WO2020213354A1 - リンク部品の製造方法及び製造装置 - Google Patents

リンク部品の製造方法及び製造装置 Download PDF

Info

Publication number
WO2020213354A1
WO2020213354A1 PCT/JP2020/013186 JP2020013186W WO2020213354A1 WO 2020213354 A1 WO2020213354 A1 WO 2020213354A1 JP 2020013186 W JP2020013186 W JP 2020013186W WO 2020213354 A1 WO2020213354 A1 WO 2020213354A1
Authority
WO
WIPO (PCT)
Prior art keywords
side wall
core metal
wall
burring
link component
Prior art date
Application number
PCT/JP2020/013186
Other languages
English (en)
French (fr)
Inventor
佐藤 雅彦
水村 正昭
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2021514843A priority Critical patent/JP7020587B2/ja
Priority to US17/600,144 priority patent/US11865606B2/en
Priority to CN202080028422.3A priority patent/CN113677447B/zh
Priority to EP20791093.6A priority patent/EP3957411A4/en
Publication of WO2020213354A1 publication Critical patent/WO2020213354A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/08Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/26Perforating, i.e. punching holes in sheets or flat parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/001Suspension arms, e.g. constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/013Constructional features of suspension elements, e.g. arms, dampers, springs with embedded inserts for material reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • B60G2206/11Constructional features of arms the arm being a radius or track or torque or steering rod or stabiliser end link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/8102Shaping by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/8103Shaping by folding or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/82Joining
    • B60G2206/8209Joining by deformation

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a link part.
  • the present application claims priority based on Japanese Patent Application No. 2019-077157 filed in Japan on April 15, 2019, the contents of which are incorporated herein by reference.
  • Link components As is well known, as a structural component that connects a plurality of objects, there is a link component in which a connecting portion is formed at an end portion or an intermediate position thereof. Link parts are used for various purposes such as for building structures and suspensions for automobiles.
  • suspension links such as lower links, upper links, and lateral links are used in automobile suspension devices.
  • These link parts have connecting holes through which the shaft body for connecting with other structural parts is passed.
  • the prepared hole may be used as it is as the connecting hole, or the prepared hole may be further burred to form the connecting hole.
  • burring is performed by the same manufacturing method, special processing using a flow drill or the like is required.
  • the connecting hole is first formed in the flat plate material, and then a molding process is applied to form a hollow tubular material to obtain a product shape.
  • a molding process is applied to form a hollow tubular material to obtain a product shape.
  • Patent Document 1 discloses an example of a manufacturing method for obtaining a link component from a flat plate material.
  • This manufacturing method (1) A work as a plate material including at least a pair of first plate material portions PA1 corresponding to the other member connecting portion AB and a second plate material portion PA2 integrally continuous with the first plate material portion PA1 and corresponding to the arm body AM.
  • the first step to obtain P and (2) A second step of forming a cylindrical bush holding portion H by burring on each first plate material portion PA1 of the work P, and (3)
  • the back plate portion 1 and the back plate portion 1 and the back plate portion 1 and the second plate material portion PA2 of the work P are press-formed so that both side portions thereof are wound in a tubular shape with the central portion in the width direction of the second plate material portion PA2 as a base point.
  • Welding w1 is performed between the arcuate surfaces 2r, 3r, 2sr of the pair of winding and bending portions 2 and 3 and the polymerization connection piece 2s and the outer peripheral surface Hr of the bush holding portion H on the arm body AM side, and polymerization is performed.
  • At least a fourth step of welding the connecting portion 2 to the outer surface of the other winding and bending portion 3 is included, and these first to fourth steps are sequentially executed.
  • a high-strength and high-rigidity upper arm formed by integrating another member connecting portion AB having a cylindrical bush holding portion H with both end portions AMe of the cylindrical hollow arm main body AM by the above manufacturing method.
  • A can be manufactured at extremely low cost by combining burring and press molding (bending) for the individual workpieces R1 to Rn of the work P, and since the upper arm A has a one-piece structure, it is a part. It is said that management can be simplified.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a link component manufacturing method and a manufacturing apparatus capable of obtaining a link component having a connecting hole with high dimensional accuracy.
  • the method for manufacturing a link component according to one aspect of the present invention includes a first side wall and a second side wall having pilot holes at least at one end thereof and arranged to face each other, and one side of the first side wall.
  • insertion refers to a method of inserting a core metal so that the inner shape or inner diameter of the pilot hole is not made larger than the original size by inserting the core metal.
  • press-fitting refers to a method of inserting a core metal in which the inner shape or inner diameter of the pilot hole is enlarged beyond the original size by inserting the core metal.
  • insertion or press-fitting is determined by setting the magnitude relationship of the outer diameter or outer diameter of the core metal with respect to the inner shape or inner diameter of the pilot hole.
  • the pilot hole is reinforced in advance from the inside by this pulling force, the deformation of the pilot hole can be suppressed more effectively.
  • the pulling force is a hoop force applied to the pilot hole.
  • the shape of the pilot hole is not limited to a circular shape, and may be non-circular. Further, the pilot hole is not limited to the one formed by being surrounded by a completely closed peripheral surface, and a part thereof may be open. Therefore, the pilot hole may be, for example, an open semicircular shape. Even when the pilot hole is semi-circular, the pilot hole is reinforced in advance from the inside by the core metal, so that the deformation of the pilot hole is effectively suppressed.
  • the core metal when the core metal is, for example, "press-fitted" in the reinforcing step, the core metal applies a pulling force along the edge of the semicircular pilot hole to the pilot hole. Since the pilot hole is reinforced in advance from the inside by this tensile force, deformation of the pilot hole in post-processing is effectively suppressed.
  • the core metal When the pilot hole is circular, the core metal may be a ring-shaped jig or a solid columnar jig.
  • the core metal is basically an integral piece, but it may be divided into a pair. Further, the pilot hole may be formed on both the first side wall and the second side wall, or may be formed on only one side.
  • the core metal since an external force is applied to both the connecting wall and the core metal at the same time, the core metal follows the axial bending deformation of the connecting wall without delay. Therefore, since the core metal can follow the deformation of the first side wall and the second side wall that are integrated with the connecting wall, the movement of the core metal is not delayed and the pilot hole is not deformed.
  • the shaft bending may be performed by pressing a pressure surface that is linear in a side view against the inner surface of the connecting wall in the shaft bending step.
  • the inner surface of the connecting wall since the inner surface of the connecting wall is pressurized by the linear pressing surface in the side view, the inner surface of the connecting wall can be axially bent while maintaining the linear shape.
  • the inner surface of the connecting wall is pressurized by a pressure surface having a convex curved shape in a side view
  • the inner surface of the connecting wall is deformed into a concave curved surface corresponding to the convex curved pressure surface, so that the first surface connected to the connecting wall
  • the first side wall and the second side wall are also pulled by the concave curved surface of the connecting wall.
  • the concave curved surface does not occur on the connecting wall, it is possible to suppress partial tension from being applied to the peripheral portion of the prepared hole, and the connecting hole formed by the prepared hole. The dimensional accuracy of is further improved.
  • the surface is sandwiched between the first side wall and the second side wall.
  • the core sandwiched between the outer peripheral surface of the core metal and the inner surface of the connecting wall may be inserted into the end portion of the intermediate component.
  • the core keeps the distance and parallelism between the first side wall and the second side wall constant, and keeps the distance between the connecting wall and the core metal constant. Therefore, even if an external force for O-bending in the O-bending step is applied, the influence on the dimensional accuracy and position of the pilot hole can be suppressed, so that a link part with higher dimensional accuracy can be manufactured.
  • the diameter ratio calculated by dividing the outer diameter of the core metal by the inner diameter of the prepared hole is larger than 1.000. May be good.
  • the core metal can be press-fitted into the prepared hole.
  • a burring step of forming a burring hole having a burring vertical wall is performed in the prepared hole.
  • the core metal is inserted into the burring hole instead of the pilot hole.
  • the same action and effect as in the aspect described in (1) above can be obtained. That is, even if an external force is applied to the first side wall and the second side wall in the O-bending step, the burring hole is reinforced in advance by the core metal inserted in the reinforcing step, so that the deformation of the burring hole is effectively suppressed. ..
  • the shape of the burring hole is not limited to a circular shape, and may be non-circular. Further, the burring hole is not limited to the one formed by being surrounded by a completely closed peripheral surface, and a part thereof may be open. Therefore, the burring hole may be, for example, an open semicircular shape.
  • the inner surface of the connecting wall of the intermediate part and the core metal are inserted after the reinforcing step and before the O bending step. Further, there is a shaft bending step of axially bending the intermediate part so that the connecting wall has a concave shape when the first side wall is viewed oppositely by applying an external force to both the outer peripheral surface of the burring vertical wall at the same time. You may.
  • the same action and effect as in the embodiment described in (2) above can be obtained. That is, since an external force is applied to both the connecting wall and the burring vertical wall at the same time, the burring vertical wall and the core metal follow the axial bending deformation of the connecting wall without delay. Therefore, since the burring vertical wall and the core metal can follow the deformation of the first side wall and the second side wall that are integrated with the connecting wall, the movement of the core metal is not delayed and the burring hole is not deformed.
  • the shaft bending may be performed by pressing a pressure surface that is linear in a side view against the inner surface of the connecting wall in the shaft bending step.
  • the same action and effect as in the embodiment described in (3) above can be obtained. Therefore, according to this aspect, since the concave curved surface does not occur on the connecting wall, the deformation of the burring hole can be further suppressed, and the dimensional accuracy of the connecting hole formed by the burring hole can be further improved. ..
  • the surface is sandwiched between the first side wall and the second side wall.
  • the core sandwiched between the outer peripheral surface of the burring vertical wall and the inner surface of the connecting wall may be inserted in the one end portion of the intermediate component.
  • the core keeps the distance and parallelism between the first side wall and the second side wall constant, and keeps the distance between the connecting wall and the burring vertical wall constant. Therefore, even if an external force for O-bending in the O-bending step is applied, the influence on the dimensional accuracy and position of the burring hole can be suppressed, so that a link part with higher dimensional accuracy can be manufactured.
  • the diameter ratio calculated by dividing the outer diameter of the core metal by the inner diameter of the burring hole is larger than 1.000. You may. In the case of the embodiment described in (10) above, the core metal can be press-fitted into the burring hole.
  • the position of the core metal inserted in the prepared hole is determined after the reinforcing step and before the O bending step.
  • the first end portion of the link component which is the one end portion
  • the second end portion which is the other end portion
  • the shape of the prepared hole is always maintained by the inserted core metal while the intermediate part is axially bent.
  • a burring step of forming a burring hole having a burring vertical wall is performed in the pilot hole;
  • the core metal is inserted into the burring hole instead of the prepared hole.
  • the shape of the burring hole is always maintained by the inserted core metal while the intermediate part is axially bent.
  • the portion to be the first side wall, the portion to be the second side wall, and the connection before the reinforcement step A material preparation step of preparing a flat plate material having a wall portion; the first side wall portion and the second side wall portion face each other with the connecting wall portion as a boundary.
  • the U-bending step of bending the flat plate material may be performed.
  • an intermediate part having a pilot hole can be obtained by a U bending step after the material preparation step.
  • the prepared hole may be burred to form a burring vertical wall for partitioning the burring hole.
  • the core metal may be a part of the link component, and the opening of the core metal may be the connecting hole.
  • the step of removing the core metal from the link component and the post-step of reinforcing the pilot hole or the burring hole of the link component become unnecessary. Therefore, it becomes possible to further increase the productivity.
  • the link component manufacturing apparatus has a first side wall and a second side wall having pilot holes at least at one end thereof and arranged to face each other, and one side of the first side wall.
  • a connecting wall that connects the edge and one side edge of the second side wall, and one end portion that has a connecting hole and is provided on one side along the one direction from an intermediate part that is long along one direction.
  • a device for manufacturing a link component provided with the other end portion provided on the other side along the one direction, the core metal to be inserted into the pilot hole; and the link component that accepts the intermediate component.
  • first mold having a first concave surface having a shape matching the outer shape of the above; the intermediate part is housed together with the first mold, and the other side edge of the first side wall and the other side edge of the second side wall.
  • a second mold having a second concave surface that comes into contact with both of the molds and approaches each other; and a first drive mechanism that approaches and separates the relative positions between the first mold and the second mold;
  • a core metal is inserted into the prepared hole. After that, the intermediate part whose pilot hole is reinforced by the core metal is placed as it is in the first concave surface of the first mold.
  • the relative positions between the second mold and the first mold are brought closer by the first drive mechanism so as to accommodate the intermediate parts, and both are matched.
  • the second concave surface of the second mold abuts on both the other side edge of the first side wall and the other side edge of the second side wall to bring them close to each other and match them.
  • a fourth mold having a core metal holding surface in contact with the outer peripheral surface of the gold; and a second drive mechanism for approaching and separating relative positions between the third mold and the fourth mold; may be further provided. Good.
  • the outer surface of the connecting wall is in contact with the first arc surface
  • the outer surface of the first side wall is in contact with the first side surface
  • the outer surface of the second side wall is in contact with the second side surface.
  • the connecting wall is bent according to the shapes of the first arc surface and the second arc surface. Then, the first side wall and the second side wall are also bent as the connecting wall is deformed. In this way, the axial bending of the intermediate part is completed.
  • the force of the second drive mechanism can be applied to both the connecting wall and the core metal at the same time, so that the core metal can be made to follow without delaying the deformation operation of the shaft bending of the connecting wall. Therefore, since the core metal follows the deformation of the first side wall and the second side wall that are integrated with the connecting wall, the movement of the core metal is not delayed and the pilot hole is not deformed.
  • the pressure receiving portion that receives the portion of the first arc plane that is the one end portion of the link component in the intermediate component is described as described above. It is linear when viewed in a vertical cross section including the extending direction of the first arc plane; of the second arc plane, the first pressurizing portion facing the pressure receiving portion via the connecting wall is the vertical cross section. It is linear when viewed from.
  • a portion of the connecting wall of the intermediate component, which is one end of the link component is sandwiched between the pressure receiving portion and the first pressurizing portion which are linear to each other in the vertical cross section. Therefore, the shaft can be bent while keeping the inner surface of the connecting wall straight. Therefore, since the concave curved surface does not occur on the connecting wall, it is possible to further suppress the deformation of the periphery of the prepared hole by being partially pulled. Therefore, the dimensional accuracy of the connecting hole formed by the pilot hole can be further improved.
  • the second pressing portion that pressurizes the portion of the second concave surface that becomes the one end portion of the link component in the intermediate part extends the second concave surface. It may be linear when viewed in a vertical cross section including the current direction.
  • this matching is achieved.
  • the formed portion follows the shape of the second concave surface and forms a straight line in a side view.
  • the core is inserted between the first side wall and the second side wall, and between the outer peripheral surface of the core metal and the inner surface of the connecting wall.
  • a core; a third drive mechanism for inserting and removing the core from the first mold and the second mold; may be further provided.
  • the core is inserted between the first side wall and the second side wall, and between the outer peripheral surface of the core metal and the inner surface of the connecting wall by receiving the driving force of the third driving mechanism. Then, the core keeps the distance and parallelism between the first side wall and the second side wall constant, and keeps the distance between the connecting wall and the core metal constant. Therefore, even if an external force for O-bending is applied to the first side wall and the second side wall, the influence on the dimensional accuracy and position of the prepared hole can be suppressed, so that a link part having higher dimensional accuracy can be manufactured.
  • a burring machine for forming a burring hole having a burring vertical wall is further provided in the pilot hole of the intermediate part; the core. Gold is placed in the burring hole.
  • the same action and effect as in the aspect described in (15) above can be obtained. That is, even during O-bending, the pair of burring holes are continuously reinforced by the core metal. Therefore, even if an external force is applied to the first side wall and the second side wall for O-bending, the burring hole is reinforced in advance by the core metal inserted in advance, so that the deformation of the burring hole is effectively suppressed.
  • a convex first arc surface in contact with the outer surface of the connecting wall, a first side surface in contact with the outer surface of the first side wall, and a second surface in contact with the outer surface of the second side wall.
  • a third mold having a side surface; a concave second arc surface in contact with the inner surface of the connecting wall, a third side surface in contact with the inner surface of the first side wall, a fourth side surface in contact with the inner surface of the second side wall, and the burring.
  • a fourth mold having a core metal holding surface that hits the outer peripheral surface of the core metal via a vertical wall; and a second drive mechanism that approaches and separates relative positions between the third mold and the fourth mold. ; May be further provided.
  • the intermediate parts are arranged in the third mold so that the outer surface of the connecting wall is in contact with the first arc surface, the outer surface of the first side wall is in contact with the first side surface, and the outer surface of the second side wall is in contact with the second side surface. To do. Then, the relative positions between the third mold and the fourth mold are brought closer by the driving force of the second driving mechanism.
  • the second arc surface is in contact with the inner surface of the connecting wall
  • the third side surface is in sliding contact with the inner surface of the first side wall
  • the fourth side surface is in sliding contact with the inner surface of the second side wall
  • the core metal holding surface is burring vertical. It hits the outer peripheral surface of the wall.
  • the force of the second drive mechanism can be applied to both the connecting wall and the burring vertical wall at the same time, so that the burring vertical wall can be followed without delaying the deformation operation of the axial bending of the connecting wall. .. Therefore, since it follows the first side wall and the second side wall which are integrally deformed with the connecting wall, the core metal does not deform the burring vertical wall.
  • the pressure receiving portion that receives the portion of the intermediate component that becomes the one end portion of the link component is described as described above. It is linear when viewed in a vertical cross section including the extending direction of the first arc plane; of the second arc plane, the first pressurizing portion facing the pressure receiving portion via the connecting wall is the vertical cross section. It is linear when viewed from.
  • the same action and effect as in the aspect described in (17) above can be obtained. Therefore, according to this aspect, since the concave curved surface does not occur on the connecting wall, the deformation of the burring hole can be suppressed, and the dimensional accuracy of the connecting hole formed by the burring hole can be further improved.
  • the second pressurizing portion that pressurizes the portion of the second concave surface that becomes the one end portion of the link component in the intermediate component extends the second concave surface. It may be linear when viewed in a vertical cross section including the current direction. In the case of the embodiment described in (23) above, the same action and effect as in the embodiment described in (18) above can be obtained. Therefore, according to this aspect, the dimensional accuracy of the connecting hole formed by the pilot hole can be further improved.
  • a third arc surface in contact with the outer surface of the connecting wall and a convex shape in a vertical cross-sectional view a fifth side surface in contact with the outer surface of the first side wall, and the second.
  • a fifth mold having a sixth side surface in contact with the outer surface of the side wall, the fifth side surface and a pair of through holes coaxially penetrating the sixth side surface; in contact with the inner surface of the connecting wall and having a concave shape in a vertical cross section.
  • a sixth mold having a fourth arc surface a seventh side surface in contact with the inner surface of the first side wall, and an eighth side surface in contact with the inner surface of the second side wall; between the fifth mold and the sixth mold.
  • a fourth drive mechanism for approaching and separating the relative positions of the above; a fifth drive mechanism for inserting and removing the core metal into the pair of through holes; may be further provided.
  • the outer surface of the connecting wall is in contact with the third arc surface
  • the outer surface of the first side wall is in contact with the fifth side surface
  • the outer surface of the second side wall is in contact with the sixth side surface.
  • the intermediate parts are placed in the 5th mold.
  • the core metal is inserted into the intermediate part so as to penetrate one of the pair of through holes, one of the pair of pilot holes of the intermediate part, the other of the pair of pilot holes of the intermediate part, and the other of the pair of through holes.
  • the connecting portion is placed in a fixed position in the fifth mold by the core metal. It is fixed, and a part of the connecting wall between the first end and the second end is in contact with the convex third arc surface and is supported. In this way, with the intermediate parts supported at two points in the fifth mold, the relative positions between the fifth mold and the sixth mold are brought closer by the driving force of the fifth drive mechanism. Then, the fourth arc surface comes into contact with the inner surface of the connecting wall on the second end side, and pushes down the inner surface.
  • the intermediate component is axially bent with a part of the outer surface of the connecting wall supported by the third arc surface as a fulcrum. Even if this shaft bending is performed, since the pair of pilot holes are reinforced by the core metal inserted in advance, the influence on their dimensional accuracy and position can be suppressed.
  • the first split core metal inserted into and removed from the through hole on the fifth side surface and the sixth core metal. It has a second split core that is inserted into and removed from the through hole on the side surface and is coaxial with the first split core; the fifth drive mechanism attaches the first split core to the fifth side surface. It has a first drive unit for inserting and removing the second driving portion into the through hole, and a second driving unit for inserting and removing the second split core metal into the through hole on the sixth side surface.
  • one of the pair of through holes, one of the pair of pilot holes of the intermediate component, the other of the pair of pilot holes of the intermediate component, and the other of the pair of through holes are all coaxial.
  • the intermediate parts are arranged in the fifth mold.
  • the first drive unit inserts the first split core metal into one of the pair of pilot holes of the intermediate component via one of the pair of through holes.
  • the second drive unit inserts the second split core metal into the other of the pair of pilot holes of the intermediate component via the other of the pair of through holes. Inserting the first split core metal and inserting the second split core metal may be performed at the same time, or one of them may be performed first and the other may be performed after that.
  • the pair of pilot holes is reinforced by the first split core and the second split core.
  • the driving force of the third driving mechanism causes the seventh mold and the eighth mold to be relatively close to each other. Then, when the eighth mold enters the concave groove, the flat plate material is U-bent. As a result, an intermediate part having a pilot hole or a burring hole can be obtained.
  • FIG. 4 It is a perspective view of the link part manufactured by the manufacturing method and manufacturing apparatus of the link part which concerns on 1st Embodiment of this invention. It is a figure which shows the manufacturing method of the link part, and each process proceeds in the order of (a)-(h). It is a perspective view which shows the mold used in the U bending process shown in (b) and (c) of FIG. 2 among the manufacturing apparatus of a link part used in the manufacturing method of the link part. It is a perspective view which shows the mold used in the shaft bending process shown in FIG. 2 (e) and (f) of the link component manufacturing apparatus used in the link component manufacturing method. It is a figure which shows the mold of FIG. 4, and is the vertical sectional view which face
  • FIG. 2 (f) It is a perspective view which shows the mold used in the O bending process shown in FIG. 2 (g) among the link component manufacturing apparatus used in the link component manufacturing method. It is a side view which shows the modification of the link component. It is a partially enlarged perspective view which shows the other modification of the link component. It is a figure which shows the manufacturing method and manufacturing apparatus of the link part which concerns on 2nd Embodiment of this invention, and is the vertical sectional view which shows the process which replaces the shaft bending process shown in FIG. 2 (f). It is a figure which shows the manufacturing apparatus of the link part, and is the AA sectional view of FIG.
  • the link component L manufactured in the present embodiment will be described below with reference to FIG.
  • the link component L has a closed cross-sectional shape that is long along the axial direction and has a cross section perpendicular to the axis at each position in the axial direction.
  • the link component L is a central portion connecting one end LA provided on one side in the axial direction, the other end LB provided on the other side in the axial direction, and the one end LA and the other end LB. It has LC and.
  • One end LA has a pair of burring holes a1 and b1.
  • These burring holes a1 and b1 are circular through holes having the same inner diameter dimension as each other, which are partitioned by burring vertical walls a and b formed inward, respectively.
  • the burring holes a1 and b1 are arranged coaxially and parallel to each other, and their central axis is orthogonal to the axial direction of the link component L in a plan view.
  • the burring vertical walls a and b each have an annular shape having a substantially constant width dimension, and the inner peripheral surfaces thereof form burring machined holes a1 and b1 having a substantially constant width dimension along the circumferential direction. There is.
  • the outer peripheral surfaces a2 and b2 of the burring vertical walls a and b also have an annular shape, respectively, and the width dimension is substantially constant along the circumferential direction. These outer peripheral surfaces a2 and b2 are also arranged coaxially and in parallel with each other and have the same outer diameter dimension.
  • the burring holes a1 and b1 are connected to other parts (not shown) via a shaft body (not shown).
  • the burring vertical wall may be referred to as a flange of a burring hole, but in the present invention, it is referred to as a burring vertical wall.
  • the other end LB has a pair of through holes c1 and d1.
  • These through holes c1 and d1 are circular through holes having the same inner diameter dimension.
  • the through holes c1 and d1 are arranged coaxially and parallel to each other, and their central axis is orthogonal to the axial direction of the link component L in a plan view.
  • the through holes c1 and d1 are connected to other parts via a shaft body (not shown).
  • a pair of burring holes may be formed instead of the through holes c1 and d1.
  • the central portion LC has the thinnest external dimensions at the central position along the axial direction, and the external dimensions gradually increase toward one end LA. Similarly, the outer dimensions of the central LC gradually increase toward the other end LB.
  • one flat plate is die-cut to obtain a flat plate material having a first pilot hole (prepared hole) and a second pilot hole (prepared hole). Then, if necessary, the first pilot hole and the second pilot hole are subjected to burring to form the burring holes a1 and b1, and then the flat plate material is U-bent so that the cross-sectional shape is substantially U-shaped. Get an intermediate part. Subsequently, the core metal is passed through the intermediate component to reinforce the burring holes a1 and b1 (the first pilot hole and the second pilot hole when burring is not performed) in advance. After that, the intermediate part is axially bent to warp in the longitudinal direction, and finally O-bent to obtain a closed cross-sectional shape. As a result, the link component L shown in FIG. 1 is obtained.
  • the link component L is obtained by die-cutting a single flat plate and bending it, so that the wall portions are integrally connected to each other.
  • the link component L includes a first side wall portion e and a second side wall portion f facing each other, and a bottom wall portion g connecting the lower end edges of the first side wall portion e and the second side wall portion f. It has a first upper wall portion h and a second upper wall portion i that connect the upper end edges of the first side wall portion e and the second side wall portion f.
  • the first upper wall portion h is integrally connected to the first side wall portion e
  • the first side wall portion e is integrally connected to the bottom wall portion g
  • the bottom wall portion g is integrally connected to the second side wall portion f.
  • the two side wall portions f are integrally connected to the second upper wall portion i.
  • the upper end edge of the first upper wall portion h and the upper end edge of the second upper wall portion i are in contact with each other along the axial direction of the link component L.
  • the connections may remain abutted (ie, in contact with each other) or welded together.
  • arc welding or laser welding can be preferably used.
  • the link component L has a closed cross-sectional shape perpendicular to the axis at each position along the axis direction except for both end edges thereof.
  • the link component manufacturing apparatus includes a die cutting machine for punching a flat plate to obtain a flat plate material, and a first pilot hole and a second pilot hole of the flat plate material.
  • a burring machine that performs burring, a U-bending machine that U-bends a flat plate material to obtain an intermediate part, a core metal extraction machine that inserts a core metal into an intermediate part, and a shaft bending machine that axially bends an intermediate part.
  • a machine and an O-bending machine for O-bending intermediate parts are provided.
  • the die-cutting machine includes a die having a concave portion having the same shape as the flat plate material P shown in FIG. 2A, a punch having a convex portion having the same shape as the flat plate material P, and these punches. It is provided with a punch drive mechanism that relatively closes and separates the dies. According to this die-cutting machine, the convex portion of the punch punches the flat plate by bringing the die and the punch close to each other with the flat plate stacked on the concave portion, and the outer shape of the flat plate material P is formed. To.
  • the burring machine includes a die having a recess having an inner diameter larger than that of the first pilot hole and the second pilot hole formed by the die cutting machine, a punch inserted into the recess, and a punch.
  • a punch drive mechanism for relatively approaching and separating these punches and dies is provided. According to this burring machine, after the flat plate material P is placed on the die, the punch is passed through the first pilot hole and the second pilot hole by the punch drive mechanism, so that the burring hole shown in FIG. 2 (a) is formed. A flat plate material P having a1 and b1 is obtained.
  • the flat plate material P includes a portion P1 serving as the bottom wall g (connecting wall), a portion P2 serving as the first side wall portion e and the first upper wall portion h (first side wall), and the second side wall. A portion f and a portion P3 serving as the second upper wall portion i (second side wall) are included.
  • the U-bending machine includes a die 10 having a concave groove 11 corresponding to the portion P1, a punch 20 inserted and removed in the concave groove 11, and the die 10. And a punch drive mechanism (not shown) that relatively closes and separates the punches 20 from each other.
  • the concave groove 11 shown in FIG. 3 has a shape that substantially matches the outer shape of the link L in a plan view. That is, one end 11a of the groove width dimension corresponding to the one end LA, the other end 11b of the groove width dimension corresponding to the other end LB, and the central portion 11c of the groove width dimension corresponding to the central LC. And have.
  • the groove width dimension of the one end portion 11a and the other end portion 11b is wider than the groove width dimension of the central portion 11c. Further, the groove width dimension of the central portion 11c is the narrowest at the central position in the longitudinal direction thereof, and gradually widens as it approaches the one end portion 11a and the other end portion 11b.
  • the recess 11 has a sufficient depth to bend the portion P1 and the portion P2 until they are parallel to each other.
  • the punch 20 has a pressure surface 21 that pressurizes the portion P1 from above when the flat plate material P is U-bent, a side surface 22 that contacts the portion P2, and a side surface 23 that contacts the portion P3. And have.
  • the pressure surface 21 has the same shape as the concave groove 11 in a plan view and has a size one size smaller than that of the concave groove 11.
  • the side surfaces 22 and 23 each have a concave-convex shape corresponding to one end 11a, the center 11c, and the other end 11b of the concave groove 11 in a plan view. According to the U-bending machine, the flat plate material P is placed on the die 10 as shown in FIG.
  • the flat plate material P is pushed into the recess 11 by the punch 20 to push the flat plate material P into the groove 11.
  • the portion P2 and the portion P3 are bent so as to face each other. Then, by taking out the flat plate material P bent in this way from the concave groove 11 of the die 10, the intermediate part W shown in FIG. 2C can be obtained.
  • the intermediate component W includes a first side wall W2 having a burring hole a1 and a second side wall W3 having a burring hole b1 and arranged to face the first side wall W2.
  • the intermediate component W is long in one direction.
  • the connecting wall W1 has a linear shape when viewed from the side.
  • the distance between the first side wall W2 and the second side wall W3 is the narrowest at the central position when viewed along the longitudinal direction of the intermediate component W, and gradually widens from the central position toward both end positions.
  • the burring holes a1 and b1 are arranged so as to be coaxial with each other.
  • the core metal extraction machine has a first holding mechanism (not shown) for holding the intermediate component W after U bending shown in FIG. 2 (c), a core metal 30 shown in FIG. 2 (d), and a core metal 30.
  • a second holding mechanism (not shown) for coaxially holding the holding mechanism and a driving mechanism (not shown) for driving the holding mechanism are provided.
  • the core metal 30 is an annular body having a predetermined width dimension, and has an outer peripheral surface having an outer diameter dimension slightly larger than the burring machined holes a1 and b1 of the intermediate part W, and an inner circumference held by the first holding mechanism. A configuration having a surface may be adopted.
  • the core metal 30 of the present embodiment is removed in the final step of obtaining the link component L, but may be left press-fitted as a part of the link component L.
  • the core metal 30 when it is not a part of the link component L, it may be a cylindrical body instead of an annular body.
  • the intermediate component W is first fixed to the first holding mechanism. Subsequently, after the core metal 30 is attached to the second holding mechanism, the second holding mechanism is moved by the driving force of the driving mechanism, and the core metal 30 is coaxially aligned with the burring holes a1 and b1 of the intermediate component W. Put in. As a result, as shown in FIG.
  • the core metal 30 is fixed to the intermediate component W, and the reinforcement of the burring holes a1 and b1 is completed.
  • the core metal may be a ring-shaped jig or a solid columnar jig.
  • the two cores may be separated into separate cores, but in order to improve the coaxiality of the burring holes, the two cores are integrated (as a result of integration, one core). It will be the core money.)
  • the shaft bending machine includes a die 10 having a concave groove 11 corresponding to the portion P1, a punch 40 inserted and removed in the concave groove 11, and a die. It has a punch drive mechanism (not shown) for inserting and removing the punch 40 with respect to 10.
  • the die 10 (FIG. 3) of the U bending machine is also used as a die for holding and fixing the intermediate component W, but the present invention is not limited to this form and is dedicated to the shaft bending machine. Other dies may be used as.
  • the die 10 is also used for U bending (steps (b) and (c) in FIG.
  • the intermediate part W is not pushed down until it reaches the bottom surface of the concave groove 11, but the shaft is bent.
  • the intermediate component W is pushed down until it reaches the bottom surface of the concave groove 11.
  • the punch drive mechanism of the shaft bending machine shown in FIG. 2 (e) and the punch driving mechanism of the U bending machine shown in FIG. 2 (b) may also be used, or are provided exclusively for each. May be good.
  • the bottom surface 11d of the concave groove 11 has the highest central position in the extending direction and gradually becomes lower from the center position toward both end positions when viewed in a vertical cross section along the extending direction. It is a convex surface.
  • the shape of the bottom surface 11d matches the shape of the bottom surface of the link component L. That is, the bottom surface width dimension of the position corresponding to the one end portion 11a and the other end portion 11b shown in FIG. 3 is wider than the bottom surface width dimension of the position corresponding to the central portion 11c. Further, the bottom width dimension of the position corresponding to the central portion 11c is the narrowest at the central position in the longitudinal direction thereof, and gradually widens as it approaches the positions corresponding to the one end portion 11a and the other end portion 11b.
  • the punch 40 includes a pressure surface 41 that pressurizes the inner surface of the connecting wall W1 from above when the intermediate component W is axially bent, and a side surface 42 that is in sliding contact with the inner surface of the first side wall W2. It has a side surface 43 that is in sliding contact with the inner surface of the second side wall W3, and a holding surface 44 that presses both the outer peripheral surface a2 of the burring vertical wall a and the outer peripheral surface b2 of the burring vertical wall b.
  • the pressure surface 41 has a shape corresponding to the bottom surface 11d of the concave groove 11. That is, as shown in FIG. 5, the pressure surface 41 is a concave surface having the highest central position in the extending direction and gradually lowering from the center position toward both end positions when viewed in a vertical cross section along the extending direction. It has become.
  • the pressure surface 41 is formed so as to avoid the positions of the burring vertical walls a and b in order to avoid interference with the burring vertical walls a and b.
  • the shape of the pressure surface 41 in the bottom view is the narrowest in the bottom width dimension at the center position in the longitudinal direction when the pressure surface 41 is viewed along the longitudinal direction thereof, and gradually becomes thicker as it approaches both end positions in the longitudinal direction. ..
  • the holding surface 44 has a linear shape in a side view, and its width dimension is constant at each position in the longitudinal direction.
  • the holding surface 44 is arranged at a position higher than the pressure surface 41 so as to abut on the outer peripheral surfaces a2 and b2 of the burring vertical wall a and the burring vertical wall b. That is, a step is provided between the pressing surface 44 and the pressing surface 41 to avoid the burring vertical wall a and the burring vertical wall b.
  • the side surfaces 42 and 43 each have a concave-convex shape corresponding to one end 11a, the center 11c, and the other end 11b of the concave groove 11 in a plan view.
  • the distance between the side surfaces 42 and 43 in a plan view is the narrowest at the center position in the longitudinal direction of the punch 40, and gradually widens as it approaches both end positions in the longitudinal direction.
  • the side surfaces 42 and 43 are parallel to each other at both end positions in the longitudinal direction.
  • the intermediate component W is first placed in the concave groove 11 of the die 10 in the state of being opened as shown in FIG. 2 (e). Then, the punch 40 is pushed down by the punch drive mechanism, and the inner surface of the connecting wall W1 of the intermediate component W is pressurized by the pressing surface 41. At the same time, the holding surface 44 also pushes down the outer peripheral surfaces a2 and b2 of the burring vertical walls a and b in which the core metal 30 is inserted.
  • the core metal 30 cannot follow the deformation operation (lowering operation) of the connecting wall W1 due to friction with the inner surface of the concave groove 11, and as a result, the core metal 30 has burring holes a1 and b1. May apply unnecessary force to.
  • the present embodiment has the holding surface 44, there is no possibility of this.
  • the shaft bending process is performed as described above, since the O bending process has not yet been performed, the upper end edges of the first side wall W2 and the second side wall W3 are not joined to each other.
  • the O-bending machine forms a closed cross-section space together with the lower die 50 that receives the intermediate component W after axial bending and the lower die 50, and the inside of the closed cross-section space.
  • the upper mold 60 that accommodates the intermediate component W
  • the mold drive mechanism (not shown) that brings the upper mold 60 closer to and separated from the lower mold 50
  • the first that is inserted and removed from one end side in the intermediate component W.
  • the core 70, the second core 80 inserted and removed from the other end side in the intermediate component W, and the first core 70 and the second core 80 are brought close to and separated from the intermediate component W, respectively.
  • It includes a child drive mechanism (third drive mechanism, not shown).
  • the lower mold 50 has a concave groove 51 that is long in one direction.
  • the concave groove 51 is open upward and has a concave surface shape that matches the outer shape of the bottom of the intermediate component W after bending the shaft. That is, the concave groove 51 has a concave surface shape that matches the outer shape of the bottom of the link component L.
  • the groove 51 has the narrowest groove width and the shallowest groove depth at the center position in the longitudinal direction.
  • the groove width of the concave groove 51 gradually widens and the groove depth gradually increases from the central position in the longitudinal direction toward both end positions.
  • the groove width and the groove depth of the concave groove 51 are substantially constant along the longitudinal direction at both end positions.
  • the upper die 60 has a recessed groove 61 that is long in one direction.
  • the concave groove 61 is open downward and abuts on the upper end edge of the first side wall W2 and the upper end edge of the second side wall W3 of the intermediate component W after axial bending to perform bending.
  • the concave groove 61 has a concave surface shape that matches the upper outer shape of the link component L.
  • the groove width 61 and the groove height of the concave groove 61 are the narrowest and the shallowest at the center position in the longitudinal direction.
  • the groove width of the concave groove 61 gradually increases from the central position in the longitudinal direction toward both end positions, and the groove height also gradually increases.
  • the groove width and the groove depth of the concave groove 61 are substantially constant along the longitudinal direction at both end positions.
  • the mold driving mechanism approaches and separates the upper mold 60 from above the lower mold 50 fixed at a fixed position.
  • the concave groove 51 and the concave groove 61 are matched with each other to form a closed cross-sectional space inside them.
  • the first core 70 has a concave curved surface 71 that matches the outer peripheral surface a2 of the burring vertical wall a and the outer peripheral surface b2 of the burring vertical wall b, and the inner bottom surface of the intermediate component W on one end side in the longitudinal direction. It has a lower surface 72 that matches the above, and an upper surface 73 that matches the inner upper surface of one end LA of the link component L. Further, the first core 70 has a first side surface 74 that matches the first side wall W2 of the intermediate component W, and a second side surface 75 that matches the second side wall W3.
  • the first core 70 is driven in the direction of the arrow Fa by the core driving mechanism, so that the first core 70 is driven between the first side wall W2 and the second side wall W3, and both outer peripheral surfaces and connecting walls of the burring vertical walls a and b. It is inserted between the inner surfaces of W1.
  • the second core 80 has a truncated cone-shaped outer peripheral surface 81 and a pair of side surfaces 82 and 83 connected to the outer peripheral surface 81 and parallel to each other.
  • the outer peripheral surface 81 matches the inner peripheral surface of the other end LB of the link component L.
  • the side surfaces 82 and 83 also match the inner peripheral surface of the other end LB of the link component L.
  • the second core 80 is inserted between the first side wall W2 and the second side wall W3 by being driven in the direction of the arrow Fb by the core driving mechanism.
  • the intermediate component W is housed in the concave groove 51 of the lower mold 50.
  • each of the first core 70 and the second core 80 is inserted between the first side wall W2 and the second side wall W3 by the core drive mechanism.
  • the upper die 60 is lowered toward the lower die 50 by the mold drive mechanism, and the concave groove 61 is pressed against the upper end edges of the first side wall W2 and the second side wall W3.
  • the O-bending process is performed so that the upper end edges of the first side wall W2 and the second side wall W3 come close to each other.
  • a closed cross-sectional shape is formed in the intermediate component W.
  • the manufacturing method of this link part is a die cutting process (material preparation process), a burring process, a U bending process, a reinforcing process, a shaft bending process, an O bending process, a through hole forming process, and a core metal. It has an extraction process.
  • the prepared flat plate is fixed on the concave groove of the die-cutting machine. Then, by bringing the die and the punch closer to each other by the punch drive mechanism of the die cutting machine, the convex portion of the punch punches the flat plate, and the flat plate material P is formed.
  • cutting may be performed by a laser cutting machine or the like.
  • the burring process the flat plate material P obtained by die cutting or the like is fixed on the die of the burring machine.
  • burring holes a1 and b1 are formed in each of the first pilot hole and the second pilot hole, respectively. ..
  • the flat plate material P thus obtained is shown in FIG. 2 (a).
  • the flat plate material P after the burring process is placed on the die 10, and the flat plate material P is pressed by the punch 20 by the punch drive mechanism of the U-bending machine. , Push into the recess 11.
  • the intermediate component W obtained by taking out from the concave groove 11 is shown in FIG. 2 (c).
  • the intermediate part W having a substantially U-shaped cross section as shown in FIG. 2C can be obtained by a known method such as bending the flat plate material P by 90 ° at two points regardless of such a U-bending step. Good.
  • the intermediate part W obtained in the U bending step is fixed to the first holding mechanism of the core metal extraction machine. Subsequently, the driving force of the driving mechanism is applied to the holding mechanism to move the core metal 30, and the core metal 30 is coaxially inserted into the burring holes a1 and b1 of the intermediate component W.
  • the intermediate component W after inserting the core metal 30 is shown in FIG. 2 (d). There are “insertion” and “press fitting” as a form of inserting the core metal 30 into the burring holes a1 and b1.
  • insertion refers to a method of inserting the core metal 30 so that the inner shape or inner diameter of the burring holes a1 and b1 is not made larger than the original size by inserting the core metal 30.
  • press-fitting refers to a method of inserting the core metal 30 in which the inner shape or the inner diameter of the burring holes a1 and b1 is enlarged beyond the original size by inserting the core metal 30.
  • insertion or press-fitting is determined by setting the magnitude relationship of the outer diameter or outer diameter of the core metal 30 with respect to the inner shape or inner diameter of the burring holes a1 and b1.
  • the outer diameter of the core metal (or the peripheral length of the outer surface of the core metal) may be substantially the same as the inner diameter of the burring hole (or the peripheral length of the inner surface of the burring hole).
  • the diameter ratio (outer diameter of the core metal / inner diameter of the burring hole) or the circumference ratio (perimeter of the outer surface of the core metal / circumference of the inner surface of the burring hole) is 1.000 ⁇ 0.005, 1.000 ⁇ . It may be in the range of 0.003 or 1.000 ⁇ 0.001.
  • the outer diameter of the core metal (or the peripheral length of the outer surface of the core metal) is slightly larger than the inner diameter of the burring hole (or the peripheral length of the inner surface of the burring hole).
  • the diameter ratio (outer diameter of the core metal / inner diameter of the burring hole) or the circumference ratio (perimeter of the outer surface of the core metal / circumference of the inner surface of the burring hole) is made larger than 1.000 or 1.001. The above may be applied. In this case, tensile stress is generated on the inner surface of the burring hole due to the difference between the outer diameter of the core metal and the inner diameter of the burring hole.
  • the lower limit of the diameter ratio or the circumference ratio may be 1.002, 1.003 or 1.005. As long as the core metal is inserted into the burring hole, it is not necessary to specify the upper limit of the diameter ratio or the circumference ratio, but it may be 1.050, 1.040 or 1.030.
  • the cross section of the core metal may be tapered so that the core metal can be easily inserted into the burring holes a1 and b1.
  • the above-mentioned diameter ratio or circumference ratio is a value calculated from the maximum diameter of the core metal.
  • the outer peripheral surface thereof may be in close contact with the inner peripheral surfaces of the burring holes a1 and b1 without any gap, and the core metal 30 may be simply inserted instead of press fitting.
  • the intermediate component W obtained in the reinforcing step is arranged in the concave groove 11 of the die 10 which is opened as shown in FIG. 2 (e). Then, the punch 40 is pushed down by the punch drive mechanism of the shaft bending machine, and the intermediate component W is shaft-bent in the concave groove 11. That is, the bottom of the intermediate part W before bending the shaft has a linear shape in the side view, but the intermediate part W is axially bent so that the bottom has a concave shape in the side view. At the time of this shaft bending, the inner peripheral surfaces of the burring holes a1 and b1 of the intermediate component W are always supported by the core metal 30, so that the machining accuracy is maintained without being impaired.
  • the upper and lower shapes of the intermediate component W after the shaft bending step are substantially symmetrical, but this is because the upper end edge of the first side wall W2 and the upper end edge of the second side wall W3 do not match. At this point, the closed cross-sectional shape has not yet been formed.
  • the intermediate part W obtained in the shaft bending step is housed in the concave groove 51 of the lower mold 50 as shown in FIG. 2 (g). Then, each of the first core 70 and the second core 80 is inserted between the first side wall W2 and the second side wall W3 by the core drive mechanism. Subsequently, the upper die 60 is lowered toward the lower die 50 by the mold drive mechanism, and O-bending is performed so that the upper end edges of the first side wall W2 and the second side wall W3 are brought close to each other by the concave groove 61.
  • the cross section perpendicular to the longitudinal direction of the intermediate component W becomes a closed cross-sectional shape at each position in the longitudinal direction, and the O-bending step is completed.
  • the upper end edges may be joined to each other by welding or the like.
  • the inner peripheral surfaces of the burring holes a1 and b1 of the intermediate component W are always supported by the core metal 30, so that the processing accuracy is maintained without being impaired.
  • the mating portion between the upper end edge of the first side wall W2 and the upper end edge of the second side wall W3 is circular or elliptical when viewed in a cross section perpendicular to the longitudinal direction.
  • the step of inserting the first core 70 and the second core 80 may be omitted.
  • the through holes c1 and d1 are coaxially formed in the intermediate part W (FIG. 2 (h)) obtained in the O bending step. Since the through holes c1 and d1 have a smaller diameter than the burring holes a1 and b1, they can be formed after the O-bending step, but they may be formed in advance at the time of the die-cutting step.
  • the through holes c1 and d1 may also be burring holes. In that case, it is preferable to perform the burring process by the same method as the burring holes a1 and b1 at the stage of obtaining the flat plate material P shown in FIG. 2 (a).
  • the core metal 30 is extracted from the burring holes a1 and b1.
  • the link component L shown in FIG. 1 is completed.
  • this core metal extraction step is omitted.
  • the external force for performing the axial bending shown in FIGS. 2 (e) and 2 and the O bending shown in FIGS. 2 (g) and 2 (h) is applied.
  • the roundness and shaft core accuracy (coaxiality) of the burring holes a1 and b1 are always maintained by the core metal 30. Therefore, it is possible to obtain a link component L having burring holes a1 and b1 (connecting holes) with high dimensional accuracy.
  • FIG. 2 a case where burring holes a1 and b1 are formed as connecting holes is illustrated.
  • the present invention is not limited to this embodiment, and the burring process may be omitted. In this case, after the flat plate material P is obtained in the die cutting step, the U bending step is performed without performing the burring process. Then, the first pilot hole and the second pilot hole obtained in the die cutting step become the connecting hole.
  • the vertical cross-sectional shape of the link component L from one end LA to the central LC is not limited to the shape shown in FIG. That is, in the above embodiment, the vertical cross-sectional shape has a shape that bulges downward at the position of one end LA of the bottom wall portion g and dents upward at the connecting position between the one end LA and the central LC.
  • the link component L1 in which the upper and lower surfaces of the burring holes a1 and b1 are flat (straight) in a side view may be adopted.
  • this link component L1 it is possible to change the shape of each mold used for the shaft bending shown in FIGS. 2 (e) and 2 and the O bending shown in FIGS. 2 (g) and 2 (h). It is possible. More specifically, when bending the shaft, the vertical cross-sectional shape of the bottom surface 11d of the die 10 shown in FIG. 5 and the vertical cross-sectional shape of the pressure surface 41 of the punch 40 are changed. That is, of the bottom surface 11d of the die 10, the range of the reference numeral M1 shown in FIG. 5 is defined as a linear inclined surface that descends from the central position in the longitudinal direction toward the edge position. Further, the pressure surface 41 of the punch 40 also has a linear inclined surface whose range of the reference numeral M2 shown in FIG. 5 is lowered from the central position in the longitudinal direction toward the edge position. The connecting wall W1 of the intermediate component W is sandwiched between the pressure surface 41 and the bottom surface 11d so as to match such a linear shape, and is formed into a straight line.
  • the concave groove 61 also has a linear inclined surface whose range of the reference numeral M4 shown in FIG. 6 rises from the central position in the longitudinal direction toward the edge position.
  • the vertical cross-sectional shape of the lower surface 72 is a linear inclined surface corresponding to the inclined surface of the concave groove 51.
  • the vertical cross-sectional shape of the upper surface 73 is a linear inclined surface corresponding to the inclined surface of the concave groove 61.
  • the connecting wall W1 is sandwiched between the concave groove 51 and the lower surface 72, and the upper end edge of the first side wall W2 and the upper end edge of the second side wall W3 are further sandwiched between the concave groove 61 and the upper surface 73.
  • the link component L1 shown in FIG. 7 can be obtained.
  • the link component L1 is viewed along its longitudinal direction, the upper and lower parts of the range M5 from one end LA to the connecting portion between the one end LA and the central LC form a linear shape in a side view. ..
  • the point Pr1 at the end of the pressure surface 41 of the punch 40 is first. It hits the inner surface of the connecting wall W1 and pressurizes in the direction of arrow F1.
  • the pressing force due to such point contact generates a pulling force as shown by an arrow F2 in the peripheral portion of the burring holes a1 and b1 that is closest to the point Pr1. Even if such a force is generated, it can be supported by the hoop stress generated on the inner peripheral surface by press-fitting the core metal 30 press-fitted in advance into the burring holes a1 and b1.
  • the upper surface 73 of the first core 70 shown in FIG. 6 presses the upper end edge of the first side wall W2 and the upper end edge of the second side wall W3 from the inside thereof to form a convex outer shape.
  • some partial tension is applied to the peripheral portions of the burring holes a1 and b1.
  • the vertical cross-sectional shape of the upper surface 73 is a linear inclined surface corresponding to the inclined surface of the concave groove 61, the peripheral portions of the burring holes a1 and b1 are No partial tension is applied. Therefore, in addition to the reinforcing effect of the core metal 30, higher processing accuracy can be obtained.
  • the burring holes a1 and b1 are formed, but the present embodiment is not limited to this embodiment. It is not necessary to omit the burring process to form the burring holes a1 and b1.
  • the first pilot hole and the second pilot hole which are through holes formed in the die cutting step, may be used as connecting holes for the link component L.
  • the connecting hole is not limited to a circular shape, and may be a semicircular hole, or may have another hole shape such as an ellipse or a quadrangle.
  • a jig 90 having both the core metal 30 and the first core 70 can be used.
  • the jig main body 170 is a portion corresponding to the first core 70
  • the pair of convex portions 130 is a portion corresponding to the core metal 30.
  • the external dimensions of the pair of convex portions 130 are formed to be slightly larger than the semicircular pilot holes a3 and a4.
  • the second embodiment of the present invention will be described below with reference to FIGS. 9 and 10.
  • a pair of core metals 230 are coaxially arranged on the die 10 and inserted and removed inside and outside the concave groove 11. The point is different from the first embodiment. That is, the pair of core metal 230 is a part of the die 10, and is taken out after the link component L is manufactured.
  • the differences from the first embodiment will be mainly described, and other matters will be the same as those of the first embodiment, and duplicate description will be omitted.
  • the link component manufacturing apparatus of the present embodiment is a fourth drive mechanism that approaches and separates the die (fifth mold) 10, the punch (sixth mold) 40, and the relative positions between the die 10 and the punch 40. (Not shown) and a fifth drive mechanism (not shown) for inserting and removing the pair of core metal 230 into the pair of through holes 10A1 and 10B1 provided in the die 10.
  • the die 10 is in contact with the outer surface of the connecting wall W1 and in contact with the outer surface of the arcuate surface (third arcuate surface) 11A and the first side wall W2 which are convex in the vertical cross section. It has a side surface 11B (fifth side surface), an inner side surface (sixth side surface) 11C in contact with the outer surface of the second side wall W3, and a pair of through holes 10A1 and 10B1 coaxially penetrating these inner side surfaces 11B and 11C.
  • the through holes 10A1 and 10B1 are not limited to circular holes, and may be, for example, semi-circular holes or other hole shapes such as an ellipse and a quadrangle. Further, as shown in FIG.
  • the punch 40 has an arc surface (fourth arc surface) 40A which is in contact with the inner surface of the connecting wall W1 and which is concave in a vertical cross-sectional view, and an outer surface (which is in contact with the inner surface of the first side wall W2). It has a seventh side surface) 40B and an outer surface (eighth side surface) 40C in contact with the inner surface of the second side wall W3.
  • a pair of cores 230 are inserted into and removed from the through hole 10A1 of the inner side surface (fifth side surface) 11B and the through hole 10B1 of the inner side surface (sixth side surface) 11C. It also has a core metal (second split core metal) 230b coaxial with the core metal 230a.
  • the fifth drive mechanism has a first drive unit (not shown) for inserting and removing the core metal 230a into the through hole 10A1 and a second drive unit (not shown) for inserting and removing the core metal 230b into the through hole 10B1.
  • FIG. 9 shows a state in which one end side of the intermediate component W is fixed in the die 10 in this way.
  • the bottom surface shape of the concave groove 11 has a convex cross-sectional shape in which the central portion in the longitudinal direction is raised when viewed in a vertical cross section along the longitudinal direction thereof. Therefore, when one end side of the intermediate component W is fixed near the bottom surface of the concave groove 11 by the core metal 230, the other end side of the intermediate component W is separated from the bottom surface of the concave groove 11. As a result, the intermediate component W is inclined so that one end side thereof is relatively low and the other end side is relatively high.
  • the punch 40 is lowered from above the intermediate component W which is inclinedly arranged in this way. Then, the punch 40 first hits the other end side of the intermediate component W and pushes it down vertically. As a result, the other end side of the intermediate component W is pushed down by the punch 40 as shown by the arrow Fd. At this time, the bottom surface of the central portion of the intermediate component W in the longitudinal direction is bent so as to match the convex cross-sectional shape of the bottom surface of the concave groove 11. Then, the bottom wall of the intermediate component W is completely sandwiched between the bottom surface of the concave groove 11 and the bottom surface of the punch 40, and the shaft bending is completed.
  • the core metal 230a and 230b are first pulled out from the intermediate part W, and then the punch 40 is raised and then taken out from the die 10. After that, the link component L is obtained by performing an O-bending step or the like in the same manner as in the first embodiment.
  • the third embodiment of the present invention will be described below with reference to FIG.
  • the present embodiment is different from the first embodiment in that a link component having a pilot hole instead of the burring holes a1 and b1 is manufactured. Therefore, the differences from the first embodiment will be mainly described, and other matters will be the same as those of the first embodiment, and duplicate description will be omitted.
  • the burring processing step of the first embodiment is omitted. Therefore, the method for manufacturing the link component of the present embodiment includes a die cutting process (material preparation process), a U bending process, a reinforcing process, a shaft bending process, an O bending process, a through hole forming process, and a core metal. It has an extraction process.
  • the prepared flat plate is fixed on the concave groove of the die-cutting machine. Then, by bringing the die and the punch closer to each other by the punch drive mechanism of the die cutting machine, the convex portion of the punch punches the flat plate, and the flat plate material Pa shown in FIG. 11A is formed. A first pilot hole a1a and a second pilot hole b1a are formed in the flat plate material Pa.
  • die cutting by laser processing may be performed.
  • the flat plate material Pa after the die-cutting process is placed on the die 10, and the flat plate material Pa is pressed by the punch 20 by the punch drive mechanism of the U-bending machine. , Push into the recess 11.
  • the portion P2a and the portion P3a are bent so as to face each other with the portion P1a of the flat plate material Pa shown in FIG. 11A as a boundary.
  • the intermediate component Wa taken out from the concave groove 11 is shown in FIG. 11 (c).
  • the intermediate component Wa includes a first side wall W2a having a first pilot hole a1a, a second side wall W3a having a second pilot hole b1a and arranged to face the first side wall W2a, and a lower edge of the first side wall W2a. It has a connecting wall W1a that connects (one side edge) and a lower edge (one side edge) of the second side wall W3a.
  • the intermediate component Wa is long in one direction.
  • the connecting wall W1a has a linear shape when viewed from the side.
  • the distance between the first side wall W2a and the second side wall W3a is the narrowest at the central position when viewed along the longitudinal direction of the intermediate component Wa, and gradually widens from the central position toward both end positions.
  • the first pilot hole a1a and the second pilot hole b1a are arranged so as to be coaxial with each other.
  • the intermediate component Wa is fixed to the first holding mechanism of the core metal extraction machine. Subsequently, the driving force of the driving mechanism is applied to the first holding mechanism to move the core metal 30, and the core metal 30 is coaxially inserted into the first pilot hole a1a and the second pilot hole b1a of the intermediate component Wa.
  • the core metal 30 has an outer peripheral surface having an outer diameter dimension slightly larger than the first pilot hole a1a and the second pilot hole b1a of the intermediate component W, and an inner peripheral surface held by the first holding mechanism. In this case, the method of inserting the core metal 30 is "press fitting".
  • the intermediate component Wa after press fitting is shown in FIG. 11 (d).
  • the outer diameter of the core metal may be substantially the same as the inner diameter of the prepared hole (or the peripheral length of the inner surface of the prepared hole).
  • the diameter ratio (outer diameter of the core metal / inner diameter of the prepared hole) or the peripheral length ratio (peripheral length of the outer surface of the core metal / peripheral length of the inner surface of the prepared hole) is 1.000 ⁇ 0.005, 1.000 ⁇ . It may be in the range of 0.003 or 1.000 ⁇ 0.001.
  • the outer diameter of the core metal (or the peripheral length of the outer surface of the core metal) is slightly larger than the inner diameter of the prepared hole (or the peripheral length of the inner surface of the prepared hole).
  • the diameter ratio (outer diameter of the core metal / inner diameter of the prepared hole) or the peripheral length ratio (peripheral length of the outer surface of the core metal / peripheral length of the inner surface of the prepared hole) is made larger than 1.000 or 1.001. The above may be applied. In this case, tensile stress is generated on the inner surface of the prepared hole due to the difference between the outer diameter of the core metal and the inner diameter of the prepared hole.
  • first pilot hole a1a and the second pilot hole b1a Due to the core metal 30 inserted in this reinforcing step, tensile stress along the edges of the first pilot hole a1a and the second pilot hole b1a is applied to the first pilot hole a1a and the second pilot hole b1a. Since the first pilot hole a1a and the second pilot hole b1a are reinforced from the inside by this tensile stress, deformation and axial misalignment of the first pilot hole a1a and the second pilot hole b1a can be effectively suppressed. Since the first pilot hole a1a and the second pilot hole b1a are circular, the tensile stress becomes a hoop force applied to the first pilot hole a1a and the second pilot hole b1a.
  • the lower limit of the diameter ratio or the circumference ratio may be 1.002, 1.003 or 1.005.
  • the core metal is not necessary to specify the upper limit of the diameter ratio or the circumference ratio, but it may be 1.050, 1.040 or 1.030.
  • the cross section of the core metal may be tapered so that the core metal can be easily inserted into the prepared hole.
  • the above-mentioned diameter ratio or circumference ratio is a value calculated from the maximum diameter of the core metal.
  • the core metal may be a ring-shaped jig or a solid columnar jig.
  • the two cores may be separated into separate cores, but in order to improve the coaxiality of the burring holes, the two cores are integrated (as a result of integration, one core). It will be the core money.)
  • the intermediate component W obtained in the reinforcing step is arranged in the concave groove 11 of the die 10 which is opened as shown in FIG. 11 (e). Then, the punch 40 is pushed down by the punch drive mechanism of the shaft bending machine to bend the intermediate component Wa in the concave groove 11.
  • the punch 40 of the present embodiment does not have the step, unlike the punch 40 described in the first embodiment.
  • the bottom of the intermediate part Wa before the shaft bending has a linear shape in the side view, but in the main shaft bending step, the intermediate part Wa is axially bent so that the bottom has a concave shape in the side view.
  • the first pilot hole a1a and the second pilot hole b1a of the intermediate component Wa are always supported by the core metal 30, so that the machining accuracy (roundness accuracy and coaxial accuracy) is maintained without being impaired. Will be done.
  • the upper and lower shapes of the intermediate component Wa after the shaft bending step are generally symmetrical, but the upper end edge of the first side wall W2a and the upper end edge of the second side wall W3a do not match. At this point, the closed cross-sectional shape has not yet been formed.
  • the intermediate component Wa obtained in the shaft bending step is housed in the concave groove 51 of the lower mold 50 as shown in FIG. 11 (g). Then, each of the first core 70 and the second core 80 is inserted between the first side wall W2 and the second side wall W3 by the core drive mechanism. Subsequently, the upper die 60 is lowered toward the lower die 50 by the mold drive mechanism, and O-bending is performed so that the upper end edges of the first side wall W2a and the second side wall W3a are brought close to each other by the concave groove 61.
  • the cross section perpendicular to the longitudinal direction becomes a closed cross-sectional shape at each position in the longitudinal direction of the intermediate component Wa, and the O-bending step is completed. Further, the upper end edges may be joined to each other by welding or the like.
  • the first pilot hole a1a and the second pilot hole b1a of the intermediate part Wa are always supported by the core metal 30, so that the machining accuracy (roundness accuracy and coaxial accuracy) is maintained without being impaired.
  • the mating portion between the upper end edge of the first side wall W2a and the upper end edge of the second side wall W3a is circular or elliptical when viewed in a cross section perpendicular to the longitudinal direction.
  • the step of inserting the first core 70 and the second core 80 may be omitted.
  • the through holes c1 and d1 are coaxially formed in the intermediate part W (FIG. 11 (h)) obtained in the O bending step. Since the through holes c1 and d1 have smaller diameters than the first pilot hole a1a and the second pilot hole b1a, they can be formed after the O bending step, but they may be formed in advance at the time of the die cutting step. Good.
  • the core metal extraction step the core metal 30 is extracted from the first pilot hole a1a and the second pilot hole b1a. As a result, the link part is completed. When the core metal 30 is used as it is as a part of the link component, the core metal extraction step is omitted.
  • the external force for performing the shaft bending shown in FIGS. 11 (e) and 11 and the O bending shown in FIGS. 11 (g) and 11 (h) is applied.
  • the shape and dimensions of the first pilot hole a1a and the second pilot hole b1a are always maintained by the core metal 30. Therefore, it is possible to obtain a link component having a first pilot hole a1a and a second pilot hole b1a (connecting hole) with high dimensional accuracy (roundness accuracy and coaxial accuracy).
  • the second embodiment described above is an example of the present invention, and can be appropriately modified as needed. For example, as shown in FIG.
  • a link component whose upper and lower surfaces are flat (straight) in a side view may be adopted.
  • the shaft is bent while maintaining a straight state without partially inflating, so that the first pilot hole a1a and the second pilot hole No force is generated to partially pull b1a outward in the radial direction. Therefore, in addition to the reinforcing effect of the core metal 30, higher processing accuracy can be obtained.
  • the shaft bending step of the first embodiment is omitted. Therefore, the method for manufacturing the link component of the present embodiment includes a die cutting process (material preparation process), a burring process, a U bending process, a reinforcing process, an O bending process, and a core metal extraction process.
  • a die cutting process material preparation process
  • a burring process burring process
  • U bending process U bending process
  • a reinforcing process an O bending process
  • a core metal extraction process Have.
  • the prepared flat plate is fixed on the concave groove of the die-cutting machine. Then, by bringing the die and the punch closer to each other by the punch drive mechanism of the die cutting machine, the convex portion of the punch punches the flat plate, and the flat plate material Pb is formed.
  • the flat plate material Pb has a portion P2b serving as the first side wall W2b, a portion P3b serving as the second side wall W3b, and a portion P1b serving as the connecting wall W1b in FIG. 12C. At this point, the first pilot hole and the second pilot hole and a pair of through holes c1b and d1b are still formed.
  • die cutting by laser processing may be performed.
  • the flat plate material Pb obtained by die cutting is fixed on the die of the burring machine. Then, by passing the punch through the first pilot hole and the second pilot hole by the punch drive mechanism of the burring machine, burring holes a1b and b1b are formed in the first pilot hole and the second pilot hole, respectively. Will be done.
  • the flat plate material Pb thus obtained is shown in FIG. 12 (a). It should be noted that burring holes may be formed in the through holes c1b and d1b.
  • the flat plate material Pb after the burring process is placed on the die 10b, and the flat plate material Pb is pressed by the punch 20b by the punch drive mechanism of the U-bending machine. , Push into the concave groove 11bb.
  • the portion P2b and the portion P3b are bent so as to face each other with the portion P1b of the flat plate material Pb as a boundary.
  • the intermediate component Wb is taken out from the concave groove 11bb.
  • the intermediate part Wb obtained in the U bending step is fixed to the first holding mechanism of the core metal extraction machine. Subsequently, the driving force of the driving mechanism is applied to the first holding mechanism to move the core metal 30b, and the core metal 30b is coaxially inserted into the burring holes a1b and b1b of the intermediate component Wb.
  • the intermediate component Wb after inserting the core metal 30b is shown in FIG. 12 (c).
  • a pulling force along the inner peripheral surfaces of the burring holes a1b and b1b is applied to the burring holes a1b and b1b.
  • the burring holes a1b and b1b are reinforced from the inside by this tensile force, the deformation of the burring holes a1b and b1b can be effectively suppressed. Since the burring holes a1b and b1b are circular, the tensile force is a hoop force applied to the burring holes a1b and b1b.
  • the intermediate part Wb obtained in the reinforcing step is housed in the concave groove 51b of the lower mold 50b as shown in FIG. 12 (d). Then, the first core 70b and the second core 80b are respectively inserted between the first side wall W2b and the second side wall W3b by the core drive mechanism.
  • the upper die 60b is lowered toward the lower die 50b by the mold drive mechanism, and O-bending is performed so that the upper end edges of the first side wall W2b and the second side wall W3b are brought close to each other by the concave groove 61b.
  • the cross section perpendicular to the longitudinal direction of the intermediate component W becomes a closed cross-sectional shape at each position in the longitudinal direction, and the O-bending step is completed.
  • the upper end edges may be joined to each other by welding or the like.
  • the inner peripheral surfaces of the burring holes a1b and b1b of the intermediate part Wb are always supported by the core metal 30b, so that the processing accuracy is maintained without being impaired.
  • the mating portion between the upper end edge of the first side wall W2b and the upper end edge of the second side wall W3b is circular or elliptical when viewed in a cross section perpendicular to the longitudinal direction.
  • the step of inserting the first core 70b and the second core 80b may be omitted.
  • the core metal 30b is extracted from the burring holes a1b and b1b. As a result, a tapered tube-shaped link component having a straight axis is completed.
  • this core metal extraction step is omitted.
  • the burring holes a1b and b1b are always perfect circles. Degree and shaft core accuracy are maintained by the core metal 30b. Therefore, it is possible to obtain a link component having burring holes (connecting holes) a1b and b1b with high dimensional accuracy.
  • the case where the burring holes a1b and b1b are formed as the connecting holes has been illustrated. However, the present invention is not limited to this embodiment, and the burring process may be omitted. In this case, after the flat plate material Pb is obtained in the die cutting step, the U bending step is performed without performing the burring process. Then, the first pilot hole and the second pilot hole obtained in the die cutting step become the connecting hole.
  • the method for manufacturing a link component according to the present embodiment is a first having a first side wall W2 having a first pilot hole (prepared hole) and a second pilot hole (prepared hole) coaxial with the first pilot hole.
  • a second side wall W3 arranged to face the side wall W2, and a connecting wall W1 connecting the lower edge (one side edge) of the first side wall W2 and the lower edge (one side edge) of the second side wall W3.
  • It has connecting holes (first pilot hole and second pilot hole, or burring machined holes a1 and b1) from the intermediate part W which is long along one direction and is provided on one side along the one direction.
  • the method of manufacturing the link component of the present embodiment includes a reinforcing step of coaxially inserting or press-fitting the core metal 30 into the connecting hole; after the reinforcing step, the upper edge (the other side edge) of the first side wall W2. It has an O-bending step of O-bending the first side wall W2 and the second side wall W3 so as to bring the upper edge (the other side edge) of the second side wall W3 into contact with each other.
  • the connecting hole is preliminarily reinforced by the core metal 30 inserted in the reinforcing step before that. Therefore, these deformations are effectively suppressed.
  • the shape of the first pilot hole and the second pilot hole is not limited to a circular shape, and may be non-circular. Further, the first pilot hole and the second pilot hole are not limited to those formed by being surrounded by a completely closed peripheral surface, and a part thereof may be open. Therefore, the first pilot hole and the second pilot hole may be, for example, an open semicircle.
  • the shaft bending may be performed by pressing the pressure surface 41 having a linear portion in a side view against the upper surface (inner surface) of the connecting wall W1.
  • the inner surface of the connecting wall W1 is pressurized by the linear pressing surface 41 in a side view. Since the inner surface of the connecting wall W1 is not partially inflated and the shaft is bent while maintaining a straight state, no force for locally pulling the connecting hole is generated. Therefore, in addition to the reinforcing effect of the core metal 30, it is possible to obtain the link component L1 with higher dimensional accuracy.
  • the core metal 30 is sandwiched between the first side wall W2 and the second side wall W3.
  • the first core 70 sandwiched between the outer peripheral surface and the inner surface of the connecting wall W1 may be inserted or press-fitted into the end portion of the intermediate component W.
  • the distance and parallelism between the first side wall W2 and the second side wall W3 are kept constant by the first core 70, and the distance between the connecting wall W1 and the core metal 30 is kept constant. Will be done. Therefore, even if an external force for O-bending in the O-bending step is applied, the influence on the dimensional accuracy and the position accuracy of the connecting hole can be suppressed, so that the link component L with higher dimensional accuracy can be manufactured.
  • the diameter ratio calculated by dividing the outer diameter of the core metal 30 by the inner diameters of the first pilot hole and the second pilot hole is It may be larger than 1,000.
  • the core metal 30 can be press-fitted into the first pilot hole and the second pilot hole.
  • the burring holes a1 having burring vertical walls a and b in the first pilot hole and the second pilot hole, respectively.
  • a burring process for forming b1 is performed; in the reinforcing process, the core metal 30 is coaxially inserted or press-fitted into the burring holes a1 and b1 instead of the first pilot hole and the second pilot hole.
  • the same action and effect as in (1) above can be obtained.
  • the burring holes a1 and b1 are reinforced in advance by the core metal 30 inserted or press-fitted in the reinforcing step. Deformation is effectively suppressed.
  • the shape of the burring holes a1 and b1 is not limited to a circular shape, and may be non-circular. Further, the burring holes a1 and b1 are not limited to those formed by being surrounded by a completely closed peripheral surface, and a part thereof may be open. Therefore, the burring holes a1 and b1 may be, for example, an open semicircular shape.
  • the burring vertical walls a and b and the core metal 30 follow without delaying the axial bending deformation of the connecting wall W1. Therefore, the burring vertical walls a and b and the core metal 30 can follow the deformation of the first side wall W2 and the second side wall W3 that are integrated with the connecting wall W1, so that the movement of the core metal 30 is delayed and the burring hole is formed. It does not deform a1 and b1.
  • the shaft bending may be performed by pressing the pressure surface 41 having a portion forming a linear shape in a side view against the inner surface of the connecting wall W1.
  • the same action and effect as the above (3) can be obtained. Therefore, according to this aspect, since the concave curved surface does not occur on the connecting wall W1, the deformation of the burring holes a1 and b1 can be suppressed, and the dimensional accuracy of the connecting holes formed by the burring holes a1 and b1 can be suppressed. Can be further enhanced.
  • the burring vertical wall a is sandwiched between the first side wall W2 and the second side wall W3.
  • the first core 70 sandwiched between the outer peripheral surfaces a2 and b2 of b and the inner surface of the connecting wall W1 may be inserted or press-fitted into the end portion of the intermediate component W.
  • the same action and effect as in (4) above can be obtained. That is, the distance and parallelism between the first side wall W2 and the second side wall W3 are kept constant by the first core 70, and the distance between the connecting wall W1 and the burring vertical walls a and b is kept constant. ..
  • the diameter ratio calculated by dividing the outer diameter of the core metal 30 by the inner diameters of the burring holes a1 and b1 is 1.000. It may be larger. In the case of the embodiment described in (10) above, the core metal 30 can be press-fitted into the burring holes a1 and b1.
  • a burring step of forming burring holes a1 and b1 having burring vertical walls a and b is performed in the prepared hole;
  • the core metal 230 is coaxially inserted or press-fitted into the burring holes a1 and b1 instead of the prepared holes.
  • the shapes of the burring holes a1 and b1 are always maintained by the core metal 230 inserted or press-fitted while the intermediate component W is axially bent.
  • the portion P2 to be the first side wall W2, the portion P3 to be the second side wall W3, and the connecting wall W1 are formed before the reinforcing step.
  • a die-cutting step material preparation step in which a flat plate material P having a portion P1 is prepared by punching from the flat plate; a portion P2 and a second side wall to be the first side wall W2 with the portion P1 to be the connecting wall W1 as a boundary.
  • a U-bending step of bending the flat plate material P so that the portion P3 to be W3 faces each other; may be performed.
  • an intermediate part W having a first pilot hole and a second pilot hole coaxial with each other can be obtained by the U bending step after the die cutting step. Further, before the U bending step, the first pilot hole and the second pilot hole may be burred to form burring vertical walls a and b that partition the burring holes a1 and b1.
  • the core metal 30 may be a part of the link component L, and the opening of the core metal 30 may be a connecting hole.
  • the step of removing the core metal 30 from the link component L and the post-step of reinforcing the first pilot hole and the second pilot hole of the link component L or the burring holes a1 and b1 become unnecessary. Become. Therefore, it becomes possible to further increase the productivity.
  • the link component manufacturing apparatus has a first side wall W2 having a first pilot hole and a second pilot hole coaxial with the first pilot hole and facing the first side wall W2. Along one direction having a second side wall W3 arranged, and a connecting wall W1 connecting the lower edge (one side edge) of the first side wall W2 and the lower edge (one side edge) of the second side wall W3.
  • One end LA having connecting holes (first pilot hole and second pilot hole, or burring holes a1 and b1) and provided on one side along the one direction from the long intermediate part W, and the above. It is an apparatus for manufacturing a link component L including the other end LB provided on the other side along one direction.
  • the link component manufacturing apparatus has a core metal 30 that is coaxially inserted or press-fitted into the first pilot hole and the second pilot hole; and has a shape that accepts the intermediate component W and matches the outer shape of the link component L.
  • the lower mold 50 first mold having the concave groove 51 (first concave surface); the intermediate part W is housed together with the lower mold 50, and the upper edge (the other side edge) and the second side wall of the first side wall W2 are accommodated.
  • the core metal 30 is coaxially inserted or press-fitted into the first pilot hole and the second pilot hole. After that, the intermediate component W whose first pilot hole and second pilot hole are reinforced by the core metal is placed as it is in the concave groove 51 of the lower mold 50.
  • the relative positions between the lower mold 50 and the upper mold 60 are brought closer by the mold driving mechanism so as to accommodate the intermediate component W together with the lower mold 50, and both are matched.
  • the concave groove 61 of the upper die 60 abuts on both the upper edge of the first side wall W2 and the upper edge of the second side wall W3 to bring them close to each other and match them.
  • first pilot hole and the second pilot hole are reinforced in advance by the core metal 30 inserted or press-fitted first. , Deformation of these first pilot holes and second pilot holes is effectively suppressed.
  • the convex bottom surface 11d in contact with the outer surface of the connecting wall W1, the first side surface in contact with the outer surface of the first side wall W2, and the second surface in contact with the outer surface of the second side wall W3.
  • a die 10 third mold having a side surface; a concave pressure surface 41 (second arc surface) in contact with the inner surface of the connecting wall W1, a side surface 22 (third side surface) in contact with the inner surface of the first side wall W2, and a third.
  • a punch 40 (fourth mold) having a side surface 23 (fourth side surface) in contact with the inner surface of the side wall W3 and a holding surface 44 (core metal holding surface) in contact with the outer peripheral surface of the core metal 30; the die 10 and the punch 40.
  • a punch drive mechanism (second drive mechanism) that approaches and separates the relative positions between the two may be further provided.
  • the intermediate component W is provided so that the outer surface of the connecting wall W1 is in contact with the bottom surface 11d, the outer surface of the first side wall W2 is in contact with the first side surface, and the outer surface of the second side wall W3 is in contact with the second side surface. Place it in the die 10.
  • the relative positions between the die 10 and the punch 40 are brought closer by the driving force of the punch drive mechanism.
  • the pressure surface 41 abuts on the inner surface of the connecting wall W1
  • the side surface 22 slides on the inner surface of the first side wall W2
  • the side surface 23 slides on the inner surface of the second side wall W3, and the holding surface 44 slides on the core metal 30. It hits the outer peripheral surface of.
  • the connecting wall W1 is bent according to the shapes of the bottom surface 11d and the pressure surface 41.
  • the first side wall W2 and the second side wall W3 are also bent. In this way, the axial bending of the intermediate component W is completed.
  • the force of the punch drive mechanism can be applied to both the connecting wall W1 and the core metal 30 at the same time, so that the core metal 30 is made to follow the deformation operation of the shaft bending of the connecting wall W1 without delay. Be done. Therefore, the core metal 30 follows the deformation of the first side wall W2 and the second side wall W3 that are integrated with the connecting wall W1, so that the movement of the core metal 30 is delayed and the first pilot hole and the second lower surface are delayed. Does not deform the hole.
  • the pressure receiving portion that receives the portion of the intermediate component W that becomes one end LA is a vertical cross section including the extending direction of the pressure surface 41.
  • the pressure surface 41 is linear in the vertical cross section at the portion of the pressure surface 41 facing the pressure receiving portion via the connecting wall W1.
  • the connecting wall W1 since a portion of the connecting wall W1 of the intermediate component W that becomes one end LA is sandwiched between the pressure receiving portion and the pressure receiving surface 41 that are linear to each other in the vertical cross section, the connecting wall W1 The shaft can be bent while keeping the inner surface of the eggplant straight.
  • the concave groove 61 that pressurizes the portion of the intermediate component W that becomes the one end portion is linear when viewed in a vertical cross section including the extending direction of the concave groove 61. There may be.
  • the matched portion is the concave groove 61. According to the shape of, it forms a straight line when viewed from the side.
  • the first middle wall inserted between the first side wall W2 and the second side wall W3 and between the outer peripheral surface of the core metal 30 and the inner surface of the connecting wall W1.
  • a child 70 and a core driving mechanism for inserting and removing the first core 70 with respect to the lower mold 50 and the upper mold 60; may be further provided.
  • the first core 70 is placed between the first side wall W2 and the second side wall W3 and between the outer peripheral surface of the core metal 30 and the inner surface of the connecting wall W1 by receiving the driving force of the core driving mechanism. A part is put.
  • the distance and parallelism between the first side wall W2 and the second side wall W3 are kept constant by the first core 70, and the distance between the connecting wall W1 and the core metal 30 is kept constant. Therefore, even if an external force for O-bending is applied to the first side wall W2 and the second side wall W3, the influence on the dimensional accuracy and the position accuracy of the first pilot hole and the second pilot hole can be suppressed, so that the link component with higher dimensional accuracy can be suppressed. L can be manufactured.
  • the same action and effect as the above (15) can be obtained. That is, even during O-bending, the pair of burring holes a1 and b1 are continuously reinforced by the core metal 30.
  • the burring holes a1 and b1 are reinforced in advance by the core metal 30 inserted or press-fitted in advance. Deformation of a1 and b1 is effectively suppressed.
  • the convex bottom surface 11d in contact with the outer surface of the connecting wall W1, the first side surface in contact with the outer surface of the first side wall W2, and the second surface in contact with the outer surface of the second side wall W3.
  • a die 10 third mold having a side surface; a concave pressure surface 41 (second arc surface) in contact with the inner surface of the connecting wall W1, a side surface 42 (third side surface) in contact with the inner surface of the first side wall W2, and a third.
  • Punch 40 (fourth mold) having a side surface 43 (fourth side surface) in contact with the inner surface of the two side walls W3, and a holding surface 44 (core metal holding surface) that hits the outer peripheral surface of the core metal 30 via the burring vertical walls a and b. ) And; a punch drive mechanism (second drive mechanism) for approaching and separating relative positions between the die 10 and the punch 40; may be further provided.
  • a punch drive mechanism (second drive mechanism) for approaching and separating relative positions between the die 10 and the punch 40; may be further provided.
  • the same action and effect as the above (16) can be obtained.
  • the intermediate component W is arranged in the die 10 so that the outer surface of the connecting wall W1 is in contact with the bottom surface 11d, the outer surface of the first side wall W2 is in contact with the first side surface, and the outer surface of the second side wall W3 is in contact with the second side surface.
  • the relative positions between the die 10 and the punch 40 are brought closer by the driving force of the punch drive mechanism.
  • the pressure surface 41 abuts on the inner surface of the connecting wall W1
  • the side surface 42 slides on the inner surface of the first side wall W2
  • the side surface 43 slides on the inner surface of the second side wall W3, and the holding surface 44 slides on the burring vertical wall.
  • the connecting wall W1 is bent according to the shapes of the bottom surface 11d and the pressure surface 41. Then, as the connecting wall W1 is deformed, the first side wall W2 and the second side wall W3 are also bent. In this way, the axial bending of the intermediate component W is completed.
  • the force of the punch drive mechanism can be applied to both the connecting wall W1 and the burring vertical walls a and b at the same time, so that the burring vertical wall does not delay the deformation operation of the shaft bending of the connecting wall W1.
  • a and b can be made to follow. Therefore, since the core metal 30 also follows the first side wall W2 and the second side wall W3 that deform together with the connecting wall W1, the core metal 30 does not deform the burring vertical walls a and b.
  • the pressure receiving portion that receives the portion of the intermediate component W that becomes one end LA is a vertical cross section including the extending direction of the pressure surface 41.
  • the first pressurizing portion facing the pressure receiving portion via the connecting wall W1 is linear when viewed in the vertical cross section.
  • the same action and effect as the above (17) can be obtained. Therefore, according to this aspect, since the concave curved surface does not occur on the connecting wall W1, the deformation of the burring holes a1 and b1 can be suppressed, and the dimensional accuracy of the connecting holes formed by the burring holes a1 and b1 can be improved. It can be further enhanced.
  • the pressurizing portion (second pressurizing portion) that pressurizes the portion of the intermediate component W that becomes one end LA is a longitudinal section including the extending direction of the concave groove 61. It may be linear in terms of surface. In the case of the above (23), the same action and effect as the above (18) can be obtained. Therefore, according to this aspect, the possibility of impairing the dimensional accuracy of the burring holes a1 and b1 can be further reduced.
  • the link component L can be manufactured.
  • the link component manufacturing apparatus is a fourth drive mechanism (non-standard) for approaching and separating the die (fifth mold) 10, the punch (sixth mold) 40, and the relative positions between the die 10 and the punch 40. It is provided with a fifth drive mechanism (not shown) for inserting and removing a pair of core metal 230s into and out of a pair of through holes 10A1 and 10B1 provided in the die 10.
  • the die 10 has an arc surface (third arc surface) 11A that is in contact with the outer surface of the connecting wall W1 and has a convex shape in a vertical cross-sectional view, and an inner surface (fifth side surface) 11B that is in contact with the outer surface of the first side wall W2. , The inner side surface (sixth side surface) 11C in contact with the outer surface of the second side wall W3, and a pair of through holes 10A1, 10B1 coaxially penetrating the inner side surfaces 11B and 11C.
  • the punch 40 has an arc surface (fourth arc surface) 40A that is in contact with the inner surface of the connecting wall W1 and is concave in vertical cross-sectional view, and an outer surface (seventh side surface) 40B that is in contact with the inner surface of the first side wall W2. It has an outer surface (eighth side surface) 40C, which is in contact with the inner surface of the two side walls W3.
  • the outer surface of the connecting wall W1 is in contact with the arc surface 11A
  • the outer surface of the first side wall W2 is in contact with the inner surface 11B
  • the outer surface of the second side wall W3 is in contact with the inner surface 11C.
  • the component W is arranged in the die 10.
  • the core metal 230 is inserted into the pair of prepared holes of the intermediate part W so as to penetrate all of the through hole 10A1, the pair of prepared holes of the intermediate part W, and the through hole 10B1 (so that all are coaxial).
  • press fit As a result, at the position between the first end portion that becomes the one end LA and the second end portion that becomes the other end LB of the intermediate component W, the connecting portion is fixedly positioned in the fifth mold by the core metal.
  • a part of the connecting wall W1 between the first end and the second end is in contact with the convex arc surface 40A and is supported.
  • the punch 40 With the intermediate component W supported at two points in the die 10 in this way, the punch 40 is brought closer to the die 10 by the driving force of the fifth drive mechanism. Then, the arcuate surface 40A comes into contact with the inner surface of the connecting wall W1 on the second end side, and pushes down the arc surface 40A. As a result, the intermediate component W is axially bent with the position supported by the arc surface 40A on the outer surface of the connecting wall W1 as a fulcrum. Even if this shaft bending is performed, since the pair of pilot holes is reinforced by the core metal 230 inserted in advance, the influence on the dimensional accuracy and position of these holes can be suppressed.
  • the core metal 230 is inserted into and removed from the through hole of the inner side surface (fifth side surface) 11B and the core metal (first split core metal) 230a and the inner side surface (sixth side surface) 11C. It has a core metal (second split core metal) 230b coaxial with the core metal 230a.
  • the fifth drive mechanism has a first drive unit (not shown) for inserting and removing the core metal 230a into the through hole of the first side wall W2, and a second drive for inserting and removing the core metal 230b into the through hole of the second side wall W3. It has a part (not shown).
  • the through hole of the inner side surface (fifth side surface) 11B is coaxial with one of the pair of pilot holes of the intermediate part W
  • the through hole of the inner side surface (sixth side surface) 11C is the intermediate part W.
  • the intermediate component W is arranged in the die 10 so as to be coaxial with the other of the pair of pilot holes.
  • the core metal 230a is inserted or press-fitted into one of the pilot holes of the intermediate component W through the through hole of the inner side surface 11B by the first driving unit.
  • the core metal 230b is inserted or press-fitted into the other of the prepared holes of the intermediate component W through the through hole of the inner side surface 11C by the second driving unit.
  • a flat plate having a portion P2 serving as a first side wall W2, a portion P3 serving as a second side wall W3, and a portion P1 serving as a connecting wall W1.
  • a die (7th mold) 10 having a concave groove 11 matching the portion to be the connecting wall W1; and a punch (8th mold) inserted into the concave groove 11 with the flat plate material P sandwiched between them.
  • the flat plate material P is placed on the die 10 so that the portion P1 to be the connecting wall W1 overlaps the concave groove 11. Then, the driving force of the punch driving mechanism causes the die 10 and the punch 20 to be relatively close to each other. As a result, the flat plate material P is U-bent when the punch 20 enters the concave groove 11. Then, an intermediate component W having a first pilot hole and a second pilot hole, or burring holes a1 and b1 can be obtained.
  • the plate thickness range of the intermediate component W is preferably 1.0 mm or more and 4.0 mm or less, and more preferably 1.4 mm or more and 1.8 mm or less. Further, as the material of the intermediate component W, a steel material having a tensile strength of 440 MPa to 980 MPa or an aluminum material can be exemplified.
  • the link component L shown in FIG. 1 was manufactured under the conditions shown in 1 to 10.
  • the intermediate part W used for manufacturing and the link part L manufactured have all the same dimensions and shapes including the plate thickness. Further, in all the examples, a steel material having a tensile strength of 440 MPa and a plate thickness of 2.8 mm was used.
  • the circumference difference ratio When the circumference difference ratio is 0%, it means that the circumference of the burring hole and the circumference of the outer peripheral surface of the core metal are equal. In this case, it is “insert”. On the other hand, if the peripheral length difference ratio exceeds 0%, it is "press-fitted", and the larger the value, the longer the peripheral surface of the core metal is than the peripheral length of the burring hole, and the degree of press-fitting. It shows that it is tight.
  • the circumference difference ratio is defined by the following equation (1).
  • Perimeter difference ratio ((Perimeter of core metal (mm) -Perimeter of burring hole (mm)) / Perimeter of core metal (mm)) x 100 ... (Equation 1)
  • the core metal was removed from the intermediate component W, and the roundness of the burring hole and the coaxiality of the burring hole were measured.
  • the diameter was measured at the portion where the diameter of the burring hole was maximum and the portion where the diameter was minimum, and the difference was used as the evaluation value.
  • the evaluation result exceeds 0.5 mm, it is "Bad”, when it exceeds 0.3 mm and is 0.5 mm or less, it is “Good”, and when it exceeds 0.1 mm and is 0.3 mm or less. Is described as “Very Good”, and when it is 0.1 mm or less, it is described as "Excellent".
  • the positions of the centers of gravity of each of the pair of burring holes were obtained, and the distance between the centers of gravity when the burring holes were viewed in a plane was used as the evaluation value.
  • the evaluation result exceeds 0.5 mm, it is "Bad”, when it exceeds 0.3 mm and is 0.5 mm or less, it is “Good”, and when it exceeds 0.1 mm and is 0.3 mm or less. Is described as “Very Good”, and when it is 0.1 mm or less, it is described as "Excellent”.
  • Examples 1 and 10 without a core metal were inferior in both roundness and coaxiality. Further, in Examples 2 and 6 in which the peripheral length difference ratio was 0.0% and the core metal was inserted instead of press fitting, the necessary conditions were satisfied in both roundness and coaxiality. Further, in Examples 3 to 5, 7 to 9 in which a core metal having a peripheral length difference ratio of more than 0% was press-fitted, further excellent results were shown in both roundness and coaxiality.
  • the circumference difference ratio is preferably 0.2% or more.
  • the higher the circumference difference ratio the higher the hoop force can be obtained, but if it exceeds 5.0%, the hoop force is too strong and there is a risk of cracking in the burring hole. Therefore, it is preferable to set the circumference difference ratio within the range of 0.2% to 5.0%.
  • the circumference difference ratio is satisfied, in Example 5 using the separate core metal, the coaxiality is slightly lower than in Examples 3, 4, 7 to 9 using the integrated core metal. It was. From this, it was found that the integrated type is more preferable to the separated type as the core metal in terms of the shaft core accuracy.

Abstract

このリンク部品の製造方法は、少なくとも一端部にそれぞれ下穴を有しかつ互いに対向配置された第1側壁及び第2側壁と、前記第1側壁の一方の側縁及び前記第2側壁の一方の側縁間を繋ぐ連結壁と、を有する一方向に沿って長い中間部品より、連結穴を有し前記一方向に沿った一方側に設けられた一端部と、前記一方向に沿った他方側に設けられた他端部とを備えたリンク部品を製造する方法であって、前記下穴に、芯金を入れる補強工程と;前記補強工程よりも後に、前記第1側壁の他方の側縁と前記第2側壁の他方の側縁とを互いに当接させるように、前記第1側壁及び前記第2側壁をO曲げするO曲げ工程と;を有する。

Description

リンク部品の製造方法及び製造装置
 この発明は、リンク部品の製造方法及び製造装置に関する。
 本願は、2019年4月15日に、日本国に出願された特願2019-077157号に基づき優先権を主張し、その内容をここに援用する。
 周知のように、複数の対象物間を連結する構造部品として、その端部や中間位置に結合部が形成されたリンク部品がある。リンク部品は、例えば、建築構造用や自動車のサスペンション用など、種々の用途に用いられている。
 例えば、自動車のサスペンション装置においては、ロアリンク、アッパーリンク、ラテラルリンク等のサスペンションリンクが用いられている。これらリンク部品は、他の構造部品と結合するための軸体を通す連結穴を有する。リンク部品の製造方法は、大きく分けて2通りがある。
 そのうちの一つは、中空素管を成形加工して製品形状を得た後、ピアッシング加工により下穴を開ける方法である。この場合、下穴をそのまま前記連結穴として用いる場合もあるし、または、下穴にさらにバーリング加工を加えて前記連結穴とする場合もある。同製造方法でバーリング加工を行う場合、フロードリル等を用いた特殊な加工が必要となる。
 そこで、他の製造方法として、平板素材に対して先に前記連結穴を形成しておき、その後に成形加工を加えて中空管状に成形し、製品形状を得る方法がある。この製造方法では、前記連結穴を平板素材の時点で形成するため、バーリング加工をする場合も特殊な加工を必要としない。
 平板素材よりリンク部品を得る製造方法の一例が、特許文献1に開示されている。
 この製造方法は、
(1)他部材連結部ABに対応した一対の第1板材部分PA1と、この第1板材部分PA1に一体に連続しアーム本体AMに対応する第2板材部分PA2とを少なくとも含む板材としてのワークPを得る第1工程と、
(2)ワークPの各々の第1板材部分PA1にバーリング加工により円筒状のブッシュ保持部Hを成形する第2工程と、
(3)ワークPの第2板材部分PA2に対して、該第2板材部分PA2の幅方向中央部を基点としてその両側部分を筒状に巻くようにプレス成形することで、背板部1及び一対の巻き曲げ部2,3を一体に有したアーム本体AMを成形すると共に、両巻き曲げ部2,3の、ブッシュ保持部H側の端縁2e,3eの各一部に形成した円弧面2r,3rと、巻き曲げ部2に一体の重合接続片2sの側縁に形成した円弧面2srとを、ブッシュ保持部Hのアーム本体AM側の外周面Hrに突き合わせる第3工程と、
(4)一対の巻き曲げ部2,3及び重合接続片2sの前記円弧面2r,3r,2srと、ブッシュ保持部Hのアーム本体AM側の外周面Hrとの間を溶接w1すると共に、重合接続部2を他方の巻き曲げ部3の外面に溶接w2する第4工程と
を少なくとも含み、これら第1~第4工程が順次実行される。
 特許文献1によれば、上記製造法により、筒状の中空アーム本体AMの両端部AMeに、円筒状ブッシュ保持部Hを有する他部材連結部ABを一体化してなる高強度・高剛性のアッパアームAを、ワークPの個々の被成形領域R1~Rnに対するバーリング加工とプレス成形(曲げ加工)とを組み合わせることで極めて低コストで製造することができ、またそのアッパアームAがワンピース構造となるため部品管理を簡便化できる、とされている。
日本国特開2010-126095号公報
 上記従来の製造法では、第2工程で円筒状ブッシュ保持部Hを形成した後、第3工程のプレス成形や第4工程の溶接が行われる。しかしながら、これら後工程の加工が円筒状ブッシュ保持部Hの寸法精度に与える影響については全く考慮されていない。すなわち、前記連結穴の形成に続く後加工が連結穴の寸法精度に影響しないことを前提としている。しかしながら、このような前提は実用化に際しての課題を残す。
 本発明は、上記事情に鑑みてなされたものであり、高い寸法精度の連結穴を有するリンク部品が得られる、リンク部品の製造方法及び製造装置の提供を目的とする。
 上記課題を解決して係る目的を達成するために、本発明は以下の態様を採用している。
(1)本発明の一態様に係るリンク部品の製造方法は、少なくとも一端部にそれぞれ下穴を有しかつ互いに対向配置された第1側壁及び第2側壁と、前記第1側壁の一方の側縁及び前記第2側壁の一方の側縁間を繋ぐ連結壁と、を有する一方向に沿って長い中間部品より、連結穴を有し前記一方向に沿った一方側に設けられた一端部と、前記一方向に沿った他方側に設けられた他端部とを備えたリンク部品を製造する方法であって、前記下穴に、芯金を入れる補強工程と;前記補強工程よりも後に、前記第1側壁の他方の側縁と前記第2側壁の他方の側縁とを互いに当接させるように、前記第1側壁及び前記第2側壁をO曲げするO曲げ工程と;を有する。
 上記(1)に記載の態様によれば、O曲げ工程で第1側壁及び第2側壁に外力を与えても、その前に、芯金によって下穴がその内方より予め補強されているので、下穴の変形が効果的に抑えられる。なお、芯金を下穴に入れる形態としては、「挿入」と「圧入」がある。本願明細書において「挿入」とは、下穴の内形あるいは内径を、芯金を入れることによって元の寸法以上に大きくしない、芯金の入れ方を言う。一方、本願明細書において「圧入」とは、下穴の内形あるいは内径を、芯金を入れることによって元の寸法を超えて大きくする、芯金の入れ方を言う。ここで、挿入または圧入は、下穴の内形あるいは内径に対する、芯金の外形あるいは外径の大小関係を設定することによって決まる。
 補強工程で、芯金を例えば「圧入」した場合には、芯金によって下穴の縁部に沿った引っ張り力が下穴に加わる。この引っ張り力によって下穴がその内方より予め補強されているので、下穴の変形がより効果的に抑えられる。例えば下穴が円形の場合には、前記引っ張り力は下穴に加わるフープ力となる。
 なお、下穴の形状は、円形のみに限らず、非円形であってもよい。さらに、下穴としては、完全に閉じた周面により囲まれて形成されたもののみに限らず、その一部分が開放されていてもよい。よって、下穴は、例えば、開放された半円形であってもよい。下穴が半円形の場合も、芯金によって下穴がその内方より予め補強されるので、下穴の変形が効果的に抑えられる。さらに、補強工程で芯金を例えば「圧入」した場合には、芯金によって半円形の下穴の縁部に沿った引っ張り力が下穴に加わる。この引っ張り力によって下穴がその内方より予め補強されるので、後加工における下穴の変形が効果的に抑えられる。
 また、下穴が円形の場合、芯金は、リング形状の治具でもよいし、中実円柱状の治具であってもよい。芯金は一体物が基本であるが、一対に分かれていてもよい。
 また、下穴は、第1側壁及び第2側壁の両方に形成されていてもよいし、あるいは片方のみに形成されていてもよい。
(2)上記(1)に記載の態様において、前記補強工程よりも後でかつ前記O曲げ工程よりも前に、前記中間部品の前記連結壁の内面と、前記芯金の外周面との双方に外力を同時に加えることで、前記第1側壁を対向視したときに前記連結壁が凹状をなすように、前記中間部品を軸曲げする軸曲げ工程をさらに有してもよい。
 上記(2)に記載の態様の場合、連結壁と芯金の両方に対して外力を同時に加えるので、連結壁の軸曲げ変形に遅れることなく芯金が追従していく。そのため、連結壁と一体をなす第1側壁及び第2側壁の変形に対しても芯金が追従できるので、芯金の移動が遅れて下穴を変形させることがない。
(3)上記(2)に記載の態様において、前記軸曲げ工程で、側面視で直線状をなす加圧面を前記連結壁の内面に押し当てることにより、前記軸曲げを行ってもよい。
 上記(3)に記載の態様の場合、側面視で直線状の加圧面により連結壁の内面を加圧するので、連結壁の内面が直線状を保ったまま軸曲げできる。一方、例えば側面視で凸曲線状をなす加圧面により連結壁の内面を加圧する場合は、連結壁の内面が凸曲線状の加圧面に応じた凹曲面に変形するため、連結壁に連なる第1側壁及び第2側壁も、連結壁の凹曲面に引っ張られる。これに対し、本態様によれば、凹曲面が連結壁に生じないので、下穴の周囲部分に対して部分的な引っ張りが加わるのを抑制することができ、下穴により形成される連結穴の寸法精度をさらに高めることができる。
(4)上記(1)~(3)の何れか一項に記載の態様において、前記O曲げ工程で、前記O曲げをする前に、前記第1側壁及び前記第2側壁間に挟まれてかつ、前記芯金の外周面及び前記連結壁の内面間に挟まれる中子を、前記中間部品の端部に入れておいてもよい。
 上記(4)に記載の態様の場合、中子によって第1側壁及び第2側壁間の間隔及び平行度が一定に保持され、また、連結壁及び芯金間の間隔が一定に保持される。よって、O曲げ工程でO曲げする外力を加えても下穴の寸法精度及び位置に及ぼす影響を抑制できるので、より高い寸法精度のリンク部品を製造することができる。
(5)上記(1)~(4)の何れか一項に記載の態様において、前記芯金の外径を前記下穴の内径で除して算出される径比が1.000より大きくてもよい。
 上記(5)に記載の態様の場合、芯金を下穴に圧入できる。
(6)上記(1)に記載の態様において、以下のようにしてもよい:前記補強工程よりも前に、前記下穴に、バーリング縦壁を有するバーリング加工穴を形成するバーリング加工工程を行い;前記補強工程で、前記下穴に代わり、前記バーリング加工穴に前記芯金を入れる。
 上記(6)に記載の態様の場合も、上記(1)に記載の態様と同じ作用効果を得ることが出来る。すなわち、O曲げ工程で第1側壁及び第2側壁に外力を与えても、補強工程で入れた芯金によってバーリング加工穴が予め補強されているので、バーリング加工穴の変形が効果的に抑えられる。
 なお、バーリング加工穴の形状は、円形のみに限らず、非円形であってもよい。さらに、バーリング加工穴としては、完全に閉じた周面により囲まれて形成されたもののみに限らず、その一部分が開放されていてもよい。よって、バーリング加工穴は、例えば、開放された半円形であってもよい。
(7)上記(6)に記載の態様において、前記補強工程よりも後でかつ前記O曲げ工程よりも前に、前記中間部品の前記連結壁の内面と、前記芯金を入れた状態の前記バーリング縦壁の外周面との双方に外力を同時に加えることで、前記第1側壁を対向視したときに前記連結壁が凹状をなすように、前記中間部品を軸曲げする軸曲げ工程をさらに有してもよい。
 上記(7)に記載の態様の場合も、上記(2)に記載の態様と同じ作用効果を得ることが出来る。すなわち、連結壁とバーリング縦壁の両方に対して外力を同時に加えるので、連結壁の軸曲げ変形に遅れることなくバーリング縦壁及び芯金が追従していく。そのため、連結壁と一体をなす第1側壁及び第2側壁の変形に対してもバーリング縦壁及び芯金が追従できるので、芯金の移動が遅れてバーリング加工穴を変形させることがない。
(8)上記(7)に記載の態様において、前記軸曲げ工程で、側面視で直線状をなす加圧面を前記連結壁の内面に押し当てることにより、前記軸曲げを行ってもよい。
 上記(8)に記載の態様の場合も、上記(3)に記載の態様と同じ作用効果を得ることが出来る。よって、本態様によれば、凹曲面が連結壁に生じないので、バーリング加工穴の変形をより抑制することができ、同バーリング加工穴により形成される連結穴の寸法精度をさらに高めることができる。
(9)上記(6)~(8)の何れか一項に記載の態様において、前記O曲げ工程で、前記O曲げをする前に、前記第1側壁及び前記第2側壁間に挟まれてかつ、前記バーリング縦壁の外周面及び前記連結壁の内面間に挟まれる中子を、前記中間部品の前記一端部に入れておいてもよい。
 上記(9)に記載の態様の場合も、上記(4)に記載の態様と同じ作用効果を得ることが出来る。すなわち、中子によって第1側壁及び第2側壁間の間隔及び平行度が一定に保持され、また、連結壁及びバーリング縦壁間の間隔が一定に保持される。よって、O曲げ工程でO曲げする外力を加えてもバーリング加工穴の寸法精度及び位置に及ぼす影響を抑制できるので、より高い寸法精度のリンク部品を製造することができる。
(10)上記(6)~(9)の何れか一項に記載の態様において、前記芯金の外径を前記バーリング加工穴の内径で除して算出される径比が1.000より大きくてもよい。
 上記(10)に記載の態様の場合、芯金をバーリング加工穴に圧入できる。
(11)上記(1)に記載の態様において以下を採用しても良い:前記補強工程よりも後でかつ前記O曲げ工程よりも前に、前記下穴に入れた前記芯金の位置を定位置に固定してかつ、前記連結壁のうちで前記リンク部品の前記一端部になる第1端部と前記他端部になる第2端部との間の任意の位置を支持した状態で、前記第2端部に外力を加えることで、前記第1側壁を対向視したときに前記連結壁が凹状をなすように、前記中間部品を軸曲げする軸曲げ工程をさらに有する。
 上記(11)に記載の態様の場合、中間部品を軸曲げする間、入れた芯金によって下穴の形状が常に保たれる。
(12)上記(11)に記載の態様において以下を採用しても良い:前記補強工程よりも前に、前記下穴に、バーリング縦壁を有するバーリング加工穴を形成するバーリング加工工程を行い;前記補強工程で、前記下穴に代わり、前記バーリング加工穴に前記芯金を入れる。
 上記(12)に記載の態様の場合、中間部品を軸曲げする間、入れた芯金によってバーリング加工穴の形状が常に保たれる。
(13)上記(1)~(12)の何れか一項に記載の態様において、前記補強工程よりも前に、前記第1側壁となる部分と、前記第2側壁となる部分と、前記連結壁となる部分と、を有する平板素材を準備する素材準備工程と;前記連結壁となる部分を境として、前記第1側壁となる部分と前記第2側壁となる部分とが互いに対向するように、前記平板素材を折り曲げるU曲げ工程と;を行ってもよい。
 上記(13)に記載の態様の場合、素材準備工程後のU曲げ工程により、下穴を有する中間部品を得ることが出来る。さらには、U曲げ工程前に、下穴にバーリング加工を行い、バーリング加工穴を区画するバーリング縦壁を形成してもよい。
(14)上記(1)~(13)の何れか一項に記載の態様において、前記芯金を前記リンク部品の一部とし、前記芯金の開口を前記連結穴としてもよい。
 上記(14)に記載の態様の場合、リンク部品より芯金を外す工程と、リンク部品の下穴、又は、バーリング加工穴を補強する後工程とが不要になる。よって、さらに生産性を高めることが可能になる。
(15)本発明の一態様に係るリンク部品の製造装置は、少なくとも一端部にそれぞれ下穴を有しかつ互いに対向配置された第1側壁及び第2側壁と、前記第1側壁の一方の側縁及び前記第2側壁の一方の側縁間を繋ぐ連結壁と、を有する一方向に沿って長い中間部品より、連結穴を有し前記一方向に沿った一方側に設けられた一端部と、前記一方向に沿った他方側に設けられた他端部とを備えたリンク部品を製造する装置であって、前記下穴に入れる芯金と;前記中間部品を受け入れてかつ、前記リンク部品の外形に合致する形状の第1凹面を有する第1金型と;前記第1金型と共に前記中間部品を収容し、前記第1側壁の他方の側縁及び前記第2側壁の他方の側縁の双方に当接して互いに接近させる第2凹面を有する第2金型と;前記第1金型及び前記第2金型間の相対位置を接近及び離間させる第1駆動機構と;を備える。
 上記(15)に記載の態様によれば、まず、下穴に芯金を入れる。その後、芯金によって下穴が補強された中間部品を、そのまま第1金型の第1凹面内に載置する。その後、中間部品を収容するように、第1駆動機構により第2金型及び第1金型間の相対位置を近付け、そして両者を合致させる。その際、第2金型の第2凹面が、第1側壁の他方の側縁及び第2側壁の他方の側縁の双方に当接して両者を互いに接近させ、そして合致させる。このO曲げにより、長手方向に垂直な断面が閉断面形状をなすリンク部品を得ることが出来る。しかも、O曲げの際も下穴の補強は芯金によって継続して行われる。よって、O曲げするために第1側壁及び第2側壁に外力を与えても、先に入れた芯金によって下穴が予め補強されているので、下穴の変形が効果的に抑えられる。
(16)上記(15)に記載の態様において、前記連結壁の外面に接する凸状の第1円弧面、前記第1側壁の外面に接する第1側面、前記第2側壁の外面に接する第2側面、を有する第3金型と;前記連結壁の内面に接する凹状の第2円弧面、前記第1側壁の内面に接する第3側面、前記第2側壁の内面に接する第4側面、前記芯金の外周面に接する芯金抑え面、を有する第4金型と;前記第3金型及び前記第4金型間の相対位置を接近及び離間させる第2駆動機構と;をさらに備えてもよい。
 上記(16)に記載の態様の場合、連結壁の外面が第1円弧面に接し、第1側壁の外面が第1側面に接し、第2側壁の外面が第2側面に接するように、中間部品を第3金型内に配置する。そして、第2駆動機構の駆動力によって第3金型及び第4金型間の相対位置を近付けていく。これにより、第2円弧面が連結壁の内面に当接し、第3側面が第1側壁の内面に摺接し、第4側面が第2側壁の内面に摺接し、そして芯金抑え面が芯金の外周面に当たる。第3金型及び第4金型間の相対位置をさらに近付けていくと、連結壁が第1円弧面及び第2円弧面の形状に合わせて曲げられていく。そして、連結壁の変形に伴って第1側壁および第2側壁も曲げられていく。このようにして、中間部品の軸曲げが完了する。
 この軸曲げの際、連結壁と芯金の両方に対して第2駆動機構の力を同時に加えることができるので、連結壁の軸曲げの変形動作に遅れることなく芯金を追従させられる。そのため、連結壁と一体をなす第1側壁及び第2側壁の変形に対しても芯金が追従していくので、芯金の移動が遅れて下穴を変形させることがない。
(17)上記(16)に記載の態様において、以下のようにしてもよい:前記第1円弧面のうち、前記中間部品で前記リンク部品の前記一端部となる部分を受ける受圧部が、前記第1円弧面の延在方向を含む縦断面で見て直線状であり;前記第2円弧面のうち、前記連結壁を介して前記受圧部に対向する第1加圧部が、前記縦断面で見て直線状である。
 上記(17)に記載の態様の場合、縦断面で見て互いに直線状をなす受圧部及び第1加圧部間に、中間部品の連結壁のうちでリンク部品の一端部となる部分が挟み込まれるので、連結壁の内面が直線状を保ったまま軸曲げできる。よって、凹曲面が連結壁に生じないので、下穴の周囲が部分的に引っ張られて変形することをより抑制することができる。よって、下穴により形成される連結穴の寸法精度をさらに高めることができる。
(18)上記(17)に記載の態様において、前記第2凹面のうち、前記中間部品で前記リンク部品の前記一端部となる部分を加圧する第2加圧部が、前記第2凹面の延在方向を含む縦断面で見て直線状であってもよい。
 上記(18)に記載の態様の場合、第2金型の第2凹面によって第1側壁の他方の側縁及び第2側壁の他方の側縁を互いに合致させるO曲げを行った結果、この合致した部分が、第2凹面の形状に従い、側面視で直線状をなす。これにより、合致した部分の内側を例えば中子で押しても凹曲面が生じないので、下穴の周囲が部分的に引っ張られて変形することをより抑制することができる。よって、下穴により形成される連結穴の寸法精度をさらに高めることができる。
(19)上記(15)~(18)の何れか一項に記載の態様において、前記第1側壁及び前記第2側壁間と、前記芯金の外周面及び前記連結壁の内面間とに入れる中子と;前記中子を前記第1金型及び前記第2金型に対して挿抜する第3駆動機構と;をさらに備えてもよい。
 上記(19)に記載の態様の場合、第3駆動機構の駆動力を受け、第1側壁及び第2側壁間と、芯金の外周面及び連結壁の内面間とに中子が入れられる。そして、中子によって第1側壁及び第2側壁間の間隔及び平行度が一定に保持され、また、連結壁及び芯金間の間隔が一定に保持される。よって、O曲げする外力を第1側壁及び第2側壁に加えても下穴の寸法精度及び位置に及ぼす影響を抑制できるので、より高い寸法精度のリンク部品を製造することができる。
(20)上記(15)に記載の態様において、以下のようにしてもよい:前記中間部品の前記下穴に、バーリング縦壁を有するバーリング加工穴を形成するバーリング加工機をさらに備え;前記芯金が、前記バーリング加工穴に入れられる。
 上記(20)に記載の態様の場合も、上記(15)に記載の態様と同じ作用効果を得ることが出来る。すなわち、O曲げの際も一対のバーリング加工穴の補強が芯金によって継続して行われる。よって、O曲げするために第1側壁及び第2側壁に外力を与えても、前もって入れた芯金によってバーリング加工穴が予め補強されているので、バーリング加工穴の変形が効果的に抑えられる。
(21)上記(20)に記載の態様において、前記連結壁の外面に接する凸状の第1円弧面、前記第1側壁の外面に接する第1側面、前記第2側壁の外面に接する第2側面、を有する第3金型と;前記連結壁の内面に接する凹状の第2円弧面、前記第1側壁の内面に接する第3側面、前記第2側壁の内面に接する第4側面、前記バーリング縦壁を介して前記芯金の外周面に当たる芯金抑え面、を有する第4金型と;前記第3金型及び前記第4金型間の相対位置を接近及び離間させる第2駆動機構と;をさらに備えてもよい。
 上記(21)に記載の態様の場合も、上記(16)に記載の態様と同じ作用効果を得ることが出来る。すなわち、連結壁の外面が第1円弧面に接し、第1側壁の外面が第1側面に接し、第2側壁の外面が第2側面に接するように、中間部品を第3金型内に配置する。そして、第2駆動機構の駆動力によって第3金型及び第4金型間の相対位置を近付けていく。これにより、第2円弧面が連結壁の内面に当接し、第3側面が第1側壁の内面に摺接し、第4側面が第2側壁の内面に摺接し、そして芯金抑え面がバーリング縦壁の外周面に当たる。第3金型及び第4金型間の相対位置をさらに近付けていくと、連結壁が第1円弧面及び第2円弧面の形状に合わせて曲げられていく。そして、連結壁の変形に伴って第1側壁および第2側壁も曲げられていく。このようにして、中間部品の軸曲げが完了する。
 この軸曲げの際、連結壁とバーリング縦壁の両方に対して第2駆動機構の力を同時に加えることができるので、連結壁の軸曲げの変形動作に遅れることなくバーリング縦壁を追従させられる。そのため、連結壁と一体になって変形動作をする第1側壁及び第2側壁にも追従するので、芯金がバーリング縦壁を変形させることがない。
(22)上記(21)に記載の態様において、以下のようにしてもよい:前記第1円弧面のうち、前記中間部品で前記リンク部品の前記一端部となる部分を受ける受圧部が、前記第1円弧面の延在方向を含む縦断面で見て直線状であり;前記第2円弧面のうち、前記連結壁を介して前記受圧部に対向する第1加圧部が、前記縦断面で見て直線状である。
 上記(22)に記載の態様の場合も、上記(17)に記載の態様と同じ作用効果を得ることが出来る。よって、本態様によれば、凹曲面が連結壁に生じないので、バーリング加工穴の変形を抑制することができ、バーリング加工穴により形成される連結穴の寸法精度をさらに高めることができる。
(23)上記(22)に記載の態様において、前記第2凹面のうち、前記中間部品で前記リンク部品の前記一端部となる部分を加圧する第2加圧部が、前記第2凹面の延在方向を含む縦断面で見て直線状であってもよい。
 上記(23)に記載の態様の場合も、上記(18)に記載の態様と同じ作用効果を得ることが出来る。よって、本態様によれば、下穴により形成される連結穴の寸法精度をさらに高めることができる。
(24)上記(20)~(23)の何れか一項に記載の態様において、前記第1側壁及び前記第2側壁間と、前記バーリング縦壁の外周面及び前記連結壁の内面間とに入れる中子と;前記中子を前記第1金型及び前記第2金型に対して挿抜する第3駆動機構と;をさらに備えてもよい。
 上記(24)に記載の態様の場合も、上記(19)に記載の態様と同じ作用効果を得ることが出来る。よって、本態様によれば、O曲げする外力を第1側壁及び第2側壁に加えてもバーリング加工穴の寸法精度及び位置に及ぼす影響を抑制できるので、より高い寸法精度のリンク部品を製造することができる。
(25)上記(15)に記載の態様において、前記連結壁の外面に接してかつ縦断面視で凸状をなす第3円弧面、前記第1側壁の外面に接する第5側面、前記第2側壁の外面に接する第6側面、前記第5側面及び前記第6側面を同軸に貫く一対の貫通穴、を有する第5金型と;前記連結壁の内面に接してかつ縦断面視で凹状をなす第4円弧面、前記第1側壁の内面に接する第7側面、前記第2側壁の内面に接する第8側面、を有する第6金型と;前記第5金型及び前記第6金型間の相対位置を接近及び離間させる第4駆動機構と;前記芯金を前記一対の貫通穴に対して挿抜させる第5駆動機構と;をさらに備えてもよい。
 上記(25)に記載の態様の場合、まず、連結壁の外面が第3円弧面に接し、第1側壁の外面が第5側面に接し、第2側壁の外面が第6側面に接するように、中間部品を第5金型内に配置する。続いて、一対の貫通穴の一方、中間部品の一対の下穴の一方、中間部品の一対の下穴の他方、一対の貫通穴の他方の全てを貫くように、芯金を、中間部品の一対の下穴に入れる。これにより、中間部品のうちで前記一端部となる第1端部と前記他端部となる第2端部との間の位置において、連結部が芯金により第5金型内の定位置に固定され、なおかつ連結壁のうちで第1端部及び第2端部間の一部が凸状の第3の円弧面に当たって支持された状態になる。このように中間部品を第5金型内に2点支持した状態で、第5駆動機構の駆動力によって第5金型及び第6金型間の相対位置を近付けていく。すると、第4円弧面が連結壁の第2端部側の内面に当接し、ここを押し下げていく。その結果、連結壁の外面のうちで第3の円弧面により支持した一部を支点として、中間部品が軸曲げされる。この軸曲げを行っても、予め入れた芯金によって一対の下穴が補強されているので、これらの寸法精度及び位置に及ぼす影響を抑制できる。
(26)上記(25)に記載の態様において、以下の構成を採用してもよい:前記芯金が、前記第5側面の前記貫通穴に挿抜される第1分割芯金と、前記第6側面の前記貫通穴に挿抜されてかつ前記第1分割芯金と同軸をなす第2分割芯金と、を有し;前記第5駆動機構が、前記第1分割芯金を前記第5側面の前記貫通穴に挿抜させる第1駆動部と、前記第2分割芯金を前記第6側面の前記貫通穴に挿抜させる第2駆動部と、を有する。
 上記(26)に記載の態様の場合、一対の貫通穴の一方、中間部品の一対の下穴の一方、中間部品の一対の下穴の他方、一対の貫通穴の他方が全て同軸をなすように、中間部品を第5金型内に配置する。続いて、第1駆動部によって第1分割芯金を、一対の貫通穴の一方を介して、中間部品の一対の下穴の一方に入れる。同様に、第2駆動部によって第2分割芯金を、一対の貫通穴の他方を介して、中間部品の一対の下穴の他方に入れる。第1分割芯金を入れることと第2分割芯金を入れることとは、同時に行ってもよいし、どちらか一方を先に行って他方をその後に行ってもよい。以上の工程により、一対の下穴が第1分割芯金及び第2分割芯金によって補強される。
(27)上記(15)~(26)の何れか一項に記載の態様において、前記第1側壁となる部分と、前記第2側壁となる部分と、前記連結壁となる部分と、を有する平板素材のうちの、前記連結壁となる部分に合致する凹溝を有する第7金型と;前記平板素材を間に挟んで前記凹溝に挿抜される第8金型と;前記第7金型及び前記第8金型間の相対位置を接近及び離間させる第3駆動機構と;をさらに備えてもよい。
 上記(27)に記載の態様の場合、連結壁となる部分が凹溝上に重なるよう、第7金型上に平板素材を載置する。そして、第3駆動機構の駆動力により、第7金型及び第8金型間を相対的に接近させる。そして、第8金型が凹溝内に入ることで平板素材がU曲げされる。その結果、下穴、又は、バーリング加工穴を有する中間部品を得ることが出来る。
 上記各態様のリンク部品の製造方法及び製造装置によれば、高い寸法精度の連結穴を有するリンク部品を得ることができる。
本発明の第1実施形態に係るリンク部品の製造方法及び製造装置により製造された、リンク部品の斜視図である。 同リンク部品の製造方法を示す図であって、(a)~(h)の順に各工程が進められる。 同リンク部品の製造方法で用いられるリンク部品の製造装置のうち、図2の(b)及び(c)に示すU曲げ工程で用いられる金型を示す斜視図である。 同リンク部品の製造方法で用いられるリンク部品の製造装置のうち、図2の(e)及び(f)に示す軸曲げ工程で用いられる金型を示す斜視図である。 図4の金型を示す図であって、図2(f)の断面において内部を対向視した縦断面図である。 同リンク部品の製造方法で用いられるリンク部品の製造装置のうち、図2の(g)に示すO曲げ工程で用いられる金型を示す斜視図である。 同リンク部品の変形例を示す側面図である。 同リンク部品の他の変形例を示す部分拡大斜視図である。 本発明の第2実施形態に係るリンク部品の製造方法及び製造装置を示す図であって、図2(f)に示す軸曲げ工程に代わる工程を示す縦断面図である。 同リンク部品の製造装置を示す図であって、図9のA-A断面図である。 本発明の第3実施形態に係るリンク部品の製造方法及び製造装置を示す図であって、(a)~(h)の順に各工程が進められる。 本発明の第4実施形態に係るリンク部品の製造方法及び製造装置を示す図であって、(a)~(e)の順に各工程が進められる。
[第1実施形態]
 本発明のリンク部品の製造方法及び製造装置の第1実施形態について、図面を参照しながら以下に説明を行う。まず始めに、本実施形態で製造されるリンク部品Lについて図1を参照しながら以下に説明する。
 図1に示すように、リンク部品Lは、その軸線方向に沿って長く、なおかつ前記軸線方向の各位置で前記軸線に垂直な断面が閉断面形状を有する。リンク部品Lは、前記軸線方向の一方側に設けられた一端部LAと、前記軸線方向の他方側に設けられた他端部LBと、これら一端部LA及び他端部LB間を繋ぐ中央部LCと、を有する。
 一端部LAは、一対のバーリング加工穴a1,b1を有する。これらバーリング加工穴a1,b1は、それぞれ内向きに形成されたバーリング縦壁a,bによって区画された、互いに同一の内径寸法を有する円形貫通穴である。バーリング加工穴a1,b1は、互いに同軸かつ平行に配置され、平面視で、その中心軸線がリンク部品Lの前記軸線方向に対して直交する。バーリング縦壁a,bは、それぞれ、略一定の幅寸法を持つ円環形状を有し、その内周面が、周方向に沿って幅寸法が略一定のバーリング加工穴a1,b1となっている。バーリング縦壁a,bの外周面a2,b2も、それぞれ円環形状をなし、周方向に沿って幅寸法が略一定となっている。これら外周面a2,b2も、互いに同軸かつ平行に配置され、同一の外径寸法を有している。バーリング加工穴a1,b1は、図示されない軸体を介して、図示されない他の部品に連結される。なお、バーリング縦壁を、バーリング加工穴のフランジなどという場合もあるが、本発明ではバーリング縦壁という。
 他端部LBは、一対の貫通穴c1,d1を有する。これら貫通穴c1,d1は、互いに同一の内径寸法を有する円形貫通穴である。貫通穴c1,d1は、互いに同軸かつ平行に配置され、平面視で、その中心軸線がリンク部品Lの前記軸線方向に対して直交する。貫通穴c1,d1は、図示されない軸体を介して、他の部品に対して連結される。貫通穴c1,d1の代わりに一対のバーリング加工穴を形成してもよい。
 中央部LCは、前記軸線方向に沿った中央位置で外形寸法が最も細く、一端部LAに向かって外形寸法が徐々に大きくなっている。同様に、中央部LCは、他端部LBに向かって外形寸法が徐々に大きくなっている。
 リンク部品Lの製造方法の詳細については後述するが、まず、一枚の平板を型抜きして、第1下穴(下穴)及び第2下穴(下穴)を有する平板素材を得る。そして、必要に応じて、第1下穴及び第2下穴にバーリング加工を施して前記バーリング加工穴a1,b1を形成した後、この平板素材をU曲げして、断面形状が略U字形の中間部品を得る。続いて、中間部品に芯金を通してバーリング加工穴a1,b1(バーリング加工をしない場合には第1下穴及び第2下穴)を予め補強する。その後、中間部品を軸曲げして長手方向に対して反らせ、最後にO曲げをして閉断面形状を得る。その結果、図1に示すリンク部品Lが得られる。
 このように、リンク部品Lは一枚の平板を型抜きして曲げ加工をすることにより得られるので、各壁部が互いに一体に連なっている。具体的に言うと、リンク部品Lは、互いに対向する第1側壁部e及び第2側壁部fと、これら第1側壁部e及び第2側壁部fの下端縁間を繋ぐ底壁部gと、第1側壁部e及び第2側壁部fの上端縁同士を繋ぐ第1上壁部h及び第2上壁部iと、を有する。そして、第1上壁部hは第1側壁部eに一体に連なり、第1側壁部eは底壁部gに一体に連なり、底壁部gは第2側壁部fに一体に連なり、第2側壁部fは第2上壁部iに一体に連なっている。そして、第1上壁部hの上端縁と第2上壁部iの上端縁とが、リンク部品Lの軸線方向に沿って接している。この接続部分を突き合わせのまま(つまり、互いに接しているまま)としてもよいし、または、溶接で接合してもよい。この場合の溶接としては、アーク溶接またはレーザー溶接を好適に用いることができる。なお、溶接しない場合には、軸方向の剛性を維持しつつ軸線回りの捻りに柔軟性を持たせることができる。リンク部品Lは、その両端縁を除き、軸線方向に沿った各位置において、前記軸線に垂直な断面形状が閉断面形状となっている。
 上記リンク部品Lを製造するために、本実施形態に係るリンク部品の製造装置は、平板を型抜きして平板素材を得る型抜き加工機と、平板素材の第1下穴及び第2下穴にバーリング加工を施すバーリング加工機と、平板素材をU曲げして中間部品を得るU曲げ加工機と、中間部品に芯金を入れる芯金抜入機と、中間部品を軸曲げする軸曲げ加工機と、中間部品をO曲げするO曲げ加工機と、を備える。
 前記型抜き加工機は、図示を省略するが、図2(a)に示す平板素材Pと同じ形状の凹部を有するダイと、平板素材Pと同じ形状の凸部を有するパンチと、これらパンチ及びダイ間を相対的に接近離間させるパンチ駆動機構と、を備える。この型抜き加工機によれば、凹部上に平板を重ねた状態で、パンチ駆動機構によりダイ及びパンチ間を接近させることで、パンチの凸部が平板を打ち抜き、平板素材Pの外形が形成される。
 前記バーリング加工機は、図示を省略するが、前記型抜き加工機で形成した第1下穴及び第2下穴よりも大きい内径寸法の凹部を有するダイと、この凹部に挿通されるパンチと、これらパンチ及びダイ間を相対的に接近離間させるパンチ駆動機構と、を備える。このバーリング加工機によれば、ダイ上に平板素材Pを載置した後、パンチ駆動機構によりパンチを第1下穴及び第2下穴に通すことで、図2(a)に示すバーリング加工穴a1,b1を有する平板素材Pが得られる。この平板素材Pには、前記底壁g(連結壁)となる部分P1と、前記第1側壁部e及び前記第1上壁部h(第1側壁)となる部分P2と、前記第2側壁部f及び前記第2上壁部i(第2側壁)となる部分P3と、が含まれる。
 前記U曲げ加工機は、図2(b)及び図3に示すように、前記部分P1に対応した凹溝11を有するダイ10と、凹溝11内に挿抜されるパンチ20と、これらダイ10及びパンチ20間を相対的に接近離間させるパンチ駆動機構(図示略)と、を備える。
 図3に示す凹溝11は、平面視でリンクLの外形に略合致する形状を有する。すなわち、前記一端部LAに対応する溝幅寸法の一端部11aと、前記他端部LBに対応する溝幅寸法の他端部11bと、前記中央部LCに対応する溝幅寸法の中央部11cと、を有する。一端部11a及び他端部11bの溝幅寸法は、中央部11cの溝幅寸法よりも広い。また、中央部11cの溝幅寸法は、その長手方向の中央位置で最も狭く、そして一端部11a及び他端部11bに近付くにつれて徐々に広くなっている。凹溝11は、部分P1及び部分P2が互いに平行をなすまで折り曲げるために十分な深さを有している。
 図3に示すように、パンチ20は、平板素材PをU曲げする際、前記部分P1をその上方より加圧する加圧面21と、前記部分P2に接する側面22と、前記部分P3に接する側面23と、を有する。加圧面21は、前記凹溝11を平面視した形状と同じ形状でかつ凹溝11よりも一回り小さい寸法を有している。側面22,23は、それぞれ平面視で、凹溝11の一端部11a,中央部11c,そして他端部11bに対応した凹凸形状を有している。
 上記U曲げ加工機によれば、図2(b)に示すように平板素材Pをダイ10上に載置し、この平板素材Pをパンチ20で凹溝11内に押し込むことにより、前記部分P1を境として前記部分P2及び前記部分P3が互いに対向するように折り曲げられる。そして、このように折り曲げられた平板素材Pをダイ10の凹溝11より取り出すことにより、図2(c)に示す中間部品Wが得られる。
 図2(c)に示すように、中間部品Wは、バーリング加工穴a1を有する第1側壁W2と、バーリング加工穴b1を有し第1側壁W2に対して対向配置された第2側壁W3と、第1側壁W2の下縁(一方の側縁)及び第2側壁W3の下縁(一方の側縁)間を繋ぐ連結壁W1と、を有する。中間部品Wは、一方向に沿って長い。連結壁W1は、側面視で直線状をなしている。第1側壁W2及び第2側壁W3間の間隔は、中間部品Wの長手方向に沿って見た場合、中央位置で最も細く、この中央位置から両端位置に向かうに従って徐々に広くなっている。バーリング加工穴a1,b1は、互いに同軸をなすように対向配置されている。
 前記芯金抜入機は、図2(c)に示すU曲げ後の中間部品Wを保持する第1保持機構(図示略)と、図2(d)に示す芯金30と、芯金30を同軸に保持する第2保持機構(図示略)と、同保持機構を駆動する駆動機構(図示略)と、を備える。
 芯金30は、所定幅寸法を有する環状体であり、中間部品Wのバーリング加工穴a1,b1よりも若干大きめの外径寸法を有する外周面と、前記第1保持機構によって保持される内周面とを有する構成を採用してもよい。なお、本実施形態の芯金30は、リンク部品Lを得る最終工程で取り外されるが、リンク部品Lの一部として圧入したままにしてもよい。一方、芯金30をリンク部品Lの一部としない場合には、環状体ではなく円柱体などとしてもよい。
 この芯金抜入機によれば、まず中間部品Wを前記第1保持機構に固定する。続いて、芯金30を前記第2保持機構に装着した後、前記駆動機構の駆動力をもって前記第2保持機構を移動させ、芯金30を中間部品Wのバーリング加工穴a1,b1に同軸に入れる。これにより、図2(d)に示すように芯金30が中間部品Wに固定され、バーリング加工穴a1,b1の補強が完了する。
 芯金は、リング形状の治具でもよいし、中実円柱状の治具であってもよい。2つのバーリング加工穴をそれぞれに分かれた芯金であってもよいが、バーリング加工穴の同軸度を向上させるためには、2つの芯金が一体化した芯金(一体化した結果、1つの心金となる。)とすることが好ましい。
 前記軸曲げ加工機は、図2の(e),(f)に示すように、前記部分P1に対応した凹溝11を有するダイ10と、凹溝11内に挿抜されるパンチ40と、ダイ10に対してパンチ40を挿抜させるパンチ駆動機構(図示略)と、を有する。
 なお、本実施形態では、中間部品Wを保持固定する金型として、前記U曲げ加工機のダイ10(図3)を兼用しているが、この形態のみに限らず、軸曲げ加工機の専用として他のダイを用いてもよい。一方、ダイ10を兼用してU曲げをする際(図2の(b),(c)の工程)には、凹溝11の底面に着くまで中間部品Wを押し下げないが、軸曲げをする際(図2の(e),(f)の工程)には、中間部品Wが凹溝11の底面に着くまで押し下げる。
 また、図2(e)に示す軸曲げ加工機の前記パンチ駆動機構と、図2(b)に示したU曲げ加工機の前記パンチ駆動機構も、兼用としてもよいし、それぞれ専用に設けてもよい。
 図5に示すように、凹溝11の底面11dは、その延在方向に沿った縦断面で見て、延在方向の中央位置が最も高く、そして中央位置より両端位置に向かうに従って徐々に低くなる凸面となっている。底面11dの形状は、リンク部品Lの底部外形状と合致している。すなわち、図3に示した、一端部11a及び他端部11bに対応する位置の底面幅寸法は、中央部11cに対応する位置の底面幅寸法よりも広い。また、中央部11cに対応する位置の底面幅寸法は、その長手方向の中央位置で最も狭く、そして一端部11a及び他端部11bに対応する位置に近付くにつれて徐々に広くなっている。
 パンチ40は、図4に示すように、中間部品Wを軸曲げする際に、連結壁W1の内面をその上方より加圧する加圧面41と、第1側壁W2の内面に摺接する側面42と、第2側壁W3の内面に摺接する側面43と、バーリング縦壁aの外周面a2及びバーリング縦壁bの外周面b2の双方を押さえ付ける抑え面44と、を有する。
 加圧面41は、前記凹溝11の底面11dに対応した形状を有する。すなわち、加圧面41は、図5に示すようにその延在方向に沿った縦断面で見て、延在方向の中央位置が最も高く、そして中央位置より両端位置に向かうに従って徐々に低くなる凹面となっている。そして、加圧面41は、バーリング縦壁a,bとの干渉を避けるために、バーリング縦壁a,bの位置を避けて形成されている。加圧面41の底面視における形状は、加圧面41をその長手方向に沿って見た場合、底面幅寸法が長手方向中央位置で最も細く、そして長手方向両端位置に近付くにつれて徐々に太くなっている。
 抑え面44は、図5に示すように側面視で直線状をなしており、その幅寸法が長手方向の各位置で一定になっている。この抑え面44は、バーリング縦壁a及びバーリング縦壁bの各外周面a2,b2に当接するよう、加圧面41よりも高い位置に配置されている。すなわち、抑え面44と加圧面41との間には、バーリング縦壁a及びバーリング縦壁bを避ける段差が設けられている。
 側面42,43は、それぞれ平面視で、凹溝11の一端部11a,中央部11c,そして他端部11bに対応した凹凸形状を有している。平面視における側面42,43間の間隔は、パンチ40の長手方向中央位置で最も狭く、長手方向両端位置に近付くに従って徐々に広くなっている。そして、側面42,43は、長手方向両端位置において互いに平行となっている。
 以上説明の構成を有する軸曲げ加工機によれば、図2(e)に示すように型開きした状態で、まずダイ10の凹溝11内に中間部品Wを入れて配置する。そして、パンチ駆動機構によりパンチ40を押し下げていき、その加圧面41によって中間部品Wの連結壁W1の内面を加圧する。その際、同時に、抑え面44により、芯金30を入れた状態のバーリング縦壁a,bの各外周面a2,b2も押し下げていく。もし抑え面44が無い場合、芯金30が凹溝11の内側面との摩擦により連結壁W1の変形動作(下降動作)に追従できず、その結果として芯金30がバーリング加工穴a1,b1に不要な力を加える可能性がある。一方、本実施形態では抑え面44を有するため、その可能性がない。
 以上により軸曲げ加工が行われるが、まだO曲げ加工を行う前であるので、第1側壁W2及び第2側壁W3の各上端縁同士は接合されていない。
 前記O曲げ加工機は、図2(g)及び図6に示すように、軸曲げ後の中間部品Wを受け入れる下型50と、下型50と共に閉断面空間を形成し、この閉断面空間内に中間部品Wを収容する上型60と、上型60を下型50に対して接近離間させる金型駆動機構(図示略)と、中間部品W内の一端側に対して挿抜される第1中子70と、中間部品W内の他端側に対して挿抜される第2中子80と、第1中子70及び第2中子80のそれぞれを中間部品Wに対して接近離間させる中子駆動機構(第3駆動機構。図示略)と、を備える。
 下型50は、一方向に沿って長い凹溝51を有する。凹溝51は、上方に向かって開口しており、軸曲げ後の中間部品Wの底部外形状に合致する凹面形状を有する。すなわち、凹溝51は、リンク部品Lの底部外形状に合致する凹面形状を有する。凹溝51は、その長手方向中央位置で溝幅が最も狭くかつ溝深さも最も浅くなっている。凹溝51は、その長手方向中央位置から両端位置に向かうに従って、溝幅が徐々に広がり、なおかつ溝深さも徐々に深くなっている。凹溝51は、その両端位置において、溝幅と溝深さが長手方向に沿って略一定になっている。
 上型60は、一方向に沿って長い凹溝61を有する。凹溝61は、下方に向かって開口しており、軸曲げ後の中間部品Wの第1側壁W2の上端縁及び第2側壁W3の上端縁に当接して曲げ加工を加える。凹溝61は、リンク部品Lの上部外形状に合致する凹面形状を有する。凹溝61は、その長手方向中央位置で溝幅が最も狭くかつ溝高さも最も浅くなっている。凹溝61は、その長手方向中央位置から両端位置に向かうに従って、溝幅が徐々に広がり、なおかつ溝高さも徐々に深くなっている。凹溝61は、その両端位置において、溝幅と溝深さが長手方向に沿って略一定になっている。
 前記金型駆動機構は、定位置に固定された下型50に対し、その上方から上型60を接近離間させる。下型50に上型60を合致させることで、凹溝51と凹溝61とが互いに合致してこれらの内部に閉断面空間を形成する。
 第1中子70は、図6に示すように、バーリング縦壁aの外周面a2及びバーリング縦壁bの外周面b2に合致する凹曲面71と、中間部品Wの長手方向一端側の内部底面に合致する下面72と、リンク部品Lの一端部LAの内部上面に合致する上面73と、を有する。さらに、第1中子70は、中間部品Wの第1側壁W2に合致する第1側面74と、第2側壁W3に合致する第2側面75と、を有する。そして、第1中子70は、前記中子駆動機構によって矢印Fa方向に駆動されることで、第1側壁W2及び第2側壁W3間と、バーリング縦壁a,bの両外周面及び連結壁W1の内面間とに入れられる。
 第2中子80は、図6に示すように、円錐台形状の外周面81と、この外周面81に連なり互いに平行をなす一対の側面82,83と、を有する。外周面81は、リンク部品Lの他端部LBの内周面に合致する。側面82,83も、リンク部品Lの他端部LBの内周面に合致する。そして、第2中子80は、前記中子駆動機構によって矢印Fb方向に駆動されることで、第1側壁W2及び第2側壁W3間に入れられる。
 上記構成のO曲げ加工機によれば、まず、中間部品Wを下型50の凹溝51内に収容する。その後、中子駆動機構によって第1中子70及び第2中子80のそれぞれを第1側壁W2及び第2側壁W3間に入れる。その後、金型駆動機構によって上型60を下型50に向けて下げていき、その凹溝61を第1側壁W2及び第2側壁W3の各上端縁に当てながら加圧していく。その結果、第1側壁W2及び第2側壁W3の各上端縁が互いに近付くようにO曲げ加工がなされる。そして、各上端縁が合致することで、中間部品Wに閉断面形状が形成される。
 続いて、以上説明の構成を有するリンク部品の製造装置を用いた、リンク部品の製造方法について以下に説明する。
 このリンク部品の製造方法は、型抜き工程(素材準備工程)と、バーリング加工工程と、U曲げ工程と、補強工程と、軸曲げ工程と、O曲げ工程と、貫通穴形成工程と、芯金抜出工程と、を有する。
 型抜き工程では、用意した平板を前記型抜き加工機の凹溝上に固定する。そして、型抜き加工機のパンチ駆動機構によりダイ及びパンチ間を接近させることで、パンチの凸部が平板を打ち抜き、平板素材Pが形成される。なお、パンチとダイの組み合わせによる型抜きに代えて、レーザー切断機などによる切断を行ってもよい。
 バーリング加工工程では、型抜き加工等で得られた平板素材Pをバーリング加工機のダイ上に固定する。そして、バーリング加工機のパンチ駆動機構により、パンチを第1下穴及び第2下穴に通すことで、これら第1下穴及び第2下穴のそれぞれにバーリング加工穴a1,b1が形成される。このようにして得られた平板素材Pを図2(a)に示す。
 U曲げ工程では、図2(b)に示すように、バーリング加工工程後の平板素材Pをダイ10上に載置し、U曲げ加工機のパンチ駆動機構によってパンチ20で平板素材Pを加圧し、凹溝11内に押し込む。その結果、平板素材Pの部分P1を境として部分P2及び部分P3が互いに対向するように折り曲げられる。凹溝11より取り出して得られた中間部品Wを図2(c)に示す。このようなU曲げ工程によらず、平板素材Pに2箇所で90°曲げを施すことなど公知の方法により、図2(c)に示すような断面形状が略U字形の中間部品Wとしてもよい。
 補強工程では、U曲げ工程で得られた中間部品Wを芯金抜入機の第1保持機構に固定する。続いて、駆動機構の駆動力を保持機構に与えて移動させ、芯金30を中間部品Wのバーリング加工穴a1,b1に同軸に入れる。芯金30を入れた後の中間部品Wを図2(d)に示す。
 なお、芯金30をバーリング加工穴a1,b1に入れる形態としては、「挿入」と「圧入」がある。本実施形態において「挿入」とは、バーリング加工穴a1,b1の内形あるいは内径を、芯金30を入れることによって元の寸法以上に大きくしない、芯金30の入れ方を言う。一方、本実施形態において「圧入」とは、バーリング加工穴a1,b1の内形あるいは内径を、芯金30を入れることによって元の寸法を超えて大きくする、芯金30の入れ方を言う。ここで、挿入または圧入は、バーリング加工穴a1,b1の内形あるいは内径に対する、芯金30の外形あるいは外径の大小関係を設定することによって決まる。
 補強工程で芯金30を圧入した場合、バーリング加工穴a1,b1の内周面に沿った引っ張り力がバーリング加工穴a1,b1に加わる。
 芯金の外径(又は芯金外面の周長)をバーリング加工穴の内径(又は、バーリング加工穴内面の周長)とほぼ同じとしてもよい。例えば、径比(芯金の外径/バーリング穴の内径)又は周長比(芯金の外面の周長/バーリング穴の内面の周長)を1.000±0.005、1.000±0.003又は1.000±0.001の範囲としてもよい。しかし、芯金の外径(又は芯金外面の周長)をバーリング加工穴の内径(又は、バーリング加工穴内面の周長)よりやや大きい方が好ましい。例えば、径比(芯金の外径/バーリング穴の内径)又は周長比(芯金の外面の周長/バーリング穴の内面の周長)を1.000より大きくするか、または1.001以上としてもよい。この場合、芯金の外径とバーリング加工穴の内径の差により、バーリング加工穴の内面に引張応力が生じる。この引張応力によってバーリング加工穴a1,b1がその内方より補強されるので、バーリング加工穴a1,b1の変形が効果的に抑えられるためである。バーリング加工穴a1,b1は円形であるので、前記引張応力は、バーリング加工穴a1,b1に加わるフープ力となる。上記の径比又は周長比の下限を、1.002、1.003又は1.005としてもよい。バーリング加工穴に芯金が入れられる限り、その径比又は周長比の上限を規定する必要はないが、1.050、1.040又は1.030としてもよい。また、必要に応じて、芯金をバーリング加工穴a1,b1に容易に入れられるように、芯金の断面がテーパー形状としてもよい。この場合、上記の径比又は周長比は、芯金の最大径から算出される値とする。
 なお、芯金30としては、その外周面がバーリング加工穴a1,b1の内周面に隙間無く密着すればよく、圧入ではなく単に挿入してもよい。
 軸曲げ工程では、補強工程で得られた中間部品Wを、図2(e)に示すように型開きしたダイ10の凹溝11内に配置する。そして、軸曲げ加工機のパンチ駆動機構によりパンチ40を押し下げていき、中間部品Wを凹溝11内で軸曲げさせる。すなわち、軸曲げ前の中間部品Wはその底部が側面視で直線形状となっているが、この底部が側面視で凹形状となるように中間部品Wを軸曲げしていく。この軸曲げの際、中間部品Wのバーリング加工穴a1,b1は常に芯金30によって内周面が支えられているので、その加工精度が損なわれることなく維持される。
 軸曲げ工程後の中間部品Wは、その上部形状及び下部形状が概ね対称形状となっているが、第1側壁W2の上端縁と第2側壁W3の上端縁とが合致していないため、この時点ではまだ閉断面形状が形成されていない。
 O曲げ工程では、軸曲げ工程で得られた中間部品Wを、図2(g)に示すように下型50の凹溝51内に収容する。そして、中子駆動機構によって第1中子70及び第2中子80のそれぞれを第1側壁W2及び第2側壁W3間に入れる。
 続いて、金型駆動機構によって上型60を下型50に向けて下げていき、その凹溝61によって第1側壁W2及び第2側壁W3の各上端縁が互いに近付くようにO曲げ加工する。各上端縁が互いに合致することで、中間部品Wの長手方向各位置において、同長手方向に垂直な断面が閉断面形状となり、O曲げ工程が完了する。さらに、前記各上端縁同士を溶接等により接合してもよい。
 O曲げ加工の際、中間部品Wのバーリング加工穴a1,b1の内周面は常に芯金30によって支持されているので、その加工精度が損なわれることなく維持される。
 なお、中間部品Wの一端部及び他端部において、第1側壁W2の上端縁と第2側壁W3の上端縁との合わせ部分が、前記長手方向に垂直な断面で見て円形または楕円形である場合は、第1中子70及び第2中子80を入れる工程を省略してもよい。
 貫通穴形成工程では、O曲げ工程で得られた中間部品W(図2(h))に貫通穴c1,d1を同軸に形成する。貫通穴c1,d1は、バーリング加工穴a1,b1に比べて小径であるため、O曲げ工程後に形成することができるが、型抜き工程の時点で予め形成しておいてもよい。なお、貫通穴c1,d1もバーリング加工穴としてもよい。その場合、図2(a)に示す平板素材Pを得る段階で、バーリング加工穴a1,b1と同様の方法により、バーリング加工を行うことが好ましい。加えて、図2(d)に示す中間部品Wの段階で、他の芯金をバーリング加工穴に入れることがより好ましい。
 芯金抜出工程では、バーリング加工穴a1,b1より芯金30を抜き出す。その結果、図1に示すリンク部品Lが完成する。なお、芯金30をリンク部品Lの一部としてそのまま用いる場合には、この芯金抜出工程を省略する。
 以上説明のリンク部品の製造装置及び製造方法によれば、図2の(e),(f)に示す軸曲げや図2の(g),(h)に示すO曲げを行うための外力を中間部品Wに加えても、常に、バーリング加工穴a1,b1の真円度及び軸芯精度(同軸度)が芯金30によって維持される。したがって、高い寸法精度のバーリング加工穴a1,b1(連結穴)を有するリンク部品Lを得ることができる。
 なお、図2に示した製造工程では、連結穴としてバーリング加工穴a1,b1を形成する場合について例示した。しかし、本発明はこの形態のみに限らず、前記バーリング加工工程を省略してもよい。この場合、前記型抜き工程で平板素材Pを得た後、前記バーリング加工工程を行わずに、前記U曲げ工程を行うことになる。そして、前記型抜き工程で得た前記第1下穴及び第2下穴が、前記連結穴となる。
 以上に説明の実施形態は本発明の一例であり、必要に応じて適宜の変更が可能である。
 例えば、リンク部品Lの一端部LAから中央部LCにかけての縦断面形状は、図1に示した形状のみに限られない。すなわち、上記実施形態では、縦断面形状が、底壁部gのうち一端部LAの位置では下方に膨らみ、一端部LA及び中央部LC間の繋ぎ位置では上方に凹む形状とした。一方、例えば図7に示すように、バーリング加工穴a1,b1の上下面が側面視で平坦(直線状)であるリンク部品L1を採用してもよい。
 このリンク部品L1の製造に際しては、図2の(e),(f)に示す軸曲げや図2の(g),(h)に示すO曲げで用いる各金型形状を変更することで対応可能である。より具体的には、軸曲げに際しては、図5に示すダイ10の底面11dの縦断面形状と、パンチ40の加圧面41の縦断面形状とを変更する。すなわち、ダイ10の底面11dのうち、図5に示す符号M1の範囲を、長手方向中央位置から端縁位置に向かって下がる直線状の傾斜面とする。また、パンチ40の加圧面41も、図5に示す符号M2の範囲を、長手方向中央位置から端縁位置に向かって下がる直線状の傾斜面とする。このような直線形状に合致させるように中間部品Wの連結壁W1を加圧面41及び底面11d間に挟み込んで直線状に成形する。
 また、O曲げに際しては、図6に示す下型50の凹溝51の縦断面形状と、上型60の凹溝61の縦断面形状と、第1中子70における下面72及び上面73の縦断面形状を変更する。すなわち、凹溝51のうち、図6の符号M3の範囲を、長手方向中央位置から端縁位置に向かって上がる直線状の傾斜面とする。また、凹溝61も、図6に示す符号M4の範囲を、長手方向中央位置から端縁位置に向かって上がる直線状の傾斜面とする。さらに、下面72の縦断面形状を、凹溝51の傾斜面に対応する直線状の傾斜面とする。同様に、上面73の縦断面形状を、凹溝61の傾斜面に対応する直線状の傾斜面とする。
 そして、凹溝51と下面72との間に連結壁W1を挟み込み、さらに、凹溝61と上面73との間に第1側壁W2の上端縁と第2側壁W3の上端縁とを挟み込んでO曲げすることにより、図7に示すリンク部品L1を得ることができる。このリンク部品L1をその長手方向に沿って見た場合、一端部LAより、この一端部LA及び中央部LC間の接続部分にかけての範囲M5の上部下部が、側面視で直線形状をなしている。このようにバーリング加工穴a1,b1の上部下部を側面視で平坦形状とすることにより、芯金30の使用による効果に加えて、バーリング加工穴a1,b1の加工精度をさらに高めることが可能になる。
 この点について、芯金30を圧入した場合を例に説明すると、まず軸曲げ工程の開始時には、図5に示すように、パンチ40の加圧面41のうち、最も端にある点Pr1が最初に連結壁W1の内面に当たって矢印F1方向に加圧する。このような点接触による加圧力は、バーリング加工穴a1,b1の周囲部分のうち、点Pr1に最も近い部分を矢印F2に示すように引っ張る力を発生させる。このような力が生じても、前もって圧入された芯金30がバーリング加工穴a1,b1に圧入されたことによって内周面に生じたフープ応力により、支えることが出来る。
 一方、図7に示す変形例においては、軸曲げのためにパンチ40で連結壁W1の内面を加圧する際、部分的に膨らませずに真っ直ぐな状態を保ったまま軸曲げをするので、矢印F2に示した力を生じない。よって、芯金30による補強効果に加えて、より高い加工精度を得ることが可能になる。
 また、O曲げ加工工程では、図6に示した第1中子70の上面73が第1側壁W2の上端縁及び第2側壁W3の上端縁をそれらの内方より押圧して外形を凸状に変形させるため、軸曲げのときと同じ理由により、バーリング加工穴a1,b1の周囲部分に対して部分的な引張が多少加わる。これに対し、図7に示す変形例においては、上面73の縦断面形状を、凹溝61の傾斜面に対応する直線状の傾斜面とするので、バーリング加工穴a1,b1の周囲部分に対して部分的な引張を加えない。よって、芯金30による補強効果に加えて、より高い加工精度を得ることが可能になる。
 また、上述したように、本実施形態では、バーリング加工穴a1,b1を形成するものとしたが、この形態のみに限らない。前記バーリング加工工程を省略してバーリング加工穴a1,b1を形成しなくてもよい。この場合、前記型抜き工程で形成した貫通穴である前記第1下穴及び第2下穴を、リンク部品Lの連結穴として用いてもよい。より具体的な説明は、後述の第3実施形態で説明する。また、連結穴は円形のみにかぎらず、例えば半円形の穴としてもよいし、楕円形や四角形等、その他の穴形状としてもよい。
 例えば、連結穴を、図8に示す開口した半円形の下穴a3,a4とするリンク部品L2の場合、芯金30と第1中子70を兼ねた治具90を用いることができる。この治具90のうち、治具本体170が第1中子70に対応する部分となり、また、一対の凸部130が芯金30に対応する部分となる。一対の凸部130の外形寸法は、半円形の下穴a3,a4よりも少し大きめに形成されている。
 この場合、O曲げ工程で第1側壁W2及び第2側壁W3に外力を与えても、その前に一対の凸部130を圧入することによって、半円形の下穴a3,a4それぞれの縁部に沿った引っ張り力が下穴a3,a4に加わる。この引っ張り力によって下穴a3,a4がその内方より予め補強されるので、後加工による、下穴a3,a4の変形及び軸ずれが効果的に抑えられる。
[第2実施形態]
 続いて、図9及び図10を参照しながら本発明の第2実施形態について以下に説明する。本実施形態では、上記第1実施形態で用いた芯金30の代わりに、図9及び図10に示すように、ダイ10に一対の芯金230を同軸配置し、凹溝11内外に挿抜させる点が、上記第1実施形態と異なっている。すなわち、一対の芯金230はダイ10の一部であり、リンク部品Lの製造後に抜出される。以下、上記第1実施形態との相違点を主に説明し、その他事項については上記第1実施形態と同じであるとして、重複説明を省略する。
 本実施形態のリンク部品の製造装置は、ダイ(第5金型)10と、パンチ(第6金型)40と、これらダイ10及びパンチ40間の相対位置を接近及び離間させる第4駆動機構(不図示)と、一対の芯金230をダイ10に備わる一対の貫通穴10A1,10B1に対して挿抜させる第5駆動機構(不図示)と、を備える。
 ダイ10は、図9及び図10に示すように、連結壁W1の外面に接してかつ縦断面視で凸状をなす円弧面(第3円弧面)11A、第1側壁W2の外面に接する内側面11B(第5側面)、第2側壁W3の外面に接する内側面(第6側面)11C、これら内側面11B,11Cを同軸に貫く一対の貫通穴10A1,10B1、を有する。貫通穴10A1,10B1は、円形のみにかぎらず、例えば半円形の穴としてもよいし、楕円形や四角形等、その他の穴形状としてもよい。
 また、パンチ40は、図9に示すように、連結壁W1の内面に接してかつ縦断面視で凹状をなす円弧面(第4円弧面)40A、第1側壁W2の内面に接する外側面(第7側面)40B、第2側壁W3の内面に接する外側面(第8側面)40C、を有する。
 一対の芯金230が、内側面(第5側面)11Bの貫通穴10A1に挿抜される芯金(第1分割芯金)230aと、内側面(第6側面)11Cの貫通穴10B1に挿抜されてかつ芯金230aと同軸をなす芯金(第2分割芯金)230bと、を有する。
 前記第5駆動機構は、芯金230aを貫通穴10A1に挿抜させる第1駆動部(不図示)と、芯金230bを貫通穴10B1に挿抜させる第2駆動部(不図示)と、を有する。
 上記装置構成で軸曲げ工程を行う場合、まず凹溝11内に中間部品Wを配置し、そしてバーリング加工穴a1,b1に芯金230をそれぞれ通す。このようにして中間部品Wの一端側をダイ10内に固定した状態が図9である。この図9に示すように、凹溝11の底面形状は、その長手方向に沿った縦断面で見た場合、長手方向中央部分が盛り上がった凸断面形状を有している。そのため、中間部品Wの一端側を、芯金230によって凹溝11の底面近くに固定した場合、中間部品Wの他端側は、凹溝11の底面から離れる。その結果、中間部品Wは、その一端側が相対的に低くてかつ、他端側が相対的に高くなるように傾斜配置される。
 このように傾斜配置された中間部品Wに対し、その上方からパンチ40を下げていく。すると、パンチ40が中間部品Wのまず前記他端側に当たり、これを鉛直下方に押し下げていく。その結果、中間部品Wの他端側が矢印Fdに示すようにパンチ40によって押し下げられていく。このとき、中間部品Wの長手方向中央部分の底面は、凹溝11の底面が持つ凸断面形状に合致するように曲げられていく。そして、中間部品Wの底壁が、凹溝11の底面とパンチ40の下面との間に完全に挟み込まれて軸曲げが完了する。
 軸曲げ工程の完了後、まず芯金230a,230bを中間部品Wから抜出する抜出工程を行い、その後、パンチ40を上げてからダイ10内より取り出す。その後、第1の実施形態と同様にO曲げ工程などを行うことにより、リンク部品Lが得られる。
[第3実施形態]
 続いて、図11を参照しながら本発明の第3実施形態について以下に説明する。本実施形態では、バーリング加工穴a1,b1の代わりに下穴を有するリンク部品を製造する点が、上記第1実施形態と異なっている。そのため、上記第1実施形態との相違点を主に説明し、その他事項については上記第1実施形態と同じであるとして、重複説明を省略する。
 本実施形態のリンク部品の製造方法では、上記第1実施形態のバーリング加工工程が省略される。よって、本実施形態のリンク部品の製造方法は、型抜き工程(素材準備工程)と、U曲げ工程と、補強工程と、軸曲げ工程と、O曲げ工程と、貫通穴形成工程と、芯金抜出工程と、を有する。
 型抜き工程では、用意した平板を前記型抜き加工機の凹溝上に固定する。そして、型抜き加工機のパンチ駆動機構によりダイ及びパンチ間を接近させることで、パンチの凸部が平板を打ち抜き、図11(a)に示す平板素材Paが形成される。この平板素材Paには、第1下穴a1a及び第2下穴b1aが形成されている。
 なお、パンチとダイの組み合わせによる型抜きに代えて、レーザー加工による型抜きを行ってもよい。
 U曲げ工程では、図11(b)に示すように、型抜き工程後の平板素材Paをダイ10上に載置し、U曲げ加工機のパンチ駆動機構によってパンチ20で平板素材Paを加圧し、凹溝11内に押し込む。その結果、図11(a)に示す平板素材Paの部分P1aを境として部分P2a及び部分P3aが互いに対向するように折り曲げられる。凹溝11より取り出された中間部品Waを図11(c)に示す。
 中間部品Waは、第1下穴a1aを有する第1側壁W2aと、第2下穴b1aを有し第1側壁W2aに対して対向配置された第2側壁W3aと、第1側壁W2aの下縁(一方の側縁)及び第2側壁W3aの下縁(一方の側縁)間を繋ぐ連結壁W1aと、を有する。中間部品Waは、一方向に沿って長い。連結壁W1aは、側面視で直線状をなしている。第1側壁W2a及び第2側壁W3a間の間隔は、中間部品Waの長手方向に沿って見た場合、中央位置で最も細く、この中央位置から両端位置に向かうに従って徐々に広くなっている。第1下穴a1a及び第2下穴b1aは、互いに同軸をなすように対向配置されている。
 U曲げ工程に続く補強工程では、中間部品Waを前記芯金抜入機の第1保持機構に固定する。続いて、駆動機構の駆動力を前記第1保持機構に与えて移動させ、芯金30を中間部品Waの第1下穴a1a及び第2下穴b1aに同軸に入れる。芯金30は、中間部品Wの第1下穴a1a及び第2下穴b1aよりも若干大きめの外径寸法を有する外周面と、前記第1保持機構によって保持される内周面とを有する。この場合、芯金30の入れ方は「圧入」となる。圧入後の中間部品Waを図11(d)に示す。
 第1実施形態と同様に、芯金の外径(又は芯金外面の周長)を下穴の内径(又は、下穴内面の周長)とほぼ同じとしてもよい。例えば、径比(芯金の外径/下穴の内径)又は周長比(芯金の外面の周長/下穴の内面の周長)を1.000±0.005、1.000±0.003又は1.000±0.001の範囲としてもよい。しかし、芯金の外径(又は芯金外面の周長)を下穴の内径(又は、下穴内面の周長)よりやや大きい方が好ましい。例えば、径比(芯金の外径/下穴の内径)又は周長比(芯金の外面の周長/下穴の内面の周長)を1.000より大きくするか、または1.001以上としてもよい。この場合、芯金の外径と下穴の内径の差により、下穴の内面に引張応力が生じる。この補強工程で入れた芯金30によって第1下穴a1a及び第2下穴b1aの縁部に沿った引張応力が第1下穴a1a及び第2下穴b1aに加わる。この引張応力によって第1下穴a1a及び第2下穴b1aがその内方より補強されるので、第1下穴a1a及び第2下穴b1aの変形及び軸ずれが効果的に抑えられる。第1下穴a1a及び第2下穴b1aは円形であるので、前記引張応力は、第1下穴a1a及び第2下穴b1aに加わるフープ力となる。なお、上記の径比又は周長比の下限を、1.002、1.003又は1.005としてもよい。下穴に芯金が入れられる限り、その径比又は周長比の上限を規定する必要はないが、1.050、1.040又は1.030としてもよい。また、必要に応じて、芯金を下穴に容易に入れられるように、芯金の断面がテーパー形状としてもよい。この場合、上記の径比又は周長比は、芯金の最大径から算出される値とする。
 芯金は、リング形状の治具でもよいし、中実円柱状の治具であってもよい。2つのバーリング加工穴をそれぞれに分かれた芯金であってもよいが、バーリング加工穴の同軸度を向上させるためには、2つの芯金が一体化した芯金(一体化した結果、1つの心金となる。)とすることが好ましい。
 軸曲げ工程では、補強工程で得られた中間部品Wを、図11(e)に示すように型開きしたダイ10の凹溝11内に配置する。そして、軸曲げ加工機のパンチ駆動機構によりパンチ40を押し下げていき、中間部品Waを凹溝11内で軸曲げさせる。なお、本実施形態のパンチ40は、上記第1実施形態で説明したパンチ40と異なり、前記段差を有していない。
 軸曲げ前の中間部品Waはその底部が側面視で直線形状となっているが、本軸曲げ工程では、この底部が側面視で凹形状となるように中間部品Waを軸曲げしていく。この軸曲げの際、中間部品Waの第1下穴a1a及び第2下穴b1aは常に芯金30によって支えられているので、その加工精度(真円精度及び同軸精度)が損なわれることなく維持される。
 軸曲げ工程後の中間部品Waは、その上部形状及び下部形状が概ね対称形状となっているが、第1側壁W2aの上端縁と第2側壁W3aの上端縁とが合致していないため、この時点ではまだ閉断面形状が形成されていない。
 O曲げ工程では、軸曲げ工程で得られた中間部品Waを、図11(g)に示すように下型50の凹溝51内に収容する。そして、中子駆動機構によって第1中子70及び第2中子80のそれぞれを第1側壁W2及び第2側壁W3間に入れる。
 続いて、金型駆動機構によって上型60を下型50に向けて下げていき、その凹溝61によって第1側壁W2a及び第2側壁W3aの各上端縁が互いに近付くようにO曲げ加工する。各上端縁が互いに合致することで、中間部品Waの長手方向各位置において、同長手方向に垂直な断面が閉断面形状となり、O曲げ工程が完了する。さらに、前記各上端縁同士を溶接等により接合してもよい。
 O曲げの際、中間部品Waの第1下穴a1a及び第2下穴b1aは常に芯金30によって支持されているので、その加工精度(真円精度及び同軸精度)が損なわれることなく維持される。
 なお、中間部品Waの一端部及び他端部において、第1側壁W2aの上端縁と第2側壁W3aの上端縁との合わせ部分が、前記長手方向に垂直な断面で見て円形または楕円形である場合は、第1中子70及び第2中子80を入れる工程を省略してもよい。
 貫通穴形成工程では、O曲げ工程で得られた中間部品W(図11(h))に貫通穴c1,d1を同軸に形成する。貫通穴c1,d1は、第1下穴a1a及び第2下穴b1aに比べて小径であるため、O曲げ工程後に形成することができるが、型抜き工程の時点で予め形成しておいてもよい。
 芯金抜出工程では、第1下穴a1a及び第2下穴b1aより芯金30を抜き出す。その結果、リンク部品が完成する。なお、芯金30をリンク部品の一部としてそのまま用いる場合には、この芯金抜出工程を省略する。
 以上説明のリンク部品の製造装置及び製造方法によれば、図11の(e),(f)に示す軸曲げや図11の(g),(h)に示すO曲げを行うための外力を中間部品Waに加えても、常に、第1下穴a1a及び第2下穴b1aの形状寸法が芯金30によって維持される。したがって、高い寸法精度(真円精度及び同軸精度)の第1下穴a1a及び第2下穴b1a(連結穴)を有するリンク部品を得ることができる。
 なお、以上に説明の第2実施形態は本発明の一例であり、必要に応じて適宜の変更が可能である。例えば図7で示したように、上下面が側面視で平坦(直線状)であるリンク部品を採用してもよい。この場合、軸曲げのためにパンチ40で連結壁W1aの内面を加圧する際、部分的に膨らませずに真っ直ぐな状態を保ったまま軸曲げをするので、第1下穴a1a及び第2下穴b1aを部分的に径方向外側に引っ張る力を生じない。よって、芯金30による補強効果に加えて、より高い加工精度を得ることが可能になる。
[第4実施形態]
 続いて、図12を参照しながら本発明の第4実施形態について以下に説明する。本実施形態では、軸曲げ工程及び貫通穴形成工程を省略し、真っ直ぐな軸線を持つテーパー管形状のリンク部品を製造する点が、上記第1実施形態と異なっている。そのため、上記第1実施形態との相違点を主に説明し、その他事項については上記第1実施形態と同じであるとして、重複説明を省略する。
 本実施形態のリンク部品の製造方法では、上記第1実施形態の軸曲げ工程が省略される。よって、本実施形態のリンク部品の製造方法は、型抜き工程(素材準備工程)と、バーリング加工工程と、U曲げ工程と、補強工程と、O曲げ工程と、芯金抜出工程と、を有する。
 型抜き工程では、用意した平板を前記型抜き加工機の凹溝上に固定する。そして、型抜き加工機のパンチ駆動機構によりダイ及びパンチ間を接近させることで、パンチの凸部が平板を打ち抜き、平板素材Pbが形成される。平板素材Pbは、図12(c)の第1側壁W2bとなる部分P2bと、第2側壁W3bとなる部分P3bと、連結壁W1bとなる部分P1bと、を有する。この時点では、第1下穴及び第2下穴と、一対の貫通穴c1b,d1bが形成されたままになっている。
 なお、パンチとダイの組み合わせによる型抜きに代えて、レーザー加工による型抜きを行ってもよい。
 バーリング加工工程では、型抜き加工で得られた平板素材Pbをバーリング加工機のダイ上に固定する。そして、バーリング加工機のパンチ駆動機構により、パンチを前記第1下穴及び前記第2下穴に通すことで、これら第1下穴及び第2下穴のそれぞれにバーリング加工穴a1b,b1bが形成される。このようにして得られた平板素材Pbを図12(a)に示す。なお、貫通穴c1b,d1bにバーリング加工穴を行ってもよい。
 U曲げ工程では、図12(b)に示すように、バーリング加工工程後の平板素材Pbをダイ10b上に載置し、U曲げ加工機のパンチ駆動機構によってパンチ20bで平板素材Pbを加圧し、凹溝11bb内に押し込む。その結果、平板素材Pbの部分P1bを境として部分P2b及び部分P3bが互いに対向するように折り曲げられる。その後、中間部品Wbを凹溝11bbより取り出す。
 補強工程では、U曲げ工程で得られた中間部品Wbを芯金抜入機の第1保持機構に固定する。続いて、駆動機構の駆動力を第1保持機構に与えて移動させ、芯金30bを中間部品Wbのバーリング加工穴a1b,b1bに同軸に入れる。芯金30bを入れた後の中間部品Wbを図12(c)に示す。
 この補強工程で芯金30bを圧入した場合、バーリング加工穴a1b,b1bの内周面に沿った引っ張り力がバーリング加工穴a1b,b1bに加わる。この引っ張り力によってバーリング加工穴a1b,b1bがその内方より補強されるので、バーリング加工穴a1b,b1bの変形が効果的に抑えられる。バーリング加工穴a1b,b1bは円形であるので、前記引っ張り力は、バーリング加工穴a1b,b1bに加わるフープ力となる。
 O曲げ工程では、補強工程で得られた中間部品Wbを、図12(d)に示すように下型50bの凹溝51b内に収容する。そして、中子駆動機構によって第1中子70b及び第2中子80bのそれぞれを第1側壁W2b及び第2側壁W3b間に入れる。
 続いて、金型駆動機構によって上型60bを下型50bに向けて下げていき、凹溝61bによって第1側壁W2b及び第2側壁W3bの各上端縁が互いに近付くようにO曲げ加工する。各上端縁が互いに合致することで、中間部品Wの長手方向各位置において、同長手方向に垂直な断面が閉断面形状となり、O曲げ工程が完了する。さらに、前記各上端縁同士を溶接等により接合してもよい。
 O曲げ加工の際、中間部品Wbのバーリング加工穴a1b,b1bの内周面は常に芯金30bによって支持されているので、その加工精度が損なわれることなく維持される。
 なお、中間部品Wbの一端部及び他端部において、第1側壁W2bの上端縁と第2側壁W3bの上端縁との合わせ部分が、前記長手方向に垂直な断面で見て円形または楕円形である場合は、第1中子70b及び第2中子80bを入れる工程を省略してもよい。
 芯金抜出工程では、バーリング加工穴a1b,b1bより芯金30bを抜き出す。その結果、真っ直ぐな軸線を持つテーパー管形状のリンク部品が完成する。なお、芯金30bをリンク部品の一部としてそのまま用いる場合には、この芯金抜出工程を省略する。
 以上説明のリンク部品の製造装置及び製造方法によれば、図12の(d)に示すO曲げを行うための外力を中間部品Wbに加えても、常に、バーリング加工穴a1b,b1bの真円度及び軸芯精度が芯金30bによって維持される。したがって、高い寸法精度のバーリング加工穴(連結穴)a1b,b1bを有するリンク部品を得ることができる。
 なお、連結穴としてバーリング加工穴a1b,b1bを形成する場合について例示した。しかし、本発明はこの形態のみに限らず、さらに前記バーリング加工工程を省略してもよい。この場合、前記型抜き工程で平板素材Pbを得た後、前記バーリング加工工程を行わずに、前記U曲げ工程を行うことになる。そして、前記型抜き工程で得た前記第1下穴及び第2下穴が、前記連結穴となる。
 以上説明の各実施形態の骨子を、以下に纏める。
(1)本実施形態リンク部品の製造方法は、第1下穴(下穴)を有する第1側壁W2と、第1下穴と同軸をなす第2下穴(下穴)を有し第1側壁W2に対して対向配置された第2側壁W3と、第1側壁W2の下縁(一方の側縁)及び第2側壁W3の下縁(一方の側縁)間を繋ぐ連結壁W1と、を有する一方向に沿って長い中間部品Wより、連結穴(第1下穴及び第2下穴、又は、バーリング加工穴a1,b1)を有し前記一方向に沿った一方側に設けられた一端部LAと、前記一方向に沿った他方側に設けられた他端部LBとを備えたリンク部品Lを製造する方法である。
 そして、本実施形態リンク部品の製造方法は、前記連結穴に、芯金30を同軸に挿入あるいは圧入する補強工程と;補強工程よりも後に、第1側壁W2の上縁(他方の側縁)と第2側壁W3の上縁(他方の側縁)とを互いに当接させるように、第1側壁W2及び第2側壁W3をO曲げするO曲げ工程と;を有する。
 上記(1)によれば、O曲げ工程で第1側壁W2及び第2側壁W3に外力を与えても、その前に、補強工程で入れた芯金30によって、連結穴が予め補強されているので、これらの変形が効果的に抑えられる。
 なお、第1下穴及び第2下穴の形状は、円形のみに限らず、非円形であってもよい。さらに、第1下穴及び第2下穴としては、完全に閉じた周面により囲まれて形成されたもののみに限らず、その一部分が開放されていてもよい。よって、第1下穴及び第2下穴は、例えば、開放された半円形であってもよい。
(2)上記(1)において、補強工程よりも後でかつO曲げ工程よりも前に、中間部品Wの連結壁W1の内面と、芯金30の外周面との双方に外力を同時に加えることで、第1側壁W2を対向視したときに連結壁W1が凹状の円弧をなすように、中間部品Wを軸曲げする軸曲げ工程をさらに有してもよい。
 上記(2)の場合、連結壁W1と芯金30の両方に対して外力を同時に加えるので、連結壁W1の軸曲げ変形に遅れることなく芯金30が追従していく。そのため、連結壁W1と一体をなす第1側壁W2及び第2側壁W3の変形に対しても芯金30が追従できるので、芯金30の移動が遅れて連結穴を変形させることがない。
(3)上記(2)において、軸曲げ工程で、側面視で直線状部分を有する加圧面41を連結壁W1の上面(内面)に押し当てることにより、軸曲げを行ってもよい。
 上記(3)の場合、側面視で直線状の加圧面41により連結壁W1の内面を加圧する。連結壁W1の内面を部分的に膨らませることなく真っ直ぐな状態を保ったまま軸曲げするので、連結穴を局所的に引っ張る力を生じない。よって、芯金30による補強効果に加えて、より高い寸法精度のリンク部品L1を得ることが可能になる。
(4)上記(1)~(3)の何れか一項において、O曲げ工程で、O曲げをする前に、第1側壁W2及び第2側壁W3間に挟まれてかつ、芯金30の外周面と連結壁W1の内面との間に挟まれる第1中子70を、中間部品Wの端部に挿入あるいは圧入しておいてもよい。
 上記(4)の場合、第1中子70によって第1側壁W2及び第2側壁W3間の間隔及び平行度が一定に保持され、また、連結壁W1及び芯金30間の間隔が一定に保持される。よって、O曲げ工程でO曲げする外力を加えても、連結穴の寸法精度及び位置精度に及ぼす影響を抑制できるので、より高い寸法精度のリンク部品Lを製造することができる。
(5)上記(1)~(4)の何れか一項に記載の態様において、芯金30の外径を第1下穴及び第2下穴の内径で除して算出される径比が1.000より大きくてもよい。
 上記(5)に記載の態様の場合、芯金30を第1下穴及び第2下穴に圧入できる。
(6)上記(1)において、以下のようにしてもよい:補強工程よりも前に、第1下穴及び第2下穴のそれぞれに、バーリング縦壁a,bを有するバーリング加工穴a1,b1を形成するバーリング加工工程を行い;補強工程で、第1下穴及び第2下穴に代わり、バーリング加工穴a1,b1に芯金30を同軸に挿入あるいは圧入する。
 上記(6)の場合も、上記(1)と同じ作用効果を得ることが出来る。すなわち、O曲げ工程で第1側壁W2及び第2側壁W3に外力を与えても、補強工程で挿入あるいは圧入された芯金30によってバーリング加工穴a1,b1が予め補強されているので、連結穴の変形が効果的に抑えられる。
 なお、バーリング加工穴a1,b1の形状は、円形のみに限らず、非円形であってもよい。さらに、バーリング加工穴a1,b1としては、完全に閉じた周面により囲まれて形成されたもののみに限らず、その一部分が開放されていてもよい。よって、バーリング加工穴a1,b1は、例えば、開放された半円形であってもよい。
(7)上記(6)において、補強工程よりも後でかつO曲げ工程よりも前に、中間部品Wの連結壁W1の内面と、芯金30が挿入あるいは圧入された状態のバーリング縦壁a,bの各外周面a2,b2との双方に外力を同時に加えることで、第1側壁W2を対向視したときに連結壁W1が凹状の円弧をなすように、中間部品Wを軸曲げする軸曲げ工程をさらに有してもよい。
 上記(7)の場合も、上記(2)と同じ作用効果を得ることが出来る。すなわち、連結壁W1とバーリング縦壁a,bの両方に対して外力を同時に加えるので、連結壁W1の軸曲げ変形に遅れることなくバーリング縦壁a,b及び芯金30が追従していく。そのため、連結壁W1と一体をなす第1側壁W2及び第2側壁W3の変形に対してもバーリング縦壁a,b及び芯金30が追従できるので、芯金30の移動が遅れてバーリング加工穴a1,b1を変形させることがない。
(8)上記(7)において、軸曲げ工程で、側面視で直線状をなす部分を有する加圧面41を連結壁W1の内面に押し当てることにより、軸曲げを行ってもよい。
 上記(8)の場合も、上記(3)と同じ作用効果を得ることが出来る。よって、本態様によれば、凹曲面が連結壁W1に生じないので、バーリング加工穴a1,b1の変形を抑制することができ、同バーリング加工穴a1,b1により形成される連結穴の寸法精度をさらに高めることができる。
(9)上記(6)~(8)の何れか一項において、O曲げ工程で、O曲げをする前に、第1側壁W2及び第2側壁W3間に挟まれてかつ、バーリング縦壁a,bの外周面a2,b2及び連結壁W1の内面間に挟まれる第1中子70を、中間部品Wの端部に挿入あるいは圧入しておいてもよい。
 上記(9)の場合も、上記(4)と同じ作用効果を得ることが出来る。すなわち、第1中子70によって第1側壁W2及び第2側壁W3間の間隔及び平行度が一定に保持され、また、連結壁W1及びバーリング縦壁a,b間の間隔が一定に保持される。よって、O曲げ工程でO曲げする外力を加えてもバーリング加工穴a1,b1の寸法精度及び位置に及ぼす影響を抑制できるので、より高い寸法精度のリンク部品L1を製造することができる。
(10)上記(6)~(9)の何れか一項に記載の態様において、芯金30の外径をバーリング加工穴a1,b1の内径で除して算出される径比が1.000より大きくてもよい。
 上記(10)に記載の態様の場合、芯金30をバーリング加工穴a1,b1に圧入できる。
(11)図9及び図10を用いて説明した上記第2実施形態のように、上記(1)において以下を採用しても良い:補強工程よりも後でかつO曲げ工程よりも前に、前記下穴(あるいはバーリング加工穴a1,b1)に挿入あるいは圧入した一対の芯金230の位置を定位置に固定してかつ、前記連結壁W1のうちで一端部LAになる第1端部と他端部LBになる第2端部との間の任意の位置を支持した状態で、前記第2端部に外力を加えることで、第1側壁W2を対向視したときに連結壁W1が凹状をなすように、中間部品Wを軸曲げする軸曲げ工程をさらに有する。
 上記(11)の場合、中間部品Wを軸曲げする間も、挿入あるいは圧入された一対の芯金230によって下穴(あるいはバーリング加工穴a1,b1)の形状が常に保たれる。
(12)上記(11)において以下を採用しても良い:補強工程よりも前に、下穴に、バーリング縦壁a,bを有するバーリング加工穴a1,b1を形成するバーリング加工工程を行い;補強工程で、前記下穴に代わり、バーリング加工穴a1,b1に芯金230を同軸に挿入あるいは圧入する。
 上記(12)の場合、中間部品Wを軸曲げする間、挿入あるいは圧入された芯金230によってバーリング加工穴a1,b1の形状が常に保たれる。
(13)上記(1)~(12)の何れか一項において、補強工程よりも前に、第1側壁W2となる部分P2と、第2側壁W3となる部分P3と、連結壁W1となる部分P1と、を有する平板素材Pを、平板より打ち抜いて準備する型抜き工程(素材準備工程)と;連結壁W1となる部分P1を境として、第1側壁W2となる部分P2と第2側壁W3となる部分P3とが互いに対向するように、平板素材Pを折り曲げるU曲げ工程と;を行ってもよい。
 上記(13)の場合、型抜き工程後のU曲げ工程により、互いに同軸をなす第1下穴及び第2下穴を有する中間部品Wを得ることが出来る。さらには、U曲げ工程前に、第1下穴及び第2下穴にバーリング加工を行い、バーリング加工穴a1,b1を区画するバーリング縦壁a,bを形成してもよい。
(14)上記(1)~(13)の何れか一項において、芯金30をリンク部品Lの一部とし、芯金30の開口を連結穴としてもよい。
 上記(14)の場合、リンク部品Lより芯金30を外す工程と、リンク部品Lの第1下穴及び第2下穴、又は、バーリング加工穴a1,b1を補強する後工程とが不要になる。よって、さらに生産性を高めることが可能になる。
(15)本実施形態に係るリンク部品の製造装置は、第1下穴を有する第1側壁W2と、第1下穴と同軸をなす第2下穴を有し第1側壁W2に対して対向配置された第2側壁W3と、第1側壁W2の下縁(一方の側縁)及び第2側壁W3の下縁(一方の側縁)間を繋ぐ連結壁W1と、を有する一方向に沿って長い中間部品Wより、連結穴(第1下穴及び第2下穴、又は、バーリング加工穴a1,b1)を有し前記一方向に沿った一方側に設けられた一端部LAと、前記一方向に沿った他方側に設けられた他端部LBとを備えたリンク部品Lを製造する装置である。
 そして、このリンク部品の製造装置は、第1下穴及び第2下穴に、同軸に挿入あるいは圧入される芯金30と;中間部品Wを受け入れてかつ、リンク部品Lの外形に合致する形状の凹溝51(第1凹面)を有する下型50(第1金型)と;下型50と共に中間部品Wを収容し、第1側壁W2の上縁(他方の側縁)及び第2側壁W3の上縁(他方の側縁)の双方に当接して互いに接近させる凹溝61(第2凹面)を有する上型60(第2金型)と;下型50及び上型60間の相対位置を接近及び離間させる金型駆動機構(第1駆動機構)と;を備える。
 上記(15)によれば、まず、第1下穴及び前記第2下穴に芯金30を同軸に挿入あるいは圧入する。その後、芯金によって第1下穴及び第2下穴が補強された中間部品Wを、そのまま下型50の凹溝51に載置する。その後、下型50と共に中間部品Wを収容するように、金型駆動機構により下型50及び上型60間の相対位置を近付け、そして両者を合致させる。その際、上型60の凹溝61が、第1側壁W2の上縁及び第2側壁W3の上縁の双方に当接して両者を互いに接近させ、そして合致させる。このO曲げにより、長手方向に垂直な断面が閉断面形状をなす中間部品Wを得ることが出来る。しかも、O曲げの際も第1下穴及び第2下穴の補強は芯金30によって継続して行われる。よって、O曲げするために第1側壁W2及び第2側壁W3に外力を与えても、先に挿入あるいは圧入された芯金30によって第1下穴及び第2下穴が予め補強されているので、これら第1下穴及び第2下穴の変形が効果的に抑えられる。
(16)上記(15)において、連結壁W1の外面に接する凸状の底面11d(第1円弧面)、第1側壁W2の外面に接する第1側面、第2側壁W3の外面に接する第2側面、を有するダイ10(第3金型)と;連結壁W1の内面に接する凹状の加圧面41(第2円弧面)、第1側壁W2の内面に接する側面22(第3側面)、第2側壁W3の内面に接する側面23(第4側面)、芯金30の外周面に接する抑え面44(芯金抑え面)、を有するパンチ40(第4金型)と;ダイ10及びパンチ40間の相対位置を接近及び離間させるパンチ駆動機構(第2駆動機構)と;をさらに備えてもよい。
 上記(16)の場合、連結壁W1の外面が底面11dに接し、第1側壁W2の外面が第1側面に接し、第2側壁W3の外面が第2側面に接するように、中間部品Wをダイ10内に配置する。そして、パンチ駆動機構の駆動力によってダイ10及びパンチ40間の相対位置を近付けていく。これにより、加圧面41が連結壁W1の内面に当接し、側面22が第1側壁W2の内面に摺接し、側面23が第2側壁W3の内面に摺接し、そして抑え面44が芯金30の外周面に当たる。ダイ10及びパンチ40間の相対位置をさらに近付けていくと、連結壁W1が底面11d及び加圧面41の形状に合わせて曲げられていく。そして、連結壁W1の変形に伴って第1側壁W2および第2側壁W3も曲げられていく。このようにして、中間部品Wの軸曲げが完了する。
 この軸曲げの際、連結壁W1と芯金30の両方に対してパンチ駆動機構の力を同時に加えることができるので、連結壁W1の軸曲げの変形動作に遅れることなく芯金30を追従させられる。そのため、連結壁W1と一体をなす第1側壁W2及び第2側壁W3の変形に対しても芯金30が追従していくので、芯金30の移動が遅れて第1下穴及び第2下穴を変形させることがない。
(17)上記(16)において、以下のようにしてもよい:加圧面41のうち、中間部品Wで一端部LAとなる部分を受ける受圧部が、加圧面41の延在方向を含む縦断面で見て直線状であり;加圧面41のうち、連結壁W1を介して前記受圧部に対向する部分において加圧面41が、前記縦断面で見て直線状である。
 上記(17)の場合、縦断面で見て互いに直線状をなす受圧部及び加圧面41間に、中間部品Wの連結壁W1のうちで一端部LAとなる部分が挟み込まれるので、連結壁W1の内面が直線状を保ったまま軸曲げできる。すなわち、連結壁W1の内面を部分的に膨らませることなく真っ直ぐな状態を保ったまま軸曲げするので、連結穴を局所的に引っ張る力を生じない。よって、芯金30による補強効果に加えて、より高い寸法精度を得ることが可能になる。
(18)上記(17)において、凹溝61のうち、中間部品Wで前記一端部となる部分を加圧する凹溝61が、凹溝61の延在方向を含む縦断面で見て直線状であってもよい。
 上記(18)の場合、上型60の凹溝61によって第1側壁W2の上縁及び第2側壁W3の上縁を互いに合致させるO曲げを行った結果、この合致した部分が、凹溝61の形状に従い、側面視で直線状をなす。これにより、O曲げの際に第1中子70を中間部品Wの一端部に入れても、前記合致した部分が直線状の凹溝61により支えられているため、芯金30より離れる方向に膨らむ変形が生じない。よって、第1下穴及び第2下穴の寸法精度を損なう虞をより低減できる。
(19)上記(15)~(18)の何れか一項において、第1側壁W2及び第2側壁W3間と、芯金30の外周面及び連結壁W1の内面間とに入れられる第1中子70と;第1中子70を下型50及び上型60に対して挿抜する中子駆動機構と;をさらに備えてもよい。
 上記(19)の場合、中子駆動機構の駆動力を受け、第1側壁W2及び第2側壁W3間と、芯金30の外周面及び連結壁W1の内面間とに第1中子70の一部が入れられる。そして、第1中子70によって第1側壁W2及び第2側壁W3間の間隔及び平行度が一定に保持され、また、連結壁W1及び芯金30間の間隔が一定に保持される。よって、O曲げする外力を第1側壁W2及び第2側壁W3に加えても第1下穴及び第2下穴の寸法精度及び位置精度に及ぼす影響を抑制できるので、より高い寸法精度のリンク部品Lを製造することができる。
(20)上記(15)において、以下のようにしてもよい:中間部品Wの第1下穴及び第2下穴に、バーリング縦壁a,bを有するバーリング加工穴a1,b1を形成するバーリング加工機をさらに備え;芯金30が、バーリング加工穴a1,b1に同軸に入れられる。
 上記(20)の場合も、上記(15)と同じ作用効果を得ることが出来る。すなわち、O曲げの際も一対のバーリング加工穴a1,b1の補強が芯金30によって継続して行われる。よって、O曲げするために第1側壁W2及び第2側壁W3に外力を与えても、前もって挿入あるいは圧入された芯金30によってバーリング加工穴a1,b1が予め補強されているので、バーリング加工穴a1,b1の変形が効果的に抑えられる。
(21)上記(20)において、連結壁W1の外面に接する凸状の底面11d(第1円弧面)、第1側壁W2の外面に接する第1側面、第2側壁W3の外面に接する第2側面、を有するダイ10(第3金型)と;連結壁W1の内面に接する凹状の加圧面41(第2円弧面)、第1側壁W2の内面に接する側面42(第3側面)、第2側壁W3の内面に接する側面43(第4側面)、バーリング縦壁a,bを介して芯金30の外周面に当たる抑え面44(芯金抑え面)、を有するパンチ40(第4金型)と;ダイ10及びパンチ40間の相対位置を接近及び離間させるパンチ駆動機構(第2駆動機構)と;をさらに備えてもよい。
 上記(21)の場合も、上記(16)と同じ作用効果を得ることが出来る。すなわち、連結壁W1の外面が底面11dに接し、第1側壁W2の外面が第1側面に接し、第2側壁W3の外面が第2側面に接するように、中間部品Wをダイ10内に配置する。そして、パンチ駆動機構の駆動力によってダイ10及びパンチ40間の相対位置を近付けていく。これにより、加圧面41が連結壁W1の内面に当接し、側面42が第1側壁W2の内面に摺接し、側面43が第2側壁W3の内面に摺接し、そして抑え面44がバーリング縦壁a,bの外周面a2,b2に当たる。ダイ10及びパンチ40間の相対位置をさらに近付けていくと、連結壁W1が底面11d及び加圧面41の形状に合わせて曲げられていく。そして、連結壁W1の変形に伴って第1側壁W2および第2側壁W3も曲げられていく。このようにして、中間部品Wの軸曲げが完了する。
 この軸曲げの際、連結壁W1とバーリング縦壁a,bの両方に対してパンチ駆動機構の力を同時に加えることができるので、連結壁W1の軸曲げの変形動作に遅れることなくバーリング縦壁a,bを追従させられる。そのため、連結壁W1と一体になって変形動作をする第1側壁W2及び第2側壁W3にも追従するので、芯金30がバーリング縦壁a,bを変形させることがない。
(22)上記(21)において、以下のようにしてもよい:加圧面41のうち、中間部品Wで一端部LAとなる部分を受ける受圧部が、加圧面41の延在方向を含む縦断面で見て直線状であり;加圧面41のうち、連結壁W1を介して前記受圧部に対向する第1加圧部が、前記縦断面で見て直線状である。
 上記(22)の場合も、上記(17)と同じ作用効果を得ることが出来る。よって、本態様によれば、凹曲面が連結壁W1に生じないので、バーリング加工穴a1,b1の変形を抑制することができ、バーリング加工穴a1,b1により形成される連結穴の寸法精度をさらに高めることができる。
(23)上記(22)において、凹溝61のうち、中間部品Wで一端部LAとなる部分を加圧する加圧部(第2加圧部)が、凹溝61の延在方向を含む縦断面で見て直線状であってもよい。
 上記(23)の場合も、上記(18)と同じ作用効果を得ることが出来る。よって、本態様によれば、バーリング加工穴a1,b1の寸法精度を損なう虞をより低減できる。
(24)上記(20)~(23)の何れか一項において、第1側壁W2及び第2側壁W3間と、バーリング縦壁a,bの外周面a2,b2及び連結壁W1の内面間とに入れる第1中子70(中子)と;第1中子70を下型50及び上型60に対して挿抜する中子駆動機構と;をさらに備えてもよい。
 上記(24)の場合も、上記(19)と同じ作用効果を得ることが出来る。よって、本態様によれば、O曲げする外力を第1側壁W2及び第2側壁W3に加えてもバーリング加工穴a1,b1の寸法精度及び位置に及ぼす影響を抑制できるので、より高い寸法精度のリンク部品Lを製造することができる。
(25)図9及び図10を用いて説明した上記第2実施形態のように、上記(15)に記載の態様において以下の構成をさらに備えてもよい。
 すなわち、リンク部品の製造装置は、ダイ(第5金型)10と、パンチ(第6金型)40と、これらダイ10及びパンチ40間の相対位置を接近及び離間させる第4駆動機構(不図示)と、一対の芯金230をダイ10に備わる一対の貫通穴10A1,10B1に対して挿抜させる第5駆動機構(不図示)と、を備える。
 ここで、ダイ10は、連結壁W1の外面に接してかつ縦断面視で凸状をなす円弧面(第3円弧面)11A、第1側壁W2の外面に接する内側面(第5側面)11B、第2側壁W3の外面に接する内側面(第6側面)11C、これら内側面11B,11Cを同軸に貫く一対の貫通穴10A1,10B1、を有する。また、パンチ40は、連結壁W1の内面に接してかつ縦断面視で凹状をなす円弧面(第4円弧面)40A、第1側壁W2の内面に接する外側面(第7側面)40B、第2側壁W3の内面に接する外側面(第8側面)40C、を有する。
 上記(25)の場合、まず、連結壁W1の外面が円弧面11Aに接し、第1側壁W2の外面が内側面11Bに接し、第2側壁W3の外面が内側面11Cに接するように、中間部品Wをダイ10内に配置する。続いて、貫通穴10A1、中間部品Wの一対の下穴、貫通穴10B1の全てを貫くように(全てが同軸をなすように)、芯金230を、中間部品Wの一対の下穴に挿入あるいは圧入する。これにより、中間部品Wのうちで一端部LAとなる第1端部と他端部LBとなる第2端部との間の位置において、連結部が芯金により第5金型内の定位置に固定され、なおかつ連結壁W1のうちで第1端部及び第2端部間の一部が凸状の円弧面40Aに当たって支持された状態になる。このように中間部品Wをダイ10内に2点支持した状態で、前記第5駆動機構の駆動力によってダイ10にパンチ40を近付けていく。すると、円弧面40Aが連結壁W1の第2端部側の内面に当接し、ここを押し下げていく。その結果、連結壁W1の外面のうちで円弧面40Aにより支持した位置を支点として、中間部品Wが軸曲げされる。この軸曲げを行っても、予め入れた芯金230によって一対の下穴が補強されているので、これらの寸法精度及び位置に及ぼす影響を抑制できる。
(26)上記(25)において、以下の構成を採用してもよい。
 すなわち、芯金230が、内側面(第5側面)11Bの貫通穴に挿抜される芯金(第1分割芯金)230aと、内側面(第6側面)11Cの貫通穴に挿抜されてかつ芯金230aと同軸をなす芯金(第2分割芯金)230bと、を有する。また、前記第5駆動機構が、芯金230aを第1側壁W2の貫通穴に挿抜させる第1駆動部(不図示)と、芯金230bを第2側壁W3の貫通穴に挿抜させる第2駆動部(不図示)と、を有する。
 上記(26)の場合、内側面(第5側面)11Bの貫通穴が中間部品Wの一対の下穴の一方と同軸をなし、内側面(第6側面)11Cの貫通穴が中間部品Wの一対の下穴の他方と同軸をなすように、中間部品Wをダイ10内に配置する。続いて、前記第1駆動部によって芯金230aを、内側面11Bの貫通穴を介して、中間部品Wの下穴の一方に挿入あるいは圧入する。同様に、前記第2駆動部によって芯金230bを、内側面11Cの貫通穴を介して、中間部品Wの下穴の他方に挿入あるいは圧入する。これら芯金230a,230bを入れることにより、次工程に移る前に中間部品Wの一対の下穴を補強できる。
(27)上記(15)~(26)の何れか一項において、第1側壁W2となる部分P2と、第2側壁W3となる部分P3と、連結壁W1となる部分P1と、を有する平板素材Pのうち、連結壁W1となる部分に合致する凹溝11を有するダイ(第7金型)10と;平板素材Pを間に挟んで凹溝11に挿抜されるパンチ(第8金型)20と;ダイ10及びパンチ20間の相対位置を接近及び離間させるパンチ駆動機構(第3駆動機構)と;をさらに備えてもよい。
 上記(27)の場合、連結壁W1となる部分P1が凹溝11上に重なるよう、ダイ10上に平板素材Pを載置する。そして、パンチ駆動機構の駆動力により、ダイ10及びパンチ20間を相対的に接近させる。その結果、パンチ20が凹溝11内に入ることで平板素材PがU曲げされる。そして、第1下穴及び第2下穴、又は、バーリング加工穴a1,b1を有する中間部品Wを得ることが出来る。
 なお、リンク部品の製造に際し、中間部品Wの板厚範囲としては、1.0mm以上4.0mm以下が好ましく、1.4mm以上1.8mm以下であることがより好ましい。
 また、中間部品Wの材質は、引っ張り強度が440MPa~980MPaの鋼材、あるいはアルミ材を例示することができる。
 中間部品Wよりリンク部品Lを製造した際に、(1)芯金の有無、(2)芯金のタイプ、(3)芯金の周長差比、(4)芯金への外力有無、のそれぞれが連結穴の真円度及び同軸度に及ぼす影響を調べるために、表1に示す実施例No.1~10に示す各条件で、図1に示したリンク部品Lを製造した。
 製造に用いた中間部品Wと、製造したリンク部品Lは、板厚を含めて寸法形状を全て同じとした。また、全実施例において、引張強度が440MPaでかつ板厚が2.8mmの鋼材を用いた。
Figure JPOXMLDOC01-appb-T000001
(1)芯金の有無
 図2の(a)~(h)に示す各工程のうち、(d)に示す補強工程を行った場合には芯金有無を「有り」と表記し、補強工程を行わなかった場合には「無し」と表記した。
(2)芯金のタイプ
 図2(d)に示す補強工程を行った実施例のうち、芯金が一体物のリングを用いた場合には「一体型」と表記し、芯金が一対のリングを用いて各バーリング加工穴をそれぞれ個別に補強した場合には「分離型」と表記した。
(3)芯金の周長差比
 バーリング加工穴に芯金を入れる際のきつさの度合いを、周長差比により規定した。周長差比が0%である場合は、バーリング加工穴の周長と、芯金の外周面の周長とが等しいことを示す。この場合は「挿入」となる。一方、周長差比が0%を超えている場合は「圧入」となり、その値が大きくなるほど、バーリング加工穴の周長よりも芯金の外周面の周長の方が長く、圧入の度合いがきついことを示している。周長差比は、下式(1)で規定される。
 周長差比(%)=((芯金の周長(mm)-バーリング加工穴の周長(mm))/芯金の周長(mm))×100・・・(式1)
(4)芯金への外力有無、
 図2(f)に示す軸曲げ工程の際、図5に示したような抑え面44による、芯金を入れた状態でのバーリング加工穴への外力印加を行った場合には「有り」と表記し、外力印加を行わなかった場合には「無し」と表記した。外力印加が「有り」の場合には、図5に示したような形状を持つパンチ40を用いて中間部品Wの軸曲げを行った。一方、外力印加が「無し」の場合には、図5に示すパンチ40のうち、抑え面44に相当する部分がバーリング加工穴の外周面に当たらない別のパンチを用いて中間部品Wの軸曲げを行った。
 図2の全工程を終えた後に中間部品Wより芯金を外し、バーリング加工穴の真円度と、バーリング加工穴の同軸度とを測定した。
 真円度の評価に際しては、バーリング加工穴の直径が最大となる箇所と最小となる箇所とで直径を測定し、その差を評価値とする方法により評価した。そして、その評価結果が0.5mmを超える場合には「Bad」、0.3mmを超えて0.5mm以下である場合には「Good」、0.1mmを超えて0.3mm以下である場合には「Very Good」、0.1mm以下である場合には「Excellent」と表記した。
 また、同軸度の評価に際しては、一対のバーリング加工穴それぞれの図心の位置を求め、バーリング加工穴を平面視した際の図心同士の距離を評価値とする方法により評価した。そして、その評価結果が0.5mmを超える場合には「Bad」、0.3mmを超えて0.5mm以下である場合には「Good」、0.1mmを超えて0.3mm以下である場合には「Very Good」、0.1mm以下である場合には「Excellent」と表記した。
 表1の結果より、芯金を使わない実施例1,10は、真円度及び同軸度の両方において劣った結果となった。
 また、周長差比が0.0%であり、芯金を圧入ではなく挿入した実施例2,6では、真円度及び同軸度の両方において必要条件を満たした。
 さらに、周長差比を0%超とする芯金を圧入した実施例3~5,7~9では、真円度及び同軸度の両方においてさらに優れた結果を示した。
 以上の結果より、周長差比としては0.2%以上であることが好ましいことが分かった。周長差比を高めるほど高いフープ力を得られるが、5.0%超になるとフープ力が強すぎてバーリング加工穴に割れを起こす虞がある。従って、周長差比を0.2%~5.0%の範囲内にすることが好ましい。
 また、周長差比を満たすものの、分離型の芯金を用いた実施例5では、一体型の芯金を用いた実施例3,4,7~9に比べて同軸度がやや低めになった。これより、芯金としては分離型よりも一体型の方が軸芯精度の点でより好ましいことが分かった。
 本発明のリンク部品の製造方法及び製造装置によれば、高い寸法精度の連結穴を有するリンク部品を得ることができる。よって、産業上の利用可能性は大である。
 10 ダイ(第3金型、第5金型、第7金型)
 10A1,10B1 貫通穴
 11 凹溝
 11A 円弧面(第3円弧面)
 11B 内側面(第5側面)
 11C 内側面(第6側面)
 11d 底面(第1円弧面)
 20 パンチ(第8金型)
 30,230 芯金
 40 パンチ(第4金型、第6金型)
 40A 円弧面(第4円弧面)
 40B 外側面(第7側面)
 40C 外側面(第8側面)
 41 加圧面(第2円弧面)
 42 側面(第3側面)
 43 側面(第4側面)
 44 抑え面(芯金抑え面)
 50 下型(第1金型)
 51 凹溝(第1凹面)
 60 上型(第2金型)
 61 凹溝(第2凹面)
 70 第1中子(中子)
 230a 芯金(第1分割芯金)
 230b 芯金(第2分割芯金)
 a,b バーリング縦壁
 a1,b1 バーリング加工穴
 a1a,b1a 下穴
 a2,b2 バーリング縦壁の外周面
 L,L1,L2 リンク部品
 LA リンク部品の一端部
 LB リンク部品の他端部
 P 平板素材
 P1,P1a,P1b 連結壁となる部分
 P2,P2a,P2b 第1側壁となる部分
 P3,P3a,P3b 第2側壁となる部分
 W,Wa,Wb 中間部品
 W1,W1a,W1b 連結壁
 W2,W2a,W2b 第1側壁
 W3,W3a,W3b 第2側壁

Claims (27)

  1.  少なくとも一端部にそれぞれ下穴を有しかつ互いに対向配置された第1側壁及び第2側壁と、前記第1側壁の一方の側縁及び前記第2側壁の一方の側縁間を繋ぐ連結壁と、を有する一方向に沿って長い中間部品より、連結穴を有し前記一方向に沿った一方側に設けられた一端部と、前記一方向に沿った他方側に設けられた他端部とを備えたリンク部品を製造する方法であって、
     前記下穴に、芯金を入れる補強工程と;
     前記補強工程よりも後に、前記第1側壁の他方の側縁と前記第2側壁の他方の側縁とを互いに当接させるように、前記第1側壁及び前記第2側壁をO曲げするO曲げ工程と;
    を有することを特徴とするリンク部品の製造方法。
  2.  前記補強工程よりも後でかつ前記O曲げ工程よりも前に、前記中間部品の前記連結壁の内面と、前記芯金の外周面との双方に外力を同時に加えることで、前記第1側壁を対向視したときに前記連結壁が凹状をなすように、前記中間部品を軸曲げする軸曲げ工程をさらに有する
    ことを特徴とする請求項1に記載のリンク部品の製造方法。
  3.  前記軸曲げ工程で、側面視で直線状をなす加圧面を前記連結壁の内面に押し当てることにより、前記軸曲げを行う
    ことを特徴とする請求項2に記載のリンク部品の製造方法。
  4.  前記O曲げ工程で、
      前記O曲げをする前に、前記第1側壁及び前記第2側壁間に挟まれてかつ、前記芯金の外周面及び前記連結壁の内面間に挟まれる中子を、前記中間部品の端部に入れておく
    ことを特徴とする請求項1~3の何れか一項に記載のリンク部品の製造方法。
  5.  前記芯金の外径を前記下穴の内径で除して算出される径比が1.000より大きいことを特徴とする請求項1~4の何れか1項に記載のリンク部品の製造方法。
  6.  前記補強工程よりも前に、前記下穴に、バーリング縦壁を有するバーリング加工穴を形成するバーリング加工工程を行い;
     前記補強工程で、前記下穴に代わり、前記バーリング加工穴に前記芯金を入れる;
    ことを特徴とする請求項1に記載のリンク部品の製造方法。
  7.  前記補強工程よりも後でかつ前記O曲げ工程よりも前に、前記中間部品の前記連結壁の内面と、前記芯金を入れた状態の前記バーリング縦壁の外周面との双方に外力を同時に加えることで、前記第1側壁を対向視したときに前記連結壁が凹状をなすように、前記中間部品を軸曲げする軸曲げ工程をさらに有する
    ことを特徴とする請求項6に記載のリンク部品の製造方法。
  8.  前記軸曲げ工程で、側面視で直線状をなす加圧面を前記連結壁の内面に押し当てることにより、前記軸曲げを行う
    ことを特徴とする請求項7に記載のリンク部品の製造方法。
  9.  前記O曲げ工程で、
      前記O曲げをする前に、前記第1側壁及び前記第2側壁間に挟まれてかつ、前記バーリング縦壁の外周面及び前記連結壁の内面間に挟まれる中子を、前記中間部品の前記一端部に入れておく
    ことを特徴とする請求項6~8の何れか一項に記載のリンク部品の製造方法。
  10.  前記芯金の外径を前記バーリング加工穴の内径で除して算出される径比が1.000より大きいことを特徴とする請求項6~9の何れか1項に記載のリンク部品の製造方法。
  11.  前記補強工程よりも後でかつ前記O曲げ工程よりも前に、
      前記下穴に入れた前記芯金の位置を固定してかつ、前記連結壁のうちで前記リンク部品の前記一端部になる第1端部と前記他端部になる第2端部との間の任意の位置を支持した状態で、
      前記第2端部に外力を加えることで、前記第1側壁を対向視したときに前記連結壁が凹状をなすように、前記中間部品を軸曲げする軸曲げ工程
    をさらに有することを特徴とする請求項1に記載のリンク部品の製造方法。
  12.  前記補強工程よりも前に、前記下穴に、バーリング縦壁を有するバーリング加工穴を形成するバーリング加工工程を行い;
     前記補強工程で、前記下穴に代わり、前記バーリング加工穴に前記芯金を入れる;
    ことを特徴とする請求項11に記載のリンク部品の製造方法。
  13.  前記補強工程よりも前に、
      前記第1側壁となる部分と、前記第2側壁となる部分と、前記連結壁となる部分と、を有する平板素材を準備する素材準備工程と;
      前記連結壁となる部分を境として、前記第1側壁となる部分と前記第2側壁となる部分とが互いに対向するように、前記平板素材を折り曲げるU曲げ工程と;
    を行うことを特徴とする請求項1~12の何れか一項に記載のリンク部品の製造方法。
  14.  前記芯金を前記リンク部品の一部とし、前記芯金の開口を前記連結穴とする
    ことを特徴とする請求項1~13の何れか一項に記載のリンク部品の製造方法。
  15.  少なくとも一端部にそれぞれ下穴を有しかつ互いに対向配置された第1側壁及び第2側壁と、前記第1側壁の一方の側縁及び前記第2側壁の一方の側縁間を繋ぐ連結壁と、を有する一方向に沿って長い中間部品より、連結穴を有し前記一方向に沿った一方側に設けられた一端部と、前記一方向に沿った他方側に設けられた他端部とを備えたリンク部品を製造する装置であって、
     前記下穴に入れる芯金と;
     前記中間部品を受け入れてかつ、前記リンク部品の外形に合致する形状の第1凹面を有する第1金型と;
     前記第1金型と共に前記中間部品を収容し、前記第1側壁の他方の側縁及び前記第2側壁の他方の側縁の双方に当接して互いに接近させる第2凹面を有する第2金型と;
     前記第1金型及び前記第2金型間の相対位置を接近及び離間させる第1駆動機構と;
    を備えることを特徴とするリンク部品の製造装置。
  16.  前記連結壁の外面に接する凸状の第1円弧面、前記第1側壁の外面に接する第1側面、前記第2側壁の外面に接する第2側面、を有する第3金型と;
     前記連結壁の内面に接する凹状の第2円弧面、前記第1側壁の内面に接する第3側面、前記第2側壁の内面に接する第4側面、前記芯金の外周面に接する芯金抑え面、を有する第4金型と;
     前記第3金型及び前記第4金型間の相対位置を接近及び離間させる第2駆動機構と;
    をさらに備える
    ことを特徴とする請求項15に記載のリンク部品の製造装置。
  17.  前記第1円弧面のうち、前記中間部品で前記リンク部品の前記一端部となる部分を受ける受圧部が、前記第1円弧面の延在方向を含む縦断面で見て直線状であり;
     前記第2円弧面のうち、前記連結壁を介して前記受圧部に対向する第1加圧部が、前記縦断面で見て直線状である;
    ことを特徴とする請求項16に記載のリンク部品の製造装置。
  18.  前記第2凹面のうち、前記中間部品で前記リンク部品の前記一端部となる部分を加圧する第2加圧部が、前記第2凹面の延在方向を含む縦断面で見て直線状である
    ことを特徴とする請求項17に記載のリンク部品の製造装置。
  19.  前記第1側壁及び前記第2側壁間と、前記芯金の外周面及び前記連結壁の内面間とに入れる中子と;
     前記中子を前記第1金型及び前記第2金型に対して挿抜する第3駆動機構と;
    をさらに備える
    ことを特徴とする請求項15~18の何れか一項に記載のリンク部品の製造装置。
  20.  前記中間部品の前記下穴に、バーリング縦壁を有するバーリング加工穴を形成するバーリング加工機をさらに備え;
     前記芯金が、前記バーリング加工穴に入れられる;
    ことを特徴とする請求項15に記載のリンク部品の製造装置。
  21.  前記連結壁の外面に接する凸状の第1円弧面、前記第1側壁の外面に接する第1側面、前記第2側壁の外面に接する第2側面、を有する第3金型と;
     前記連結壁の内面に接する凹状の第2円弧面、前記第1側壁の内面に接する第3側面、前記第2側壁の内面に接する第4側面、前記バーリング縦壁を介して前記芯金の外周面に当たる芯金抑え面、を有する第4金型と;
     前記第3金型及び前記第4金型間の相対位置を接近及び離間させる第2駆動機構と;
    をさらに備える
    ことを特徴とする請求項20に記載のリンク部品の製造装置。
  22.  前記第1円弧面のうち、前記中間部品で前記リンク部品の前記一端部となる部分を受ける受圧部が、前記第1円弧面の延在方向を含む縦断面で見て直線状であり;
     前記第2円弧面のうち、前記連結壁を介して前記受圧部に対向する第1加圧部が、前記縦断面で見て直線状である;
    ことを特徴とする請求項21に記載のリンク部品の製造装置。
  23.  前記第2凹面のうち、前記中間部品で前記リンク部品の前記一端部となる部分を加圧する第2加圧部が、前記第2凹面の延在方向を含む縦断面で見て直線状である
    ことを特徴とする請求項22に記載のリンク部品の製造装置。
  24.  前記第1側壁及び前記第2側壁間と、前記バーリング縦壁の外周面及び前記連結壁の内面間とに入れる中子と;
     前記中子を前記第1金型及び前記第2金型に対して挿抜する第3駆動機構と;
    をさらに備える
    ことを特徴とする請求項20~23の何れか一項に記載のリンク部品の製造装置。
  25.  前記連結壁の外面に接してかつ縦断面視で凸状をなす第3円弧面、前記第1側壁の外面に接する第5側面、前記第2側壁の外面に接する第6側面、前記第5側面及び前記第6側面を同軸に貫く一対の貫通穴、を有する第5金型と;
     前記連結壁の内面に接してかつ縦断面視で凹状をなす第4円弧面、前記第1側壁の内面に接する第7側面、前記第2側壁の内面に接する第8側面、を有する第6金型と;
     前記第5金型及び前記第6金型間の相対位置を接近及び離間させる第4駆動機構と;
     前記芯金を前記一対の貫通穴に対して挿抜させる第5駆動機構と;
    をさらに備える
    ことを特徴とする請求項15に記載のリンク部品の製造装置。
  26.  前記芯金が、前記第5側面の前記貫通穴に挿抜される第1分割芯金と、前記第6側面の前記貫通穴に挿抜されてかつ前記第1分割芯金と同軸をなす第2分割芯金と、を有し;
     前記第5駆動機構が、前記第1分割芯金を前記第5側面の前記貫通穴に挿抜させる第1駆動部と、前記第2分割芯金を前記第6側面の前記貫通穴に挿抜させる第2駆動部と、を有する;
    ことを特徴とする請求項25に記載のリンク部品の製造装置。
  27.  前記第1側壁となる部分と、前記第2側壁となる部分と、前記連結壁となる部分と、を有する平板素材のうちの、前記連結壁となる部分に合致する凹溝を有する第7金型と;
     前記平板素材を間に挟んで前記凹溝に挿抜される第8金型と;
     前記第7金型及び前記第8金型間の相対位置を接近及び離間させる第3駆動機構と;
    をさらに備える
    ことを特徴とする請求項15~26の何れか一項に記載のリンク部品の製造装置。
PCT/JP2020/013186 2019-04-15 2020-03-25 リンク部品の製造方法及び製造装置 WO2020213354A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021514843A JP7020587B2 (ja) 2019-04-15 2020-03-25 リンク部品の製造方法及び製造装置
US17/600,144 US11865606B2 (en) 2019-04-15 2020-03-25 Manufacturing method and manufacturing device for link part
CN202080028422.3A CN113677447B (zh) 2019-04-15 2020-03-25 连杆部件的制造方法以及制造装置
EP20791093.6A EP3957411A4 (en) 2019-04-15 2020-03-25 MANUFACTURING METHOD AND PRODUCTION DEVICE FOR CONNECTING COMPONENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019077157 2019-04-15
JP2019-077157 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020213354A1 true WO2020213354A1 (ja) 2020-10-22

Family

ID=72837299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013186 WO2020213354A1 (ja) 2019-04-15 2020-03-25 リンク部品の製造方法及び製造装置

Country Status (5)

Country Link
US (1) US11865606B2 (ja)
EP (1) EP3957411A4 (ja)
JP (1) JP7020587B2 (ja)
CN (1) CN113677447B (ja)
WO (1) WO2020213354A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4302894A4 (en) * 2021-03-05 2024-04-24 Yorozu Jidosha Kogyo Kk MANUFACTURING METHOD FOR A VEHICLE SUSPENSION ARM AND VEHICLE SUSPENSION ARM

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2985842C (en) * 2015-06-01 2023-08-01 Hendrickson Usa, L.L.C. Torque rod for vehicle suspension
CN114951428B (zh) * 2022-04-02 2022-12-13 佛山市南海建泰铝制品有限公司 一种铝型材折边成型方法及应用该方法的系统
EP4353376A1 (en) * 2022-10-13 2024-04-17 Bora S.p.A Method of manufacturing a mechanical arm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126095A (ja) 2008-11-28 2010-06-10 F Tech:Kk アーム部材及びその製造方法
WO2015145701A1 (ja) * 2014-03-27 2015-10-01 株式会社ヨロズ 車両用アーム部品の製造方法と車両用アーム部品
US9193237B2 (en) * 2013-02-14 2015-11-24 Audi Ag Method of producing a chassis control arm, and control arm for a vehicle
US9233587B2 (en) * 2012-06-06 2016-01-12 Benteler Automobil Technik Gmbh Transverse control arm, and method for producing a transverse control arm
JP2019077157A (ja) 2017-10-27 2019-05-23 株式会社リヒトラブ シート

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810377A (en) * 1997-01-21 1998-09-22 The Boler Company Fabricated steer axle
DE102006028713B3 (de) * 2006-06-20 2007-11-22 Thyssenkrupp Umformtechnik Gmbh Verfahren zum Herstellen eines im Querschnitt U-förmigen Lenkers aus Blech für eine PKW-Mehrlenkerachse
DE102007026702B4 (de) * 2007-06-06 2014-04-17 Benteler Automobiltechnik Gmbh Achskomponente
DE102010010665B4 (de) * 2010-03-01 2014-11-06 Progress-Werk Oberkirch Ag Stabilisierungsstrebe für ein Fahrwerk eines Fahrzeugs
JP2012188076A (ja) * 2011-03-14 2012-10-04 Yorozu Corp 車両用のアーム部品とその製造方法
DE102012100719A1 (de) * 2012-01-30 2013-08-01 Gmf Umformtechnik Gmbh Einschaliger Federlenker
WO2014033933A1 (ja) * 2012-08-31 2014-03-06 株式会社ヨロズ 車両用のアーム部品とその製造方法
JP2018052214A (ja) * 2016-09-27 2018-04-05 本田技研工業株式会社 サスペンションアームの補強構造及び製造方法
DE102017215171A1 (de) * 2017-08-30 2019-02-28 Ford Global Technologies, Llc Verfahren zur Herstellung eines Fahrzeuglenkers für eine Radaufhängung sowie Fahrzeuglenker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126095A (ja) 2008-11-28 2010-06-10 F Tech:Kk アーム部材及びその製造方法
US9233587B2 (en) * 2012-06-06 2016-01-12 Benteler Automobil Technik Gmbh Transverse control arm, and method for producing a transverse control arm
US9193237B2 (en) * 2013-02-14 2015-11-24 Audi Ag Method of producing a chassis control arm, and control arm for a vehicle
WO2015145701A1 (ja) * 2014-03-27 2015-10-01 株式会社ヨロズ 車両用アーム部品の製造方法と車両用アーム部品
JP2019077157A (ja) 2017-10-27 2019-05-23 株式会社リヒトラブ シート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4302894A4 (en) * 2021-03-05 2024-04-24 Yorozu Jidosha Kogyo Kk MANUFACTURING METHOD FOR A VEHICLE SUSPENSION ARM AND VEHICLE SUSPENSION ARM

Also Published As

Publication number Publication date
CN113677447B (zh) 2023-09-05
US20220203420A1 (en) 2022-06-30
EP3957411A4 (en) 2023-01-25
EP3957411A1 (en) 2022-02-23
US11865606B2 (en) 2024-01-09
JPWO2020213354A1 (ja) 2020-10-22
JP7020587B2 (ja) 2022-02-16
CN113677447A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2020213354A1 (ja) リンク部品の製造方法及び製造装置
EP0195157A2 (en) Method of forming box-section frame members
JP4929408B1 (ja) 中空エンジンバルブの製造方法
CN102205777B (zh) 车轮
EP3604087B1 (en) Vehicle structural member and method for producing same
AU608695B2 (en) A method for manufacturing a rotor frame of an electromagnetic clutch
JP2760269B2 (ja) バルジ形状配管の製造方法
JP4802035B2 (ja) 車軸ケースの製造方法
TWI558484B (zh) 金屬板或金屬棒的端部剖面之內部割裂方法、利用該內部割裂方法所進行之金屬容器與金屬管的製造方法及金屬零件的接合方法
EP0137580B1 (en) Method and apparatus for drawing heavy wall shells with a multi-step inside edge
JP6729011B2 (ja) 閉断面構造部材の製造方法及びo成形用上型
US7143618B2 (en) Method of making pre-formed tubular members
EP0101146A1 (en) Method and apparatus for drawing heavy wall shells
US10562091B2 (en) Burring method and burring apparatus
EP1586391A1 (en) Tubular blank and process for producing a tubular blank
JP2006305587A (ja) アルミニウム製管材の端部拡管方法
US11850655B2 (en) Process and device for manufacturing hollow, internally cooled valves
JP4730164B2 (ja) フランジ付き液圧バルジ加工部品
JPH02274328A (ja) 穴明けポンチ
JP2005088010A (ja) 継手部材の製造方法およびそのための金型装置
JP7425309B2 (ja) バーリング加工方法、バーリング加工部品製造方法、及びバーリング加工装置
KR20200120737A (ko) 단조 공구
CN117157158A (zh) 用于连续地制造至少部分空心地构成的具有变化的内径和/或外径的轴的设备和方法
AU2004324570A1 (en) Clinching tool, die and method for use thereof
JP5263046B2 (ja) 異形コ字状部を含む閉断面形状を有する成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020791093

Country of ref document: EP

Effective date: 20211115