WO2020209636A1 - 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법 및 이의 방법으로 역분화된 신장전구세포를 포함하는 신장세포 손상 질환 예방 또는 치료용 약학 조성물 - Google Patents

소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법 및 이의 방법으로 역분화된 신장전구세포를 포함하는 신장세포 손상 질환 예방 또는 치료용 약학 조성물 Download PDF

Info

Publication number
WO2020209636A1
WO2020209636A1 PCT/KR2020/004835 KR2020004835W WO2020209636A1 WO 2020209636 A1 WO2020209636 A1 WO 2020209636A1 KR 2020004835 W KR2020004835 W KR 2020004835W WO 2020209636 A1 WO2020209636 A1 WO 2020209636A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
renal
urine
progenitor cells
cell
Prior art date
Application number
PCT/KR2020/004835
Other languages
English (en)
French (fr)
Inventor
유승권
김인용
고위위
강필준
윤원진
박규만
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to CN202080042494.3A priority Critical patent/CN114391039A/zh
Priority to JP2021559954A priority patent/JP2022528439A/ja
Priority to US17/602,170 priority patent/US20220177851A1/en
Priority to EP20788404.0A priority patent/EP3954758A4/en
Publication of WO2020209636A1 publication Critical patent/WO2020209636A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/22Urine; Urinary tract, e.g. kidney or bladder; Intraglomerular mesangial cells; Renal mesenchymal cells; Adrenal gland
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4705Regulators; Modulating activity stimulating, promoting or activating activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0684Cells of the urinary tract or kidneys
    • C12N5/0686Kidney cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0684Cells of the urinary tract or kidneys
    • C12N5/0687Renal stem cells; Renal progenitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/32Amino acids
    • C12N2500/33Amino acids other than alpha-amino carboxylic acids, e.g. beta-amino acids, taurine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/119Other fibroblast growth factors, e.g. FGF-4, FGF-8, FGF-10
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • C12N2501/91Heparin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/24Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from cells of the genital tract, from non-germinal gonad cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/25Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from renal cells, from cells of the urinary tract
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13041Use of virus, viral particle or viral elements as a vector
    • C12N2740/13043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates to a method for inducing direct dedifferentiation from urine cells to renal progenitor cells, and a pharmaceutical composition for preventing or treating kidney cell damage diseases comprising renal progenitor cells dedifferentiated by the method.
  • Stem cells refer to cells that have the ability to proliferate indefinitely depending on the degree of specific conditions and environments within the body or by necessity within the body, and to differentiate into specific cells and tissues required within the body. . Stem cells are classified into three categories: embryonic stem cells (ES cells) isolated from early embryos, embryonic germ cells (EG cells) isolated from primitive germ cells in the embryonic period, and bone marrow of adults. There are isolated multipotent adult progenitor cells (MAPC cells).
  • ES cells embryonic stem cells
  • EG cells embryonic germ cells isolated from primitive germ cells in the embryonic period
  • MPC cells multipotent adult progenitor cells
  • Stem cells have the potential to develop into cells with specialized functions, so they are being studied as a cell therapy for functional recovery and tissue regeneration of various organs. There is a trend.
  • stem cells themselves are differentiated into damaged tissues and cells in our body to regenerate them, and the second is to continuously regenerate growth factors and cells throughout life. It secretes therapeutic factors such as cytokines to help the growth and regeneration of nearby cells.
  • the direct reprogramming method is a technology that can convert and produce cells with different types of unique functions targeting somatic cells. Unlike Japan's Professor Yamanaka's reprogrammed induced pluripotent stem cell (iPSC), it does not go through a pluripotency state, so karyotypic stability and target cells It has advantages in terms of homogeneity, variability between cell sources, tumor development risk, patient specificity, and time and effort efficiency.
  • iPSC induced pluripotent stem cell
  • the direct dedifferentiation method currently being performed mainly uses mouse cells as a cell source, and the probability of reproducing equally in human somatic cells is not high, and skin cells (fibroblasts) are often used among human somatic cells, but in this case An invasive method of collecting cell sources is required, which can cause pain and safety risks to the donor, and the convenience is poor.
  • kidney progenitor cells in the kidney which has very limited ability for spontaneous regeneration after injury, remains questionable to date, but the mechanism of renal regeneration agreed by the academic community is as follows. It is based on the decisive role of kidney progenitor cells that can temporarily dedifferentiate and grow after injury and surviving kidney cells and replace damaged tissue (Benigni A et al., Lancet 375(9722):1310-7, 2010; Sallustio F et al., Biores Open Access 4(1):326-33, 2015). That is, in this regeneration process, the progenitor cells proliferated from the renal progenitor cells move to the damaged area and are reconstructed into functional kidney tissue through growth and differentiation.
  • kidney progenitor cells derived from somatic cells and the technology for developing pharmaceutical materials using the same have high value for renal tissue treatment and regeneration in terms of efficiency, patient customization, and therapeutic efficacy. It can be said to be of great significance in that it presents a new model for the bio industry (Takasato M et al., Semin Nephrol . 4(4):462-80, 2014; Sallustio F et al., Biores Open Access . 4( 1):326-33, 2015).
  • kidney progenitor cells In the case of kidney progenitor cells, it is not only a simple cell replacement, but also secretes therapeutic factors that play an important role in kidney regeneration.Therefore, the use of kidney-specific kidney progenitor cells to develop a regeneration treatment agent and prevent kidney damage is a scientific treatment. It is a very natural approach to the expected effect.
  • kidney progenitor cells that can regenerate or replace damaged kidney tissue
  • dedifferentiation factors Oct4, Sox2, Klf4, c-Myc, and Slug the overexpressed urine cells are transformed into the kidney development process.
  • culturing in an environment (niche) containing factors that are considered important in this study we induced dedifferentiated renal progenitor cells with similar characteristics to renal progenitor cells, and confirmed the tissue regeneration efficacy using these dedifferentiated renal progenitor cells.
  • the invention was completed.
  • An object of the present invention is to induce dedifferentiated renal progenitor cells that have similar characteristics to renal progenitor cells applicable to renal injury healing, renal regeneration, and treatment of renal cell damage diseases, in urine cells with dedifferentiation factors Oct4, Sox2, Klf4. , c-Myc and Slug are introduced, followed by culturing in an environment (niche) containing factors that are considered important in the process of renal development, providing a method of inducing direct dedifferentiation from urine cells into kidney progenitor cells There is.
  • the present invention comprises the steps of: (a) separating and culturing urine cells from urine; (b) dedifferentiation factor in the cultured urine cells i) nucleic acid encoding Oct4 protein, ii) nucleic acid encoding Sox2 protein, iii) nucleic acid encoding Klf4 protein, iv) nucleic acid encoding c-Myc protein, and v) introducing a nucleic acid encoding the Slug protein; (c) inducing dedifferentiation into kidney progenitor cells by culturing the urine cells into which the dedifferentiation factor has been introduced in a renal progenitor cell culture medium; And (d) selecting dedifferentiated renal progenitor cells having the characteristics of renal progenitor cells from cells in which the direct dedifferentiation into renal progenitor cells is induced, direct dedifferentiation from urine cells to renal progenitor cells.
  • a way separating and culturing urine cells from urine.
  • the present invention also provides a composition for preventing or treating kidney cell damage diseases, comprising as an active ingredient renal progenitor cells induced by the above method.
  • the present invention also provides a method for preventing or treating kidney cell damage disease comprising administering to an individual a composition containing renal progenitor cells induced by the above method as an active ingredient.
  • the present invention also provides a use of a composition containing as an active ingredient renal progenitor cells induced dedifferentiation by the above method for preventing or treating kidney cell damage diseases.
  • the present invention also provides a use of a composition containing renal progenitor cells induced by the above method as an active ingredient for the manufacture of a drug for preventing or treating kidney cell damage disease.
  • 1A shows a combination of transcription factors attempted to induce renal progenitor cells using a direct dedifferentiation technique, and shows the results of colony formation and autoproliferative capacity of the induced cells.
  • 1B is a result of comparing the colony-forming ability of induced cells according to the combination of Oct4, Sox2, Klf4, c-Myc and Slug transcription factors in female and male-derived urine cells (5F: Oct4, Sox2, Klf4, c- Myc and Slug combination; 5F-Slug: combination of Oct4, Sox2, Klf4 and c-Myc).
  • 1C is a result of comparing the expression level of the renal progenitor cell marker gene SIX2 according to the combination of Oct4, Sox2, Klf4, c-Myc and Slug transcription factors.
  • Figure 2 is a schematic diagram of the entire process of inducing urine cells to kidney progenitor cells using direct dedifferentiation technology and obtaining colonies, then expanding the number of kidney progenitor cells through the colony culture and differentiating into kidney cells.
  • Fig. 3 is an analysis of mRNA levels by RT-PCR using renal progenitor cells derived from embryonic stem cells as a positive control after inducing dedifferentiated kidney progenitor cells by introducing OCT4, SOX2, KLF4, cMYC, and SLUG genes from urine cells. This is the result of confirming whether or not the renal progenitor cell marker genes such as SIX2, CITED1, and WT1 are expressed according to the induction time.
  • the renal progenitor cell marker genes such as SIX2, CITED1, and WT1 are expressed according to the induction time.
  • FIG. 4 shows renal progenitor cell marker genes such as SIX2, CITED1, and WT1 through mRNA level analysis by RT-PCR by selecting and expanding colonies derived from female or male urine cells. It is the result of checking whether or not it expresses.
  • a tumor such as an induced pluripotent stem cell through the expression of pluripotent marker genes such as NANOG and OCT4 through mRNA level analysis by RT-PCR after inducing dedifferentiated kidney progenitor cells using urine cells. It is the result of confirming the stability from the risk of occurrence.
  • kidney progenitor cell marker proteins such as SIX2 and CITED1 using female or male-derived urine cells.
  • kidney progenitor cells preserve normal chromosomes using female or male-derived urine cells through karyotype analysis over time.
  • Figure 9 is a result of confirming through mRNA level analysis and FACS analysis whether the renal progenitor cell marker genes such as SIX2 and CITED1 are maintained for a long time in the renal progenitor cell expansion culture medium.
  • 10A to 10D show kidney precursors derived from H9 and BG01 embryonic stem cells in which the dedifferentiated kidney progenitor cells at the global gene expression level through total RNA sequencing are more than the original female or male urine-derived cells. This is a result of confirming whether or not it exhibits mRNA and lnc-RNA (long non-coding-RNA) expression patterns similar to those of cells.
  • FIG. 12 is a Venn diagram showing the similarity of renal development-related mRNA expression between dedifferentiated kidney progenitor cells from female or male urine cells and kidney progenitor cells derived from BG01 embryonic stem cells at the level of total gene expression through total RNA sequencing. to be.
  • kidney progenitor cells derived from urine cells and kidney progenitor cells derived from BG01 embryonic stem cells by dividing in detail related to kidney development among total gene expression through total RNA sequencing at the gene expression level of each group. It is the result.
  • CD13 and AQP1 which are tubular cell gene markers, through RT-PCR to verify the differentiation ability of dedifferentiated renal progenitor cells into renal tubular cells.
  • 17 is a result of confirming the expression of the tubule cell gene markers AQP1 and LTL through immunostaining in order to verify the ability of dedifferentiated renal progenitor cells to differentiate into tubular cells.
  • Figure 18 is to verify the differentiation ability of dedifferentiated renal progenitor cells into renal unit-like tissues, confirming the specific morphology of renal unit-like tissues, and immunizing the expression of glomerular podocyte gene marker PODXL and tubular cell gene marker LTL. This is the result of checking through the dyeing method.
  • urine cells were isolated and cultured from urine, and a vector into which a combination of Oct4, Klf4, Sox2, c-Myc, and Slug dedifferentiation factor was introduced was introduced into the urine cells.
  • FGF9, BMP7, CHIR99021 and Y-27632 to Advanced RPMI 1640 medium containing heparin, LDN-193189, and L-glutamine to cultivate urine cells into which the dedifferentiation factors were introduced, inducing dedifferentiation into kidney progenitor cells I did.
  • the present invention (a) separating and culturing urine cells from urine; (b) dedifferentiation factor in the cultured urine cells i) nucleic acid encoding Oct4 protein, ii) nucleic acid encoding Sox2 protein, iii) nucleic acid encoding Klf4 protein, iv) nucleic acid encoding c-Myc protein, and v) introducing a nucleic acid encoding the Slug protein; (c) inducing dedifferentiation into kidney progenitor cells by culturing the urine cells into which the dedifferentiation factor has been introduced in a renal progenitor cell culture medium; And (d) selecting dedifferentiated renal progenitor cells having the characteristics of renal progenitor cells from cells in which the direct dedifferentiation into renal progenitor cells is induced, direct dedifferentiation from urine cells to renal progenitor cells. It's about how.
  • the term "dedifferentiated renal progenitor cells” refers to cells made in a manner of establishing undifferentiated stem cells having similar or identical pluripotency to renal stem cells by using dedifferentiation technology in differentiated cells. do. Induced renal progenitor cells have the same or similar characteristics as renal progenitor cells. Specifically, they show similar cell morphology, have similar gene and protein expression patterns, and may have pluripotency in vitro and in vivo. Accordingly, the dedifferentiated renal progenitor cells of the present invention may be capable of differentiating into glomerular podocytes or renal tubular cells.
  • renal progenitor cell is a multipotent undifferentiated cell (stem cell and/or progenitor cell) capable of differentiating into a renal tissue-constituent cell, and an undifferentiated cell capable of differentiating into a podocyte and a tubular cell. Also includes.
  • dedifferentiation refers to a phenomenon in which differentiated cells acquire a'stem cell'-like or multipotent state before differentiating into one or more different tissue types.
  • the term "differentiation” refers to a phenomenon in which a cell's structure or function is specialized during growth by division and proliferation.
  • Pluripotent mesenchymal stem cells are differentiated into progenitor cells with a limited lineage (e.g., mesenchymal cells), and then can be further differentiated into other types of progenitor cells, and then end-stage differentiated cells that play a characteristic role in specific tissues. (Eg, adipocytes, bone cells, chondrocytes, etc.) can be differentiated.
  • the "renal progenitor cells” of the present invention can differentiate only into terminally differentiated cells, that is, renal blast cells, which play a characteristic role in a specific tissue (eg, kidney tissue).
  • Urine cells can be easily and repeatedly obtained at any time without any discomfort and pain at low cost, regardless of the age, sex, and health status of the patient.
  • somatic cells that can be obtained from urine.
  • the urine cells may be characterized in that the urine-derived somatic cells.
  • the transcription factor Slug when expressed simultaneously with the dedifferentiating factors Oct4, Sox2, Klf4, and c-Myc in urine cells, urine cells, which are already differentiated cell types, are dedifferentiated into kidney progenitor cells having differentiation ability (de- I found the possibility of differentiation.
  • the term "reverse differentiation factor" of the present invention originated from reprogramming, a concept introduced by Professor Yamanaka's team in 2006. All tissues of the adult body gradually differentiate from the undifferentiated state of the undifferentiated state through the normal development process, and each function changes into specialized cells. Among them, the cells of the fertilized egg are totipotent, and when the developmental stage progresses and becomes a blastocyst, it can be divided into inner cell mass and outer cells. At this time, the inner cell mass cells can develop into embryonic somatic cells and reproductive cells, which are called pluripotent. These embryonic stem cells show a gene expression pattern peculiar to pluripotency, representative examples of which are Oct4, Sox2, Nanog, and Lin28.
  • Dedifferentiation can be said to be a technology that induces the expression of such specific genes in somatic cells and returns them to properties similar to undifferentiated cells such as embryonic stem cells and adult stem cells.
  • Oct4, Sox2, Klf4, and c-Myc are various factors that have been used in a series of studies accordingly, and were used to reverse differentiation from urine cells into kidney progenitor cells in the present invention.
  • Slug of the present invention is also known as “Snai2”, so it can be understood that Slug and Snai2 are the same.
  • Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) of the present invention are all Oct4 and Sox2, Klf4, c-Myc, derived from animals such as humans and horses, sheep, pigs, goats, camels, antelopes, dogs, Slug (or Snai2), preferably human Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2).
  • Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) proteins of the present invention used for re-differentiation into renal progenitor cells are not only proteins having their wild type amino acid sequence, but also Oct4 and Sox2 , Klf4, c-Myc, Slug (or Snai2) may include a variant of the protein.
  • the gene sequences of Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) used for dedifferentiation are Cell 2007 Nov 30; The one disclosed in 131(5):861-72 was used.
  • Variants of Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) proteins are the natural amino acid sequences of Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) and one or more amino acid residues are deleted, inserted, and non-conservative. Or it means a protein having a different sequence by conservative substitution or a combination thereof.
  • the variant may be a functional equivalent exhibiting the same biological activity as a natural protein, or may be a variant in which physicochemical properties of the protein are modified as needed. It is a variant with increased structural stability or increased physiological activity against physical and chemical environments.
  • the nucleic acid consisting of a nucleotide sequence encoding the Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) protein is a wild type or a variant form as described above Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2)
  • a nucleic acid consisting of a nucleotide sequence encoding a protein one or more bases may be mutated by substitution, deletion, insertion, or a combination thereof, and may be isolated from nature or prepared using chemical synthesis.
  • the nucleic acid having a nucleotide sequence encoding the Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) proteins may be single or double stranded, and may be a DNA molecule (genome, cDNA) or an RNA molecule.
  • the dedifferentiation factor that induces dedifferentiation from urine cells into renal progenitor cells is a nucleic acid having a nucleotide sequence encoding Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) proteins. It may include a vector expressing the introduced Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) proteins.
  • step (b) may be characterized in that the viral vector into which the dedifferentiation factor is inserted is directly introduced into urine cells.
  • vector refers to an expression vector capable of expressing a protein of interest in an appropriate host cell, and refers to a genetic construct comprising essential regulatory elements operably linked to express a gene insert.
  • operably linked refers to a functional linkage between a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein of interest to perform a general function.
  • the operative linkage can be prepared using gene recombination techniques well known in the art, and site-specific DNA cleavage and linkage use enzymes generally known in the art.
  • the vector of the present invention includes a signal sequence or leader sequence for membrane targeting or secretion in addition to expression control elements such as a promoter, an operator, an initiation codon, a stop codon, a polyadenylation signal, and an enhancer, and may be variously prepared according to the purpose.
  • the promoter of the vector can be constitutive or inducible.
  • the expression vector includes a selectable marker for selecting a host cell containing the vector, and in the case of a replicable expression vector, the origin of replication is included. Vectors can either self-replicate or integrate into host DNA.
  • Vectors include plasmid vectors, cosmid vectors, viral vectors, and the like. Preferably, it is a viral vector.
  • Virus vectors include retroviruses, for example, HIV (Human immunodeficiency virus) MLV (Murine leukemia virus) ASLV (Avian sarcoma/leukosis), SNV (Spleen necrosis virus), RSV (Roussarcoma virus), MMTV (Mouse mammary tumor). virus), Adenovirus, Adeno-associated virus, Herpes simplex virus, etc., but are not limited thereto.
  • a pMXs vector was used as a MMLV-based-viral vector (Murine Moloney leukemia virus based virus vector).
  • the nucleic acid having a nucleotide sequence encoding Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) protein is delivered intracellularly by a method known in the art, for example, naked DNA in the form of a vector (Wolff et al. Science, 1990: Wolff et al. J Cell Sci. 103:1249-59, 1992), liposomes, cationic polymers, etc.
  • Liposomes are phospholipid membranes prepared by mixing cationic phospholipids such as DOTMA or DOTAP for gene transfer. When cationic liposomes and anionic nucleic acids are mixed in a certain ratio, a nucleic acid-liposome complex is formed.
  • the composition for inducing dedifferentiation of urine cells into renal progenitor cells in the present invention comprises a nucleic acid consisting of a nucleotide sequence encoding Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) proteins. It may include viruses expressing Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) proteins.
  • virus refers to Oct4 and Oct4 produced by transforming and infecting a viral vector containing a nucleic acid having a nucleotide sequence encoding a protein of Sox2, Klf4, c-Myc, Slug (or Snai2), and It means a virus expressing Sox2, Klf4, c-Myc, Slug (or Snai2).
  • Viruses that can be used in the production of viruses expressing Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) proteins of the present invention include, but are limited to, retroviruses, adenoviruses, adeno-related viruses, herpes simplex viruses, etc. It doesn't work. Preferably, it is a retrovirus.
  • a vector (pMXs-Oct4 and pMXs-Sox2, pMXs-Klf4) prepared by inserting a nucleic acid sequence encoding a protein Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) into a pMXs vector.
  • pMXs-c-Myc pMXs-Slug (or pMXs-Snai2)) Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) 293gpg, a packaging cell that produces high titer viruses capable of infecting a wide range of mammalian host cells Cells were transformed to produce viruses expressing Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) proteins, and infect urine cells.
  • the culture of urine cells in step (a) may be performed in a medium containing fetal bovine serum (FBS), basic fibroblast growth factor (bFGF), and epithelial growth factor (EGF).
  • FBS fetal bovine serum
  • bFGF basic fibroblast growth factor
  • EGF epithelial growth factor
  • culture medium refers to a medium capable of supporting the growth and survival of cells in vitro, and suitable for induction and cultivation of urine cells and dedifferentiated kidney progenitor cells. It includes all of the conventional medium used.
  • the medium and culture conditions can be selected according to the type of cell.
  • the medium used for cultivation is preferably a cell culture minimum medium (CCMM), which generally contains a carbon source, a nitrogen source, and a trace element component.
  • CCMM cell culture minimum medium
  • Such cell culture minimal media include, for example, DMEM (Dulbecco's Modified Eagle's Medium), MEM (Minimal Essential Medium), BME (Basal Medium Eagle), RPMI1640, F-10, F-12, ⁇ MEM ( ⁇ Minimal Essential Medium), GMEM (Glasgow's Minimal essential Medium), and IMEM (Iscove's Modified Dulbecco's Medium), but are not limited thereto.
  • the medium may contain antibiotics such as penicillin, streptomycin, or gentamicin.
  • cells isolated from urine can be obtained by culturing in a basic medium containing FBS, bFGF and EGF, and specifically, high-glucose DMEM and REGM (Renal Epithelial Cell Growth Medium) containing FBS. Lonza) can be obtained by adding bFGF and EGF to culture medium. More preferably, the high glucose DMEM and REGM medium may further contain L-glutamine and penicillin-streptomycin.
  • the method of introducing a dedifferentiation factor into urine cells in step (b) can be used without limitation, a method of providing a nucleic acid molecule or protein to a cell commonly used in the art, preferably reverse.
  • a method of administering a differentiation factor to the culture medium of differentiated cells or a method of injecting a dedifferentiation factor directly into the differentiated cells can be used, and the dedifferentiation factor used at this time is transfected with a viral vector into which the gene of the factor is inserted. It can be used in the form of a virus obtained from packaging cells, an mRNA produced by in vitro transcription, or a protein produced in various cell lines.
  • DNA encoding Oct4 and Sox2, Klf4, c-Myc, Slug (or Snai2) was used for the introduction of the dedifferentiation factor into urine cells.
  • the method of directly injecting the DNA into differentiated cells may be used by selecting any method known in the art, but is not limited thereto, but is not limited to microinjection, electroporation, and particle injection ( particle bombardment), direct muscle injection, an insulator, and a method using transposon can be appropriately selected and applied.
  • the DNA of the dedifferentiation factor was introduced into urine cells by electroporation.
  • the medium for inducing urine cells into kidney progenitor cells into which nucleic acids encoding Oct4 and Sox2, Klf4, c-Myc, and Slug proteins are introduced is LDN- 193189, CHIR99021, FGF9, BMP7 can induce re-differentiation into kidney progenitor cells by culturing in a basic medium containing one or more of them.
  • the medium is Y-27632 in Advanced RPMI 1640 medium. , CHIR99021, FGF9, BMP7 were all added, and in addition, LDN-193189, Heparin, L-glutamine was added to the medium was confirmed to have the best renal progenitor cell conversion rate.
  • the culture medium of step (c) preferably comprises FGF9, BMP7, CHIR99021 and Y-27632, more preferably heparin, LDN-193189 or L-glutamine further comprising, It is included in the Advanced RPMI 1640 basic medium, but is not limited thereto.
  • the selection of the kidney progenitor cells induced in step (d) is to collect the kidney progenitor cell colony generated after performing the step (c), and the selected kidney progenitor cells are cultured in a kidney progenitor cell medium. can do.
  • the renal progenitor cell medium may be a medium in which all of FGF9, BMP7, Y-27632, CHIR99021, Heparin, LDN-193189, and L-glutamine are added to Advanced RPMI 1640 medium.
  • the dedifferentiated kidney progenitor cells can be subcultured using 0.5mM EDTA solution or Accutase solution.
  • the present invention relates to a pharmaceutical composition for the prevention or treatment of kidney cell damage disease, comprising as an active ingredient renal progenitor cells induced dedifferentiation by the above method.
  • the present invention relates to a method for preventing or treating kidney cell damage diseases comprising administering renal progenitor cells induced dedifferentiation by the above method.
  • the present invention relates to renal progenitor cells induced by the above method for use in a method of preventing or treating kidney cell damage diseases.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising renal progenitor cells induced by the above method for use in a method of preventing or treating kidney cell damage disease.
  • the present invention relates to a use of a composition containing as an active ingredient renal progenitor cells induced dedifferentiation by the above method for the prevention or treatment of renal cell damage diseases.
  • the present invention relates to the use of renal progenitor cells induced by the above method for the manufacture of a medicament for preventing or treating kidney cell damage diseases.
  • the dedifferentiated renal progenitor cells of the present invention are cells with multipotency capable of differentiating into glomerular podocytes or renal tubular cells, etc., and can recover damaged or lost kidney cells. Diseases caused by damage or loss of cells can be treated without limitation.
  • diseases caused by kidney cell damage include acute/chronic renal failure, glomerulonephritis, nephrotic syndrome, nephropyelitis, polycystic nephropathy, It can be selected from the group consisting of end-stage renal disease.
  • the pharmaceutical composition of the present invention may additionally introduce a drug delivery system in order to continuously improve its effect.
  • a drug delivery system in the form of a polymer hydration gel, a polymer micelle, an emulsion, a liposome, a polymer particle, a fine needle, and the like, and materials constituting such a system may include natural and synthetic polymers and inorganic substances.
  • the pharmaceutical composition of the present invention may further include an appropriate carrier, excipient, or diluent commonly used in the preparation of pharmaceutical compositions.
  • the pharmaceutical compositions are formulated in the form of powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, and other oral formulations, external preparations, suppositories, and sterile injectable solutions, respectively, according to conventional methods. I can.
  • the carriers, excipients and diluents that may be included in the pharmaceutical composition include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, Calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oils.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and these solid preparations include at least one excipient such as starch, calcium carbonate, sucrose, or lactose. It is prepared by mixing (lactose) and gelatin. In addition to simple excipients, lubricants such as magnesium stearate and talc are also used.
  • Liquid preparations for oral use include water and liquid paraffin, which are simple diluents commonly used for suspensions, liquid solutions, emulsions, syrups, etc., and various excipients such as wetting agents, sweetening agents, fragrances, and preservatives. have.
  • Preparations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations, and suppositories.
  • the non-aqueous solvent and suspending agent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, and injectable ester such as ethyl oleate may be used.
  • As a base for suppositories witepsol, macrogol, tween 61, cacao butter, laurin, glycerogelatin, and the like may be used.
  • the content of the formulation contained in the pharmaceutical composition according to an embodiment of the present invention is not particularly limited thereto, but may be included in an amount of 0.0001 to 50% by weight, more preferably 0.01 to 10% by weight, based on the total weight of the final composition. I can.
  • the pharmaceutical composition of the present invention may be administered in a pharmaceutically effective amount, and the term "pharmaceutically effective amount" of the present invention is used to treat or prevent disease at a reasonable benefit/risk ratio applicable to medical treatment or prevention. It means a sufficient amount, and the effective dose level is the severity of the disease, the activity of the drug, the patient's age, weight, health, sex, the patient's sensitivity to the drug, the time of administration of the composition of the present invention used, the route of administration and the rate of excretion. The duration, factors including drugs used in combination or co-use with the composition of the present invention used, and other factors well known in the medical field.
  • the pharmaceutical composition of the present invention may be administered as an individual therapeutic agent or administered in combination with other therapeutic agents, and may be administered sequentially or simultaneously with a conventional therapeutic agent. And can be administered single or multiple. Considering all of the above factors, it is important to administer an amount capable of obtaining the maximum effect in a minimum amount without side effects.
  • the dosage of the pharmaceutical composition of the present invention can be determined by a person skilled in the art in consideration of the purpose of use, the degree of poisoning of the disease, the patient's age, weight, sex, history, or types of substances used as active ingredients.
  • the pharmaceutical composition of the present invention may be administered to mammals including humans at 10 to 100 mg/kg, more preferably 10 to 30 mg/kg for a day, and the frequency of administration of the composition of the present invention is Although not particularly limited thereto, it may be administered once to three times a day or divided into several doses.
  • prevention of the present invention means any action of inhibiting or delaying the onset of renal cell damage disease by administration of the pharmaceutical composition according to the present invention.
  • treatment refers to any action in which kidney cell damage disease is improved or advantageously changed by administering the pharmaceutical composition of the present invention.
  • administration refers to the act of introducing the pharmaceutical composition of the present invention to a subject by any suitable method, and the route of administration may be administered through various routes, either oral or parenteral, as long as it can reach the target tissue. have.
  • the route of administration of the pharmaceutical composition of the present invention may be administered through any general route as long as it can reach the target tissue.
  • the pharmaceutical composition of the present invention is not particularly limited thereto, but may be administered intraperitoneally, intravenously, intramuscularly, subcutaneously, intradermal, oral, intranasal, pulmonary, or rectal as desired.
  • the method of separating urine cells from urine was based on a technology developed by Sutherland and Bain of England in 1972, and specifically as follows.
  • the urine provided from the donor was centrifuged at 1000 g for 10 minutes. After the supernatant was removed, the pellet remaining in the lower layer was diluted in 20 ml of PBS solution containing 1% Penicillin/ Streptomycin/ Amphotericin B antibiotic. Then, the diluted PBS + pellet solution was centrifuged at 1000 g for 10 minutes. After removing the supernatant again, put the remaining pellet in the lower layer into a gelatin-coated 12-well cell culture dish containing 1% Penicillin/Streptomycin/Amphotericin B antibiotics, 1% L-glutamine, and 10% FBS based on DMEM/F12. It was diluted with 1 ml of the prepared basic medium and seeded.
  • the vector into which the dedifferentiation factor combination was introduced was injected into urine-derived cells isolated and cultured in Example 1 through Lipofectamine 2000 (Life Technologies) to prepare urine cells into which the dedifferentiation factor was introduced.
  • Urine cells into which the dedifferentiation factors were introduced are based on a medium mixed with DMEM and REGM 1:1 in a gelatin-coated 6-well cell culture dish, and 1% Penicillin/Streptomycin antibiotic, 1% L-glutamine, 5% Incubated for 2 days in an environment containing FBS, 10 ng/ml bFGF, and 10 g/ml EGF.
  • Example 3 Induction of urine-derived dedifferentiated kidney progenitor cells
  • the renal progenitor cells into which all five factors were introduced showed much higher expression levels than those derived from four combinations or embryonic stem cells (Fig. 1c). .
  • the induced dedifferentiated renal progenitor cell colonies were collected and cultured by adding the renal progenitor cell induction and expansion medium to a matrigel-coated cell culture dish.
  • the dedifferentiated kidney progenitor cells were then subcultured using 0.5mM EDTA solution or Accutase solution, and various characteristics of the dedifferentiated kidney progenitor cells were verified in the following examples.
  • renal progenitor cells derived from embryonic stem cells as a positive control, it was confirmed that the dedifferentiated renal progenitor cells express renal progenitor cell marker genes such as SIX2, CITED1, WT1, and NCAM1 through mRNA level analysis by RT-PCR. (Fig. 3 and Fig. 4).
  • the primer sequence used is as follows.
  • pluripotent marker genes such as NANOG and OCT4
  • safety from the risk of tumor development such as induced pluripotent stem cells was confirmed.
  • induced pluripotent stem cells As a positive control, the presence or absence of expression of pluripotent marker genes such as NANOG and OCT4 in dedifferentiated kidney progenitor cells was confirmed through mRNA level analysis by RT-PCR (FIG. 5).
  • the primer sequence used is as follows.
  • kidney progenitor cell marker proteins such as SIX2 and CITED1 (FIG. 7).
  • RNA sequencing dedifferentiated renal progenitor cells at the level of expression of genes related to renal development among all genes are similar to renal progenitor cells derived from embryonic stem cells than the original female or male urine-derived cells, mRNA and lnc-RNA ( Long non-coding-RNA) expression pattern was confirmed, and renal development-related mRNA expression commonality was confirmed through Venn diagram analysis (FIGS. 11 and 12).
  • the genes related to renal development among the total expressed genes were divided in detail through total RNA sequencing, and similarity between renal progenitor cells dedifferentiated from urine cells and kidney progenitor cells derived from BG01 embryonic stem cells at the gene expression level of each group. was confirmed (Fig. 13).
  • renal progenitor cells were prepared in DMEM/F12 medium with 1% Penicillin/Streptomycin antibiotic, 1% L-glutamine, 10% FBS, 100nM vitamin D3 and 60uM all-trans retinoic acid. Differentiation was induced by incubating for 7 days in glomerular podocyte differentiation medium to which was added. As a result, it was confirmed that the glomerular paw cell marker genes Nephrin, Synaptopodocin, and podocalyxin were expressed (FIG. 14).
  • the RT-PCR primer sequence used for the analysis of the glomerular podocyte marker gene is as follows.
  • kidney progenitor cells can differentiate into glomerular podocytes by staining Synaptopodocin and POXDL, respectively, through immunostaining (FIG. 15).
  • Antibodies were naptopodocin (SC-21537, Santa cruz bitechnology) and POXDL (AF1658, R&D Systems).
  • the RT-PCR primer sequence used for the analysis of the tubule cell marker gene is as follows.
  • the present invention enables mass production of personalized dedifferentiated kidney progenitor cells using urine cells, which are somatic cells that can be easily and repeatedly obtained without discomfort and pain, so that the field of incurable diseases and cell therapy that can be expanded to the fields of renal damage and regeneration It can be applied to the production of

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법 및 상기 방법으로 역분화된 신장전구세포를 포함하는 신장세포 손상 질환 예방 또는 치료용 약학 조성물에 관한 것이다. 본 발명은 불편과 고통 없이 용이하게 반복적으로 얻을 수 있는 체세포인 소변세포를 이용하여 개인 맞춤형 역분화 신장전구세포의 대량생산이 가능하므로, 신장손상 치유와 신장재생 분야로 확대 가능한 난치병분야 및 세포치료제의 생산에 적용이 가능하다.

Description

소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법 및 이의 방법으로 역분화된 신장전구세포를 포함하는 신장세포 손상 질환 예방 또는 치료용 약학 조성물
본 발명은 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법 및 상기 방법으로 역분화된 신장전구세포를 포함하는 신장세포 손상 질환 예방 또는 치료용 약학 조성물에 관한 것이다.
줄기세포(stem cell)란 신체 내에 특정 조건 및 환경이 주어지거나 자체 내에서 필요에 의해 정도에 따른 무한 자가 증식능력, 및 신체 내에서 필요한 특정 세포 및 조직으로의 분화능력을 가지고 있는 세포를 지칭한다. 줄기세포는 3가지로 분류되며, 초기 배아에서 분리한 배아 줄기세포 (embryonic stem cell, ES 세포), 배아기의 원시 생식세포에서 분리한 배아 생식세포 (embryonic germ cell. EG 세포) 및 성체의 골수에서 분리한 다능성 성체줄기/전구세포 (multipotent adult progenitor cell, MAPC 세포)가 있다.
줄기세포는 각각의 특화된 기능을 가지는 세포들로 발달하는 잠재력을 가지고 있으므로, 각종 장기의 기능회복 및 조직재생을 위한 세포치료제로 연구되고 있고, 최근에는 성형과 미용에 이르기까지 그 활용범위가 확대되고 있는 추세다.
생체 내에서 성체줄기세포의 역할은 크게 두 가지로 요약할 수 있는데 첫째는 줄기세포 자체가 우리 몸에서 손상된 조직과 세포들로 분화되어 다시 재생시키는 역할이며, 두 번째는 일생동안 지속적으로 성장인자 및 사이토카인 등의 치료 인자들을 분비하여 인근 세포의 성장 및 재생을 돕는 역할을 수행한다.
한편, 직접 역분화(direct reprogramming) 방식은 체세포를 목표로 하는 다른 타입의 고유 기능을 갖은 세포로 전환 및 생산할 수 있는 기술이다. 일본의 야마나카 교수의 역분화(reprogramming)된 유도 만능줄기세포(induced pluripotent stem cell, iPSC)와는 달리, 만능줄기세포 상태(pluripotency state)를 거치지 않기 때문에, 핵형(karyotypic) 안정성, 목표로 하는 세포의 균질성, 세포원 간의 변동성, 종양발생 위험, 환자에 따른 특이성, 시간 및 노력의 효율성 측면에서 장점이 있다. 그러나, 현재 수행되고 있는 직접 역분화 방식은 세포원으로 마우스 세포를 주로 이용하여 인간 체세포에서 동일하게 재현될 확률이 높지 않으며, 인간의 체세포 중에서는 흔히 피부세포 (섬유아세포)를 사용하지만, 이 경우 침습적 방식의 세포원 채취 방법이 필요하여 공여자의 고통, 안전성 위험을 초래할 수 있고 편이성이 떨어진다.
손상 후 자연 재생에 있어 매우 제한적인 능력을 갖는 신장에 신장전구세포의 존재 유무는 현재까지 의문으로 남아 있지만, 학계에서 합의된 신장재생의 기작은 다음과 같다. 손상 후 살아남은 신장세포들이 일시적으로 탈분화하여 성장할 수 있고 손상조직을 대체할 수 있는 신장전구세포의 결정적인 역할에 기반한다 (Benigni A et al., Lancet 375(9722):1310-7, 2010; Sallustio F et al., Biores Open Access 4(1):326-33, 2015). 즉, 이 재생과정은 신장전구세포로부터 증식된 전구세포가 손상된 지역으로 이동하여 성장 및 분화를 통해 기능성 신장조직으로 재구성된다. 또한, 이러한 재생과정에서 줄기세포에 의한 자기분비(autocrine), 주변분비(paracrine), 내분비(endocrine) 상호작용을 통해 신장의 생리학적 세포 전환 및 신장 각 구획의 재생에 기여한다 (Bussolati B et al., Am J Pathol. 66(2):545-55, 2005; Sagrinati C et al., J Am Soc Nephrol. 17(9):2443-56, 2006).
전구세포를 이용한 치료접근들은 염증반을 줄이는데 기여한다. 신장 손상 후, 염증인자 및 관련 혈관내 작동인자에 의한 활성산소 스트레스는 조직재생의 또다른 장벽으로 여겨진다. 이것은 신장손상을 확대할 뿐만 아니라 신부전 환자들에게 있어 심혈관계 질병을 유발할 위험이 있다.
신장손상에 있어, 체세포로부터 유도된 신장전구세포의 생산 그리고 이를 이용한 의약품 소재 개발기술은 효율성 및 환자 맞춤형, 치료 효능성 측면에서 신장 조직 치료와 재생을 위한 높은 가치를 갖고 있으며, 새로운 시장 개척과 함께 새로운 바이오 산업의 모델을 제시한다는 측면에서 그 의미가 크다고 할 수 있다 (Takasato M et al., Semin Nephrol. 4(4):462-80, 2014; Sallustio F et al., Biores Open Access. 4(1):326-33, 2015).
신장전구세포의 경우 단순 세포 대체 역할 뿐만 아니라 신장 재생에 중요한 역할을 하는 치료인자들을 분비하는 역할도 있어서 신장 손상을 예방 및 재생치료 제재를 개발하는데 신장 특화된 신장전구세포를 이용한다는 것은 과학적으로도 치료기대 효과에서도 지극히 당연한 접근방식이다.
이에, 본 발명자들은 손상된 신장조직의 재생 또는 대체할 수 있는 신장전구세포를 제조하고자 예의 노력한 결과, 역분화 인자 Oct4, Sox2, Klf4, c-Myc 및 Slug를 도입하여 과발현시킨 소변세포를 신장 발달과정에서 중요하게 여겨지는 인자들이 포함된 환경 (niche)에서 배양함으로써 신장전구세포와 비슷한 특성 가지고 있는 역분화 신장전구세포로 유도하고, 이러한 역분화 신장전구세포를 이용하여 조직재생 효능을 확인하고, 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 신장손상 치유와 신장재생 및 신장세포 손상 질환의 치료에 적용 가능한 신장전구세포와 비슷한 특성 가지고 있는 역분화 신장전구세포를 유도하기 위하여, 소변세포에 역분화 인자 Oct4, Sox2, Klf4, c-Myc 및 Slug를 도입한 다음 신장 발달과정에서 중요하게 여겨지는 인자들이 포함된 환경 (niche)에서 배양하는 단계를 포함하는 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 상기 목적을 달성하기 위하여, 본 발명은 (a) 소변으로부터 소변세포를 분리하여 배양하는 단계; (b) 상기 배양된 소변세포에 역분화 인자 i) Oct4 단백질을 코딩하는 핵산, ii) Sox2 단백질을 코딩하는 핵산, iii) Klf4 단백질을 코딩하는 핵산, iv) c-Myc 단백질을 코딩하는 핵산 및 v) Slug 단백질을 코딩하는 핵산을 도입하는 단계; (c) 상기 역분화 인자가 도입된 소변세포를 신장전구세포 배양배지에서 배양하여 신장전구세포로 역분화를 유도하는 단계; 및 (d) 상기 신장전구세포로 직접 역분화가 유도된 세포에서 신장전구세포의 특성 가지고 있는 역분화 신장전구세포를 선별하는 단계를 포함하는 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법을 제공한다.
본 발명은 또한, 상기 방법으로 역분화 유도된 신장전구세포를 유효성분으로 포함하는 신장세포 손상 질환의 예방 또는 치료용 조성물을 제공한다.
본 발명은 또한, 상기 방법으로 역분화 유도된 신장전구세포를 유효성분으로 함유하는 조성물을 개체에 투여하는 단계를 포함하는 신장세포 손상 질환의 예방 또는 치료 방법을 제공한다.
본 발명은 또한, 상기 방법으로 역분화 유도된 신장전구세포를 유효성분으로 함유하는 조성물을 신장세포 손상 질환의 예방 또는 치료에 사용하는 용도를 제공한다.
본 발명은 또한, 신장세포 손상 질환의 예방 또는 치료용 약제의 제조를 위한 상기 상기 방법으로 역분화 유도된 신장전구세포를 유효성분으로 함유하는 조성물의 용도를 제공한다.
도 1a는 직접 역분화 기술을 이용하여 신장전구세포로 유도하기 위해 시도된 전사인자들의 조합을 보여주고, 이를 통해 유도된 세포들의 콜로니 형성능과 자가증식능을 나타낸 결과이다.
도 1b는 여성과 남성 유래 소변세포에 Oct4, Sox2, Klf4, c-Myc 및 Slug 전사인자들의 조합에 따라, 유도된 세포들의 콜로니 형성능을 비교한 결과이다 (5F: Oct4, Sox2, Klf4, c-Myc 및 Slug 조합; 5F-Slug : Oct4, Sox2, Klf4 및 c-Myc의 조합).
도 1c는 Oct4, Sox2, Klf4, c-Myc 및 Slug 전사인자들의 조합에 따라, 신장전구세포 마커 유전자 SIX2의 발현정도를 비교한 결과이다.
도 2는 소변세포를 직접 역분화 기술을 이용하여 신장전구세포로 유도하고 콜로니를 얻은 후, 해당 콜로니 배양을 통해 신장전구세포 수를 확대하고 신장세포로 분화하기까지의 전체 공정을 도식한 것이다.
도 3은 소변세포로부터 OCT4 및 SOX2, KLF4, cMYC, SLUG 유전자를 도입하여 역분화 신장전구세포 유도한 후, 배아줄기세포에서 유래한 신장전구세포를 양성 대조군으로 하여 RT-PCR에 의한 mRNA 수준 분석을 통해 SIX2 및 CITED1, WT1와 같은 신장전구세포 마커 유전자를 발현하는지 여부를 유도시간에 따라 확인한 결과이다.
도 4는 여성 또는 남성 유래 소변세포를 이용하여 역분화 신장전구세포를 유도한 콜로니를 선별 후 확장배양하여, RT-PCR에 의한 mRNA 수준 분석을 통하여 SIX2 및 CITED1, WT1와 같은 신장전구세포 마커 유전자를 발현하는지 여부를 확인한 결과이다.
도 5는 소변세포를 이용하여 역분화 신장전구세포를 유도한 후, RT-PCR에 의한 mRNA 수준 분석을 통하여 NANOG 및 OCT4와 같은 만능성 마커 유전자 발현 여부를 통해, 유도 만능성 줄기세포와 같은 종양발생 위험으로부터의 안정성을 확인한 결과이다.
도 6은 면역분석법을 통하여 역분화 신장전구세포가 SIX2 및 CITED1와 같은 신장전구세포 마커 유전자를 발현하는지 여부를 확인한 결과이다.
도 7은 여성 또는 남성 유래 소변세포를 이용하여 역분화 신장전구세포가 SIX2 및 CITED1와 같은 신장전구세포 마커 단백질의 발현 여부를 웨스턴 블랏 분석을 통해 확인한 결과이다.
도 8은 여성 또는 남성 유래 소변세포를 이용하여 역분화 신장전구세포가 정상적인 염색체를 보존하고 있는지 여부를 시간에 따라 핵형분석을 통해 확인한 결과이다.
도 9는 역분화 신장전구세포가 SIX2와 CITED1 같은 신장전구세포 마커 유전자가 신장전구세포 확장배양 배지에서 긴시간 동안 발현유지가 되는지 mRNA 수준 분석과 FACS 분석을 통해 확인한 결과이다.
도 10a 내지 10d는 총 RNA 시퀀싱 (sequencing)을 통해 전체 유전자 발현 수준 (global gene expression level)에서 역분화 신장전구세포가 본래의 여성 또는 남성 소변유래 세포보다 H9, BG01 배아줄기세포에서 유래한 신장전구세포와 유사한 mRNA 및 lnc-RNA(long non-coding - RNA) 발현 패턴을 보이는지 여부를 확인한 결과이다.
도 11은 총 RNA 시퀀싱을 통해 전체 유전자 중 신장발달과 관련된 유전자 발현 수준에서 역분화 신장전구세포가 본래의 여성 또는 남성 소변유래 세포보다 H9, BG01 배아줄기세포에서 유래한 신장전구세포와 유사한 mRNA 및 lnc-RNA(long non-coding - RNA) 발현 패턴을 보이는지 여부를 확인한 결과이다.
도 12는 총 RNA 시퀀싱을 통해 전체 유전자 발현 수준에서 여성 또는 남성 소변세포로부터 역분화 신장전구세포와 BG01 배아줄기세포에서 유래한 신장전구세포 사이에서 신장발달 관련 mRNA 발현 공통성을 벤 다이어 그램으로 보여주는 결과이다.
도 13은 총 RNA 시퀀싱을 통해 전체 유전자 발현 중 신장발달과 연관된 세부적으로 나누어 각 그룹의 유전자 발현 수준에서 소변세포로부터 유도된 신장전구세포와 BG01 배아줄기세포에서 유래한 신장전구세포 사이 유사성을 비교한 결과이다.
도 14는 역분화 신장전구세포의 사구체 발세포 (Glomerular Podocyte)로의 분화능력을 검증하기 위해 사구체 발세포 유전자 마커인 Nephrin, Synaptopodocin, podocalyxin의 발현을 RT-PCR에 의한 mRNA 수준 분석을 통하여 확인한 결과이다.
도 15는 역분화 신장전구세포의 사구체 발세포로의 분화능력을 검증하기 위해 사구체 발세포의 특이적인 형태를 분화전 형태와 현미경으로 비교하고 사구체 발세포 유전자 마커인 Synaptopodocin, POXDL의 발현을 면역염색법을 통해 확인한 결과이다.
도 16은 역분화 신장전구세포의 요세관 세포 (renal tubular cells)로의 분화능력을 검증하기 위해 요세관 세포 유전자 마커인 CD13, AQP1의 발현을 RT-PCR에 의한 mRNA 수준 분석을 통하여 확인한 결과이다.
도 17은 역분화 신장전구세포가 요세관 세포로의 분화능력을 검증하기 위해 요세관 세포 유전자 마커인 AQP1,LTL의 발현을 면역염색법을 통해 확인한 결과이다.
도 18은 역분화 신장전구세포의 신단위 유사 조직으로의 분화능력을 검증하기 위해 신단위 유사 조직의 특이적인 형태를 확인하고 사구체 발세포 유전자 마커 PODXL과 요세관 세포 유전자 마커인 LTL의 발현을 면역염색법을 통해 확인한 결과이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는 소변으로부터 소변세포를 분리, 배양하고 Oct4, Klf4, Sox2, c-Myc 및 Slug 역분화 인자 조합이 도입된 벡터를 소변세포에 도입시켰다. 헤파린, LDN-193189, L-글루타민이 포함된 Advanced RPMI 1640 배지에 FGF9, BMP7, CHIR99021 및 Y-27632를 첨가하여 상기 역분화 인자들이 도입된 소변세포를 배양함으로써, 신장전구세포로 역분화를 유도하였다.
따라서, 본 발명은 일 관점에서, (a) 소변으로부터 소변세포를 분리하여 배양하는 단계; (b) 상기 배양된 소변세포에 역분화 인자 i) Oct4 단백질을 코딩하는 핵산, ii) Sox2 단백질을 코딩하는 핵산, iii) Klf4 단백질을 코딩하는 핵산, iv) c-Myc 단백질을 코딩하는 핵산 및 v) Slug 단백질을 코딩하는 핵산을 도입하는 단계; (c) 상기 역분화 인자가 도입된 소변세포를 신장전구세포 배양배지에서 배양하여 신장전구세포로 역분화를 유도하는 단계; 및 (d) 상기 신장전구세포로 직접 역분화가 유도된 세포에서 신장전구세포의 특성 가지고 있는 역분화 신장전구세포를 선별하는 단계를 포함하는 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법에 관한 것이다.
본 발명에서 용어 "역분화 신장전구세포"란 분화된 세포에 역분화 기술을 이용하여 신장줄기세포와 유사 또는 동일한 다분화능 (pluripotency)을 가진 미분화 상태의 줄기세포를 확립하는 방식으로 만들어진 세포들을 의미한다. 유도 신장전구세포는 신장전구세포와 동일 또는 유사한 특성을 가지고 있는데, 구체적으로는 비슷한 세포형태를 보여주고, 유전자 및 단백질 발현 패턴이 유사하며, 생체 내외에서 다분화능을 가질 수 있다. 따라서 본 발명의 역분화 신장전구세포는 사구체 발세포 (Glomerular Podocyte) 또는 요세관 세포 (renal tubular cells) 등으로 분화 가능한 것일 수 있다.
본 발명에서 사용된 용어 "신장전구세포"는 신장조직 구성 세포로 분화 가능한 다능성 (multipotent) 미분화 세포 (줄기세포 및/또는 전구세포)로써, 발세포와 요세관세포로 분화할 수 있는 미분화 세포 또한 포함한다.
본 발명에서 역분화 (dedifferentiation)는 분화된 세포가 하나 이상의 서로 다른 조직 형태로 분화하기 전에 '줄기세포'-유사 또는 다능성 세포 상태 (multipotent state)를 획득하는 현상에 대한 것이다.
본 발명에서 용어 "분화(differentiation)"란 세포가 분열 증식하여 성장하는 동안에 세포의 구조나 기능이 특수화되는 현상을 의미한다. 다능성 중간엽 줄기세포는 계통이 한정된 전구세포 (예컨대, 중배엽성 세포)로 분화한 후, 다른 형태의 전구세포로 더 분화될 수 있고, 그 뒤 특정 조직에서 특징적인 역할을 수행하는 말기 분화세포 (예컨대, 지방세포, 골세포, 연골세포 등)로 분화될 수 있다.
본 발명의 "신장전구세포"는 특정 조직 (예컨데, 신장조직)에서 특징적인 역할을 수행하는 말기 분화세포들, 즉 신장구성세포들로만 분화할 수 있다.
본 발명에서 용어 "소변세포 (Urine cells; UCs)"는 환자의 나이나 성별, 건강상태와 관련 없이 저비용으로 안전하고 간단하게 아무런 불편과 고통 없이 언제든지 용이하게 반복적으로 획득 가능하고, 특별한 분리과정 없이 소변으로부터 얻을 수 있는 체세포로 알려져 있다.
본 발명에 있어서, 상기 소변세포는 소변 유래 체세포인 것을 특징으로 할 수 있다.
본 발명에서는 소변세포에서 역분화 인자인 Oct4 및 Sox2, Klf4, c-Myc와 동시에 전사인자 Slug을 발현시킬 경우, 이미 분화된 세포 타입인 소변세포가 분화능을 가지는 신장전구세포로 역분화 (de-differentiation)하는 가능성을 발견하였다.
본 발명의 용어 "역분화 인자"는 2006년 야마나카 (Yamanaka) 교수팀에 의해 도입된 개념인 역분화 (Reprogramming)에서부터 시작되었다. 성체의 모든 조직은 정상 발달 과정을 거치면서 분화되지 않은 미분화 상태에서 점차적으로 분화되어 각 기능이 전문화된 세포로 변화한다. 그 중 수정란의 세포들은 전능성 (Totipotent)을 가지고 있고, 이후 발달 단계가 진행되면서 배반포가 되면 내부 세포괴 (inner cell mass)와 바깥쪽 세포들로 구분이 가능하다. 이때의 내부 세포괴 세포들이 배아 체세포와 생식세포로 발생할 수 있으며 이를 만능성 (pluripotent)라 부른다. 이 배아 줄기세포는 만능성 특유의 유전자 발현 양상을 보여주는데 그 대표적인 예가 Oct4, Sox2, Nanog, Lin28 등 이다. 역분화는 체세포에 이러한 특이적인 유전자 발현을 유도하여 배아 줄기세포 및 성체 줄기세포 등 미분화세포와 유사한 성질로 되돌리는 기술이라 할 수 있다. Oct4 및 Sox2, Klf4, c-Myc은 그에 따른 일련의 연구들에서 사용되어 왔던 다양한 인자들로써, 본 발명에서 소변세포로부터 신장전구세포로 역분화 시키는데 이용하였다.
본 발명의 "Slug"는 또한 "Snai2"라고도 알려져 있어서, Slug와 Snai2는 동일한 것으로 이해될 수 있다.
본 발명의 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2)는 인간과 말, 양, 돼지, 염소, 낙타, 영양, 개 등의 동물 유래의 모든 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2)을 포함하며, 바람직하게는 인간 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2)이다. 또한, 신장전구세포로의 역분화에 사용되는 본 발명의 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질은 이의 야생형 (wild type)의 아미노산 서열을 갖는 단백질뿐만 아니라, Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질의 변이체를 포함할 수 있다.
구체적인 일 실시예에서, 역분화에 사용된 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2)의 유전자 서열은 Cell 2007 Nov 30; 131(5):861-72에 개시된 것을 사용하였다.
Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질의 변이체란 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2)의 천연 아미노산 서열과 하나 이상의 아미노산 잔기가 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합에 의하여 상이한 서열을 가지는 단백질을 의미한다. 상기 변이체는 천연 단백질과 동일한 생물학적 활성을 나타내는 기능적 등가물이거나, 필요에 의해서 단백질의 물리 화학적 성질이 변형된 변이체일 수 있다. 물리, 화학적 환경에 대한 구조적 안정성이 증대되거나 생리학적 활성이 증대된 변이체이다.
상기 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질을 코딩하는 뉴클레오타이드 서열로 이루어진 핵산은 야생형 또는 상기한 바와 같은 변이체 형태의 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질을 코딩하는 뉴클레오타이드 서열로 이루어진 핵산으로서, 하나 이상의 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있으며, 천연에서 분리되거나 화학적 합성법을 이용하여 제조할 수 있다.
상기 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질을 코딩하는 뉴클레오타이드 서열을 갖는 핵산은 단쇄 또는 이중쇄일 수 있으며, DNA 분자(게놈, cDNA) 또는 RNA 분자일 수 있다.
하나의 바람직한 양태에서, 본 발명에서 소변세포를 신장전구세포로 역분화를 유도하는 역분화 인자는 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질을 코딩하는 뉴클레오타이드 서열을 갖는 핵산이 도입된 Oct4 및 Sox2, Klf4, c-Myc, Slug(or Snai2) 단백질을 발현하는 벡터를 포함할 수 있다.
본 발명에 있어서, 상기 (b) 단계는 상기 역분화 인자가 삽입된 바이러스 벡터를 직접 소변세포에 도입시키는 것을 특징으로 할 수 있다.
본 발명에서 용어,“벡터”란 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 발현 벡터로서, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말한다.
본 발명에서 용어 “작동가능하게 연결된 (operably linked)"은 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질을 코딩하는 핵산 서열이 기능적으로 연결 (functional linkage)되어 있는 것을 말한다. 재조합 벡터와의 작동적 연결은 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용한다.
본 발명의 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리 아데닐화 시그널, 인핸서 같은 발현 조절 요소 외에도 막 표적화 또는 분비를 위한 신호 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한, 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택성 마커를 포함하고, 복제 가능한 발현벡터인 경우 복제 기원을 포함한다. 벡터는 자가 복제하거나 숙주 DNA에 통합될 수 있다.
벡터는 플라스미드 벡터, 코즈미드 벡터, 바이러스 벡터 등을 포함한다. 바람직하게는, 바이러스 벡터이다. 바이러스 벡터는 레트로바이러스 (Retrovirus), 예를 들어 HIV (Human immunodeficiency virus) MLV (Murine leukemia virus) ASLV (Avian sarcoma/leukosis), SNV (Spleen necrosis virus), RSV (Roussarcoma virus), MMTV (Mouse mammary tumor virus) 등, 아데노바이러스 (Adenovirus), 아데노 관련 바이러스 (Adeno-associated virus), 헤르페스 심플렉스 바이러스 (Herpes simplex virus) 등에서 유래한 벡터를 포함하나, 이에 제한되지 않는다. 본 발명의 구체적인 실시예에서는, MMLV-기반-바이러스 벡터 (Murine Moloney leukemia virus based virus vector)로 pMXs 벡터를 이용하였다.
본 발명에서 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질을 코딩하는 뉴클레오타이드 서열을 갖는 핵산은 당 분야의 공지 방법, 예를 들어 벡터 형태의 네이키드 DNA로 세포내로 전달하거나 (Wolff et al. Science,1990: Wolffet al. J Cell Sci. 103:1249-59, 1992), 리포좀 (Liposome), 양이온성 고분자 (Cationic polymer)등을 이용하여 세포 내로 전달할 수 있다. 리포좀은 유전자 전달을 위하여 DOTMA나 DOTAP 등의 양이온성 인지질을 혼합하여 제조한 인지질 막으로, 양이온성의 리포좀과 음이온성의 핵산이 일정 비율로 혼합하면 핵산-리포좀 복합체가 형성된다.
또 다른 바람직한 양태로서, 본 발명에서 소변세포를 신장전구세포로 역분화를 유도하는 조성물은 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질을 코딩하는 뉴클레오타이드 서열로 이루어진 핵산을 포함하는 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질을 발현하는 바이러스를 포함할 수 있다.
본 발명에서 용어 “바이러스”는 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질을 코딩하는 뉴클레오타이드 서열을 갖는 핵산을 포함하는 바이러스 벡터를 패키징 세포로 형질전환 및 감염시켜 제작한 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2)을 발현하는 바이러스를 의미한다.
본 발명의 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질을 발현하는 바이러스 제조에 사용될 수 있는 바이러스는 레트로바이러스, 아데노바이러스, 아데노 관련 바이러스, 헤르페스 심플렉스 바이러스 등을 포함하며 이로 제한되지 않는다. 바람직하게는, 레트로바이러스이다.
본 발명의 구체적인 실시예에서는, pMXs 벡터에 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질을 코딩하는 핵산 서열을 삽입하여 제조한 벡터(pMXs-Oct4 및 pMXs-Sox2, pMXs-Klf4, pMXs-c-Myc, pMXs-Slug (또는 pMXs-Snai2))를 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 광범위한 포유류 숙주세포에 감염이 가능한 고역가 바이러스를 생성하는 패키징 세포인 293gpg 세포에 형질전환시켜 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2) 단백질을 발현시키는 바이러스를 제조하여 소변세포를 감염시켰다.
본 발명에 있어서, 상기 단계 (a)에서 소변세포의 배양은 FBS (fetal bovine serum) 및 bFGF (basic fibroblast growth factor), EGF(epithelial growth factor) 함유 배지에서 이루어질 수 있다.
본 발명에서 사용된 용어, "배지 (culture medium)"는 in vitro 상에서 세포들의 성장 및 생존을 지지할 수 있게 하는 배지를 의미하고, 소변세포 및 역분화 신장전구세포 유도 및 배양에 적절한 당 분야에서 사용되는 통상의 배지를 모두 포함한다. 세포의 종류에 따라 배지 및 배양 조건을 선택할 수 있다. 배양에 사용되는 배지는 바람직하게는 세포 배양 최소 배지 (cell culture minimum medium; CCMM)로 일반적으로 탄소원, 질소원 및 미량원소 성분을 포함한다. 이런 세포 배양 최소 배지에는 예들 들어, DMEM (Dulbecco's Modified Eagle's Medium), MEM (Minimal essential Medium), BME (Basal Medium Eagle), RPMI1640, F-10, F-12, αMEM (α Minimal essential Medium), GMEM (Glasgow's Minimal essential Medium), 및 IMEM (Iscove's Modified Dulbecco's Medium) 등이 있으나, 이로 제한되지 않는다. 또한 상기 배지는 페니실린 (penicillin), 스트렙토마이신 (streptomycin) 또는 젠타마이신 (gentamicin) 등의 항생제를 포함할 수 있다.
본 발명의 구체적인 실시예에서, 소변에서 분리한 세포들을 FBS, bFGF 및 EGF를 함유하는 기본 배지에서 배양함으로써 수득할 수 있으며, 구체적으로 FBS가 포함된 하이 글루코즈 DMEM 및 REGM (Renal Epithelial Cell Growth Medium, Lonza사) 배지에 bFGF 및 EGF를 첨가하여 배양함으로써 수득할 수 있다. 더욱 바람직하게는, 상기 하이 글루코즈 DMEM 및 REGM 배지는 L-글루타민 및 페니실린-스트렙토마이신을 추가로 포함할 수 있다.
본 발명에 있어서, 상기 단계 (b)에서 역분화 인자를 소변세포에 도입하는 방법은 당업계에서 통상적으로 사용되는 세포에 핵산분자 또는 단백질을 제공하는 방법을 제한없이 사용할 수 있으며, 바람직하게는 역분화 인자를 분화된 세포의 배양액에 투여하는 방법 또는 역분화 인자를 분화된 세포에 직접 주입하는 방법을 사용할 수 있으며, 이때 사용되는 역분화 인자는 해당 인자의 유전자를 삽입한 바이러스 벡터로 형질감염시킨 패키징 세포로부터 수득한 바이러스, 시험관 내 전사 (in vitro transcription)에 의해 생산한 mRNA, 또는 다양한 세포주 내에서 생산된 단백질 등의 형태로 사용할 수 있다. 본 발명의 구체적인 실시예에서, 소변세포로의 상기 역분화 인자의 도입은 Oct4 및 Sox2, Klf4, c-Myc, Slug (또는 Snai2)를 코딩하는 DNA를 사용하였다.
상기 DNA를 분화된 세포에 직접 주입하는 방법은 당업계에 공지된 임의의 방법을 선택하여 사용할 수 있으며, 이에 제한되지는 않으나, 미세주입법 (microijection), 전기천공법 (electroporation), 입자 분사법 (particle bombardment), 직접근육주입법, 인슐레이터 (insulator) 및 트랜스포존을 이용한 방법 중에서 적절하게 선택하여 적용할 수 있다. 구체적으로 본 발명의 실시예에서 역분화 인자의 DNA는 전기천공법을 이용하여 소변세포에 도입하였었다.
본 발명에 있어서, 상기 단계 (c)에서 Oct4 및 Sox2, Klf4, c-Myc, Slug 단백질을 코딩하는 핵산이 도입된 소변세포를 신장전구세포로 유도하는 배지 (신장전구세포 유도배지)는 LDN-193189, CHIR99021, FGF9, BMP7 중 하나 이상이 함유된 기본 배지에서 배양함으로써 신장전구세포로의 역분화를 유도할 수 있으며, 본 발명의 구체적인 실시예에서, 상기 배지는 Advanced RPMI 1640 배지에Y-27632, CHIR99021, FGF9, BMP7 모두 첨가하고 추가적으로, LDN-193189, Heparin, L-glutamine를 첨가한 배지에서의 신장전구세포 전환률이 가장 우수함을 확인하였다.
본 발명에 있어서, 상기 (c)단계의 배양배지는 FGF9, BMP7, CHIR99021 및 Y-27632을 포함하는 것이 바람직하며, 더욱 바람직하게는 헤파린, LDN-193189 또는 L-글루타민을 추가로 포함하는 것이며, Advanced RPMI 1640 기본배지에 포함되는 것이나, 이에 한정되는 것은 아니다.
또한, 상기 배양 배지에서의 배양은 Matrigel, laminin, fibronectin, gelatin 및 collagen 중 하나 또는 하나 이상의 코팅 조건에서 수행되는 경우 유도 효율이 증가할 수 있다.
본 발명에서 상기 단계 (d)에서 유도된 신장전구세포들의 선별은 상기 단계 (c)를 수행한 후 생성된 신장전구세포 콜로니를 채취하는 것이며, 상기 선별된 신장전구세포는 신장전구세포 배지에서 배양할 수 있다.
상기 신장전구세포 배지는 Advanced RPMI 1640 배지에 FGF9, BMP7, Y-27632, CHIR99021, Heparin, LDN-193189, L-glutamine 모두 첨가한 배지일 수 있다. 추가로, 상기 역분화 신장전구세포는 0.5mM EDTA 용액 혹은 Accutase 용액을 이용하여 계대 배양할 수 있다.
본 발명은 다른 관점에서, 상기의 방법으로 역분화 유도된 신장전구세포를 유효성분으로 포함하는 신장세포 손상 질환의 예방 또는 치료용 약학 조성물에 관한 것이다.
본 발명은 또 다른 관점에서, 상기의 방법으로 역분화 유도된 신장전구세포를 투여하는 단계를 포함하는 신장세포 손상 질환 예방 또는 치료 방법에 관한 것이다.
본 발명은 또 다른 관점에서, 신장세포 손상 질환 예방 또는 치료 방법에 사용하기 위한 상기 방법으로 역분화 유도된 신장전구세포에 관한 것이다.
본 발명은 또 다른 관점에서, 신장세포 손상 질환 예방 또는 치료 방법에 사용하기 위한 상기 방법으로 역분화 유도된 신장전구세포을 포함하는 약학적 조성물에 관한 것이다.
본 발명은 또 다른 관점에서, 상기 방법으로 역분화 유도된 신장전구세포를 유효성분으로 함유하는 조성물을 신장세포 손상 질환의 예방 또는 치료에 사용하는 용도에 관한 것이다.
본 발명은 또 다른 관점에서, 신장세포 손상 질환의 예방 또는 치료용 약제의 제조를 위한 상기 상기 방법으로 역분화 유도된 신장전구세포의 용도에 관한 것이다.
본 발명의 역분화 신장전구세포는 사구체 발세포 (Glomerular Podocyte) 또는 요세관 세포 (renal tubular cells) 등으로 분화 가능한 다분화능을 가진 세포로, 손상되거나 소실된 신장 세포들을 복구할 수 있어, 상기 신장 세포들의 손상 또는 소실로 인해 발생하는 질환을 제한 없이 치료가 가능하다.
구체적으로, 상기 신장세포 손상으로 발생하는 질환은 급성/만성 신부전 (acute/chronic renal failure), 사구체신염 (glomerulonephritis), 신 증후군 (nephrotic syndrome), 신우신염 (nephropyelitis), 다낭성 신증 (polycystic nephropathy), 말기 신질환 (end-stage renal disease)으로 이루어진 군에서 선택될 수 있다.
본 발명의 상기 약제학적 조성물은 그 지속적으로 효과를 증진시키기 위하여 약물전달 시스템을 추가로 도입할 수 있다. 예컨데, 고분자 수화젤, 고분자 마이셀, 에멀젼, 리포좀, 고분자 입자, 미세침 등의 형태의 전달시스템에 담지될 수 있으며, 이러한 시스템을 구성하고 있는 재료로는 천연 및 합성 고분자, 무기물을 포함될 수 있다.
본 발명의 약학 조성물은 약학적 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 또는 희석제를 추가로 포함할 수 있다. 구체적으로, 상기 약학 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 본 발명에서, 상기 약학 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(calcium carbonate), 수크로스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 마그네슘 스티레이트, 탈크 같은 윤활제들도 사용된다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는 데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.
본 발명의 일 실시예에 따른 약학 조성물에 포함된 상기 제제의 함량은 특별히 이에 제한되지 않으나, 최종 조성물 총중량을 기준으로 0.0001 내지 50 중량%, 보다 바람직하게는 0.01 내지 10 중량%의 함량으로 포함할 수 있다.
상기 본 발명의 약학 조성물은 약학적으로 유효한 양으로 투여될 수 있는데, 본 발명의 용어 "약제학적으로 유효한 양"이란 의학적 치료 또는 예방에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료 또는 예방하기에 충분한 양을 의미하며, 유효 용량 수준은 질환의 중증도, 약물의 활성, 환자의 연령, 체중, 건강, 성별, 환자의 약물에 대한 민감도, 사용된 본 발명 조성물의 투여 시간, 투여 경로 및 배출 비율 치료기간, 사용된 본 발명의 조성물과 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 약학 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있다. 그리고 단일 또는 다중 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하다.
본 발명의 약학조성물의 투여량은 사용목적, 질환의 중독도, 환자의 연령, 체중, 성별, 기왕력, 또는 유효성분으로서 사용되는 물질의 종류 등을 고려하여 당업자가 결정할 수 있다. 예를 들어, 본 발명의 약학 조성물을 사람을 포함하는 포유동물에 하루 동안 10 내지 100 ㎎/㎏, 보다 바람직하게는 10 내지 30 ㎎/㎏으로 투여할 수 있고, 본 발명의 조성물의 투여빈도는 특별히 이에 제한되지 않으나, 1일 1회 내지 3회 투여하거나 또는 용량을 분할하여 수회 투여할 수 있다.
본 발명의 용어 "예방"이란, 본 발명에 따른 약학적 조성물의 투여로 신장세포 손상 질환의 발병을 억제 또는 지연시키는 모든 행위를 의미한다.
본 발명에서 용어 "치료"란, 본 발명의 약학 조성물을 투여함으로써, 신장세포 손상 질환이 호전되거나 이롭게 변경시키는 모든 행위를 의미한다.
본 발명의 용어 "투여"란, 어떠한 적절한 방법으로 대상에게 본 발명의 약학 조성물을 도입하는 행위를 의미하며, 투여 경로는 목적 조직에 도달할 수 있는 한 경구 또는 비경구의 다양한 경로를 통하여 투여될 수 있다.
본 발명의 약학 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여도 투여될 수 있다. 본 발명의 약학 조성물은 특별히 이에 제한되지 않으나, 목적하는 바에 따라 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 비내 투여, 폐내 투여, 직장내 투여될 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 소변으로부터 소변세포 (Urine cell)의 분리
소변으로부터 소변세포를 분리하는 방법은 1972년 영국의 Sutherland와 Bain가 개발한 기술을 기본으로 하였으며, 구체적으로는 다음과 같다.
먼저 공여자에게 제공받은 소변을 1000g로 10분간 원심분리하였다. 상층액을 제거 후 하층에 남은 펠릿을 1% Penicillin/ Streptomycin/ Amphotericin B 항생제가 포함된 PBS 용액 20ml에 희석하였다. 그 다음 희석된 PBS + 펠릿 용액을 1000g로 10분간 원심분리하였다. 다시 상층액을 제거 후 하층에 남은 펠릿을 젤라틴이 코팅된 12-웰 세포배양 접시에 DMEM/F12를 기본으로 하여 1% Penicillin/Streptomycin/Amphotericin B 항생제, 1% L-글루타민, 10% FBS가 포함된 기본배지 1ml로 희석하여 시딩하였다. 이후 3일간 기본배지를 1ml씩 첨가하여 배양한 후 DMEM과 REGM (Renal Epithelial Cell Growth Medium, Lonza사)을 1:1로 섞은 배지를 기본으로 하여 1% Penicillin/Streptomycin 항생제, 1% L-글루타민, 5% FBS, 10ng/ml bFGF, 10g/ml EGF가 포함된 성장배지로 변경하여 배양하였다.
실시예 2: 소변세포에 역분화 인자 도입
pMXs벡터에 Oct4 및 Klf4, Sox2, c-Myc, Slug, Six1, Six2, Osr1, Pax2, Eya1 단백질을 코딩하는 뉴클레오타이드 서열을 삽입하여 제조한 벡터 pMXs-Oct4 및 pMXs-Klf4, pMXs-Sox2, pMXs-cMyc, pMXs-Slug, pMXs-Six1, pMXs-Six2, pMXs-Osr1, pMXs-Pax2, pMXs-Eya1를 인간 293-유래 레트로바이러스 패키징 세포주인 293GPG를 이용하여 상기 역분화 인자 조합이 도입된 벡터를 제조하였다. 이러한 역분화 인자 조합이 도입된 벡터를 실시예 1에서 분리, 배양한 소변유래 세포에 Lipofectamine 2000 (Life Technologies)을 통해 주입시켜, 역분화 인자가 도입된 소변세포를 제조하였다.
상기 역분화 인자들을 도입한 소변세포는 젤라틴이 코팅된 6-웰 세포배양 접시에 DMEM과 REGM을 1:1로 섞은 배지를 기본으로 하여 1% Penicillin/Streptomycin 항생제, 1% L-글루타민, 5% FBS, 10ng/ml bFGF, 10g/ml EGF을 포함한 환경에서 2일 동안 배양하였다.
실시예 3: 소변유래 역분화 신장전구세포 유도
매트리겔 (Matrigel)이 코팅된 세포배양 접시에 상기 역분화 인자들이 도입된 소변유래 세포를 시딩한 후 1ug/ml의 헤파린, 125nM의 LDN-193189, 0.5%의 L-글루타민이 포함된 Advanced RPMI 1640 (Gibco) 배지를 기본으로 100ng/ml의 FGF9, 30ng/ml의 BMP7, 1.25uM의 CHIR99021, 10uM의 Y-27632를 첨가한 신장전구세포 유도 및 확장 배지로 10-13일간 배양하였다. 유도 완료시 신장전구세포 콜로니의 발생 여부를 확인할 수 있었다 (도 1a 및 도 2).
특히, 야마나카 인자 조합 (Oct4, Klf4, Sox2, c-Myc)에 Slug가 추가된 조합 (5F : Oct4, Klf4, Sox2, c-Myc, Slug)에서 자가증식능과 콜로니 형성능이 우수한 것으로 확인되었다 (도 1b). 그러나, 5개 인자 모두가 도입된 경우와 비교해서, 각 인자가 하나씩 제거된 4개 인자 조합들로부터 유도된 남성과 여성 유래 신장전구세포는 매우 적은 콜로니 형성능을 보여주었다 (도 1b). 또한, 대표적인 신장전구세포 마커 유전자인 SIX2 mRNA 수준 분석에서도, 5개 인자 모두가 도입된 신장전구세포는 4개 조합들 또는 배아줄기세포로부터 유도되었을 경우보다 훨씬 높은 발현 정도를 보여주었다 (도 1c).
유도된 역분화 신장전구세포 콜로니를 채취하여 매트리겔이 코팅된 세포배양 접시에 상기 신장전구세포 유도 및 확장 배지를 넣어 배양하였다. 역분화 신장전구세포는 이후 0.5mM EDTA 용액 혹은 Accutase 용액을 이용하여 계대 배양하고, 이후 다음의 실시예에서 상기 역분화 신장전구세포의 다양한 특성을 검증하였다.
실시예 4: 역분화 신장전구세포의 분자생물학적 특성 분석
4-1: 신장전구세포 마커 유전자 발현 확인
배아줄기세포에서 유래한 신장전구세포를 양성 대조군로 하여 RT-PCR에 의한 mRNA 수준 분석을 통하여 역분화 신장전구세포가 SIX2, CITED1, WT1, NCAM1와 같은 신장전구세포 마커 유전자를 발현하고 있음을 확인하였다 (도 3 및 도 4). 사용된 프라이머 서열은 다음과 같다.
Figure PCTKR2020004835-appb-I000001
4-2: 만능성 마커 유전자 발현 확인
NANOG 및 OCT4와 같은 만능성 마커 유전자 발현 여부를 통해, 유도 만능성 줄기세포와 같은 종양발생 위험으로부터의 안전성을 확인하였다.
유도 만능성 줄기세포를 양성 대조군으로 하여 역분화 신장전구세포에서 NANOG 및 OCT4와 같은 만능성 마커 유전자의 발현 유무를 RT-PCR에 의한 mRNA 수준 분석을 통하여 확인하였다 (도 5). 사용된 프라이머 서열은 다음과 같다.
Figure PCTKR2020004835-appb-I000002
4-3: 단백질 수준에서 신장전구세포 마커 발현 확인
역분화 신장전구세포에서 SIX2 및 CITED1과 같은 신장전구세포 마커의 단백질 수준의 발현을 면역염색법을 통해 확인하였다 (도 6). 항체는 SIX2 (11562-1-AP, Proteintech) 및 CITED1 (H00004435, Abnova)을 사용하였다.
또한, 웨스턴 블랏을 통해 여성과 남성 소변 유래 세포로부터 역분화 신장전구세포가 SIX2 및 CITED1과 같은 신장전구세포 마커 단백질을 발현하고 있음을 확인하였다 (도 7).
4-4: 핵형 분석 및 신장전구세포 마커 mRNA의 양적 분석
역분화 신장전구세포의 분자생물학적 특성을 검증하기 위하여, 역분화 신장전구세포가 정상적인 염색체를 시간에 따라 보존하고 있음을 핵형분석을 통해 확인하였다 (도 8).
다음으로, mRNA의 양적 분석을 통해 역분화 신장전구세포가 SIX2와 같은 신장전구세포 마커 유전자 발현을 시간 지남에도 일정량을 유지하고 있음을 qRT-PCR과 FACS에 의해 확인하였다 (도 9).
4-5: 신장발달과 관련된 유전자 발현 수준 확인
총 RNA 시퀀싱(sequencing)을 통해 신장발달과 관련된 유전자 발현 수준 (global gene expression level)에서 역분화 신장전구세포가 본래의 소변 유래 세포보다 배아줄기세포에서 유래한 신장전구세포와 유사한 mRNA 및 lnc-RNA 발현 패턴을 보임을 확인하였다 (도 9).
또한, 총 RNA 시퀀싱을 통해 전체 유전자 중 신장발달과 관련된 유전자 발현 수준에서 역분화 신장전구세포가 본래의 여성 또는 남성 소변 유래 세포보다 배아줄기세포에서 유래한 신장전구세포와 유사한 mRNA 및 lnc-RNA(long non-coding - RNA) 발현 패턴을 보이는지 여부를 확인하고, 신장발달 관련 mRNA 발현 공통성을 벤 다이어그램 분석을 통해 확인하였다 (도 11 및 도 12).
더 나아가, 총 RNA 시퀀싱을 통해 전체 발현 유전자 중 신장발달과 연관된 유전자를 세부적으로 나누고, 각 그룹의 유전자 발현 수준에서 소변세포로부터 역분화 신장전구세포와 BG01 배아줄기세포에서 유래한 신장전구세포 사이 유사성을 확인하였다 (도 13).
실시예 5: 역분화 신장전구세포의 분화능력 분석
5-1: 사구체 발세포로의 분화능력 분석
역분화 신장전구세포를 사구체 발세포로 분화시키기 위해, 신장전구세포를 DMEM/F12 배지에 1% Penicillin/Streptomycin 항생제, 1% L-글루타민, 10% FBS, 100nM 비타민 D3와 60uM all-trans retinoic acid를 첨가한 사구체 발세포 분화배지에 7일간 배양하여 분화를 유도하였다. 그 결과, 사구체 발세포 마커 유전자인 Nephrin, Synaptopodocin, podocalyxin를 발현하는 것을 확인하였다 (도 14).
사구체 발세포 마커 유전자 분석을 위해 사용된 RT-PCR 프라이머 서열은 다음과 같다.
Figure PCTKR2020004835-appb-I000003
또한, 면역염색법을 통해 각각 Synaptopodocin, POXDL를 염색하여 역분화 신장전구세포가 사구체 발세포로 분화할 수 있음을 확인하였다 (도 15). 항체는 naptopodocin (SC-21537, Santa cruz bitechnology) 및 POXDL (AF1658, R&D Systems)를 사용하였다.
5-2: 요세관 세포로의 분화능력 분석
신장전구세포를 DMEM/F12 배지에 1% Penicillin/Streptomycin 항생제, 1% L-글루타민, 10% FBS,1X ITS, 20 ng/mL hEGF (human epidermal growth factor), 1nM tri-iodothyronine와 100ng/ml hydrocorticone를 첨가한 요세관 세포 분화배지에서 21일간 배양하여 요세관 세포로 분화를 유도하였다. 그 결과, 요세관 세포 마커 유전자인 CD13, AQP1을 발현하능 것을 확인하였다 (도 16).
요세관 세포 마커 유전자 분석을 위해 사용된 RT-PCR 프라이머 서열은 다음과 같다.
Figure PCTKR2020004835-appb-I000004
또한, 면역염색법을 통해 각각 LTL, AQP1, E-cadherin를 염색하여 역분화 신장전구세포가 요세관 세포로 분화할 수 있음을 확인하였다 (도 17). 항체는 LTL (B-1325, Vector Labs), AQP1 (SC32737, Santa cruz bitechnology). E-cadherin (610181, BD Biosciences)를 사용하였다.
5-3: 신단위 유사 조직으로의 분화능력 분석
Advanced RPMI 1640(Gibco)에 1% Penicillin/Streptomycin(P/S), 1% L-글루타민(L/G), 100ng/ml FGF9, 30ng/ml BMP7, 1.25 uM CHIR, 125nM LDN, 10uM Y27632 및 10ng/ml 헤파린를 첨가한 NPEM에서 신장전구세포를 1일간 배양한 후, ARPMI 배지에 1% P/S, 1% L/G, 10ng/ml FGF9, 3 uM CHIR를 첨가한 분화배지에서 2일간 배양하고, ARPMI 배지에 1% P/S, 1% L/G, 10ng/ml FGF9를 첨가한 분화배지에서 3일간 배양한 다음, ARPMI 배지에 1% P/S, 1% L/G를 첨가한 배지에서 7-14일간 배양하여 신단위 유사 조직으로 분화를 유도하였다. 그 결과, 사구체 발세포 마커 유전자인 PODXL 및 요세관 세포마커 유전자인 LTL을 발현하고 있음을 면역염색법을 통해 확인하였다 (도 18). 항체는 PODXL (AF1658, R&D Systems), LTL (B-1325, Vector Labs)를 사용하였다.
본 발명은 불편과 고통 없이 용이하게 반복적으로 얻을 수 있는 체세포인 소변세포를 이용하여 개인 맞춤형 역분화 신장전구세포의 대량생산이 가능하므로, 신장손상 치유와 신장재생 분야로 확대 가능한 난치병분야 및 세포치료제의 생산에 적용이 가능하다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
전자파일 첨부하였음.

Claims (8)

  1. 다음 단계를 포함하는 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법:
    (a) 소변으로부터 소변세포를 분리하여 배양하는 단계;
    (b) 상기 배양된 소변세포에 역분화 인자 i) Oct4 단백질을 코딩하는 핵산, ii) Sox2 단백질을 코딩하는 핵산, iii) Klf4 단백질을 코딩하는 핵산, iv) c-Myc 단백질을 코딩하는 핵산 및 v) Slug 단백질을 코딩하는 핵산을 도입하는 단계;
    (c) 상기 역분화 인자가 도입된 소변세포를 신장전구세포 배양배지에서 배양하여 신장전구세포로 역분화를 유도하는 단계; 및
    (d) 상기 신장전구세포로 직접 역분화가 유도된 세포에서 신장전구세포의 특성 가지고 있는 역분화 신장전구세포를 선별하는 단계.
  2. 제1항에 있어서, 상기 소변세포는 소변 유래 체세포인 것을 특징으로 하는 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법.
  3. 제1항에 있어서, 상기 (b) 단계는 상기 역분화 인자가 삽입된 바이러스 벡터를 직접 소변세포에 도입시키는 것을 특징으로 하는 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법.
  4. 제1항에 있어서, 상기 (c)단계의 배양배지는 FGF9, BMP7, CHIR99021 및 Y-27632을 포함하는 것을 특징으로 하는 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법.
  5. 제4항에 있어서, 헤파린, LDN-193189 또는 L-글루타민을 추가로 포함하는 것을 특징으로 하는 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법.
  6. 제4항에 있어서, 매트리겔, 라미닌, 피브로넥틴, 젤라틴 또는 콜라겐이 코팅된 배양접시에서 배양하는 것을 특징으로 하는 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법.
  7. 제1항의 방법으로 역분화 유도된 신장전구세포를 유효성분으로 포함하는 신장세포 손상 질환의 예방 또는 치료용 약학 조성물.
  8. 제7항에 있어서, 상기 신장세포 손상 질환은 급성/만성 신부전 (acute/chronic renal failure), 사구체신염 (glomerulonephritis), 신증후군 (nephrotic syndrome), 신우신염 (nephropyelitis), 다낭성 신증 (polycystic nephropathy) 및 말기 신질환 (end-stage renal disease)으로 구성된 군에서 선택되는 것을 특징으로 하는 신장세포 손상 질환 예방 또는 치료용 약학 조성물.
PCT/KR2020/004835 2019-04-09 2020-04-09 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법 및 이의 방법으로 역분화된 신장전구세포를 포함하는 신장세포 손상 질환 예방 또는 치료용 약학 조성물 WO2020209636A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080042494.3A CN114391039A (zh) 2019-04-09 2020-04-09 用于诱导尿液细胞直接重编程为肾祖细胞的方法和包含通过相同方法重编程的肾祖细胞的、用于预防或治疗肾细胞损伤疾病的药物组合物
JP2021559954A JP2022528439A (ja) 2019-04-09 2020-04-09 尿細胞から腎前駆細胞への直接逆分化を誘導する方法、及びその方法で逆分化した腎前駆細胞を含む腎細胞損傷疾患の予防または治療用薬学組成物
US17/602,170 US20220177851A1 (en) 2019-04-09 2020-04-09 Method for inducing direct reprogramming of urine cell into renal progenitor cell and pharmaceutical composition containing reprogrammed renal progenitor cell
EP20788404.0A EP3954758A4 (en) 2019-04-09 2020-04-09 METHOD OF INDUCING DIRECT REPROGRAMMING OF A URINE CELL INTO A KIDNEY PROGENITOR CELL AND PHARMACEUTICAL COMPOSITION WITH A KIDNEY PROGENITOR CELL REPROGRAMMED BY THIS METHOD TO PREVENT OR TREAT A KIDNEY CELL LESION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0041289 2019-04-09
KR1020190041289A KR102150489B1 (ko) 2019-04-09 2019-04-09 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법 및 이의 방법으로 역분화된 신장전구세포를 포함하는 신장세포 손상 질환 예방 또는 치료용 약학 조성물

Publications (1)

Publication Number Publication Date
WO2020209636A1 true WO2020209636A1 (ko) 2020-10-15

Family

ID=72450861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004835 WO2020209636A1 (ko) 2019-04-09 2020-04-09 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법 및 이의 방법으로 역분화된 신장전구세포를 포함하는 신장세포 손상 질환 예방 또는 치료용 약학 조성물

Country Status (6)

Country Link
US (1) US20220177851A1 (ko)
EP (1) EP3954758A4 (ko)
JP (1) JP2022528439A (ko)
KR (1) KR102150489B1 (ko)
CN (1) CN114391039A (ko)
WO (1) WO2020209636A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023217134A1 (zh) * 2022-05-10 2023-11-16 上海赛立维生物科技有限公司 包含心肌前体样细胞的生物制剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110124103A (ko) * 2010-05-10 2011-11-16 고려대학교 산학협력단 Bmi1 및 히스톤 디아세틸라아제 억제제를 이용하여 체세포로부터 배아줄기세포 유사세포로의 역분화를 유도하는 조성물 및 이를 이용한 배아줄기세포 유사세포의 제조방법
KR20160050091A (ko) * 2007-05-21 2016-05-10 웨이크 포리스트 유니버시티 헬스 사이언시즈 소변으로부터의 전구 세포 및 이를 사용하는 방법
KR20160115908A (ko) * 2013-10-25 2016-10-06 웨인 스테이트 유니버시티 단백질-유도 생체내 세포 재프로그래밍을 통한 세포 전환 방법, 시스템 및 조성물
US20160304838A1 (en) * 2013-10-18 2016-10-20 National University Corporation Kumamoto University Method of inducing kidney from pluripotent stem cells
KR20190003301A (ko) * 2017-06-30 2019-01-09 주식회사 스템랩 소변세포로부터 케라티노사이트 줄기세포로의 직접 역분화 방법 및 역분화된 케라티노사이트 줄기세포를 이용한 피부재생 촉진용 조성물의 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242146B (zh) * 2010-05-10 2015-11-25 高丽大学校产学协力团 组合物和用其产生诱导全能干细胞的方法
EP2658965B1 (en) * 2010-12-31 2016-03-02 Universität für Bodenkultur Wien Method of generating induced pluripotent stem cells and differentiated cells
RU2016106953A (ru) * 2013-07-29 2017-08-31 Ф.Хоффманн-Ля Рош Аг Способ дифференциации плюрипотентных стволовых клеток в мультикомпетентные почечные клетки-предшественники
WO2015130935A1 (en) * 2014-02-26 2015-09-03 Maine Medical Center Research Institute Culture conditions for expansion of nephron progenitor cells
AU2014277667B2 (en) * 2014-12-15 2022-07-14 The University Of Queensland Differentiation of pluripotent stem cells to form renal organoids
KR102016257B1 (ko) * 2018-04-09 2019-08-29 건국대학교 산학협력단 소변 유래 줄기세포의 분리 효율 및 자가 증식을 증가시키는 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160050091A (ko) * 2007-05-21 2016-05-10 웨이크 포리스트 유니버시티 헬스 사이언시즈 소변으로부터의 전구 세포 및 이를 사용하는 방법
KR20110124103A (ko) * 2010-05-10 2011-11-16 고려대학교 산학협력단 Bmi1 및 히스톤 디아세틸라아제 억제제를 이용하여 체세포로부터 배아줄기세포 유사세포로의 역분화를 유도하는 조성물 및 이를 이용한 배아줄기세포 유사세포의 제조방법
US20160304838A1 (en) * 2013-10-18 2016-10-20 National University Corporation Kumamoto University Method of inducing kidney from pluripotent stem cells
KR20160115908A (ko) * 2013-10-25 2016-10-06 웨인 스테이트 유니버시티 단백질-유도 생체내 세포 재프로그래밍을 통한 세포 전환 방법, 시스템 및 조성물
KR20190003301A (ko) * 2017-06-30 2019-01-09 주식회사 스템랩 소변세포로부터 케라티노사이트 줄기세포로의 직접 역분화 방법 및 역분화된 케라티노사이트 줄기세포를 이용한 피부재생 촉진용 조성물의 제조방법

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BENIGNI A ET AL., LANCET, vol. 375, no. 9722, 2010, pages 1310 - 7
BUSSOLATI B ET AL., AM J PATHOL., vol. 66, no. 2, 2005, pages 545 - 55
CELL, vol. 131, no. 5, 30 November 2007 (2007-11-30), pages 861 - 72
SAGRINATI C ET AL., JAM SOC NEPHROL., vol. 17, no. 9, 2006, pages 2443 - 56
SALLUSTIO F ET AL., BIORES OPEN ACCESS, vol. 4, no. 1, 2015, pages 326 - 33
SALLUSTIO F ET AL., BIORES OPEN ACCESS., vol. 4, no. 1, 2015, pages 326 - 33
TAKASATO M ET AL., SEMIN NEPHROL., vol. 4, no. 4, 2014, pages 462 - 80
WOLFF ET AL., SCIENCE, 1990
WOLFFET, J CELL SCI., vol. 103, 1992, pages 1249 - 59

Also Published As

Publication number Publication date
CN114391039A (zh) 2022-04-22
JP2022528439A (ja) 2022-06-10
EP3954758A1 (en) 2022-02-16
US20220177851A1 (en) 2022-06-09
EP3954758A4 (en) 2022-12-21
KR102150489B1 (ko) 2020-09-01

Similar Documents

Publication Publication Date Title
KR101874463B1 (ko) 세포의 재프로그램화 방법 및 이의 용도
WO2020197318A1 (ko) Car 유전자가 도입된 nk 세포의 제조방법 및 그의 용도
US7621606B2 (en) Trans-differentiation and re-differentiation of somatic cells and production of cells for cell therapies
EP2982747B1 (en) Method for producing reprogrammed derivative neuronal stem cell from non-neuronal cell by using hmga2
US8772031B2 (en) Composition for reprogramming somatic cells to generate induced pluripotent stem cells, comprising Oct4 in combination with Bmi1 or its upstream regulator, and method for generating induced pluripotent stem cells using the same
WO2011096728A2 (en) Method for proliferating stem cells by activating c-met/hgf signaling and notch signaling
WO2019004533A1 (ko) 소변세포로부터 케라티노사이트 줄기세포로의 직접 역분화 방법 및 역분화된 케라티노사이트 줄기세포를 이용한 피부재생 촉진용 조성물의 제조방법
WO2020209636A1 (ko) 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법 및 이의 방법으로 역분화된 신장전구세포를 포함하는 신장세포 손상 질환 예방 또는 치료용 약학 조성물
WO2019216667A1 (ko) Sox2, c-Myc를 이용하여 비신경 세포로부터 직접 리프로그래밍된 유도신경줄기세포를 제조하는 방법
WO2018030630A1 (ko) Sox 유전자가 이입된 비바이러스성 미니써클 벡터 및 이의 제조방법
WO2012096552A2 (ko) Rex1을 포함하는 세포 리프로그래밍 조성물 및 이를 이용한 유도 만능줄기세포 제조방법
WO2016076507A1 (ko) 렙틴을 포함하는 유도만능줄기세포로의 역분화 유도용 조성물 및 이를 이용한 유도만능줄기세포로의 역분화 유도 방법
KR101269124B1 (ko) c-MET/HGF 신호 활성을 이용한 줄기세포의 증식 방법
AU2020282343A1 (en) Compositions and methods for cellular reprogramming
CN116410934A (zh) 制备ipsc并诱导其分化为目标体细胞的方法及用途
KR20110124106A (ko) Shh, FGFR 티로신 키나아제 억제제, MEK 억제제와 GSK 억제제를 이용하여 체세포로부터 배아줄기세포 유사세포로의 역분화를 유도하는 조성물 및 이를 이용한 배아줄기세포 유사세포의 제조방법
WO2015072708A1 (ko) 성체 섬유모세포를 형질전환(이형분화)시켜 혈관내피세포를 제조하는 방법 및 이의 용도
WO2019117454A1 (ko) 세포 소기관 스트레스 조절 인자를 이용하는 고효율 세포전환용 배지 첨가제
Ni et al. Facile and efficient reprogramming of ciliary body epithelial cells into induced pluripotent stem cells
WO2021096220A1 (ko) 유도만능줄기세포-유래 중간엽 줄기세포 전구세포로부터 유래된 엑소좀을 포함하는 신장 질환의 예방 또는 치료용 조성물
KR102137883B1 (ko) 페닐부틸산나트륨을 포함하는 고효율 세포전환용 배지 첨가제
WO2021107234A1 (ko) Hiv 감염 치료 또는 예방을 위한 ccr5/cxcr4 유전자 동시 넉아웃 환자맞춤형 조혈모세포 및 이의 제조방법
US20190112579A1 (en) Methods of promoting esophageal differentiation of pluripotent stem cells
WO2016186346A1 (ko) Oct4가 도입된 인간체세포로부터 직접적 리프로그래밍을 통한 희소돌기아교 전구세포를 유도하는 방법
WO2024014721A1 (ko) 줄기세포 유래 엑소좀을 포함하는 항암 조성물 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021559954

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020788404

Country of ref document: EP

Effective date: 20211109