WO2020211123A1 - Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique - Google Patents

Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique Download PDF

Info

Publication number
WO2020211123A1
WO2020211123A1 PCT/CN2019/085616 CN2019085616W WO2020211123A1 WO 2020211123 A1 WO2020211123 A1 WO 2020211123A1 CN 2019085616 W CN2019085616 W CN 2019085616W WO 2020211123 A1 WO2020211123 A1 WO 2020211123A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally activated
activated delayed
layer
compound
light
Prior art date
Application number
PCT/CN2019/085616
Other languages
English (en)
Chinese (zh)
Inventor
罗佳佳
严舒星
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2020211123A1 publication Critical patent/WO2020211123A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen

Definitions

  • the invention belongs to the technical field of electroluminescent materials, and particularly relates to a thermally activated delayed fluorescent material, a preparation method thereof, and an organic electroluminescent diode device.
  • OLED display panels have active light emission without backlight, high luminous efficiency, large viewing angle, fast response speed, large temperature adaptation range, relatively simple production and processing technology, and drive
  • the advantages of low voltage, low energy consumption, lighter and thinner, flexible display and huge application prospects have attracted the attention of many researchers.
  • the principle of the OLED device is that under the action of an electric field, holes and electrons are injected from the anode and the cathode respectively, through the hole injection layer, the hole transport layer, the electron injection layer, and the electron transport layer, respectively, to form excitons in the light emitting layer.
  • Exciton radiation attenuates luminescence.
  • organic electroluminescent materials have a great impact on the performance of the devices.
  • the light-emitting layer of an OLED device generally contains a host material and a guest material, and the light-emitting guest material that plays a leading role is very important.
  • the light-emitting guest materials used in early OLED devices were fluorescent materials. Since the ratio of singlet and triplet excitons in OLED devices is 1:3, the theoretical internal quantum efficiency (IQE) of OLED devices based on fluorescent materials is only It can reach 25%, which greatly limits the application of fluorescent electroluminescent diode devices. Due to the spin-orbit coupling of heavy atoms, heavy metal complex phosphorescent materials can simultaneously use singlet and triplet excitons to achieve 100% IQE.
  • the pure organic thermally activated delayed fluorescence (TADF) material has a molecular structure combining electron donor (D) and electron acceptor (A).
  • D electron donor
  • A electron acceptor
  • the molecule has a small minimum single triplet energy difference ( ⁇ E) ST ), so that the triplet excitons can return to the singlet state through the reverse intersystem crossing (RISC), and then through the radiation transition to the ground state to emit light, so that the singlet and triplet excitons can be used at the same time, and 100% can also be achieved IQE.
  • TADF materials For TADF materials, fast reverse intersystem crossing constant (k RISC ) and high photoluminescence quantum yield (PLQY) are necessary conditions for the preparation of high-efficiency OLED devices. At present, TADF materials with the above conditions are still relatively scarce compared to heavy metal Ir complexes.
  • the purpose of the present invention is to provide a thermally activated delayed fluorescent material, which has an ultra-fast reverse inter-system crossing rate and high luminous efficiency, is a green TADF compound with significant TADF characteristics, and can be used as the light-emitting of organic electroluminescent diodes. Layer material.
  • Another object of the present invention is to provide a method for preparing a thermally activated delayed fluorescent material, which is easy to operate and has a high yield of the target product.
  • Another object of the present invention is to provide an organic electroluminescent diode device, which uses the thermally activated delayed fluorescent material as the light-emitting layer material, thereby improving the light-emitting efficiency of the device.
  • the present invention provides a thermally activated delayed fluorescent material, which has a chemical structure shown in the following formula 1:
  • R represents a chemical group as an electron donor, and R is at the 1, 2, or 4 position in the pyridine group.
  • the chemical group R of the electron donor is selected from any one of the following groups:
  • the thermally activated delayed fluorescent material is compound 1, compound 2 or compound 3.
  • the structural formulas of compound 1, compound 2 and compound 3 are as follows:
  • the present invention also provides a preparation method of thermally activated delayed fluorescent material, and its chemical synthesis route is as follows:
  • the general structural formula of the halogenated raw material is Wherein, Br is at the 1, 2, or 4 position in the pyridine group;
  • the general structural formula of the electron-donor-containing compound is R-H, where R represents a chemical group as an electron donor.
  • the chemical group R of the electron donor is selected from any one of the following groups:
  • the electron-donating compound is phenoxazine
  • the halogenated raw material is raw material 1, raw material 2 or raw material 3, and the structural formulas of raw material 1, raw material 2 and raw material 3 are respectively
  • the present invention also provides an organic electroluminescent diode device, including a substrate, a first electrode provided on the substrate, an organic functional layer provided on the first electrode, and a second electrode provided on the organic functional layer ;
  • the organic functional layer includes one or more organic film layers, and at least one organic film layer is a light-emitting layer;
  • the light-emitting layer includes the thermally activated delayed fluorescent material as described above.
  • the light-emitting layer is formed by vacuum evaporation or solution coating.
  • the material of the light-emitting layer is a mixture of a host material and a guest material, and the guest material is selected from one or more of the thermally activated delayed fluorescent materials described above.
  • the substrate is a glass substrate, the material of the first electrode is indium tin oxide, and the second electrode is a double-layer composite structure composed of a lithium fluoride layer and an aluminum layer;
  • the organic functional layer includes a multilayer organic film layer, the multilayer organic film layer includes a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, wherein the material of the hole injection layer is molybdenum trioxide
  • the material of the hole transport layer is TCTA
  • the material of the electron transport layer is TmPyPB
  • the host material is mCBP.
  • the present invention has the following advantages and beneficial effects:
  • the present invention can effectively increase the luminous efficiency of the material by adjusting the position of the electron donor, and at the same time, study the influence of the electron donor position on the material performance, and design a material with significant TADF characteristics.
  • Green light thermally activated delayed fluorescent material Green light thermally activated delayed fluorescent material
  • the thermally activated delayed fluorescent material of the present invention is a sky blue TADF compound material with ultra-fast reverse intersystem crossing rate and high luminous efficiency. When it is used as a light-emitting material in an organic light-emitting display device, it can improve organic The luminous efficiency of the light-emitting display device and the organic electroluminescent diode device based on the thermally activated delayed fluorescent material of the present invention have achieved very high device efficiency.
  • Figure 1 is a diagram of HOMO and LUMO energy levels of compounds 1-3 prepared in specific examples 1-3 of the present invention
  • Figure 2 is a photoluminescence spectrum of compound 1-3 prepared in specific examples 1-3 of the present invention in a toluene solution at room temperature;
  • Fig. 3 is a schematic diagram of the structure of the organic electroluminescent diode device of the present invention.
  • the synthetic route of target compound 1 is as follows:
  • the synthetic route of target compound 2 is as follows:
  • raw material 2 (2.00g, 5mmol), phenoxazine (2.2g, 12mmol), palladium acetate (90mg, 0.4mmol) and tri-tert-butylphosphine tetrafluoroborate (0.34g, 1.2 mmol), sodium tert-butoxide (1.16 g, 12 mmol) was added to the glove box, 60 mL of toluene that had been dewatered and deoxygenated was injected under an argon atmosphere, and reacted at 120° C. for 24 hours.
  • the synthetic route of target compound 3 is as follows:
  • raw material 3 (2.00g, 5mmol), phenoxazine (2.2g, 12mmol), palladium acetate (90mg, 0.4mmol) and tri-tert-butylphosphine tetrafluoroborate (0.34g, 1.2 mmol), sodium tert-butoxide (1.16 g, 12 mmol) was added to the glove box, 60 mL of toluene that had been dewatered and deoxygenated was injected under an argon atmosphere, and reacted at 120° C. for 24 hours.
  • Figure 1 shows the orbital arrangement of compound 1-3. It can be clearly seen from Figure 1 that the highest electron occupied orbital (HOMO) and lowest electron unoccupied orbital (LUMO) of compound 1-3 are arranged in In different units, complete separation is achieved, which helps to reduce the energy difference ⁇ EST between systems, thereby improving the ability of reverse intersystem crossing.
  • Figure 2 shows the photoluminescence spectra of Compound 1-3 in a toluene solution at room temperature. For compounds 1-3, the lowest singlet energy level S1 and the lowest triplet energy level T1 of the molecule were simulated and calculated.
  • Examples 1-3 The relevant data of Examples 1-3 are shown in Table 1. It can be seen from Table 1 that the ⁇ Est of all the compounds is less than 0.3ev, which achieves a small singlet and triplet energy level difference, and has an obvious delayed fluorescence effect.
  • PL Peak represents the photoluminescence peak
  • S1 represents the singlet energy level
  • T1 represents the triplet energy level
  • ⁇ EST represents the difference between the singlet and triplet energy levels.
  • OLED organic electroluminescent diode
  • the organic electroluminescent diode device using the thermally activated delayed fluorescent material of the present invention as the guest material of the light-emitting layer may include a substrate 9, an anode layer 1, a hole injection layer 2, and a cavity which are sequentially arranged from bottom to top.
  • the substrate 9 is a glass substrate
  • the material of the anode 1 is indium tin oxide (ITO)
  • the substrate 9 and the anode 1 together constitute ITO glass.
  • the material of the hole injection layer 2 is molybdenum trioxide (MoO 3 ), the material of the hole transport layer 3 is TCTA, and the material of the light-emitting layer is a mixture of the activated delayed fluorescent compound of the present invention and mCBP.
  • the material of the electron transport layer 5 is TmPyPB.
  • the cathode has a double-layer structure composed of a lithium fluoride (LiF) layer and an aluminum (Al) layer.
  • TCTA refers to 4,4',4”-tris(carbazol-9-yl)triphenylamine
  • mCBP refers to 3,3'-bis(N-carbazolyl)-1,1'-biphenyl
  • TmPyPB refers to 1,3,5-Tris(3-(3-pyridyl)phenyl)benzene.
  • the organic electroluminescent diode device can be manufactured according to a method known in the art, and the specific method is: sequentially vapor-depositing a 2nm thick MoO 3 film, a 35nm thick TCTA film, and a DPEPO on the cleaned ITO glass under high vacuum conditions. Add activated delayed fluorescent compound, 40nm thick Tm3PyPB film, 1nm thick LiF film and 100nm thick Al film.
  • the device as shown in Figure 3 is made by this method, and the specific device structures are as follows:
  • the current-brightness-voltage characteristics of devices 1-3 are completed by the Keithley source measurement system (Keithley 2400 Sourcemeter, Keithley 2000 Currentmeter) with a calibrated silicon photodiode, and the electroluminescence spectrum is performed by the French JY company SPEX CCD3000 spectrometer All measurements are done in room temperature atmosphere.
  • the performance data of devices 1-3 are shown in Table 2 below.
  • CIEy is the y coordinate value of the standard CIE color space.
  • the present invention uses the position of the electron donor to perform isomerization control, while effectively increasing the luminous efficiency of the material, it also studies the influence of the position of the electron donor on the material performance, and finally based on the target green light.
  • Organic electroluminescent diode devices made of TADF materials have achieved very high efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

La présente invention concerne un matériau à fluorescence retardée activé thermiquement, un procédé de préparation correspondant et un dispositif à diode électroluminescente organique. La structure de formule générale du matériau à fluorescence retardée activé thermiquement est représentée dans la formule suivante I : (I), Dans laquelle R représente un groupe chimique d'un donneur d'électrons. Le matériau à fluorescence retardée activé thermiquement selon la présente invention a un taux de croisement intersystème inverse ultra-élevé et une efficacité d'émission de lumière élevée, et est un matériau TADF à lumière verte ayant des caractéristiques TADF significatives. Le matériau à fluorescence retardée activé thermiquement peut être utilisé comme matériau luminescent dans un dispositif à diode électroluminescente organique ce qui permet d'améliorer de manière efficace l'efficacité luminescente du dispositif à diode électroluminescente organique. Le dispositif à diode électroluminescente organique basé sur le composé à fluorescence retardée activé thermiquement selon la présente invention a une efficacité de dispositif très élevée.
PCT/CN2019/085616 2019-04-16 2019-05-06 Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique WO2020211123A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910305990.2 2019-04-16
CN201910305990.2A CN110003208B (zh) 2019-04-16 2019-04-16 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件

Publications (1)

Publication Number Publication Date
WO2020211123A1 true WO2020211123A1 (fr) 2020-10-22

Family

ID=67172351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085616 WO2020211123A1 (fr) 2019-04-16 2019-05-06 Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique

Country Status (2)

Country Link
CN (1) CN110003208B (fr)
WO (1) WO2020211123A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029477B (zh) * 2019-12-10 2022-10-18 昆山国显光电有限公司 一种有机电致发光器件、显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024693A1 (fr) * 2011-08-16 2013-02-21 富士フイルム株式会社 Élément de conversion photoélectrique ainsi que procédé de mise en œuvre de celui-ci, élément de capture d'images, et capteur optique
CN105102582A (zh) * 2013-04-08 2015-11-25 默克专利有限公司 有机电致发光器件
CN107619418A (zh) * 2016-07-13 2018-01-23 三星显示有限公司 多环化合物和包括该多环化合物的有机电致发光器件
CN108203428A (zh) * 2016-12-19 2018-06-26 江苏三月光电科技有限公司 一种以咔唑为核心的化合物及其应用
CN108604644A (zh) * 2015-12-28 2018-09-28 德累斯顿工业技术大学 用于光电子和电子器件、特别是有机发光二极管(oled)的新的发光材料和基质材料
KR20180127906A (ko) * 2017-05-22 2018-11-30 단국대학교 산학협력단 저분자량 열가교성 정공 전달 물질 및 이를 이용한 유기발광다이오드
CN109503481A (zh) * 2018-12-17 2019-03-22 武汉华星光电半导体显示技术有限公司 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024693A1 (fr) * 2011-08-16 2013-02-21 富士フイルム株式会社 Élément de conversion photoélectrique ainsi que procédé de mise en œuvre de celui-ci, élément de capture d'images, et capteur optique
CN105102582A (zh) * 2013-04-08 2015-11-25 默克专利有限公司 有机电致发光器件
CN108604644A (zh) * 2015-12-28 2018-09-28 德累斯顿工业技术大学 用于光电子和电子器件、特别是有机发光二极管(oled)的新的发光材料和基质材料
CN107619418A (zh) * 2016-07-13 2018-01-23 三星显示有限公司 多环化合物和包括该多环化合物的有机电致发光器件
CN108203428A (zh) * 2016-12-19 2018-06-26 江苏三月光电科技有限公司 一种以咔唑为核心的化合物及其应用
KR20180127906A (ko) * 2017-05-22 2018-11-30 단국대학교 산학협력단 저분자량 열가교성 정공 전달 물질 및 이를 이용한 유기발광다이오드
CN109503481A (zh) * 2018-12-17 2019-03-22 武汉华星光电半导体显示技术有限公司 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件

Also Published As

Publication number Publication date
CN110003208B (zh) 2020-10-30
CN110003208A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN105408310B (zh) 咔唑衍生物、使用了其的有机电致发光元件用材料、以及使用了其的有机电致发光元件和电子设备
EP2431445A2 (fr) Composé pour dispositif photoélectrique organique et dispositif photoélectrique organique comprenant ce composé
KR101865606B1 (ko) 축합아릴 화합물 및 이를 포함하는 유기전계발광소자
WO2020211125A1 (fr) Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique
CN102731406B (zh) 菲并咪唑衍生物及在制备电致发光器件方面的应用
WO2020211122A1 (fr) Matériau à fluorescence retardée activé thermiquement bipolaire, procédé de préparation correspondant et dispositif à diode électroluminescente organique
WO2020124771A1 (fr) Composé fluorescent retardé activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique associé
WO2020211126A1 (fr) Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique
CN102617477B (zh) 菲并咪唑衍生物及其作为电致发光材料的应用
TW200524464A (en) Material for organic electroluminescent device and organic electroluminescent device using same
TWI742071B (zh) 有機電致發光化合物及包括其的有機電致發光裝置
TWI658117B (zh) 有機電致發光裝置之發光材料
WO2020098146A1 (fr) Matériau à fluorescence retardée activé thermiquement par la lumière bleue et son utilisation
CN116425762A (zh) 一种有机电致发光化合物及有机电致发光器件
US20200194682A1 (en) Thermally activated delayed fluorescence material and method for preparing thereof and organic electroluminescent diode device
CN106941133B (zh) 一种有机发光器件及其制备方法
WO2020211124A1 (fr) Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique
CN116804020A (zh) 一种含氮杂环有机化合物及其在oled器件中的应用
WO2020211123A1 (fr) Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique
WO2016138710A1 (fr) Complexe métallique et procédé de fabrication et utilisation correspondants, dispositif d'affichage correspondant
WO2020211121A1 (fr) Matériau à fluorescence retardée à activation thermique, son procédé de préparation et dispositif à diode électroluminescente organique
WO2020211128A1 (fr) Matériau à fluorescence retardée activé thermiquement, procédé de préparation correspondant et dispositif à diode électroluminescente organique
JP6860765B6 (ja) 化合物及びこれを含む有機発光素子
CN110105231B (zh) 一种含薁环的化合物、其用途及包含其的有机光电装置
WO2020211127A1 (fr) Matériau à fluorescence retardée activée thermiquement, son procédé de préparation et dispositif à diode électroluminescente organique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925425

Country of ref document: EP

Kind code of ref document: A1