WO2020211127A1 - Matériau à fluorescence retardée activée thermiquement, son procédé de préparation et dispositif à diode électroluminescente organique - Google Patents

Matériau à fluorescence retardée activée thermiquement, son procédé de préparation et dispositif à diode électroluminescente organique Download PDF

Info

Publication number
WO2020211127A1
WO2020211127A1 PCT/CN2019/085646 CN2019085646W WO2020211127A1 WO 2020211127 A1 WO2020211127 A1 WO 2020211127A1 CN 2019085646 W CN2019085646 W CN 2019085646W WO 2020211127 A1 WO2020211127 A1 WO 2020211127A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thermally activated
activated delayed
compound
tadf
Prior art date
Application number
PCT/CN2019/085646
Other languages
English (en)
Chinese (zh)
Inventor
罗佳佳
严舒星
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2020211127A1 publication Critical patent/WO2020211127A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/64Acridine or hydrogenated acridine ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the invention belongs to the technical field of electroluminescent materials, and particularly relates to a thermally activated delayed fluorescent material, a preparation method thereof, and an organic electroluminescent diode device.
  • OLED display panels have active light emission without backlight, high luminous efficiency, large viewing angle, fast response speed, large temperature adaptation range, relatively simple production and processing technology, and drive
  • the advantages of low voltage, low energy consumption, lighter and thinner, flexible display and huge application prospects have attracted the attention of many researchers.
  • the principle of the OLED device is that under the action of an electric field, holes and electrons are injected from the anode and the cathode respectively, through the hole injection layer, the hole transport layer, the electron injection layer, and the electron transport layer, respectively, to form excitons in the light emitting layer.
  • Exciton radiation attenuates luminescence.
  • the light-emitting layer material of an OLED device generally contains a mixed host material and a guest material, among which the light-emitting guest material that plays a leading role is very important.
  • the light-emitting guest materials used in early OLED devices were fluorescent materials. Since the ratio of singlet and triplet excitons in OLED devices is 1:3, the theoretical internal quantum efficiency (IQE) of OLED devices based on fluorescent materials is only It can reach 25%, which greatly limits the application of fluorescent electroluminescent devices. Due to the spin-orbit coupling of heavy atoms, heavy metal complex phosphorescent materials can simultaneously use singlet and triplet excitons to achieve 100% IQE.
  • the pure organic thermally activated delayed fluorescence (TADF) material has a molecular structure combining electron donor (D) and electron acceptor (A).
  • D electron donor
  • A electron acceptor
  • the molecule has a small minimum single triplet energy difference ( ⁇ E) ST ), so that the triplet excitons can return to the singlet state through the reverse intersystem crossing (RISC), and then through the radiation transition to the ground state to emit light, so that the singlet and triplet excitons can be used at the same time, and 100% can also be achieved IQE.
  • TADF materials For TADF materials, fast reverse intersystem crossing constant (k RISC ) and high photoluminescence quantum yield (PLQY) are necessary conditions for the preparation of high-efficiency OLED devices. At present, TADF materials with the above conditions are still relatively scarce compared to heavy metal Ir complexes. And because the TADF material has a very broad spectrum and the exciton lifetime in the order of microseconds, it greatly limits its application in mass production device structures.
  • k RISC fast reverse intersystem crossing constant
  • PLQY photoluminescence quantum yield
  • the purpose of the present invention is to provide a thermally activated delayed fluorescent material, which has an ultrafast reverse inter-system crossing rate and high luminous efficiency, is a blue TADF compound with significant TADF characteristics and high energy level, which can be used as a light-emitting diode Host material of the light-emitting layer.
  • Another object of the present invention is to provide a method for preparing a thermally activated delayed fluorescent material, which is easy to operate and has a high yield of the target product.
  • Another object of the present invention is to provide an organic electroluminescent diode device, which uses the above-mentioned bipolar thermally activated delayed fluorescent material as the main material of the light-emitting layer, which can achieve a device efficiency comparable to that of a phosphorescent device of a phosphorescent heavy metal complex, while simultaneously solving The problem of color gamut difference and long exciton lifetime caused by directly using TADF material as the light-emitting layer material is solved.
  • the present invention provides a thermally activated delayed fluorescent material, which has a chemical structure shown in the following formula 1:
  • R represents a chemical group as an electron donor, and R is in the ortho, para or meta position of the phosphorus atom in the benzene ring.
  • the chemical group R of the electron donor is selected from any one of the following groups:
  • the thermally activated delayed fluorescent material is compound 1, compound 2, or compound 3.
  • the structural formulas of compound 1, compound 2 and compound 3 are as follows:
  • the present invention also provides a method for preparing thermally activated delayed fluorescent material, and its chemical synthesis route is as follows:
  • the general structural formula of the halogenated raw material is Among them, Br is in the ortho, para or meta position of the phosphorus atom in the benzene ring;
  • the general structural formula of the electron-donor-containing compound is R-H, where R represents a chemical group as an electron donor.
  • the chemical group R of the electron donor is selected from any one of the following groups:
  • the electron-donating compound is 9,10-dihydro-9,9-diphenyl acridine
  • the halogenated raw material is raw material 1, raw material 2 or raw material 3, and the structural formulas of raw material 1, raw material 2 and raw material 3 are respectively
  • the present invention also provides an organic electroluminescent diode device, including a substrate, a first electrode provided on the substrate, an organic functional layer provided on the first electrode, and a second electrode provided on the organic functional layer ;
  • the organic functional layer includes one or more organic film layers, and at least one of the organic film layers is a light-emitting layer;
  • the light-emitting layer includes a mixed host material and a guest material, and the host material is selected from the thermally activated delayed fluorescent materials as described above.
  • the light-emitting layer is formed by vacuum evaporation or solution coating.
  • the guest material is PPA.
  • the substrate is a glass substrate, the material of the first electrode is indium tin oxide, and the second electrode is a double-layer composite structure composed of a lithium fluoride layer and an aluminum layer;
  • the organic functional layer includes a multilayer organic film layer, the multilayer organic film layer includes a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer.
  • the material of the hole injection layer is HATCN.
  • the material of the hole transport layer is TCTA, and the material of the electron transport layer is TmPyPB.
  • the present invention has the following advantages and beneficial effects:
  • the thermally activated delayed fluorescent material of the present invention has an ultra-fast reverse inter-system crossing rate and high luminous efficiency. It is a blue TADF compound with significant TADF characteristics and high energy level. The preparation method is easy to operate, and the target product is obtained. Higher rate
  • the organic electroluminescent diode device of the present invention utilizes the 100% internal quantum utilization efficiency of the TADF material, and uses the thermally activated delayed fluorescent material as the main material of the traditional fluorescent material to be applied to the organic electroluminescent diode device, so that fluorescence
  • the device can achieve a device efficiency comparable to that of phosphorescent heavy metal complex phosphorescent devices, which greatly improves the exciton utilization rate, and at the same time solves the color gamut difference and long exciton lifetime caused by the direct use of TADF material as the light-emitting layer material.
  • the problem is that the organic electroluminescent diode devices based on the thermally activated delayed fluorescent material of the present invention have achieved very high device efficiency.
  • Figure 1 is a diagram of HOMO and LUMO energy levels of compounds 1-3 prepared in specific examples 1-3 of the present invention
  • Figure 2 is a photoluminescence spectrum of compound 1-3 prepared in specific examples 1-3 of the present invention in a toluene solution at room temperature;
  • Fig. 3 is a schematic diagram of the structure of the organic electroluminescent diode device of the present invention.
  • the synthetic route of target compound 1 is as follows:
  • the synthetic route of target compound 2 is as follows:
  • raw material 2 (2.68g, 5mmol), 9,10-dihydro-9,9-diphenylacridine (2.00g, 6mmol), palladium acetate (45mg, 0.2mmol) and tertiary Butylphosphine tetrafluoroborate (0.17g, 0.6mmol), and then add sodium tert-butoxide (0.58g, 6mmol) in the glove box, in an argon atmosphere, inject 40mL of toluene that has been dewatered and deoxygenated beforehand. React at 120°C for 24 hours.
  • the synthetic route of target compound 3 is as follows:
  • raw material 3 (2.68g, 5mmol), 9,10-dihydro-9,9-diphenylacridine (2.00g, 6mmol), palladium acetate (45mg, 0.2mmol) and tertiary Butylphosphine tetrafluoroborate (0.17g, 0.6mmol), and then add sodium tert-butoxide (0.58g, 6mmol) in the glove box, in an argon atmosphere, inject 40mL of toluene that has been dewatered and deoxygenated beforehand. React at 120°C for 24 hours.
  • Figure 1 shows the orbital arrangement of compound 1-3. It can be clearly seen from Figure 1 that the highest electron occupied orbital (HOMO) and lowest electron unoccupied orbital (LUMO) of compound 1-3 are arranged in In different units, complete separation is achieved, which helps to reduce the energy difference ⁇ EST between systems, thereby improving the ability of reverse intersystem crossing.
  • Figure 2 shows the photoluminescence spectra of Compound 1-3 in a toluene solution at room temperature. For compounds 1-3, the lowest singlet energy level S1 and the lowest triplet energy level T1 of the molecule were simulated and calculated.
  • Examples 1-3 The relevant data of Examples 1-3 are shown in Table 1. It can be seen from Table 1 that the ⁇ Est of all the compounds is less than 0.3ev, which achieves a small singlet and triplet energy level difference, and has an obvious delayed fluorescence effect.
  • PL Peak represents the photoluminescence peak
  • S1 represents the singlet energy level
  • T1 represents the triplet energy level
  • ⁇ EST represents the difference between the singlet and triplet energy levels.
  • OLED organic electroluminescent diode
  • the organic electroluminescent diode device using the thermally activated delayed fluorescent material of the present invention as the guest material of the light-emitting layer may include a substrate 9, an anode layer 1, a hole injection layer 2, and a cavity which are sequentially arranged from bottom to top.
  • the substrate 9 is a glass substrate
  • the material of the anode 1 is indium tin oxide (ITO)
  • the substrate 9 and the anode 1 together constitute ITO glass.
  • the material of the hole injection layer 2 is HATCN
  • the material of the hole transport layer 3 is TCTA
  • the material of the light-emitting layer is a mixture of the thermally activated delayed fluorescent material of the present invention and PPA
  • the electron transport layer 5 The material of is TmPyPB
  • the cathode is a double-layer structure composed of a lithium fluoride (LiF) layer and an aluminum (Al) layer.
  • HATCN refers to 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene
  • TCTA refers to 4,4',4”-tri (Carbazol-9-yl) triphenylamine
  • PPA refers to 9-pyrenyl-(10)-4-triphenylaminoanthracene
  • TmPyPB refers to 1,3,5-tris(3-(3-pyridyl)phenyl) benzene.
  • the organic electroluminescent diode device can be manufactured according to methods known in the art, and the specific method is: sequentially vapor-depositing a 2nm thick HATCN film, a 35nm thick TCTA film, and thermal activation on the cleaned ITO glass under high vacuum conditions. Delayed fluorescent material plus PPA, 40nm thick TmPyPB film, 1nm thick LiF film and 100nm thick Al film.
  • the device as shown in Figure 3 is made by this method, and the specific device structures are as follows:
  • the current-brightness-voltage characteristics of devices 1-3 are completed by the Keithley source measurement system (Keithley 2400 Sourcemeter, Keithley 2000 Currentmeter) with a calibrated silicon photodiode, and the electroluminescence spectrum is performed by the French JY company SPEX CCD3000 spectrometer All measurements are done in room temperature atmosphere.
  • the performance data of devices 1-3 are shown in Table 2 below.
  • CIEy is the y coordinate value of the standard CIE color space.
  • the present invention synthesizes a series of thermally activated delayed fluorescent materials with low single triplet energy level difference, high luminous efficiency and fast reverse intersystem crossing constant through clever molecular design, which is a significant TADF
  • the blue TADF material of high energy level with characteristics, and the synthetic route design is reasonable, and the yield of the target product is higher.
  • the present invention further utilizes the 100% internal quantum utilization efficiency of the TADF material, and uses the thermally activated delayed fluorescent material as the traditional fluorescent material
  • the host material is applied to the organic electroluminescent diode device, so that the fluorescent device can achieve the device efficiency comparable to the phosphorescent device of the phosphorescent heavy metal complex, which greatly improves the exciton utilization rate, and solves the direct use of TADF material as the light-emitting layer Problems such as poor color gamut and long exciton lifetime caused by materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

La présente invention concerne un matériau à fluorescence retardée activé thermiquement (TADF), son procédé de préparation et un dispositif à diode électroluminescente organique. La structure de formule générale du matériau TADF est représentée dans la formule suivante I : (I), R représentant un groupe chimique en tant que donneur d'électrons. Le matériau TADF selon la présente invention a un taux de croisement intersystème inverse ultra-rapide et un rendement lumineux élevé, et est un matériau TADF bleu ayant des caractéristiques TADF significatives et un niveau d'énergie élevé. Selon la présente invention, un rendement d'utilisation quantique interne de 100 % du matériau TADF est utilisé, et le matériau TADF, en tant que matériau principal d'un matériau à fluorescence classique, peut être incorporé dans un dispositif à diode électroluminescente organique, de telle sorte qu'un dispositif à fluorescence peut atteindre une efficacité de dispositif comparable au dispositif phosphorescent d'un complexe de métal lourd phosphorescent, ce qui permet d'améliorer de manière considérable le taux d'utilisation d'excitons, et de résoudre des problèmes tels qu'une mauvaise gamme de couleurs et une longue durée de vie d'excitons provoquée par l'utilisation directe du matériau TADF en tant que matériau de couche électroluminescente.
PCT/CN2019/085646 2019-04-16 2019-05-06 Matériau à fluorescence retardée activée thermiquement, son procédé de préparation et dispositif à diode électroluminescente organique WO2020211127A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910305989.XA CN109897065B (zh) 2019-04-16 2019-04-16 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN201910305989.X 2019-04-16

Publications (1)

Publication Number Publication Date
WO2020211127A1 true WO2020211127A1 (fr) 2020-10-22

Family

ID=66955812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085646 WO2020211127A1 (fr) 2019-04-16 2019-05-06 Matériau à fluorescence retardée activée thermiquement, son procédé de préparation et dispositif à diode électroluminescente organique

Country Status (2)

Country Link
CN (1) CN109897065B (fr)
WO (1) WO2020211127A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106986894A (zh) * 2016-01-20 2017-07-28 中国科学院宁波材料技术与工程研究所 硫、磷杂原子取代二苯并[g,p]稠二萘型衍生物、其制备方法与应用
CN108101941A (zh) * 2017-12-06 2018-06-01 深圳市华星光电技术有限公司 有机发光材料及其制备方法和应用
CN108369997A (zh) * 2015-12-15 2018-08-03 默克专利有限公司 作为用于有机电子制剂的溶剂的含芳族基团的酯

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102399244B (zh) * 2011-09-28 2015-02-25 昆山维信诺显示技术有限公司 二氢吖啶衍生物及其用途和应用其的有机电致发光器件
EP3182478B1 (fr) * 2015-12-18 2018-11-28 Novaled GmbH Couche d'injection d'électrons pour une diode électroluminescente organique (oled)
KR102458681B1 (ko) * 2017-04-14 2022-10-26 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
CN108822018A (zh) * 2017-05-05 2018-11-16 吉林奥来德光电材料股份有限公司 有机电致发光材料及其制备方法和有机电致发光器件
CN107162974A (zh) * 2017-07-13 2017-09-15 长春海谱润斯科技有限公司 一种吖啶化合物及其有机发光器件
CN108658940A (zh) * 2018-07-18 2018-10-16 武汉华星光电半导体显示技术有限公司 热活化延迟荧光材料、其合成方法及oled发光器件
CN109337676B (zh) * 2018-11-15 2020-04-10 武汉华星光电半导体显示技术有限公司 一种深蓝光热活化延迟荧光材料及其应用
CN109503481B (zh) * 2018-12-17 2020-06-02 武汉华星光电半导体显示技术有限公司 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369997A (zh) * 2015-12-15 2018-08-03 默克专利有限公司 作为用于有机电子制剂的溶剂的含芳族基团的酯
CN106986894A (zh) * 2016-01-20 2017-07-28 中国科学院宁波材料技术与工程研究所 硫、磷杂原子取代二苯并[g,p]稠二萘型衍生物、其制备方法与应用
CN108101941A (zh) * 2017-12-06 2018-06-01 深圳市华星光电技术有限公司 有机发光材料及其制备方法和应用

Also Published As

Publication number Publication date
CN109897065A (zh) 2019-06-18
CN109897065B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2020211122A1 (fr) Matériau à fluorescence retardée activé thermiquement bipolaire, procédé de préparation correspondant et dispositif à diode électroluminescente organique
CN102731406B (zh) 菲并咪唑衍生物及在制备电致发光器件方面的应用
WO2015067155A1 (fr) Matériau électroluminescent organique et dispositif électroluminescent organique
WO2020124771A1 (fr) Composé fluorescent retardé activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique associé
KR20140043043A (ko) 유기 발광 디바이스 및 이것에 사용되는 재료
TW201105777A (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2020211125A1 (fr) Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique
WO2020211126A1 (fr) Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique
WO2020238094A1 (fr) Matériau à fluorescence retardée activé par voie thermique émettant de la lumière bleu-vert à rouge-orange, son procédé de préparation et son utilisation
CN113336782A (zh) 含咔唑骨架的绿光窄光谱三配位硼发光化合物、制备方法及其应用
WO2020098146A1 (fr) Matériau à fluorescence retardée activé thermiquement par la lumière bleue et son utilisation
WO2021000434A1 (fr) Matériau à fluorescence retardée activé thermiquement émettant dans le rouge, vert et bleu, son procédé de synthèse et son utilisation
US20200194682A1 (en) Thermally activated delayed fluorescence material and method for preparing thereof and organic electroluminescent diode device
CN107619406A (zh) 一种新的咔唑类衍生物及其制备方法和在器件中的应用
CN116199723B (zh) 一种具有吡啶基氮杂二苯并呋喃配体的磷光掺杂材料及其应用
CN105777628B (zh) 一种化合物、有机电致发光器件及显示装置
WO2020237885A1 (fr) Matériau à fluorescence retardée bleu foncé à activation thermique, son procédé de préparation et dispositif électroluminescent
WO2020211123A1 (fr) Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique
WO2020211128A1 (fr) Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique
WO2020211121A1 (fr) Matériau à fluorescence retardée à activation thermique, son procédé de préparation et dispositif à diode électroluminescente organique
WO2020211124A1 (fr) Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique
CN110105231B (zh) 一种含薁环的化合物、其用途及包含其的有机光电装置
WO2020211127A1 (fr) Matériau à fluorescence retardée activée thermiquement, son procédé de préparation et dispositif à diode électroluminescente organique
WO2020124764A1 (fr) Matériau à fluorescence retardée rouge activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique
CN105237501A (zh) 含有螺双芴和二苯并呋喃的有机发光材料及发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925098

Country of ref document: EP

Kind code of ref document: A1