WO2020211038A1 - 车辆用减振器及车辆 - Google Patents

车辆用减振器及车辆 Download PDF

Info

Publication number
WO2020211038A1
WO2020211038A1 PCT/CN2019/083232 CN2019083232W WO2020211038A1 WO 2020211038 A1 WO2020211038 A1 WO 2020211038A1 CN 2019083232 W CN2019083232 W CN 2019083232W WO 2020211038 A1 WO2020211038 A1 WO 2020211038A1
Authority
WO
WIPO (PCT)
Prior art keywords
flywheel mass
hub flange
mounting hole
shock absorber
vehicle
Prior art date
Application number
PCT/CN2019/083232
Other languages
English (en)
French (fr)
Inventor
肖荣亭
包顺程
陈相滨
陈广露
王杰
Original Assignee
舍弗勒技术股份两合公司
肖荣亭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 肖荣亭 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2019/083232 priority Critical patent/WO2020211038A1/zh
Priority to DE112019007221.8T priority patent/DE112019007221T5/de
Priority to CN201980093926.0A priority patent/CN113557373B/zh
Publication of WO2020211038A1 publication Critical patent/WO2020211038A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/145Masses mounted with play with respect to driving means thus enabling free movement over a limited range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/139Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses characterised by friction-damping means
    • F16F15/1392Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses characterised by friction-damping means characterised by arrangements for axially clamping or positioning or otherwise influencing the frictional plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/13142Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses characterised by the method of assembly, production or treatment
    • F16F15/1315Multi-part primary or secondary masses, e.g. assembled from pieces of sheet steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/13164Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses characterised by the supporting arrangement of the damper unit
    • F16F15/13185Bolting arrangements

Definitions

  • the present invention relates to a shock absorber for a vehicle and a vehicle including the shock absorber.
  • a dual-mass flywheel as a shock absorber for a vehicle is usually installed between the crankshaft of the vehicle's engine and the input shaft of the transmission, and is used to effectively dampen the torsional vibration of the engine crankshaft.
  • the torque is transmitted to the input shaft of the transmission, thereby reducing the impact of torsional vibration of the engine crankshaft on the transmission.
  • the prior art dual-mass flywheel usually includes two flywheel masses separated from each other, two arc-shaped damping springs extending along the circumferential direction of the dual-mass flywheel, and a stamping part matched with the arc spring (Such as holding plate and cover plate) and so on.
  • the two arc-shaped damping springs are arranged on the radially outer part of the dual-mass flywheel and extend almost over the entire circumference of the dual-mass flywheel, the length of the two arc-shaped damping springs is very long; Due to the existence of the long-length damping spring and the above-mentioned stamping parts matched with it, the structure of the dual-mass flywheel is complicated and the cost is high.
  • the purpose of the present invention is to overcome or at least alleviate the above-mentioned shortcomings of the prior art.
  • the present invention provides a new type of vehicle shock absorber, which is similar to the existing vehicle shock absorber. Compared with the technical dual-mass flywheel, the structure is simpler and the cost is lower.
  • the present invention also provides a vehicle including the above-mentioned vehicle shock absorber.
  • the present invention provides a shock absorber for a vehicle, the shock absorber comprising: a first flywheel mass, the first flywheel mass is used to connect with the crankshaft of a vehicle engine; a second flywheel mass, the second The mass of the flywheel is fixedly connected to the mass of the first flywheel; the hub flange is located between the mass of the first flywheel and the mass of the second flywheel in the axial direction of the shock absorber It can rotate within a predetermined range in the circumferential direction of the shock absorber with respect to the first flywheel mass and the second flywheel mass.
  • the hub flange is used to communicate with the input shaft of the vehicle transmission Transmission coupling; and a plurality of damping springs, each of the damping springs is accommodated in the first flywheel mass, the second flywheel mass, and the The damping spring mounting part formed by the three hub flanges enables the first flywheel mass and the second flywheel mass to transmit the torque from the engine crankshaft to the The hub flange.
  • the first flywheel mass and the second flywheel mass are fixedly connected together by welding or riveting.
  • the first flywheel mass is formed with a first recess recessed toward one side in the axial direction
  • the second flywheel mass is formed with a second recess corresponding to the first recess and recessed toward the other side in the axial direction.
  • a recess, the hub flange is formed with a hub flange mounting hole corresponding to the first recess and penetrating the hub flange in the axial direction, the first recess, the second The recess and the mounting hole of the hub flange form the damping spring mounting portion.
  • the first flywheel mass is formed with a first mounting hole penetrating the first flywheel mass in the axial direction
  • the second flywheel mass is formed with a first mounting hole corresponding to the first mounting hole.
  • the hub flange is formed with a second mounting hole corresponding to the first mounting hole and penetrating the hub flange in the axial direction.
  • a hub flange mounting hole, the first mounting hole, the second mounting hole, and the disk hub flange mounting hole form the damping spring mounting part.
  • the first flywheel mass is formed with a first concave portion recessed toward one side in the axial direction
  • the second flywheel mass is formed with a first concave portion corresponding to the first concave portion and penetrates the first concave portion in the axial direction.
  • a second mounting hole with two flywheel masses, the hub flange is formed with a hub flange mounting hole corresponding to the first recess and penetrating the hub flange in the axial direction, the first A recess, the second mounting hole and the hub flange mounting hole form the damping spring mounting portion.
  • the first flywheel mass is formed with a first mounting hole penetrating the first flywheel mass in the axial direction
  • the second flywheel mass is formed with a first mounting hole corresponding to the first mounting hole and facing A second concave portion recessed on the other side of the axial direction
  • the hub flange is formed with a hub flange mounting hole corresponding to the first mounting hole and penetrating the hub flange in the axial direction
  • the first mounting hole, the second recess and the hub flange mounting hole form the vibration damping spring mounting portion.
  • the first flywheel mass can be fixedly connected to the engine crankshaft by bolts, and at least the radially inner part of the hub flange that is radially inward of the damping spring mounting portion is useful. In the bolt mounting hole for the bolt to pass through.
  • the vehicle shock absorber further includes a centrifugal pendulum unit that is accommodated in a storage space surrounded by the first flywheel mass and the second flywheel mass, or the centrifugal pendulum unit is disposed in The part of the hub flange that is radially outward than the damping spring mounting portion, or the centrifugal pendulum unit is provided on the hub flange that is radially inward of the damping spring mounting portion section.
  • the vehicle shock absorber further includes a friction disc and a diaphragm spring, and the friction disc and the diaphragm spring are arranged between the first flywheel mass and the disc hub flange and/or Between the second flywheel mass and the hub flange.
  • the present invention also provides a vehicle including the vehicle shock absorber according to any one of the above technical solutions, the first flywheel mass of the vehicle shock absorber and the vehicle
  • the engine crankshaft is fixedly connected, and the hub flange of the vehicle shock absorber is drivingly connected with the input shaft of the vehicle transmission.
  • the present invention provides a new type of vehicle shock absorber and a vehicle including the shock absorber.
  • the first flywheel mass and the second flywheel mass of the shock absorber are fixedly connected to each other, and Only the first flywheel mass, the second flywheel mass, and the hub flange form a damping spring installation portion for accommodating the damping spring so that the damping spring with a small length is installed in the radial center portion of the damper.
  • the vehicle shock absorber according to the present invention can shorten the length of the damping spring compared with the prior art dual-mass flywheel, and omit the pressing of the holding plate and cover plate in the prior art to cooperate with the damping spring.
  • the components thus ensuring the effective attenuation of the torsional vibration of the engine crankshaft while the structure is simple and the cost is reduced.
  • Figure 1a is a schematic front view of a vehicle shock absorber according to a first embodiment of the present invention, in which only half of the mass structure of the second flywheel is shown;
  • Figure 1b is an exploded structure of the vehicle shock absorber in Figure 1a Schematic diagram;
  • Figure 1c is a partial structural cross-sectional schematic diagram of the vehicle shock absorber in Figure 1a taken along the line SS including the central axis O;
  • Figure 1d is an enlarged schematic diagram of the area M in Figure 1c.
  • Figure 2a is a schematic front view of a vehicle shock absorber according to a second embodiment of the present invention, in which only half of the mass of the second flywheel is shown;
  • Figure 2b is the vehicle shock absorber in Figure 2a along the line A schematic sectional view of a partial structure including the central axis O taken by SS.
  • Fig. 3 is a schematic cross-sectional view of a partial structure including a central axis O of a vehicle shock absorber according to a third embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a partial structure including a central axis O of a shock absorber for a vehicle according to a fourth embodiment of the present invention.
  • the axial, radial and circumferential directions refer to the axial, radial and circumferential directions of the vehicle shock absorber, respectively;
  • the axial side refers to Figure 1c, Figure 2b, and Figure 3
  • the left side in Figure 4 the other axial side refers to the right side in Figure 1c, Figure 2b, Figure 3 and Figure 4;
  • the radial outer side refers to the side away from the central axis O in the radial direction ( Figure 1c, Figure 2b, Figure 3 and Figure 4 (upper side)
  • the radial inner side refers to the side close to the central axis O in the radial direction ( Figure 1c, Figure 2b, Figure 3 and Figure 4, the lower side).
  • the vehicle shock absorber according to the first embodiment of the present invention has a disc shape as a whole and includes a first flywheel mass 1, a second flywheel mass 2, and a hub method assembled with each other.
  • Lan 3 multiple (six in this embodiment) damping spring 4, centrifugal pendulum unit 5, friction disc 6 and diaphragm spring 7.
  • the radially inner part of the first flywheel mass 1 is fixedly connected to the engine crankshaft 9 of the vehicle by a plurality of bolts 8. In this way, the torque from the engine crankshaft 9 can be transmitted to the first flywheel mass 1 via the bolt 8.
  • the second flywheel mass 2 and the first flywheel mass 1 are arranged opposite to each other in the axial direction A, and the second flywheel mass 2 and the first flywheel mass 1 are fixedly connected together by welding or riveting. In this way, the torque from the engine crankshaft 9 can be transmitted to the second flywheel mass 2 via the bolt 8 and the first flywheel mass 1.
  • the two flywheel masses 1 and 2 are fixedly connected together to form a single mass flywheel structure, which can improve the rotational inertia of the shock absorber and can also save costs.
  • the hub flange 3 is located between the first flywheel mass 1 and the second flywheel mass 2 in the axial direction A.
  • the main part of the first flywheel mass 1 is located on one axial side of the hub flange 3, and the second flywheel mass 2 is located on the other axial side of the hub flange 3.
  • the hub flange 3 can reciprocate in a predetermined range (mainly depending on the compressible size range of the damping spring 4) along the circumferential direction C relative to the first flywheel mass 1 and the second flywheel mass 2.
  • the hub flange 3 can be connected to the input shaft (not shown) of the vehicle transmission via a hub core (not shown) through a spline transmission mechanism, or the hub flange 3 can be directly connected to an input shaft (not shown) of a vehicle transmission via a spline transmission mechanism.
  • the input shaft is connected in transmission.
  • a radially inner portion of the hub flange 3 that is radially inward of the damping spring installation portion is formed with a bolt installation hole 3h2 for the bolt 8 to pass through, so that the bolt 8 can be inserted through the bolt when the bolt 8 is installed.
  • the holes 3h2 are installed to fix the first flywheel mass 1 and the engine crankshaft 9 together.
  • the radially inner portion of the first flywheel mass 1 is recessed toward one axial side to form an axial recess, and the radial dimension of the bolt mounting hole 3h2 is larger than the radial dimension of the bolt head of the bolt 8.
  • the damping spring 4 is a linear cylindrical coil spring.
  • Six damping springs 4 are installed in the radial central part of the damper and are evenly distributed in the circumferential direction C. In this way, the length of the damping spring can be greatly shortened compared with the arc-shaped damping spring with a large length of the dual mass flywheel in the prior art.
  • each damping spring 4 is housed in a damping spring mounting portion formed by three of the first flywheel mass 1, the second flywheel mass 2, and the hub flange 3, so that each damping spring 4 is mounted by the damping spring
  • the upper limit is in the radial direction R, the axial direction A, and the circumferential direction C.
  • both ends of each damping spring 4 abut on the first flywheel mass 1, the second flywheel mass 2 and the hub flange 3. In this way, the first flywheel mass 1 and the second flywheel mass 2 can transmit the torque from the engine crankshaft 9 to the hub flange 3 via the six damping springs 4.
  • the structure of the damping spring mounting portion will be specifically described below.
  • the first flywheel mass 1 is formed with a first recess 1c that is recessed toward one side in the axial direction.
  • the second flywheel mass 2 is formed with a second recess 2c corresponding to the first recess 1c and recessed toward the other side in the axial direction.
  • the shapes of the first recess 1c and the second recess 2c substantially correspond to the outer contour of the damping spring 4.
  • the hub flange 3 is formed with a hub flange mounting hole 3h1 corresponding to the first recess 1c and penetrating the hub flange 3 in the axial direction A.
  • the radial dimension of the hub flange mounting hole 3h1 is slightly larger than the reduced The diameter of the vibration spring 4.
  • the length direction of the damping spring 4 is substantially consistent with the circumferential direction C so that the damping spring 4 passes through the hub flange mounting hole 3h1 and is constrained between the first recess 1c and the second recess 2c, so that the first The recessed portion 1c, the second recessed portion 2c, and the hub flange mounting hole 3h1 form a damping spring mounting portion capable of restricting the damping spring 4 in the radial direction R, the axial direction A, and the circumferential direction C.
  • the damping spring mounting part can omit stamping parts such as the retaining plate and cover plate of the dual-mass flywheel in the prior art, thereby simplifying the structure and saving cost.
  • the centrifugal pendulum unit 5 is provided in the radially outer portion of the hub flange 3 that is radially outward than the damping spring mounting portion, and the centrifugal pendulum unit 5 is housed in the first flywheel mass 1 and the second flywheel Mass 2 surrounds the aforementioned storage space formed.
  • the centrifugal pendulum unit 5 can further attenuate the torsional vibration from the engine crankshaft 8, and the storage space of the centrifugal pendulum unit 5 can isolate the noise generated during the operation of the centrifugal pendulum unit 5 to a certain extent.
  • the above-mentioned storage space is formed by recessing the radially outer portions of the first flywheel mass 1 and the second flywheel mass 2 toward one side in the axial direction and the other side in the axial direction, respectively, so that the first flywheel The axial distance between the mass 1 and the second flywheel mass 2 in the storage space is greater than the axial distance between the first flywheel mass 1 and the second flywheel mass 2 in the storage space and the damping spring installation portion.
  • a friction disc 6 is provided between the first flywheel mass 1 and the hub flange 3 and between the second flywheel mass 2 and the hub flange 3.
  • the friction disc 6 is used to realize the damping effect between the flywheel masses 1 and 2 and the hub flange 3, and on the other hand, it is used to limit the disc hub flange 3 in the axial direction A.
  • a diaphragm spring 7 is provided between the second flywheel mass 2 and the disc hub flange 3. The diaphragm spring 7 is pressed against the friction disc 6 and the second friction disc 6 in the axial direction A.
  • the flywheel mass 2 enables the friction disc 6 to be pressed against the disc hub flange 3 under the action of the spring force of the diaphragm spring 7.
  • the vehicle shock absorber according to the second embodiment of the present invention attaches the same or similar reference numerals to the same or similar parts as those of the first embodiment, and the details of these parts are omitted.
  • the difference between the two lies in the specific structure of the damping spring mounting part.
  • a first mounting hole 1w penetrating the first flywheel mass 1 in the axial direction A is formed in a radially central portion of the first flywheel mass 1.
  • the second flywheel mass 2 is formed with a second mounting hole 2w corresponding to the first mounting hole 1w and penetrating the second flywheel mass 2 in the axial direction A.
  • the radial opening size of the first mounting hole 1 w and the radial opening size of the second mounting hole 2 w are both smaller than the diameter of the damping spring 4.
  • the hub flange 3 is formed with a hub flange mounting hole 3h1 corresponding to the first mounting hole 1w and penetrating the hub flange 3 in the axial direction A.
  • the radial dimension of the hub flange mounting hole 3h1 is slightly larger than The diameter of the damping spring 4.
  • the length direction of the damping spring 4 is substantially consistent with the circumferential direction C so that the damping spring 4 passes through the hub flange mounting hole 3h1 and is constrained between the first mounting hole 1w and the second mounting hole 2w, so that The first mounting hole 1w, the second mounting hole 2w, and the hub flange mounting hole 3h1 form a damping spring mounting portion that can limit the damping spring 4 in the radial direction R, the axial direction A, and the circumferential direction C.
  • the first mounting hole 1w, the second mounting hole 2w, and the hub flange mounting hole 3h1 mentioned here form a structure capable of restricting the damping spring 4 in the radial direction R, the axial direction A, and the circumferential direction C.
  • the damping spring mounting portion “in essence” refers to the part of the first flywheel mass 1 that defines the first mounting hole 1w (including the peripheral wall of the first mounting hole 1w and the portion near the peripheral wall), the second flywheel mass 2
  • the peripheral wall of 3h1) "forms a damping spring mounting portion capable of restricting the damping spring 4 in the radial direction R, the axial direction A, and the circumferential direction C".
  • the vehicle shock absorber according to the third embodiment of the present invention attaches the same or similar reference numerals to the same or similar components as in the first embodiment, and a detailed description of these components is omitted, and The main difference between the two is the specific structure of the damping spring mounting part.
  • the radially central portion of the first flywheel mass 1 is formed with a first recess 1 c recessed toward one side in the axial direction, and the shape of the first recess 1 c substantially corresponds to the outer contour of the damping spring 4.
  • the second flywheel mass 2 is formed with a second mounting hole 2w corresponding to the first recess 1c and penetrating the second flywheel mass 2 in the axial direction A.
  • the radial opening size of the second mounting hole 2w is smaller than the diameter of the damping spring 4 .
  • the hub flange 3 is formed with a hub flange mounting hole 3h1 corresponding to the first recess 1c and penetrating the hub flange 3 in the axial direction A.
  • the radial dimension of the hub flange mounting hole 3h1 is slightly larger than the reduced The diameter of the vibration spring 4.
  • the length direction of the damping spring 4 is substantially consistent with the circumferential direction C so that the damping spring 4 passes through the hub flange mounting hole 3h1 and is constrained between the first recess 1c and the second mounting hole 2w, so that the first A recess 1c, a second mounting hole 2w, and a hub flange mounting hole 3h1 form a damping spring mounting portion that can limit the damping spring 4 in the radial direction R, the axial direction A, and the circumferential direction C.
  • the vehicle shock absorber according to the fourth embodiment of the present invention attaches the same or similar reference numerals to the same or similar components as the first embodiment, and a detailed description of these components is omitted, and The main difference between the two is the specific structure of the damping spring mounting part.
  • the first flywheel mass 1 is formed with a first mounting hole 1w penetrating the first flywheel mass 1 in the axial direction A, and the radial opening size of the first mounting hole 1w is smaller than the diameter of the damping spring 4.
  • the second flywheel mass 2 is formed with a second recess 2 c corresponding to the first mounting hole 1 w and recessed toward the other side in the axial direction.
  • the shape of the second recess 2 c substantially corresponds to the outer contour of the damping spring 4.
  • the hub flange 3 is formed with a hub flange mounting hole 3h1 corresponding to the first mounting hole 1w and penetrating the hub flange 3 in the axial direction A.
  • the radial dimension of the hub flange mounting hole 3h1 is slightly larger than The diameter of the damping spring 4.
  • the length direction of the damping spring 4 is substantially consistent with the circumferential direction C so that the damping spring 4 passes through the hub flange mounting hole 3h1 and is constrained between the first mounting hole 1w and the second recess 2c, so that the first A mounting hole 1w, a second recess 2c, and a hub flange mounting hole 3h1 form a damping spring mounting portion that can limit the damping spring 4 in the radial direction R, the axial direction A, and the circumferential direction.
  • the present invention also provides a vehicle including the vehicle shock absorber having the above-mentioned structure.
  • the first flywheel mass 1 of the vehicle shock absorber is fixedly connected with the engine crankshaft 9 of the vehicle, and the hub flange 3 of the vehicle shock absorber is drivingly connected with the input shaft of the vehicle transmission.
  • the aforementioned transmission may be a dual-clutch transmission, a manual automatic transmission and other types of transmissions.
  • the number of damping springs 4 can also be four or other numbers.
  • the damping spring 4 can be not only a linear coil spring as described above, but also an arc-shaped coil spring.
  • each damping spring 4 is housed in the above-mentioned damping spring installation in such a way that its length direction coincides with the direction of a tangent to the circumferential direction of the damper.
  • each damping spring 4 is accommodated in the above-mentioned damping spring mounting portion in such a way that its length direction coincides with the circumferential direction of the damper.
  • damping spring mounting parts in the above four embodiments can all realize the limiting effect on the damping spring 4
  • the damping spring mounting part in the first embodiment has an effect on the damping spring 4
  • the limit effect is the best.
  • the hub flange mounting hole 3h1 is radially outside The edge forms an arc profile convex toward the radially outer side.
  • the friction disc 6 and the damping spring 7 may be arranged on the radially inner side of the damping spring mounting portion (as in the first and second embodiments above), or It is provided on the radially outer side of the damping spring mounting part (as in the third and fourth embodiments above).
  • the second flywheel mass 2 is formed with a central hole through which a plurality of bolts 8 pass.
  • the present invention is not limited to this. Similar to the hub flange 3, the radially inner portion of the second flywheel mass 2 may also be formed with a plurality of separate bolt mounting holes through which the bolts 8 pass.
  • centrifugal pendulum unit 5 is provided on the radially outer part of the hub flange 3 than the damping spring mounting part in the above four embodiments, the present invention is not limited to this.
  • the pendulum unit 5 is provided in a portion of the hub flange 3 that is radially inner than the damping spring mounting portion.

Abstract

一种车辆用减振器,减振器的第一飞轮质量(1)和第二飞轮质量(2)固定连接在一起,并且仅通过第一飞轮质量(1)、第二飞轮质量(2)和盘毂法兰(3)形成用于收纳减震弹簧安装部以将长度较小的减振弹簧(4)安装于减振器的径向中央部分。此车辆减振器省略了现有技术的保持板和盖板等与减振弹簧配合的冲压部件,因此在结构简单和成本降低的同时对发动机曲轴的扭振进行有效地衰减。还提供了具有该减振器的车辆。

Description

车辆用减振器及车辆 技术领域
本发明涉及车辆用减振器以及包括该减振器的车辆。
背景技术
在现有技术中,作为车辆用减振器的双质量飞轮通常安装在车辆的发动机曲轴和变速器的输入轴之间,用于在对发动机曲轴的扭振进行有效的衰减的情况下将发动机曲轴的扭矩传递到变速器的输入轴,从而减小发动机曲轴的扭振对变速器的影响。为了实现上述目的,现有技术的双质量飞轮通常包括彼此分离的两个飞轮质量、沿着双质量飞轮的周向延伸的两个弧形的减振弹簧以及与该弧形弹簧配合的冲压部件(例如保持板和盖板)等。
一方面,由于两个弧形的减振弹簧设置于双质量飞轮的径向外侧部分且几乎延伸遍及双质量飞轮的整周,因此两个弧形的减振弹簧的长度很长;另一方面,由于长度很长的减振弹簧和与其配合的上述冲压部件的存在,使得这种双质量飞轮的结构复杂且成本较高。
发明内容
基于上述现有技术的缺陷,本发明的目的在于克服或至少减轻上述现有技术存在的不足,为此本发明提供了一种新型的车辆用减振器,该车辆用减振器与现有技术的双质量飞轮相比结构简单且成本降低。本发明还提供了一种包括上述车辆用减振器的车辆。
为了实现上述发明目的,本发明采用如下的技术方案。
本发明提供了一种如下的车辆用减振器,所述减振器包括:第一飞轮质量,所述第一飞轮质量用于与车辆的发动机曲轴连接;第二飞轮质量,所述 第二飞轮质量与所述第一飞轮质量固定连接在一起;盘毂法兰,所述盘毂法兰在所述减振器的轴向上位于所述第一飞轮质量和所述第二飞轮质量之间且能够相对于所述第一飞轮质量和所述第二飞轮质量在所述减振器的周向上进行预定范围的转动,所述盘毂法兰用于与所述车辆的变速器的输入轴传动联接;以及多个减振弹簧,各所述减振弹簧以其长度方向与所述减振器的周向大致一致的方式收纳于由所述第一飞轮质量、所述第二飞轮质量和所述盘毂法兰三者所形成的减振弹簧安装部,使得所述第一飞轮质量和所述第二飞轮质量能够经由所述多个减振弹簧将来自所述发动机曲轴的扭矩传递到所述盘毂法兰。
优选地,所述第一飞轮质量和所述第二飞轮质量通过焊接或铆接固定连接在一起。
更优选地,所述第一飞轮质量形成有朝向轴向一侧凹陷的第一凹部,所述第二飞轮质量形成有与所述第一凹部对应的且朝向轴向另一侧凹陷的第二凹部,所述盘毂法兰形成有与所述第一凹部对应的且在所述轴向上贯通所述盘毂法兰的盘毂法兰安装孔,所述第一凹部、所述第二凹部和所述盘毂法兰安装孔形成所述减振弹簧安装部。
更优选地,所述第一飞轮质量形成有在所述轴向上贯通所述第一飞轮质量的第一安装孔,所述第二飞轮质量形成有与所述第一安装孔对应的且在所述轴向上贯通所述第二飞轮质量的第二安装孔,所述盘毂法兰形成有与所述第一安装孔对应的且在所述轴向上贯通所述盘毂法兰的盘毂法兰安装孔,所述第一安装孔、所述第二安装孔和所述盘毂法兰安装孔形成所述减振弹簧安装部。
更优选地,所述第一飞轮质量形成有朝向轴向一侧凹陷的第一凹部,所述第二飞轮质量形成有与所述第一凹部对应的且在所述轴向上贯通所述第二飞轮质量的第二安装孔,所述盘毂法兰形成有与所述第一凹部对应的且在所述轴向上贯通所述盘毂法兰的盘毂法兰安装孔,所述第一凹部、所述第二 安装孔和所述盘毂法兰安装孔形成所述减振弹簧安装部。
更优选地,所述第一飞轮质量形成有在所述轴向上贯通所述第一飞轮质量的第一安装孔,所述第二飞轮质量形成有与所述第一安装孔对应的且朝向轴向另一侧凹陷的第二凹部,所述盘毂法兰形成有与所述第一安装孔对应的且在所述轴向上贯通所述盘毂法兰的盘毂法兰安装孔,所述第一安装孔、所述第二凹部和所述盘毂法兰安装孔形成所述减振弹簧安装部。
更优选地,所述第一飞轮质量能够通过螺栓与所述发动机曲轴固定连接在一起,至少所述盘毂法兰的比所述减振弹簧安装部靠径向内侧的径向内侧部分形成有用于供所述螺栓穿过的螺栓安装孔。
更优选地,所述车辆用减振器还包括离心摆单元,所述离心摆单元收纳于所述第一飞轮质量和所述第二飞轮质量包围的收纳空间,或者所述离心摆单元设置于所述盘毂法兰的比所述减振弹簧安装部靠径向外侧的部分,或者所述离心摆单元设置于所述盘毂法兰的比所述减振弹簧安装部靠径向内侧的部分。
更优选地,所述车辆用减振器还包括摩擦盘和膜片弹簧,所述摩擦盘和所述膜片弹簧设置于所述第一飞轮质量与所述盘毂法兰之间和/或所述第二飞轮质量与所述盘毂法兰之间。
本发明还提供了一种如下的车辆,所述车辆包括以上技术方案中任意一项技术方案所述的车辆用减振器,所述车辆用减振器的第一飞轮质量与所述车辆的发动机曲轴固定连接,所述车辆用减振器的盘毂法兰与所述车辆的变速器的输入轴传动联接。
通过采用上述的技术方案,本发明提供了一种新型的车辆用减振器及包括该减振器的车辆,该减振器的第一飞轮质量和第二飞轮质量彼此固定连接在一起,并且仅通过第一飞轮质量、第二飞轮质量和盘毂法兰形成用于收纳减振弹簧的减振弹簧安装部以将长度较小的减振弹簧安装于减振器的径向中央部分。这样,根据本发明的车辆用减振器与现有技术的双质量飞轮相比 能够缩短减振弹簧的长度且省略了现有技术中的保持板和盖板等的与减振弹簧配合的冲压部件,从而在结构简单且成本降低的同时保证了对发动机曲轴的扭振进行有效地衰减。
附图说明
图1a是根据本发明的第一实施方式的车辆用减振器的主视示意图,其中仅示出了第二飞轮质量的一半结构;图1b是图1a中的车辆用减振器的爆炸结构示意图;图1c是图1a中的车辆用减振器沿着线S-S截取的包括中心轴线O的局部结构剖视示意图;图1d是图1c中的区域M的放大示意图。
图2a是根据本发明的第二实施方式的车辆用减振器的主视示意图,其中仅示出了第二飞轮质量的一半结构;图2b是图2a中的车辆用减振器沿着线S-S截取的包括中心轴线O的局部结构剖视示意图。
图3是根据本发明的第三实施方式的车辆用减振器的包括中心轴线O的局部结构剖视示意图。
图4是根据本发明的第四实施方式的车辆用减振器的包括中心轴线O的局部结构剖视示意图。
附图标记说明
1第一飞轮质量 1w第一安装孔 1c第一凹部 2第二飞轮质量 2w第二安装孔 2c第二凹部 3盘毂法兰 3h1盘毂法兰安装孔 3h2螺栓安装孔 4减振弹簧 5离心摆单元 6摩擦盘 7膜片弹簧 8螺栓 9发动机曲轴
R径向 A轴向 C周向 O中心轴线。
具体实施方式
以下参照附图说明根据本发明的车辆用减振器的具体实施方式。在附图 中,除非另有说明,轴向、径向和周向分别是指车辆用减振器的轴向、径向和周向;轴向一侧是指图1c、图2b、图3和图4中的左侧,轴向另一侧是指图1c、图2b、图3和图4中的右侧;径向外侧是指在径向上远离中心轴线O的那侧(图1c、图2b、图3和图4中的上侧),径向内侧是指在径向上接近中心轴线O的那侧(图1c、图2b、图3和图4中的下侧)。
(第一实施方式)
如图1a至图1d所示,根据本发明的第一实施方式的车辆用减振器整体具有圆盘形状并且包括彼此组装在一起的第一飞轮质量1、第二飞轮质量2、盘毂法兰3、多个(在本实施方式中为六个)减振弹簧4、离心摆单元5、摩擦盘6和膜片弹簧7。
在本实施方式中,第一飞轮质量1的径向内侧部分通过多个螺栓8与车辆的发动机曲轴9固定连接在一起。这样,来自发动机曲轴9的扭矩能够经由螺栓8传递到第一飞轮质量1。
在本实施方式中,第二飞轮质量2与第一飞轮质量1在轴向A上相对设置,并且第二飞轮质量2与第一飞轮质量1通过焊接或铆接固定连接在一起。这样,来自发动机曲轴9的扭矩能够经由螺栓8和第一飞轮质量1传递到第二飞轮质量2。将两个飞轮质量1、2固定连接在一起形成了单质量飞轮结构,这能够提高减振器的转动惯性并且也能够节省成本。
另外,第二飞轮质量2的比下述减振弹簧安装部靠径向外侧的径向外侧部分与第一飞轮质量1的比下述减振弹簧安装部靠径向外侧的径向外侧部分之间包围形成用于离心摆单元5的收纳空间。
在本实施方式中,盘毂法兰3在轴向A上位于第一飞轮质量1和第二飞轮质量2之间的位置。在轴向A上,第一飞轮质量1的主要部分位于盘毂法兰3的轴向一侧,第二飞轮质量2位于盘毂法兰3的轴向另一侧。盘毂法兰3能够 相对于第一飞轮质量1和第二飞轮质量2沿着周向C在预定范围(主要取决于减振弹簧4能够压缩的尺寸范围)内往复转动。进一步地,盘毂法兰3能够经由毂芯(未示出)通过花键传动机构与车辆的变速器的输入轴(未示出)传动联接或者盘毂法兰3能够通过花键传动机构直接与该输入轴传动联接。另外,盘毂法兰3的比减振弹簧安装部靠径向内侧的径向内侧部分形成有用于供螺栓8穿过的螺栓安装孔3h2,使得在安装螺栓8时能够将螺栓8穿过螺栓安装孔3h2以将第一飞轮质量1与发动机曲轴9固定连接在一起。
从轴向另一侧观察,第一飞轮质量1的径向内侧部分朝向轴向一侧凹陷而形成轴向凹部,并且螺栓安装孔3h2的径向尺寸大于螺栓8的螺栓头的径向尺寸。在从轴向另一侧通过螺栓安装孔3h2将螺栓8插入并安装到第一飞轮质量1和发动机曲轴9之后,螺栓8的螺栓头收纳在第一飞轮质量1的轴向凹部中,从而螺栓不会干涉第一飞轮质量1和盘毂法兰3之间的相对转动。
在本实施方式中,减振弹簧4为直线状的圆柱螺旋弹簧。六个减振弹簧4安装在减振器的径向中央部分且在周向C上均匀分布。这样,与现有技术的双质量飞轮的长度较大的弧形的减振弹簧相比能够大幅缩短减振弹簧的长度。
进一步地,各减振弹簧4收纳于由第一飞轮质量1、第二飞轮质量2和盘毂法兰3三者所形成的减振弹簧安装部,使得各减振弹簧4被减振弹簧安装部在径向R、轴向A和周向C上限位。另外,各减振弹簧4的两端抵接于第一飞轮质量1、第二飞轮质量2和盘毂法兰3。这样,使得第一飞轮质量1和第二飞轮质量2能够经由六个减振弹簧4将来自发动机曲轴9的扭矩传递到盘毂法兰3。以下将具体说明该减振弹簧安装部的结构。
在本实施方式中,第一飞轮质量1形成有朝向轴向一侧凹陷的第一凹部1c。第二飞轮质量2形成有与第一凹部1c对应的且朝向轴向另一侧凹陷的第 二凹部2c。该第一凹部1c和第二凹部2c的形状均与减振弹簧4的外部轮廓大致对应。盘毂法兰3形成有与第一凹部1c对应的且在轴向A上贯通盘毂法兰3的盘毂法兰安装孔3h1,该盘毂法兰安装孔3h1的径向尺寸略大于减振弹簧4的直径。这样,采用减振弹簧4的长度方向与周向C大致一致的方式使减振弹簧4穿过盘毂法兰安装孔3h1被约束在第一凹部1c和第二凹部2c之间,使得第一凹部1c、第二凹部2c和盘毂法兰安装孔3h1形成了能够在径向R、轴向A和周向C上对减振弹簧4进行限位的减振弹簧安装部。通过该减振弹簧安装部能够省略现有技术的双质量飞轮的保持板和盖板等的冲压部件,从而简化了结构,节省了成本。
在本实施方式中,离心摆单元5设置于盘毂法兰3的比减振弹簧安装部靠径向外侧的径向外侧部分,并且离心摆单元5收纳于第一飞轮质量1和第二飞轮质量2包围形成的上述收纳空间。该离心摆单元5能够进一步衰减来自发动机曲轴8的扭振,并且离心摆单元5收纳于上述收纳空间能够在一定程度上隔离离心摆单元5工作时产生的噪声。
在本实施方式中,上述收纳空间是通过使第一飞轮质量1和第二飞轮质量2的径向外侧部分分别向轴向一侧和轴向另一侧凹陷而形成的,从而使得第一飞轮质量1和第二飞轮质量2在该收纳空间的轴向间隔大于第一飞轮质量1和第二飞轮质量2在该收纳空间与减振弹簧安装部之间的部位的轴向间隔。
在本实施方式中,在第一飞轮质量1与盘毂法兰3之间以及第二飞轮质量2与盘毂法兰3之间均设置摩擦盘6。该摩擦盘6一方面用于在飞轮质量1、2与盘毂法兰3之间实现阻尼作用,另一方面用于在轴向A上对盘毂法兰3进行限位。为了保证摩擦盘6稳定地实现上述功能,在第二飞轮质量2和盘毂法兰3之间设置有膜片弹簧7,该膜片弹簧7在轴向A上压抵摩擦盘6和第二飞轮质量 2,使得该摩擦盘6能够在膜片弹簧7的弹簧力作用下压抵于盘毂法兰3。
(第二实施方式)
如图2a和图2b所示,根据本发明的第二实施方式的车辆用减振器对于与第一实施方式相同或相似的部件标注相同或相似的附图标记,并省略对这些部件的详细说明,而两者的不同之处在于减振弹簧安装部的具体结构不同。
在本实施方式中,第一飞轮质量1的径向中央部分形成有在轴向A上贯通第一飞轮质量1的第一安装孔1w。第二飞轮质量2形成有与第一安装孔1w对应的且在轴向A上贯通第二飞轮质量2的第二安装孔2w。第一安装孔1w的径向开口尺寸和第二安装孔2w的径向开口尺寸均小于减振弹簧4的直径。盘毂法兰3形成有与第一安装孔1w对应的且在轴向A上贯通盘毂法兰3的盘毂法兰安装孔3h1,该盘毂法兰安装孔3h1的径向尺寸略大于减振弹簧4的直径。这样,采用减振弹簧4的长度方向与周向C大致一致的方式使减振弹簧4穿过盘毂法兰安装孔3h1被约束在第一安装孔1w和第二安装孔2w之间,使得第一安装孔1w、第二安装孔2w和盘毂法兰安装孔3h1形成了能够在径向R、轴向A和周向C上对减振弹簧4进行限位的减振弹簧安装部。
应当理解,这里提到的“第一安装孔1w、第二安装孔2w和盘毂法兰安装孔3h1形成了能够在径向R、轴向A和周向C上对减振弹簧4进行限位的减振弹簧安装部”实质上是指,第一飞轮质量1的限定第一安装孔1w的部位(包括第一安装孔1w的周壁及该周壁附近的部分)、第二飞轮质量2的限定第二安装孔2w的部位(包括第二安装孔2w的周壁及该周壁附近的部分)和盘毂法兰3的限定盘毂法兰安装孔3h1的部分(特别是盘毂法兰安装孔3h1的周壁)“形成了能够在径向R、轴向A和周向C上对减振弹簧4进行限位的减振弹簧安装部”。
(第三实施方式)
如图3所示,根据本发明的第三实施方式的车辆用减振器对于与第一实施方式相同或相似的部件标注相同或相似的附图标记,并省略对这些部件的详细说明,而两者的主要不同之处在于减振弹簧安装部的具体结构不同。
在本实施方式中,第一飞轮质量1的径向中央部分形成有朝向轴向一侧凹陷的第一凹部1c,该第一凹部1c的形状与减振弹簧4的外部轮廓大致对应。第二飞轮质量2形成有与第一凹部1c对应的且在轴向A上贯通第二飞轮质量2的第二安装孔2w,第二安装孔2w的径向开口尺寸小于减振弹簧4的直径。盘毂法兰3形成有与第一凹部1c对应的且在轴向A上贯通盘毂法兰3的盘毂法兰安装孔3h1,该盘毂法兰安装孔3h1的径向尺寸略大于减振弹簧4的直径。这样,采用减振弹簧4的长度方向与周向C大致一致的方式使减振弹簧4穿过盘毂法兰安装孔3h1被约束在第一凹部1c和第二安装孔2w之间,使得第一凹部1c、第二安装孔2w和盘毂法兰安装孔3h1形成了能够在径向R、轴向A和周向C上对减振弹簧4进行限位的减振弹簧安装部。
(第四实施方式)
如图4所示,根据本发明的第四实施方式的车辆用减振器对于与第一实施方式相同或相似的部件标注相同或相似的附图标记,并省略对这些部件的详细说明,而两者的主要不同之处在于减振弹簧安装部的具体结构不同。
在本实施方式中,第一飞轮质量1形成有在轴向A上贯通第一飞轮质量1的第一安装孔1w,第一安装孔1w的径向开口尺寸小于减振弹簧4的直径。第二飞轮质量2形成有与第一安装孔1w对应的且朝向轴向另一侧凹陷的第二凹部2c,该第二凹部2c的形状与减振弹簧4的外部轮廓大致对应。盘毂法兰3形成有与第一安装孔1w对应的且在轴向A上贯通盘毂法兰3的盘毂法兰安装孔3h1,该盘毂法兰安装孔3h1的径向尺寸略大于减振弹簧4的直径。这样,采用减振弹簧4的长度方向与周向C大致一致的方式使减振弹簧4穿过盘毂法兰 安装孔3h1被约束在第一安装孔1w和第二凹部2c之间,使得第一安装孔1w、第二凹部2c和盘毂法兰安装孔3h1形成了能够在径向R、轴向A和周向上对减振弹簧4进行限位的减振弹簧安装部。
另外,本发明还提供了一种如下的车辆,该车辆包括具有上述结构的车辆用减振器。车辆用减振器的第一飞轮质量1与车辆的发动机曲轴9固定连接在一起,车辆用减振器的盘毂法兰3与车辆的变速器的输入轴传动联接。上述变速器可以是双离合变速器、手动自动变速器等各种类型的变速器。
以上对本发明的具体技术方案进行了详细地阐述,但是还需要说明的是:
(i)虽然在以上的具体实施方式中没有说明,但是减振弹簧4的数量还可以为四个或其它数量。减振弹簧4不仅可以为如上所述的直线状的螺旋弹簧,还可以是弧形的螺旋弹簧。
当减振弹簧4为直线状的螺旋弹簧时,优选地,各减振弹簧4以其长度方向与减振器的周向的一条切线的方向一致的方式收纳于如上所述的减振弹簧安装部;当减振弹簧4为弧形的螺旋弹簧时,优选地,各减振弹簧4以其长度方向与减振器的周向一致的方式收纳于如上所述的减振弹簧安装部。
(ii)虽然在以上的四个实施方式中的减振弹簧安装部都能够实现对减振弹簧4的限位作用,但是在第一实施方式中的减振弹簧安装部对减振弹簧4的限位效果最佳。
(iii)为了避免在直线状的减振弹簧4在盘毂法兰3相对于飞轮质量1、2发生相对转动时与盘毂法兰3发生干涉,盘毂法兰安装孔3h1的径向外侧边缘形成了朝向径向外侧凸的弧形轮廓。
(iv)在根据本发明的减振器中,摩擦盘6和减振弹簧7可以设置于减振弹簧安装部的径向内侧(如以上的第一实施方式和第二实施方式),也可以 设置于减振弹簧安装部的径向外侧(如以上的第三实施方式和第四实施方式)。
(v)参照图1b,在第一实施方式中,第二飞轮质量2形成有供多个螺栓8穿过的中心孔。然而,本发明不限于此,与盘毂法兰3类似地,第二飞轮质量2的径向内侧部分也可以形成有多个分开的供螺栓8穿过的螺栓安装孔。
(vi)虽然在以上的四个实施方式中说明了离心摆单元5设置于盘毂法兰3的比减振弹簧安装部靠径向外侧的部分,但是本发明不限于此,也可以将离心摆单元5设置于盘毂法兰3的比减振弹簧安装部靠径向内侧的部分。

Claims (10)

  1. 一种车辆用减振器,所述减振器包括:
    第一飞轮质量(1),所述第一飞轮质量(1)用于与车辆的发动机曲轴(9)连接;
    第二飞轮质量(2),所述第二飞轮质量(2)与所述第一飞轮质量(1)固定连接在一起;
    盘毂法兰(3),所述盘毂法兰(3)在所述减振器的轴向(A)上位于所述第一飞轮质量(1)和所述第二飞轮质量(2)之间且能够相对于所述第一飞轮质量(1)和所述第二飞轮质量(2)在所述减振器的周向(C)上进行预定范围的转动,所述盘毂法兰(3)用于与所述车辆的变速器的输入轴传动联接;以及
    多个减振弹簧(4),各所述减振弹簧(4)以其长度方向与所述减振器的周向大致一致的方式收纳于由所述第一飞轮质量(1)、所述第二飞轮质量(2)和所述盘毂法兰(3)三者所形成的减振弹簧安装部,使得所述第一飞轮质量(1)和所述第二飞轮质量(2)能够经由所述多个减振弹簧(4)将来自所述发动机曲轴(9)的扭矩传递到所述盘毂法兰(3)。
  2. 根据权利要求1所述的车辆用减振器,其特征在于,所述第一飞轮质量(1)和所述第二飞轮质量(2)通过焊接或铆接固定连接在一起。
  3. 根据权利要求1或2所述的车辆用减振器,其特征在于,所述第一飞轮质量(1)形成有朝向轴向一侧凹陷的第一凹部(1c),所述第二飞轮质量(2)形成有与所述第一凹部(1c)对应的且朝向轴向另一侧凹陷的第二凹部(2c),所述盘毂法兰(3)形成有与所述第一凹部(1c)对应的且在所述轴向(A)上贯通所述盘毂法兰(3)的盘毂法兰安装孔(3h1),所述第一凹部(1c)、所述第二凹部(2c)和所述盘毂法兰安装孔(3h1)形成所述减振弹簧安装部。
  4. 根据权利要求1或2所述的车辆用减振器,其特征在于,所述第一飞轮质量(1)形成有在所述轴向(A)上贯通所述第一飞轮质量(1)的第一安装孔(1w),所述第二飞轮质量(2)形成有与所述第一安装孔(1w)对应的且在所述轴向(A)上贯通所述第二飞轮质量(2)的第二安装孔(2w),所述盘毂法兰(3)形成有与所述第一安装孔(1w)对应的且在所述轴向(A)上贯通所述盘毂法兰(3)的盘毂法兰安装孔(3h1),所述第一安装孔(1w)、所述第二安装孔(2w)和所述盘毂法兰安装孔(3h1)形成所述减振弹簧安装部。
  5. 根据权利要求1或2所述的车辆用减振器,其特征在于,所述第一飞轮质量(1)形成有朝向轴向一侧凹陷的第一凹部(1c),所述第二飞轮质量(2)形成有与所述第一凹部(1c)对应的且在所述轴向(A)上贯通所述第二飞轮质量(2)的第二安装孔(2w),所述盘毂法兰(3)形成有与所述第一凹部(1c)对应的且在所述轴向(A)上贯通所述盘毂法兰(3)的盘毂法兰安装孔(3h1),所述第一凹部(1c)、所述第二安装孔(2w)和所述盘毂法兰安装孔(3h1)形成所述减振弹簧安装部。
  6. 根据权利要求1或2所述的车辆用减振器,其特征在于,所述第一飞轮质量(1)形成有在所述轴向(A)上贯通所述第一飞轮质量(1)的第一安装孔(1w),所述第二飞轮质量(2)形成有与所述第一安装孔(1w)对应的且朝向轴向另一侧凹陷的第二凹部(2c),所述盘毂法兰(3)形成有与所述第一安装孔(1w)对应的且在所述轴向(A)上贯通所述盘毂法兰(3)的盘毂法兰安装孔(3h1),所述第一安装孔(1w)、所述第二凹部(2c)和所述盘毂法兰安装孔(3h1)形成所述减振弹簧安装部。
  7. 根据权利要求1至6中任一项所述的车辆用减振器,其特征在于,所述第一飞轮质量(1)能够通过螺栓(8)与所述发动机曲轴(9)固定连接在 一起,至少所述盘毂法兰(3)的比所述减振弹簧安装部靠径向内侧的径向内侧部分形成有用于供所述螺栓(8)穿过的螺栓安装孔(3h2)。
  8. 根据权利要求1至7中任一项所述的车辆用减振器,其特征在于,所述车辆用减振器还包括离心摆单元(5),所述离心摆单元(5)收纳于所述第一飞轮质量(1)和所述第二飞轮质量(2)包围的收纳空间,
    其中所述离心摆单元(5)设置于所述盘毂法兰(3)的比所述减振弹簧安装部靠径向外侧的部分,或者所述离心摆单元(5)设置于所述盘毂法兰(3)的比所述减振弹簧安装部靠径向内侧的部分。
  9. 根据权利要求1至8中任一项所述的车辆用减振器,其特征在于,所述车辆用减振器还包括摩擦盘(6)和膜片弹簧(7),所述摩擦盘(6)和所述膜片弹簧(7)设置于所述第一飞轮质量(1)与所述盘毂法兰(3)之间和/或所述第二飞轮质量(2)与所述盘毂法兰(3)之间。
  10. 一种车辆,所述车辆包括权利要求1至9中任一项所述的车辆用减振器,所述车辆用减振器的第一飞轮质量(1)与所述车辆的发动机曲轴(9)固定连接,所述车辆用减振器的盘毂法兰(3)与所述车辆的变速器的输入轴传动联接。
PCT/CN2019/083232 2019-04-18 2019-04-18 车辆用减振器及车辆 WO2020211038A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/083232 WO2020211038A1 (zh) 2019-04-18 2019-04-18 车辆用减振器及车辆
DE112019007221.8T DE112019007221T5 (de) 2019-04-18 2019-04-18 Zweimassenschwungrad für Fahrzeug und Fahrzeug
CN201980093926.0A CN113557373B (zh) 2019-04-18 2019-04-18 车辆用减振器及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/083232 WO2020211038A1 (zh) 2019-04-18 2019-04-18 车辆用减振器及车辆

Publications (1)

Publication Number Publication Date
WO2020211038A1 true WO2020211038A1 (zh) 2020-10-22

Family

ID=72837663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083232 WO2020211038A1 (zh) 2019-04-18 2019-04-18 车辆用减振器及车辆

Country Status (3)

Country Link
CN (1) CN113557373B (zh)
DE (1) DE112019007221T5 (zh)
WO (1) WO2020211038A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023184514A1 (zh) * 2022-04-01 2023-10-05 舍弗勒技术股份两合公司 双质量飞轮

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1191595A (zh) * 1995-03-21 1998-08-26 机动车产品股份有限公司 双体飞轮摩擦阻尼装置
US20020139630A1 (en) * 2001-03-30 2002-10-03 Shan Shih Torsional vibration damper
CN202402564U (zh) * 2012-01-04 2012-08-29 安徽江淮汽车股份有限公司 一种匹配无级变速器的双质量飞轮
CN104653702A (zh) * 2013-11-25 2015-05-27 上海汽车集团股份有限公司 双质量飞轮
CN106321726A (zh) * 2015-06-19 2017-01-11 舍弗勒技术股份两合公司 飞轮装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4128868A1 (de) * 1991-08-30 1993-03-04 Fichtel & Sachs Ag Zweimassenschwungrad mit gleitschuh
US5246399A (en) * 1991-12-11 1993-09-21 Borg-Warner Automotive Transmission & Engine Components Corporation Two-stage torsional vibration damper
WO2012095072A1 (de) * 2010-12-24 2012-07-19 Schaeffler Technologies AG & Co. KG Fliehkraftpendeleinrichtung
WO2012146228A1 (de) * 2011-04-26 2012-11-01 Schaeffler Technologies AG & Co. KG Torsionsschwingungsdämpfer
CN102619896A (zh) * 2012-03-26 2012-08-01 上海萨克斯动力总成部件系统有限公司 集成三个减振器的汽车离合器从动盘
DE102013212282A1 (de) * 2012-07-06 2014-01-09 Schaeffler Technologies AG & Co. KG Torsionsschwingungsdämpfer sowie Anordnung und Verfahrenzum Dämpfen eines Antriebsstrangs eines Kraftfahrzeugs
CN104791392B (zh) * 2014-01-17 2019-03-08 舍弗勒技术股份两合公司 应用于离合器从动盘的阻尼片、离合器从动盘、离合器
DE102014217460A1 (de) * 2014-09-02 2016-03-03 Schaeffler Technologies AG & Co. KG Einrichtung zur Übertragung von Drehmoment
CN106870632B (zh) * 2017-03-21 2018-12-28 陕西国力信息技术有限公司 扭转减振器和带有扭转减振器的发动机飞轮

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1191595A (zh) * 1995-03-21 1998-08-26 机动车产品股份有限公司 双体飞轮摩擦阻尼装置
US20020139630A1 (en) * 2001-03-30 2002-10-03 Shan Shih Torsional vibration damper
CN202402564U (zh) * 2012-01-04 2012-08-29 安徽江淮汽车股份有限公司 一种匹配无级变速器的双质量飞轮
CN104653702A (zh) * 2013-11-25 2015-05-27 上海汽车集团股份有限公司 双质量飞轮
CN106321726A (zh) * 2015-06-19 2017-01-11 舍弗勒技术股份两合公司 飞轮装置

Also Published As

Publication number Publication date
CN113557373A (zh) 2021-10-26
DE112019007221T5 (de) 2021-12-30
CN113557373B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
JP5477249B2 (ja) 発進装置
JP5896907B2 (ja) 動吸振器とねじり振動ダンパとを備えたハイドロダイナミック式のトルクコンバータ
WO2012043302A1 (ja) 流体伝動装置
KR20110103450A (ko) 자동차용으로 특히 적합한 유연성 플라이휠
JPH04231755A (ja) 分割されているフライホイール
JP3558462B2 (ja) フライホイール組立体
JP7351011B2 (ja) 車両用振動ダンパ及び車両
WO2021027733A1 (zh) 离心力摆、包括离心力摆的扭矩传递装置和车辆
WO2020211038A1 (zh) 车辆用减振器及车辆
US11619270B2 (en) Lock-up device for torque converter
WO2021000223A1 (zh) 离合器从动盘及离合器
US20230258252A1 (en) Torque converter
CN113898699B (zh) 双质量飞轮
KR102206221B1 (ko) 차량용 토크 컨버터
CN112178124A (zh) 车辆用减振器及车辆
KR20210123846A (ko) 차량용 토셔널 댐퍼
JPH0531304Y2 (zh)
KR101738065B1 (ko) 차량용 토크 컨버터
JP7289249B2 (ja) 動力伝達装置
KR102069527B1 (ko) 차량용 토크 컨버터
KR102215753B1 (ko) 토크 컨버터용 러그 마운팅 유닛
KR102090398B1 (ko) 댐퍼 플라이휠
WO2024016164A1 (zh) 车辆用减振器及车辆
CN115681406A (zh) 减振装置
KR20210123845A (ko) 차량용 토셔널 댐퍼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925371

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19925371

Country of ref document: EP

Kind code of ref document: A1