WO2020213112A1 - Wire electric discharge machining device - Google Patents

Wire electric discharge machining device Download PDF

Info

Publication number
WO2020213112A1
WO2020213112A1 PCT/JP2019/016576 JP2019016576W WO2020213112A1 WO 2020213112 A1 WO2020213112 A1 WO 2020213112A1 JP 2019016576 W JP2019016576 W JP 2019016576W WO 2020213112 A1 WO2020213112 A1 WO 2020213112A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
ingots
workpiece
electric discharge
machining
Prior art date
Application number
PCT/JP2019/016576
Other languages
French (fr)
Japanese (ja)
Inventor
瞬 中澤
隆 湯澤
大友 陽一
茂行 中里
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019553145A priority Critical patent/JP6647469B1/en
Priority to PCT/JP2019/016576 priority patent/WO2020213112A1/en
Priority to CN201980095387.4A priority patent/CN113710398B/en
Publication of WO2020213112A1 publication Critical patent/WO2020213112A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/36Supply or regeneration of working media

Definitions

  • the present invention relates to a wire electric discharge machine that simultaneously performs wire electric discharge machining of a plurality of ingots with one wire.
  • One of the wire electric discharge machines is a device in which two ingots to be machined are arranged in parallel and two ingots are simultaneously wire electric discharged with one wire.
  • the wire electric discharge machine described in Patent Document 1 forms a plurality of wire cutting portions by winding one wire electrode between four guide rollers and arranging them in parallel, and feeds each wire cutting portion individually. are doing.
  • This wire electric discharge machine cuts two ingots at the same time by simultaneously discharging between each wire cutting portion and the ingot while supplying a processing liquid to each wire cutting portion, and a plurality of each ingot at a time. It is cut into pieces.
  • the present invention has been made in view of the above, and even when a plurality of ingots arranged in parallel are subjected to wire electric discharge machining with one wire at the same time, the machining fluids supplied to the adjacent ingots are used. It is an object of the present invention to obtain a wire electric discharge machine capable of performing cutting with high accuracy while suppressing collision with each other.
  • the wire electric discharge machine of the present invention arranges a columnar first workpiece and a columnar second workpiece in parallel in the same plane.
  • the holding portion to be held is linearly arranged so as to face each of the first work piece and the second work piece, and the positions facing the first work piece and the second work piece.
  • the first workpiece and the second workpiece are provided with a wire electrode for performing wire electric discharge machining.
  • the wire electric discharge machine of the present invention is arranged at a position along the wire electrode and at a position facing the first work piece and the second work piece, and the first wire electric discharge machine is arranged along the wire electrode.
  • the workpiece and the second workpiece are provided with a pair of machining fluid supply units that inject the machining fluid onto the workpiece and the second workpiece, and the first workpiece and the second workpiece have the same diameter.
  • the first holding portion is provided so that the distance between the cylindrical shaft of the first workpiece and the cylindrical shaft of the second workpiece is 1.2D or more and 2D or less when the diameter is D. Holds the work piece and the second work piece.
  • the wire electric discharge machining apparatus prevents the machining fluids supplied to the adjacent ingots from colliding with each other even when a plurality of ingots arranged in parallel are wire electric discharged simultaneously with one wire. It has the effect of being able to perform accurate cutting while suppressing it.
  • the figure which shows the structure of the wire electric discharge machining apparatus which concerns on embodiment The figure for demonstrating the arrangement position of the ingot processed by the wire electric discharge machine which concerns on embodiment.
  • the figure for demonstrating the machined groove of the ingot machined by the wire electric discharge machine which concerns on embodiment.
  • the figure for demonstrating the flow of the machining fluid ejected from the nozzle of the wire electric discharge machining apparatus which concerns on embodiment.
  • the figure for demonstrating the numerical analysis model of the arrangement position of an ingot in the wire electric discharge machining apparatus which concerns on embodiment.
  • the figure for demonstrating the analysis result of the numerical analysis for the wire electric discharge machining apparatus which concerns on embodiment.
  • the figure which shows the calculation result when the amplitude of the wire electrode was calculated using the theoretical formula for the wire electric discharge machining apparatus which concerns on embodiment.
  • FIG. 1 is a diagram showing a configuration of a wire electric discharge machine according to an embodiment.
  • the horizontal direction in the paper surface is the X direction
  • the upward direction in the paper surface is the Z direction
  • the front direction with respect to the paper surface is the Y direction.
  • the Z direction is the direction opposite to the vertical direction
  • the XY plane is a horizontal plane.
  • FIG. 2 is a diagram for explaining an arrangement position of an ingot processed by the wire electric discharge machine according to the embodiment.
  • FIG. 2 shows a cross-sectional view of the ingots 30a and 30b when the ingots 30a and 30b are viewed from the Y direction.
  • the wire electric discharge machine 1 is a device that simultaneously wire electric discharges a plurality of ingots with one wire. In the present embodiment, a case where the wire electric discharge machine 1 simultaneously performs wire electric discharge machining of two ingots 30a and 30b with one wire will be described.
  • the distance Xd between the tangents Ta and Tb perpendicular to the wire electrodes 12 of the two ingots 30a and 30b is 0.2D or more.
  • EDM is performed with the ingots 30a and 30b arranged so that the intervals are 1D or less.
  • the tangent line Ta is a tangent line in the vertical direction closer to the ingot 30b among the tangent lines perpendicular to the wire electrode 12 of the ingot 30a
  • the tangent line Tb is a tangent line perpendicular to the wire electrode 12 of the ingot 30b to the ingot 30a.
  • the shortest distance Xd (distance in the X direction) between the ingots 30a and 30b is 0.2D or more and 1D or less.
  • the distance between the centers of the circles of the ingots 30a and 30b having the same Y coordinate is 1.2D or more and 2D or less.
  • the circle of the ingot 30a and the circle of the ingot 30b in this case are circles in the same XZ plane. That is, the distance between the cylindrical shaft 35a of the ingot 30a and the cylindrical shaft 35b of the ingot 30b is 1.2D or more and 2D or less.
  • the cylindrical shaft 35a is an axis that passes through the center of the upper surface and the center of the bottom surface of the cylindrical ingot 30a
  • the cylindrical shaft 35b is an axis that passes through the center of the upper surface and the center of the bottom surface of the cylindrical ingot 30b. That is, the cylindrical shaft 35a is an axis parallel to the generatrix of the ingot 30a (an axis extending in the height direction of the ingot 30a), and the cylindrical shaft 35b is an axis parallel to the generatrix of the ingot 30b (in the height direction of the ingot 30b). Extending axis).
  • the wire electric discharge machine 1 includes a feeding bobbin 11, a wire electrode 12, a winding guide roller 13a, 13b, 13c, 13d, a winding bobbin 14, a positioning guide roller 15a, 15b, a power supply 17a, 17b, a nozzle 19a, and the like. 19b, machining liquid supply hoses 20a and 20b, machining stage 40, workpiece holder 50, and machining tank 60 are provided.
  • the workpiece holder 50 for holding the ingots 30a and 30b is arranged on the machining stage 40 in the machining tank 60, and the machining liquid 70 is filled in the machining tank 60.
  • An example of the wire electric discharge machine 1 is a multi-wire electric discharge machine.
  • the feeding bobbin 11, the wire electrode 12, the winding guide rollers 13a, 13b, 13c, 13d, the winding bobbin 14, and the positioning guide rollers 15a, 15b are composed of columnar members extending in the Y direction.
  • the feeding bobbin 11 feeds out the wire electrode 12, the winding guide rollers 13a to 13d are wound with the wire electrode 12, and the winding bobbin 14 winds the wire electrode 12.
  • the positioning guide rollers 15a and 15b position the wire electrode 12.
  • one wire electrode 12 unwound from the feeding bobbin 11 sequentially moves between a plurality of winding guide rollers 13a, 13d, 13c, and 13b a plurality of times. It is wound at various intervals.
  • one wire electrode 12 is sequentially wound around each of the winding guide rollers 13a to 13d, and the wire electrodes 12 are arranged so as to be arranged parallel to the axial direction (X direction) of the wire electrodes 12.
  • the portion of the wire electrode 12 that cuts the ingots 30a and 30b is the wire cutting portion.
  • the wire electrode 12 forms a plurality of wire cutting portions.
  • the plurality of wire cutting portions are provided in parallel so as to be separated from each other, and face the ingots 30a and 30b, respectively.
  • the distance between the wire cutting portions formed by winding the wire electrode 12 is the processing width of the ingots 30a and 30b, that is, the thickness of the workpiece to be cut (thin plate cut from the ingots 30a and 30b).
  • the wire electrodes 12 are linearly arranged so as to face the ingots 30a and 30b, respectively, and wire electric discharge machining is performed on the ingots 30a and 30b at positions facing the ingots 30a and 30b.
  • the wire electrode 12, the winding guide rollers 13c, 13d, the winding bobbin 14, the positioning guide rollers 15a, 15b, the power supply 17a, etc. are placed in the processing tank 60 filled with the processing liquid 70.
  • the wire cutting portions With the 17b, nozzles 19a, 19b, machining fluid supply hoses 20a, 20b, machining stage 40, workpiece holder 50, and ingots 30a, 30b immersed, the wire cutting portions are separated by a predetermined interval, and the ingots 30a, It is arranged so as to face 30b, and a voltage is applied between the wire cutting portion and the ingots 30a and 30b.
  • the wire electric discharge machining apparatus 1 discharge-cuts the ingots 30a and 30b by the wire cutting portion by feeding the ingots 30a and 30b to the wire cutting portion in the cutting direction. That is, the wire electric discharge machining apparatus 1 has a drive mechanism (not shown) for relatively machining and feeding the wire electrode 12 and the ingots 30a and 30b held by the workpiece holder 50. As a result, the ingots 30a and 30b are processed into a plurality of thin plates at the same time.
  • the ingots 30a and 30b which are the workpieces, have a columnar shape having the same diameter, and are columnar in the present embodiment.
  • the ingots 30a and 30b are held side by side in parallel by the workpiece holder 50 in the processing tank 60 so that the Y direction is the axial direction.
  • the ingots 30a and 30b are materials that are sliced into a plurality of thin plates.
  • the ingots 30a and 30b may be, for example, a metal such as tungsten or molybdenum as a sputtering target, or ceramics such as polycrystalline silicon carbide used as various structural members.
  • the ingots 30a and 30b may be single crystal silicon as a semiconductor device wafer, may be a semiconductor material such as a single crystal silicon carbide or gallium nitride, or may be a single crystal as a solar cell wafer. It may be a solar cell material such as silicon or polycrystalline silicon.
  • FIG. 1 shows a case where one wire electrode 12 is wound around a plurality of winding guide rollers 13a, 13b, 13c, 13d, but the case is not limited to this case. That is, as long as a plurality of wire cutting portions can be formed by folding back one wire electrode 12, the specific configuration thereof is not particularly limited.
  • the wire cutting portion may be provided at one location on each of the ingots 30a and 30b.
  • the plurality of winding guide rollers 13a, 13b, 13c, 13d have a columnar shape, and each of them is directed in the Y direction perpendicular to the direction in which each axis extends (X direction). They are arranged so as to be parallel to each other. In the present embodiment, four winding guide rollers 13a to 13d are arranged, but the number of winding guide rollers 13a to 13d may be two, three, or five or more. In the following description, when distinguishing the four winding guide rollers 13a to 13d, “first winding guide roller 13a", “second winding guide roller 13b", and “third winding guide roller 13b", respectively. They are called “guide roller 13c” and "fourth winding guide roller 13d".
  • the first winding guide roller 13a and the second winding guide roller 13b are provided at positions higher than the third winding guide roller 13c and the fourth winding guide roller 13d. Further, the third winding guide roller 13c and the fourth winding guide roller 13d are higher than the positions of the ingots 30a and 30b, and are higher than the first winding guide roller 13a and the second winding guide roller 13b. It is installed side by side in a low position.
  • the wire electrode 12 taken out from the feeding bobbin 11 is wound around the winding bobbin 14 after being wound a predetermined number of times between the first to fourth winding guide rollers 13a to 13d.
  • the wire portion R between the third winding guide roller 13c and the fourth winding guide roller 13d faces the ingots 30a and 30b as a wire cutting portion. Is arranged so that In the wire electric discharge machining apparatus 1, the ingots 30a and 30b are opposed to the wire cutting portion at a minute interval to perform electric discharge machining.
  • 15a and 15b are arranged respectively.
  • first positioning guide roller 15a when the two positioning guide rollers 15a and 15b are distinguished, they are referred to as “first positioning guide roller 15a” and “second positioning guide roller 15b", respectively.
  • the first positioning guide roller 15a is provided between the wire cutting portion and the third winding guide roller 13c.
  • the first positioning guide roller 15a is separated from the third winding guide roller 13c so that the axial direction of the first positioning guide roller 15a is parallel to the axial direction of the third winding guide roller 13c. Are arranged.
  • the second positioning guide roller 15b is provided between the wire cutting portion and the fourth winding guide roller 13d.
  • the second positioning guide roller 15b is separated from the fourth winding guide roller 13d so that the axial direction of the second positioning guide roller 15b is parallel to the axial direction of the fourth winding guide roller 13d. Are arranged.
  • the wire electrode 12 includes the feeding bobbin 11, the winding guide roller 13a, the winding guide roller 13d, the power supply 17b, the positioning guide roller 15b, the positioning guide roller 15a, the power supply 17a, and the winding guide roller 13c.
  • the winding guide rollers 13b and the winding bobbin 14 are wound around the winding guide rollers 13a to 13d so as to come into contact with each other in this order.
  • the power supply 17a is arranged between the third winding guide roller 13c and the first positioning guide roller 15a, and the power supply 17b is the fourth winding guide roller 13d and the second positioning guide roller 15b. It is placed between.
  • the portion is a feeding wire portion to which a processing voltage for performing electric discharge machining is applied and a current is supplied.
  • a pulsed processing voltage (high frequency pulse power) for performing electric discharge machining is applied to the power feeding wire portion of the wire electrode 12 from a processing power supply (not shown) via power supplies 17a and 17b to supply a current. Will be done. As a result, a machining voltage is applied between the wire cutting portion and the ingots 30a and 30b.
  • the power supply electrons 17a and 17b are provided with the number of wire cutting portions composed of the wire electrodes 12.
  • the plurality of power supply electrons 17a and 17b are insulated from each other and are aligned on both sides of the ingots 30a and 30b to form a power supply unit.
  • the power supply electron arranged between the third winding guide roller 13c and the first positioning guide roller 15a is the power supply electron 17a, and the power supply electron group composed of the power supply electrons 17a arranged in the Y direction is the first. It is an electronic power supply unit. Further, the power supply electron arranged between the fourth winding guide roller 13d and the second positioning guide roller 15b is the power supply electron 17b, and the power supply electron group composed of the power supply electrons 17b arranged in the Y direction is the first. It is a power supply unit of 2.
  • the wire electric discharge machine 1 has a configuration in which a voltage can be independently applied to each wire cutting portion by each of the power supply electrons 17a and 17b.
  • a plurality of processing power supply units capable of independently applying a voltage to the parallel wire cutting portions are connected to a control device (not shown) of the wire electric discharge machining device 1.
  • the processing power supply unit applies a voltage to the corresponding wire cutting portion via the corresponding power supply electrons 17a and 17b according to the instruction of the control device.
  • the voltage application polarity of the wire electric discharge machine 1 of the present embodiment can be appropriately reversed as needed, as in the conventional wire electric discharge machine.
  • the pair of nozzles 19a and 19b are processing liquid supply units that inject the processing liquid 70 onto the ingots 30a and 30b along the linear wire portion R.
  • the nozzle 19a is arranged between the first positioning guide roller 15a and the ingot 30a, and the nozzle 19b is arranged between the second positioning guide roller 15b and the ingot 30b.
  • the machining fluid supply hose 20a is connected to the nozzle 19a, and the machining fluid supply hose 20b is connected to the nozzle 19b.
  • the nozzle 19a removes the machining debris of the ingot 30a by injecting the machining fluid 70 into the ingot 30a along the wire portion R, and the nozzle 19b injects the machining fluid 70 into the ingot 30b along the wire portion R. Removes the processing waste of the ingot 30b.
  • the nozzles 19a and 19b are made of an electrically insulating material or subjected to an electrical insulation treatment such as an alumite treatment so as not to come into contact with the wire electrode 12 and cause a short circuit.
  • the machining fluid 70 flowing into the nozzles 19a and 19b from the machining fluid supply hoses 20a and 20b is ejected to the outside of the nozzles 19a and 19b at the position of the wire portion R.
  • the machining liquid 70 supplied to the inside of the machining groove is discharged into the space between the ingots 30a and 30b while removing the machining chips inside the machining groove.
  • the ingots 30a and 30b are held by the workpiece holder 50 so that the axial direction is the Y direction. That is, the workpiece holder 50, which is a holding portion, holds the ingots 30a and 30b side by side in the same plane.
  • the distance Xd between the tangents Ta and Tb perpendicular to the wire electrodes 12 of the two ingots 30a and 30b is 0.2D.
  • An interval of more than 1D and less than or equal to 1D is provided between the ingots 30a and 30b to fix the ingots 30a and 30b.
  • the positions of the ingots 30a and 30b are controlled by a position control device (not shown) so as to separate a minute gap from the wire electrode 12 wound between the first to fourth winding guide rollers 13a to 13d. .. This control maintains the proper discharge gap length.
  • FIG. 3 is a diagram for explaining a machined groove of the ingot machined by the wire electric discharge machine according to the embodiment.
  • FIG. 4 is a diagram for explaining the flow of the machining fluid injected from the nozzle of the wire electric discharge machining apparatus according to the embodiment.
  • the horizontal direction in the paper surface is the X direction
  • the downward direction in the paper surface is the Y direction
  • the front direction with respect to the paper surface is the Z direction.
  • the depth direction of the paper surface is the vertical direction
  • the XY plane is the horizontal plane.
  • jets 71a and 71b of the machining fluid 70 are simultaneously injected from the nozzles 19a and 19b installed on both sides of the ingots 30a and 30b, and the jets 71a and 71b are formed in the machining groove. It passes through the inside of C along the linear wire portion R, and is ejected from the inside of the processing groove C along the wire portion R.
  • the jets 71a and 71b of the processing liquid 70 collide with each other at the collision point P coaxial with the nozzles 19a and 19b, the jets 71a and 71b are diffused around the collision point P near the collision point P. A flow is formed.
  • the momentum of the jets 71a and 71b of the machining fluid 70 jetted toward the machining grooves C of the ingots 30a and 30b is maintained inside the machining groove C, so that the jets 71a and 71b of the jetted machining fluid 70 are ,
  • the machining debris inside the machining groove C can be removed while maintaining a sufficient flow velocity.
  • the distance Xd between the tangents Ta and Tb perpendicular to the wire electrodes 12 of the two ingots 30a and 30b is fixed at Xd ⁇ 1D, the increase in the amplitude of the wire vibration during machining is suppressed, and the accuracy of cutting machining is suppressed. Can be kept.
  • FIG. 5 is a diagram for explaining a numerical analysis model of the arrangement position of the ingot in the wire electric discharge machining apparatus according to the embodiment.
  • FIG. 5 shows an ingot model when the ingots 30a and 30b are viewed from the Y direction.
  • the outline of the numerical analysis model for analyzing the arrangement position of the ingot model and the boundary condition of the arrangement position of the ingots 30a and 30b will be described below.
  • the first ingot model is the above-mentioned ingot 3D model having a plate thickness of 3 mm and a diameter of 50 mm
  • the second ingot model is the above-mentioned ingot 3D model having a plate thickness of 3 mm and a diameter of 100 mm.
  • the processing liquid 70 was water, and the standard k- ⁇ model was used as the turbulent flow model.
  • the flow rate of the processing liquid 70 ejected from the nozzles 19a and 19b was 10 L / min for the ingot having a diameter of 50 mm and 20 L / min for the ingot having a diameter of 100 mm.
  • the machined groove width is 0.15 mm, and the situation where the cutting process is advanced by 80% is simulated.
  • the machined groove depth F is set to 80 mm. Processing inside the processing groove when the distance Xd between the tangents Ta and Tb perpendicular to the wire electrode 12, which is the installation interval of the ingots 30a and 30b, is changed by the first ingot model and the second ingot model. The change in liquid flow was verified.
  • the position where the flow velocity of the processing liquid 70 is measured is shown at position 90.
  • the ingots 30a and 30b having a diameter of 50 mm may be referred to as a first ingot set, and the ingots 30a and 30b having a diameter of 100 mm may be referred to as a second ingot set.
  • FIG. 6 is a diagram for explaining the analysis result of the numerical analysis for the wire electric discharge machine according to the embodiment.
  • the horizontal axis is the value Z obtained by normalizing the distance Xd between the tangents Ta and Tb perpendicular to the wire electrode 12 with the diameters D of the ingots 30a and 30b
  • the vertical axis is the flow velocity near the exit of the machining groove (position 90).
  • the relationship between the value Z and the flow velocity is plotted.
  • the round mark 41 shows the relationship between the value Z of the first ingot set and the flow velocity
  • the square mark 42 shows the relationship between the value Z of the second ingot set and the flow velocity. There is. Further, in FIG.
  • the maximum value of the flow velocity of the first ingot group is indicated by the maximum value 51, and the maximum value of the flow velocity of the second ingot group is indicated by the maximum value 52. Further, in FIG. 6, a value of 70% of the maximum value of the flow velocity of the first ingot group is indicated by a value of 61, and a value of 70% of the maximum value of the flow velocity of the second ingot group is indicated by a value of 62.
  • the wire electric discharge machine 1 performs wire electric discharge machining with the distance Xd between the tangents Ta and Tb perpendicular to the wire electrodes 12 of the two ingots 30a and 30b being 0.2D or more.
  • T is the tension of the wire portion R
  • h is the length of the wire portion R
  • q is the electrostatic attraction applied to the wire portion R.
  • the wire electric discharge machine 1 is a multi-wire electric discharge machine
  • the wire electric discharge machine 1 has one wire electrode 12 at one location on each of the ingots 30a and 30b. It may be a wire electric discharge machining apparatus that performs machining.
  • the cutting process is performed with an interval of 0.2 D or more and 1 D or less as the distance Xd between the tangents Ta and Tb perpendicular to the wire electrode 12 with respect to the diameter D of the ingots 30a and 30b. Therefore, the collision of the working liquid 70 supplied from both sides of the ingots 30a and 30b can be suppressed. That is, even when the ingots 30a and 30b arranged in parallel are subjected to wire electric discharge machining with one wire electrode 12 at the same time, the machining liquids 70 supplied to the adjacent ingots 30a and 30b are prevented from colliding with each other. it can. Since it is possible to prevent the machining liquids 70 from colliding with each other, it is possible to remove the machining debris without retaining it inside the machining groove.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 Wire electric discharge machine 11 Feeding bobbin, 12 Wire electrode, 13a to 13d Winding guide roller, 14 Winding bobbin, 15a, 15b Positioning guide roller, 17a, 17b Power supply, 19a, 19b Nozzle, 20a, 20b Machining liquid supply hose, 30a, 30b wire, 35a, 35b cylindrical shaft, 40 machining stage, 50 workpiece holder, 60 machining tank, 70 machining fluid, 71a, 71b jet, C machining groove, F machining groove depth, P collision point, R wire part, Xd distance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

This wire electric discharge machining device (1) comprises: a workpiece holding tool (50) that holds cylindrical ingots (30a, 30b) arranged in parallel on the same plane; wire electrodes (12) that are arranged in a straight line shape to face the ingots (30a, 30b), respectively, and perform wire electric discharge machining on the ingots (30a, 30b) at positions facing the ingots (30a, 30b); and a pair of processing liquid supply hoses (20a, 20b) that are arranged along the wire electrodes (12) and at positions facing each other with the ingots (30a, 30b) interposed therebetween, and inject a working fluid (70) to the ingots (30a, 30b) along the wire electrodes (12), wherein the ingots (30a, 30b) have the same diameter, and the workpiece holding tool (50) holds the ingots (30a, 30b) such that an interval between cylindrical axes (35a, 35b) of the two ingots (30a, 30b) is 1.2D or more and 2D or less, where D is the diameter.

Description

ワイヤ放電加工装置Wire electric discharge machine
 本発明は、1本のワイヤで複数のインゴットを同時にワイヤ放電加工するワイヤ放電加工装置に関する。 The present invention relates to a wire electric discharge machine that simultaneously performs wire electric discharge machining of a plurality of ingots with one wire.
 ワイヤ放電加工装置の1つに、被加工物であるインゴットを2つ並列に並べ、1本のワイヤで2つのインゴットを同時にワイヤ放電加工する装置がある。特許文献1に記載のワイヤ放電加工装置は、1本のワイヤ電極を4つのガイドローラ間に巻回させて並列させることで複数のワイヤ切断部分を形成し、それぞれのワイヤ切断部分に個別に給電している。このワイヤ放電加工装置は、各ワイヤ切断部分に加工液を供給しながら、各ワイヤ切断部分とインゴットとの間で同時に放電させることにより、2つのインゴットを同時に切断するとともに、各インゴットを一度に複数枚に切断している。 One of the wire electric discharge machines is a device in which two ingots to be machined are arranged in parallel and two ingots are simultaneously wire electric discharged with one wire. The wire electric discharge machine described in Patent Document 1 forms a plurality of wire cutting portions by winding one wire electrode between four guide rollers and arranging them in parallel, and feeds each wire cutting portion individually. are doing. This wire electric discharge machine cuts two ingots at the same time by simultaneously discharging between each wire cutting portion and the ingot while supplying a processing liquid to each wire cutting portion, and a plurality of each ingot at a time. It is cut into pieces.
特開2015-47685号公報JP-A-2015-47685
 しかしながら、上記特許文献1の技術では、2つのインゴットの中心間の間隔が狭すぎる場合には、一方のインゴットに供給された加工液と、他方のインゴットに供給された加工液とが衝突して、各インゴットの加工溝内部で加工液の滞留が生じ、切削屑の除去が阻害される場合があった。また、2つのインゴットの中心間の間隔が広すぎる場合には、加工中のワイヤ振動が大きくなり、切断加工の精度が低下する場合があった。 However, in the technique of Patent Document 1, when the distance between the centers of the two ingots is too narrow, the processing liquid supplied to one ingot collides with the processing liquid supplied to the other ingot. In some cases, the machining fluid stays inside the machining groove of each ingot, which hinders the removal of cutting chips. Further, if the distance between the centers of the two ingots is too wide, the wire vibration during processing becomes large, and the accuracy of cutting processing may decrease.
 本発明は、上記に鑑みてなされたものであって、並列に配置された複数のインゴットを1本のワイヤで同時にワイヤ放電加工する場合であっても、隣接するインゴットに供給された加工液同士が衝突することを抑制しつつ、精度の良い切断加工ができるワイヤ放電加工装置を得ることを目的とする。 The present invention has been made in view of the above, and even when a plurality of ingots arranged in parallel are subjected to wire electric discharge machining with one wire at the same time, the machining fluids supplied to the adjacent ingots are used. It is an object of the present invention to obtain a wire electric discharge machine capable of performing cutting with high accuracy while suppressing collision with each other.
 上述した課題を解決し、目的を達成するために、本発明のワイヤ放電加工装置は、円柱状の第1の被加工物および円柱状の第2の被加工物を同一平面内に並列に並べて保持する保持部と、第1の被加工物および第2の被加工物のそれぞれに対向するよう直線状に配置されるとともに、第1の被加工物および第2の被加工物と対向する位置で、第1の被加工物および第2の被加工物にワイヤ放電加工を行うワイヤ電極と、を備えている。また、本発明のワイヤ放電加工装置は、ワイヤ電極に沿った位置で且つ第1の被加工物および第2の被加工物を挟んで対向する位置に配置され、ワイヤ電極に沿って第1の被加工物および第2の被加工物に加工液を噴射する一対の加工液供給部を備えており、第1の被加工物および第2の被加工物は、直径が同じ大きさであり、保持部は、第1の被加工物の円柱軸と第2の被加工物の円柱軸との間の間隔が、直径をDとした場合に1.2D以上かつ2D以下となるよう、第1の被加工物および第2の被加工物を保持する。 In order to solve the above-mentioned problems and achieve the object, the wire electric discharge machine of the present invention arranges a columnar first workpiece and a columnar second workpiece in parallel in the same plane. The holding portion to be held is linearly arranged so as to face each of the first work piece and the second work piece, and the positions facing the first work piece and the second work piece. The first workpiece and the second workpiece are provided with a wire electrode for performing wire electric discharge machining. Further, the wire electric discharge machine of the present invention is arranged at a position along the wire electrode and at a position facing the first work piece and the second work piece, and the first wire electric discharge machine is arranged along the wire electrode. The workpiece and the second workpiece are provided with a pair of machining fluid supply units that inject the machining fluid onto the workpiece and the second workpiece, and the first workpiece and the second workpiece have the same diameter. The first holding portion is provided so that the distance between the cylindrical shaft of the first workpiece and the cylindrical shaft of the second workpiece is 1.2D or more and 2D or less when the diameter is D. Holds the work piece and the second work piece.
 本発明にかかるワイヤ放電加工装置は、並列に配置された複数のインゴットを1本のワイヤで同時にワイヤ放電加工する場合であっても、隣接するインゴットに供給された加工液同士が衝突することを抑制しつつ、精度の良い切断加工ができるという効果を奏する。 The wire electric discharge machining apparatus according to the present invention prevents the machining fluids supplied to the adjacent ingots from colliding with each other even when a plurality of ingots arranged in parallel are wire electric discharged simultaneously with one wire. It has the effect of being able to perform accurate cutting while suppressing it.
実施の形態にかかるワイヤ放電加工装置の構成を示す図The figure which shows the structure of the wire electric discharge machining apparatus which concerns on embodiment 実施の形態にかかるワイヤ放電加工装置が加工するインゴットの配置位置を説明するための図The figure for demonstrating the arrangement position of the ingot processed by the wire electric discharge machine which concerns on embodiment. 実施の形態にかかるワイヤ放電加工装置が加工するインゴットの加工溝を説明するための図The figure for demonstrating the machined groove of the ingot machined by the wire electric discharge machine which concerns on embodiment. 実施の形態にかかるワイヤ放電加工装置のノズルから噴射される加工液の流れを説明するための図The figure for demonstrating the flow of the machining fluid ejected from the nozzle of the wire electric discharge machining apparatus which concerns on embodiment. 実施の形態にかかるワイヤ放電加工装置におけるインゴットの配置位置の数値解析モデルを説明するための図The figure for demonstrating the numerical analysis model of the arrangement position of an ingot in the wire electric discharge machining apparatus which concerns on embodiment. 実施の形態にかかるワイヤ放電加工装置に対する数値解析の解析結果を説明するための図The figure for demonstrating the analysis result of the numerical analysis for the wire electric discharge machining apparatus which concerns on embodiment. 実施の形態にかかるワイヤ放電加工装置に対して理論式を用いてワイヤ電極の振幅を計算した場合の計算結果を示す図The figure which shows the calculation result when the amplitude of the wire electrode was calculated using the theoretical formula for the wire electric discharge machining apparatus which concerns on embodiment.
 以下に、実施の形態にかかるワイヤ放電加工装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The wire electric discharge machine according to the embodiment will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態.
 図1は、実施の形態にかかるワイヤ放電加工装置の構成を示す図である。図1において、紙面内の横方向がX方向であり、紙面内の上方向がZ方向であり、紙面に対する手前方向がY方向である。Z方向は、鉛直方向と反対の方向であり、XY平面は、水平面である。図2は、実施の形態にかかるワイヤ放電加工装置が加工するインゴットの配置位置を説明するための図である。図2では、インゴット30a,30bをY方向から見た場合のインゴット30a,30bの断面図を示している。
Embodiment.
FIG. 1 is a diagram showing a configuration of a wire electric discharge machine according to an embodiment. In FIG. 1, the horizontal direction in the paper surface is the X direction, the upward direction in the paper surface is the Z direction, and the front direction with respect to the paper surface is the Y direction. The Z direction is the direction opposite to the vertical direction, and the XY plane is a horizontal plane. FIG. 2 is a diagram for explaining an arrangement position of an ingot processed by the wire electric discharge machine according to the embodiment. FIG. 2 shows a cross-sectional view of the ingots 30a and 30b when the ingots 30a and 30b are viewed from the Y direction.
 ワイヤ放電加工装置1は、1本のワイヤで複数のインゴットを同時にワイヤ放電加工する装置である。本実施の形態では、ワイヤ放電加工装置1が、1本のワイヤで2つのインゴット30a,30bを同時にワイヤ放電加工する場合について説明する。 The wire electric discharge machine 1 is a device that simultaneously wire electric discharges a plurality of ingots with one wire. In the present embodiment, a case where the wire electric discharge machine 1 simultaneously performs wire electric discharge machining of two ingots 30a and 30b with one wire will be described.
 ワイヤ放電加工装置1は、円柱状のインゴット30a,30bの直径をDとした場合に、2つのインゴット30a,30bのワイヤ電極12に垂直な接線Ta,Tb間の距離Xdが0.2D以上かつ1D以下の間隔となるようインゴット30a,30bを配置した状態で切断加工する。接線Taは、インゴット30aのワイヤ電極12に垂直な接線のうち、インゴット30bに近い側の鉛直方向の接線であり、接線Tbは、インゴット30bのワイヤ電極12に垂直な接線のうち、インゴット30aに近い側の鉛直方向の接線である。すなわち、インゴット30a,30bの間の最短の距離Xd(X方向の距離)が0.2D以上かつ1D以下の間隔となっている。換言すると、ワイヤ放電加工装置1は、インゴット30a,30bが有する円の中心のうちY座標が同じ中心の間隔が、1.2D以上かつ2D以下の間隔である。この場合のインゴット30aの円と、インゴット30bの円とは、同一のXZ平面内の円である。すなわち、インゴット30aの円柱軸35aとインゴット30bの円柱軸35bとの間の間隔が1.2D以上かつ2D以下となっている。円柱軸35aは、円柱状のインゴット30aの上面の中心および底面の中心を通る軸であり、円柱軸35bは、円柱状のインゴット30bの上面の中心および底面の中心を通る軸である。すなわち、円柱軸35aは、インゴット30aの母線に平行な軸(インゴット30aの高さ方向に延びる軸)であり、円柱軸35bは、インゴット30bの母線に平行な軸(インゴット30bの高さ方向に延びる軸)である。これにより、後述するように、インゴット30a,30bの両側から供給される加工液70の噴流71a,71bの衝突を抑制し、インゴット30a,30bの加工溝内部で加工液70の滞流が発生することを防止しつつ、切断加工の精度を維持する。 In the wire electric discharge machine 1, when the diameters of the cylindrical ingots 30a and 30b are D, the distance Xd between the tangents Ta and Tb perpendicular to the wire electrodes 12 of the two ingots 30a and 30b is 0.2D or more. EDM is performed with the ingots 30a and 30b arranged so that the intervals are 1D or less. The tangent line Ta is a tangent line in the vertical direction closer to the ingot 30b among the tangent lines perpendicular to the wire electrode 12 of the ingot 30a, and the tangent line Tb is a tangent line perpendicular to the wire electrode 12 of the ingot 30b to the ingot 30a. It is a tangent line in the vertical direction on the near side. That is, the shortest distance Xd (distance in the X direction) between the ingots 30a and 30b is 0.2D or more and 1D or less. In other words, in the wire electric discharge machine 1, the distance between the centers of the circles of the ingots 30a and 30b having the same Y coordinate is 1.2D or more and 2D or less. The circle of the ingot 30a and the circle of the ingot 30b in this case are circles in the same XZ plane. That is, the distance between the cylindrical shaft 35a of the ingot 30a and the cylindrical shaft 35b of the ingot 30b is 1.2D or more and 2D or less. The cylindrical shaft 35a is an axis that passes through the center of the upper surface and the center of the bottom surface of the cylindrical ingot 30a, and the cylindrical shaft 35b is an axis that passes through the center of the upper surface and the center of the bottom surface of the cylindrical ingot 30b. That is, the cylindrical shaft 35a is an axis parallel to the generatrix of the ingot 30a (an axis extending in the height direction of the ingot 30a), and the cylindrical shaft 35b is an axis parallel to the generatrix of the ingot 30b (in the height direction of the ingot 30b). Extending axis). As a result, as will be described later, the collision of the jets 71a and 71b of the machining fluid 70 supplied from both sides of the ingots 30a and 30b is suppressed, and the stagnant flow of the machining fluid 70 occurs inside the machining groove of the ingots 30a and 30b. Maintain the accuracy of the cutting process while preventing this.
 ワイヤ放電加工装置1は、繰出し用ボビン11、ワイヤ電極12、巻掛ガイドローラ13a,13b,13c,13d、巻取り用ボビン14、位置決めガイドローラ15a,15b、給電子17a,17b、ノズル19a,19b、加工液供給ホース20a,20b、加工ステージ40、被加工物保持具50、および加工槽60を備えている。 The wire electric discharge machine 1 includes a feeding bobbin 11, a wire electrode 12, a winding guide roller 13a, 13b, 13c, 13d, a winding bobbin 14, a positioning guide roller 15a, 15b, a power supply 17a, 17b, a nozzle 19a, and the like. 19b, machining liquid supply hoses 20a and 20b, machining stage 40, workpiece holder 50, and machining tank 60 are provided.
 ワイヤ放電加工装置1では、加工槽60内の加工ステージ40上にインゴット30a,30bを保持する被加工物保持具50が配置され、加工槽60内に加工液70が満たされる。ワイヤ放電加工装置1の例は、マルチワイヤ放電加工装置である。 In the wire electric discharge machining apparatus 1, the workpiece holder 50 for holding the ingots 30a and 30b is arranged on the machining stage 40 in the machining tank 60, and the machining liquid 70 is filled in the machining tank 60. An example of the wire electric discharge machine 1 is a multi-wire electric discharge machine.
 繰出し用ボビン11、ワイヤ電極12、巻掛ガイドローラ13a,13b,13c,13d、巻取り用ボビン14、および位置決めガイドローラ15a,15bは、Y方向に延びる円柱状の部材で構成されている。繰出し用ボビン11は、ワイヤ電極12を繰出し、巻掛ガイドローラ13a~13dは、ワイヤ電極12が巻き付けられ、巻取り用ボビン14は、ワイヤ電極12を巻取る。位置決めガイドローラ15a,15bは、ワイヤ電極12の位置決めを行う。 The feeding bobbin 11, the wire electrode 12, the winding guide rollers 13a, 13b, 13c, 13d, the winding bobbin 14, and the positioning guide rollers 15a, 15b are composed of columnar members extending in the Y direction. The feeding bobbin 11 feeds out the wire electrode 12, the winding guide rollers 13a to 13d are wound with the wire electrode 12, and the winding bobbin 14 winds the wire electrode 12. The positioning guide rollers 15a and 15b position the wire electrode 12.
 本実施の形態におけるワイヤ放電加工装置1では、繰出し用ボビン11から繰り出された1本のワイヤ電極12が、順次、複数の巻掛ガイドローラ13a,13d,13c,13b間を、複数回、微小な間隔を隔てて巻回されている。換言すると、巻掛ガイドローラ13a~13dのそれぞれには、1本のワイヤ電極12が順次巻き掛けられ、ワイヤ電極12が、ワイヤ電極12の軸線方向(X方向)に平行に並ぶよう配置されている。ワイヤ電極12のうち、インゴット30a,30bを切断する部分(インゴット30a,30bに対向する部分)がワイヤ切断部である。 In the wire electric discharge machining apparatus 1 of the present embodiment, one wire electrode 12 unwound from the feeding bobbin 11 sequentially moves between a plurality of winding guide rollers 13a, 13d, 13c, and 13b a plurality of times. It is wound at various intervals. In other words, one wire electrode 12 is sequentially wound around each of the winding guide rollers 13a to 13d, and the wire electrodes 12 are arranged so as to be arranged parallel to the axial direction (X direction) of the wire electrodes 12. There is. The portion of the wire electrode 12 that cuts the ingots 30a and 30b (the portion facing the ingots 30a and 30b) is the wire cutting portion.
 すなわち、ワイヤ電極12は、複数のワイヤ切断部を形成する。複数のワイヤ切断部は、互いに離間して並列に設けられ、かつ、インゴット30a,30bにそれぞれ対向する。このワイヤ電極12が巻回されて形成されたワイヤ切断部の間隔が、インゴット30a,30bの加工幅、すなわち切断される加工物(インゴット30a,30bから切断された薄板)の厚さとなる。このように、ワイヤ電極12は、インゴット30a,30bのそれぞれに対向するよう直線状に配置されるとともに、インゴット30a,30bと対向する位置で、インゴット30a,30bにワイヤ放電加工を行う。 That is, the wire electrode 12 forms a plurality of wire cutting portions. The plurality of wire cutting portions are provided in parallel so as to be separated from each other, and face the ingots 30a and 30b, respectively. The distance between the wire cutting portions formed by winding the wire electrode 12 is the processing width of the ingots 30a and 30b, that is, the thickness of the workpiece to be cut (thin plate cut from the ingots 30a and 30b). In this way, the wire electrodes 12 are linearly arranged so as to face the ingots 30a and 30b, respectively, and wire electric discharge machining is performed on the ingots 30a and 30b at positions facing the ingots 30a and 30b.
 ワイヤ放電加工装置1は、加工液70が満たされた加工槽60の中に、ワイヤ電極12、巻掛ガイドローラ13c,13d、巻取り用ボビン14、位置決めガイドローラ15a,15b、給電子17a,17b、ノズル19a,19b、加工液供給ホース20a,20b、加工ステージ40、被加工物保持具50、インゴット30a,30bを浸漬した状態で、ワイヤ切断部を予め定める間隔だけ離間させてインゴット30a,30bに対向させて配置し、ワイヤ切断部とインゴット30a,30bとの間に電圧を印加する。そして、ワイヤ放電加工装置1は、インゴット30a,30bをワイヤ切断部に対して切断方向への加工送りを行うことによって、インゴット30a,30bをワイヤ切断部によって放電切断する。すなわち、ワイヤ放電加工装置1は、ワイヤ電極12と、被加工物保持具50によって保持されているインゴット30a,30bとを相対的に加工送りさせる駆動機構(図示せず)を有している。これによって、インゴット30a,30bが、それぞれ同時に複数枚の薄板に加工される。 In the wire electric discharge machining apparatus 1, the wire electrode 12, the winding guide rollers 13c, 13d, the winding bobbin 14, the positioning guide rollers 15a, 15b, the power supply 17a, etc. are placed in the processing tank 60 filled with the processing liquid 70. With the 17b, nozzles 19a, 19b, machining fluid supply hoses 20a, 20b, machining stage 40, workpiece holder 50, and ingots 30a, 30b immersed, the wire cutting portions are separated by a predetermined interval, and the ingots 30a, It is arranged so as to face 30b, and a voltage is applied between the wire cutting portion and the ingots 30a and 30b. Then, the wire electric discharge machining apparatus 1 discharge-cuts the ingots 30a and 30b by the wire cutting portion by feeding the ingots 30a and 30b to the wire cutting portion in the cutting direction. That is, the wire electric discharge machining apparatus 1 has a drive mechanism (not shown) for relatively machining and feeding the wire electrode 12 and the ingots 30a and 30b held by the workpiece holder 50. As a result, the ingots 30a and 30b are processed into a plurality of thin plates at the same time.
 被加工物であるインゴット30a,30bは、直径が同じ大きさの柱状であり、本実施の形態では円柱状である。インゴット30a,30bは、Y方向が軸方向となるよう、加工槽60内の被加工物保持具50によって並列に並べて保持される。インゴット30a,30bは、複数の薄板にスライスされる素材である。インゴット30a,30bは、たとえば、スパッタリングターゲットとなるタングステン、モリブデンなどの金属であってもよいし、各種構造部材として使われる多結晶シリコンカーバイドなどのセラミックスであってもよい。また、インゴット30a,30bは、半導体デバイスウエハとなる単結晶シリコンであってもよいし、単結晶シリコンカーバイド、ガリウムナイトライドなどの半導体素材であってもよいし、太陽電池ウエハとなる、単結晶シリコン、多結晶シリコンなどの太陽電池素材であってもよい。 The ingots 30a and 30b, which are the workpieces, have a columnar shape having the same diameter, and are columnar in the present embodiment. The ingots 30a and 30b are held side by side in parallel by the workpiece holder 50 in the processing tank 60 so that the Y direction is the axial direction. The ingots 30a and 30b are materials that are sliced into a plurality of thin plates. The ingots 30a and 30b may be, for example, a metal such as tungsten or molybdenum as a sputtering target, or ceramics such as polycrystalline silicon carbide used as various structural members. Further, the ingots 30a and 30b may be single crystal silicon as a semiconductor device wafer, may be a semiconductor material such as a single crystal silicon carbide or gallium nitride, or may be a single crystal as a solar cell wafer. It may be a solar cell material such as silicon or polycrystalline silicon.
 図1では、1本のワイヤ電極12を複数の巻掛ガイドローラ13a,13b,13c,13dに巻回した場合について示しているが、この場合に限定されない。すなわち、1本のワイヤ電極12を折り返すことによって、複数のワイヤ切断部を形成可能であれば、その具体的な構成については特に限定されない。なお、ワイヤ切断部は、インゴット30a,30bに1箇所ずつであってもよい。 FIG. 1 shows a case where one wire electrode 12 is wound around a plurality of winding guide rollers 13a, 13b, 13c, 13d, but the case is not limited to this case. That is, as long as a plurality of wire cutting portions can be formed by folding back one wire electrode 12, the specific configuration thereof is not particularly limited. The wire cutting portion may be provided at one location on each of the ingots 30a and 30b.
 本実施の形態においては、複数の巻掛ガイドローラ13a,13b,13c,13dは、円柱状をなしており、それぞれ、各軸線が延びる方向(X方向)に対して垂直なY方向に向かって互いに平行となるよう離間して配置されている。本実施の形態では、4つの巻掛ガイドローラ13a~13dが配置されているが、巻掛ガイドローラ13a~13dの個数は、2個、3個、または5個以上でもよい。以下の説明では、4つの巻掛ガイドローラ13a~13dを区別する場合には、それぞれ「第1の巻掛ガイドローラ13a」、「第2の巻掛ガイドローラ13b」、「第3の巻掛ガイドローラ13c」、「第4の巻掛ガイドローラ13d」という。 In the present embodiment, the plurality of winding guide rollers 13a, 13b, 13c, 13d have a columnar shape, and each of them is directed in the Y direction perpendicular to the direction in which each axis extends (X direction). They are arranged so as to be parallel to each other. In the present embodiment, four winding guide rollers 13a to 13d are arranged, but the number of winding guide rollers 13a to 13d may be two, three, or five or more. In the following description, when distinguishing the four winding guide rollers 13a to 13d, "first winding guide roller 13a", "second winding guide roller 13b", and "third winding guide roller 13b", respectively. They are called "guide roller 13c" and "fourth winding guide roller 13d".
 第1の巻掛ガイドローラ13aおよび第2の巻掛ガイドローラ13bは、第3の巻掛ガイドローラ13cおよび第4の巻掛ガイドローラ13dよりも高い位置に設けられる。また、第3の巻掛ガイドローラ13cおよび第4の巻掛ガイドローラ13dは、インゴット30a,30bの位置よりも高く、第1の巻掛ガイドローラ13aおよび第2の巻掛ガイドローラ13bよりも低い位置に並んで設けられる。 The first winding guide roller 13a and the second winding guide roller 13b are provided at positions higher than the third winding guide roller 13c and the fourth winding guide roller 13d. Further, the third winding guide roller 13c and the fourth winding guide roller 13d are higher than the positions of the ingots 30a and 30b, and are higher than the first winding guide roller 13a and the second winding guide roller 13b. It is installed side by side in a low position.
 繰出し用ボビン11から出されたワイヤ電極12は、第1から第4の巻掛ガイドローラ13a~13d間において予め定める回数を巻回された後に、巻取り用ボビン14に巻き取られる。 The wire electrode 12 taken out from the feeding bobbin 11 is wound around the winding bobbin 14 after being wound a predetermined number of times between the first to fourth winding guide rollers 13a to 13d.
 図1に示すように、ワイヤ電極12は、第3の巻掛ガイドローラ13cと第4の巻掛ガイドローラ13dとの間のワイヤ部Rがワイヤ切断部として、インゴット30a,30bと対向することが可能に配置されている。ワイヤ放電加工装置1ではワイヤ切断部に対して、微小間隔を隔ててインゴット30a,30bを対向させ、放電加工を行う。 As shown in FIG. 1, in the wire electrode 12, the wire portion R between the third winding guide roller 13c and the fourth winding guide roller 13d faces the ingots 30a and 30b as a wire cutting portion. Is arranged so that In the wire electric discharge machining apparatus 1, the ingots 30a and 30b are opposed to the wire cutting portion at a minute interval to perform electric discharge machining.
 ワイヤ切断部と第3の巻掛ガイドローラ13cとの間、およびワイヤ切断部と第4の巻掛ガイドローラ13dとの間には、ワイヤ電極12の振動を抑制するための複数の位置決めガイドローラ15a,15bがそれぞれ配置されている。以下の説明では、2つの位置決めガイドローラ15a,15bを区別する場合には、それぞれ、「第1の位置決めガイドローラ15a」、「第2の位置決めガイドローラ15b」という。 A plurality of positioning guide rollers for suppressing vibration of the wire electrode 12 between the wire cutting portion and the third winding guide roller 13c and between the wire cutting portion and the fourth winding guide roller 13d. 15a and 15b are arranged respectively. In the following description, when the two positioning guide rollers 15a and 15b are distinguished, they are referred to as "first positioning guide roller 15a" and "second positioning guide roller 15b", respectively.
 第1の位置決めガイドローラ15aは、ワイヤ切断部と第3の巻掛ガイドローラ13cとの間に設けられる。第1の位置決めガイドローラ15aは、第1の位置決めガイドローラ15aの軸方向が、第3の巻掛ガイドローラ13cの軸方向に平行になるように、第3の巻掛ガイドローラ13cから離間して配置されている。 The first positioning guide roller 15a is provided between the wire cutting portion and the third winding guide roller 13c. The first positioning guide roller 15a is separated from the third winding guide roller 13c so that the axial direction of the first positioning guide roller 15a is parallel to the axial direction of the third winding guide roller 13c. Are arranged.
 第2の位置決めガイドローラ15bは、ワイヤ切断部と第4の巻掛ガイドローラ13dとの間に設けられる。第2の位置決めガイドローラ15bは、第2の位置決めガイドローラ15bの軸方向が、第4の巻掛ガイドローラ13dの軸方向に平行になるように、第4の巻掛ガイドローラ13dから離間して配置されている。 The second positioning guide roller 15b is provided between the wire cutting portion and the fourth winding guide roller 13d. The second positioning guide roller 15b is separated from the fourth winding guide roller 13d so that the axial direction of the second positioning guide roller 15b is parallel to the axial direction of the fourth winding guide roller 13d. Are arranged.
 このように、ワイヤ電極12は、繰出し用ボビン11、巻掛ガイドローラ13a、巻掛ガイドローラ13d、給電子17b、位置決めガイドローラ15b、位置決めガイドローラ15a、給電子17a、巻掛ガイドローラ13c、巻掛ガイドローラ13b、巻取り用ボビン14の順に接触するよう、巻掛ガイドローラ13a~13dに巻回されている。 As described above, the wire electrode 12 includes the feeding bobbin 11, the winding guide roller 13a, the winding guide roller 13d, the power supply 17b, the positioning guide roller 15b, the positioning guide roller 15a, the power supply 17a, and the winding guide roller 13c. The winding guide rollers 13b and the winding bobbin 14 are wound around the winding guide rollers 13a to 13d so as to come into contact with each other in this order.
 給電子17aは、第3の巻掛ガイドローラ13cと第1の位置決めガイドローラ15aとの間に配置され、給電子17bは、第4の巻掛ガイドローラ13dと第2の位置決めガイドローラ15bとの間に配置されている。 The power supply 17a is arranged between the third winding guide roller 13c and the first positioning guide roller 15a, and the power supply 17b is the fourth winding guide roller 13d and the second positioning guide roller 15b. It is placed between.
 ワイヤ電極12のうち、第3の巻掛ガイドローラ13cと第1の位置決めガイドローラ15aとの間の部分、および、第4の巻掛ガイドローラ13dと第2の位置決めガイドローラ15bとの間の部分は、放電加工を行うための加工用電圧が印加されて電流が供給される給電ワイヤ部となっている。 Of the wire electrode 12, the portion between the third winding guide roller 13c and the first positioning guide roller 15a, and between the fourth winding guide roller 13d and the second positioning guide roller 15b. The portion is a feeding wire portion to which a processing voltage for performing electric discharge machining is applied and a current is supplied.
 ワイヤ電極12の給電ワイヤ部には、図示しない加工用電源から給電子17a,17bを介して、放電加工を行うためのパルス状の加工用電圧(高周波パルス電力)が印加されて、電流が供給される。これによって、ワイヤ切断部とインゴット30a,30bとの間に加工用電圧が印加される。 A pulsed processing voltage (high frequency pulse power) for performing electric discharge machining is applied to the power feeding wire portion of the wire electrode 12 from a processing power supply (not shown) via power supplies 17a and 17b to supply a current. Will be done. As a result, a machining voltage is applied between the wire cutting portion and the ingots 30a and 30b.
 給電子17a,17bは、ワイヤ電極12で構成されるワイヤ切断部の本数分が設けられる。複数の給電子17a,17bは、それぞれ絶縁され、インゴット30a,30bの両側に整列配置されて、給電子ユニットを構成する。 The power supply electrons 17a and 17b are provided with the number of wire cutting portions composed of the wire electrodes 12. The plurality of power supply electrons 17a and 17b are insulated from each other and are aligned on both sides of the ingots 30a and 30b to form a power supply unit.
 第3の巻掛ガイドローラ13cと第1の位置決めガイドローラ15aとの間に配置される給電子が給電子17aであり、Y方向に並ぶ給電子17aで構成される給電子群が第1の給電子ユニットである。また、第4の巻掛ガイドローラ13dと第2の位置決めガイドローラ15bとの間に配置される給電子が給電子17bであり、Y方向に並ぶ給電子17bで構成される給電子群が第2の給電子ユニットである。 The power supply electron arranged between the third winding guide roller 13c and the first positioning guide roller 15a is the power supply electron 17a, and the power supply electron group composed of the power supply electrons 17a arranged in the Y direction is the first. It is an electronic power supply unit. Further, the power supply electron arranged between the fourth winding guide roller 13d and the second positioning guide roller 15b is the power supply electron 17b, and the power supply electron group composed of the power supply electrons 17b arranged in the Y direction is the first. It is a power supply unit of 2.
 ワイヤ放電加工装置1は、各給電子17a,17bによって、各ワイヤ切断部に独立して電圧を印加できる構成となっている。並列するワイヤ切断部に対して、独立に電圧を印加できる複数の加工用電源ユニットは、ワイヤ放電加工装置1の図示しない制御装置に接続される。加工用電源ユニットは、制御装置の指示に従って、対応する給電子17a,17bを介して、対応するワイヤ切断部に電圧を印加する。本実施の形態のワイヤ放電加工装置1における電圧の印加極性は、従来のワイヤ放電加工装置と同様に、必要に応じて適宜反転可能となっている。 The wire electric discharge machine 1 has a configuration in which a voltage can be independently applied to each wire cutting portion by each of the power supply electrons 17a and 17b. A plurality of processing power supply units capable of independently applying a voltage to the parallel wire cutting portions are connected to a control device (not shown) of the wire electric discharge machining device 1. The processing power supply unit applies a voltage to the corresponding wire cutting portion via the corresponding power supply electrons 17a and 17b according to the instruction of the control device. The voltage application polarity of the wire electric discharge machine 1 of the present embodiment can be appropriately reversed as needed, as in the conventional wire electric discharge machine.
 ワイヤ電極12のうち、第1の位置決めガイドローラ15aと第2の位置決めガイドローラ15bとの間のワイヤ部Rの一部が、ワイヤ切断部となる。一対のノズル19a,19bは、直線状のワイヤ部Rに沿ってインゴット30a,30bに加工液70を噴射する加工液供給部である。ノズル19aは、第1の位置決めガイドローラ15aとインゴット30aとの間に配置され、ノズル19bは、第2の位置決めガイドローラ15bとインゴット30bとの間に配置されている。 Of the wire electrodes 12, a part of the wire portion R between the first positioning guide roller 15a and the second positioning guide roller 15b becomes the wire cutting portion. The pair of nozzles 19a and 19b are processing liquid supply units that inject the processing liquid 70 onto the ingots 30a and 30b along the linear wire portion R. The nozzle 19a is arranged between the first positioning guide roller 15a and the ingot 30a, and the nozzle 19b is arranged between the second positioning guide roller 15b and the ingot 30b.
 また、ノズル19aには、加工液供給ホース20aが接続され、ノズル19bには、加工液供給ホース20bが接続されている。ノズル19aは、ワイヤ部Rに沿ってインゴット30aに加工液70を噴射することによってインゴット30aの加工屑を除去し、ノズル19bは、ワイヤ部Rに沿ってインゴット30bに加工液70を噴射することによってインゴット30bの加工屑を除去する。ノズル19a,19bは、ワイヤ電極12と接触して短絡しないように、電気的な絶縁材料で作製されるか、アルマイト処理などの電気的絶縁処理が施される。 Further, the machining fluid supply hose 20a is connected to the nozzle 19a, and the machining fluid supply hose 20b is connected to the nozzle 19b. The nozzle 19a removes the machining debris of the ingot 30a by injecting the machining fluid 70 into the ingot 30a along the wire portion R, and the nozzle 19b injects the machining fluid 70 into the ingot 30b along the wire portion R. Removes the processing waste of the ingot 30b. The nozzles 19a and 19b are made of an electrically insulating material or subjected to an electrical insulation treatment such as an alumite treatment so as not to come into contact with the wire electrode 12 and cause a short circuit.
 加工液供給ホース20a,20bからノズル19a,19bの内部に流入する加工液70は、ワイヤ部Rの位置でノズル19a,19bの外部に噴出される。ノズル19a,19bから加工液70が噴出される方向には、ワイヤ放電加工された加工溝があり、加工液70は加工溝内部に侵入する。加工溝内部に供給された加工液70は、加工溝内部の加工屑を除去しながら、インゴット30a,30bの間の空間に放出される。 The machining fluid 70 flowing into the nozzles 19a and 19b from the machining fluid supply hoses 20a and 20b is ejected to the outside of the nozzles 19a and 19b at the position of the wire portion R. There is a wire electric discharge machined machining groove in the direction in which the machining fluid 70 is ejected from the nozzles 19a and 19b, and the machining fluid 70 penetrates into the machining groove. The machining liquid 70 supplied to the inside of the machining groove is discharged into the space between the ingots 30a and 30b while removing the machining chips inside the machining groove.
 インゴット30a,30bは、軸方向がY方向となるよう被加工物保持具50によって保持される。すなわち、保持部である被加工物保持具50は、インゴット30a,30bを同一平面内に並列に並べて保持する。このとき、被加工物保持具50は、インゴット30a,30bの直径を直径Dとした場合に、2つのインゴット30a,30bのワイヤ電極12に垂直な接線Ta,Tb間の距離Xdが0.2D以上かつ1D以下となる間隔をインゴット30a,30b間に設けてインゴット30a,30bを固定する。 The ingots 30a and 30b are held by the workpiece holder 50 so that the axial direction is the Y direction. That is, the workpiece holder 50, which is a holding portion, holds the ingots 30a and 30b side by side in the same plane. At this time, when the diameter of the ingots 30a and 30b is the diameter D of the workpiece holder 50, the distance Xd between the tangents Ta and Tb perpendicular to the wire electrodes 12 of the two ingots 30a and 30b is 0.2D. An interval of more than 1D and less than or equal to 1D is provided between the ingots 30a and 30b to fix the ingots 30a and 30b.
 また、インゴット30a,30bは、図示しない位置制御装置によって、第1から第4の巻掛ガイドローラ13a~13d間に巻回されたワイヤ電極12と微小間隙を隔てるように位置が制御されている。この制御によって、適正な放電ギャップ長が維持される。 Further, the positions of the ingots 30a and 30b are controlled by a position control device (not shown) so as to separate a minute gap from the wire electrode 12 wound between the first to fourth winding guide rollers 13a to 13d. .. This control maintains the proper discharge gap length.
 図3は、実施の形態にかかるワイヤ放電加工装置が加工するインゴットの加工溝を説明するための図である。図4は、実施の形態にかかるワイヤ放電加工装置のノズルから噴射される加工液の流れを説明するための図である。図3において、紙面内の横方向がX方向であり、紙面内の下方向がY方向であり、紙面に対する手前方向がZ方向である。紙面の奥方向は、鉛直方向であり、XY平面は、水平面である。放電加工により、インゴット30a,30bに、図3に示すようなワイヤ部Rの直径Dよりも数μm~数十μm程度幅が広い加工溝Cが形成される。 FIG. 3 is a diagram for explaining a machined groove of the ingot machined by the wire electric discharge machine according to the embodiment. FIG. 4 is a diagram for explaining the flow of the machining fluid injected from the nozzle of the wire electric discharge machining apparatus according to the embodiment. In FIG. 3, the horizontal direction in the paper surface is the X direction, the downward direction in the paper surface is the Y direction, and the front direction with respect to the paper surface is the Z direction. The depth direction of the paper surface is the vertical direction, and the XY plane is the horizontal plane. By electric discharge machining, machining grooves C having a width of several μm to several tens of μm wider than the diameter D of the wire portion R as shown in FIG. 3 are formed in the ingots 30a and 30b.
 このような構成によれば、図4に示す通り、インゴット30a,30bの両側に設置されたノズル19a,19bから同時に加工液70の噴流71a,71bが噴射され、噴流71a,71bが、加工溝Cの内部を直線状のワイヤ部Rに沿って通過し、加工溝Cの内部からワイヤ部Rに沿って噴出される。ここで、加工液70の噴流71a,71b同士が、ノズル19a,19bと同軸上にある衝突点Pで衝突すると、衝突点P付近にて、噴流71a,71bが衝突点Pの周囲に拡散されるような流れが形成される。この場合において、2つのインゴット30a,30bが、ワイヤ電極12に垂直な接線Ta,Tb間の距離XdがXd≧0.2Dとなるよう離されて固定されているので、衝突点P付近で発生する、加工液70の滞留に伴う加工溝Cの内部を流れる加工液70の噴流71a,71bの流速の低下を抑制することができる。これにより、加工溝Cの内部での加工液70の噴流71a,71bの滞留が抑制できる。したがって、インゴット30a,30bの加工溝Cに向けて噴射された加工液70の噴流71a,71bの勢いが加工溝Cの内部で維持されるので、噴射された加工液70の噴流71a,71bは、加工溝Cの内部の加工屑を十分な流速を維持した状態で除去することができる。また、2つのインゴット30a,30bのワイヤ電極12に垂直な接線Ta,Tb間の距離XdがXd≦1Dで固定されているので、加工中のワイヤ振動の振幅増大を抑制し、切断加工の精度を保つことができる。 According to such a configuration, as shown in FIG. 4, jets 71a and 71b of the machining fluid 70 are simultaneously injected from the nozzles 19a and 19b installed on both sides of the ingots 30a and 30b, and the jets 71a and 71b are formed in the machining groove. It passes through the inside of C along the linear wire portion R, and is ejected from the inside of the processing groove C along the wire portion R. Here, when the jets 71a and 71b of the processing liquid 70 collide with each other at the collision point P coaxial with the nozzles 19a and 19b, the jets 71a and 71b are diffused around the collision point P near the collision point P. A flow is formed. In this case, since the two ingots 30a and 30b are separated and fixed so that the distance Xd between the tangents Ta and Tb perpendicular to the wire electrode 12 is Xd ≧ 0.2D, they occur near the collision point P. The decrease in the flow velocity of the jets 71a and 71b of the machining fluid 70 flowing inside the machining groove C due to the retention of the machining fluid 70 can be suppressed. As a result, the jet flows 71a and 71b of the processing liquid 70 can be suppressed from staying inside the processing groove C. Therefore, the momentum of the jets 71a and 71b of the machining fluid 70 jetted toward the machining grooves C of the ingots 30a and 30b is maintained inside the machining groove C, so that the jets 71a and 71b of the jetted machining fluid 70 are , The machining debris inside the machining groove C can be removed while maintaining a sufficient flow velocity. Further, since the distance Xd between the tangents Ta and Tb perpendicular to the wire electrodes 12 of the two ingots 30a and 30b is fixed at Xd ≦ 1D, the increase in the amplitude of the wire vibration during machining is suppressed, and the accuracy of cutting machining is suppressed. Can be kept.
 つぎに、2つのインゴット30a,30bのワイヤ電極12に垂直な接線Ta,Tb間の距離Xdとして、0.2D以上かつ1D以下の間隔を設けた理由について説明する。切断後の板厚が板厚3mmであり且つ直径50mmのインゴット3次元モデルと、切断後の板厚が板厚3mmであり且つ直径100mmのインゴット3次元モデルとを作成し、2つのインゴット3次元モデルを用いて、インゴットの設置間隔による加工溝内部の加工液流れの変化を数値解析によって調べた。 Next, the reason why the distance Xd between the tangents Ta and Tb perpendicular to the wire electrodes 12 of the two ingots 30a and 30b is 0.2D or more and 1D or less will be described. Two ingot 3D models are created, one is an ingot 3D model with a plate thickness of 3 mm and a diameter of 50 mm after cutting, and the other is an ingot 3D model with a plate thickness of 3 mm and a diameter of 100 mm after cutting. Using a model, the change in the machining fluid flow inside the machining groove due to the installation interval of the ingot was investigated by numerical analysis.
 図5は、実施の形態にかかるワイヤ放電加工装置におけるインゴットの配置位置の数値解析モデルを説明するための図である。図5では、インゴット30a,30bをY方向から見た場合のインゴットモデルを示している。以下では、インゴットモデルの配置位置を解析する数値解析モデルの概要およびインゴット30a,30bの配置位置の境界条件について説明する。 FIG. 5 is a diagram for explaining a numerical analysis model of the arrangement position of the ingot in the wire electric discharge machining apparatus according to the embodiment. FIG. 5 shows an ingot model when the ingots 30a and 30b are viewed from the Y direction. The outline of the numerical analysis model for analyzing the arrangement position of the ingot model and the boundary condition of the arrangement position of the ingots 30a and 30b will be described below.
 第1のインゴットモデルは、前述の板厚3mm、直径50mmのインゴット3Dモデルであり、第2のインゴットモデルは、前述の板厚3mm、直径100mmのインゴット3Dモデルである。 The first ingot model is the above-mentioned ingot 3D model having a plate thickness of 3 mm and a diameter of 50 mm, and the second ingot model is the above-mentioned ingot 3D model having a plate thickness of 3 mm and a diameter of 100 mm.
 加工液70は水とし、乱流モデルには標準k‐εモデルを使用した。ノズル19a,19bから噴出される加工液70の流量は直径50mmのインゴットでは10L/min、直径100mmのインゴットでは20L/minとした。解析では加工溝幅を0.15mmとし、切断加工が8割進んだ状況を模擬するため、第1のインゴットモデル(インゴット30a,30bが直径50mmである場合のインゴット3Dモデル)では、加工溝深さFを40mmとし、第2のインゴットモデル(インゴット30a,30bが直径100mmである場合のインゴット3Dモデル)では、加工溝深さFを80mmとした。これらの、第1のインゴットモデルおよび第2のインゴットモデルによって、インゴット30a,30bの設置間隔であるワイヤ電極12に垂直な接線Ta,Tb間の距離Xdを変化させたときの加工溝内部の加工液流れの変化を検証した。 The processing liquid 70 was water, and the standard k-ε model was used as the turbulent flow model. The flow rate of the processing liquid 70 ejected from the nozzles 19a and 19b was 10 L / min for the ingot having a diameter of 50 mm and 20 L / min for the ingot having a diameter of 100 mm. In the analysis, the machined groove width is 0.15 mm, and the situation where the cutting process is advanced by 80% is simulated. Therefore, in the first ingot model (the ingot 3D model when the ingots 30a and 30b have a diameter of 50 mm), the machined groove depth In the second ingot model (ingot 3D model when the ingots 30a and 30b have a diameter of 100 mm), the processing groove depth F is set to 80 mm. Processing inside the processing groove when the distance Xd between the tangents Ta and Tb perpendicular to the wire electrode 12, which is the installation interval of the ingots 30a and 30b, is changed by the first ingot model and the second ingot model. The change in liquid flow was verified.
 なお、図5では、加工液70の流速を測定する位置を位置90で示している。以下の説明では、直径50mmである場合のインゴット30a,30bを、第1のインゴット組といい、直径100mmである場合のインゴット30a,30bを、第2のインゴット組という場合がある。 Note that in FIG. 5, the position where the flow velocity of the processing liquid 70 is measured is shown at position 90. In the following description, the ingots 30a and 30b having a diameter of 50 mm may be referred to as a first ingot set, and the ingots 30a and 30b having a diameter of 100 mm may be referred to as a second ingot set.
 図6は、実施の形態にかかるワイヤ放電加工装置に対する数値解析の解析結果を説明するための図である。図5では、ワイヤ電極12に垂直な接線Ta,Tb間の距離Xdをインゴット30a,30bの直径Dで正規化した値Zを横軸とし、加工溝出口付近(位置90)の流速を縦軸とし、値Zと流速との関係がプロットされている。図6において、丸形状の印41が、第1のインゴット組の値Zと流速との関係を示し、四角形状の印42が、第2のインゴット組の値Zと流速との関係を示している。また、図6では、第1のインゴット組の流速の最大値を最大値51で示し、第2のインゴット組の流速の最大値を最大値52で示している。また、図6では、第1のインゴット組の流速の最大値の70%の値を値61で示し、第2のインゴット組の流速の最大値の70%の値を値62で示している。 FIG. 6 is a diagram for explaining the analysis result of the numerical analysis for the wire electric discharge machine according to the embodiment. In FIG. 5, the horizontal axis is the value Z obtained by normalizing the distance Xd between the tangents Ta and Tb perpendicular to the wire electrode 12 with the diameters D of the ingots 30a and 30b, and the vertical axis is the flow velocity near the exit of the machining groove (position 90). The relationship between the value Z and the flow velocity is plotted. In FIG. 6, the round mark 41 shows the relationship between the value Z of the first ingot set and the flow velocity, and the square mark 42 shows the relationship between the value Z of the second ingot set and the flow velocity. There is. Further, in FIG. 6, the maximum value of the flow velocity of the first ingot group is indicated by the maximum value 51, and the maximum value of the flow velocity of the second ingot group is indicated by the maximum value 52. Further, in FIG. 6, a value of 70% of the maximum value of the flow velocity of the first ingot group is indicated by a value of 61, and a value of 70% of the maximum value of the flow velocity of the second ingot group is indicated by a value of 62.
 図6に示すように、インゴットの直径Dの大きさに因らず、ワイヤ電極12に垂直な接線Ta,Tb間の距離Xdが広がる程、加工溝出口付近(位置90)での流速が大きくなることが分かる。ここで、ワイヤ電極12に垂直な接線Ta,Tb間の距離Xdを直径Dで正規化した値Zが5分の1以上のとき、加工溝出口付近での流速が最大流速の70%以上の大きさとなることが分かる。したがって、ワイヤ放電加工装置1は、2つのインゴット30a,30bのワイヤ電極12に垂直な接線Ta,Tb間の距離Xdを0.2D以上にしてワイヤ放電加工を行う。 As shown in FIG. 6, regardless of the size of the diameter D of the ingot, the greater the distance Xd between the tangents Ta and Tb perpendicular to the wire electrode 12, the greater the flow velocity near the exit of the machined groove (position 90). It turns out that Here, when the value Z obtained by normalizing the distance Xd between the tangents Ta and Tb perpendicular to the wire electrode 12 with the diameter D is 1/5 or more, the flow velocity near the exit of the machining groove is 70% or more of the maximum flow velocity. You can see that it will be the size. Therefore, the wire electric discharge machine 1 performs wire electric discharge machining with the distance Xd between the tangents Ta and Tb perpendicular to the wire electrodes 12 of the two ingots 30a and 30b being 0.2D or more.
 ここで、インゴットの放電加工時には、ワイヤ部Rには静電引力qが働くことが知られている。また、この静電引力qを起因としてワイヤ部Rに振動が発生する。この静電引力qによるワイヤ部Rの振動が切断加工の精度に影響を与える。よって、このワイヤ部Rの振動を小さくすることが重要となる。ワイヤ部Rの振幅δは、外力が作用する弦として近似することで、ワイヤ部R上の最大変位は、以下の式(1)で概算できることが知られている。 Here, it is known that an electrostatic attraction q acts on the wire portion R during electric discharge machining of the ingot. Further, vibration is generated in the wire portion R due to this electrostatic attraction q. The vibration of the wire portion R due to the electrostatic attraction q affects the accuracy of the cutting process. Therefore, it is important to reduce the vibration of the wire portion R. It is known that the maximum displacement on the wire portion R can be estimated by the following equation (1) by approximating the amplitude δ of the wire portion R as a string on which an external force acts.
 δ=(qh2)/8T・・・(1) δ = (qh 2 ) / 8T ... (1)
 式(1)におけるTはワイヤ部Rの張力であり、hはワイヤ部Rの長さであり、qはワイヤ部Rにかかる静電引力である。例えば、インゴットの直径D=100mm、張力T=10N、静電引力q=0.01N/mの条件下でインゴットが放電加工された場合、ワイヤ電極12に垂直な接線Ta,Tb間の距離Xdを0~3Dまで変化させたときの振幅δは式(1)より図7のようになる。図7は、実施の形態にかかるワイヤ放電加工装置に対して理論式を用いてワイヤ電極12の振幅を計算した場合の計算結果を示す図である。インゴットのワイヤ放電加工における振幅δは、20μm以下に抑える必要があるので、図7より、ワイヤ電極12に垂直な接線Ta,Tb間の距離Xdは1D以下に抑える必要があることが分かる。 In the formula (1), T is the tension of the wire portion R, h is the length of the wire portion R, and q is the electrostatic attraction applied to the wire portion R. For example, when the ingot is electric discharged under the conditions of the ingot diameter D = 100 mm, tension T = 10 N, and electrostatic attraction q = 0.01 N / m, the distance Xd between the tangents Ta and Tb perpendicular to the wire electrode 12 The amplitude δ when is changed from 0 to 3D is as shown in FIG. 7 from the equation (1). FIG. 7 is a diagram showing a calculation result when the amplitude of the wire electrode 12 is calculated using a theoretical formula for the wire electric discharge machining apparatus according to the embodiment. Since the amplitude δ in the wire electric discharge machining of the ingot needs to be suppressed to 20 μm or less, it can be seen from FIG. 7 that the distance Xd between the tangents Ta and Tb perpendicular to the wire electrode 12 needs to be suppressed to 1D or less.
 なお、本実施の形態では、ワイヤ放電加工装置1がマルチワイヤ放電加工装置である場合について説明したが、ワイヤ放電加工装置1は、1本のワイヤ電極12でインゴット30a,30bに1箇所ずつの加工を行うワイヤ放電加工装置であってもよい。 In the present embodiment, the case where the wire electric discharge machine 1 is a multi-wire electric discharge machine has been described, but the wire electric discharge machine 1 has one wire electrode 12 at one location on each of the ingots 30a and 30b. It may be a wire electric discharge machining apparatus that performs machining.
 このように、本実施の形態では、インゴット30a,30bの直径Dに対してワイヤ電極12に垂直な接線Ta,Tb間の距離Xdとして0.2D以上かつ1D以下の間隔をあけて切断加工するので、インゴット30a,30bの両側から供給される加工液70の衝突を抑制できる。すなわち、並列に配置されたインゴット30a,30bを1本のワイヤ電極12で同時にワイヤ放電加工する場合であっても、隣接するインゴット30a,30bに供給された加工液70同士が衝突することを抑制できる。そして、加工液70同士が衝突することを抑制できるので、加工屑を加工溝内部で滞留させることなく除去することが可能になる。 As described above, in the present embodiment, the cutting process is performed with an interval of 0.2 D or more and 1 D or less as the distance Xd between the tangents Ta and Tb perpendicular to the wire electrode 12 with respect to the diameter D of the ingots 30a and 30b. Therefore, the collision of the working liquid 70 supplied from both sides of the ingots 30a and 30b can be suppressed. That is, even when the ingots 30a and 30b arranged in parallel are subjected to wire electric discharge machining with one wire electrode 12 at the same time, the machining liquids 70 supplied to the adjacent ingots 30a and 30b are prevented from colliding with each other. it can. Since it is possible to prevent the machining liquids 70 from colliding with each other, it is possible to remove the machining debris without retaining it inside the machining groove.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 ワイヤ放電加工装置、11 繰出し用ボビン、12 ワイヤ電極、13a~13d 巻掛ガイドローラ、14 巻取り用ボビン、15a,15b 位置決めガイドローラ、17a,17b 給電子、19a,19b ノズル、20a,20b 加工液供給ホース、30a,30b インゴット、35a,35b 円柱軸、40 加工ステージ、50 被加工物保持具、60 加工槽、70 加工液、71a,71b 噴流、C 加工溝、F 加工溝深さ、P 衝突点、R ワイヤ部、Xd 距離。 1 Wire electric discharge machine, 11 Feeding bobbin, 12 Wire electrode, 13a to 13d Winding guide roller, 14 Winding bobbin, 15a, 15b Positioning guide roller, 17a, 17b Power supply, 19a, 19b Nozzle, 20a, 20b Machining liquid supply hose, 30a, 30b wire, 35a, 35b cylindrical shaft, 40 machining stage, 50 workpiece holder, 60 machining tank, 70 machining fluid, 71a, 71b jet, C machining groove, F machining groove depth, P collision point, R wire part, Xd distance.

Claims (2)

  1.  円柱状の第1の被加工物および円柱状の第2の被加工物を同一平面内に並列に並べて保持する保持部と、
     前記第1の被加工物および前記第2の被加工物のそれぞれに対向するよう直線状に配置されるとともに、前記第1の被加工物および前記第2の被加工物と対向する位置で、前記第1の被加工物および前記第2の被加工物にワイヤ放電加工を行うワイヤ電極と、
     前記ワイヤ電極に沿った位置で且つ前記第1の被加工物および前記第2の被加工物を挟んで対向する位置に配置され、前記ワイヤ電極に沿って前記第1の被加工物および前記第2の被加工物に加工液を噴射する一対の加工液供給部と、
     を備え、
     前記第1の被加工物および前記第2の被加工物は、直径が同じ大きさであり、
     前記保持部は、前記第1の被加工物の円柱軸と前記第2の被加工物の円柱軸との間の間隔が、前記直径をDとした場合に1.2D以上かつ2D以下となるよう、前記第1の被加工物および前記第2の被加工物を保持する、
     ことを特徴とするワイヤ放電加工装置。
    A holding unit that holds the columnar first workpiece and the columnar second workpiece side by side in the same plane.
    It is arranged linearly so as to face each of the first workpiece and the second workpiece, and at a position facing the first workpiece and the second workpiece. A wire electrode for performing wire electric discharge machining on the first workpiece and the second workpiece,
    It is arranged along the wire electrode and at a position facing the first workpiece and the second workpiece so as to sandwich the second workpiece, and the first workpiece and the first workpiece are arranged along the wire electrode. A pair of machining fluid supply units that inject the machining fluid onto the work piece of 2 and
    With
    The first workpiece and the second workpiece have the same diameter and are of the same size.
    In the holding portion, the distance between the cylindrical shaft of the first work piece and the cylindrical shaft of the second work piece is 1.2D or more and 2D or less when the diameter is D. To hold the first work piece and the second work piece.
    A wire electric discharge machine characterized by this.
  2.  前記ワイヤ電極のうちの前記ワイヤ放電加工を行う箇所であるワイヤ切断部は、前記第1の被加工物および前記第2の被加工物に対して、それぞれ複数箇所であり、前記ワイヤ電極は、マルチワイヤ放電加工を行う、
     ことを特徴とする請求項1に記載のワイヤ放電加工装置。
    Among the wire electrodes, there are a plurality of wire cutting portions, which are locations where the wire electric discharge machining is performed, with respect to the first workpiece and the second workpiece, respectively. Perform multi-wire electric discharge machining,
    The wire electric discharge machining apparatus according to claim 1.
PCT/JP2019/016576 2019-04-18 2019-04-18 Wire electric discharge machining device WO2020213112A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019553145A JP6647469B1 (en) 2019-04-18 2019-04-18 Wire electric discharge machine
PCT/JP2019/016576 WO2020213112A1 (en) 2019-04-18 2019-04-18 Wire electric discharge machining device
CN201980095387.4A CN113710398B (en) 2019-04-18 2019-04-18 Wire electric discharge machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016576 WO2020213112A1 (en) 2019-04-18 2019-04-18 Wire electric discharge machining device

Publications (1)

Publication Number Publication Date
WO2020213112A1 true WO2020213112A1 (en) 2020-10-22

Family

ID=69568120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016576 WO2020213112A1 (en) 2019-04-18 2019-04-18 Wire electric discharge machining device

Country Status (3)

Country Link
JP (1) JP6647469B1 (en)
CN (1) CN113710398B (en)
WO (1) WO2020213112A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015047685A (en) * 2013-09-04 2015-03-16 三菱電機株式会社 Multiwire processing device and multiwire processing method
JP2016064460A (en) * 2014-09-24 2016-04-28 株式会社ディスコ Multi-wire discharge processing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513772B2 (en) * 2006-03-09 2010-07-28 三菱電機株式会社 Wire electrical discharge machine
JP5031073B2 (en) * 2010-07-21 2012-09-19 株式会社ソディック Power supply device for wire cut electrical discharge machine
US9387548B2 (en) * 2010-11-24 2016-07-12 Mitsubishi Electric Corporation Wire-cut electrical discharge machining apparatus and semiconductor wafer manufacturing method
US20150053650A1 (en) * 2012-04-12 2015-02-26 Mitsubishi Electric Corporation Wire discharge machining apparatus and manufacturing method for semiconductor wafers using the same
JP5674848B2 (en) * 2013-03-29 2015-02-25 ファナック株式会社 Wire electrical discharge machine with automatic connection function
DE102014208187B4 (en) * 2014-04-30 2023-07-06 Siltronic Ag Process for the simultaneous cutting of a large number of slices with a particularly uniform thickness from a workpiece
JP6195539B2 (en) * 2014-05-13 2017-09-13 三菱電機株式会社 Wire electrical discharge machining apparatus and semiconductor wafer manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015047685A (en) * 2013-09-04 2015-03-16 三菱電機株式会社 Multiwire processing device and multiwire processing method
JP2016064460A (en) * 2014-09-24 2016-04-28 株式会社ディスコ Multi-wire discharge processing device

Also Published As

Publication number Publication date
JPWO2020213112A1 (en) 2021-04-30
CN113710398A (en) 2021-11-26
JP6647469B1 (en) 2020-02-14
CN113710398B (en) 2022-09-27

Similar Documents

Publication Publication Date Title
JP5172019B2 (en) Wire electric discharge machining apparatus, wire electric discharge machining method, thin plate manufacturing method, and semiconductor wafer manufacturing method
EP0142034B1 (en) Traveling-wire electroerosion machines with double-floating nozzle assemblies
Kimura et al. Fundamental study on multi-wire EDM slicing of SiC by wire electrode with track-shaped section
TWI495526B (en) Line discharge machining system, wire discharge machining method
JP2014008592A (en) Multiwire electric discharge machining device, multiwire electric discharge machining method, thin plate manufacturing method, and semiconductor wafer manufacturing method
JP2014000656A (en) Wire electrical discharge machining device, wire electrical discharge machining method, and workpiece
WO2020213112A1 (en) Wire electric discharge machining device
EP0130758A1 (en) Precision TW electroerosion with superimposed multiple opening guides
JP5968200B2 (en) Wire electric discharge machining apparatus and method, thin plate manufacturing method and semiconductor wafer manufacturing method
WO2020213040A1 (en) Wire electric discharge machine
JP2015091613A (en) Wire electrical discharge machine and wire electrical discharge machining method
JP6033190B2 (en) Multi-wire processing apparatus and multi-wire processing method
JP5712947B2 (en) Wire electrical discharge machine
US4458130A (en) Immersion-type traveling-wire electroerosion machining method
JP2015168030A (en) Wire electric discharge machining apparatus, thin plate manufacturing method, and semiconductor wafer manufacturing method
JP5478544B2 (en) Wire electric discharge machining apparatus, wire electric discharge machining method, thin plate manufacturing method, and semiconductor wafer manufacturing method
JP2016140927A (en) Wafer manufacturing method, and multiple wire-electric discharge machining apparatus
JPWO2013073225A1 (en) Wire electrical discharge machining apparatus and semiconductor wafer manufacturing method
JP6923828B2 (en) Wire electric discharge machine
JP6429321B2 (en) Wafer manufacturing method and multi-wire electric discharge machining apparatus
JP2017119332A (en) Electric discharge machining method
JP2014000658A (en) Wire electrical discharge machining device, wire electrical discharge machining method, and workpiece
JP2017007048A (en) Holding device and wire electric discharge machine
Singh et al. Wire Electrical Discharge Machining Process
JP6345044B2 (en) Wire electrical discharge machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019553145

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924892

Country of ref document: EP

Kind code of ref document: A1