合うギヤ同士の間に好適に油膜を設けることができる。したがって、モータ2の出力の制限を解除しても、ギヤが焼きつくことを抑制できる。
 なお、モータ2の温度が比較的高くなった場合とは、車両が走行する環境の温度が上昇した場合、および車両が走行する環境が比較的低温の環境のままで、モータ2の回転数の上昇等に伴って、モータ2の温度が上昇した場合等を含む。
 ステップS4eの後、制御部70は、ステップS4aに戻る。以降、制御部70は、イグニッションスイッチIGSがOFFにされるまでの間、上述したステップS4における各ステップS4a~S4eを繰り返し実行する。なお、ステップS4c,S4d,S4eにおいてオイルポンプ96の動作モードは、第1モードCM1である。
 図3に示すように、制御部70は、ステップS5において車両のイグニッションスイッチIGSがOFFにされると、ステップS6を行う。ステップS6において制御部70は、アフターラン制御を行う。図7に示すように、本実施形態のステップS6におけるアフターラン制御は、ステップS6a~S6fを含む。ステップS6aにおいて制御部70は、モータ2の駆動を停止する。
 次に、ステップS6bにおいて制御部70は、オイルポンプ96、冷媒ポンプ120、および送風装置130を駆動する。すなわち、本実施形態において制御部70は、車両のイグニッションスイッチIGSがOFFされた後において、オイルポンプ96を駆動する。そのため、オイルポンプ96によってモータ2にオイルOが送られることで、モータ2が冷却される。したがって、イグニッションスイッチIGSがOFFされた後においてモータ2を冷却できる。
 ここで、駆動装置1が搭載される車両においては、イグニッションスイッチIGSがOFFにされた後に、比較的短い間隔で再びイグニッションスイッチがONにされる場合がある。この場合、再びイグニッションスイッチがONにされた際に駆動装置1に搭載されたモータ2の温度が比較的高いままの状態となっている場合があり、再びイグニッションスイッチIGSがONにされた後において、駆動装置1による出力を好適に得られない場合があった。具体的には、例えば、モータ2の温度がすぐに高温となり、モータ2のトルク等の出力が制限される場合がある。この場合、再びイグニッションスイッチIGSがONにされた後において、車両の加速を好適に得られない場合があった。
 これに対して、本実施形態によれば、上述したように制御部70は、車両のイグニッションスイッチIGSがOFFされた後において、オイルポンプ96を駆動することで、モータ2を冷却できる。そのため、比較的短い間隔で再びイグニッションスイッチがONにされる前に、モータ2の温度を比較的低くしておける。したがって、イグニッションスイッチIGSがOFFにされた後に、比較的短い間隔でイグニッションスイッチIGSがONにされた場合であっても、駆動装置1による出力を好適に得やすい。
 また、本実施形態によれば、制御部70は、車両のイグニッションスイッチIGSがOFFされた後において、オイルポンプ96、冷媒ポンプ120、および送風装置130を駆動する。これにより、送風装置130によってラジエータ110内の冷媒Wが冷却され、冷却された冷媒Wが冷媒ポンプ120によってオイルクーラ97に送られる。そして、冷媒Wによってオイルクーラ97で冷却されたオイルOが、オイルポンプ96によってモータ2に送られることで、モータ2がより好適に冷却される。したがって、イグニッションスイッチIGSがOFFされた後においてモータ2をより好適に冷却できる。そのため、比較的短い間隔で再びイグニッションスイッチがONにされる前に、モータ2の温度を
より好適に低くしておける。これにより、イグニッションスイッチIGSがOFFにされた後に、比較的短い間隔でイグニッションスイッチIGSがONにされた場合であっても、駆動装置1による出力をより好適に得やすい。
 ステップS6bにおいて制御部70は、オイルポンプ96、冷媒ポンプ120、および送風装置130のうちイグニッションスイッチIGSがOFFにされた際に駆動していた機器については、駆動を継続する。一方、ステップS6bにおいて制御部70は、オイルポンプ96、冷媒ポンプ120、および送風装置130のうちイグニッションスイッチIGSがOFFにされた際に停止していた機器については、イグニッションスイッチIGSがOFFにされた直後に駆動を開始する。例えば、本実施形態においてイグニッションスイッチIGSがONにされた状態では、オイルポンプ96、冷媒ポンプ120、および送風装置130は、駆動された状態である。そのため、ステップS6bにおいて制御部70は、オイルポンプ96の駆動、冷媒ポンプ120の駆動、および送風装置130の駆動を継続する。
 本実施形態のステップS6bにおいて制御部70は、車両制御装置140に対して、冷媒ポンプ120および送風装置130を駆動させる信号を送信する。これにより、車両制御装置140が冷媒ポンプ120および送風装置130を駆動する。すなわち、本実施形態において制御部70は、イグニッションスイッチIGSがOFFにされた後において、車両制御装置140を介して冷媒ポンプ120および送風装置130を駆動する。
 次に、ステップS6cにおいて制御部70は、イグニッションスイッチIGSがOFFにされてから第2所定時間が経過したか否かを判断する。第2所定時間は、例えば、10秒以上、40秒以下である。第2所定時間は、モータ2の駆動が停止された状態で、オイルポンプ96、冷媒ポンプ120、および送風装置130を駆動してモータ2を冷却した場合に、モータ2の温度変化が生じなくなる程度の時間である。第2所定時間は、例えば、予め実験等により求められた値である。
 ステップS6cにおいて第2所定時間が経過したと判断した場合、制御部70は、ステップS6dを行う。ステップS6dにおいて制御部70は、オイルポンプ96の駆動、冷媒ポンプ120の駆動、および送風装置130の駆動を停止する。すなわち、制御部70は、イグニッションスイッチIGSがOFFにされてから所定の時間が経過した場合に、オイルポンプ96の駆動、冷媒ポンプ120の駆動、および送風装置130の駆動を停止する。本実施形態において制御部70は、駆動する際と同様に、車両制御装置140を介して冷媒ポンプ120の駆動および送風装置130の駆動を停止する。
 一方、ステップS6cにおいて第2所定時間が経過していないと判断した場合、制御部70は、ステップS6eを行う。ステップS6eにおいて制御部70は、温度センサ71に基づいて得られたモータ2の温度が第4温度以下か否かを判断する。第4温度は、比較的高い温度である。第4温度の値は、例えば、上述した第3温度の値と同じである。なお、第4温度の値は、第3温度の値と異なってもよい。
 ステップS6eにおいてモータ2の温度が第4温度よりも高いと判断した場合、制御部70は、オイルポンプ96の駆動、冷媒ポンプ120の駆動、および送風装置130の駆動を継続する。これにより、モータ2の温度を、第4温度以下にできる。
 一方、ステップS6eにおいてモータ2の温度が第4温度以下であると判断した場合、制御部70は、ステップS6fを行う。ステップS6fにおいて制御部70は、単位時間当たりのモータ2の温度変化が所定の閾値以下か否かを判断する。所定の閾値は、例えば、数℃程度である。
 単位時間当たりのモータ2の温度変化は、モータ2の温度が上昇する場合と、モータ2の温度が低下する場合と、が考えられる。例えば、モータ2の出力が急激に大きくなった直後にイグニッションスイッチIGSがOFFにされた場合等においては、モータ2の駆動の停止後に、遅れてモータ2の温度が上昇する場合がある。
 ステップS6fにおいて単位時間当たりのモータ2の温度変化が所定の閾値よりも大きいと判断した場合、制御部70は、オイルポンプ96の駆動、冷媒ポンプ120の駆動、および送風装置130の駆動を継続する。これにより、単位時間当たりの温度変化が比較的大きい場合に、モータ2の冷却を継続できる。
 一方、ステップS6fにおいて単位時間当たりのモータ2の温度変化が所定の閾値以下であると判断した場合、制御部70は、ステップS6dにおいて、オイルポンプ96の駆動、冷媒ポンプ120の駆動、および送風装置130の駆動を停止する。以上により、ステップS6におけるアフターラン制御が終了する。
 本実施形態によれば、上述したステップS6c,S6e,S6fのようにして、制御部70は、イグニッションスイッチIGSがOFFにされた後において、温度センサ71の検出結果に基づいて、オイルポンプ96の駆動、冷媒ポンプ120の駆動、および送風装置130の駆動を停止する。そのため、モータ2の温度が好適に低下するまで、オイルポンプ96、冷媒ポンプ120、および送風装置130を駆動し、モータ2を好適に冷却できる。これにより、イグニッションスイッチIGSがOFFにされた後に、比較的短い間隔でイグニッションスイッチIGSがONにされた場合であっても、駆動装置1による出力をより好適に得やすい。
 また、本実施形態によれば、上述したステップS6fのようにして、制御部70は、イグニッションスイッチIGSがOFFにされた後において、温度センサ71に基づいて得られたモータ2の温度が、所定の温度、すなわち第4温度以下であり、かつ、単位時間当たりのモータ2の温度変化が所定の閾値以下である場合に、オイルポンプ96の駆動、冷媒ポンプ120の駆動、および送風装置130の駆動を停止する。そのため、モータ2の温度が比較的低くなっても、モータ2の温度が比較的大きく変動している間にはモータ2の冷却を継続しつつ、モータ2の温度が変化しなくなってきた場合にモータ2の冷却を終了できる。これにより、イグニッションスイッチIGSがOFFにされた後において、オイルポンプ96等によって冷却できる最大限までモータ2を冷却しやすく、かつ、過剰にオイルポンプ96等を駆動し続けることを抑制できる。したがって、イグニッションスイッチIGSがOFFされた後のアフターラン制御において、モータ2の温度を好適に低下させることができ、かつ、消費電力を低減できる。
 また、例えば、温度センサ71に不具合が生じた場合、実際のモータ2の温度が十分に低下していても、温度センサ71に基づいて得られたモータ2の温度が実際の温度と異なり、上述した停止条件を満たさない虞がある。この場合、必要以上にオイルポンプ96、冷媒ポンプ120、および送風装置130を駆動することになり、アフターラン制御における消費電力が増大する虞がある。
 これに対して、本実施形態によれば、制御部70は、イグニッションスイッチIGSがOFFにされてから第2所定時間が経過した場合に、オイルポンプ96の駆動、冷媒ポンプ120の駆動、および送風装置130の駆動を停止する。そのため、温度センサ71に不具合が生じた場合であっても、第2所定時間後にはオイルポンプ96の駆動、冷媒ポンプ120の駆動、および送風装置130の駆動を停止することができる。これにより、必要以上にオイルポンプ96、冷媒ポンプ120、および送風装置130を駆動することを
抑制でき、アフターラン制御における消費電力が増大することを抑制できる。
<第2実施形態>
 図8に示すように、本実施形態のステップS4Aにおけるオイルポンプ96の流量制御は、ステップS4Aa~S4Agを含む。図9に示すように、本実施形態においてオイルポンプ96の動作モードは、第1モードCM1と、第2モードCM2と、第1線形変化モードLM1と、を含む。本実施形態においてオイルポンプ96の動作モードは、第1実施形態と異なり、第3モードCM3および第2線形変化モードLM2を含まない。図8に示すように、ステップS4Aaにおいて制御部70は、オイルポンプ96の動作モードを第1モードCM1とし、オイルポンプ96が送るオイルO流量を第1流量にする。
 次に、ステップS4Abにおいて制御部70は、モータ2の温度が第3温度T3以下か否かを判断する。第3温度T3は、比較的高い温度である。第3温度T3の値は、例えば、80℃以上、100℃以下である。図9の例では、第3温度T3の値は、例えば、80℃である。
 ステップS4Abにおいてモータ2の温度が第3温度T3よりも高いと判断した場合、制御部70は、ステップS4Acを行う。ステップS4Acにおいて制御部70は、モータ2の温度およびモータ2の温度変化に基づいて、オイルポンプ96が送るオイルOの流量を増加させる。これにより、モータ2の温度が比較的高い場合に、モータ2に送られるオイルOの流量を増加させることができ、モータ2を好適に冷却できる。
 具体的にステップS4Acにおいて制御部70は、単位時間当たりのモータ2の温度変化が所定の値以下である場合、オイルポンプ96の動作モードを第1線形変化モードLM1にし、オイルポンプ96が送るオイルOの流量を、第1流量から第2流量までの間で、モータ2の温度に応じて線形に変化させる。これにより、モータ2の温度に応じて、モータ2に送られるオイルOを増加させる量を調整できる。したがって、モータ2をエネルギ効率よく好適に冷却できる。
 一方、ステップS4Acにおいて制御部70は、単位時間当たりのモータ2の温度変化が所定の値よりも大きい場合、第1線形変化モードLM1を介さずに、オイルポンプ96の動作モードを第1モードCM1から第2モードCM2に移行させる。これにより、制御部70は、オイルポンプ96が送るオイルOの流量を、第1流量よりも大きい第2流量にする。したがって、モータ2の急激な温度上昇を抑制でき、モータ2を好適に冷却できる。
 なお、図9に示すグラフは、ステップS4Acにおいて単位時間当たりのモータ2の温度変化が所定の値以下である場合について示している。ステップS4Acにおいて単位時間当たりのモータ2の温度変化が所定の値よりも大きい場合には、第1線形変化モードLM1が設けられず、第1モードCM1が実行されるモータ2の温度範囲と第2モードCM2が実行されるモータ2の温度範囲とが第3温度T3を境界として連続して設けられる。
 図8に示すように、ステップS4Abにおいてモータ2の温度が第3温度T3以下と判断した場合、制御部70は、ステップS4Adを行う。ステップS4Adにおいて制御部70は、温度センサ71に基づいて得られたモータ2の温度が所定の第1温度T1よりも低いか否かを判断する。第1温度T1は、第3温度T3よりも低い温度である。第1温度T1の値は、例えば、-20℃以上、-5℃以下である。
 ステップS4Adにおいてモータ2の温度が第1温度T1以上と判断した場合、制御部70は、ステップS4Aaにおいてオイルポンプ96からモータ2に送られるオイルOの
流量を第1流量に維持、または第1流量に戻して、ステップS4Abを再び行う。
 一方、ステップS4Adにおいてモータ2の温度が第1温度T1よりも低いと判断した場合、制御部70は、ステップS4Aeを行う。ステップS4Aeにおいて制御部70は、オイルポンプ96の駆動を停止し、モータ2の出力を制限する。すなわち、本実施形態において制御部70は、温度センサ71に基づいて得られたモータ2の温度が、所定の第1温度T1よりも低い場合に、オイルポンプ96の駆動を停止する。このように、本実施形態において第1モードCM1は、モータ2の温度が第1温度T1以上、第3温度T3以下の温度範囲内にある場合に実行される。
 また、本実施形態によれば、制御部70は、温度センサ71に基づいて得られたモータ2の温度が、所定の第1温度T1よりも低い場合に、オイルポンプ96の駆動を停止する。比較的低温の環境下においてオイルOの粘度が比較的高くなっていると、オイルポンプ96によってオイルOをモータ2に送りにくくなり、オイルポンプ96の負荷が大きくなる。そのため、オイルポンプ96の駆動を停止することで、オイルポンプ96に大きく負荷が加えられることを抑制でき、駆動装置1における消費電力を低減できる。一方、モータ2の温度が比較的低いため、オイルポンプ96によってオイルOを送らなくても、モータ2が熱によって不具合を起こすことが抑制される。したがって、モータ2の温度が比較的低い場合にオイルポンプ96の駆動を停止することで、モータ2に不具合が生じることを抑制しつつ、駆動装置1の消費電力を低減できる。
 図8に示すように、ステップS4Aeにおいてモータ2の出力を制限した後、制御部70は、ステップS4Afを行う。ステップS4Afにおいて制御部70は、温度センサ71に基づいて得られたモータ2の温度が第2温度T2以上か否かを判断する。第2温度T2は、第1温度T1よりも高く、第3温度T3よりも低い温度である。第2温度の値は、例えば、-10℃以上、5℃以下である。
 ステップS4Afにおいてモータ2の温度が第2温度T2よりも低いと判断した場合、制御部70は、オイルポンプ96の駆動が停止され、モータ2の出力が制限された状態を維持する。一方、ステップS4Afにおいてモータ2の温度が第2温度T2以上であると判断した場合、制御部70は、ステップS4Agを行う。ステップS4Agにおいて制御部70は、オイルポンプ96の駆動を再開し、モータ2の出力の制限を解除する。すなわち、本実施形態において制御部70は、モータ2の出力を制限した後、温度センサ71に基づいて得られたモータ2の温度が第2温度T2以上である場合に、オイルポンプ96の駆動を再開し、かつ、モータ2の出力の制限を解除する。
 ここで、モータ2の温度が比較的高くなった場合、オイルOの粘度が比較的低くなることで、オイルポンプ96によってオイルOを送ることが容易になる。そのため、オイルポンプ96の駆動を再開しても、オイルポンプ96に加えられる負荷を比較的小さくできる。また、オイルポンプ96から送られるオイルOによってモータ2を好適に冷却できる。
 ステップS4Agの後、制御部70は、ステップS4Aaに戻る。すなわち、本実施形態のステップS4Agにおいて駆動が再開された際のオイルポンプ96が送るオイルOの流量は、第1流量とされる。以降、制御部70は、イグニッションスイッチIGSがOFFにされるまでの間、上述したステップS4Aにおける各ステップS4Aa~S4Agを繰り返し実行する。
 本発明は上述の実施形態に限られず、他の構成および方法を採用することもできる。駆動装置の制御部は、回転センサの検出結果に基づいてモータの出力を制限する場合、どのような手順および条件によってモータの出力を制限してもよい。例えば、制御部は、回転
センサに基づいて得られたポンプ部の回転数が不規則に変動する場合等に、オイルポンプの動作が異常だと判断して、モータの出力を制限してもよい。回転センサの検出結果に基づいて制限されるモータの出力は、特に限定されず、モータのトルク変化率を含んでもよいし、モータの回転数を含まなくてもよいし、モータのトルクを含まなくてもよい。また、制御部によるオイルポンプの動作チェックは、車両のイグニッションスイッチがONにされた直後以外に行われてもよい。制御部によるオイルポンプの動作チェックは、車両のイグニッションスイッチがONにされてからOFFにされるまでの間において、定期的に行われてもよい。制御部は、回転センサの検出結果に基づいてモータの出力を制限しなくてもよい。
 駆動装置の制御部は、温度センサの検出結果に基づいてモータの出力を制限する場合、どのような手順および条件によってモータの出力を制限してもよい。例えば、制御部は、温度センサに基づいて得られたモータの温度が、比較的高温である場合に、モータの出力を制限してもよい。温度センサの検出結果に基づいて制限されるモータの出力は、特に限定されず、モータの回転数を含んでもよいし、モータのトルクを含まなくてもよいし、モータのトルク変化率を含まなくてもよい。制御部は、温度センサの検出結果に基づいてモータの出力を制限する場合に、オイルポンプの駆動を停止しなくてもよい。制御部は、温度センサに基づいて得られたモータの温度が第1温度以上で、かつ、第2温度よりも低い場合、モータの出力を制限せずに、オイルポンプの駆動を停止してもよい。この場合、制御部は、モータの温度が第2温度以上となった場合には、オイルポンプの駆動を再開し、モータの温度が第1温度よりも低くなった場合には、モータの出力を制限してもよい。
 駆動装置の制御部は、温度センサの検出結果に基づいてモータの出力を制限しなくてもよい。例えば、上述した第1実施形態の制御部70は、ステップS4においてモータ2の出力を制限しなくてもよい。この場合、ステップS4は、ステップS4b~S4eを含まず、例えば、ステップS4aのみからなる。
 駆動装置の制御部は、車両のイグニッションスイッチがOFFにされた後において、オイルポンプ、冷媒ポンプ、および送風装置を駆動する場合、どのような手順および条件でオイルポンプを駆動してもよい。例えば、制御部は、車両のイグニッションスイッチがOFFにされた後、一定の時間を空けた後に、オイルポンプ、冷媒ポンプ、および送風装置を駆動してもよい。また、制御部は、車両のイグニッションスイッチがOFFにされた後において、冷媒ポンプおよび送風装置を駆動しなくてもよい。制御部は、車両のイグニッションスイッチがOFFにされた後において、どのような条件でオイルポンプの駆動、冷媒ポンプの駆動、および送風装置の駆動を停止してもよい。制御部は、車両のイグニッションスイッチがOFFにされた後において、モータの温度によらず、オイルポンプの駆動、冷媒ポンプの駆動、および送風装置の駆動を停止してもよい。制御部は、車両のイグニッションスイッチがOFFにされた後において、オイルポンプを駆動しなくてもよい。
 本明細書において説明した各構成および各方法は、相互に矛盾しない範囲内において、適宜組み合わせることができる。
 1…駆動装置、2…モータ、3…伝達装置、4…減速装置、6…ハウジング、55…車軸、70…制御部、71…温度センサ、96…オイルポンプ、CM1…第1モード、CM2…第2モード、CM3…第3モード、O…オイル、T1…第1温度、T2…第2温度、T3…第3温度、TR1…第1温度範囲、TR2…第2温度範囲、TR3…第3温度範囲

Claims (13)

  1.  車両の車軸を回転させる駆動装置であって、
     モータと、
     前記モータに接続される減速装置を含む伝達装置と、
     前記モータおよび前記伝達装置を内部に収容するハウジングと、
     前記モータの温度を検出可能な温度センサと、
     前記モータを制御する制御部と、
     を備え、
     前記ハウジングの内部には、前記伝達装置に供給されるオイルが収容され、
     前記制御部は、前記温度センサの検出結果に基づいて、前記モータの出力を制限する、駆動装置。
  2.  前記温度センサの検出結果に基づいて制限される前記モータの出力は、前記モータのトルクを含む、請求項1に記載の駆動装置。
  3.  前記温度センサの検出結果に基づいて制限される前記モータの出力は、前記モータのトルク変化率を含む、請求項1または2に記載の駆動装置。
  4.  前記ハウジングの内部に収容されたオイルを前記モータに送るオイルポンプをさらに備え、
     前記制御部は、
      前記温度センサに基づいて得られた前記モータの温度が、所定の第1温度範囲内の温度である場合に、前記オイルポンプの動作モードを第1モードにし、
      前記温度センサに基づいて得られた前記モータの温度が、前記第1温度範囲よりも温度が高い第2温度範囲内の温度である場合に、前記オイルポンプの動作モードを第2モードにし、
      前記温度センサに基づいて得られた前記モータの温度が、前記第2温度範囲よりも温度が高い第3温度範囲内の温度である場合に、前記オイルポンプの動作モードを第3モードにし、
     前記第2モードにおける前記オイルポンプの出力は、前記第1モードにおける前記オイルポンプの出力よりも大きく、
     前記第3モードにおける前記オイルポンプの出力は、前記第2モードにおける前記オイルポンプの出力よりも大きい、請求項1から3のいずれか一項に記載の駆動装置。
  5.  車両の車軸を回転させる駆動装置であって、
     モータと、
     前記モータに接続される減速装置を含む伝達装置と、
     前記モータ、前記伝達装置、およびオイルを内部に収容するハウジングと、
     前記モータの温度を検出可能な温度センサと、
     前記モータを制御する制御部と、
     前記ハウジングの内部に収容されたオイルを前記モータに送るオイルポンプと、
     を備え、
     前記制御部は、
      前記温度センサに基づいて得られた前記モータの温度が、所定の第1温度範囲内の温度である場合に、前記オイルポンプの動作モードを第1モードにし、
      前記温度センサに基づいて得られた前記モータの温度が、前記第1温度範囲よりも温度が高い第2温度範囲内の温度である場合に、前記オイルポンプの動作モードを第2モードにし、
      前記温度センサに基づいて得られた前記モータの温度が、前記第2温度範囲よりも温度が高い第3温度範囲内の温度である場合に、前記オイルポンプの動作モードを第3モードにし、
     前記第2モードにおける前記オイルポンプの出力は、前記第1モードにおける前記オイルポンプの出力よりも大きく、
     前記第3モードにおける前記オイルポンプの出力は、前記第2モードにおける前記オイルポンプの出力よりも大きい、駆動装置。
  6.  前記制御部は、前記温度センサに基づいて得られた前記モータの温度が前記第1温度範囲よりも高く、かつ、前記第2温度範囲よりも低い場合、前記温度センサに基づいて得られた前記モータの温度が高くなるのに従って、前記オイルポンプの出力を線形に上昇させる、請求項4または5に記載の駆動装置。
  7.  前記第2温度範囲内の最低温度と前記第1温度範囲内の最高温度との差は、5℃以上、30℃以下である、請求項6に記載の駆動装置。
  8.  前記制御部は、前記温度センサに基づいて得られた前記モータの温度が前記第2温度範囲よりも高く、かつ、前記第3温度範囲よりも低い場合、前記温度センサに基づいて得られた前記モータの温度が高くなるのに従って、前記オイルポンプの出力を線形に上昇させる、請求項4から7のいずれか一項に記載の駆動装置。
  9.  前記第3温度範囲内の最低温度と前記第2温度範囲内の最高温度との差は、5℃以上、30℃以下である、請求項8に記載の駆動装置。
  10.  前記制御部は、前記温度センサに基づいて得られた前記モータの温度が、前記第1温度範囲内の所定の第1温度よりも低い場合に、前記モータの出力を制限する、請求項4から9のいずれか一項に記載の駆動装置。
  11.  前記制御部は、前記温度センサに基づいて得られた前記モータの温度が、所定の第1温度よりも低い場合に、前記モータの出力を制限する、請求項1から9のいずれか一項に記載の駆動装置。
  12.  前記ハウジングの内部に収容されたオイルを前記モータに送るオイルポンプをさらに備え、
     前記制御部は、前記温度センサに基づいて得られた前記モータの温度が、前記第1温度よりも低い場合に、前記オイルポンプの駆動を停止する、請求項11に記載の駆動装置。
  13.  前記制御部は、前記モータの出力を制限した後、前記温度センサに基づいて得られた前記モータの温度が、前記第1温度よりも高い第2温度以上である場合に、前記オイルポンプの駆動を再開し、かつ、前記モータの出力の制限を解除する、請求項12に記載の駆動装置。
PCT/JP2020/016852 2019-04-19 2020-04-17 駆動装置 WO2020213709A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080028765.XA CN113710532A (zh) 2019-04-19 2020-04-17 驱动装置
DE112020002015.0T DE112020002015T5 (de) 2019-04-19 2020-04-17 Antriebsvorrichtung
JP2021514232A JPWO2020213709A1 (ja) 2019-04-19 2020-04-17
US17/601,836 US20220216820A1 (en) 2019-04-19 2020-04-17 Drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019080342 2019-04-19
JP2019-080342 2019-04-19

Publications (1)

Publication Number Publication Date
WO2020213709A1 true WO2020213709A1 (ja) 2020-10-22

Family

ID=72838263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016852 WO2020213709A1 (ja) 2019-04-19 2020-04-17 駆動装置

Country Status (5)

Country Link
US (1) US20220216820A1 (ja)
JP (1) JPWO2020213709A1 (ja)
CN (1) CN113710532A (ja)
DE (1) DE112020002015T5 (ja)
WO (1) WO2020213709A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023020788A1 (de) * 2021-08-18 2023-02-23 Robert Bosch Gmbh Vorrichtung und verfahren zur bestimmung einer temperatur eines öls, mit dem ein getriebe eines fahrzeugs geschmiert und gekühlt wird
TWI807496B (zh) * 2020-11-19 2023-07-01 日商日本電產股份有限公司 驅動裝置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114502413A (zh) * 2019-09-26 2022-05-13 康明斯公司 在系统失效时利用降额牵引控制的插电式电动车辆
JP2022052843A (ja) * 2020-09-24 2022-04-05 株式会社Subaru 車両用冷却構造
KR20220161688A (ko) * 2021-05-31 2022-12-07 현대자동차주식회사 하이브리드 차량의 림폼 주행 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147592A (ja) * 2011-01-13 2012-08-02 Toyota Motor Corp 電気自動車
JP2013085388A (ja) * 2011-10-11 2013-05-09 Nissan Motor Co Ltd モータ温度検出装置及び駆動力制御装置
JP2013193511A (ja) * 2012-03-16 2013-09-30 Toyota Motor Corp 車両制御システム
JP2014230434A (ja) * 2013-05-24 2014-12-08 日産自動車株式会社 モータ制御装置
JP2015130769A (ja) * 2014-01-08 2015-07-16 日立オートモティブシステムズ株式会社 モータシステム制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877296B2 (ja) * 2008-08-21 2012-02-15 トヨタ自動車株式会社 駆動装置およびその制御装置
JP5336998B2 (ja) * 2009-10-22 2013-11-06 本田技研工業株式会社 動力出力装置
US9042556B2 (en) 2011-07-19 2015-05-26 Sonos, Inc Shaping sound responsive to speaker orientation
CN105142948B (zh) * 2013-04-25 2018-01-30 丰田自动车株式会社 车辆控制装置
JP6274886B2 (ja) * 2014-01-28 2018-02-07 Ntn株式会社 インホイールモータ駆動装置
JP6269559B2 (ja) * 2015-04-10 2018-01-31 トヨタ自動車株式会社 車載二次電池の冷却システム
JP6642391B2 (ja) * 2016-11-24 2020-02-05 トヨタ自動車株式会社 駆動制御装置
JP6951090B2 (ja) * 2017-03-10 2021-10-20 Ntn株式会社 駆動制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147592A (ja) * 2011-01-13 2012-08-02 Toyota Motor Corp 電気自動車
JP2013085388A (ja) * 2011-10-11 2013-05-09 Nissan Motor Co Ltd モータ温度検出装置及び駆動力制御装置
JP2013193511A (ja) * 2012-03-16 2013-09-30 Toyota Motor Corp 車両制御システム
JP2014230434A (ja) * 2013-05-24 2014-12-08 日産自動車株式会社 モータ制御装置
JP2015130769A (ja) * 2014-01-08 2015-07-16 日立オートモティブシステムズ株式会社 モータシステム制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807496B (zh) * 2020-11-19 2023-07-01 日商日本電產股份有限公司 驅動裝置
WO2023020788A1 (de) * 2021-08-18 2023-02-23 Robert Bosch Gmbh Vorrichtung und verfahren zur bestimmung einer temperatur eines öls, mit dem ein getriebe eines fahrzeugs geschmiert und gekühlt wird

Also Published As

Publication number Publication date
JPWO2020213709A1 (ja) 2020-10-22
DE112020002015T5 (de) 2022-01-27
US20220216820A1 (en) 2022-07-07
CN113710532A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2020213709A1 (ja) 駆動装置
WO2020213508A1 (ja) 駆動装置、および車両駆動システム
JP6664506B2 (ja) 車両用駆動装置
EP2213498B1 (en) Travel drive apparatus for a working vehicle
WO2012140963A1 (ja) 車両用インホイールモータユニットの潤滑制御装置
US20220321050A1 (en) Drive device and drive device control method
WO2020213507A1 (ja) 駆動装置
WO2012147407A1 (ja) 車両用インホイールモータユニットの潤滑制御装置
WO2012049557A2 (en) Electric vehicle drive system
JP2009227130A (ja) インホイールモータの冷却装置
JP5092919B2 (ja) 冷却機構
CN106104091B (zh) 电动油泵的控制装置以及控制方法
JP2014240667A (ja) インホイールモータ駆動装置
JP2011148378A (ja) インホイールモータ冷却装置
JP2009248828A (ja) インホイールモータ
JP5765158B2 (ja) 車両用インホイールモータユニットの潤滑制御装置
JP2017032021A (ja) 車両用モータ駆動装置
JP2009120020A (ja) 車両のホイール駆動装置
JP2005218272A (ja) モータ冷却装置
JP5697711B2 (ja) 駆動ユニット
JP2016193681A (ja) 車両用回転電機の冷却装置
JP5884352B2 (ja) 車両用インホイールモータユニットの潤滑制御装置
JP5845758B2 (ja) 車両用インホイールモータユニットの潤滑制御装置
JP5794065B2 (ja) 車両用インホイールモータユニットの潤滑制御装置
JP5786581B2 (ja) 車両用インホイールモータユニットの潤滑制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514232

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20791126

Country of ref document: EP

Kind code of ref document: A1