WO2020213246A1 - シリコンウェーハのエッチング方法及びエッチング装置 - Google Patents

シリコンウェーハのエッチング方法及びエッチング装置 Download PDF

Info

Publication number
WO2020213246A1
WO2020213246A1 PCT/JP2020/005958 JP2020005958W WO2020213246A1 WO 2020213246 A1 WO2020213246 A1 WO 2020213246A1 JP 2020005958 W JP2020005958 W JP 2020005958W WO 2020213246 A1 WO2020213246 A1 WO 2020213246A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
acid
etching solution
silicon wafer
amount
Prior art date
Application number
PCT/JP2020/005958
Other languages
English (en)
French (fr)
Inventor
大西 邦明
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019076952A external-priority patent/JP7088120B2/ja
Priority claimed from JP2019078801A external-priority patent/JP7036085B2/ja
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN202080023241.1A priority Critical patent/CN113614890A/zh
Priority to KR1020217031691A priority patent/KR20210144741A/ko
Publication of WO2020213246A1 publication Critical patent/WO2020213246A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02019Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles

Definitions

  • the present invention relates to an etching method and an etching apparatus for a silicon wafer.
  • wafers sliced thinly from the state of single crystal ingots are generally flattened through chamfering and grinding.
  • various large and small scratches and processing strains due to the above processing are introduced on the front and back surfaces of the wafer, and if these are manifested in the subsequent process, it may cause a serious quality problem.
  • etching processing is performed to remove these scratches and processing distortions.
  • a batch method in which the front and back surfaces of a plurality of wafers are processed at the same time and a spin etching method in which the front surface and the back surface of the wafer are sequentially processed by a single sheet are known (see Patent Document 1).
  • an acid etching solution there are two means depending on the purpose, one is treatment with an acid etching solution and the other is treatment with an alkaline etching solution.
  • acid etching a mixed acid containing fluorine and nitric acid whose concentration is appropriately adjusted. Is generally used.
  • the used etching solution is usually collected and used again as the etching solution, so that the concentrations of phosphoric acid and nitric acid contained in the etching solution continuously change according to the number of processed sheets.
  • the etching rate also changes continuously, so there is a problem that a constant processing amount cannot be maintained.
  • not only the etching rate but also the take-off distribution in the wafer surface changes according to the number of processed sheets, so that there is a problem that the wafer shape after etching cannot be maintained constant.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an etching method for a silicon wafer capable of continuous processing while maintaining a constant etching rate and a wafer shape after etching processing. To do.
  • the present invention is to rotate the silicon wafer while supplying the acid etching solution stored in the etching solution tank through a supply nozzle to the front surface and / or the back surface of the silicon wafer.
  • a silicon wafer etching method including a spin etching step of expanding the supply range of the etching solution to the entire surface and / or the back surface of the silicon wafer and performing acid etching. By repeating the spin etching process, a plurality of silicon wafers can be continuously processed. During the continuous processing, the acid etching solution used in the spin etching step is recovered and returned to the etching solution tank to be used as the acid etching solution again.
  • It includes a drainage / liquid supply step of draining a predetermined amount of the recovered acid etching solution and further supplying a predetermined amount of the new acid etching solution.
  • a drainage / liquid supply step of draining a predetermined amount of the recovered acid etching solution and further supplying a predetermined amount of the new acid etching solution.
  • the amount of Si dissolved in the acid etching solution is increased by performing the acid etching of the spin etching method while draining and supplying the liquid, and the acid etching solution resulting from this. Since the change in kinematic viscosity can be prevented, a constant etching rate and a wafer shape after processing can be obtained even during continuous processing.
  • the amount of the drainage and the amount of the liquid to be supplied based on the amount of Si dissolved in the acid etching solution after the recovery.
  • the amount of the drainage and the amount of the liquid supply are the same.
  • the amount of Si dissolved can be kept constant, so that the change in the kinematic viscosity of the acid etching solution can be prevented more reliably.
  • the spin etching step it is preferable to perform acid etching by changing the rotation speed of the silicon wafer according to the amount of Si dissolved in the acid etching solution in the etching solution tank.
  • the acid etching solution it is preferable to use a mixed solution containing phosphoric acid and nitric acid, or a mixed solution in which at least one of acetic acid, phosphoric acid and sulfuric acid is added thereto.
  • Such a mixed solution can be suitably used for spin etching of a silicon wafer.
  • the present invention provides a supply nozzle for supplying an acid etching solution stored in an etching solution tank to the front surface and / or the back surface of a silicon wafer.
  • a supply nozzle for supplying an acid etching solution stored in an etching solution tank to the front surface and / or the back surface of a silicon wafer.
  • the supply range of the acid etching solution is expanded to the entire front surface and / or the back surface of the silicon wafer to perform acid etching.
  • An etching apparatus having a recovery mechanism for recovering the acid etching solution used in the acid etching and returning it to the etching solution tank.
  • a drainage mechanism for draining a predetermined amount of the acid etching solution from the etching solution tank Provided is an etching apparatus characterized in that the etching solution tank is provided with a liquid supply mechanism for supplying a predetermined amount of the acid etching solution.
  • the amount of Si dissolved in the acid etching solution can be increased and the amount of Si dissolved in the acid etching solution can be increased by performing acid etching by the spin etching method while discharging and supplying the liquid by the liquid draining mechanism and the liquid supply mechanism. Since it is possible to prevent a change in the kinematic viscosity of the acid etching solution due to this, it is possible to obtain a constant etching rate and a wafer shape after processing even during continuous processing.
  • the amount of Si dissolved in the acid etching solution is increased by performing acid etching by the spin etching method while draining and supplying the liquid, and the acid resulting from this. Since it is possible to prevent changes in the kinematic viscosity of the etching solution, it is possible to obtain a constant etching rate and a wafer shape after processing even during continuous processing. By changing the rotation speed of the silicon wafer according to the amount of Si dissolved in the acid etching solution, it is possible to suppress the change in the etching rate distribution in the wafer surface. Further, even if the amount of Si dissolved increases, the shape of the wafer after etching can be improved.
  • the used etching solution is usually recovered and used again as the etching solution, so that the etching rate and the distribution of the allowance in the wafer surface depend on the number of processed sheets in continuous machining. There was a problem that it changed.
  • the present inventor changed the kinematic viscosity of the acid etching solution when the amount of Si dissolved in the acid etching solution changed. Therefore, in the spin etching method acid etching in which the fluid characteristics of the etching solution cannot be ignored, the wafer surface It was found that the etching rate distribution in the inside changes, and as a result, the processed shape of the wafer after etching changes.
  • the wafer after etching is prevented from increasing the amount of Si dissolved in the acid etching solution, and at the same time, the component concentration of the acid etching solution is maintained.
  • a spin-type acid etching method and an etching device that can maintain a constant shape and etching rate.
  • the supply range of the acid etching solution is increased by rotating the silicon wafer while supplying the acid etching solution stored in the etching solution tank through the supply nozzle to the front surface and / or the back surface of the silicon wafer.
  • a method for etching a silicon wafer which comprises a spin etching step of performing acid etching by enlarging the entire surface and / or the back surface of the silicon wafer. By repeating the spin etching process, a plurality of silicon wafers can be continuously processed. During the continuous processing, the acid etching solution used in the spin etching step is recovered and returned to the etching solution tank to be used as the acid etching solution again.
  • It includes a drainage / liquid supply step of draining a predetermined amount of the recovered acid etching solution and further supplying a predetermined amount of the new acid etching solution.
  • This is a silicon wafer etching method, characterized in that the acid etching solution after the drainage / liquid supply step is used in the spin etching step.
  • the present invention provides a supply nozzle for supplying an acid etching solution stored in an etching solution tank to the front surface and / or the back surface of a silicon wafer.
  • a supply nozzle for supplying an acid etching solution stored in an etching solution tank to the front surface and / or the back surface of a silicon wafer.
  • An etching apparatus having a recovery mechanism for recovering the acid etching solution used in the acid etching and returning it to the etching solution tank.
  • a drainage mechanism for draining a predetermined amount of the acid etching solution from the etching solution tank,
  • the etching apparatus is provided with a liquid supply mechanism for supplying a predetermined amount of the new acid etching liquid to the etching liquid tank.
  • the amount of Si dissolved in the acid etching solution is increased by performing acid etching by the spin etching method while draining and supplying the liquid, and the acid resulting from this. Since it is possible to prevent changes in the kinematic viscosity of the etching solution, it is possible to obtain a constant etching rate and a wafer shape after processing even during continuous processing.
  • FIG. 1 is a schematic view of an embodiment of the etching apparatus of the present invention in which a liquid supply / drainage mechanism is connected. Specifically, for example, it is possible to connect the liquid supply / drainage mechanism to the spin etcher MSE-7000EL-MH manufactured by Sanmasu Semiconductor Industry Co., Ltd., which is used in the spin etching method.
  • the etching apparatus of the present invention has an etching solution tank for storing an acid etching solution, a supply nozzle for supplying the acid etching solution to the front surface and / or the back surface of the silicon wafer, and a stage for holding and rotating the silicon wafer. , A recovery mechanism for collecting the acid etching solution and returning it to the etching solution tank, a draining mechanism for draining the acid etching solution from the etching solution tank, and a mechanism for supplying a new acid etching solution to the etching solution tank. It is equipped with a liquid supply mechanism.
  • the etching apparatus 100 of the present invention can be composed of an etching processing unit 14 and an etching liquid supply unit 13, as shown in FIG. 1, for example.
  • the etching processing unit 14 can include a vacuum suction stage (stage) 2, a supply nozzle 3, and an etching solution recovery cup 19.
  • the supply nozzle 3 may be provided not only on the front surface side but also on the back surface side so that both surfaces of the wafer can be etched at the same time.
  • the etching solution supply unit 13 transfers the acid etching solution from the etching solution tank 6, the liquid feeding pump 18 that sends the acid etching solution from the etching solution tank 6 to the etching processing section, and the etching solution recovery cup 19 to the etching solution tank 6.
  • a recovery mechanism 21 having a recovery pump 20 for recovery and a liquid drainage / liquid supply mechanism 17 can be provided.
  • the etching solution tank 6 contains the acid etching solution 8, and the acid etching solution in which a predetermined amount of Si is dissolved by the recovered acid etching solution is contained.
  • the drainage / liquid supply mechanism 17 includes a liquid supply mechanism 22 including a liquid supply tank 11 and a liquid supply pump 12 for sending the acid etching liquid from the liquid supply tank 11 to the etching liquid tank 6, and a drainage treatment unit 16. It can be composed of a drainage mechanism 23 including a drainage pump 15 that extracts the acid etching liquid from the etching liquid tank 6 of the etching liquid supply unit 13 and sends the liquid to the drainage treatment unit 16.
  • the acid etching solution having the same component concentration as the acid etching solution 8 contained in the etching solution tank 6 in the state where Si is not dissolved may be put into the liquid supply tank 11.
  • the silicon wafer 1 is horizontally installed in the center of the vacuum suction stage 2 with the front surface or the back surface facing up, and can be held by vacuum suction on the vacuum suction stage 2 connected to the vacuum source 10.
  • the vacuum suction stage 2 can be rotated in the ⁇ direction in the figure with the center of the vacuum suction stage 2 as the rotation axis by a rotation unit using a ⁇ -axis motor and a ⁇ spindle (not shown) below the stage.
  • FIG. 2 illustrates a processing flow by the etching method of the silicon wafer of the present invention.
  • the silicon wafer is rotated while supplying the acid etching solution stored in the etching solution tank through a supply nozzle to the front surface and / or the back surface of the silicon wafer (step 1 in FIG. 2). It includes a spin etching step (etching process, step 2 in FIG. 2) in which the supply range of the acid etching solution is expanded over the entire surface of the silicon wafer to perform acid etching.
  • the acid etching solution can be a mixed solution containing phosphoric acid and nitric acid, but acetic acid, sulfuric acid, or phosphoric acid may be appropriately combined and mixed therewith. Such a mixed solution can be suitably used for spin etching of a silicon wafer.
  • the mixing ratio may be an acid etching solution in which, for example, 1 to 80% of phosphoric acid and 10 to 80% of nitric acid are mixed in mass ratio, but acetic acid is, for example, 10 to 30%, and sulfuric acid is, for example, 10 to 80% by mass ratio. 25% and, for example, 10 to 50% of phosphoric acid may be mixed in an arbitrary ratio.
  • the acid etching solution 8 is supplied from the etching solution tank 6 of the etching solution supply unit 13 to the supply nozzle 3 above the vacuum adsorption stage 2 via the liquid feed pump 18, and is vacuum-adsorbed.
  • the acid etching solution 8 can be supplied to the silicon wafer 1 held and rotating on the stage 2. While the acid etching solution 8 is being supplied, the supply nozzle 3 linearly reciprocates in the radial direction of the silicon wafer 1 through the center of the silicon wafer 1 as shown by an arrow 4 (movement direction of the supply nozzle) in FIG. It is common to do.
  • a plurality of silicon wafers are continuously processed by repeating the spin etching process. Further, during the continuous processing, a step of recovering the acid etching solution used in the spin etching step and returning it to the etching solution tank to make the acid etching solution again (step 3 in FIG. 2) is included.
  • the acid etching solution 8 supplied onto the silicon wafer 1 moves on the silicon wafer 1 following the rotation of the silicon wafer 1, becomes droplets 5 from the outer peripheral portion of the silicon wafer 1, and is discharged from the wafer.
  • the discharged droplet 5 enters the etching solution recovery cup 19 and can be collected in the etching solution tank 6 by the recovery pump 20.
  • the recovered acid etching solution collected in the etching solution tank 6 is again referred to as the acid etching solution 8.
  • the supply of the acid etching solution 8 from the etching solution tank 6 is stopped (step 4 in FIG. 2), and water 9 is supplied from the water supply source 7 to the supply nozzle 3. Then, the water 9 can be supplied onto the silicon wafer 1 held and rotated on the vacuum suction stage 2 (rinse, step 6 in FIG. 2).
  • the water 9 supplied onto the silicon wafer 1 moves on the silicon wafer 1 following the rotation of the silicon wafer 1, and replaces the acid etching solution 8 remaining on the silicon wafer 1 with water 9 of the silicon wafer 1.
  • the droplets 5 are discharged from the outer peripheral portion.
  • the method for manufacturing a silicon wafer of the present invention is a drainage / liquid supply step (step of FIG. 2) in which a predetermined amount of the recovered acid etching solution is drained and a predetermined amount of a new acid etching solution is further supplied. 5) is included. Then, the acid etching liquid after the drainage / liquid supply step is used in the spin etching step in the continuous processing of a plurality of silicon wafers.
  • an appropriate amount of the recovered acid etching solution is discharged from the etching solution tank 6 to the drainage treatment unit 16 via the drainage pump 15 of the drainage / liquid supply mechanism 17. be able to.
  • an appropriate amount of new acid etching liquid can be supplied from the liquid supply tank 11 of the drainage / liquid supply mechanism 17 to the etching liquid tank 6 via the liquid supply pump 12.
  • the supply of water 9 from the water supply source 7 is stopped, and the silicon wafer 1 is rotated at high speed to scatter all the water on the silicon wafer 1. , A dried silicon wafer 1 can be obtained (rinse / dry, step 6 in FIG. 2).
  • the amount of liquid to be drained and the amount of liquid to be supplied based on the amount of Si dissolved in the acid etching solution after recovery can be calculated from a predetermined etching allowance of the silicon wafer, but is not particularly limited, and can also be obtained by a mechanism or the like provided in an etching solution tank or the like for measuring the Si dissolution amount.
  • the amount of Si dissolved in the acid etching solution is increased by draining and supplying an appropriate amount of liquid based on the amount of Si dissolved obtained by calculating the amount of Si increased by melting by etching. It is possible to more reliably prevent the increase in the kinematic viscosity of the acid etching solution and the resulting change in the kinematic viscosity of the acid etching solution.
  • the Si dissolution amount can be returned to the Si dissolution amount before being increased by etching.
  • the drainage / liquid supply step may be performed during continuous machining of a plurality of silicon wafers, and the timing is not particularly limited, but a constant Si dissolution amount is maintained for each spin etching step of the etching process.
  • the shape quality after processing can be made constant.
  • the amount of Si dissolved in the acid etching solution is kept constant by draining and supplying an amount of liquid corresponding to the etching allowance each time one etching process is performed.
  • the amount of Si dissolved in acid etching by the spin etching method is preferably 12 g / L or less. Within such a range, the change in the characteristics of the fluid does not become too large, and the shape of the wafer after processing in the collision jet area formed directly under the nozzle for supplying the acid etching solution becomes good.
  • the etching allowance per silicon wafer is usually preferably 3 to 8 ⁇ m, which is an amount capable of removing the processing alteration layer introduced into the surface of the silicon wafer by the lapping process or the surface grinding process, which is the previous process, as the etching allowance for one surface. .. If the amount of drainage / supply based on the amount of Si molars calculated from this etching allowance is performed every time during rinsing after, for example, the spin etching process, continuous etching processing is performed while keeping the amount of Si dissolved at a constant amount. This makes it possible to more reliably perform continuous processing while maintaining the etching rate and the shape after etching constant.
  • the spin etching step it is preferable to perform acid etching by changing the rotation speed of the silicon wafer according to the amount of Si dissolved in the acid etching solution in the etching solution tank. This step can be performed as described in another aspect described later.
  • the wafer etching rate in spin etching has an in-plane distribution of the wafer according to the processing conditions and the fluid characteristics of the etching solution. This distribution changes even if either the processing conditions or the fluid characteristics change. Therefore, when performing the spin etching process accompanied by a change in the amount of Si dissolved as described above, it is preferable to consider not only the average etching rate but also the change in the etching rate distribution in the wafer surface. Conventionally, it is common to replenish phosphoric acid during continuous processing, but this method has a problem that it can cope with a decrease in the average etching rate but cannot cope with a change in the etching rate distribution in the wafer surface.
  • the present invention has been made in view of such circumstances, and even if the amount of Si dissolved in the acid etching solution changes, the change in the etching rate distribution in the wafer surface can be suppressed, and the wafer shape after etching can be suppressed.
  • Another object of the present invention is to provide a method for etching a silicon wafer, which can improve the etching rate.
  • the present invention supplies the acid etching solution to the front surface and / or the back surface of the silicon wafer by rotating the silicon wafer while supplying the acid etching solution through a supply nozzle.
  • a etching method for a silicon wafer which comprises a spin etching step of performing acid etching by enlarging the entire surface and / or the back surface of the silicon wafer.
  • an etching method for a silicon wafer which comprises performing acid etching by changing the rotation speed of the silicon wafer according to the amount of Si dissolved in the acid etching solution in the etching solution tank in the spin etching step.
  • the change in the shape of the silicon wafer can be minimized even during continuous machining accompanied by a change in the amount of Si dissolved.
  • the acid etching solution it is preferable to use a mixed solution containing phosphoric acid and nitric acid, or a mixed solution in which at least one of acetic acid, phosphoric acid and sulfuric acid is added thereto.
  • Such a mixed solution can be suitably used for spin etching of a silicon wafer.
  • the silicon wafer being spin-etched rotates at a constant angular velocity, so the etching rate when a diffusion-controlled acid etching solution is used increases as the peripheral velocity of the wafer increases. Therefore, the etching allowance usually increases toward the outer peripheral portion of the wafer.
  • the kinematic viscosity of the acid etching solution decreases as the amount of Si dissolved increases
  • the average flow velocity of the acid etching solution in the region where the peripheral speed of the wafer is high decreases as compared with the case where the amount of Si dissolved decreases. Therefore, the etching allowance on the outer peripheral portion of the wafer is reduced as compared with the case where the amount of Si dissolved is small.
  • the center of rotation of the wafer and the position of the nozzle that supplies the acid etching solution to the wafer usually coincide, but in the vicinity, the etching rate is affected by the collision jet formed directly under the nozzle.
  • the flow velocity of the acid etching solution in the direction parallel to the wafer surface is theoretically 0 ⁇ m / s.
  • the area of the stagnation point is a negligible size, and the flow velocity of the acid etching solution immediately increases due to the peripheral speed of the wafer, so it does not appear as a decrease in the etching allowance.
  • the average flow velocity of the acid etching solution does not easily increase depending on the peripheral speed, so the etching rate becomes slower than when the amount of Si dissolved is small. Therefore, the etching allowance in that area is reduced.
  • the wafer rotation speed is controlled according to the amount of Si dissolved. Specifically, in an acid etching solution having a small amount of Si dissolved and a relatively large kinematic viscosity, the wafer rotation speed is set to a low rotation speed, and in an acid etching solution having a large amount of Si dissolved and a relatively small kinematic viscosity, the wafer rotation speed is set. By etching at high rotation speed, the change in wafer shape due to the amount of Si dissolved is minimized.
  • FIG. 10 is a schematic view of a general etching apparatus used in the spin etching method. Specifically, for example, Spin Etcher MSE-7000EL-MH manufactured by Sanmasu Semiconductor Industry Co., Ltd. can be used.
  • the etching apparatus 200 is composed of an etching processing unit 14 and an etching liquid supply unit 13.
  • the etching processing unit 14 can be provided with a vacuum suction stage 2 and a supply nozzle 3. Further, the etching solution supply unit 13 may include an etching solution tank 6 and a liquid feeding pump 18 for supplying the acid etching solution 8 from the etching solution tank 6 to the etching processing unit 14.
  • the silicon wafer 1 is horizontally installed in the center of the vacuum suction stage 2 with the front surface or the back surface facing up, and can be held by vacuum suction on the vacuum suction stage 2 connected to the vacuum source 10.
  • the vacuum suction stage 2 can be rotated in the ⁇ direction in the figure with the center of the vacuum suction stage 2 as the rotation axis by a rotation unit using a ⁇ -axis motor and a ⁇ spindle (not shown) below the stage.
  • the silicon wafer is rotated to supply the acid etching solution while supplying the acid etching solution 8 stored in the etching solution tank 6 through the supply nozzle to the front surface and / or the back surface of the silicon wafer. It includes a spin etching step of expanding the range to the entire surface of the silicon wafer 1 and performing acid etching.
  • the acid etching solution 8 is supplied from the etching solution tank 6 of the etching solution supply unit 13 to the supply nozzle 3 above the vacuum adsorption stage via the liquid feed pump 18, and is held on the vacuum adsorption stage 2.
  • the acid etching solution 8 can be supplied onto the rotating silicon wafer 1.
  • the supply nozzle 3 linearly reciprocates in the radial direction of the silicon wafer 1 through the center of the silicon wafer 1 as shown by an arrow 4 (movement direction of the supply nozzle) in FIG. It is common to exercise.
  • the acid etching solution 8 supplied onto the silicon wafer 1 moves on the silicon wafer 1 in accordance with the rotation of the silicon wafer 1, becomes droplets 5 from the outer peripheral portion of the silicon wafer 1, is shaken off and falls, and is etched. It is discharged from the processed part.
  • the acid etching is performed by changing the rotation speed of the silicon wafer according to the amount of Si dissolved in the acid etching solution.
  • the etching rate at the outer periphery and the center of the silicon wafer changes, and the etching rate distribution in the wafer surface changes. If the amount of Si dissolved in the etching solution is different, the shape of the wafer after the spin etching process will be different.
  • the rotation speed of the silicon wafer according to the amount of Si dissolved in the acid etching solution it is possible to suppress the change in the etching rate distribution in the wafer surface due to the increase in the amount of Si dissolved. Further, even if the amount of Si dissolved increases, the shape of the wafer after etching can be improved.
  • the wafer rotation speed is set to a low speed in order to make the flow velocity of the acid etching solution on the wafer appropriate, and the amount of Si dissolved is large.
  • the wafer rotation speed may be set to a high rotation speed in order to suppress a decrease in the flow velocity of the acid etching solution on the wafer.
  • the wafer rotation speed may be changed, for example, with a Si dissolution amount of 6 g / L, a rotation speed of less than 1300 rpm when the Si dissolution amount is less than 6 g / L, a rotation speed of 1300 rpm or more when the Si dissolution amount is 6 g / L or more, and the like. It can.
  • the amount of Si dissolved that changes the wafer rotation speed is not limited to 6 g / L.
  • the wafer rotation speed before and after the change can be appropriately determined depending on the processing conditions and the composition of the acid etching solution.
  • the supply of the acid etching solution 8 from the etching solution tank 6 is stopped, water 9 is supplied from the water supply source 7 to the supply nozzle 3, and the water 9 is supplied onto the vacuum suction stage 2. Water 9 can be supplied onto the silicon wafer 1 that is held and rotated.
  • the water 9 supplied onto the silicon wafer 1 moves on the silicon wafer 1 following the rotation of the silicon wafer 1, and replaces the acid etching solution 8 remaining on the silicon wafer 1 with water 9 of the silicon wafer 1.
  • the droplets 5 are discharged from the outer peripheral portion.
  • the acid etching solution used in the spin etching step is recovered and returned to the etching solution tank. It is preferable to use it again as an acid etching solution.
  • the acid etching solution droplets 5 discharged from the outer peripheral portion of the silicon wafer 1 can be collected in the etching solution tank 6 by the etching solution recovery mechanism 24. Then, the acid etching solution after recovery can be used as the acid etching solution 8 again.
  • the cumulative total of the Si dissolution amount during continuous processing can be calculated from the etching allowance per silicon wafer, and the wafer rotation speed is reached when an appropriate Si dissolution amount is reached.
  • the method for calculating the Si dissolution amount is not particularly limited, and it is obtained by a mechanism 25 or the like for measuring the Si dissolution amount provided in the etching solution tank or the like, and the silicon wafer is determined according to the determined Si dissolution amount. You can also change the number of revolutions. Further, the rotation speed of the silicon wafer may be increased in proportion to the dissolved amount of Si.
  • the acid etching solution used in this embodiment can be a mixed solution containing fluoroic acid and nitric acid, but acetic acid, sulfuric acid or phosphoric acid may be appropriately combined and mixed with this.
  • a mixed solution can be suitably used for spin etching of a silicon wafer.
  • the mixing ratio may be an acid etching solution in which, for example, 1 to 80% of phosphoric acid and 10 to 80% of nitric acid are mixed in mass ratio, but acetic acid is, for example, 10 to 30%, and sulfuric acid is, for example, 10 to 80% by mass ratio. 25% and, for example, 10 to 50% of phosphoric acid may be mixed in an arbitrary ratio.
  • the present invention is not limited to this, and the acid etching solution is supplied not only from the upper surface but also from the lower surface to simultaneously etch the front and back surfaces. You can also do it.
  • Example 10 Using the etching apparatus shown in FIG. 1, 100 silicon wafers were continuously etched according to the processing flow of FIG. 2 while draining and supplying the acid etching solution in the etching solution tank. At this time, the drainage / liquid supply step was performed every time the spin etching step of one silicon wafer was completed.
  • the acid etching solution used in the examples was a mixed solution of fluorine and nitric acid, and the mixing ratio was mass%, fluorine was 4%, and nitric acid was 47% (the balance of less than 100% was water. ).
  • the first acid etching solution one having a Si dissolution amount of 10 g / L was used, and as a new acid etching solution to be supplied, an acid etching solution containing no Si atom was used.
  • the amounts of drainage and supply were the same, and were determined based on the amount of Si dissolved obtained from the etching allowance.
  • FIGS. 3, 4 and 5 show changes in the etching rate, changes in the amount of Si dissolved, and changes in the wafer shape after processing when the spin etching process is repeated and continuously processed while draining and supplying liquid, respectively.
  • the acid etching solution used in the comparative example was a mixed solution of fluorine and nitric acid, and the mixing ratio was mass%, fluorine was 4%, and nitric acid was 47% (the balance of less than 100% was water. ).
  • a Si dissolution amount of 10 g / L was used, and continuous processing was started.
  • FIGS. 6, 7 and 8 show changes in the etching rate, changes in the amount of Si dissolved, and changes in the wafer shape after processing when spin acid etching is repeated and continuously processed without draining and supplying liquid, respectively. ..
  • the silicon wafer was etched using the etching apparatus shown in FIG. At this time, using acid etching solutions having different amounts of Si dissolved, the silicon wafer has a low rotation speed, specifically, a rotation speed of 300 rpm and a rotation speed of 800 rpm, and a high rotation speed, specifically, a rotation speed of 1800 rpm. It was processed at 2500 rpm.
  • FIG. 1 shows a change in flatness due to the amount of Si dissolved when the rotation speed of the silicon wafer is changed.
  • the flatness referred to here indicates a take-off PV (Peek-Valley) in the surface of the silicon wafer.
  • a mixed solution of phosphoric acid and nitric acid was used as the acid etching solution (mass%, 4% fluoroacid and 47% nitric acid, and the balance less than 100% was water), and the amount of the etching solution was 2. It was processed at 5 L / m and an acid etching solution temperature of 24 ° C.
  • the rotation speed is as low as 300 rpm or 800 rpm, and when the Si dissolution amount is 6 g / L or more, the rotation speed is 1800 rpm or more. It can be seen that the wafer flatness can be reduced to 0.7 ⁇ m or less regardless of the amount of Si dissolved by changing the rotation speed to a high speed such as 2500 rpm and performing etching.
  • the change in the etching rate distribution in the wafer surface due to the increase in the amount of Si dissolved is suppressed by changing the rotation speed of the silicon wafer according to the amount of Si dissolved in the acid etching solution. It was shown that the flatness of the wafer can be improved even if the amount of Si dissolved in the acid etching solution changes.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Weting (AREA)
  • Pressure Sensors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明は、シリコンウェーハの表面又は裏面に供給ノズルを通して酸エッチング液を供給しながら、シリコンウェーハを回転させることで、酸エッチング液の供給範囲を全面に拡大して酸エッチングを行うスピンエッチング工程を含み、スピンエッチング工程を繰り返し行うことで、複数のシリコンウェーハの連続加工を行い、連続加工中に、使用した酸エッチング液を回収し、エッチング液タンクに戻して再び酸エッチング液とする工程と、回収後の酸エッチング液を所定量排液し、さらに所定量の新たな酸エッチング液を給液する排液・給液工程とを含み、排液・給液工程後の酸エッチング液をスピンエッチング工程に用いることを特徴とするシリコンウェーハのエッチング方法を提供する。

Description

シリコンウェーハのエッチング方法及びエッチング装置
 本発明は、シリコンウェーハのエッチング方法及びエッチング装置に関する。
 シリコンウェーハの製造工程において、単結晶インゴットの状態から薄くスライスされたウェーハは、面取り加工と研削加工を経て平坦化を行うのが一般的である。この際、ウェーハ表裏面には上記加工に起因する大小様々なキズや加工歪みが導入され、これらが後工程で顕在化すると重大な品質上の問題になり得る。
 そこで、通常はエッチング処理を行って、これらのキズや加工歪を除去する。エッチング方法としては複数のウェーハの表裏面を同時に処理するバッチ方式や枚葉でウェーハの表面と裏面を順に処理するスピンエッチング方式が知られている(特許文献1参照)。また、目的に応じて酸エッチング液で処理する場合とアルカリエッチング液で処理する場合の2通りの手段があり、例えば酸エッチングの場合だと適宜濃度を調節した弗酸と硝酸等を含んだ混酸を用いるのが一般的である。
特開2007-53178号公報
 スピンエッチング方式による酸エッチングを行う場合、通常、使用したエッチング液を回収し、再度エッチング液として用いるため、加工枚数に応じてエッチング液に含まれる弗酸と硝酸濃度は連続的に変化する。その結果、エッチング速度も連続的に変化するため、一定の加工量を維持できない問題がある。また、実際にはエッチング速度だけではなくウェーハ面内の取代分布も加工枚数に応じて変化するため、エッチング後のウェーハ形状も一定に維持できない問題がある。
 従来は、この問題への対処として弗酸補給を行う場合が多いが、この方法ではエッチング速度は維持されるものの、エッチング加工後のウェーハ形状の変化には対処できない。そのため、形状変化が大きくなってくると、加工を一時中断してのエッチング液交換作業が避けられなかった。
 本発明は、このような事情に鑑みてなされたもので、エッチング速度、エッチング加工後のウェーハ形状を一定に維持しながらの連続加工が可能となるシリコンウェーハのエッチング方法を提供することを目的とする。
 上記目的を解決するために、本発明は、シリコンウェーハの表面及び/又は裏面に供給ノズルを通してエッチング液タンクに保存された酸エッチング液を供給しながら、前記シリコンウェーハを回転させることで、前記酸エッチング液の供給範囲を前記シリコンウェーハの表面及び/又は裏面の全面に拡大して酸エッチングを行うスピンエッチング工程を含むシリコンウェーハのエッチング方法であって、
 前記スピンエッチング工程を繰り返し行うことで、複数のシリコンウェーハの連続加工を行い、
 前記連続加工中に、前記スピンエッチング工程において使用した前記酸エッチング液を回収し、前記エッチング液タンクに戻して再び酸エッチング液とする工程と、
 前記回収後の酸エッチング液を所定量排液し、さらに所定量の新たな前記酸エッチング液を給液する排液・給液工程とを含み、
 前記排液・給液工程後の酸エッチング液を前記スピンエッチング工程に用いることを特徴とするシリコンウェーハのエッチング方法を提供する。
 このようなシリコンウェーハのエッチング方法であれば、排液・給液を行いながらスピンエッチング方式の酸エッチングを行うことで、酸エッチング液中のSi溶解量の増加、及び、それによる酸エッチング液の動粘度の変化を防ぐことができるため、連続加工時でも一定のエッチング速度と加工後のウェーハ形状を得ることができる。
 このとき、前記排液・給液工程において、前記回収後の酸エッチング液のSi溶解量に基づいて、前記排液する量と前記給液する量とを決定することが好ましい。
 このような方法であれば、Si溶解量の増加、及び、それによる酸エッチング液の動粘度の変化をより確実に防ぐことができる。
 また、前記排液・給液工程において、前記排液する量と、前記給液する量とを同量とすることが好ましい。
 このような方法であれば、Si溶解量を一定に保つことができるため、酸エッチング液の動粘度の変化をさらに確実に防ぐことができる。
 また、前記スピンエッチング工程において、前記エッチング液タンク中の前記酸エッチング液に含まれるSi溶解量に応じて前記シリコンウェーハの回転数を変えて酸エッチングを行うことが好ましい。
 このような方法であれば、酸エッチング液に含まれるSi溶解量によってシリコンウェーハの回転数を変えることで、ウェーハ面内のエッチング速度分布の変化を抑制することが可能となる。また、エッチング後のウェーハ形状をより良好にすることができる。
 また、前記酸エッチング液として、弗酸、硝酸を含む混合液、又は、これに酢酸、燐酸、硫酸のうち少なくともいずれか一つを加えた混合液を用いることが好ましい。
 このような混合液であれば、シリコンウェーハのスピンエッチングに好適に用いることができる。
 また、本発明は、シリコンウェーハの表面及び/又は裏面にエッチング液タンクに保存された酸エッチング液を供給するための供給ノズルと、
 前記シリコンウェーハを保持し、回転させることで、前記酸エッチング液の供給範囲を前記シリコンウェーハの表面及び/又は裏面の全面に拡大して酸エッチングを行うためのステージと、
 前記酸エッチングで使用した酸エッチング液を回収し、前記エッチング液タンクに戻すための回収機構とを有するエッチング装置であって、
 前記エッチング液タンクから前記酸エッチング液を所定量排液するための排液機構と、
 前記エッチング液タンクに新たな前記酸エッチング液を所定量給液するための給液機構とを具備することを特徴とするエッチング装置を提供する。
 本発明のエッチング装置であれば、排液機構、給液機構により、排液・給液を行いながらスピンエッチング方式の酸エッチングを行うことで、酸エッチング液中のSi溶解量の増加、及び、それによる酸エッチング液の動粘度の変化を防ぐことができるため、連続加工時でも一定のエッチング速度と加工後のウェーハ形状を得ることができる。
 本発明のシリコンウェーハのエッチング方法及びエッチング装置であれば、排液・給液を行いながらスピンエッチング方式の酸エッチングを行うことで、酸エッチング液中のSi溶解量の増加、及び、それによる酸エッチング液の動粘度の変化を防ぐことができるため、連続加工時でも一定のエッチング速度と加工後のウェーハ形状を得ることができる。酸エッチング液に含まれるSi溶解量によってシリコンウェーハの回転数を変えることで、ウェーハ面内のエッチング速度分布の変化を抑制することが可能となる。また、Si溶解量が増加しても、エッチング後のウェーハ形状を良好にすることができる。
給液・排液機構を接続した本発明のエッチング装置の一実施形態の模式図である。 本発明のシリコンウェーハのエッチング方法による一実施形態を示すフロー図である。 排液・給液を行いながらスピンエッチング工程を繰り返し連続加工したときのエッチング速度の推移を示す図である。 排液・給液を行いながらスピンエッチング工程を繰り返し連続加工したときのSi溶解量の推移を示す図である。 排液・給液を行いながらスピンエッチング工程を繰り返し連続加工したときの加工後のウェーハ形状の変化を示す図である。 排液・給液を行わずにスピン酸エッチングを繰り返し連続加工したときのエッチング速度の推移を示す図である。 排液・給液を行わずにスピン酸エッチングを繰り返し連続加工したときのSi溶解量の推移を示す図である。 排液・給液を行わずにスピン酸エッチングを繰り返し連続加工したときの加工後のウェーハ形状の変化を示す図である。 シリコンウェーハの回転数を変更した際の、Si溶解量による平坦度の変化を示す図である。 スピンエッチング方式で用いられる一般的なエッチング装置の模式図である。
 上記のように、スピンエッチング方式による酸エッチングを行う場合、通常、使用したエッチング液を回収し、再度エッチング液として用いるため、エッチング速度、ウェーハ面内の取代分布が、連続加工における加工枚数に応じて変化してしまう問題があった。
 本発明者は鋭意研究の結果、酸エッチング液中のSi溶解量が変化すると酸エッチング液の動粘度が変化し、そのため、エッチング液の流体特性が無視できないスピンエッチング方式の酸エッチングでは、ウェーハ面内のエッチング速度分布が変化して、その結果、エッチング後のウェーハの加工形状が変化することを見出した。
 そこで、スピンエッチング方式の酸エッチングで加工後の形状品質を一定に保つために、酸エッチング液中のSi溶解量の増加を防ぎ、同時に酸エッチング液の成分濃度も維持しながら、エッチング後のウェーハ形状とエッチング速度を共に一定に維持できるスピン方式酸エッチングの手法及びエッチング装置を開発した。
 即ち、本発明は、シリコンウェーハの表面及び/又は裏面に供給ノズルを通してエッチング液タンクに保存された酸エッチング液を供給しながら、前記シリコンウェーハを回転させることで、前記酸エッチング液の供給範囲を前記シリコンウェーハの表面及び/又は裏面の全面に拡大して酸エッチングを行うスピンエッチング工程を含むシリコンウェーハのエッチング方法であって、
 前記スピンエッチング工程を繰り返し行うことで、複数のシリコンウェーハの連続加工を行い、
 前記連続加工中に、前記スピンエッチング工程において使用した前記酸エッチング液を回収し、前記エッチング液タンクに戻して再び酸エッチング液とする工程と、
 前記回収後の酸エッチング液を所定量排液し、さらに所定量の新たな前記酸エッチング液を給液する排液・給液工程とを含み、
 前記排液・給液工程後の酸エッチング液を前記スピンエッチング工程に用いることを特徴とするシリコンウェーハのエッチング方法である。
 また、本発明は、シリコンウェーハの表面及び/又は裏面にエッチング液タンクに保存された酸エッチング液を供給するための供給ノズルと、
 前記シリコンウェーハを保持し、回転させることで、前記酸エッチング液の供給範囲を前記シリコンウェーハの表面及び/又は裏面の全面に拡大して酸エッチングを行うためのステージと、
 前記酸エッチングで使用した酸エッチング液を回収し、前記エッチング液タンクに戻すための回収機構とを有するエッチング装置であって、
 前記エッチング液タンクから前記酸エッチング液を所定量排液するための排液機構と、
 前記エッチング液タンクに新たな前記酸エッチング液を所定量給液するための給液機構とを具備することを特徴とするエッチング装置である。
 このようなシリコンウェーハのエッチング方法及びエッチング装置であれば、排液・給液を行いながらスピンエッチング方式の酸エッチングを行うことで、酸エッチング液中のSi溶解量の増加、及び、それによる酸エッチング液の動粘度の変化を防ぐことができるため、連続加工時でも一定のエッチング速度と加工後のウェーハ形状を得ることができる。
 以下、本発明について詳しく説明するが、本発明はこれらに限定されるものではない。
 図1は給液・排液機構を接続した本発明のエッチング装置の一実施形態の模式図である。具体的には、例えば、スピンエッチング方式で用いられる三益半導体工業株式会社製スピンエッチャーMSE-7000EL-MHに給液・排液機構を接続したものとすることができる。
 本発明のエッチング装置は、酸エッチング液を保存するためのエッチング液タンク、酸エッチング液をシリコンウェーハの表面及び/又は裏面に供給するための供給ノズル、シリコンウェーハを保持し、回転させるためのステージ、酸エッチング液を回収し、エッチング液タンクに戻すための回収機構、エッチング液タンクから酸エッチング液を排液するための排液機構、エッチング液タンクに新たな酸エッチング液を給液するための給液機構を具備する。
 本発明のエッチング装置100は、例えば図1に示すように、エッチング加工部14とエッチング液供給部13で構成することができる。
 エッチング加工部14は、真空吸着ステージ(ステージ)2と供給ノズル3とエッチング液回収カップ19を具備することができる。この場合、供給ノズル3を、表面側のみならず、裏面側にも具備し、ウェーハの両面を同時にエッチングできるようにしてもよい。
 エッチング液供給部13は、エッチング液タンク6と、エッチング液タンク6からエッチング加工部へ酸エッチング液を送液する送液ポンプ18と、エッチング液回収カップ19からエッチング液タンク6に酸エッチング液を回収する回収ポンプ20を有する回収機構21と、排液・給液機構17を具備することができる。
 エッチング液タンク6には酸エッチング液8が入っており、回収された酸エッチング液により、所定量のSiが溶解した酸エッチング液が入っている。排液・給液機構17は、給液タンク11と酸エッチング液を給液タンク11からエッチング液タンク6へ送液する給液ポンプ12とからなる給液機構22と、排液処理部16とエッチング液供給部13のエッチング液タンク6から酸エッチング液を抜き取り排液処理部16へ送液する排液ポンプ15とからなる排液機構23と、で構成することができる。給液タンク11には、Siが溶解していない状態の、エッチング液タンク6に入っている酸エッチング液8と同一成分濃度の酸エッチング液を入れればよい。
 シリコンウェーハ1は表面または裏面を上にして真空吸着ステージ2の中心に水平に設置され、真空源10に連結した真空吸着ステージ2上に真空吸着で保持することができる。
 真空吸着ステージ2は、ステージ下方にある図示しないθ軸モータおよびθスピンドル等による回転ユニットによって、真空吸着ステージ2中心を回転軸として図のθ方向に回転させることができる。
 次に、図1に示したエッチング装置100を用いた場合を例に、本発明のシリコンウェーハのエッチング方法を説明する。図2に本発明のシリコンウェーハのエッチング方法による加工フローを例示する。
 本発明のシリコンウェーハのエッチング方法は、シリコンウェーハの表面及び/又は裏面へ供給ノズルを通してエッチング液タンクに保存された酸エッチング液を供給しながら(図2のstep 1)、シリコンウェーハを回転させて酸エッチング液の供給範囲をシリコンウェーハ全面に拡大して酸エッチングを行うスピンエッチング工程(エッチング加工、図2のstep 2)を含む。酸エッチング液は弗酸と硝酸を含む混合液とすることができるが、これに酢酸や硫酸や燐酸を適宜組み合わせて混合しても良い。このような混合液は、シリコンウェーハのスピンエッチングに好適に用いることができる。混合比は、質量%で例えば弗酸が1~80%、硝酸が10~80%混合された酸エッチング液でよいが、これに質量比で酢酸が例えば10~30%、硫酸が例えば10~25%、燐酸が例えば10~50%を任意の割合で混合してもよい。
 このとき、図1に示すように、真空吸着ステージ2上方にある供給ノズル3にエッチング液供給部13のエッチング液タンク6から送液ポンプ18を経由して酸エッチング液8を供給し、真空吸着ステージ2上に保持され回転しているシリコンウェーハ1に酸エッチング液8を供給することができる。酸エッチング液8を供給している間、供給ノズル3は図1中の矢印4(供給ノズルの運動方向)で示すように、シリコンウェーハ1中心を通ってシリコンウェーハ1の径方向に直線往復運動するのが一般的である。
 また、本発明のシリコンウェーハのエッチング方法では、上記スピンエッチング工程を繰り返し行うことで、複数のシリコンウェーハの連続加工を行う。また、連続加工中に、スピンエッチング工程において使用した酸エッチング液を回収し、エッチング液タンクに戻して再び酸エッチング液とする工程(図2のstep 3)を含む。
 シリコンウェーハ1上に供給された酸エッチング液8は、シリコンウェーハ1の回転に倣ってシリコンウェーハ1上を移動し、シリコンウェーハ1外周部から液滴5となってウェーハ上から排出される。
 排出された液滴5はエッチング液回収カップ19に入り、回収ポンプ20によってエッチング液タンク6に回収することができる。エッチング液タンク6に回収した回収後の酸エッチング液は再び酸エッチング液8とする。
 所定のエッチング取代を満たした後、エッチング加工が終了したら、エッチング液タンク6からの酸エッチング液8の供給を停止し(図2のstep 4)、供給ノズル3に給水源7から水9を供給し、真空吸着ステージ2上に保持され回転しているシリコンウェーハ1上に水9を供給することができる(リンス、図2のstep 6)。
 シリコンウェーハ1上に供給された水9は、シリコンウェーハ1の回転に倣ってシリコンウェーハ1上を移動し、シリコンウェーハ1上に残留する酸エッチング液8を水9に置換しながらシリコンウェーハ1の外周部から液滴5となって排出される。
 また、本発明のシリコンウェーハの製造方法は、上記回収後の酸エッチング液を所定量排液し、さらに所定量の新たな酸エッチング液を給液する排液・給液工程(図2のstep 5)を含む。そして、排液・給液工程後の酸エッチング液を、複数のシリコンウェーハの連続加工におけるスピンエッチング工程に用いる。
 酸エッチング液8供給停止後、適切な量の回収後の酸エッチング液を、エッチング液タンク6から排液・給液機構17の排液ポンプ15を経由して排液処理部16に排液することができる。その後、適切な量の新たな酸エッチング液を排液・給液機構17の給液タンク11から給液ポンプ12を経由してエッチング液タンク6に給液することができる。また、シリコンウェーハ1上の酸エッチング液8の水への置換が終了したら給水源7からの水9供給を停止し、シリコンウェーハ1を高速回転させることでシリコンウェーハ1上の水をすべて飛散させ、乾燥したシリコンウェーハ1を得ることができる(リンス・乾燥、図2のstep 6)。
 このとき、排液・給液工程において、回収後の酸エッチング液のSi溶解量に基づいて、排液する量と給液する量とを決定することが好ましい。Si溶解量は、シリコンウェーハの所定のエッチング取代から算出することができるが、特に限定されるものではなく、エッチング液タンク等に設けられたSi溶解量を測定する機構等により求めることもできる。このようにすれば、エッチングによる溶解で増加した分のSiのモル計算等により求めたSi溶解量に基づいた適切な量の排液・給液を行うことで、酸エッチング液中のSi溶解量の増加、及び、それによる酸エッチング液の動粘度の変化をより確実に防ぐことができる。
 また、Si溶解量を一定に保つために、Siが溶解した回収後の酸エッチング液を一定量排液した後に、Siが溶解していない同量の新たな酸エッチング液を給液することが好ましい。このようにすれば、Si溶解量をエッチングによって増加する前のSi溶解量に戻すことができる。
 また、排液・給液工程は、複数のシリコンウェーハの連続加工中に行えばよく、タイミングは特に限定されるものではないが、エッチング加工のスピンエッチング工程毎に一定のSi溶解量を維持することで加工後の形状品質を一定にすることができる。例えば、1枚エッチング加工を行う毎にそのエッチング取代に見合った量の排液・給液を行うことで酸エッチング液中のSi溶解量を一定に保つ。なお、弗酸と硝酸の消費量はSi溶解量に比例するため、排液・給液によって酸エッチング液中のSi溶解量を一定に保つことは、同じ酸エッチング液中の弗酸濃度と硝酸濃度を一定に保つことに等しい。
 なお、スピンエッチング方式の酸エッチングにおけるSi溶解量は12g/L以下が好ましい。このような範囲であれば、流体としての特性変化が大きくなりすぎず、酸エッチング液を供給するノズル直下に形成される衝突噴流域での加工後のウェーハ形状が良好となる。
 シリコンウェーハ1枚あたりのエッチング取代は、通常、前工程であるラップ加工または平面研削加工でシリコンウェーハ表面に導入される加工変質層を除去できる量である3~8μmが片面分のエッチング取代として好ましい。このエッチング取代から算出されるSiモル量に基づいた量の排液・給液を、例えばスピンエッチング工程後のリンス中に毎回行えば、Si溶解量を一定量に保ちながらの連続エッチング加工を行うことができ、エッチング速度、エッチング後の形状を一定に維持しながらの連続加工がより確実に可能となる。
 また、本発明では、スピンエッチング工程において、エッチング液タンク中の酸エッチング液に含まれるSi溶解量に応じてシリコンウェーハの回転数を変えて酸エッチングを行うことが好ましい。この工程については、後述する別態様に記載のように行うことができる。
 (別態様)
 スピンエッチング方式によるシリコンウェーハの酸エッチングを行う場合、通常、使用したエッチング液を回収し、再度エッチング液として用いる。このため、シリコンウェーハを酸エッチングすると、加工枚数に応じてエッチング液に含まれるSi溶解量は増加する。また、Si溶解量の増加はエッチング液に含まれるエッチング化学種の減少を意味するため、平均エッチング速度が減少する。このため連続加工時には平均エッチング速度の減少が避けられない。
 また、スピンエッチングにおけるウェーハエッチング速度は、加工条件とエッチング液の流体特性に応じてウェーハ面内分布をもつ。この分布は加工条件と流体特性のうちどちらか一方が変化するだけでも変動する。したがって、上記のようにSi溶解量の変化が伴うスピンエッチング加工を行う場合には、平均エッチング速度だけではなくウェーハ面内のエッチング速度分布の変化も考慮することが好ましい。従来は、連続加工時には弗酸補給を行うのが一般的であるが、この方法では平均エッチング速度の低下には対応できるもののウェーハ面内のエッチング速度分布の変化には対応できない問題があった。
 本発明は、このような事情に鑑みてなされたもので、酸エッチング液のSi溶解量が変化しても、ウェーハ面内のエッチング速度分布の変化を抑制することができ、エッチング後のウェーハ形状を良好にすることができるシリコンウェーハのエッチング方法を提供することを別の目的とする。
 上記別の目的を解決するために、本発明は、シリコンウェーハの表面及び/又は裏面に供給ノズルを通して酸エッチング液を供給しながら、前記シリコンウェーハを回転させることで、前記酸エッチング液の供給範囲を前記シリコンウェーハの表面及び/又は裏面の全面に拡大して酸エッチングを行うスピンエッチング工程を含むシリコンウェーハのエッチング方法であって、
 前記スピンエッチング工程において、前記エッチング液タンク中の前記酸エッチング液に含まれるSi溶解量に応じて前記シリコンウェーハの回転数を変えて酸エッチングを行うことを特徴とするシリコンウェーハのエッチング方法を提供する。
 このようにすれば、酸エッチング液に含まれるSi溶解量によってシリコンウェーハの回転数を変えることで、Si溶解量の増加によるウェーハ面内のエッチング速度分布の変化を抑制することが可能となる。また、Si溶解量が増加しても、エッチング後のウェーハ形状を良好にすることができる。
 このとき、前記スピンエッチング工程を繰り返し行うことで、複数のシリコンウェーハの連続加工を行い、
 前記連続加工中に、前記スピンエッチング工程において使用した前記酸エッチング液を回収し、前記酸エッチング液を保存するエッチング液タンクに戻して再び酸エッチング液として使用することが好ましい。
 このような方法であれば、Si溶解量の変化が伴う連続加工時でもシリコンウェーハの形状の変化を最小限に抑えることができる。
 また、前記酸エッチング液として、弗酸、硝酸を含む混合液、又は、これに酢酸、燐酸、硫酸のうち少なくともいずれか一つを加えた混合液を用いることが好ましい。
 このような混合液であれば、シリコンウェーハのスピンエッチングに好適に用いることができる。
 このようなシリコンウェーハのエッチング方法であれば、酸エッチング液に含まれるSi溶解量によってシリコンウェーハの回転数を変えることで、ウェーハ面内のエッチング速度分布の変化を抑制することが可能となる。また、Si溶解量が増加しても、エッチング後のウェーハ形状を良好にすることができる。
 上記のように、スピンエッチング方式による酸エッチングにおいて、酸エッチング液のSi溶解量が変化した場合に、ウェーハ面内のエッチング速度分布の変化が起こる問題があった。
 酸エッチング液中のSi溶解量が増加すると、酸エッチング液に含まれるエッチング反応化学種の減少だけではなく、酸エッチング液の動粘度も減少する。そのため、酸エッチング液の流体特性が無視できないスピン方式の酸エッチングでは、Si溶解量の増加により、平均エッチング速度の低下だけではなく、面内のエッチング速度の分布状態も変化する。
 通常、スピンエッチング加工中のシリコンウェーハは角速度一定で回転しているため、拡散律速の酸エッチング液を用いる場合のエッチング速度は、周速が速いウェーハ外周部ほど増加する。したがって、通常はウェーハ外周部ほどエッチング取代が増加する。
 ここで、Si溶解量が多くなると酸エッチング液の動粘度が減少するため、ウェーハの周速が速い領域での酸エッチング液の平均流速は、Si溶解量が少ないときに比べて減少する。したがって、ウェーハ外周部のエッチング取代はSi溶解量が少ないときに比べて減少する。
 また、スピンエッチングでは、通常はウェーハの回転中心と酸エッチング液をウェーハに供給するノズルの位置が一致するが、その付近ではエッチング速度はノズル直下に形成される衝突噴流の影響を受ける。衝突噴流の中心にはよどみ点があり、よどみ点では酸エッチング液のウェーハ面に平行な向きの流速は理論上0μm/sである。
 通常は、よどみ点の領域は無視できる大きさであり、すぐにウェーハの周速によって酸エッチング液の流速が増加するため、エッチング取代の低下としては現れない。しかしながらSi溶解量が増えて酸エッチング液の動粘度が減少してくると、周速によっても酸エッチング液の平均流速が増加しにくくなるため、Si溶解量が少ないときに比べてエッチング速度が遅くなり、したがってその領域のエッチング取代が減少する。
 つまり、同一の加工条件と同一組成の酸エッチング液を用いても、上記のような原因により、シリコンウェーハ外周部及び中心付近のエッチング速度が変化し、ウェーハ面内のエッチング速度分布が変化してしまうため、酸エッチング液中のSi溶解量が異なるとスピンエッチング加工後のウェーハ形状は異なることとなってしまう。
 このようなウェーハ形状の変化に対応する手段として、Si溶解量に応じたウェーハ回転数の制御を行う。具体的には、Si溶解量が少なく比較的動粘度の大きい酸エッチング液では、ウェーハ回転数を低回転数としてエッチングし、Si溶解量が多く比較的動粘度の小さい酸エッチング液ではウェーハ回転数を高回転としてエッチングすることで、Si溶解量によるウェーハ形状の変化を最小限に抑える。
 以下、本態様について詳しく説明するが、本発明はこれらに限定されるものではない。
 図10はスピンエッチング方式で用いられる一般的なエッチング装置の模式図である。具体的には、例えば、三益半導体工業株式会社製スピンエッチャーMSE-7000EL-MHを用いることができる。
 一般的に、エッチング装置200は、エッチング加工部14とエッチング液供給部13で構成される。
 エッチング加工部14は、真空吸着ステージ2と供給ノズル3を具備することができる。また、エッチング液供給部13は、エッチング液タンク6とエッチング液タンク6からエッチング加工部14へ酸エッチング液8を送液する送液ポンプ18を具備することができる。
 シリコンウェーハ1は表面または裏面を上にして真空吸着ステージ2の中心に水平に設置され、真空源10に連結した真空吸着ステージ2上に真空吸着で保持することができる。
 真空吸着ステージ2は、ステージ下方にある図示しないθ軸モータおよびθスピンドル等による回転ユニットによって、真空吸着ステージ2中心を回転軸として図のθ方向に回転することができる。
 次に、図10に示したエッチング装置200を用いた場合を例に、本態様のシリコンウェーハのエッチング方法を説明する。
 本態様のシリコンウェーハのエッチング方法では、シリコンウェーハの表面及び/又は裏面へ供給ノズルを通してエッチング液タンク6に保存された酸エッチング液8を供給しながら、シリコンウェーハを回転させて酸エッチング液の供給範囲をシリコンウェーハ1の全面に拡大して酸エッチングを行うスピンエッチング工程を含む。
 スピンエッチング工程では、真空吸着ステージ上方にある供給ノズル3にエッチング液供給部13のエッチング液タンク6から送液ポンプ18を経由して酸エッチング液8を供給し、真空吸着ステージ2上に保持され回転しているシリコンウェーハ1上に酸エッチング液8を供給することができる。
 酸エッチング液8を供給している間、供給ノズル3は、図10中の矢印4(供給ノズルの運動方向)で示すように、シリコンウェーハ1中心を通ってシリコンウェーハ1の径方向に直線往復運動するのが一般的である。
 シリコンウェーハ1上に供給された酸エッチング液8は、シリコンウェーハ1の回転に倣ってシリコンウェーハ1上を移動し、シリコンウェーハ1外周部から液滴5となって振り飛ばされて落下し、エッチング加工部から排出される。
 このとき、本態様では、酸エッチング液に含まれるSi溶解量に応じてシリコンウェーハの回転数を変えて酸エッチングを行う。
 上述のように、同一の加工条件と同一組成の酸エッチング液を用いても、シリコンウェーハ外周部及び中心付近のエッチング速度が変化し、ウェーハ面内のエッチング速度分布が変化してしまうため、酸エッチング液中のSi溶解量が異なるとスピンエッチング加工後のウェーハ形状は異なることとなってしまう。本態様であれば、酸エッチング液に含まれるSi溶解量によってシリコンウェーハの回転数を変えることで、Si溶解量の増加によるウェーハ面内のエッチング速度分布の変化を抑制することが可能となる。また、Si溶解量が増加しても、エッチング後のウェーハ形状を良好にすることができる。
 即ち、Si溶解量が小さく、動粘度が大きい酸エッチング液を用いる場合は、ウェーハ上の酸エッチング液の流速を適度にするためにウェーハ回転数を低回転数とし、Si溶解量が大きく、動粘度が小さい酸エッチング液を用いる場合は、ウェーハ上の酸エッチング液の流速の低下を抑制するためにウェーハ回転数を高回転数とすればよい。
 ウェーハ回転数の変更は、例えば、Si溶解量6g/Lで行い、Si溶解量6g/L未満では1300rpm未満の回転数、Si溶解量6g/L以上では1300rpm以上の回転数等とすることができる。しかしながら、加工条件や酸エッチング液の組成によって適切なSi溶解量はそれぞれ異なるため、ウェーハ回転数を変更するSi溶解量は6g/Lに限定されるものではない。また、変更前後のウェーハ回転数も、加工条件や酸エッチング液の組成により適宜決定することができる。
 所定のエッチング取代を満たした後、エッチング加工が終了したらエッチング液タンク6からの酸エッチング液8の供給を停止し、供給ノズル3に給水源7から水9を供給し、真空吸着ステージ2上に保持され回転しているシリコンウェーハ1上に水9を供給することができる。
 シリコンウェーハ1上に供給された水9は、シリコンウェーハ1の回転に倣ってシリコンウェーハ1上を移動し、シリコンウェーハ1上に残留する酸エッチング液8を水9に置換しながらシリコンウェーハ1の外周部から液滴5となって排出される。
 シリコンウェーハ1上の酸エッチング液8の水への置換が終了したら、給水源7からの水9の供給を停止し、シリコンウェーハ1を高速回転させることでシリコンウェーハ1上の水をすべて飛散させ、乾燥したシリコンウェーハ1を得ることができる。
 また、本態様では、上記スピンエッチング工程を繰り返し行うことで、複数のシリコンウェーハの連続加工を行い、連続加工中に、上記スピンエッチング工程において使用した酸エッチング液を回収し、エッチング液タンクに戻して再び酸エッチング液として使用することが好ましい。このような方法であれば、Si溶解量の変化が伴う連続加工時でもシリコンウェーハの形状の変化を最小限に抑えることができる。
 シリコンウェーハ1の外周部から排出された酸エッチング液の液滴5は、エッチング液回収機構24によりエッチング液タンク6に回収することができる。そして、回収後の酸エッチング液を再び酸エッチング液8とすることができる。
 本態様において、Si溶解量は、例えば、シリコンウェーハ1枚あたりのエッチング取代から、連続加工時のSi溶解量の累計を算出することができ、適切なSi溶解量に達した時点でウェーハ回転数を変更すれば、Si溶解量の変化が伴う連続加工時のスピンエッチング加工において、加工後のウェーハ形状の変化を最小限に抑えた連続加工が可能になる。また、Si溶解量の算出方法は、特に限定されるものではなく、エッチング液タンク等に設けられたSi溶解量を測定する機構25等により求め、求められたSi溶解量に応じてシリコンウェーハの回転数を変えることもできる。また、Si溶解量に応じて、その値に比例してシリコンウェーハの回転数を上げるようにしてもよい。
 また、本態様で使用する酸エッチング液は弗酸と硝酸を含む混合液とすることができるが、これに酢酸や硫酸や燐酸を適宜組み合わせて混合しても良い。このような混合液は、シリコンウェーハのスピンエッチングに好適に用いることができる。混合比は、質量%で例えば弗酸が1~80%、硝酸が10~80%混合された酸エッチング液でよいが、これに質量比で酢酸が例えば10~30%、硫酸が例えば10~25%、燐酸が例えば10~50%を任意の割合で混合してもよい。
 尚、上記ではシリコンウェーハの片面をスピンエッチングする場合を例にして説明したが、本発明はこれには限定されず、上面のみならず下面からも酸エッチング液を供給して表裏面を同時にエッチングすることもできる。
 以下、実施例及び比較例を示し、本発明をより具体的に説明するが、本発明は下記の実施例に制限されるものではない。
[実施例]
 図1に示したエッチング装置を用いて、図2の加工フローに従って、100枚のシリコンウェーハのエッチングを、エッチング液タンク中の酸エッチング液の排液、給液を行いながら連続加工した。このとき、排液・給液工程は1枚のシリコンウェーハのスピンエッチング工程終了毎に行った。実施例に用いた酸エッチング液は弗酸と硝酸の混合液であり、混合比は質量%で弗酸が4%、硝酸が47%であった(100%に満たない残部は水である。)。1枚目の酸エッチング液として、Si溶解量10g/Lのものを用い、給液する新たな酸エッチング液としてSi原子を含まない酸エッチング液を用いた。排液、給液の量は同量とし、エッチングの取り代から求まるSi溶解量に基づいて決定した。
 図3、図4、図5にそれぞれ、排液・給液を行いながらスピンエッチング工程を繰り返し連続加工したときのエッチング速度の推移、Si溶解量の推移、加工後のウェーハ形状の変化を示す。
[比較例]
 排液機構、給液機構を具備していない、一般的に用いられるエッチング装置を用いて、100枚のシリコンウェーハのエッチングを、排液、給液を行わずに連続加工した。比較例に用いた酸エッチング液は弗酸と硝酸の混合液であり、混合比は質量%で弗酸が4%、硝酸が47%であった(100%に満たない残部は水である。)。1枚目の酸エッチング液として、Si溶解量10g/Lのものを用いて連続加工を開始した。
 図6、図7、図8にそれぞれ、排液・給液を行わずにスピン酸エッチングを繰り返し連続加工したときのエッチング速度の推移、Si溶解量の推移、加工後のウェーハ形状の変化を示す。
 図3、図4、図5に示したように、排液・給液を行った場合は、Si溶解量はほぼ一定に維持され、連続100枚加工中のエッチング速度ばらつきは±7%以内であった。また加工後のウェーハ形状は、加工1枚目、50枚目、100枚目のウェーハの平坦度TTV(Total Thickness Variation)は同等であった。図6、図7、図8に示したように、排液・給液を行わなかった場合は、Si溶解量が単調に増加するにつれてエッチング速度は単調に減少し、100枚加工中のエッチング速度は1枚目の約70%であった。また加工後のウェーハ形状は、加工枚数が増えるにつれて変化し、100枚加工後のTTVは1枚目にくらべて2.6倍に悪化した。
 上記のことから、本発明のシリコンウェーハのエッチング方法及びエッチング装置を用いれば、排液・給液を行うことで、連続加工時でも一定のエッチング速度と加工後のウェーハ形状を得ることができることが示された。
[参考実施例]
 図10に示したエッチング装置を用いて、シリコンウェーハのエッチング加工を行った。このとき、異なるSi溶解量の酸エッチング液を用いて、シリコンウェーハを低回転数、具体的には回転数300rpmと回転数800rpm、および、高回転数、具体的には回転数1800rpmと回転数2500rpmで加工した。図1に、シリコンウェーハの回転数を変更した際の、Si溶解量による平坦度の変化を示す。ここでいう平坦度は、シリコンウェーハ面内の取代P-V(Peak-Valley)を示す。このときの酸エッチング液は弗酸と硝酸の混合液を用い(質量%で、弗酸4%、硝酸47%であり、100%に満たない残部は水である。)、エッチング液量2.5L/m、酸エッチング液温24℃で加工した。
 図9に示したように、ウェーハを低回転数、例えば300rpmや800rpmに固定して加工すると、ウェーハ平坦度は、Si溶解量が増えた場合に、この例では1.0μm近辺まで悪化し、ウェーハを高回転数、例えば1800rpmや2500rpmに固定して加工すると、ウェーハ平坦度は、低回転数のときとは逆に、Si溶解量が少ない場合に、この例では1.0μm付近にまで悪化する。
 そこで、図9に示した例によれば、酸エッチング液のSi溶解量6g/L未満では、例えば300rpmや800rpmのような低回転数、Si溶解量6g/L以上では、例えば回転数1800rpmや2500rpmのような高回転数に変更してエッチングを行えば、Si溶解量によらずウェーハ平坦度を0.7μm以下にできることが分かる。
 上記のことから、本発明の方法であれば、酸エッチング液に含まれるSi溶解量によってシリコンウェーハの回転数を変えることで、Si溶解量の増加によるウェーハ面内のエッチング速度分布の変化を抑制することが可能となり、酸エッチング液のSi溶解量が変化してもウェーハ平坦度を良好にすることができることが示された。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (6)

  1.  シリコンウェーハの表面及び/又は裏面に供給ノズルを通してエッチング液タンクに保存された酸エッチング液を供給しながら、前記シリコンウェーハを回転させることで、前記酸エッチング液の供給範囲を前記シリコンウェーハの表面及び/又は裏面の全面に拡大して酸エッチングを行うスピンエッチング工程を含むシリコンウェーハのエッチング方法であって、
     前記スピンエッチング工程を繰り返し行うことで、複数のシリコンウェーハの連続加工を行い、
     前記連続加工中に、前記スピンエッチング工程において使用した前記酸エッチング液を回収し、前記エッチング液タンクに戻して再び酸エッチング液とする工程と、
     前記回収後の酸エッチング液を所定量排液し、さらに所定量の新たな前記酸エッチング液を給液する排液・給液工程とを含み、
     前記排液・給液工程後の酸エッチング液を前記スピンエッチング工程に用いることを特徴とするシリコンウェーハのエッチング方法。
  2.  前記排液・給液工程において、前記回収後の酸エッチング液のSi溶解量に基づいて、前記排液する量と前記給液する量とを決定することを特徴とする請求項1に記載のシリコンウェーハのエッチング方法。
  3.  前記排液・給液工程において、前記排液する量と、前記給液する量とを同量とすることを特徴とする請求項1又は請求項2に記載のシリコンウェーハのエッチング方法。
  4.  前記スピンエッチング工程において、前記エッチング液タンク中の前記酸エッチング液に含まれるSi溶解量に応じて前記シリコンウェーハの回転数を変えて酸エッチングを行うことを特徴とする請求項1から請求項3のいずれか一項に記載のシリコンウェーハのエッチング方法。
  5.  前記酸エッチング液として、弗酸、硝酸を含む混合液、又は、これに酢酸、燐酸、硫酸のうち少なくともいずれか一つを加えた混合液を用いることを特徴とする請求項1から請求項4のいずれか一項に記載のシリコンウェーハのエッチング方法。
  6.  シリコンウェーハの表面及び/又は裏面にエッチング液タンクに保存された酸エッチング液を供給するための供給ノズルと、
     前記シリコンウェーハを保持し、回転させることで、前記酸エッチング液の供給範囲を前記シリコンウェーハの表面及び/又は裏面の全面に拡大して酸エッチングを行うためのステージと、
     前記酸エッチングで使用した酸エッチング液を回収し、前記エッチング液タンクに戻すための回収機構とを有するエッチング装置であって、
     前記エッチング液タンクから前記酸エッチング液を所定量排液するための排液機構と、
     前記エッチング液タンクに新たな前記酸エッチング液を所定量給液するための給液機構とを具備することを特徴とするエッチング装置。
PCT/JP2020/005958 2019-04-15 2020-02-17 シリコンウェーハのエッチング方法及びエッチング装置 WO2020213246A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080023241.1A CN113614890A (zh) 2019-04-15 2020-02-17 硅晶圆的蚀刻方法及蚀刻装置
KR1020217031691A KR20210144741A (ko) 2019-04-15 2020-02-17 실리콘 웨이퍼의 에칭방법 및 에칭장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-076952 2019-04-15
JP2019076952A JP7088120B2 (ja) 2019-04-15 2019-04-15 シリコンウェーハのエッチング方法
JP2019-078801 2019-04-17
JP2019078801A JP7036085B2 (ja) 2019-04-17 2019-04-17 シリコンウェーハのエッチング方法

Publications (1)

Publication Number Publication Date
WO2020213246A1 true WO2020213246A1 (ja) 2020-10-22

Family

ID=72838167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005958 WO2020213246A1 (ja) 2019-04-15 2020-02-17 シリコンウェーハのエッチング方法及びエッチング装置

Country Status (4)

Country Link
KR (1) KR20210144741A (ja)
CN (1) CN113614890A (ja)
TW (1) TWI809258B (ja)
WO (1) WO2020213246A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113943579A (zh) * 2021-10-15 2022-01-18 中国科学院上海微系统与信息技术研究所 组合型刻蚀液、刻蚀系统及刻蚀方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197360A (ja) * 2012-03-21 2013-09-30 Shibaura Mechatronics Corp 基板処理方法及び基板処理システム
JP2015070080A (ja) * 2013-09-27 2015-04-13 東京エレクトロン株式会社 エッチング方法、エッチング装置および記憶媒体
JP2016042503A (ja) * 2014-08-14 2016-03-31 株式会社Screenホールディングス 基板処理方法
WO2019208198A1 (ja) * 2018-04-27 2019-10-31 株式会社Screenホールディングス 基板処理装置および基板処理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835069B2 (ja) 2005-08-17 2011-12-14 株式会社Sumco シリコンウェーハの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197360A (ja) * 2012-03-21 2013-09-30 Shibaura Mechatronics Corp 基板処理方法及び基板処理システム
JP2015070080A (ja) * 2013-09-27 2015-04-13 東京エレクトロン株式会社 エッチング方法、エッチング装置および記憶媒体
JP2016042503A (ja) * 2014-08-14 2016-03-31 株式会社Screenホールディングス 基板処理方法
WO2019208198A1 (ja) * 2018-04-27 2019-10-31 株式会社Screenホールディングス 基板処理装置および基板処理方法

Also Published As

Publication number Publication date
CN113614890A (zh) 2021-11-05
KR20210144741A (ko) 2021-11-30
TW202040662A (zh) 2020-11-01
TWI809258B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
JP2894153B2 (ja) シリコンウエーハの製造方法、およびその装置
CN100435288C (zh) 硅晶片的制造方法
JP2014022657A (ja) エッチング方法、これを用いた半導体基板製品および半導体素子の製造方法、ならびにエッチング液調製用キット
WO2020213246A1 (ja) シリコンウェーハのエッチング方法及びエッチング装置
JP7088120B2 (ja) シリコンウェーハのエッチング方法
JP7036085B2 (ja) シリコンウェーハのエッチング方法
JP2006120819A (ja) 半導体ウェーハの製造方法及び半導体ウェーハ
JP7276242B2 (ja) シリコンウェーハのエッチング方法及びエッチング装置
JP7056685B2 (ja) シリコンウェーハのエッチング方法
EP3573090B1 (en) Semiconductor wafer cleaning method
WO2023026828A1 (ja) 基板処理方法及び基板処理システム
US20220139723A1 (en) Wet etching method
CN111033696B (zh) 硅晶圆的清洗方法
JP2006351805A (ja) 基板処理方法および基板処理装置
JP5262306B2 (ja) 半導体ウェーハの洗浄方法
JP2007251019A (ja) 半導体ウェーハのエッチング装置
JP6572863B2 (ja) シリコンウェーハの製造方法
JP6455319B2 (ja) 半導体ウェーハのエッチング装置及び半導体ウェーハのエッチング方法
KR20220159509A (ko) 웨이퍼 제조 방법
JP2005032914A (ja) 酸化ハフニウムのエッチング方法
JP2008010472A (ja) 基板処理方法および基板処理装置
KR20180005609A (ko) 기판액 처리 방법 및 기판액 처리 장치
JPH0327525A (ja) エッチング方法
JPH01201490A (ja) 半導体基板用ウェーハのエッチング方法
JPH06333894A (ja) 半導体ウェーハの研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217031691

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790541

Country of ref document: EP

Kind code of ref document: A1