WO2020213189A1 - 藻類育成装置及び藻類育成方法 - Google Patents

藻類育成装置及び藻類育成方法 Download PDF

Info

Publication number
WO2020213189A1
WO2020213189A1 PCT/JP2019/036047 JP2019036047W WO2020213189A1 WO 2020213189 A1 WO2020213189 A1 WO 2020213189A1 JP 2019036047 W JP2019036047 W JP 2019036047W WO 2020213189 A1 WO2020213189 A1 WO 2020213189A1
Authority
WO
WIPO (PCT)
Prior art keywords
algae
tank
algae tank
seaweed
unit
Prior art date
Application number
PCT/JP2019/036047
Other languages
English (en)
French (fr)
Inventor
山田 賢一
智 中村
豪士 中村
和光 戸谷
Original Assignee
株式会社日鰻
株式会社大新
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日鰻, 株式会社大新 filed Critical 株式会社日鰻
Priority to EP19925170.3A priority Critical patent/EP3782462A4/en
Priority to AU2019441537A priority patent/AU2019441537B2/en
Priority to US17/059,155 priority patent/US11758860B2/en
Publication of WO2020213189A1 publication Critical patent/WO2020213189A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/40Manifolds; Distribution pieces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/10Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Definitions

  • the present invention relates to an algae growing device and an algae growing method. More specifically, the present invention relates to an algae growing device and an algae growing method for growing seaweed, for example.
  • seaweed is often cultivated at sea, but the amount of seaweed produced by sea culturing is decreasing due to the rise in seawater temperature.
  • seaweed rolls, sushi, and rice balls There are many foods that use seaweed in Japan, such as seaweed rolls, sushi, and rice balls, and since seaweed is an indispensable part of Japanese food, a decline in seaweed production is a serious problem.
  • Patent Document 1 describes the seaweed aquaculture apparatus shown in FIG. That is, the seaweed aquaculture apparatus 301 described in Patent Document 1 includes a bottomed and cylindrical water tank 302 having an opening formed at the upper part as its main body. Further, a water injection pipe 303 is continuously attached to the vicinity of the upper opening of the water tank 302.
  • a tubular body 305 which is a tubular member having a substantially conical shape, is arranged inside the water tank 302. Further, a plurality of openings 306 are formed over the entire vertical direction of the tubular body 305.
  • an air stone 307 connected to an external air pump (not shown) is arranged near the outer periphery of the tubular body 305 and below the water tank 302.
  • the air stone 307 is an aeration mechanism.
  • a water absorption port 308 is formed at the bottom of the water tank 302 and inside the tubular body 305.
  • a pipe 309 is communicated with the water suction port 308.
  • Patent Document 1 employs an aeration method, and carbon dioxide or oxygen is not sufficiently dissolved in seawater. This is because the aeration method generates bubbles, but the gas is not sufficiently dissolved in seawater, so that bubbles are generated. Moreover, since the bubbles do not stay in the bottom layer, carbon dioxide or oxygen was not sufficiently supplied to the algae in the bottom layer of the aquarium. As a result, the algae growth efficiency was not sufficient.
  • the present invention has been devised in view of the above points, and an object of the present invention is to provide an algae growing device and an algae growing method capable of improving the algae growing efficiency.
  • the algae growing device of the present invention contains a gas dissolving part capable of dissolving carbon dioxide in a liquid to generate a solution, and the algae contained in the solution and the solution.
  • a luminescent material capable of emitting light toward the inside of the contained solution and the algae tank in which the solution and the algae are housed, and an algae tank having a curved inner surface in contact with the solution and the algae.
  • a supply unit capable of discharging the liquid, the algae tank and the gas dissolving unit are communicated with each other, and the dissolved liquid and the algae contained in the algae tank can be sucked out from the algae tank.
  • a circulation pump unit capable of injecting the sucked solution and the algae into the algae tank from the supply unit through the gas dissolution unit is provided.
  • a gas dissolving part capable of dissolving carbon dioxide in a liquid to generate a dissolved liquid
  • a luminescent material capable of emitting light toward the inside of the algae tank containing the dissolved liquid and algae
  • an algae tank and a gas dissolving part The lysate and algae contained in the algae tank can be sucked out from the algae tank, and the sucked lysate and algae are passed through the gas dissolving part from the supply part to the algae tank.
  • the injectable circulation pump unit can promote photosynthesis in the algae tank.
  • the "liquid” targeted by the gas dissolving part shall include a liquid in which carbon dioxide has not yet been dissolved by the gas dissolving part and a liquid in which carbon dioxide has already been dissolved by the gas dissolving part.
  • the lysate and the algae contained in the lysate can be accommodated, and the algae tank having a curved inner surface in contact with the contained lysate and algae communicates with the gas dissolving portion and the algae tank.
  • the lysate is spiraled by the supply part that can discharge the lysate along the bending direction of the inner surface of the algae tank or along the direction diagonally intersecting the bending direction. It is possible to generate a flow of gas, and the light from the illuminant can be evenly applied to the algae. In addition, the spiral flow makes it easier to separate oxygen bubbles generated by photosynthesis from algae, which makes it easier for algae to absorb carbon dioxide.
  • the solution and algae that are communicated with the algae tank and the gas dissolving part and are contained in the algae tank can be sucked out from the algae tank, and the sucked solution and algae are used as the gas dissolving part. Since the algae are passed through the gas dissolving part together with the lysate by the circulation pump part that can be injected from the supply part to the algae tank through the supply part, the algae can be sufficiently supplied with carbon dioxide in the gas dissolving part.
  • the algae tank extends in one direction and has a cylindrical shape in which both ends in the extended direction are closed, and the supply portion is formed on the inner surface of the algae tank.
  • the center of the through hole extends in a direction substantially orthogonal to the line connecting the supply pipe connected to the inside and the outside of the algae tank and the opposite edges of the through hole. It is arranged on the axis, is attached to the inner surface of the algae tank, forms a space communicating with the supply pipe between the inner side surface, and the space and the inside of the algae tank.
  • An opening is formed so as to communicate with the algae tank and face the direction intersecting the extending direction of the algae tank, and the surface opposite to the surface facing the space has a curved cover body. it can.
  • the algae are less likely to get caught in the supply part than the configuration in which the supply pipe is projected from the inner surface of the algae tank without the cover body.
  • a plurality of light emitters are arranged in series in the same direction as the direction in which the algae tank extends at predetermined intervals, and emit light.
  • the algae tank in which the algae tank extends in one direction, the algae tank is arranged so that the extending direction of the algae tank intersects the horizontal direction, and the lysate and the algae are sucked out.
  • the sucking point which is a place, is formed at one end of the algae tank, and the position of one end of the algae tank where the sucking point is formed is the other end opposite to one end. It is located below the position of the portion in the vertical direction, and the direction in which the opening of the cover body faces is a direction diagonally intersecting the direction in which the algae tank extends, and is closer to one end of the algae tank. It can be configured to be directional.
  • the position of one end of the algae tank on which the suction point is formed is vertically lower than the position of the other end on the opposite side of one end, that is, the algae tank is tilted.
  • the lysate flows out from the opening of the cover body toward one end of the algae tank, the algae easily gather toward the suction point due to gravity and the flowing force of the lysate, and the algae tank The lysate and algae can be circulated even if the length of extension is relatively long.
  • the "end of the algae tank” referred to in the present invention is not only a closed portion, that is, a surface portion substantially orthogonal to the extending direction of the algae tank, but also a predetermined range from the closed portion in the extending direction of the algae tank. It shall also include the area that extends to.
  • the gas dissolving part can be configured to be capable of producing a dissolving solution having a pressure higher than the pressure outside the algae tank.
  • a liquid fertilizer injection unit that communicates with the supply unit and can inject liquid fertilizer into the supply unit and a gas dissolution unit communicates with the gas dissolution unit, and a liquid is applied to the gas dissolution unit.
  • a communication pipe that connects the injectable liquid injection unit, the gas dissolving unit, the algae tank, the supply unit, the circulation pump unit, the liquid fertilizer injection unit, and the liquid injection unit to each other.
  • the control that is attached to the opening that communicates the inside and the outside of the algae tank or the discharge pipe that communicates with the opening and that can be controlled based on the signal transmitted from the mobile terminal. It can be configured to include a valve.
  • the algae growing method of the present invention dissolves carbon dioxide having a pressure higher than the pressure of the liquid in the liquid in a gas dissolving part capable of dissolving carbon dioxide in the liquid.
  • a lysate generation step of producing a lysate a discharge step of supplying the lysate to an algae tank having a curved inner surface and flowing the lysate along the inner side surface of the algae tank, and the algae tank.
  • a solution generation step of dissolving carbon dioxide having a pressure higher than the pressure of the liquid in the liquid to generate a solution, and a solution and a solution A light emitting process that emits light toward the inside of the algae tank containing the contained seaweed leaves, and a circulation process that sucks out the solution and seaweed leaves from the algae tank and introduces the solution and seaweed leaves into the gas dissolving part. Therefore, photosynthesis can be promoted in the algae tank.
  • a vortex-like flow of the solution can be generated in the algae tank by a discharge step of supplying the solution to the algae tank having a curved inner surface and flowing the solution along the inner surface of the algae tank.
  • the light from the illuminant can be evenly applied to the seaweed fronds.
  • the spiral flow facilitates the separation of oxygen bubbles generated by photosynthesis from the seaweed fronds, which facilitates the absorption of carbon dioxide.
  • the seaweed fronds may also be poured.
  • the seaweed fronds are used by the seaweed fronds supply process that supplies the seaweed fronds to the algae tank, the growth can be completed faster than the method of supplying and growing the nori spores and filaments.
  • the seaweed fronds are introduced into the gas dissolution part together with the dissolution liquid by the circulation step of sucking the dissolution liquid and the seaweed fronds from the algae tank and introducing the dissolution liquid and the seaweed fronds into the gas dissolution part.
  • Sufficient carbon dioxide can be supplied to the seaweed fronds in the part.
  • the algae growing method of the present invention includes a discharge step of discharging the seaweed fronds from the algae tank and a cutting step of cutting the discharged seaweed fronds, and the seaweed leaf body supply step is discharged in the discharge step. It is possible to supply the seaweed fronds having a length shorter than the length of the finished seaweed fronds.
  • the grown Nori leaf body can be reused, and the Nori leaf body can be grown semi-permanently.
  • the algae growing device according to the present invention can improve the algae growing efficiency.
  • the algae growing method according to the present invention can improve the algae growing efficiency.
  • FIG. 1 is a schematic view illustrating an example of an algae growing device to which the present invention is applied.
  • FIG. 2 is a schematic cross-sectional view of an algae tank and a supply portion provided in the algae growing device to which the present invention is applied, which is cut along the line AA of FIG.
  • FIG. 3 is a schematic view showing an example of how the growing water and the seaweed fronds are discharged from the first discharge port of the first cover body of the supply unit provided with the algae growing device to which the present invention is applied. ..
  • the algae growing device 10 of the present invention shown in FIG. 1 includes a gas dissolving unit 20.
  • the gas dissolving unit 20 can dissolve carbon dioxide and oxygen in a liquid such as deep sea water to generate growing water 25 which is a dissolved solution.
  • a carbon dioxide supply pipe 21 for supplying carbon dioxide to the inside of the gas dissolution unit 20 is communicated and connected to the gas dissolution unit 20.
  • an oxygen supply pipe 22 for supplying oxygen to the inside of the gas dissolution unit 20 is communicated and connected to the gas dissolution unit 20.
  • the carbon dioxide supply pipe 21 has a supply pressure adjusting mechanism (not shown) so that carbon dioxide can be supplied into the gas melting unit 20 at a supply pressure of 1.2 hPa, for example.
  • the oxygen supply pipe 22 has a supply pressure adjusting mechanism (not shown) so that oxygen can be supplied into the gas melting unit 20 at a supply pressure of 1.2 hPa, for example.
  • the deep sea water is supplied into the gas melting section 20 at a supply pressure lower than the supply pressure of carbon dioxide and the supply pressure of oxygen. That is, deep ocean water is allowed to flow into the atmosphere in the gas melting section 20 filled with carbon dioxide or oxygen at a pressure lower than the pressure of carbon dioxide or oxygen, and comes into contact with carbon dioxide or oxygen. It dissolves carbon dioxide and oxygen in deep ocean water.
  • the high pressure carbon dioxide enters the gap between the molecules of the deep sea water, and conversely, between the molecules of the deep sea water. Nitrogen and the like that have entered the gap are expelled and the gas is replaced. As a result, the growing water 25 in which carbon dioxide is dissolved, which has a high dissolved amount of carbon dioxide, can be obtained.
  • the algae growing device 10 of the present invention includes an algae tank 30.
  • the algae tank 30 can accommodate the growing water 25.
  • the algae for example, the nori leaf body 73 is contained in the growing water 25, the algae tank 30 can also accommodate the seaweed leaf body 73 contained in the growing water 25. It is also possible to grow unicellular microalgae by putting unicellular microalgae such as spirulina in the growing water instead of the seaweed fronds.
  • the inner surface 30A of the algae tank 30 in contact with the housed growing water 25 and the seaweed frond 73 is curved. That is, the algae tank 30 has a cylindrical shape that extends in one direction, has both ends in the extended direction closed, and has a substantially circular cross-sectional shape in a direction substantially orthogonal to the extended direction. ..
  • the length of the algae tank 30, that is, the length in the extending direction is not particularly limited, but can be, for example, 25 m.
  • the pressure outside the algae tank 30 is atmospheric pressure (1.0 hPa) and the growing water 25 is seawater in which carbon dioxide and oxygen are dissolved at a supply pressure higher than the atmospheric pressure, the pressure of the growing water 25 is It is higher than the external pressure of the algae tank 30. That is, the gas dissolving unit 20 can generate the growing water 25 having a pressure higher than the pressure outside the algae tank 30.
  • the algae growing device 10 of the present invention includes a plurality of first LEDs 40 and a plurality of second LEDs 41.
  • the plurality of first LEDs 40 are arranged in series in the same direction as the direction in which the algae tank 30 extends, with a predetermined interval, for example, 1 m.
  • the plurality of second LEDs 41 are also arranged in series in the same direction as the direction in which the algae tank 30 extends, with a predetermined interval, for example, 1 m.
  • the serial arrangement formed by the plurality of first LEDs 40 and the serial arrangement formed by the plurality of second LEDs 41 face each other.
  • the number of LEDs in the line connecting the array of the first LEDs 40 and the array of the second LEDs 41 which are substantially orthogonal to the extending direction of the algae tank 30 and which face each other is one. That is, the second LED 41 is not arranged at a position facing the first LED 40, while the first LED 40 is not arranged at a position facing the second LED 41.
  • the light emitting surface of the first LED 40 and the light emitting surface of the second LED 41 are located on the same surface as the inner surface 30A of the algae tank 30, and also on the outer surface opposite to the inner surface 30A. It is located in the same plane. That is, the first LED 40 and the second LED 41 are embedded in the wall of the algae tank 30.
  • the illuminance and wavelength of the light emitted by the first LED 40 and the second LED 41 are not particularly limited, but for example, light having an illuminance of 3800 to 4200 lux, preferably 4000 lux and a wavelength of 450 to 650 nm. When it occurs, it is preferable because algae grow most. Further, the first LED and the second LED are examples of the light emitting body.
  • the algae growing device 10 of the present invention has a carbon dioxide concentration sensor 42 capable of detecting the concentration of carbon dioxide in the growing water 25 contained in the algae tank 30 and the growing water 25 contained in the algae tank 30. It is provided with an oxygen concentration sensor 43 capable of detecting the oxygen concentration.
  • the carbon dioxide concentration sensor 42 and the oxygen concentration sensor 43 are attached to the wall of the algae tank 30, and a part of them protrudes inside the algae tank 30.
  • the carbon dioxide concentration and oxygen concentration are not particularly limited, but when the carbon dioxide concentration is 2.0 to 3.5%, algae grow most, which is preferable. In particular, when growing water having a carbon dioxide concentration of 2.0% is used, the growth rate of algae is about 24 times higher than that when natural seawater is used.
  • the algae growing device 10 of the present invention includes a carbon dioxide concentration sensor 42 and a control unit 44 capable of communicating with the oxygen concentration sensor 43. Further, the control unit 44 is attached to the gas melting unit 20.
  • the control unit 44 causes, for example, the gas dissolving unit 20 to open the communication state with the carbon dioxide supply pipe 21. Further, it is possible to control the carbon dioxide to be dissolved in the growing water 25. Further, when the oxygen concentration detected by the oxygen concentration sensor 43 is smaller than a predetermined value, the control unit 44 causes, for example, the gas dissolving unit 20 to open the communication state with the oxygen supply pipe 22 to further add oxygen. It is possible to control the dissolution in the growing water 25.
  • the algae growing device 10 of the present invention can also be provided with a temperature sensor, a pressure sensor, and the like, and the control unit 44 can also have an artificial intelligence function.
  • the algae growing device 10 of the present invention includes a supply unit 50.
  • the supply unit 50 communicates with the gas dissolution unit 20. That is, one end of the growing water supply pipe 23 communicates with the gas melting section 20 and the other end opposite to one end of the growing water supply pipe 23 communicates with the supply section 50. There is.
  • the supply unit 50 can discharge the growing water 25 along the bending direction of the inner side surface 30A of the algae tank 30 or along the direction diagonally intersecting the bending direction. As a result, the growing water 25 flows in the algae tank 30 in a spiral flow as shown in FIG.
  • the supply unit 50 communicates with the algae tank 30. That is, the supply unit 50 has a supply pipe 51.
  • a plurality of through holes communicating the inside and the outside of the algae tank 30 are formed on the inner surface 30A of the algae tank 30, but the supply pipe 51 penetrates a plurality of through through the plurality of branch supply pipes. It communicates with each hole and is connected.
  • the supply pipe 51 communicates with each of the plurality of through holes of the algae tank 30 via the first branch supply pipe 51A, the second branch supply pipe 51B, and the third branch supply pipe 51C.
  • the first branch supply pipe 51A is communicated and connected to the first supply through hole 31 formed in the algae tank 30, and the first branch supply pipe is connected.
  • the other end of the 51A opposite to one end is communicated with and connected to the supply pipe 51.
  • one end of the second branch supply pipe 51B is communicated and connected to the second supply through hole formed in the algae tank 30, and the second branch supply pipe 51B is connected. The other end communicates with the supply pipe 51 and is connected.
  • one end of the third branch supply pipe 51C is communicated and connected to the third supply through hole formed in the algae tank 30, and the third branch supply pipe 51C is connected. The other end communicates with the supply pipe 51 and is connected.
  • the supply unit 50 has a first cover body 52A, a second cover body 52B, and a third cover body 52C.
  • the first cover body 52A is arranged on the central axis of the first supply through hole extending in a direction substantially orthogonal to the line connecting the opposing edges of the first supply through hole 31. ing.
  • the first supply through hole center axis is an imaginary line that has no substance.
  • first cover body 52A is attached to the inner side surface 30A of the algae tank 30. Further, the first cover body 52A forms a first discharge space 54A communicating with the first branch supply pipe 51A between the inner side surface 30A of the algae tank 30.
  • first cover body 52A is an opening that communicates the first discharge space 54A with the inside of the algae tank 30 and faces the direction in which the algae tank 30 extends and intersects with the extending direction. 53A is formed. Further, the surface of the first cover body 52A opposite to the surface facing the first discharge space 54A is curved.
  • the second cover body 52B and the third cover body 52C also form a discharge space between the inner side surface 30A of the algae tank 30 like the first cover body 52A. Further, a discharge port is formed which communicates the discharge space with the inside of the algae tank 30 and faces the direction in which the algae tank 30 extends and intersects with the extending direction.
  • the growing water 25 discharged from each of the first branch supply pipe 51A, the second branch supply pipe 51B, and the third branch supply pipe 51C includes the first cover body 52A and the second cover body 52B.
  • Each of the third cover body 52C and the third cover body 52C, the direction in which the growing water 25 flows is directed to the inner side surface 30A of the algae tank 30. Therefore, the supply unit 50 can flow the growing water 25 along the curved inner side surface 30A of the algae tank 30.
  • the number of branch supply pipes and the number of cover bodies corresponding thereto are three, but of course, the number is not limited to this. By increasing the number of branch supply pipes and the number of corresponding cover bodies, a stronger vortex-like flow can be generated.
  • the algae growing device 10 of the present invention includes a circulation pump unit 60.
  • the circulation pump unit 60 communicates with the algae tank 30 and the gas dissolving unit 20.
  • one end of the suction pipe 61 communicates with the algae tank 30, and the other end of the suction pipe 61 opposite to one end communicates with the circulation pump unit 60.
  • a suction through hole 32 which is a through hole for communicating the inside and the outside of the algae tank 30 is formed, and one end of the suction pipe 61 is a suction through hole. It communicates with 32 and is connected.
  • one end of the delivery pipe 62 communicates with the circulation pump unit 60, and the other end opposite to one end of the delivery pipe 62 communicates with the gas melting unit 20.
  • the circulation pump unit 60 can suck out the growing water 25 and the seaweed fronds 73 contained in the algae tank 30 from the algae tank 30. Further, the circulation pump unit 60 sends the sucked-out growing water 25 and the seaweed frond 73 to the gas dissolving part 20, and supplies the gas-dissolving part 20 and the seaweed frond 73 to the growing water 25 and the seaweed frond 73 by the force at the time of sending.
  • Growing water 25 and seaweed fronds 73 can be injected into the algae tank 30 from the first branch supply pipe 51A, the second branch supply pipe 51B, and the third branch supply pipe 51C through the pipe 51. Is.
  • the gas dissolving unit 20 can dissolve carbon dioxide and oxygen in the growing water 25 sent to the gas dissolving unit 20 together with the seaweed frond 73.
  • the algae growing device 10 of the present invention includes a seaweed frond supply unit 70.
  • the seaweed leaf body supply unit 70 communicates with the supply unit 50 and can supply the seaweed leaf body 73 to the supply unit 50.
  • one end of the seaweed frond supply pipe 71 communicates with the seaweed frond supply pipe 70, and the other end opposite to one end of the seaweed frond supply pipe 71 communicates with the growing water supply pipe 23. Is connected.
  • the seaweed frond supply unit 70 communicates with the supply unit 50 via the seaweed frond supply pipe 71 and the growing water supply pipe 23. ing.
  • the algae tank 30 is arranged so that the extending direction of the algae tank 30 intersects the horizontal direction. Further, the position of one end of the algae tank 30 in which the suction through hole 32, which is the suction point where the growing water 25 and the seaweed leaf 73 are sucked out from the algae tank 30, is formed is different from the one end. It exists below the position of the other end on the opposite side in the vertical direction. That is, both ends of the algae tank 30 are supported by a set of algae tank support portions 35 having different heights, and the algae tank 30 is arranged in an inclined manner.
  • the direction in which the first discharge port 53 of the first cover body 52A faces is a direction diagonally intersecting the direction in which the algae tank 30 extends, and the algae having the suction through hole 32 formed therein. This is the direction toward one end of the tank 30.
  • the direction in which the second discharge port of the second cover body 52B faces and the direction in which the third discharge port of the third cover body 52C faces also the first discharge port of the first cover body 52A.
  • the direction is the same as the direction in which 53 faces.
  • a discharge through hole 33 which is a through hole for communicating with the above, is formed.
  • one end of the discharge pipe 36 is communicated and connected to the discharge through hole 33. Further, the other end of the discharge pipe 36 opposite to one end is connected to the seaweed storage tank 80 for storing the seaweed fronds 73 grown to a length of about 15 cm together with the growing water 25. ..
  • the discharge pipe 36 is communicated and connected to the same end as the end of the algae tank 30 in which the suction through hole 32 is formed, the growing water 25 and the seaweed leaves are used by utilizing the gradient of the algae tank 30.
  • the body 73 can be discharged.
  • the air vent through hole 34 which is a through hole that communicates the inside and the outside of the algae tank 30, is one end of the algae tank 30 in which the suction through hole 32 and the discharge through hole 33 are formed. It is formed at the other end on the opposite side.
  • the air bleeding through hole 34 is a through hole for evacuating the air in the algae tank 30 when the growing water 25 and the seaweed leaf 73 are discharged from the algae tank 30 by the discharge pipe 36.
  • the algae growing device 10 of the present invention includes a liquid fertilizer injection unit 90.
  • the liquid fertilizer injection unit 90 communicates with the supply unit 50, and the liquid fertilizer can be injected into the supply unit 50.
  • one end of the liquid fertilizer supply pipe 91 communicates with the liquid fertilizer injection section 90, and the other end of the liquid fertilizer supply pipe 91 opposite to one end communicates with the growing water supply pipe 23.
  • the liquid fertilizer injection unit 90 communicates with the supply unit 50 via the liquid fertilizer supply pipe 91 and the growing water supply pipe 23.
  • the algae growing device 10 of the present invention includes a seawater injection unit 100.
  • the seawater injection unit 100 communicates with the gas dissolution unit 20. That is, one end of the seawater supply pipe 103 communicates with the seawater injection unit 100, and the other end of the seawater supply pipe 103 opposite to one end communicates with the gas melting unit 20. It is connected to 62 in communication.
  • the seawater injection unit 100 communicates with the gas dissolving unit 20 via the delivery pipe 62, but it is needless to say that the seawater injection unit 100 can directly communicate with the gas dissolution unit 20 without passing through the delivery pipe 62. ..
  • seawater suction pipe 101 is communicated and connected to the seawater injection unit 100, and the other end of the seawater suction pipe 101 opposite to one end is a seawater storage tank that stores deep sea water. It communicates with 105.
  • the seawater injection unit 100 can inject deep sea water into the gas dissolution unit 20.
  • the algae growing device 10 of the present invention includes a sterilization treatment unit 106.
  • the sterilization treatment unit 106 is connected to the seawater suction pipe 101 so as to be able to sterilize the deep sea water flowing through the seawater suction pipe 101.
  • the sterilization treatment unit 106 specifically sterilizes deep sea water using, for example, ozone or ultraviolet rays.
  • the seawater injection section is an example of a liquid injection section. Further, it is not always necessary to use deep sea water as the liquid, and for example, groundwater can be used.
  • the algae growing device 10 of the present invention includes a growing water supply control valve 24 attached to the growing water supply pipe 23. Further, the algae growing device 10 of the present invention includes a discharge control valve 37 attached to the discharge pipe 36. Further, the algae growing device 10 of the present invention includes an air bleeding control valve 38 attached to the air bleeding through hole 34.
  • the algae growing device 10 of the present invention includes a delivery control valve 63 attached to the delivery pipe 62. Further, the algae growing device 10 of the present invention includes a seaweed frond supply control valve 72 attached to a seaweed frond supply pipe 71.
  • the algae growing device 10 of the present invention includes a liquid fertilizer supply control valve 92 attached to the liquid fertilizer supply pipe 91.
  • the algae growing device 10 of the present invention includes a seawater suction control valve 102 attached to the seawater suction pipe 101. Further, the algae growing device 10 of the present invention includes a seawater supply control valve 104 attached to the seawater supply pipe 103.
  • control valves can be controlled based on the control signal transmitted by the smartphone 107.
  • the seaweed fronds 73 contained in the growing water 25 and the growing water 25 that control the growing water supply control valve 24 based on the control signal transmitted by the smartphone 107 and flow from the gas dissolving unit 20 to the algae tank 30.
  • Flow rate can be controlled.
  • the discharge control valve 37 can be controlled based on the control signal transmitted by the smartphone 107, and the flow rates of the growing water 25 and the seaweed fronds 73 contained in the growing water 25 discharged from the algae tank 30 can be controlled.
  • the air bleeding control valve 38 can be controlled based on the control signal transmitted by the smartphone 107 to control the opening and closing of the air bleeding through hole 34. Further, the seaweed leaves contained in the growing water 25 and the growing water 25, which control the sending control valve 63 based on the control signal transmitted by the smartphone 107 and are sucked out from the algae tank 30 and sent to the gas dissolving unit 20. The flow rate of the body 73 can be controlled.
  • seaweed leaf body supply control valve 72 can be controlled based on the control signal transmitted by the smartphone 107, and the supply amount of the seaweed leaf body 73 to the supply unit 50 can be controlled.
  • the liquid fertilizer supply control valve 92 can be controlled based on the control signal transmitted by the smartphone 107, and the amount of liquid fertilizer supplied to the supply unit 50 can be controlled.
  • seawater suction control valve 102 and the seawater supply control valve 104 can be controlled based on the control signal transmitted by the smartphone 107, and the amount of deep sea water supplied to the gas melting unit 20 can be controlled.
  • control valves can also be controlled based on control signals transmitted by other mobile terminals such as tablet terminals.
  • the algae growing device 10 of the present invention is arranged in a temperature-controlled room, and although not shown, a plurality of algae tanks 30 are arranged in parallel.
  • the supply unit does not necessarily have to have a cover body. However, if there is a cover body, it is preferable that the algae are less likely to be caught in the supply portion than a configuration in which the supply pipe is projected from the inner surface of the algae tank without the cover body.
  • a plurality of LEDs that is, light emitters may not necessarily be arranged in series at predetermined intervals in the same direction as the algae tank extends, for example, the algae tank. It can also be arranged in a direction substantially orthogonal to the extending direction.
  • a plurality of illuminants are arranged in series in the same direction as the algae tank extends at a predetermined distance from each other, and there are a plurality of illuminants in series and the algae tank extends. If the number of illuminants on the line connecting two arrays that are substantially orthogonal to each other and that face each other is one, the size of each illuminant and the number of illuminants can be suppressed. , It is preferable because the light emitting ability can be maintained.
  • the algae tanks do not necessarily have to be arranged at an angle, and the direction in which the discharge port, that is, the opening of each cover body faces is not necessarily the direction in which the algae tank extends. It does not have to be in the direction toward one end of the algae tank in which the suction points are formed so as to intersect diagonally.
  • the algae growing device of the present invention does not necessarily have to include a liquid fertilizer injection unit. Further, the algae growing device of the present invention does not necessarily have to include a control valve that can be controlled based on a signal transmitted by a smartphone, that is, a mobile terminal.
  • liquid fertilizer injection part it is preferable because it can promote the growth of algae, and if there is a control valve, the flow rate of the lysate through the communicating pipe can be controlled or algae can be controlled by one operation of the mobile terminal. It is preferable because the amount of the dissolved liquid discharged from the tank can be controlled.
  • the algae growing method of the present invention using the algae growing device of the present invention will be described. That is, in the method for growing algae of the present invention, in a gas dissolving unit 20 capable of dissolving carbon dioxide in a liquid such as deep sea water, carbon dioxide having a pressure higher than the pressure of the deep sea water is dissolved and dissolved in the deep sea water. It is provided with a growing water generation step which is a dissolution liquid generation step for producing the growing water 25 which is a liquid.
  • the algae growing method of the present invention includes a discharge step of supplying the growing water 25 to the algae tank 30 having the curved inner side surface 30A and flowing the growing water 25 along the inner side surface 30A of the algae tank 30.
  • the algae growing method of the present invention includes a seaweed frond supply step of supplying the seaweed frond 73 to the algae tank 30.
  • the algae growing method of the present invention includes a light emitting step of emitting light toward the inside of the algae tank 30 containing the growing water 25 and the seaweed fronds 73 contained in the growing water 25.
  • the algae growing method of the present invention includes a circulation step of sucking the growing water 25 and the seaweed frond 73 from the algae tank 30 and introducing the growing water 25 and the seaweed frond 73 into the gas dissolving section 20.
  • the algae growing method of the present invention includes a discharge step of discharging the seaweed fronds 73 from the algae tank 30.
  • the algae growing method of the present invention includes a cutting step of cutting the discharged seaweed fronds.
  • the seaweed frond supply step supplies the seaweed frond 73 having a length shorter than the length of the nori frond 73 discharged in the discharge step.
  • the algae growing method of the present invention does not necessarily have to include a cutting step, but if there is a cutting step, a part of the grown Nori fronds can be reused, and the Nori fronds are grown semipermanently. It is preferable because it can be used.
  • FIG. 1 thin arrows indicate the flow of liquid and solid, and thick arrows indicate the flow of gas.
  • the seaweed frond supply unit 70 supplies the seaweed frond 73 having a length of about 1 cm to the algae tank 30 via the supply unit 50, and carries out the seaweed frond supply step. At this time, the amount of the seaweed frond 73 supplied to the algae tank 30 is adjusted by the seaweed frond supply control valve 72.
  • the seawater injection unit 100 sucks the deep sea water stored in the seawater storage tank 105, and injects the deep sea water into the gas dissolving unit 20.
  • the sterilization treatment unit 106 sterilizes the deep sea water flowing through the seawater suction pipe 101.
  • the gas dissolving section 20 carbon dioxide having a pressure higher than the pressure of the deep sea water is dissolved in the injected deep sea water to generate the growing water 25 which is a dissolution liquid, and the growing water generation step is carried out. ..
  • oxygen having a pressure higher than the pressure of the deep sea water is also dissolved in the injected deep sea water.
  • the growing water 25 generated in the gas melting unit 20 is sent to the supply unit 50 through the growing water supply pipe 23, and the first branch supply pipe 51A, the second branch supply pipe 51B, and the second branch supply pipe 51B of the supply unit 50 are sent.
  • the growing water 25 is supplied to the algae tank 30 through the branch supply pipe 51C of 3.
  • the circulation pump unit 60 introduces the sucked growing water 25 and the seaweed fronds 73 into the gas dissolving unit 20. At this time, the sucked growing water 25 and the seaweed fronds 73 are sent to the gas dissolving section 20 through the suction pipe 61 and further through the delivery pipe 62.
  • the circulation pump unit 60 introduces the growing water 25 and the seaweed leaf body 73 into the gas dissolving part 20, and further introduces the growing water 25 and the seaweed leaf body 73 into the supply unit 50 through the gas dissolving part 20. Then, with that momentum, the first branch supply pipe 51A, the second branch supply pipe 51B, and the third branch supply pipe 51C of the supply unit 50 feed the growing water 25 and the seaweed leaf body 73 to the algae tank 30. inject. At this time, the supply unit 50 discharges the growing water 25 and the seaweed fronds 73 along the direction diagonally intersecting the bending direction of the inner side surface 30A of the algae tank 30. That is, the circulation step and the discharge step are carried out.
  • the gas dissolving unit 20 dissolves carbon dioxide and oxygen in the growing water 25 introduced into the gas dissolving unit 20 together with the seaweed frond 73.
  • the plurality of first LEDs 40 and the plurality of second LEDs 41 are made to emit light, and the light is emitted toward the inside of the algae tank 30 containing the growing water 25 and the seaweed fronds 73 contained in the growing water 25, and the light emitting step. To carry out.
  • the discharge control valve 37 is opened, the seaweed frond 73 is discharged from the algae tank 30 through the discharge pipe 36 together with the growing water 25, and the discharge process is carried out.
  • the length of the seaweed frond 73 can be measured by imaging the seaweed frond 73 from the outside of the algae tank 30 and analyzing the image obtained by the imaging.
  • the discharged seaweed frond 73 is cut to a length of about 1 cm, and the cutting step is carried out.
  • the seaweed fronds having a length of about 1 cm were supplied to the algae tank about 24 hours later. Was able to grow up to about 15 cm.
  • the algae growing device of the present invention includes a gas dissolving part, an LED, that is, a light emitting body, and a circulation pump part, photosynthesis can be promoted in the algae tank.
  • the algae growing device of the present invention includes an algae tank and a supply unit, it is possible to generate a spiral flow of growing water, that is, a solution in the algae tank, and the light from the luminescent material is emitted from the seaweed. It can be applied evenly to the fronds, that is, algae.
  • the spiral flow makes it easier to separate oxygen bubbles generated by photosynthesis from algae, which makes it easier for algae to absorb carbon dioxide.
  • the algae growing device of the present invention is provided with a circulation pump section, the algae are passed through the gas dissolving section together with the dissolving solution, so that the gas dissolving section can sufficiently supply carbon dioxide to the algae.
  • the algae growing device of the present invention can improve the algae growing efficiency.
  • the algae growing device of the present invention also grows algae using the algae growing device of the present invention, the efficiency of growing algae can be improved.
  • nori leaves are used, the growth can be completed faster than the method of supplying and growing nori spores and filaments.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Cultivation Of Seaweed (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】藻類の育成効率を向上させることができる藻類育成装置及び藻類育成方法を提供する。 【解決手段】藻類育成装置10は、気体溶解部20と、藻類槽30と、第1のLED40と、第2のLED41と、供給部50と、循環ポンプ部60とを備える。気体溶解部20は、海洋深層水に二酸化炭素及び酸素を溶解して育成水を生成する。藻類槽30は、育成水と海苔葉体を収容する。循環ポンプ部60は育成水と海苔葉体を藻類槽30から吸出して気体溶解部20へ送出し、気体溶解部20と供給部50の供給管51を通過させて育成水と海苔葉体を藻類槽30内へ注入する。供給部50は、藻類槽30の内側面の湾曲方向に対して斜めに交差する方向に沿って育成水と海苔葉体を放流し、育成水は渦状の流れとなって藻類槽30内を流れる。

Description

藻類育成装置及び藻類育成方法
 本発明は藻類育成装置及び藻類育成方法に関する。詳しくは、例えば海苔を育成するための、藻類育成装置及び藻類育成方法に係るものである。
 藻類例えば海苔の養殖は海上で行われることが多いが、海水温の上昇などが原因で海上養殖による海苔生産量は低下している。
 海苔巻き、寿司、おにぎりなど、日本においては海苔が使用される食品は多く存在し、海苔は日本食に欠かせない存在であることから、海苔生産量の低下は深刻な問題である。
 そこで、このような海上養殖の問題点を解決すべく、自然環境の影響を受け難い陸上での藻類の養殖が提案されている。
 例えば特許文献1には、図4に示された海藻類養殖装置が記載されている。
 すなわち、特許文献1に記載された海藻類養殖装置301は、その本体として上部に開口部が形成された、有底で円筒形の水槽302を備える。
 また、水槽302の上部開口部付近には、注水管303が連通して取付けられている。
 また、略裁頭円錐形の筒状部材である筒状体305が水槽302の内部に配置されている。
 また、筒状体305の上下方向の全体にわたって、複数の開孔306が形成されている。
 また、図示していない外部のエアーポンプと接続されたエアーストーン307が、筒状体305の外周近傍かつ水槽302の下部に配置されている。ここで、エアーストーン307は曝気機構である。
 また、水槽302の底部であり、かつ、筒状体305の内側には、吸水口308が形成されている。
 また、吸水口308には、配管309が連通されている。水槽302中の海水の水位が所望の水位に達すると、配管309を通じた排水が行なわれ、水槽中の水位が一定に保たれる。
特開2014-036596号公報
 しかしながら、特許文献1に記載の装置は曝気方式を採用しており、充分に二酸化炭素もしくは酸素が海水に溶解していなかった。なぜなら、曝気方式では気泡が発生するが、気体が充分に海水に溶解していないので気泡が発生するからである。
 また、気泡は底層部に滞留しないので、水槽の底層部の藻類に充分に二酸化炭素もしくは酸素が供給されていなかった。
 その結果、藻類の育成効率が充分ではなかった。
 本発明は、以上の点に鑑みて創案されたものであり、藻類の育成効率を向上させることができる藻類育成装置及び藻類育成方法を提供することを目的とする。
 上記の目的を達成するために、本発明の藻類育成装置は、液体に二酸化炭素を溶解して溶解液を生成可能な気体溶解部と、前記溶解液及び同溶解液に入れられた藻類を収容可能であり、かつ、収容された同溶解液及び同藻類に接触する内側面が湾曲した藻類槽と、前記溶解液及び前記藻類が収容される前記藻類槽の内部へ向けて発光可能な発光体と、前記気体溶解部と前記藻類槽とに連通しており、かつ、同藻類槽の前記内側面の湾曲方向に沿って、または同湾曲方向に対して斜めに交差する方向に沿って前記溶解液を放流可能な供給部と、前記藻類槽と前記気体溶解部とに連通しており、かつ、前記藻類槽に収容された、前記溶解液と前記藻類を同藻類槽から吸出可能であると共に、吸出された同溶解液と同藻類を同気体溶解部に通して前記供給部から同藻類槽へ注入可能な循環ポンプ部とを備える。
 ここで、液体に二酸化炭素を溶解させて溶解液を生成可能な気体溶解部と、溶解液及び藻類が収容される藻類槽の内部へ向けて発光可能な発光体と、藻類槽と気体溶解部とに連通しており、かつ、藻類槽に収容された、溶解液と藻類を藻類槽から吸出可能であると共に、吸出された溶解液と藻類を気体溶解部に通して供給部から藻類槽へ注入可能な循環ポンプ部とによって、藻類槽内において光合成を促進できる。
 気体溶解部が対象とする「液体」は、気体溶解部によって二酸化炭素が未だ溶解されていない液体、並びに気体溶解部によってすでに二酸化炭素が溶解された液体を含むものとする。
 また、溶解液及び溶解液に入れられた藻類を収容可能であり、かつ、収容された溶解液及び藻類に接触する内側面が湾曲した藻類槽と、気体溶解部と前記藻類槽とに連通しており、かつ、藻類槽の内側面の湾曲方向に沿って、または湾曲方向に対して斜めに交差する方向に沿って溶解液を放流可能な供給部とによって、藻類槽内において溶解液の渦状の流れを発生させることができ、発光体からの光を藻類に満遍なく当てることができる。
 また、渦状の流れによって、光合成で発生した酸素気泡を藻類から分離し易くなり、藻類が二酸化炭素を吸収し易くなる。
 また、藻類槽と気体溶解部とに連通しており、かつ、藻類槽に収容された、溶解液と藻類を藻類槽から吸出可能であると共に、吸出された溶解液と藻類を気体溶解部に通して供給部から藻類槽へ注入可能な循環ポンプ部によって、藻類が溶解液と共に気体溶解部に通されるので、気体溶解部において藻類に充分に二酸化炭素を供給することができる。
 また、本発明の藻類育成装置において、藻類槽は一方向に延びており、かつ、延びた方向の両端が閉塞した円筒形状を有しており、供給部は、藻類槽の内側面に形成されていると共に藻類槽の内部と外部とを連通する貫通穴に、連通して接続された供給管と、貫通穴の対向する縁部同士を結ぶ線に対して略直交する方向に延びる貫通穴中心軸線上に配置されており、かつ、藻類槽の内側面に取付けられており、かつ、供給管と連通する空間を内側面との間に形成しており、かつ、空間と藻類槽の内部とを連通すると共に藻類槽が延びる方向と交差する方向に面する開口部が形成されており、かつ、空間に向いた面とは反対側の面が湾曲したカバー体とを有する構成とすることができる。
 この場合、カバー体が無く供給管を藻類槽の内側面から突出させた構成よりも、藻類が供給部に引っ掛かり難い。
 また、藻類槽が一方向に延びた本発明の藻類育成装置において、複数の発光体が、藻類槽が延びる方向と同じ方向に、互いに所定の間隔を設けて直列的に配列されており、発光体の直列的な配列は複数あり、かつ、藻類槽が延びる方向に対して略直交していると共に対向する2つの配列を結ぶ線上の発光体の数は1つである構成とすることができる。
 この場合、1つ当たりの発光体の大きさと、発光体の数を抑えつつ、発光能力を維持することができる。
 また、藻類槽が一方向に延びた本発明の藻類育成装置において、藻類槽は、藻類槽の延びる方向が水平方向と交差する状態で配置されており、かつ、溶解液と藻類が吸出される箇所である吸出箇所が藻類槽の一方の端部に形成されており、かつ、吸出箇所が形成された藻類槽の一方の端部の位置は、一方の端部とは反対側の他方の端部の位置よりも鉛直方向において下方に在り、カバー体の開口部が面する方向が、藻類槽が延びる方向に対して斜めに交差する方向であり、かつ、藻類槽の一方の端部寄りの方向である構成とすることができる。
 この場合、吸出箇所が形成された藻類槽の一方の端部の位置は、一方の端部とは反対側の他方の端部の位置よりも鉛直方向において下方に在る、すなわち藻類槽が傾いており、かつ、カバー体の開口部から溶解液が藻類槽の一方の端部寄りに流出されるので、重力と溶解液の流れる力とによって吸出箇所の方へ藻類が集まり易く、藻類槽の延びる長さを比較的長くしても溶解液と藻類を循環できる。
 本発明で言う「藻類槽の端部」とは、閉塞された部分すなわち藻類槽の延びる方向に対して略直交する面部分のみならず、閉塞された部分から藻類槽の延びる方向へ所定の範囲まで広がる領域も含むものとする。
 また、本発明の藻類育成装置において、気体溶解部は、藻類槽の外部の圧力よりも高い圧力を有する溶解液を生成可能である構成とすることができる。
 この場合、藻類槽内に空気層を形成し難い。また、藻類槽の外部から藻類槽内へ雑菌などが流入し難い。
 また、本発明の藻類育成装置において、供給部と連通しており、かつ、供給部に液肥を注入可能な液肥注入部と、気体溶解部と連通しており、かつ、気体溶解部に液体を注入可能な液体注入部と、前記気体溶解部と、前記藻類槽と、前記供給部と、前記循環ポンプ部と、前記液肥注入部と、前記液体注入部とを互いに連通して接続する連通管と、同藻類槽の内部と外部とを連通する開口部もしくは該開口部に連通して接続された排出管とに取付けられており、かつ、携帯端末が発信する信号に基づいて制御可能な制御バルブとを備える構成とすることができる。
 この場合、携帯端末の操作一つで連通管を通る溶解液の流量を制御したり、藻類槽からの溶解液の排出量を制御したりすることができる。
 また、藻類槽が複数存在するときには、作業負担を軽減できる。
 また、上記の目的を達成するために、本発明の藻類育成方法は、液体に二酸化炭素を溶解可能な気体溶解部において、同液体に同液体の圧力よりも高い圧力を有する二酸化炭素を溶解して溶解液を生成する溶解液生成工程と、湾曲した内側面を有する藻類槽に前記溶解液を供給して同藻類槽の同内側面に沿って前記溶解液を流す放流工程と、前記藻類槽に海苔葉体を供給する海苔葉体供給工程と、前記溶解液と同溶解液に入れられた海苔葉体を収容した前記藻類槽の内部へ向けて発光する発光工程と、前記藻類槽から前記溶解液と前記海苔葉体を吸出して、前記気体溶解部へ同溶解液と同海苔葉体を導入する循環工程とを備える。
 ここで、液体に二酸化炭素を溶解可能な気体溶解部において、液体に液体の圧力よりも高い圧力を有する二酸化炭素を溶解させて溶解液を生成する溶解液生成工程と、溶解液と溶解液に入れられた海苔葉体を収容した藻類槽の内部へ向けて発光する発光工程と、藻類槽から溶解液と海苔葉体を吸出して、気体溶解部へ溶解液と海苔葉体を導入する循環工程とによって、藻類槽内において光合成を促進できる。
 また、湾曲した内側面を有する藻類槽に溶解液を供給して藻類槽の内側面に沿って溶解液を流す放流工程によって、藻類槽内において溶解液の渦状の流れを発生させることができ、発光体からの光を海苔葉体に満遍なく当てることができる。
 また、渦状の流れによって、光合成で発生した酸素気泡を海苔葉体から分離し易くなり、海苔葉体が二酸化炭素を吸収し易くなる。
 また、溶解液を流すときには海苔葉体も一緒に流している場合もあるものとする。
 また、藻類槽に海苔葉体を供給する海苔葉体供給工程によって、海苔葉体を使用するので、海苔の胞子や糸状体を供給して育成する方法よりも早く育成を完了させることができる。
 また、藻類槽から溶解液と海苔葉体を吸出して、気体溶解部へ溶解液と海苔葉体を導入する循環工程によって、海苔葉体が溶解液と共に気体溶解部に導入されるので、気体溶解部において海苔葉体に充分に二酸化炭素を供給することができる。
 また、本発明の藻類育成方法は、藻類槽から海苔葉体を排出する排出工程と、排出された前記海苔葉体を切断する切断工程とを備え、海苔葉体供給工程は、排出工程で排出された海苔葉体の長さよりも短い長さを有する海苔葉体を供給する構成とすることができる。
 この場合、生長した海苔葉体の一部を再利用することができ、半永久的に海苔葉体を育成することができる。
 本発明に係る藻類育成装置は、藻類の育成効率を向上させることができる。
 本発明に係る藻類育成方法は、藻類の育成効率を向上させることができる。
本発明を適用した藻類育成装置の一例を説明する概略図である。 図1のA-A線に沿って切断された、本発明を適用した藻類育成装置が備える、藻類槽と供給部の概略断面図である。 本発明を適用した藻類育成装置が備える供給部の第1のカバー体の第1の放流口から育成水と海苔葉体が放流される様子の一例を示す概略図である。 従来の海藻類養殖装置を示す概略図である。
 以下、本発明の実施の形態について図面を参照しながら説明し、本発明の理解に供する。
 図1は、本発明を適用した藻類育成装置の一例を説明する概略図である。また、図2は、図1のA-A線に沿って切断された、本発明を適用した藻類育成装置が備える、藻類槽と供給部の概略断面図である。また、図3は、本発明を適用した藻類育成装置が備える供給部の第1のカバー体の第1の放流口から育成水と海苔葉体が放流される様子の一例を示す概略図である。
 図1に示す本発明の藻類育成装置10は、気体溶解部20を備える。
 ここで、気体溶解部20は、液体例えば海洋深層水に二酸化炭素及び酸素を溶解して、溶解液である育成水25を生成可能である。
 すなわち、気体溶解部20には、気体溶解部20の内部に二酸化炭素を供給するための二酸化炭素供給管21が連通して接続されている。
 また、気体溶解部20には、気体溶解部20の内部に酸素を供給するための酸素供給管22が連通して接続されている。
 また、二酸化炭素供給管21は、例えば供給圧1.2hPaで気体溶解部20内へ二酸化炭素を供給できるよう、図示していない供給圧調整機構を有する。
 また、酸素供給管22には、例えば供給圧1.2hPaで気体溶解部20内へ酸素を供給できるよう、図示していない供給圧調整機構を有する。
 また、海洋深層水は、二酸化炭素の供給圧や酸素の供給圧よりも低い供給圧で気体溶解部20内へ供給される。
 すなわち、海洋深層水を、二酸化炭素や酸素で満たされた気体溶解部20内の雰囲気へ、この二酸化炭素の圧力や酸素の圧力より低い圧力に維持して流入させて、二酸化炭素や酸素と接触させ、二酸化炭素や酸素を海洋深層水に溶解するのである。
 このとき、海洋深層水の圧力と二酸化炭素の圧力との間に圧力差があることで、圧力の高い二酸化炭素が海洋深層水の分子間の隙間に入り込み、逆に海洋深層水の分子間の隙間に入り込んでいた窒素などが追い出されて気体の置換が行われる。
 これにより、二酸化炭素溶存量が高い、二酸化炭素が溶解した育成水25が得られる。
 また、海洋深層水の圧力と酸素の圧力との間にも圧力差があることで、圧力の高い酸素が海洋深層水の分子間の隙間に入り込み、逆に海洋深層水の分子間の隙間に入り込んでいた窒素などが追い出されて気体の置換が行われる。
 これにより、酸素溶存量が高い、酸素が溶解した育成水25が得られる。
 また、気体溶解部は必ずしも酸素を溶解しなくてもよい。
 また、本発明の藻類育成装置10は、藻類槽30を備える。
 ここで、藻類槽30は、育成水25を収容可能である。また、育成水25には藻類例えば海苔葉体73が入れられるので、藻類槽30は、育成水25に入れられた海苔葉体73も収容可能である。
 また、海苔葉体の代わりにスピルリナなどの単細胞微細藻類を育成水に入れて、単細胞微細藻類を育成することもできる。
 また、収容された育成水25及び海苔葉体73に接触する藻類槽30の内側面30Aは湾曲している。
 すなわち、藻類槽30は一方向に延びており、かつ、延びた方向の両端が閉塞しており、かつ、延びた方向に対して略直交する方向における断面形状が略円形である円筒形状を有する。
 また、藻類槽30の長さ、すなわち延びた方向における長さは特に制限されないが、例えば25mとすることができる。
 また、藻類槽30の外部の気圧は大気圧(1.0hPa)であり、育成水25は大気圧より高い供給圧で二酸化炭素や酸素が溶解された海水であるから、育成水25の圧力は藻類槽30の外部の圧力よりも高い。
 すなわち、気体溶解部20は、藻類槽30の外部の圧力よりも高い圧力を有する育成水25を生成可能である。
 また、本発明の藻類育成装置10は、複数の第1のLED40及び複数の第2のLED41を備える。
 ここで、複数の第1のLED40は、藻類槽30が延びる方向と同じ方向に、互いに所定の間隔例えば1mの間隔を設けて直列的に配列されている。
 また、複数の第2のLED41も、藻類槽30が延びる方向と同じ方向に、互いに所定の間隔例えば1mの間隔を設けて直列的に配列されている。
 また、図1に示すように、複数の第1のLED40が構成する直列的な配列と、複数の第2のLED41が構成する直列的な配列は互いに対向している。
 また、藻類槽30が延びる方向に対して略直交していると共に対向する第1のLED40の配列と第2のLED41の配列とを結ぶ線におけるLEDの数は1つである。すなわち、第1のLED40と対向する位置に第2のLED41は配置されておらず、一方、第2のLED41と対向する位置に第1のLED40も配置されていない。
 また、第1のLED40の発光面及び第2のLED41の発光面はそれぞれ、藻類槽30の内側面30Aと同一面内に位置しており、また、内側面30Aとは反対側の外側面とも同一面内に位置している。
 すなわち、第1のLED40及び第2のLED41は藻類槽30の壁に埋め込まれている。
 また、第1のLED40及び第2のLED41が発する光の照度及び波長は特に限定されないが、例えば、3800~4200ルクス、好ましくは4000ルクスの照度を有し、450~650nmの波長を有する光を発した場合、藻類が最も生長するので好ましい。
 また、第1のLED及び第2のLEDは発光体の一例である。
 また、本発明の藻類育成装置10は、藻類槽30に収容された育成水25中の二酸化炭素の濃度を検知可能な二酸化炭素濃度センサ42と、藻類槽30に収容された育成水25中の酸素の濃度を検知可能な酸素濃度センサ43とを備える。
 ここで、二酸化炭素濃度センサ42及び酸素濃度センサ43は、藻類槽30の壁に取付けられており、かつ、一部が藻類槽30の内部に突出している。
 また、二酸化炭素濃度や酸素濃度は特に限定されないが、二酸化炭素濃度が2.0~3.5%である場合、藻類が最も生長するので好ましい。
 特に二酸化炭素濃度が2.0%である育成水を使用した場合、自然海水を使用した場合に比べて藻類の生長率が約24倍となる。
 また、本発明の藻類育成装置10は、二酸化炭素濃度センサ42及び酸素濃度センサ43と通信可能な制御部44を備える。
 また、制御部44は、気体溶解部20に取付けられている。
 また、制御部44は、二酸化炭素濃度センサ42が検知した二酸化炭素濃度が所定の値より小さい場合、例えば、気体溶解部20に二酸化炭素供給管21との連通状態を「開」状態にさせ、さらに二酸化炭素を育成水25に溶解させる制御が可能である。
 また、制御部44は、酸素濃度センサ43が検知した酸素濃度が所定の値より小さい場合、例えば、気体溶解部20に酸素供給管22との連通状態を「開」状態にさせ、さらに酸素を育成水25に溶解させる制御が可能である。
 また、本発明の藻類育成装置10は、温度センサや、圧力センサなども備えることができ、さらに制御部44は、人工知能機能を有することもできる。
 また、本発明の藻類育成装置10は、供給部50を備える。
 ここで、供給部50は、気体溶解部20に連通している。
 すなわち、育成水供給管23の一端が、気体溶解部20に連通して接続されており、育成水供給管23の一端とは反対側の他端が、供給部50に連通して接続されている。
 また、供給部50は、藻類槽30の内側面30Aの湾曲方向に沿って、または湾曲方向に対して斜めに交差する方向に沿って育成水25を放流可能である。
 その結果、育成水25は、図2に示すように渦状の流れとなって藻類槽30内を流れる。
 また、供給部50は、藻類槽30に連通している。
 すなわち、供給部50は、供給管51を有する。
 ここで、藻類槽30の内側面30Aには藻類槽30の内部と外部とを連通する複数の貫通穴が形成されているが、供給管51は複数の分岐供給管を介して、複数の貫通穴それぞれに連通して接続されている。
 すなわち、供給管51は、第1の分岐供給管51Aと、第2の分岐供給管51Bと、第3の分岐供給管51Cを介して、藻類槽30の複数の貫通穴それぞれに連通して接続されている。
 例えば、図2に示すように、藻類槽30に形成された第1の供給用貫通穴31に、第1の分岐供給管51Aの一端が連通して接続されており、第1の分岐供給管51Aの一端とは反対側の他端は供給管51に連通して接続されている。
 また、図示されていないが、藻類槽30に形成された第2の供給用貫通穴に、第2の分岐供給管51Bの一端が連通して接続されており、第2の分岐供給管51Bの他端は供給管51に連通して接続されている。
 また、図示されていないが、藻類槽30に形成された第3の供給用貫通穴に、第3の分岐供給管51Cの一端が連通して接続されており、第3の分岐供給管51Cの他端は供給管51に連通して接続されている。
 また、供給部50は、第1のカバー体52Aと、第2のカバー体52Bと、第3のカバー体52Cとを有する。
 ここで、第1のカバー体52Aは、第1の供給用貫通穴31の対向する縁部同士を結ぶ線に対して略直交する方向に延びる第1の供給用貫通穴中心軸線上に配置されている。
 なお、第1の供給用貫通穴中心軸線は、実体のない想像上の線である。
 また、第1のカバー体52Aは、藻類槽30の内側面30Aに取付けられている。
 また、第1のカバー体52Aは、第1の分岐供給管51Aと連通する第1の放流空間54Aを藻類槽30の内側面30Aとの間に形成している。
 また、第1のカバー体52Aには、第1の放流空間54Aと藻類槽30の内部とを連通すると共に藻類槽30が延びる方向と交差する方向に面する開口部である第1の放流口53Aが形成されている。
 また、第1のカバー体52Aの、第1の放流空間54Aに向いた面とは反対側の面は湾曲している。
 また、図示していないが、第2のカバー体52B及び第3のカバー体52Cも第1のカバー体52Aと同様に、放流空間を藻類槽30の内側面30Aとの間に形成しており、さらに、放流空間と藻類槽30の内部とを連通すると共に藻類槽30が延びる方向と交差する方向に面する放流口が形成されている。
 第1の分岐供給管51Aと、第2の分岐供給管51B、及び第3の分岐供給管51Cそれぞれから放出された育成水25は、第1のカバー体52Aと、第2のカバー体52B、及び第3のカバー体52Cそれぞれに当たり、育成水25の流れる方向が藻類槽30の内側面30Aへと向けられる。
 従って、供給部50は、藻類槽30の湾曲した内側面30Aに沿って育成水25を流すことができる。
 また、図1に示す例では、分岐供給管の数や、それに対応するカバー体の数は3つであるが、これに限定されないことは勿論である。
 分岐供給管の数や、それに対応するカバー体の数を増やすことで、さらに強い渦状の流れを発生させることができる。
 また、本発明の藻類育成装置10は、循環ポンプ部60を備える。
 ここで、循環ポンプ部60は、藻類槽30と気体溶解部20とに連通している。
 すなわち、吸出管61の一端が、藻類槽30に連通して接続されており、吸出管61の一端とは反対側の他端が、循環ポンプ部60に連通して接続されている。
 ここで、藻類槽30の一方の端部には、藻類槽30の内部と外部とを連通する貫通穴である吸出用貫通穴32が形成されており、吸出管61の一端は吸出用貫通穴32に連通して接続されている。
 また、送出管62の一端が、循環ポンプ部60に連通して接続されており、送出管62の一端とは反対側の他端が、気体溶解部20に連通して接続されている。
 また、循環ポンプ部60は、藻類槽30に収容された、育成水25と海苔葉体73を藻類槽30から吸出可能である。
 また、循環ポンプ部60は、吸出された育成水25と海苔葉体73を気体溶解部20へ送出し、送出したときの力で育成水25と海苔葉体73に、気体溶解部20と供給管51を通過させて、第1の分岐供給管51Aと、第2の分岐供給管51B、及び第3の分岐供給管51Cから、育成水25と海苔葉体73を藻類槽30内へ注入可能である。
 また、気体溶解部20は、海苔葉体73と一緒に気体溶解部20へ送出されて来た育成水25に、二酸化炭素と酸素を溶解可能である。
 また、本発明の藻類育成装置10は、海苔葉体供給部70を備える。
 ここで、海苔葉体供給部70は、供給部50と連通しており、かつ、供給部50に海苔葉体73を供給可能である。
 すなわち、海苔葉体供給管71の一端が海苔葉体供給部70に連通して接続されており、海苔葉体供給管71の一端とは反対側の他端が育成水供給管23に連通して接続されている。
 ここで、育成水供給管23は供給部50に連通して接続されているので、海苔葉体供給部70は海苔葉体供給管71と育成水供給管23を介して供給部50と連通している。
 また、藻類槽30は、藻類槽30の延びる方向が水平方向と交差する状態で配置されている。
 また、育成水25と海苔葉体73が藻類槽30から吸出される吸出箇所である吸出用貫通穴32が形成された藻類槽30の一方の端部の位置は、この一方の端部とは反対側の他方の端部の位置よりも鉛直方向において下方に存在する。
 すなわち、藻類槽30は、高さが異なる一組の藻類槽支持部35によって両端部が支持され、傾斜して配置されている。
 また、第1のカバー体52Aの第1の放流口53が面する方向は、藻類槽30が延びる方向に対して斜めに交差する方向であり、かつ、吸出用貫通穴32が形成された藻類槽30の一方の端部寄りの方向である。
 また、第2のカバー体52Bの第2の放流口が面する方向、並びに第3のカバー体52Cの第3の放流口が面する方向も、第1のカバー体52Aの第1の放流口53が面する方向と同様の方向である。
 また、吸出用貫通穴32が形成された藻類槽30の端部と同じ端部であり、かつ、藻類槽30が延びる方向に対して略直交する面には、藻類槽30の内部と外部とを連通する貫通穴である排出用貫通穴33が形成されている。
 また、排出用貫通穴33に、排出管36の一端が連通して接続されている。
 また、排出管36の一端とは反対側の他端は、約15cmの長さにまで生長した海苔葉体73を育成水25と共に貯留するための海苔貯留槽80に連通して接続されている。
 また、吸出用貫通穴32が形成された藻類槽30の端部と同じ端部に排出管36が連通して接続されているので、藻類槽30の勾配を利用して育成水25や海苔葉体73を排出することができる。
 また、藻類槽30の内部と外部とを連通する貫通穴である空気抜用貫通穴34が、吸出用貫通穴32や排出用貫通穴33が形成された藻類槽30の一方の端部とは反対側の他方の端部に形成されている。
 空気抜用貫通穴34は、藻類槽30から、排出管36によって育成水25と海苔葉体73を排出するときに藻類槽30内の空気を抜くための貫通穴である。
 また、本発明の藻類育成装置10は、液肥注入部90を備える。
 ここで、液肥注入部90は、供給部50と連通しており、かつ、供給部50に液肥を注入可能である。
 すなわち、液肥供給管91の一端が液肥注入部90に連通して接続されており、液肥供給管91の一端とは反対側の他端が育成水供給管23に連通して接続されている。
 ここで、育成水供給管23は供給部50に連通して接続されているので、液肥注入部90は液肥供給管91と育成水供給管23を介して供給部50と連通している。
 また、本発明の藻類育成装置10は、海水注入部100を備える。
 ここで、海水注入部100は、気体溶解部20と連通している。
 すなわち、海水供給管103の一端が海水注入部100に連通して接続されており、海水供給管103の一端とは反対側の他端が、気体溶解部20に連通して接続された送出管62に、連通して接続されている。
 このように、海水注入部100は、送出管62を介して気体溶解部20と連通しているが、送出管62を介さずに直接、気体溶解部20と連通することができることは勿論である。
 また、海水注入部100には、海水吸引管101の一端が連通して接続されており、海水吸引管101の一端とは反対側の他端は、海洋深層水を貯留している海水貯留槽105と連通している。
 従って、海水注入部100は、気体溶解部20に海洋深層水を注入可能である。
 また、本発明の藻類育成装置10は、殺菌処理部106を備える。
 ここで、殺菌処理部106は、海水吸引管101に連通して接続されており、海水吸引管101を流れる海洋深層水を殺菌処理可能である。
 また、殺菌処理部106は、具体的には例えばオゾンまたは紫外線を利用して、海洋深層水を殺菌処理する。
 また、海水注入部は液体注入部の一例である。
 また、液体として必ずしも海洋深層水を使用しなくてもよく、例えば地下水を使用することもできる。
 また、本発明の藻類育成装置10は、育成水供給管23に取付けられた育成水供給用制御バルブ24を備える。
 また、本発明の藻類育成装置10は、排出管36に取付けられた排出用制御バルブ37を備える。
 また、本発明の藻類育成装置10は、空気抜用貫通穴34に取付けられた空気抜用制御バルブ38を備える。
 また、本発明の藻類育成装置10は、送出管62に取付けられた送出用制御バルブ63を備える。
 また、本発明の藻類育成装置10は、海苔葉体供給管71に取付けられた海苔葉体供給用制御バルブ72を備える。
 また、本発明の藻類育成装置10は、液肥供給管91に取付けられた液肥供給用制御バルブ92を備える。
 また、本発明の藻類育成装置10は、海水吸引管101に取付けられた海水吸引用制御バルブ102を備える。
 また、本発明の藻類育成装置10は、海水供給管103に取付けられた海水供給用制御バルブ104を備える。
 これら制御バルブは、スマートフォン107が発信する制御信号に基づいて制御されることが可能である。
 すなわち、スマートフォン107が発信する制御信号に基づいて育成水供給用制御バルブ24を制御し、気体溶解部20から藻類槽30へと流れる、育成水25及び育成水25に入れられた海苔葉体73の流量を制御できる。
 また、スマートフォン107が発信する制御信号に基づいて排出用制御バルブ37を制御し、藻類槽30から排出される、育成水25及び育成水25に入れられた海苔葉体73の流量を制御できる。
 また、スマートフォン107が発信する制御信号に基づいて空気抜用制御バルブ38を制御し、空気抜用貫通穴34の開閉を制御できる。
 また、スマートフォン107が発信する制御信号に基づいて送出用制御バルブ63を制御し、藻類槽30から吸出されて気体溶解部20へ送出される、育成水25及び育成水25に入れられた海苔葉体73の流量を制御できる。
 また、スマートフォン107が発信する制御信号に基づいて海苔葉体供給用制御バルブ72を制御し、供給部50への海苔葉体73の供給量を制御できる。
 また、スマートフォン107が発信する制御信号に基づいて液肥供給用制御バルブ92を制御し、供給部50への液肥の供給量を制御できる。
 また、スマートフォン107が発信する制御信号に基づいて海水吸引用制御バルブ102及び海水供給用制御バルブ104を制御し、気体溶解部20への海洋深層水の供給量を制御できる。
 また、スマートフォン以外にもタブレット端末など他の携帯端末が発信する制御信号に基づいて、これら制御バルブを制御できるようにすることもできる。
 また、本発明の藻類育成装置10は、温度調整された室内に配置されており、図示していないが複数の藻類槽30が並列に配置されている。
 本発明の藻類育成装置において、供給部は必ずしもカバー体を有していなくてもよい。
 しかし、カバー体があれば、カバー体が無く供給管を藻類槽の内側面から突出させた構成よりも、藻類が供給部に引っ掛かり難いので好ましい。
 また、本発明の藻類育成装置において、複数のLEDすなわち発光体は必ずしも藻類槽が延びる方向と同じ方向に、互いに所定の間隔を設けて直列的に配列されていなくてもよく、例えば藻類槽が延びる方向に対して略直交する方向に配列されることもできる。
 しかし、複数の発光体が、藻類槽が延びる方向と同じ方向に、互いに所定の間隔を設けて直列的に配列されており、発光体の直列的な配列は複数あり、かつ、藻類槽が延びる方向に対して略直交していると共に対向する2つの配列を結ぶ線上の発光体の数は1つである構成であれば、1つ当たりの発光体の大きさと、発光体の数を抑えつつ、発光能力を維持することができるので好ましい。
 また、本発明の藻類育成装置において、藻類槽は必ずしも傾斜して配置されていなくてもよく、また、各カバー体の放流口すなわち開口部が面する方向は、必ずしも藻類槽が延びる方向に対して斜めに交差して吸出箇所が形成された藻類槽の一方の端部寄りの方向でなくてもよい。
 しかし、藻類槽が傾斜して配置されており、かつ、各カバー体の開口部が面する方向が、藻類槽が延びる方向に対して斜めに交差して吸出箇所が形成された藻類槽の一方の端部寄りの方向であれば、重力と育成水すなわち溶解液の流れる力とによって吸出箇所の方へ海苔葉体すなわち藻類が集まり易く、藻類槽の延びる長さを比較的長くしても溶解液と藻類を循環できるので好ましい。
 また、本発明の藻類育成装置は必ずしも液肥注入部を備えていなくてもよい。
 また、本発明の藻類育成装置は、必ずしもスマートフォンすなわち携帯端末が発信する信号に基づいて制御可能な制御バルブを備えていなくてもよい。
 しかし、液肥注入部があれば、藻類の生長を促進できるので好ましいし、また、制御バルブがあれば、携帯端末の操作一つで、連通する管を通る溶解液の流量を制御したり、藻類槽からの溶解液の排出量を制御したりすることができるので好ましい。
 次に、本発明の藻類育成装置を使用した、本発明の藻類育成方法を説明する。
 すなわち、本発明の藻類育成方法は、液体例えば海洋深層水に二酸化炭素を溶解可能な気体溶解部20において、海洋深層水に海洋深層水の圧力よりも高い圧力を有する二酸化炭素を溶解して溶解液である育成水25を生成する、溶解液生成工程である育成水生成工程を備える。
 また、本発明の藻類育成方法は、湾曲した内側面30Aを有する藻類槽30に育成水25を供給して藻類槽30の内側面30Aに沿って育成水25を流す放流工程を備える。
 また、本発明の藻類育成方法は、藻類槽30に海苔葉体73を供給する海苔葉体供給工程を備える。
 また、本発明の藻類育成方法は、育成水25と育成水25に入れられた海苔葉体73を収容した藻類槽30の内部へ向けて発光する発光工程を備える。
 また、本発明の藻類育成方法は、藻類槽30から育成水25と海苔葉体73を吸出して、気体溶解部20へ育成水25と海苔葉体73を導入する循環工程を備える。
 また、本発明の藻類育成方法は、藻類槽30から海苔葉体73を排出する排出工程を備える。
 また、本発明の藻類育成方法は、排出された海苔葉体を切断する切断工程を備える。
 また、海苔葉体供給工程は、排出工程で排出された海苔葉体73の長さよりも短い長さを有する海苔葉体73を供給する。
 本発明の藻類育成方法は、必ずしも切断工程を備えていなくてもよいが、切断工程があれば、生長した海苔葉体の一部を再利用することができ、半永久的に海苔葉体を育成することができるので好ましい。
 さらに具体的に、本発明の藻類育成装置を使用した藻類育成の手順を説明する。
 なお、図1において、細い矢印は液体と固体の流れを示し、太い矢印は気体の流れを示す。
 海苔葉体供給部70が約1cmの長さを有する海苔葉体73を、供給部50を介して藻類槽30に供給し、海苔葉体供給工程を実施する。
 このとき、海苔葉体供給用制御バルブ72によって、藻類槽30に供給される海苔葉体73の量を調整する。
 また、海水注入部100が、海水貯留槽105に貯留された海洋深層水を吸引し、気体溶解部20に海洋深層水を注入する。
 このとき、殺菌処理部106が海水吸引管101を流れる海洋深層水を殺菌処理する。
 そして、気体溶解部20において、注入された海洋深層水に海洋深層水の圧力よりも高い圧力を有する二酸化炭素を溶解して溶解液である育成水25を生成し、育成水生成工程を実施する。
 このとき、気体溶解部20において、注入された海洋深層水に海洋深層水の圧力よりも高い圧力を有する酸素も溶解する。
 また、気体溶解部20において生成された育成水25を、育成水供給管23を通して供給部50へ送り、供給部50の第1の分岐供給管51Aと、第2の分岐供給管51Bと、第3の分岐供給管51Cを通して、藻類槽30に育成水25を供給する。
 そして、すでに海苔葉体73が藻類槽30に供給されているので、藻類槽30の内部が育成水25で満たされると、育成水25の中を海苔葉体73が漂うことになり、循環ポンプ部60は育成水25と海苔葉体73を一緒に吸出す。
 また、循環ポンプ部60は、吸出した育成水25と海苔葉体73を、気体溶解部20へ導入する。
 このとき、吸出された育成水25と海苔葉体73は吸出管61を通り、さらに送出管62を通って気体溶解部20へと送られる。
 また、循環ポンプ部60は、気体溶解部20へ育成水25と海苔葉体73を導入し、さらに、気体溶解部20を通過させて供給部50へと育成水25と海苔葉体73を導入し、その勢いで供給部50の、第1の分岐供給管51Aと、第2の分岐供給管51Bと、第3の分岐供給管51Cから藻類槽30へ、育成水25と海苔葉体73を注入する。
 このとき、供給部50は、藻類槽30の内側面30Aの湾曲方向に対して斜めに交差する方向に沿って育成水25と海苔葉体73を放流する。
 すなわち、循環工程と放流工程を実施する。
 また、気体溶解部20は、海苔葉体73と一緒に気体溶解部20へ導入された育成水25に、二酸化炭素と酸素を溶解する。
 また、複数の第1のLED40及び複数の第2のLED41を発光させ、育成水25と育成水25に入れられた海苔葉体73を収容した藻類槽30の内部へ向けて発光し、発光工程を実施する。
 そして、海苔葉体73の長さが約15cmになったときに、排出用制御バルブ37を開き、藻類槽30から排出管36を通して育成水25と共に海苔葉体73を排出し、排出工程を実施する。
 ここで、例えば海苔葉体73を藻類槽30の外部から撮像しておき、撮像して得られた画像を解析することによって海苔葉体73の長さを測定することができる。
 また、排出された海苔葉体73を約1cmの長さにまで切断し、切断工程を実施する。
 また、本発明の藻類育成装置10を使用して、本発明の藻類育成方法を実施したところ、約1cmの長さの海苔葉体を藻類槽に供給してから約24時間後に、海苔葉体を約15cmまで生長させることができた。
 以上のように、本発明の藻類育成装置は、気体溶解部と、LEDすなわち発光体と、循環ポンプ部とを備えているので、藻類槽内において光合成を促進できる。
 また、本発明の藻類育成装置は、藻類槽と、供給部とを備えているので、藻類槽内において育成水すなわち溶解液の渦状の流れを発生させることができ、発光体からの光を海苔葉体すなわち藻類に満遍なく当てることができる。
 また、渦状の流れによって、光合成で発生した酸素気泡を藻類から分離し易くなり、藻類が二酸化炭素を吸収し易くなる。
 また、本発明の藻類育成装置は、循環ポンプ部を備えているので、藻類が溶解液と共に気体溶解部に通されるため、気体溶解部において藻類に充分に二酸化炭素を供給することができる。
 よって、本発明の藻類育成装置は、藻類の育成効率を向上させることができる。
 また、本発明の藻類育成装置も、本発明の藻類育成装置を使用して藻類を育成するので、藻類の育成効率を向上させることができる。
 特に、海苔葉体を使用するので、海苔の胞子や糸状体を供給して育成する方法よりも早く育成を完了させることができる。
   10  藻類育成装置
   20  気体溶解部
   21  二酸化炭素供給管
   22  酸素供給管
   23  育成水供給管
   24  育成水供給用制御バルブ
   25  育成水
   30  藻類槽
   30A 内側面
   31  第1の供給用貫通穴
   32  吸出用貫通穴
   33  排出用貫通穴
   34  空気抜用貫通穴
   35  藻類槽支持部
   36  排出管
   37  排出用制御バルブ
   38  空気抜用制御バルブ
   40  第1のLED
   41  第2のLED
   42  二酸化炭素濃度センサ
   43  酸素濃度センサ
   44  制御部
   50  供給部
   51  供給管
   51A 第1の分岐供給管
   51B 第2の分岐供給管
   51C 第3の分岐供給管
   52A 第1のカバー体
   52B 第2のカバー体
   52C 第3のカバー体
   53A 第1の放流口
   54A 第1の放流空間
   60  循環ポンプ部
   61  吸出管
   62  送出管
   63  送出用制御バルブ
   70  海苔葉体供給部
   71  海苔葉体供給管
   72  海苔葉体供給用制御バルブ
   73  海苔葉体
   80  海苔貯留槽
   90  液肥注入部
   91  液肥供給管
   92  液肥供給用制御バルブ
  100  海水注入部
  101  海水吸引管
  102  海水吸引用制御バルブ
  103  海水供給管
  104  海水供給用制御バルブ
  105  海水貯留槽
  106  殺菌処理部
  107  スマートフォン

Claims (8)

  1.  液体に二酸化炭素を溶解して溶解液を生成可能な気体溶解部と、
     前記溶解液及び同溶解液に入れられた藻類を収容可能であり、かつ、収容された同溶解液及び同藻類に接触する内側面が湾曲した藻類槽と、
     前記溶解液及び前記藻類が収容される前記藻類槽の内部へ向けて発光可能な発光体と、
     前記気体溶解部と前記藻類槽とに連通しており、かつ、同藻類槽の前記内側面の湾曲方向に沿って、または同湾曲方向に対して斜めに交差する方向に沿って前記溶解液を放流可能な供給部と、
     前記藻類槽と前記気体溶解部とに連通しており、かつ、前記藻類槽に収容された、前記溶解液と前記藻類を同藻類槽から吸出可能であると共に、吸出された同溶解液と同藻類を同気体溶解部に通して前記供給部から同藻類槽へ注入可能な循環ポンプ部とを備える
     藻類育成装置。
  2.  前記藻類槽は一方向に延びており、かつ、延びた方向の両端が閉塞した円筒形状を有しており、
     前記供給部は、前記藻類槽の前記内側面に形成されていると共に同藻類槽の内部と外部とを連通する貫通穴に、連通して接続された供給管と、前記貫通穴の対向する縁部同士を結ぶ線に対して略直交する方向に延びる貫通穴中心軸線上に配置されており、かつ、前記藻類槽の前記内側面に取付けられており、かつ、前記供給管と連通する空間を同内側面との間に形成しており、かつ、同空間と同藻類槽の内部とを連通すると共に同藻類槽が延びる方向と交差する方向に面する開口部が形成されており、かつ、同空間に向いた面とは反対側の面が湾曲したカバー体とを有する
     請求項1に記載の藻類育成装置。
  3.  複数の前記発光体が、前記藻類槽が延びる方向と同じ方向に、互いに所定の間隔を設けて直列的に配列されており、
     前記発光体の直列的な配列は複数あり、かつ、前記藻類槽が延びる方向に対して略直交していると共に対向する2つの配列を結ぶ線上の同発光体の数は1つである
     請求項2に記載の藻類育成装置。
  4.  前記藻類槽は、同藻類槽の延びる方向が水平方向と交差する状態で配置されており、かつ、前記溶解液と前記藻類が吸出される箇所である吸出箇所が同藻類槽の一方の端部に形成されており、かつ、同吸出箇所が形成された同藻類槽の一方の端部の位置は、同一方の端部とは反対側の他方の端部の位置よりも鉛直方向において下方に在り、
     前記カバー体の前記開口部が面する方向が、前記藻類槽が延びる方向に対して斜めに交差する方向であり、かつ、前記藻類槽の一方の端部寄りの方向である
     請求項2に記載の藻類育成装置。
  5.  前記気体溶解部は、前記藻類槽の外部の圧力よりも高い圧力を有する溶解液を生成可能である
     請求項1に記載の藻類育成装置。
  6.  前記供給部と連通しており、かつ、同供給部に液肥を注入可能な液肥注入部と、
     前記気体溶解部と連通しており、かつ、同気体溶解部に前記液体を注入可能な液体注入部と、
     前記気体溶解部と、前記藻類槽と、前記供給部と、前記循環ポンプ部と、前記液肥注入部と、前記液体注入部とを互いに連通して接続する連通管と、同藻類槽の内部と外部とを連通する開口部もしくは該開口部に連通して接続された排出管とに取付けられており、かつ、携帯端末が発信する信号に基づいて制御可能な制御バルブとを備える
     請求項1に記載の藻類育成装置。
  7.  液体に二酸化炭素を溶解可能な気体溶解部において、同液体に同液体の圧力よりも高い圧力を有する二酸化炭素を溶解して溶解液を生成する溶解液生成工程と、
     湾曲した内側面を有する藻類槽に前記溶解液を供給して同藻類槽の同内側面に沿って前記溶解液を流す放流工程と、
     前記藻類槽に海苔葉体を供給する海苔葉体供給工程と、
     前記溶解液と同溶解液に入れられた海苔葉体を収容した前記藻類槽の内部へ向けて発光する発光工程と、
     前記藻類槽から前記溶解液と前記海苔葉体を吸出して、前記気体溶解部へ同溶解液と同海苔葉体を導入する循環工程とを備える
     藻類育成方法。
  8.  前記藻類槽から前記海苔葉体を排出する排出工程と、
     排出された前記海苔葉体を切断する切断工程とを備え、
     前記海苔葉体供給工程は、前記排出工程で排出された前記海苔葉体の長さよりも短い長さを有する海苔葉体を供給する
     請求項7に記載の藻類育成方法。
PCT/JP2019/036047 2019-04-19 2019-09-13 藻類育成装置及び藻類育成方法 WO2020213189A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19925170.3A EP3782462A4 (en) 2019-04-19 2019-09-13 DEVICE AND METHOD FOR GROWING ALGAE
AU2019441537A AU2019441537B2 (en) 2019-04-19 2019-09-13 Alga growing apparatus and alga growing method
US17/059,155 US11758860B2 (en) 2019-04-19 2019-09-13 Alga growing apparatus and alga growing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-080450 2019-04-19
JP2019080450A JP6736067B1 (ja) 2019-04-19 2019-04-19 藻類育成装置

Publications (1)

Publication Number Publication Date
WO2020213189A1 true WO2020213189A1 (ja) 2020-10-22

Family

ID=71892410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036047 WO2020213189A1 (ja) 2019-04-19 2019-09-13 藻類育成装置及び藻類育成方法

Country Status (6)

Country Link
US (1) US11758860B2 (ja)
EP (1) EP3782462A4 (ja)
JP (1) JP6736067B1 (ja)
AU (1) AU2019441537B2 (ja)
TW (1) TWI710313B (ja)
WO (1) WO2020213189A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7514220B2 (ja) 2021-11-15 2024-07-10 川崎重工業株式会社 二酸化炭素供給システム
JP7554227B2 (ja) 2022-03-31 2024-09-19 本田技研工業株式会社 培養方法及び培養装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512025A (ja) * 2003-11-20 2007-05-17 ノリテク シーウィード バイオテクノロジーズ リミテッド 海苔及びその他の海藻類を陸上設置型海水槽で養殖するためのシステム及び方法
JP2011229402A (ja) * 2010-04-23 2011-11-17 Nec Soft Ltd 育成システム
JP2011230066A (ja) * 2010-04-28 2011-11-17 Marine Biomass Organization Foundation 二酸化炭素溶解装置、二酸化炭素分離装置および海藻工場
JP2012213351A (ja) * 2011-03-31 2012-11-08 Jfe Mechanical Co Ltd 海藻類の陸上養殖装置、および海藻類の陸上養殖方法
JP2014036596A (ja) 2012-08-14 2014-02-27 Riken Shokuhin Kk 海藻類養殖用装置及び海藻類養殖方法
JP2016208925A (ja) * 2015-05-11 2016-12-15 株式会社日鰻 藻類育成装置および藻類育成方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE24822E (en) * 1960-05-03 Richard
US4600694A (en) * 1985-05-24 1986-07-15 Clyde Robert A Apparatus for harvesting cells
US4872985A (en) * 1986-11-10 1989-10-10 Ray Dinges Method for application of wastewater to plants for improved wastewater treatment
JP3112439B2 (ja) * 1997-09-16 2000-11-27 株式会社スピルリナ研究所 藻の製造方法及びその製造装置
US6391238B1 (en) * 1998-11-13 2002-05-21 Kabushiki Kaisha Toshiba Method of producing algae cultivating medium
US20080083160A1 (en) * 2003-11-20 2008-04-10 Israel Levy Compositions of enriched seaweeds in land-based sea water ponds
WO2009059111A1 (en) * 2007-10-31 2009-05-07 Oren Kleinberger System and method for growing algae on human infrastructure
US8642326B1 (en) * 2009-09-02 2014-02-04 Alan W. Schaefer System for the production and harvesting of algae
US10624275B1 (en) * 2010-03-23 2020-04-21 Myles D. Lewis Semi-automated crop production system
US8685707B2 (en) * 2010-06-14 2014-04-01 Heinz Ploechinger Construction material made of algae, method for cultivating algae, and algae cultivation plant
US10123495B2 (en) * 2010-06-16 2018-11-13 General Atomics Controlled system for supporting algae growth with adsorbed carbon dioxide
US20110308149A1 (en) * 2010-06-16 2011-12-22 Hazlebeck David A System for Supporting Algae Growth with Adsorbed Carbon Dioxide
CN102021119A (zh) 2010-11-03 2011-04-20 王兆凯 一种开放式微藻养殖中二氧化碳的添加方法
US20140322805A1 (en) * 2011-07-25 2014-10-30 General Atomics System and Method for Using a Pulse Flow Circulation for Algae Cultivation
JP2014113082A (ja) * 2012-12-07 2014-06-26 Fujifilm Corp 液面上での微細藻類の培養方法において、液面上の微細藻類から種藻を採取し、別の培養容器で培養を行う方法
SG11201507341XA (en) * 2013-03-14 2015-10-29 Sabrtech Inc Modular algal aquaculture system and method
WO2017087715A1 (en) * 2015-11-19 2017-05-26 Gallagher Brian J Lateral circulator and agitator for pond cultivation
US10772272B2 (en) * 2016-05-09 2020-09-15 Global Algae Technologies, Llc Algae cultivation systems and methods with reduced energy loss
BR122021020434B1 (pt) * 2016-05-09 2022-10-11 Global Algae Innovations, Inc Método para cultivo de algas
TW201811169A (zh) 2016-09-02 2018-04-01 光鮮生技股份有限公司 藻類養殖系統及其氣體混合裝置
US11129339B2 (en) * 2017-05-08 2021-09-28 Daniel S. Spiro Automated vertical plant cultivation system
US10368507B2 (en) * 2017-07-26 2019-08-06 Johannes Cornelious VAN WINGERDEN Hydroponic growing system
US11310976B1 (en) * 2017-10-29 2022-04-26 John Thomas Cross Modular systems and methods for propagating plants in hydroponic and aquaponic environments
US10934567B2 (en) * 2018-12-19 2021-03-02 Earthrecycle Co., Ltd. Method for manufacturing biofuel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512025A (ja) * 2003-11-20 2007-05-17 ノリテク シーウィード バイオテクノロジーズ リミテッド 海苔及びその他の海藻類を陸上設置型海水槽で養殖するためのシステム及び方法
JP2011229402A (ja) * 2010-04-23 2011-11-17 Nec Soft Ltd 育成システム
JP2011230066A (ja) * 2010-04-28 2011-11-17 Marine Biomass Organization Foundation 二酸化炭素溶解装置、二酸化炭素分離装置および海藻工場
JP2012213351A (ja) * 2011-03-31 2012-11-08 Jfe Mechanical Co Ltd 海藻類の陸上養殖装置、および海藻類の陸上養殖方法
JP2014036596A (ja) 2012-08-14 2014-02-27 Riken Shokuhin Kk 海藻類養殖用装置及び海藻類養殖方法
JP2016208925A (ja) * 2015-05-11 2016-12-15 株式会社日鰻 藻類育成装置および藻類育成方法

Also Published As

Publication number Publication date
EP3782462A1 (en) 2021-02-24
AU2019441537B2 (en) 2022-05-19
JP2020174607A (ja) 2020-10-29
US11758860B2 (en) 2023-09-19
US20220022393A1 (en) 2022-01-27
JP6736067B1 (ja) 2020-08-05
EP3782462A4 (en) 2022-01-26
TWI710313B (zh) 2020-11-21
TW202038710A (zh) 2020-11-01
AU2019441537A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
US8341877B2 (en) Operation and control of V-trough photobioreactor systems
KR101136628B1 (ko) 공기정화가 가능한 가정용 식물공장
WO2020213189A1 (ja) 藻類育成装置及び藻類育成方法
US8658421B2 (en) Circulatory photobioreactor
US20210002595A1 (en) Culture tank
CN105191844A (zh) 一种用于海水环境胁迫研究的实验方法和系统
JP6208167B2 (ja) 藻類育成装置
KR20100113179A (ko) 관형 스피루리나 배양장치
KR101830276B1 (ko) 양액재배용 산소용해장치
KR101761025B1 (ko) 저서성 어류 양식을 위한 중층 에어인젝터를 형성한 바이오플락 시스템
KR101670129B1 (ko) 광 반응 미세조류 배양장치 및 배양방법
JP5571984B2 (ja) プランター付水槽装置
CN202514435U (zh) 生物除沫过滤器
JP2014212723A (ja) 水棲生物養殖装置および水棲生物養殖方法、ならびに植物水耕栽培装置および植物水耕栽培方法
CN107494390A (zh) 一种水产养殖箱
KR101007749B1 (ko) 액상 버섯종균 배양탱크
TW201811169A (zh) 藻類養殖系統及其氣體混合裝置
US20200199505A1 (en) Production process for high purity algae
KR20100022879A (ko) 양식장의 수질 및/또는 지질을 개선하는 방법과 시스템
TWI790487B (zh) 水產生物幼苗沉水培育系統及其方法
KR20190136200A (ko) 발아 및 분화 유도를 위한 생물 배양기
JP4389500B2 (ja) バイオリアクタ
JP2011087552A (ja) 微細藻類培養方法及び装置
JP7152762B2 (ja) 培養装置および培養方法
CN104322424A (zh) 一种樊笼式高效水产绿色养殖池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019925170

Country of ref document: EP

Effective date: 20201118

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019441537

Country of ref document: AU

Date of ref document: 20190913

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE