WO2020209602A1 - 유기 화합물 및 이를 이용한 유기 전계 발광 소자 - Google Patents

유기 화합물 및 이를 이용한 유기 전계 발광 소자 Download PDF

Info

Publication number
WO2020209602A1
WO2020209602A1 PCT/KR2020/004755 KR2020004755W WO2020209602A1 WO 2020209602 A1 WO2020209602 A1 WO 2020209602A1 KR 2020004755 W KR2020004755 W KR 2020004755W WO 2020209602 A1 WO2020209602 A1 WO 2020209602A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound
aryl
synthesis
Prior art date
Application number
PCT/KR2020/004755
Other languages
English (en)
French (fr)
Inventor
손호준
김회문
정화순
배형찬
김진웅
Original Assignee
두산솔루스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산솔루스 주식회사 filed Critical 두산솔루스 주식회사
Publication of WO2020209602A1 publication Critical patent/WO2020209602A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present invention relates to a novel organic compound and an organic electroluminescent device using the same, and more particularly, to a compound having excellent electron transport ability and an organic electric field having improved characteristics such as luminous efficiency, driving voltage, and lifetime by including the compound in one or more organic material layers. It relates to a light emitting device.
  • organic electroluminescent (EL) devices hereinafter simply referred to as'organic EL devices'
  • blue electroluminescence using an anthracene single crystal in 1965 starting from Bernanose's observation of organic thin-film emission in the 1950s, was conducted in 1987.
  • An organic EL device having a laminated structure divided into a functional layer of a hole layer and a light emitting layer by (Tang) was presented. Since then, in order to make a high-efficiency, high-life organic EL device, it has been developed in the form of introducing each characteristic organic material layer in the device, leading to the development of specialized materials used for this.
  • the material used as the organic material layer may be classified into a light emitting material, a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like according to their function.
  • the material for forming the light emitting layer of the organic EL device may be classified into blue, green, and red light emitting materials according to the light emission color.
  • yellow and orange light-emitting materials are also used as light-emitting materials to realize better natural colors.
  • a host/dopant system may be used as a light emitting material.
  • the dopant material can be classified into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound containing heavy atoms such as Ir and Pt. Development of such a phosphorescent material can theoretically improve the luminous efficiency of up to 4 times compared to fluorescence, and thus attention is being focused on phosphorescent host materials as well as phosphorescent dopants.
  • NPB hole blocking layer
  • BCP hole blocking layer
  • Alq 3 and the like represented by the following formula
  • anthracene derivatives as a light emitting material are reported as fluorescent dopant/host materials.
  • metal complex compounds containing Ir such as Firpic, Ir(ppy) 3 and (acac)Ir(btp) 2 are blue, green, and red dopant materials. Is being used.
  • CBP has shown excellent properties as a phosphorescent host material.
  • the existing materials have an advantage in terms of light emission characteristics, but the glass transition temperature is low and the thermal stability is very poor, so that the lifespan of the organic EL device is not satisfactory.
  • the present invention provides a novel compound that can be used as an organic material layer material of an organic electroluminescent device, specifically, a light emitting layer material (green), an electron transport layer material, or an electron transport auxiliary layer material, etc., due to its excellent electron injection and transport ability and luminous ability. It aims to do.
  • Another object of the present invention is to provide an organic electroluminescent device including the above-described novel compound, capable of low voltage driving, high luminous efficiency, and implementing long life characteristics.
  • the present invention provides a compound represented by the following formula (1), specifically an electron transport layer, an electron transport auxiliary layer, or a compound for a light emitting layer material.
  • a and B is a substituent represented by the following formula (2), the other is an aryl group of C 6 ⁇ C 40 ,
  • X 1 to X 3 are the same as or different from each other, and each independently C(R 1 ) or N, provided that at least one of X 1 to X 3 is N,
  • R 1 and R 2 are the same as or different from each other, and each independently hydrogen, deuterium, halogen, cyano group, nitro group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 Of an alkynyl group, a C 3 to C 40 cycloalkyl group, a heterocycloalkyl group of 3 to 40 nuclear atoms, an aryl group of C 6 to C 60 , a heteroaryl group of 5 to 60 nuclear atoms, C 1 to C 40 Alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 3 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 aryl phosphazene group, a C 6 ⁇ C 60 monoaryl Phosphinicosuccinic group, diaryl pho
  • a and b are each independently an integer of 0 to 3
  • Ar 1 and Ar 2 are the same as or different from each other, and each independently hydrogen, deuterium, halogen, cyano group, nitro group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 Of an alkynyl group, a C 3 to C 40 cycloalkyl group, a heterocycloalkyl group of 3 to 40 nuclear atoms, an aryl group of C 6 to C 60 , a heteroaryl group of 5 to 60 nuclear atoms, C 1 to C 40 Alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 3 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 aryl phosphazene group, a C 6 ⁇ C 60 monoaryl Phosphinicosuccinic group, diaryl pho
  • L is a single bond, or is selected from the group consisting of an arylene group of C 6 to C 18 and a heteroarylene group of 5 to 18 nuclear atoms,
  • the arylene group and heteroarylene group of L the alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, aryloxy group, alkyloxy group, cycloalkyl group in the R 1 to R 2 , and Ar 1 to Ar 2 , Heterocycloalkyl group, arylamine group, alkylsilyl group, alkyl boron group, aryl boron group, arylphosphine group, arylphosphine oxide group and arylsilyl group, each independently deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 6 ⁇ C 40 aryl group, nuclear atom number 5 ⁇ 40 heteroaryl group, C 6 ⁇ C 40 Aryloxy group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 40 ary
  • the present invention provides an electron transport layer or an electron transport auxiliary layer including the compound represented by Formula 1 above.
  • the present invention includes an anode, a cathode, and at least one organic material layer interposed between the anode and the cathode, and at least one of the at least one organic material layer is an organic electric field including the compound represented by the above-described formula (1). It provides a light emitting device.
  • the organic material layer including the compound represented by Formula 1 may be selected from the group consisting of an emission layer, a light emission auxiliary layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and an electron transport auxiliary layer.
  • the compound represented by Formula 1 according to the present invention has excellent electron transport and luminescence properties, it can be used as an organic material layer material of an organic electroluminescent device.
  • the compound represented by Formula 1 of the present invention when used as a material for a green light-emitting layer (phosphorescent host), an electron transport layer, or an auxiliary electron transport layer, it has higher thermal stability, lower driving voltage, and faster than the conventional host material or electron transport material.
  • An organic electroluminescent device having mobility, high current efficiency, and long life can be manufactured, and further, it can be effectively applied to a full color display panel with improved performance and lifetime.
  • the compound represented by Formula 1 is a carbazole in which the active site of the carbazole is blocked with a specific substituent, such as a phenyl group and a nitrogen-containing heteroaryl group (X 1 to X 3 containing ring). It includes a moiety, and the carbazole group and the nitrogen-containing heteroaryl group are directly bonded or linked through a linker (L) as a basic skeleton structure.
  • a specific substituent such as a phenyl group and a nitrogen-containing heteroaryl group (X 1 to X 3 containing ring). It includes a moiety, and the carbazole group and the nitrogen-containing heteroaryl group are directly bonded or linked through a linker (L) as a basic skeleton structure.
  • the compound represented by Formula 1 having such a structure is a nitrogen-containing aromatic ring (e.g., pyridine), a carbazole group having electron donor (EDG) characteristics and a kind of azine group, which is an electron attracting group (EWG) having high electron absorption. , pyrazine, triazine) in the molecule at the same time.
  • EWG electron attracting group
  • pyrazine, triazine in the molecule at the same time.
  • the organic electroluminescent device can maximize the performance of a full-color organic light-emitting panel.
  • the EWG group and the EDG group contained in the molecule it is advantageous as a host in the phosphorescent light emitting layer due to the bipolar property, and the charge balance can be adjusted through linkage conversion and sub moiety conversion.
  • a bipolar compound can improve hole injection/transport capability, luminous efficiency, driving voltage, life characteristics, durability, etc. due to high recombination power between holes and electrons.
  • the device it is possible to improve the driving voltage and efficiency characteristics.
  • the active site of the carbazole group is the 3rd or 6th carbon position. Accordingly, when at least one of the 3rd and 6th carbon positions of the above-described carbazole group is substituted with a substituent (eg, an aryl group), the structural stability of the compound is improved.
  • a substituent eg, an aryl group
  • the carbon position 1 adjacent to the N position of the carbazole group is substituted with a substituent such as an aryl group
  • the deposition temperature (Ts) of the device decreases due to a steric hindrance effect. As such, by reducing the Ts of a material having a high molecular weight, it is possible to develop materials of various structures, and when substituted at the 1st position, the lifespan characteristics of the device are improved.
  • the compound of Formula 1 may be used as an organic material layer material of an organic electroluminescent device, preferably an electron transport layer, an electron transport auxiliary layer material, and a green light emitting layer material (eg, a phosphorescent host material).
  • an organic material layer material of an organic electroluminescent device preferably an electron transport layer, an electron transport auxiliary layer material, and a green light emitting layer material (eg, a phosphorescent host material).
  • the compound represented by Formula 1 is not only very advantageous for electron transport, but also exhibits low driving voltage, high efficiency, and long life.
  • the excellent electron transport ability of such a compound can have high efficiency and fast mobility in an organic electroluminescent device, and it is easy to adjust the HOMO and LUMO energy levels according to the direction or position of the substituent. Therefore, it is possible to exhibit high electron transport properties in an organic electroluminescent device using such a compound.
  • the host material must have a triplet energy gap of the host higher than that of the dopant, because in order to provide effective phosphorescence emission from the dopant, the lowest excited state of the host must have a higher energy than the lowest emission state of the dopant.
  • Conventional carbazole moieties have a large triplet energy of 3.0 eV and a low HOMO energy level of 6.0 eV, and are mainly used for blue phosphorescent hosts.
  • the compound according to the present invention is a simple carbazole moiety by bonding a phenyl group to a specific position of the carbazole group, for example, one of the 1 and 6 carbon sites, preferably the N and 1 carbon sites. It is lower than the triplet energy of a compound having T as a basic skeleton and can have a triplet energy suitable for green phosphorescence emission.
  • the compound represented by Formula 1 of the present invention is used as an organic material layer material of an organic electroluminescent device, preferably a light emitting layer material (a phosphorescent host material in blue, green and/or red), an electron transport layer/injection layer material, When applied as a light emitting auxiliary layer material, the performance and lifetime characteristics of the organic electroluminescent device can be greatly improved. As a result, the organic electroluminescent device can maximize the performance of a full-color organic light-emitting panel.
  • a light emitting layer material a phosphorescent host material in blue, green and/or red
  • an electron transport layer/injection layer material When applied as a light emitting auxiliary layer material, the performance and lifetime characteristics of the organic electroluminescent device can be greatly improved. As a result, the organic electroluminescent device can maximize the performance of a full-color organic light-emitting panel.
  • the red and green emission layers of organic electroluminescent devices each use phosphorescent materials, and their technology maturity is high.
  • the blue light-emitting layer includes a fluorescent material and a phosphorescent material, of which the fluorescent material is in a state in which performance improvement is required, and the blue phosphorescent material is still under development, so the entry barrier is high. That is, while the blue light emitting layer has a high possibility of development, the technical difficulty is relatively high, so there is a limit to improving the performance (eg, driving voltage, efficiency, life, etc.) of the blue organic light emitting device having the blue light emitting layer.
  • the compound of Formula 1 may be applied as an electron transport layer (ETL) or an electron transport auxiliary layer material in addition to the light emitting layer (EML).
  • ETL electron transport layer
  • EML electron transport auxiliary layer material
  • the performance of the light emitting layer, specifically the blue light emitting layer, and the performance of the organic EL device having the same can be improved. There is an advantage that you can.
  • the compound represented by Formula 1 according to the present invention includes a carbazole moiety in which an active site is bonded with a specific substituent, and a nitrogen-containing heteroaryl group (X 1 to X 3 ), which is a kind of azine group. Ring), and they are directly bonded or have a basic skeleton structure linked through a linker (L).
  • the carbazole moiety of the present invention is blocked by bonding a phenyl group to one of carbon positions 1 and 6 and at the N position, respectively, the triplet of the compound having a simple carbazole moiety as a basic skeleton It is lower than energy and may have triplet energy suitable for green phosphorescence emission.
  • the compound of Formula 1 may be represented by the following Formula 3 or 4 depending on the type of the corresponding substituent and the activated site blocked by a specific substituent in the carbazole group.
  • X 1 to X 3 , Ar 1 , Ar 2 , L, R 2 , a and b are each as defined in Formula 1.
  • the structure of Formula 3 in which the 1st position, which is the activation site of the carbazole group, is blocked by a phenyl group may be preferable.
  • R 2 may be introduced into the carbazole moiety as various substituents.
  • R 2 is not particularly limited, and hydrogen, deuterium, halogen, cyano group, nitro group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, 3 to 40 nuclear atoms heterocycloalkyl group, C 6 to C 60 aryl group, 5 to 60 nuclear atom heteroaryl group, C 1 to C 40 alkyloxy group, C 6 to C 60 aryloxy group, C 3 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 arylphosphanyl group, C 6 ⁇ C 60 monoarylphosfinyl group, C 6 ⁇ C 60 diarylphosphinyl group
  • R 2 is hydrogen, deuterium (D), halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 6 ⁇ C 60 aryl group, and in the heteroaryl group having 5 to 60 nuclear atoms It is preferably selected.
  • the number of R 2 introduced into the carbazole group may be an integer of 0 to 3.
  • R 2 may be hydrogen.
  • a plurality of R 2 may be the same as or different from each other, and each independently may be the remaining substituents excluding hydrogen in the definition of R 2 .
  • the carbazole moiety to which the phenyl group is bonded is connected to the nitrogen-containing heteroaryl group (X 1 to X 3 containing ring) directly or through a linker (L).
  • the nitrogen-containing heteroaryl group may be a monocyclic or polycyclic heteroaryl group including at least one nitrogen atom.
  • a nitrogen-containing azine derivative eg, X 1 to X 3 containing heterocycle
  • X 1 to X 3 are the same as or different from each other, and each independently N or CR 1 , but X 1 to At least one of X 3 is N.
  • a plurality of X 1 to X 3 includes 1 to 3 N, preferably 2 to 3, more preferably 3 N.
  • R 1 may be plural, and a plurality of R 1 may be the same or different from each other, and each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, 3 to 40 nuclear atoms heterocycloalkyl group, C 6 ⁇ C 60 aryl group, nuclear atom number 5 to 60 heteroaryl group, C 1 to C 40 alkyloxy group, C 6 to C 60 aryloxy group, C 1 to C 40 alkylsilyl group, C 6 to C 60 arylsilyl group, C 1 to C 40 groups of an alkyl boron, C 6 ⁇ aryl boronic of C 60, C 1 ⁇ C 40 of the phosphine group, C 1 ⁇ C 40 phosphine oxide group, and a C 6 ⁇ selected from the
  • R 1 is preferably selected from the group consisting of hydrogen, deuterium, halogen, cyano group, C 1 to C 40 alkyl group, C 6 to C 60 aryl group, and heteroaryl group having 5 to 60 nuclear atoms. Do.
  • the nitrogen-containing heterocycle (X 1 to X 3 containing ring) may be any one selected from the group of substituents represented by the following formulas A-1 to A-5.
  • R 1 , Ar 1 and Ar 2 are each as defined in Formula 1.
  • Ar 1 and Ar 2 in the nitrogen heterocycle or different each independently represent hydrogen, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ alkynyl group of C 40 , C 3 to C 40 cycloalkyl group, heterocycloalkyl group of 3 to 40 nuclear atoms, aryl group of C 6 to C 60 , heteroaryl group of 5 to 60 nuclear atoms, alkyloxy group of C 1 to C 40 , C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group , C 6 ⁇ C 60 arylphosphine group, C 6 ⁇ C 60 aryl phosphine oxide group and C 6 ⁇ C 60 It may be selected from the arylamine group. Specifically, Ar 1 ⁇ C 40 alkyl group
  • L which is a linker
  • a linker may be introduced between the nitrogen-containing azine derivative (X 1 to X 3 containing ring) and the carbazole group.
  • Such a linker may use a divalent linker known in the art without limitation.
  • L may be a single bond or may be selected from a C 6 to C 18 arylene group and a heteroarylene group having 5 to 18 nuclear atoms.
  • L may be a substituent represented by any one of the following Chemical Formulas 5 and 6.
  • Y is selected from the group consisting of O, S and Se,
  • n is an integer of 0 to 3.
  • the number of L may be an integer of 0 to 3.
  • L may be a single bond (direct bond).
  • a plurality of L may be the same or different from each other, and each independently may be the remaining substituents excluding a single bond in the definition of L described above, such as an aryl group or a heteroaryl group.
  • L may be each independently a single bond, or may be any one selected from the group of substituents represented by the following structural formula.
  • the compound represented by Formula 1 may be further specified in any one of the following Formulas 7 to 12 depending on the type and position of the linker (L).
  • X 1 to X 3 , Y, Ar 1 , Ar 2 , R 2 , and b are each as defined in claim 1,
  • n is an integer of 0 to 3.
  • Chemical Formulas 7 to 12 are more specific, it may be represented by a compound represented by any one of the following Chemical Formulas 7a to 12a.
  • Y, Ar 1 , Ar 2 , R 2 and n are each as defined in Formula 1.
  • X 1 to X 3 are the same as or different from each other, and each independently N or C (R 1 ), but X 1 to X 3 is all N,
  • Ar 1 and Ar 2 are the same as or different from each other, and each independently selected from an aryl group of C 6 to C 60 and a heteroaryl group having 5 to 60 nuclear atoms,
  • R 1 and R 2 are different from each other, and each independently hydrogen, a C 1 to C 40 alkyl group, a C 6 to C 60 aryl group, or a heteroaryl group having 5 to 60 nuclear atoms,
  • a plurality of Y's are the same as or different from each other, each independently O or S, and n and b are each an integer of 0 to 3.
  • the compound represented by Formula 1 of the present invention described above may be further embodied as a compound illustrated below, for example, a compound represented by 1 to 71.
  • the compound represented by Formula 1 of the present invention is not limited by those illustrated below.
  • alkyl refers to a monovalent substituent derived from a linear or branched saturated hydrocarbon having 1 to 40 carbon atoms. Examples thereof include, but are not limited to, methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl, hexyl, and the like.
  • alkenyl refers to a monovalent substituent derived from a straight or branched unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon double bond. Examples thereof include vinyl (vinyl), allyl (allyl), isopropenyl (isopropenyl), 2-butenyl (2-butenyl), and the like, but is not limited thereto.
  • alkynyl refers to a monovalent substituent derived from a straight or branched unsaturated hydrocarbon having 2 to 40 carbon atoms having one or more carbon-carbon triple bonds. Examples thereof include, but are not limited to, ethynyl and 2-propynyl.
  • aryl refers to a monovalent substituent derived from an aromatic hydrocarbon having 6 to 40 carbon atoms in which a single ring or two or more rings are combined.
  • a form in which two or more rings are simply attached to each other or condensed may be included. Examples of such aryl include phenyl, naphthyl, phenanthryl, and anthryl, but are not limited thereto.
  • heteroaryl refers to a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 40 nuclear atoms. At this time, one or more carbons, preferably 1 to 3 carbons in the ring are substituted with heteroatoms such as N, O, S or Se.
  • heteroatoms such as N, O, S or Se.
  • a form in which two or more rings are simply attached to each other or condensed may be included, and further, a form condensed with an aryl group may be included.
  • heteroaryl examples include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, and triazinyl, phenoxathienyl, indolizinyl, indolyl ( indolyl), purinyl, quinolyl, benzothiazole, polycyclic rings such as carbazolyl and 2-furanyl, N-imidazolyl, 2-isoxazolyl , 2-pyridinyl, 2-pyrimidinyl, and the like, but are not limited thereto.
  • aryloxy is a monovalent substituent represented by RO-, and R means an aryl having 5 to 40 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, and diphenyloxy.
  • alkyloxy is a monovalent substituent represented by R'O-, wherein R'refers to alkyl having 1 to 40 carbon atoms, and has a linear, branched or cyclic structure It may include.
  • R' refers to alkyl having 1 to 40 carbon atoms, and has a linear, branched or cyclic structure It may include.
  • alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy, and the like.
  • arylamine refers to an amine substituted with an aryl having 6 to 40 carbon atoms.
  • cycloalkyl refers to a monovalent substituent derived from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms.
  • examples of such cycloalkyl include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
  • heterocycloalkyl refers to a monovalent substituent derived from a non-aromatic hydrocarbon having 3 to 40 nuclear atoms, and at least one carbon in the ring, preferably 1 to 3 carbons, is N, O, S Or a hetero atom such as Se.
  • heterocycloalkyl include, but are not limited to, morpholine and piperazine.
  • alkylsilyl is silyl substituted with alkyl having 1 to 40 carbon atoms
  • arylsilyl refers to silyl substituted with aryl having 5 to 40 carbon atoms.
  • condensed ring means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring, or a combination thereof.
  • the present invention provides an electron transport layer comprising the compound represented by Chemical Formula 1.
  • the electron transport layer serves to move electrons injected from the cathode to an adjacent layer, specifically a light emitting layer.
  • the compound represented by Formula 1 may be used alone as an electron transport layer (ETL) material, or may be mixed with an electron transport layer material known in the art. It is preferably used alone.
  • ETL electron transport layer
  • the electron transport layer material that can be mixed with the compound of Formula 1 includes an electron transport material commonly known in the art.
  • electron transport materials that can be used include oxazole-based compounds, isoxazole-based compounds, triazole-based compounds, isothiazole-based compounds, oxadiazole-based compounds, thiadiazole-based compounds, perylenes ( perylene) compounds, aluminum complexes (e.g. Alq 3 (tris(8-quinolinolato)-aluminium) BAlq, SAlq, Almq3, gallium complexes (e.g. Gaq'2OPiv, Gaq) There are '2OAc, 2(Gaq'2)), etc. These can be used alone or two or more types can be used in combination.
  • the mixing ratio thereof is not particularly limited, and may be appropriately adjusted within a range known in the art.
  • the present invention provides an auxiliary electron transport layer comprising the compound represented by the formula (1).
  • the electron transport auxiliary layer is disposed between the light emitting layer and the electron transport layer, and serves to prevent diffusion of excitons or holes generated in the light emitting layer into the electron transport layer.
  • the compound represented by Formula 1 may be used alone as an electron transport auxiliary layer material, or may be mixed with an electron transport layer material known in the art. It is preferably used alone.
  • the electron transport auxiliary layer material that can be mixed with the compound of Formula 1 includes an electron transport material commonly known in the art.
  • the electron transport auxiliary layer may include an oxadiazole derivative, a triazole derivative, a phenanthroline derivative (eg, BCP), a heterocyclic derivative containing nitrogen, and the like.
  • the mixing ratio thereof is not particularly limited, and may be appropriately adjusted within a range known in the art.
  • organic electroluminescent device including the compound represented by Formula 1 according to the present invention.
  • the present invention is an organic electroluminescent device comprising an anode, a cathode, and one or more organic material layers interposed between the anode and the cathode, wherein at least one of the one or more organic material layers It includes a compound represented by Formula 1.
  • the compounds may be used alone or in combination of two or more.
  • the one or more organic material layers may be any one or more of a hole injection layer, a hole transport layer, an emission layer, a light emission auxiliary layer, an electron transport layer, an electron transport auxiliary layer, and an electron injection layer, of which at least one organic material layer is represented by Formula 1 above.
  • a hole injection layer a hole transport layer, an emission layer, a light emission auxiliary layer, an electron transport layer, an electron transport auxiliary layer, and an electron injection layer, of which at least one organic material layer is represented by Formula 1 above.
  • the organic material layer containing the compound of Formula 1 is preferably a green light-emitting layer material (specifically, a phosphorescent host material), an electron transport layer, or an electron transport material for an electron transport auxiliary layer.
  • the emission layer of the organic electroluminescent device according to the present invention includes a host material and a dopant material, and in this case, the compound of Formula 1 may be included as a host material.
  • the light-emitting layer of the present invention may include a compound known in the art other than the compound of Formula 1 as a host.
  • the compound represented by Formula 1 is included as a material for an emission layer of an organic electroluminescent device, preferably a phosphorescent host material of blue, green, and red, the binding force between holes and electrons in the emission layer increases, so the efficiency of the organic electroluminescent device (Light emission efficiency and power efficiency), life, brightness, and driving voltage can be improved.
  • the compound represented by Formula 1 is preferably included in the organic electroluminescent device as a green and/or red phosphorescent host, fluorescent host, or dopant material.
  • the compound represented by Formula 1 of the present invention is a green phosphorescent exciplex N-type host material of a light emitting layer having high efficiency.
  • the structure of the organic electroluminescent device of the present invention is not particularly limited, but may have a structure in which a substrate, an anode, a hole injection layer, a hole transport layer, an auxiliary light emitting layer, a light emitting layer, an electron transport layer, and a cathode are sequentially stacked.
  • at least one of the hole injection layer, the hole transport layer, the light-emitting auxiliary layer, the light-emitting layer, the electron transport layer, and the electron injection layer may include a compound represented by Formula 1, preferably a light-emitting layer, more preferably a phosphorescent host May include the compound represented by Formula 1 above.
  • an electron injection layer may be additionally stacked on the electron transport layer.
  • the structure of the organic electroluminescent device of the present invention may be a structure in which an insulating layer or an adhesive layer is inserted at an interface between an electrode and an organic material layer.
  • the organic electroluminescent device of the present invention may be manufactured by forming an organic material layer and an electrode using materials and methods known in the art, except that at least one of the aforementioned organic material layers contains the compound represented by Chemical Formula 1. have.
  • the organic material layer may be formed by a vacuum deposition method or a solution coating method.
  • the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer method.
  • the substrate used in the manufacture of the organic electroluminescent device of the present invention is not particularly limited, and for example, a silicon wafer, quartz, glass plate, metal plate, plastic film and sheet, and the like may be used.
  • a cathode material a cathode material known in the art may be used without limitation.
  • metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof;
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO);
  • Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb;
  • Conductive polymers such as polythiophene, poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT), polypyrrole or polyaniline;
  • carbon black but is not limited thereto.
  • a negative electrode material a negative electrode material known in the art may be used without limitation.
  • metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, or lead, or alloys thereof;
  • a multi-layered material such as LiF/Al or LiO2/Al, but is not limited thereto.
  • hole injection layer, the hole transport layer, the electron injection layer, and the electron transport layer are not particularly limited, and conventional materials known in the art may be used without limitation.
  • the target compound of step 1 (110.0 g, 355.1 mmol), triphenylphosphine (279.4 g, 1065.4 mmol), and 500 ml of 1,2-dichlorobenzene were added, followed by stirring for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed, followed by extraction with dichloromethane. Water was removed from the extracted organic layer with MgSO 4 , and the target compound, 6-chloro-1-phenyl-9H-carbazole (64.1 g, yield 65%) was obtained by column chromatography.
  • Target compound of step 2 (64.0 g, 230.4 mmol), bromobenzene (39.8 g, 253.4 mmol) and Pd 2 (dba) 3 (10.9 g, 11.5 mmol), P(t-bu) 3 (4.6 g, 23.0 mmol) , NaO(t-bu) (44.3 g, 460.8 mmol) was added to 500ml of Toluene and heated to reflux for 12 hours. After completion of the reaction, the mixture was extracted with methylene chloride, and MgSO 4 was added thereto and filtered. After removing the solvent of the filtered organic layer, the target compound, 6-chloro-1,9-diphenyl-9H-carbazole (58.7 g, yield 72%) was obtained by column chromatography.
  • Target compound of step 3 (58.7 g, 165.9 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (50.5 g, 199.1 mmol) and Pd(dppf)Cl 2 (4.1 g, 5.0 mmol), Xphos (7.9 g, 16.6 mmol), KOAc (32.5 g, 331.8 mmol) were added to 500 ml of 1,4-Dioxane for 12 hours. During heating to reflux. After completion of the reaction, the mixture was extracted with methylene chloride, and MgSO 4 was added thereto and filtered. After removing the solvent in the filtered organic layer, the target compound (52.4 g, yield 71%) was obtained by column chromatography.
  • the target compound of Preparation Example 1 (3 g, 6.7 mmol) and 2-chloro-4,6-diphenyl-1,3,5-triazine (1.8 g, 6.7 mmol) and Pd(PPh 3 ) 4 (0.4 g, 0.3 mmol), K 2 CO 3 (2.8 g, 20.2 mmol) was added to 50 ml of Toluene, 10 ml of EtOH, and 10 ml of H 2 O and heated to reflux for 12 hours. After completion of the reaction, the mixture was extracted with methylene chloride, and MgSO 4 was added thereto and filtered. After removing the solvent of the filtered organic layer, the target compound (3.0 g, yield 81%) was obtained by column chromatography.
  • the target compound 3.5 was carried out in the same manner as in [Synthesis Example 1], except that 4-([1,1'-biphenyl]-4-yl)-6-(4-bromophenyl)-2-phenylpyrimidine was used as the reactant. g (yield 75%) was obtained.
  • ITO Indium tin oxide
  • a thin film coated glass substrate with a thickness of 1500 ⁇ with distilled water and ultrasonic waves.
  • a solvent such as isopropyl alcohol, acetone, methanol, etc.
  • UV OZONE cleaner Power Sonic 405, Hwashin Tech
  • a blue organic electroluminescent device of Comparative Example 1 was manufactured in the same manner as in Example 1, except that Alq3 was used instead of Compound 1 as the electron transport layer material.
  • a blue organic electroluminescent device of Comparative Example 2 was manufactured in the same manner as in Example 1, except that Compound 1 was not used as the electron transport layer material.
  • the blue organic electroluminescent device of Comparative Example 3 was manufactured in the same manner as in Example 1, except that the following structure Ref-1 was used instead of Compound 1 as the electron transport layer material.
  • a blue organic electroluminescent device of Comparative Example 4 was manufactured in the same manner as in Example 1, except that the following structure Ref-2 was used instead of Compound 1 as the electron transport layer material.
  • Example 1 One 3.6 456 6.8 Example 2 2 3.9 456 6.7 Example 3 3 3.6 457 6.9 Example 4 4 3.6 456 7.1 Example 5 5 3.2 457 7.1 Example 6 6 3.2 456 6.8 Example 7 7 3.9 456 6.9 Example 8 8 3.6 457 6.7 Example 9 9 3.6 456 7.0 Example 10 10 3.2 457 7.1 Example 11 11 3.2 456 6.8 Example 12 12 3.1 456 7.3 Example 13 13 3.9 457 6.9 Example 14 14 3.9 452 6.8 Example 15 15 3.3 448 6.7 Example 16 16 3.6 460 6.8 Example 17 17 4.1 456 6.9 Example 18 18 3.6 456 7.1 Example 19 19 3.2 457 7.1 Example 20 20 3.2 456 6.8 Example 21 21 3.9 456 6.9 Example 22 22 3.6 457 6.7 Example 23 23 3.8 457 7.1 Example 24 24 3.2 452 6.9 Example 25 25 3.1 456 7.3 Example 26 26 26 26 .
  • the blue organic electroluminescent devices of Examples 1 to 71 using the compound of the present invention as an electron transport layer material include the blue organic electroluminescent devices of Comparative Example 1 using conventional Alq3 for the electron transport layer; The blue organic electroluminescent device of Comparative Example 2 without an electron transport layer; Compared to the blue organic electroluminescent devices of 3 and 4, compared to the blue organic electroluminescent devices of 3 and 4, compared with similar compounds (e.g., Ref-1, Ref-2) containing unsubstituted carbazole in the electron transport layer, excellent It can be seen that it shows the performance.
  • similar compounds e.g., Ref-1, Ref-2
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol, etc.
  • UV OZONE cleaner Power sonic 405, Hwashin Tech
  • m-MTDATA 60 nm
  • TCTA 80 nm
  • a green organic electroluminescent device of Comparative Example 5 was manufactured in the same manner as in Example 72, except that CBP was used instead of Compound 1 as a light emitting host material when forming the emission layer.
  • the structure of the CBP used at this time is as follows.
  • a blue organic electroluminescent device of Comparative Example 6 was manufactured in the same manner as in Example 72, except that Ref-1 having the above structure was used instead of Compound 1 as the electron transport layer material.
  • the blue organic electroluminescent device of Comparative Example 7 was manufactured in the same manner as in Example 72, except that Ref-2 having the above structure was used instead of Compound 1 as the electron transport layer material.
  • Example 72 One 3.8 458 54.0 Example 73 2 3.8 458 59.5 Example 74 3 3.7 458 56.5 Example 75 4 3.8 458 58.3 Example 76 5 3.7 459 59.3 Example 77 6 4.1 458 57.0 Example 78 7 3.9 458 59.1 Example 79 8 3.9 458 57.0 Example 80 9 4.0 459 59.1 Example 81 10 3.6 458 58.0 Example 82 11 4.1 458 60.5 Example 83 12 3.8 459 57.7 Example 84 13 3.7 458 58.6 Example 85 14 4.1 458 55.9 Example 86 15 3.8 458 58.5 Example 87 16 4.1 458 57.0 Example 88 17 3.8 458 59.1 Example 89 18 3.9 458 58.0 Example 90 19 3.6 458 60.0 Example 91 20 3.8 459 58.8 Example 92 21 3.8 457 54.0 Example 93 22 3.7 458 94
  • the green organic electroluminescent devices of Examples 72 to 142 using the compound according to the present invention as a host material of the emission layer include Comparative Example 5 in which CBP was applied as a host material; It was found that the current efficiency and driving voltage were superior to those of the green organic electroluminescent devices of Comparative Examples 6 and 7 in which a substance in which a substituent group was not substituted (eg, Ref-1, Ref-2) at position 1 of the carbazole was applied. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 전자 수송능 및 발광능이 우수한 신규 화합물 및 이를 하나 이상의 유기물층에 포함함으로써 발광효율, 구동 전압, 수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.

Description

유기 화합물 및 이를 이용한 유기 전계 발광 소자
본 발명은 신규한 유기 화합물 및 이를 이용한 유기 전계 발광 소자에 관한 것으로, 보다 상세하게는 전자수송 능력이 우수한 화합물 및 이를 하나 이상의 유기물층에 포함함으로써 발광효율, 구동 전압, 수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.
1950년대 Bernanose의 유기 박막 발광 관측을 시점으로 1965년 안트라센 단결정을 이용한 청색 전기발광으로 이어진 유기 전계 발광 (electroluminescent, EL) 소자(이하, 간단히 '유기 EL 소자'로 칭함)에 대한 연구는 1987년 탕(Tang)에 의하여 정공층과 발광층의 기능층으로 나눈 적층구조의 유기 EL 소자가 제시되었다. 이후 고효율, 고수명의 유기 EL 소자를 만들기 위하여, 소자 내 각각의 특징적인 유기물 층을 도입하는 형태로 발전하여 왔으며, 이에 사용되는 특화된 물질의 개발로 이어졌다.
유기 전계 발광 소자는 두 전극 사이에 전압을 걸어 주면 양극에서는 정공이 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이때 유기물층으로 사용되는 물질은 그 기능에 따라, 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다.
유기 EL 소자의 발광층 형성재료는 발광색에 따라 청색, 녹색, 적색 발광 재료로 구분될 수 있다. 그밖에, 보다 나은 천연색을 구현하기 위한 발광재료로 노란색 및 주황색 발광재료도 사용된다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도펀트 계를 사용할 수 있다. 도판트 물질은 유기 물질을 사용하는 형광 도판트와 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체 화합물을 사용하는 인광 도판트로 나눌 수 있다. 이러한 인광 재료의 개발은 이론적으로 형광에 비해 4배까지의 발광 효율을 향상시킬 수 있어 인광 도판트 뿐만 아니라 인광 호스트 재료들에 대해 관심이 집중되고 있다.
현재까지 정공 주입층, 정공 수송층. 정공 차단층, 전자 수송층으로는, 하기 화학식으로 표현된 NPB, BCP, Alq3 등이 널리 알려져 있고, 발광 재료는 안트라센 유도체들이 형광 도판트/호스트 재료로서 보고되고 있다. 특히 발광재료 중 효율 향상 측면에서 큰 장점을 가지고 있는 인광 재료로서는 Firpic, Ir(ppy)3, (acac)Ir(btp)2 등과 같은 Ir을 포함하는 금속 착체 화합물이 청색, 녹색, 적색 도판트 재료로 사용되고 있다. 현재까지는 CBP가 인광 호스트 재료로 우수한 특성을 나타내고 있다.
Figure PCTKR2020004755-appb-I000001
그러나 기존의 재료들은 발광 특성 측면에서는 유리한 면이 있으나, 유리전이온도가 낮고 열적 안정성이 매우 좋지 않아 유기 EL 소자에서의 수명 측면에서 만족할만한 수준이 되지 못하고 있다.
본 발명은 전자 주입 및 수송능, 발광능 등이 우수하여 유기 전계 발광 소자의 유기물 층 재료, 구체적으로 발광층 재료(녹색), 전자수송층 재료 또는 전자수송 보조층 재료 등으로 사용될 수 있는 신규 화합물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 전술한 신규 화합물을 포함하여 저전압 구동이 가능하며, 발광 효율이 높고, 장수명 특성이 구현되는 유기 전계 발광 소자를 제공하는 것을 또 다른 목적으로 한다.
상기한 목적을 달성하기 위해, 본 발명은 하기 화학식 1로 표시되는 화합물, 구체적으로 전자수송층, 전자수송 보조층 또는 발광층 재료용 화합물을 제공한다.
Figure PCTKR2020004755-appb-C000001
상기 화학식 1에서,
A와 B 중 어느 하나는 하기 화학식 2로 표시되는 치환기이며, 다른 하나는 C6~C40의 아릴기이며,
[화학식 2]
Figure PCTKR2020004755-appb-I000002
상기 화학식 2에서,
*는 상기 화학식 1과 결합이 이루어지는 부분을 의미하며,
X1 내지 X3은 서로 동일하거나 또는 상이하며, 각각 독립적으로 C(R1) 또는 N이고, 다만 X1 내지 X3 중 적어도 하나는 N이며,
이때 C(R1)이 복수인 경우, 복수의 R1은 서로 동일하거나 또는 상이하며,
R1 및 R2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노아릴포스피닐기, C6~C60의 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접하는 기와 결합하여 축합고리를 형성할 수 있으며,
a와 b는 각각 독립적으로 0 내지 3의 정수이며,
Ar1 및 Ar2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노아릴포스피닐기, C6~C60의 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되며,
L은 단일결합이거나, 또는 C6~C18의 아릴렌기 및 핵원자수 5 내지 18의 헤테로아릴렌기로 구성된 군에서 선택되고,
상기 L의 아릴렌기와 헤테로아릴렌기와, 상기 R1~R2, 및 Ar1~Ar2에서 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴실릴기는, 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환될 수 있으며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다.
또한 본 발명은 전술한 화학식 1로 표시되는 화합물을 포함하는 전자수송층 또는 전자수송 보조층을 제공한다.
아울러, 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 전술한 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자를 제공한다.
여기서, 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층은 발광층, 발광보조층, 정공주입층, 정공수송층, 전자주입층, 전자수송층, 및 전자수송 보조층으로 구성된 군에서 선택될 수 있다.
본 발명에 따른 화학식 1로 표시되는 화합물은 전자 수송능 및 발광능 등이 우수하기 때문에, 유기 전계 발광 소자의 유기물층 재료로 사용될 수 있다
특히, 본 발명의 화학식 1로 표시되는 화합물을 녹색 발광층 재료(인광 호스트), 전자수송층 또는 전자수송 보조층 재료로 사용할 경우 종래의 호스트 재료 또는 전자 수송 재료에 비해 높은 열적 안정성, 낮은 구동전압, 빠른 모빌리티, 높은 전류효율 및 장수명 특성을 갖는 유기 전계 발광 소자를 제조할 수 있고, 나아가 성능 및 수명이 향상된 풀 칼라 디스플레이 패널 등에 효과적으로 적용될 수 있다.
이하, 본 발명을 상세히 설명한다.
<신규 유기화합물>
본 발명에 따라 화학식 1로 표시되는 화합물은, 카바졸의 활성 자리(active site)가 특정 치환기, 예컨대 페닐기와 함질소 헤테로아릴기(X1~X3 함유 환)로 블록(block)된 카바졸 모이어티를 포함하며, 상기 카바졸기와 상기 함질소 헤테로아릴기가 직접 결합되거나 또는 링커(L)를 통해 연결되는 것을 기본 골격구조로 갖는다.
이러한 구조의 화학식 1로 표시되는 화합물은, 전자주게기(EDG) 특성을 갖는 카바졸기와 전자흡수성이 큰 전자끌게기(EWG)인 아진기(azine)의 일종인 함질소 방향족환(예, pyridine, pyrazine, triazine)을 분자 내에 동시에 포함한다. 이와 같이 강한 전자끌개능력(EWG)을 가진 작용기인 아진기를 도입함으로써 전자이동속도를 향상시켜 전자주입 및 전자수송에 더욱 적합한 물리화학적 성질을 가질 수 있게 된다. 전술한 화학식 1의 화합물을 전자수송층 또는 전자수송 보조층의 재료로 적용시, 음극으로부터 전자를 잘 수용할 수 있어 발광층으로 전자를 원활히 전달할 수 있으며, 이에 따라 소자의 구동전압을 낮추고 고효율 및 장수명을 유도할 수 있다. 이러한 유기 전계 발광 소자는 결과적으로 풀 칼라 유기 발광 패널의 성능을 극대화시킬 수 있다.
또한 본 발명에서는 분자 내에 포함된 EWG기와 EDG기로 인해 바이폴라(bipolar) 특성을 가져 인광 발광층에서 호스트로서 유리할 뿐만 아니라, linkage 변환 및 sub moiety 변환을 통해 charge balance를 조절할 수 있다. 이러한 양극성(bipolar) 화합물은 정공과 전자의 재결합력이 높아 정공 주입/수송 능력, 발광 효율, 구동 전압, 수명 특성, 내구성 등을 향상시킬 수 있다. 또한 카바졸의 1번과 6번 탄소자리를 특정 치환기로 결합시켜 블록킹(blocking)함으로써, 종래 치환되지 않은 카바졸이나 또는 1번 위치가 비치환된 카바졸을 포함하는 유사 화합물에 비해, 소자의 구동전압 및 효율 특성 개선이 가능하다. 구체적으로, 카바졸기의 활성화 자리(Active site)는 3번 또는 6번 탄소위치이다. 이에 따라, 전술한 카바졸기의 3번과 6번 탄소 위치 중 적어도 하나를 치환기(예, 아릴기)로 치환할 경우, 화합물의 구조적 안정성이 개선된다. 또한 카바졸기의 N 위치와 인접한 1번 탄소 위치를 아릴기 등의 치환기로 치환할 경우 입체장애 효과(steric hindrance effect)로 인해 소자의 증착 온도(Ts)가 감소된다. 이와 같이 분자량이 큰 재료의 Ts를 감소시켜줌으로써 다양한 구조의 재료 개발이 가능하고, 1번 위치에 치환될 경우 소자의 수명 특성이 개선된다. 그리고, 상기 기본 골격구조에 도입되는 치환기의 종류에 따라 전자 수송 능력 등을 향상시키고, HOMO 및 LUMO 에너지 레벨을 조절할 수 있어, 넓은 밴드갭을 가질 수 있고 높은 캐리어 수송성을 가질 수 있다. 이에 따라, 상기 화학식 1의 화합물은 유기 전계 발광 소자의 유기물층 재료, 바람직하게는 전자수송층, 전자수송 보조층 재료 및 녹색 발광층 재료(예, 인광 호스트 재료)로 사용될 수 있다.
아울러, 상기 화학식 1로 표시되는 화합물은 전자 수송에 매우 유리할 뿐만 아니라 낮은 구동전압, 높은 효율 및 장수명 특성을 보여준다. 이러한 화합물의 우수한 전자수송 능력은 유기 전계 발광 소자에서 높은 효율과 빠른 이동성(mobility)을 가질 수 있고, 치환기의 방향이나 위치에 따라 HOMO 및 LUMO 에너지 레벨의 조절이 용이하다. 그러므로, 이러한 화합물을 사용한 유기 전계 발광 소자에서 높은 전자 수송성을 나타낼 수 있다.
나아가 인광 발광층에서 호스트 물질은 호스트의 삼중항 에너지 갭이 도펀트보다 높아야 하는데, 도펀트로부터 효과적인 인광 발광을 제공하기 위해서는 호스트의 가장 낮은 여기 상태가 도펀트의 가장 낮은 방출 상태보다 에너지가 더 높아야 하기 때문이다. 종래 카바졸(carbazole) 모이어티는 삼중항 에너지가 3.0 eV로 크고, HOMO 에너지 레벨이 6.0 eV로 낮아 주로 청색 인광 호스트에 사용된다. 이에 비해, 본 발명에 따른 화합물은 카바졸기의 특정 위치, 예컨대, 1번과 6번의 탄소 자리 중 하나, 바람직하게는 N 위치와 1번 위치의 탄소 자리에 페닐기가 각각 결합됨으로써, 단순 카바졸 모이어티를 기본골격으로 하는 화합물의 삼중항 에너지보다 낮고, 녹색 인광 발광에 적합한 삼중항 에너지를 가질 수 있다.
전술한 사항으로 인해, 본 발명의 화학식 1로 표시되는 화합물을 유기 전계 발광 소자의 유기물층 재료, 바람직하게는 발광층 재료(청색, 녹색 및/또는 적색의 인광 호스트 재료), 전자 수송층/주입층 재료, 발광 보조층 재료로 적용할 경우, 유기 전계 발광 소자의 성능 및 수명 특성이 크게 향상될 수 있다. 이러한 유기 전계 발광 소자는 결과적으로 풀 칼라 유기 발광 패널의 성능을 극대화시킬 수 있다.
한편 유기 전계 발광 소자의 적색 및 녹색 발광층은 각각 인광 재료를 이용하고 있으며, 현재 이들의 기술 성숙도는 높은 상태이다. 이에 비해, 청색 발광층은 형광 재료와 인광 재료가 있는데, 이중 형광 재료는 성능 향상이 필요한 상태이며, 청색 인광재료는 아직 개발 중이어서 진입 장벽이 높은 상태이다. 즉, 청색 발광층은 개발 가능성이 큰 반면 기술난이도가 상대적으로 높기 때문에, 이를 구비하는 청색 유기발광소자의 성능(예, 구동전압, 효율, 수명 등)을 향상시키는데 한계가 있다. 이에, 본 발명에서는 상기 화학식 1의 화합물을 발광층(EML) 이외에, 전자수송층(ETL) 또는 전자수송 보조층 재료로 적용할 수 있다. 이와 같이, 유기 전계 발광 소자에서 공통층(common layer)으로 사용되는 전자수송층 또는 전자수송 보조층의 재료 변화를 통해 발광층, 구체적으로 청색 발광층의 성능과 이를 구비하는 유기 전계 발광 소자의 성능을 향상시킬 수 있다는 이점이 있다.
구체적으로, 본 발명에 따라 화학식 1로 표시되는 화합물은, 활성화 자리(active site)가 특정 치환기로 결합된 카바졸 모이어티와, 아진기의 일종인 함질소 헤테로아릴기(X1~X3 함유 환)을 포함하며, 이들이 직접 결합되거나 또는 링커(L)를 통해 연결되는 기본 골격구조로 갖는다.
특히, 본 발명의 카바졸 모이어티는 1번과 6번 탄소 위치 중 하나와, N 위치에 각각 페닐기가 결합되어 블록킹(blocking)되어 있으므로, 단순 카바졸 모이어티를 기본골격으로 하는 화합물의 삼중항 에너지보다 낮고, 녹색 인광 발광에 적합한 삼중항 에너지를 가질 수 있다.
본 발명에 따른 일 구체예를 들면, 상기 화학식 1의 화합물은 카바졸기 내의 특정 치환기로 블록된 활성화 자리와 해당 치환기의 종류에 따라 하기 화학식 3 또는 4로 표시될 수 있다.
[화학식 3]
Figure PCTKR2020004755-appb-I000003
[화학식 4]
Figure PCTKR2020004755-appb-I000004
상기 화학식 3 또는 4에서,
X1 내지 X3, Ar1, Ar2, L, R2, a 및 b는 각각 화학식 1에서 정의된 바와 같다. 구체적으로, 카바졸기의 활성화 자리인 1번 위치가 페닐기로 블록되는 화학식 3의 구조가 바람직할 수 있다.
상기 카바졸 모이어티에는 다양한 치환체로서 R2가 도입될 수 있다. 이러한 R2는 특별히 제한되지 않으며, 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노아릴포스피닐기, C6~C60의 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접하는 기(예, R2 끼리)와 결합하여 축합고리를 형성할 수 있다. 구체적으로, R2는 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C6~C60의 아릴기, 및 핵원자수 5 내지 60의 헤테로아릴기에서 선택되는 것이 바람직하다.
이때 카바졸기에 도입되는 R2의 개수(예, b)는 0 내지 3의 정수일 수 있다. 일례로, b가 0일 경우, R2는 수소일 수 있다. 또한 b가 0 초과, 3 이하일 경우, 복수의 R2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 전술한 R2의 정의부에서 수소를 제외한 나머지 치환기일 수 있다.
본 발명에 따른 화학식 1에서, 페닐기가 결합된 카바졸 모이어티는 직접적으로 또는 링커(L)를 통해 함질소 헤테로아릴기(X1~X3 함유 환)와 연결된다.
함질소 헤테로아릴기(아진 유도체)는 적어도 하나의 질소 원자를 포함하는 단환식 또는 다환식 헤테로아릴기일 수 있다. 이러한 함질소 아진 유도체 (예, X1~X3 함유 헤테로환)의 일 실시예를 들면, X1 내지 X3는 서로 동일하거나 또는 상이하며, 각각 독립적으로 N 또는 CR1이고, 다만 X1 내지 X3 중 적어도 하나는 N이다. 구체적인 일례를 들면, 복수의 X1 내지 X3는 1 내지 3개의 N을 포함하며, 바람직하게는 2~3개, 보다 바람직하게는 3개의 N을 포함한다. 이와 같이 3개의 질소를 함유하는 헤테로환을 포함함으로써 보다 우수한 전자흡수 특성을 나타내어 전자 주입 및 수송에 유리하다.
여기서, R1은 복수 개일 수 있으며, 복수의 R1은 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C40의 포스핀기, C1~C40의 포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기(예, 다른 R1)와 결합하여 축합고리를 형성할 수 있다. 구체적으로, R1은 수소, 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C6~C60의 아릴기, 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되는 것이 바람직하다.
본 발명에 따른 일 구체예를 들면, 함질소 헤테로환(X1~X3 함유 환)은 하기 화학식 A-1 내지 A-5로 표시되는 치환체 군에서 선택되는 어느 하나일 수 있다.
Figure PCTKR2020004755-appb-I000005
상기 A-1 내지 A-5에서,
R1, Ar1 및 Ar2는 각각 화학식 1에서 정의된 바와 같다.
상기 함질소 헤테로환에 위치한 Ar1 및 Ar2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기에서 선택될 수 있다. 구체적으로, Ar1 및 Ar2는 각각 독립적으로 수소, C6~C60의 아릴기, 및 핵원자수 5 내지 60개의 헤테로아릴기에서 선택되는 것이 바람직하다.
본 발명에 따른 화학식 1에서, 함질소 아진 유도체(X1~X3 함유 환)와 카바졸기의 사이에는 링커인 L이 도입될 수 있다. 이러한 링커는 당 분야에 공지된 2가 그룹(divalent)의 연결기(linker)를 제한 없이 사용할 수 있다. 구체적으로, L은 단일결합이거나 또는 C6~C18의 아릴렌기 및 핵원자수 5 내지 18의 헤테로아릴렌기에서 선택될 수 있다.
본 발명에 따른 바람직한 일례를 들면, L은 하기 화학식 5 및 화학식 6 중 어느 하나로 표시되는 치환기일 수 있다.
[화학식 5]
Figure PCTKR2020004755-appb-I000006
[화학식 6]
Figure PCTKR2020004755-appb-I000007
상기 화학식 5 또는 6에서,
*는 상기 화학식 1과 결합이 이루어지는 부분을 의미하며,
Y는 O, S 및 Se로 이루어진 군에서 선택되며,
n은 0 내지 3의 정수이다.
또한 L의 개수(예, a)는 0 내지 3의 정수일 수 있다. 일례로, a가 0일 경우, L은 단일결합(직접결합)일 수 있다. 또한 a가 0 초과, 및 3 이하일 경우, 복수의 L은 서로 동일하거나 또는 상이하며, 각각 독립적으로 전술한 L의 정의부에서 단일결합을 제외한 나머지 치환기, 예컨대 아릴기 또는 헤테로아릴기일 수 있다.
본 발명에 따른 일 구체예를 들면, L은 각각 독립적으로 단일결합이거나, 또는 하기 구조식으로 표시되는 치환체 군에서 선택되는 어느 하나일 수 있다.
Figure PCTKR2020004755-appb-I000008
상기 구조식에서,
*는 상기 화학식 1과 결합이 이루어지는 부분을 의미한다. 또한 구체적으로 표시되지 않았으나, 전술한 구조식은 당 분야에 공지된 치환기(예컨대, R1의 정의부와 동일)가 적어도 하나 이상 치환될 수 있다.
상기 화학식 1에서, A와 B 중 어느 하나에 위치하는 아릴기, L의 아릴렌기, 헤테로아릴렌기와, R1 ~ R2 Ar1~Ar2의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환될 수 있으며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다.
본 발명에 따라 화학식 1로 표시되는 화합물은, 링커(L)의 종류와 위치에 따라 하기 화학식 7 내지 화학식 12 중 어느 하나로 보다 구체화될 수 있다.
[화학식 7]
Figure PCTKR2020004755-appb-I000009
[화학식 8]
Figure PCTKR2020004755-appb-I000010
[화학식 9]
Figure PCTKR2020004755-appb-I000011
[화학식 10]
Figure PCTKR2020004755-appb-I000012
[화학식 11]
Figure PCTKR2020004755-appb-I000013
[화학식 12]
Figure PCTKR2020004755-appb-I000014
상기 화학식 7 내지 12에서,
X1 내지 X3, Y, Ar1, Ar2, R2, 및 b는 각각 제1항에서 정의된 바와 같으며,
n은 0 내지 3의 정수이다.
전술한 화학식 7 내지 화학식 12를 보다 구체화하면, 하기 화학식 7a 내지 화학식 12a 중 어느 하나로 표시되는 화합물로 나타낼 수 있다.
[화학식 7a]
Figure PCTKR2020004755-appb-I000015
[화학식 8a]
Figure PCTKR2020004755-appb-I000016
[화학식 9a]
Figure PCTKR2020004755-appb-I000017
[화학식 10a]
Figure PCTKR2020004755-appb-I000018
[화학식 11a]
Figure PCTKR2020004755-appb-I000019
[화학식 12a]
Figure PCTKR2020004755-appb-I000020
상기 화학식 7a 내지 12a에서,
Y, Ar1, Ar2, R2 및 n은 각각 화학식 1에서 정의된 바와 같다.
본 발명에 따라 화학식 7 내지 화학식 12 중 어느 하나로 표시되는 화합물의 바람직한 일례를 들면, X1 내지 X3는 서로 동일하거나 또는 상이하며, 각각 독립적으로 N 또는 C(R1)이되, 다만 X1 내지 X3가 모두 N이며,
Ar1 및 Ar2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 C6~C60의 아릴기, 및 핵원자수 5 내지 60개의 헤테로아릴기에서 선택되며,
R1 및 R2는 서로 상이하며, 각각 독립적으로 수소, C1~C40의 알킬기, C6~C60의 아릴기 또는 핵원자수 5 내지 60개의 헤테로아릴기이며,
복수의 Y는 서로 동일하거나 또는 상이하며, 각각 독립적으로 O 또는 S이며, n과 b는 각각 0 내지 3의 정수이다.
이상에서 설명한 본 발명의 화학식 1로 표시되는 화합물은 하기 예시되는 화합물, 예컨대 1 내지 71로 표시되는 화합물로 보다 구체화될 수 있다. 그러나 본 발명의 화학식 1로 표시되는 화합물이 하기 예시된 것들에 의해 한정되는 것은 아니다.
Figure PCTKR2020004755-appb-I000021
Figure PCTKR2020004755-appb-I000022
Figure PCTKR2020004755-appb-I000023
Figure PCTKR2020004755-appb-I000024
본 발명에서 "알킬"은 탄소수 1 내지 40의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴"은 단독 고리 또는 2이상의 고리가 조합된탄소수 6 내지 40의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "헤테로아릴"은 핵원자수 5 내지 40의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의 축합된 형태도 포함될 수 있다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리, 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴옥시"는 RO-로 표시되는 1가의 치환기로, 상기 R은 탄소수 5 내지 40의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알킬옥시"는 R'O-로 표시되는 1가의 치환기로, 상기 R'는 탄소수 1 내지 40의 알킬을 의미하며, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있다. 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴아민"은 탄소수 6 내지 40의 아릴로 치환된 아민을 의미한다.
본 발명에서 "시클로알킬"은 탄소수 3 내지 40의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "헤테로시클로알킬"은 핵원자수 3 내지 40의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알킬실릴"은 탄소수 1 내지 40의 알킬로 치환된 실릴이고, "아릴실릴"은 탄소수 5 내지 40의 아릴로 치환된 실릴을 의미한다.
본 발명에서 "축합고리"는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
<전자수송층 재료>
본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 전자수송층을 제공한다.
상기 전자수송층(ETL)은 음극에서 주입되는 전자를 인접하는 층, 구체적으로 발광층으로 이동시키는 역할을 한다.
상기 화학식 1로 표시되는 화합물은, 전자수송층(ETL) 재료로서 단독으로 사용될 수 있으며, 또는 당 분야에 공지된 전자수송층 재료와 혼용될 수 있다. 바람직하게는 단독으로 사용되는 것이다.
상기 화학식 1의 화합물과 혼용될 수 있는 전자수송층 재료는, 당 분야에서 통상적으로 공지된 전자수송 물질을 포함한다. 사용 가능한 전자 수송 물질의 비제한적인 예로는 옥사졸계 화합물, 이소옥사졸계 화합물, 트리아졸계 화합물, 이소티아졸(isothiazole)계 화합물, 옥사디아졸계 화합물, 티아다아졸(thiadiazole)계 화합물, 페릴렌(perylene)계 화합물, 알루미늄 착물(예: Alq3 (트리스(8-퀴놀리놀라토)-알루미늄(tris(8-quinolinolato)-aluminium) BAlq, SAlq, Almq3, 갈륨 착물(예: Gaq'2OPiv, Gaq'2OAc, 2(Gaq'2)) 등이 있다. 이들을 단독으로 사용하거나 또는 2종 이상 혼용할 수 있다.
본 발명에서, 상기 화학식 1의 화합물과 전자수송층 재료를 혼용할 경우, 이들의 혼합 비율은 특별히 제한되지 않으며, 당 분야에 공지된 범위 내에서 적절히 조절될 수 있다.
<전자수송 보조층 재료>
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 전자수송 보조층을 제공한다.
상기 전자수송 보조층은 발광층과 전자수송층 사이에 배치되어, 상기 발광층에서 생성된 엑시톤 또는 정공이 전자수송층으로 확산되는 것을 방지하는 역할을 한다.
상기 화학식 1로 표시되는 화합물은, 전자수송 보조층 재료로서 단독으로 사용될 수 있으며, 또는 당 분야에 공지된 전자수송층 재료와 혼용될 수 있다. 바람직하게는 단독으로 사용되는 것이다.
상기 화학식 1의 화합물과 혼용될 수 있는 전자수송 보조층 재료는, 당 분야에서 통상적으로 공지된 전자수송 물질을 포함한다. 일례로, 상기 전자수송 보조층은 옥사디아졸 유도체, 트리아졸 유도체, 페난트롤린 유도체(예, BCP), 질소를 포함하는 헤테로환 유도체 등을 포함할 수 있다.
본 발명에서, 상기 화학식 1의 화합물과 전자수송 보조층 재료를 혼용할 경우, 이들의 혼합 비율은 특별히 제한되지 않으며, 당 분야에 공지된 범위 내에서 적절히 조절될 수 있다.
<유기 전계 발광 소자>
한편, 본 발명의 다른 측면은 상기한 본 발명에 따른 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자(유기 EL 소자)에 관한 것이다.
구체적으로, 본 발명은 양극(anode), 음극(cathode), 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화합물은 단독 또는 2종 이상 혼합되어 사용될 수 있다.
상기 1층 이상의 유기물층은 정공 주입층, 정공 수송층, 발광층, 발광 보조층, 전자 수송층, 전자수송 보조층 및 전자 주입층 중 어느 하나 이상일 수 있고, 이 중에서 적어도 하나의 유기물층은 상기 화학식 1로 표시되는 화합물을 포함한다. 구체적으로 상기 화학식 1의 화합물을 포함하는 유기물층은 녹색 발광층 재료(구체적으로, 인광 호스트 재료), 전자수송층, 또는 전자수송 보조층의 전자 수송 재료인 것이 바람직하다.
본 발명에 따른 유기 전계 발광 소자의 발광층은 호스트 재료와 도펀트 재료를 포함하는데, 이때 호스트 재료로서 상기 화학식 1의 화합물을 포함할 수 있다. 또한 본 발명의 발광층은 상기 화학식 1의 화합물 이외의 당 분야의 공지된 화합물을 호스트로서 포함할 수 있다.
상기 화학식 1로 표시되는 화합물을 유기 전계 발광 소자의 발광층 재료, 바람직하게는 청색, 녹색, 적색의 인광 호스트 재료로 포함할 경우, 발광층에서 정공과 전자의 결합력이 높아지기 때문에, 유기 전계 발광 소자의 효율(발광효율 및 전력효율), 수명, 휘도 및 구동전압 등을 향상시킬 수 있다. 구체적으로 상기 화학식 1로 표시되는 화합물은 녹색 및/또는 적색의 인광 호스트, 형광 호스트, 또는 도펀트 재료로서 유기 전계 발광 소자에 포함되는 것이 바람직하다. 특히, 본 발명의 화학식 1로 표시되는 화합물은 고효율을 가진 발광층의 그린 인광 exciplex N-type 호스트 재료인 것이 바람직하다.
이러한 본 발명의 유기 전계 발광 소자의 구조는 특별히 한정되지 않으나, 기판, 양극, 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송층 및 음극이 순차적으로 적층된 구조일 수 있다. 이때, 상기 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송층 및 전자주입층 중 하나 이상은 상기 화학식 1로 표시되는 화합물을 포함할 수 있고, 바람직하게는 발광층, 보다 바람직하게는 인광 호스트가 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 한편 상기 전자수송층 위에는 전자주입층이 추가로 적층될 수 있다.
본 발명의 유기 전계 발광 소자의 구조는 전극과 유기물층 계면에 절연층 또는 접착층이 삽입된 구조일 수 있다.
본 발명의 유기 전계 발광 소자는, 전술한 유기물층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는, 당 업계에 공지된 재료 및 방법으로 유기물층 및 전극을 형성하여 제조할 수 있다.
상기 유기물층은 진공 증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이에 한정되지는 않는다.
본 발명의 유기 전계 발광 소자 제조시 사용되는 기판은 특별히 한정되지 않으며, 일례로 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등을 사용할 수 있다.
또, 양극 물질은 당 분야에 공지된 양극 물질을 제한 없이 사용할 수 있다. 일례를 들면, 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 또는 폴리아닐린과 같은 전도성 고분자; 및 카본블랙 등을 들 수 있으나, 이에 한정되지는 않는다.
또, 음극 물질은 당 분야에 공지된 음극 물질을 제한 없이 사용할 수 있다. 일례를 들면, 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등을 들 수 있으나, 이에 한정되지는 않는다.
또한, 정공 주입층, 정공 수송층, 전자 주입층 및 전자 수송층은 특별히 한정되는 것은 아니며, 당 업계에 공지된 통상의 물질을 제한 없이 사용할 수 있다.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[준비예 1] 1,9-diphenyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole 의 합성
<단계 1> 5-chloro-2-nitro-1,1':3',1''-terphenyl의 합성
Figure PCTKR2020004755-appb-I000025
2-bromo-4-chloro-1-nitrobenzene (100.0g, 422.9 mmol), [1,1'-biphenyl]-3-ylboronic acid (92.1 g, 465.2 mmol) 및 Pd(PPh3)4 (24.4 g, 21.1 mmol), K2CO3 (175.3 g, 1268.7 mmol)을 Toluene 500ml, EtOH 100ml, H2O 100ml에 넣고 12시간동안 가열환류하였다. 반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 필터하였다. 필터된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물인 5-chloro-2-nitro-1,1':3',1''-terphenyl (110.0 g, 수율 84%)을 얻었다.
1H-NMR: δ 7.40-7.41 (m, 1H), 7.49 (t, 2H), 7.61 (d, 2H), 7.73-7.75 (m, 4H) 8.23 (s, 1H), 7.94 (s, 1H), 8.30 (d, 1H)
[LCMS] : 310
<단계 2> 6-chloro-1-phenyl-9H-carbazole 의 합성
Figure PCTKR2020004755-appb-I000026
단계 1의 목적 화합물 (110.0 g, 355.1 mmol)과 triphenylphosphine (279.4 g, 1065.4 mmol), 1,2-dichlorobenzene 500 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 디클로로메탄으로 추출하였다. 추출된 유기층은 MgSO4로 물을 제거하고, 컬럼크로마토그래피를 이용하여 목적 화합물인 6-chloro-1-phenyl-9H-carbazole (64.1 g, 수율 65%)을 얻었다.
1H-NMR: δ 7.09 (d, 1H), 7.18-7.19 (m, 4H), 7.40-7.41 (m, 1H), 7.48 (t, 1H), 7.52(d, 1H), 7.56 (s, 1H), 8.06 (d, 1H), 8.29 (d, 1H), 11.7 (s, 1H)
[LCMS] : 278
<단계 3> 6-chloro-1,9-diphenyl-9H-carbazole 의 합성
Figure PCTKR2020004755-appb-I000027
단계 2의 목적 화합물 (64.0 g, 230.4 mmol), bromobenzene (39.8 g, 253.4 mmol) 및 Pd2(dba)3 (10.9 g, 11.5 mmol), P(t-bu)3 (4.6 g, 23.0 mmol), NaO(t-bu) (44.3 g, 460.8 mmol)을 Toluene 500ml 에 넣고 12시간동안 가열환류하였다. 반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 필터하였다. 필터된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물인 6-chloro-1,9-diphenyl-9H-carbazole (58.7 g, 수율 72%)을 얻었다.
1H-NMR: δ 7.09 (d, 1H), 7.18-7.19 (m, 4H), 7.40-7.41 (m, 1H), 7.48-7.50 (m, 3H) 7.58-7.59 (m, 1H), 7.61-7.62 (m, 2H), 7.88 (d, 1H), 8.06 (d, 1H), 8.07 (s, 1H), 8.29 (d, 1H)
[LCMS] : 354
<단계 4> 1,9-diphenyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole의 합성
Figure PCTKR2020004755-appb-I000028
단계 3의 목적 화합물 (58.7 g, 165.9 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (50.5 g, 199.1 mmol) 및 Pd(dppf)Cl2 (4.1 g, 5.0 mmol), Xphos (7.9 g, 16.6 mmol), KOAc (32.5 g, 331.8 mmol)을 1,4-Dioxane 500ml에 넣고 12시간동안 가열환류하였다. 반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 필터하였다. 필터된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 (52.4 g, 수율 71 %)을 얻었다.
1H-NMR: δ 1.20 (s, 12H), 7.18-7.19 (m, 4H), 7.40-7.41 (m, 1H), 7.48-7.50 (m, 4H) 7.58-7.59 (m, 1H), 7.61-7.62 (m, 2H), 7.94 (d, 1H), 7.96 (s, 1H), 8.06 (d, 1H), 8.29 (d, 1H)
[LCMS] : 446
[합성예 1] 화합물 1의 합성
Figure PCTKR2020004755-appb-I000029
준비예 1의 목적 화합물 (3 g, 6.7 mmol)와 2-chloro-4,6-diphenyl-1,3,5-triazine (1.8 g, 6.7 mmol) 및 Pd(PPh3)4 (0.4 g, 0.3 mmol), K2CO3 (2.8 g, 20.2 mmol)을 Toluene 50ml, EtOH 10ml, H2O 10ml에 넣고 12시간동안 가열환류하였다. 반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 필터하였다. 필터된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 (3.0 g, 수율 81 %)을 얻었다.
[LCMS] : 551
[합성예 2] 화합물 2의 합성
Figure PCTKR2020004755-appb-I000030
반응물로 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.4 g (수율 80%)을 얻었다.
[LCMS] : 627
[합성예 3] 화합물 3의 합성
Figure PCTKR2020004755-appb-I000031
반응물로 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.4 g (수율 80%)을 얻었다.
[LCMS] : 627
[합성예 4] 화합물 4의 합성
Figure PCTKR2020004755-appb-I000032
반응물로 2-(4'-bromo-[1,1'-biphenyl]-4-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.9 g (수율 83%)을 얻었다.
[LCMS] : 703
[합성예 5] 화합물 5의 합성
Figure PCTKR2020004755-appb-I000033
반응물로 2-(3'-bromo-[1,1'-biphenyl]-4-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.9 g (수율 83%)을 얻었다.
[LCMS] : 703
[합성예 6] 화합물 6의 합성
Figure PCTKR2020004755-appb-I000034
반응물로 2-(3'-bromo-[1,1'-biphenyl]-3-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.7 g (수율 79%)을 얻었다.
[LCMS] : 703
[합성예 7] 화합물 7의 합성
Figure PCTKR2020004755-appb-I000035
반응물로 2-(4'-bromo-[1,1'-biphenyl]-3-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.7 g (수율 79%)을 얻었다.
[LCMS] : 703
[합성예 8] 화합물 8의 합성
Figure PCTKR2020004755-appb-I000036
반응물로 2-(3''-bromo-[1,1':3',1''-terphenyl]-3-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.9 g (수율 75%)을 얻었다.
[LCMS] : 779
[합성예 9] 화합물 9의 합성
Figure PCTKR2020004755-appb-I000037
반응물로 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.3 g (수율 79%)을 얻었다.
[LCMS] : 627
[합성예 10] 화합물 10의 합성
Figure PCTKR2020004755-appb-I000038
반응물로 2-([1,1'-biphenyl]-4-yl)-4-(4-bromophenyl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.7 g (수율 78%)을 얻었다.
[LCMS] : 703
[합성예 11] 화합물 11의 합성
Figure PCTKR2020004755-appb-I000039
반응물로 2-([1,1'-biphenyl]-4-yl)-4-(3-bromophenyl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.7 g (수율 78%)을 얻었다.
[LCMS] : 703
[합성예 12] 화합물 12의 합성
Figure PCTKR2020004755-appb-I000040
반응물로 2-([1,1'-biphenyl]-4-yl)-4-(4'-bromo-[1,1'-biphenyl]-4-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.9 g (수율 75%)을 얻었다.
[LCMS] : 779
[합성예 13] 화합물 13의 합성
Figure PCTKR2020004755-appb-I000041
반응물로 2-([1,1'-biphenyl]-4-yl)-4-(3'-bromo-[1,1'-biphenyl]-4-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.9 g (수율 75%)을 얻었다.
[LCMS] : 779
[합성예 14] 화합물 14의 합성
Figure PCTKR2020004755-appb-I000042
반응물로 2-([1,1'-biphenyl]-4-yl)-4-(3'-bromo-[1,1'-biphenyl]-3-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.2 g (수율 80%)을 얻었다.
[LCMS] : 779
[합성예 15] 화합물 15의 합성
Figure PCTKR2020004755-appb-I000043
반응물로 2-([1,1'-biphenyl]-4-yl)-4-(4'-bromo-[1,1'-biphenyl]-3-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.2 g (수율 80%)을 얻었다.
[LCMS] : 779
[합성예 16] 화합물 16의 합성
Figure PCTKR2020004755-appb-I000044
반응물로 4-([1,1'-biphenyl]-4-yl)-6-chloro-2-phenylpyrimidine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.2 g (수율 76%)을 얻었다.
[LCMS] : 626
[합성예 17] 화합물 17의 합성
Figure PCTKR2020004755-appb-I000045
반응물로 4-([1,1'-biphenyl]-4-yl)-6-(4-bromophenyl)-2-phenylpyrimidine을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.5 g (수율 75%)을 얻었다.
[LCMS] : 702
[합성예 18] 화합물 18의 합성
Figure PCTKR2020004755-appb-I000046
반응물로 4-([1,1'-biphenyl]-4-yl)-6-(3-bromophenyl)-2-phenylpyrimidine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 76%)을 얻었다.
[LCMS] : 702
[합성예 19] 화합물 19의 합성
Figure PCTKR2020004755-appb-I000047
반응물로 4-([1,1'-biphenyl]-4-yl)-6-(4'-bromo-[1,1'-biphenyl]-4-yl)-2-phenylpyrimidine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.1 g (수율 79%)을 얻었다.
[LCMS] : 778
[합성예 20] 화합물 20의 합성
Figure PCTKR2020004755-appb-I000048
반응물로 4-([1,1'-biphenyl]-4-yl)-6-(3'-bromo-[1,1'-biphenyl]-4-yl)-2-phenylpyrimidine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.1 g (수율 79%)을 얻었다.
[LCMS] : 778
[합성예 21] 화합물 21의 합성
Figure PCTKR2020004755-appb-I000049
반응물로 4-([1,1'-biphenyl]-4-yl)-6-(3'-bromo-[1,1'-biphenyl]-3-yl)-2-phenylpyrimidine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.0 g (수율 76%)을 얻었다.
[LCMS] : 778
[합성예 22] 화합물 22의 합성
Figure PCTKR2020004755-appb-I000050
반응물로 4-([1,1'-biphenyl]-4-yl)-6-(4'-bromo-[1,1'-biphenyl]-3-yl)-2-phenylpyrimidine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.0 g (수율 76%)을 얻었다.
[LCMS] : 778
[합성예 23] 화합물 23의 합성
Figure PCTKR2020004755-appb-I000051
반응물로 2-(6-bromodibenzo[b,d]furan-4-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 75%)을 얻었다.
[LCMS] : 717
[합성예 24] 화합물 24의 합성
Figure PCTKR2020004755-appb-I000052
반응물로 2-(7-bromodibenzo[b,d]furan-4-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.0 g (수율 76%)을 얻었다.
[LCMS] : 717
[합성예 25] 화합물 25의 합성
Figure PCTKR2020004755-appb-I000053
반응물로 2-(8-bromodibenzo[b,d]furan-4-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.5 g (수율 73%)을 얻었다.
[LCMS] : 717
[합성예 26] 화합물 26의 합성
Figure PCTKR2020004755-appb-I000054
반응물로 2-(9-bromodibenzo[b,d]furan-4-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.4 g (수율 71%)을 얻었다.
[LCMS] : 717
[합성예 27] 화합물 27의 합성
Figure PCTKR2020004755-appb-I000055
반응물로 2-(6-bromodibenzo[b,d]furan-3-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 75%)을 얻었다.
[LCMS] : 717
[합성예 28] 화합물 28의 합성
Figure PCTKR2020004755-appb-I000056
반응물로 2-(7-bromodibenzo[b,d]furan-3-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.0 g (수율 76%)을 얻었다.
[LCMS] : 717
[합성예 29] 화합물 29의 합성
Figure PCTKR2020004755-appb-I000057
반응물로 2-(8-bromodibenzo[b,d]furan-3-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.5 g (수율 73%)을 얻었다.
[LCMS] : 717
[합성예 30] 화합물 30의 합성
Figure PCTKR2020004755-appb-I000058
반응물로 2-(9-bromodibenzo[b,d]furan-3-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.4 g (수율 71%)을 얻었다.
[LCMS] : 717
[합성예 31] 화합물 31의 합성
Figure PCTKR2020004755-appb-I000059
반응물로 2-(6-bromodibenzo[b,d]furan-2-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.5 g (수율 73%)을 얻었다.
[LCMS] : 717
[합성예 32] 화합물 32의 합성
Figure PCTKR2020004755-appb-I000060
반응물로 2-(7-bromodibenzo[b,d]furan-2-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.4 g (수율 71%)을 얻었다.
[LCMS] : 717
[합성예 33] 화합물 33의 합성
Figure PCTKR2020004755-appb-I000061
반응물로 2-(8-bromodibenzo[b,d]furan-2-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.0 g (수율 76%)을 얻었다.
[LCMS] : 717
[합성예 34] 화합물 34의 합성
Figure PCTKR2020004755-appb-I000062
반응물로 2-(9-bromodibenzo[b,d]furan-2-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.5 g (수율 73%)을 얻었다.
[LCMS] : 717
[합성예 35] 화합물 35의 합성
Figure PCTKR2020004755-appb-I000063
반응물로 2-(6-bromodibenzo[b,d]furan-1-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.4 g (수율 71%)을 얻었다.
[LCMS] : 717
[합성예 36] 화합물 36의 합성
Figure PCTKR2020004755-appb-I000064
반응물로 2-(7-bromodibenzo[b,d]furan-1-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 75%)을 얻었다.
[LCMS] : 717
[합성예 37] 화합물 37의 합성
Figure PCTKR2020004755-appb-I000065
반응물로 2-(8-bromodibenzo[b,d]furan-1-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.0 g (수율 76%)을 얻었다.
[LCMS] : 717
[합성예 38] 화합물 38의 합성
Figure PCTKR2020004755-appb-I000066
반응물로 2-(9-bromodibenzo[b,d]furan-1-yl)-4,6-diphenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.5 g (수율 73%)을 얻었다.
[LCMS] : 717
[합성예 39] 화합물 39의 합성
Figure PCTKR2020004755-appb-I000067
반응물로 2-([1,1'-biphenyl]-4-yl)-4-(6-bromodibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 68%)을 얻었다.
[LCMS] : 793
[합성예 40] 화합물 40의 합성
Figure PCTKR2020004755-appb-I000068
반응물로 2-([1,1'-biphenyl]-4-yl)-4-(8-bromodibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 68%)을 얻었다.
[LCMS] : 793
[합성예 41] 화합물 41의 합성
Figure PCTKR2020004755-appb-I000069
반응물로 4-([1,1'-biphenyl]-4-yl)-6-(6-bromodibenzo[b,d]furan-4-yl)-2-phenylpyrimidine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 68%)을 얻었다.
[LCMS] : 792
[합성예 42] 화합물 42의 합성
Figure PCTKR2020004755-appb-I000070
반응물로 4-([1,1'-biphenyl]-4-yl)-6-(8-bromodibenzo[b,d]furan-4-yl)-2-phenylpyrimidine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 68%)을 얻었다.
[LCMS] : 792
[합성예 43] 화합물 43의 합성
Figure PCTKR2020004755-appb-I000071
반응물로 2-chloro-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.4 g (수율 79%)을 얻었다.
[LCMS] : 641
[합성예 44] 화합물 44의 합성
Figure PCTKR2020004755-appb-I000072
반응물로 2-(4-bromophenyl)-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.3 g (수율 68%)을 얻었다.
[LCMS] : 717
[합성예 45] 화합물 45의 합성
Figure PCTKR2020004755-appb-I000073
반응물로 2-(3-bromophenyl)-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.4 g (수율 70%)을 얻었다.
[LCMS] : 717
[합성예 46] 화합물 46의 합성
Figure PCTKR2020004755-appb-I000074
반응물로 2-(4'-bromo-[1,1'-biphenyl]-4-yl)-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 68%)을 얻었다.
[LCMS] : 793
[합성예 47] 화합물 47의 합성
Figure PCTKR2020004755-appb-I000075
반응물로 2-(3'-bromo-[1,1'-biphenyl]-3-yl)-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 68%)을 얻었다.
[LCMS] : 793
[합성예 48] 화합물 48의 합성
Figure PCTKR2020004755-appb-I000076
반응물로 2-chloro-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.4 g (수율 79%)을 얻었다.
[LCMS] : 641
[합성예 49] 화합물 49의 합성
Figure PCTKR2020004755-appb-I000077
반응물로 2-(4-bromophenyl)-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.7 g (수율 77%)을 얻었다.
[LCMS] : 717
[합성예 50] 화합물 50의 합성
Figure PCTKR2020004755-appb-I000078
반응물로 2-(3-bromophenyl)-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.7 g (수율 76%)을 얻었다.
[LCMS] : 717
[합성예 51] 화합물 51의 합성
Figure PCTKR2020004755-appb-I000079
반응물로 2-(4'-bromo-[1,1'-biphenyl]-4-yl)-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.0 g (수율 75%)을 얻었다.
[LCMS] : 793
[합성예 52] 화합물 52의 합성
Figure PCTKR2020004755-appb-I000080
반응물로 2-(3'-bromo-[1,1'-biphenyl]-3-yl)-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.0 g (수율 75%)을 얻었다.
[LCMS] : 793
[합성예 53] 화합물 53의 합성
Figure PCTKR2020004755-appb-I000081
반응물로 2-chloro-4-(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine 을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.4 g (수율 79%)을 얻었다.
[LCMS] : 641
[합성예 54] 화합물 54의 합성
Figure PCTKR2020004755-appb-I000082
반응물로 2-(4-bromophenyl)-4-(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.7 g (수율 77%)을 얻었다.
[LCMS] : 717
[합성예 55] 화합물 55의 합성
Figure PCTKR2020004755-appb-I000083
반응물로 2-(3-bromophenyl)-4-(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.7 g (수율 76%)을 얻었다.
[LCMS] : 717
[합성예 56] 화합물 56의 합성
Figure PCTKR2020004755-appb-I000084
반응물로 2-(4'-bromo-[1,1'-biphenyl]-4-yl)-4-(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.0 g (수율 75%)을 얻었다.
[LCMS] : 793
[합성예 57] 화합물 57의 합성
Figure PCTKR2020004755-appb-I000085
반응물로 2-(3'-bromo-[1,1'-biphenyl]-3-yl)-4-(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.0 g (수율 75%)을 얻었다.
[LCMS] : 793
[합성예 58] 화합물 58의 합성
Figure PCTKR2020004755-appb-I000086
반응물로 2-chloro-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.4 g (수율 79%)을 얻었다.
[LCMS] : 641
[합성예 59] 화합물 59의 합성
Figure PCTKR2020004755-appb-I000087
반응물로 2-(4-bromophenyl)-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.7 g (수율 77%)을 얻었다.
[LCMS] : 717
[합성예 60] 화합물 60의 합성
Figure PCTKR2020004755-appb-I000088
반응물로 2-(3-bromophenyl)-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.7 g (수율 76%)을 얻었다.
[LCMS] : 717
[합성예 61] 화합물 61의 합성
Figure PCTKR2020004755-appb-I000089
반응물로 2-(4'-bromo-[1,1'-biphenyl]-4-yl)-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.0 g (수율 75%)을 얻었다.
[LCMS] : 793
[합성예 62] 화합물 62의 합성
Figure PCTKR2020004755-appb-I000090
반응물로 2-(3'-bromo-[1,1'-biphenyl]-3-yl)-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 4.0 g (수율 75%)을 얻었다.
[LCMS] : 793
[합성예 63] 화합물 63의 합성
Figure PCTKR2020004755-appb-I000091
반응물로 2-chloro-4,6-bis(dibenzo[b,d]furan-3-yl)-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.7 g (수율 76%)을 얻었다.
[LCMS] : 731
[합성예 64] 화합물 64의 합성
Figure PCTKR2020004755-appb-I000092
반응물로 2-(4-bromophenyl)-4,6-bis(dibenzo[b,d]furan-3-yl)-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.8 g (수율 70%)을 얻었다.
[LCMS] : 807
[합성예 65] 화합물 65의 합성
Figure PCTKR2020004755-appb-I000093
반응물로 2-(3-bromophenyl)-4,6-bis(dibenzo[b,d]furan-3-yl)-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.8 g (수율 70%)을 얻었다.
[LCMS] : 807
[합성예 66] 화합물 66의 합성
Figure PCTKR2020004755-appb-I000094
반응물로 2-(3'-bromo-[1,1'-biphenyl]-3-yl)-4,6-bis(dibenzo[b,d]furan-3-yl)-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.8 g (수율 65%)을 얻었다.
[LCMS] : 884
[합성예 67] 화합물 67의 합성
Figure PCTKR2020004755-appb-I000095
반응물로 2-(6-bromodibenzo[b,d]furan-4-yl)-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 66%)을 얻었다.
[LCMS] : 807
[합성예 68] 화합물 68의 합성
Figure PCTKR2020004755-appb-I000096
반응물로 2-(8-bromodibenzo[b,d]furan-4-yl)-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 66%)을 얻었다.
[LCMS] : 807
[합성예 69] 화합물 69의 합성
Figure PCTKR2020004755-appb-I000097
반응물로 2-(6-bromodibenzo[b,d]furan-4-yl)-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 66%)을 얻었다.
[LCMS] : 807
[합성예 70] 화합물 70의 합성
Figure PCTKR2020004755-appb-I000098
반응물로 2-(7-bromodibenzo[b,d]furan-4-yl)-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 66%)을 얻었다.
[LCMS] : 807
[합성예 71] 화합물 71의 합성
Figure PCTKR2020004755-appb-I000099
반응물로 2-(8-bromodibenzo[b,d]furan-4-yl)-4,6-bis(dibenzo[b,d]furan-3-yl)-1,3,5-triazine을 사용한 것을 제외하고는, 상기 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3.6 g (수율 60%)을 얻었다.
[LCMS] : 898
[실시예 1 ~ 71] 청색 유기 전계 발광 소자의 제작
합성예에서 합성된 화합물 1 내지 71을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 하기와 같이 청색 유기 전계 발광 소자를 제작하였다.
먼저, ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후, UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, DS-205 (㈜두산전자, 80 nm)/NPB (15 nm)/ADN + 5 % DS-405 (㈜두산전자, 30nm)/화합물 1 내지 71 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제작하였다(하기 표 1 참조).
화합물 두께 (nm)
정공주입층 DS-205 80
정공수송층 NPB 15
발광층 ADN + 5% DS-405 30
전자수송층 표 1의 각 화합물 1~71 30
전자주입층 LiF 1
음극 Al 200
[비교예 1] 청색 유기 전계 발광 소자의 제작
전자 수송층 물질로서 화합물 1 대신 Alq3을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 비교예 1의 청색 유기 전계 발광 소자를 제작하였다.
[비교예 2] 청색 유기 전계 발광 소자의 제작
전자 수송층 물질로서 화합물 1을 사용하지 않은 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 비교예 2의 청색 유기 전계 발광 소자를 제작하였다.
[비교예 3] 청색 유기 전계 발광 소자의 제작
전자 수송층 물질로서 화합물 1 대신 하기의 구조 Ref-1을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 비교예 3의 청색 유기 전계 발광 소자를 제작하였다.
[비교예 4] 청색 유기 전계 발광 소자의 제작
전자 수송층 물질로서 화합물 1 대신 하기의 구조 Ref-2을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 비교예 4의 청색 유기 전계 발광 소자를 제작하였다.
참고로, 본원 실시예 1 내지 71 및 비교예 1 내지 4에서 사용된 NPB, ADN, Alq3, Ref-1 및 Ref-2의 구조는 각각 하기와 같다.
Figure PCTKR2020004755-appb-I000100
Figure PCTKR2020004755-appb-I000101
[평가예 1]
실시예 1 내지 71 및 비교예 1 내지 2 에서 제작한 각각의 청색 유기 전계 발광 소자에 대하여 전류밀도 10 mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하고, 그 결과를 하기 표 2에 나타내었다.
샘플 전자수송층재료 구동 전압(V) EL 피크(nm) 전류효율(cd/A)
실시예 1 1 3.6 456 6.8
실시예 2 2 3.9 456 6.7
실시예 3 3 3.6 457 6.9
실시예 4 4 3.6 456 7.1
실시예 5 5 3.2 457 7.1
실시예 6 6 3.2 456 6.8
실시예 7 7 3.9 456 6.9
실시예 8 8 3.6 457 6.7
실시예 9 9 3.6 456 7.0
실시예 10 10 3.2 457 7.1
실시예 11 11 3.2 456 6.8
실시예 12 12 3.1 456 7.3
실시예 13 13 3.9 457 6.9
실시예 14 14 3.9 452 6.8
실시예 15 15 3.3 448 6.7
실시예 16 16 3.6 460 6.8
실시예 17 17 4.1 456 6.9
실시예 18 18 3.6 456 7.1
실시예 19 19 3.2 457 7.1
실시예 20 20 3.2 456 6.8
실시예 21 21 3.9 456 6.9
실시예 22 22 3.6 457 6.7
실시예 23 23 3.8 457 7.1
실시예 24 24 3.2 452 6.9
실시예 25 25 3.1 456 7.3
실시예 26 26 3.9 457 6.9
실시예 27 27 3.9 457 6.8
실시예 28 28 3.9 459 6.9
실시예 29 29 3.3 456 7.1
실시예 30 30 3.8 455 6.9
실시예 31 31 3.4 459 6.8
실시예 32 32 3.2 457 6.4
실시예 33 33 3.2 456 7.1
실시예 34 34 4.6 457 6.7
실시예 35 35 3.6 456 7.0
실시예 36 36 3.9 456 6.9
실시예 37 37 3.6 457 6.8
실시예 38 38 3.6 456 6.9
실시예 39 39 3.2 457 6.8
실시예 40 40 3.2 456 7.0
실시예 41 41 3.6 456 7.1
실시예 42 42 3.9 457 6.8
실시예 43 43 3.9 452 6.7
실시예 44 44 3.3 448 6.9
실시예 45 45 3.6 456 7.1
실시예 46 46 3.2 457 7.1
실시예 47 47 3.2 456 6.8
실시예 48 48 3.6 456 6.9
실시예 49 49 3.9 457 6.9
실시예 50 50 3.9 452 6.9
실시예 51 51 3.3 448 7.1
실시예 52 52 3.6 460 7.1
실시예 53 53 4.1 456 6.9
실시예 54 54 3.2 456 6.8
실시예 55 55 3.2 457 6.4
실시예 56 56 4.1 465 6.8
실시예 57 57 3.7 455 6.9
실시예 58 58 3.9 459 7.1
실시예 59 59 3.8 457 7.1
실시예 60 60 3.2 452 6.9
실시예 61 61 3.2 457 6.4
실시예 62 62 3.8 452 7.1
실시예 63 63 4.1 456 6.7
실시예 64 64 3.6 460 7.1
실시예 65 65 4.1 456 6.9
실시예 66 66 3.2 456 6.8
실시예 67 67 3.2 457 6.4
실시예 68 68 3.4 459 6.8
실시예 69 69 3.2 457 6.4
실시예 70 70 3.6 456 6.7
실시예 71 71 3.9 457 6.9
비교예 1 Alq3 4.7 459 5.6
비교예 2 - 4.8 460 6.2
비교예 3 Ref-1 4.4 459 5.9
비교예 4 Ref-2 4.4 459 6.1
상기 표 2에 나타낸 바와 같이, 본 발명의 화합물을 전자 수송층 재료로 사용한 실시예 1 내지 71의 청색 유기 전계 발광 소자는, 종래의 Alq3를 전자 수송층에 사용한 비교예 1의 청색 유기 전계 발광 소자; 전자 수송층을 비포함하는 비교예 2의 청색 유기 전계 발광 소자; 치환되지 않은 카바졸을 포함하는 유사 화합물(예, Ref-1, Ref-2)을 전자 수송층에 사용한 비교에 3 및 4의 청색 유기 전계 발광 소자에 비해 구동전압, 발광피크 및 전류효율 면에서 우수한 성능을 나타내는 것을 알 수 있었다.
[실시예 72 ~ 142] 녹색 유기 전계 발광 소자의 제작
합성예에서 합성된 화합물 1 내지 71 를 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 하기와 같이 녹색 유기 전계 발광 소자를 제작하였다.
먼저, ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수로 초음파 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척하고, 건조시킨 후, UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 5분간 세정하고, 진공 증착기로 코팅된 유리 기판을 이송하였다.
이렇게 준비된 ITO 투명 유리 기판(전극) 위에, m-MTDATA (60 nm)/TCTA (80 nm)/ 90 wt%의 화합물 1 내지 71 + 10 wt%의 Ir(ppy)3 (30nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 녹색 유기 전계 발광 소자를 제작하였다.
이때 사용된 m-MTDATA, TCTA, Ir(ppy)3, 및 BCP의 구조는 하기와 같다.
Figure PCTKR2020004755-appb-I000102
Figure PCTKR2020004755-appb-I000103
[비교예 5] 녹색 유기 전계 발광 소자의 제작
발광층의 형성시 발광 호스트 물질로서 화합물 1 대신 CBP를 사용한 것을 제외하고는, 상기 실시예 72와 동일한 과정으로 비교예 5의 녹색 유기 전계 발광 소자를 제작하였다.
이때 사용된 CBP 의 구조는 하기와 같다.
Figure PCTKR2020004755-appb-I000104
[비교예 6] 청색 유기 전계 발광 소자의 제작
전자 수송층 물질로서 화합물 1 대신 상기 구조의 Ref-1을 사용한 것을 제외하고는, 상기 실시예 72과 동일하게 수행하여 비교예 6의 청색 유기 전계 발광 소자를 제작하였다.
[비교예 7] 청색 유기 전계 발광 소자의 제작
전자 수송층 물질로서 화합물 1 대신 상기 구조의 Ref-2을 사용한 것을 제외하고는, 상기 실시예 72과 동일하게 수행하여 비교예 7의 청색 유기 전계 발광 소자를 제작하였다.
[평가예 2]
실시예 72 내지 142, 및 비교예 5 내지 7 에서 각각 제조된 녹색 유기 전계 발광 소자에 대하여, 전류밀도 10 mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하였고, 그 결과를 하기 표 3에 나타내었다.
샘플 호스트재료 구동 전압(V) 발광 피크(nm) 전류효율(cd/A)
실시예 72 1 3.8 458 54.0
실시예 73 2 3.8 458 59.5
실시예 74 3 3.7 458 56.5
실시예 75 4 3.8 458 58.3
실시예 76 5 3.7 459 59.3
실시예 77 6 4.1 458 57.0
실시예 78 7 3.9 458 59.1
실시예 79 8 3.9 458 57.0
실시예 80 9 4.0 459 59.1
실시예 81 10 3.6 458 58.0
실시예 82 11 4.1 458 60.5
실시예 83 12 3.8 459 57.7
실시예 84 13 3.7 458 58.6
실시예 85 14 4.1 458 55.9
실시예 86 15 3.8 458 58.5
실시예 87 16 4.1 458 57.0
실시예 88 17 3.8 458 59.1
실시예 89 18 3.9 458 58.0
실시예 90 19 3.6 458 60.0
실시예 91 20 3.8 459 58.8
실시예 92 21 3.8 457 54.0
실시예 93 22 3.7 458 57.0
실시예 94 23 3.8 459 59.1
실시예 95 24 3.8 458 58.0
실시예 96 25 3.7 457 54.8
실시예 97 26 3.7 457 60.5
실시예 98 27 3.8 458 57.7
실시예 99 28 3.8 459 58.6
실시예 100 29 3.9 458 55.9
실시예 101 30 4.0 457 58.5
실시예 102 31 3.6 458 59.1
실시예 103 32 4.1 458 60.0
실시예 104 33 3.9 459 54.2
실시예 105 34 4.0 457 50.1
실시예 106 35 3.6 457 56.5
실시예 107 36 4.1 458 57.1
실시예 108 37 3.8 457 58.9
실시예 109 38 3.7 458 56.4
실시예 110 39 4.1 458 57.0
실시예 111 40 3.8 459 59.1
실시예 112 41 3.9 458 58.0
실시예 113 42 3.6 458 60.5
실시예 114 43 3.8 459 57.7
실시예 115 44 4.1 458 58.6
실시예 116 45 3.8 458 55.9
실시예 117 46 3.9 458 57.0
실시예 118 47 3.6 459 59.1
실시예 119 48 4.1 458 58.0
실시예 120 49 3.8 458 60.5
실시예 121 50 3.9 459 58.0
실시예 122 51 3.6 458 60.5
실시예 123 52 3.8 458 57.7
실시예 124 53 3.9 458 59.1
실시예 125 54 3.6 458 58.0
실시예 126 55 3.8 458 60.5
실시예 127 56 3.8 458 58.0
실시예 128 57 3.8 458 58.0
실시예 129 58 3.7 458 60.5
실시예 130 59 3.8 459 57.7
실시예 131 60 3.8 458 58.6
실시예 132 61 3.7 458 58.5
실시예 133 62 3.7 458 57.0
실시예 134 63 3.8 458 59.1
실시예 135 64 3.7 459 58.0
실시예 136 65 3.8 458 58.0
실시예 137 66 4.1 458 60.5
실시예 138 67 3.8 458 57.7
실시예 139 68 3.9 459 59.1
실시예 140 69 4.0 458 58.0
실시예 141 70 4.1 458 60.5
실시예 142 71 3.9 458 57.0
비교예 5 CBP 5.5 459 44.2
비교예 6 Ref-1 4.9 460 51.4
비교예 7 Ref-2 4.7 458 52.3
상기 표 3에 나타낸 바와 같이, 본 발명에 따른 화합물을 발광층의 호스트 물질로 사용한 실시예 72 내지 142의 녹색 유기 전계 발광 소자는, 종래 CBP를 호스트 물질로 적용한 비교예 5; 카바졸의 1번 위치에 치환기가 치환되지 않은 물질(예, Ref-1, Ref-2)을 적용한 비교예 6 및 7의 녹색 유기 전계 발광 소자보다 전류효율 및 구동전압이 우수하다는 것을 알 수 있었다.

Claims (12)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2020004755-appb-I000105
    상기 화학식 1에서,
    A와 B 중 하나는 하기 화학식 2로 표시되는 치환기이며, 다른 하나는 C6~C40의 아릴기이며,
    [화학식 2]
    Figure PCTKR2020004755-appb-I000106
    상기 화학식 2에서,
    *는 상기 화학식 1과 결합이 이루어지는 부분을 의미하며,
    X1 내지 X3은 서로 동일하거나 또는 상이하며, 각각 독립적으로 C(R1) 또는 N이고, 다만 X1 내지 X3 중 적어도 하나는 N이며,
    이때 C(R1)이 복수인 경우, 복수의 R1은 서로 동일하거나 또는 상이하며,
    R1 및 R2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노아릴포스피닐기, C6~C60의 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접하는 기와 결합하여 축합고리를 형성할 수 있으며,
    a와 b는 각각 독립적으로 0 내지 3의 정수이며,
    Ar1 및 Ar2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노아릴포스피닐기, C6~C60의 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되며,
    L은 단일결합이거나, 또는 C6~C18의 아릴렌기 및 핵원자수 5 내지 18의 헤테로아릴렌기로 구성된 군에서 선택되고,
    상기 L의 아릴렌기와 헤테로아릴렌기와, 상기 R1~R2, 및 Ar1~Ar2에서 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴실릴기는, 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환될 수 있으며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다.
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 3 또는 4로 표시되는 화합물:
    [화학식 3]
    Figure PCTKR2020004755-appb-I000107
    [화학식 4]
    Figure PCTKR2020004755-appb-I000108
    상기 화학식 3 또는 4에서,
    X1 내지 X3, Ar1, Ar2, L, R2, a 및 b는 각각 제1항에서 정의된 바와 같다.
  3. 제1항에 있어서,
    L은 하기 화학식 5 및 화학식 6 중 어느 하나로 표시되는 치환기인 화합물:
    [화학식 5]
    Figure PCTKR2020004755-appb-I000109
    [화학식 6]
    Figure PCTKR2020004755-appb-I000110
    상기 화학식 5 또는 6에서,
    *는 상기 화학식 1과 결합이 이루어지는 부분을 의미하며,
    Y는 O, S 및 Se로 이루어진 군에서 선택되며,
    n은 0 내지 3의 정수이다.
  4. 제1항에 있어서,
    L은 단일결합 또는 하기 구조식으로 표시되는 치환체 군에서 선택되는 링커인 화합물.
    Figure PCTKR2020004755-appb-I000111
  5. 제1항에 있어서,
    상기
    Figure PCTKR2020004755-appb-I000112
    는 하기 화학식 A-1 내지 A-5로 표시되는 치환체 군에서 선택되는 화합물:
    Figure PCTKR2020004755-appb-I000113
    상기 A-1 내지 A-5에서,
    R1, Ar1 및 Ar2는 각각 제1항에서 정의된 바와 같다.
  6. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 7 내지 화학식 12 중 어느 하나로 표시되는 화합물:
    [화학식 7]
    Figure PCTKR2020004755-appb-I000114
    [화학식 8]
    Figure PCTKR2020004755-appb-I000115
    [화학식 9]
    Figure PCTKR2020004755-appb-I000116
    [화학식 10]
    Figure PCTKR2020004755-appb-I000117
    [화학식 11]
    Figure PCTKR2020004755-appb-I000118
    [화학식 12]
    Figure PCTKR2020004755-appb-I000119
    상기 화학식 7 내지 12에서,
    X1 내지 X3, Y, Ar1, Ar2, R2, 및 b는 각각 제1항에서 정의된 바와 같으며,
    n은 0 내지 3의 정수이다.
  7. 제1항에 있어서,
    Ar1 및 Ar2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 C6~C60의 아릴기 및 핵원자수 5 내지 60개의 헤테로아릴기로 구성된 군에서 선택되며,
    상기 Ar1 내지 Ar2의 아릴기 및 헤테로아릴기는, 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환될 수 있으며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이한 것을 특징으로 하는 화합물.
  8. 제3항에 있어서,
    상기 화학식 1로 표시되는 화합물(여기서, L은 화학식 5로 표시되는 치환기임)은 하기 화학식으로 이루어진 군에서 선택되는 화합물.
    Figure PCTKR2020004755-appb-I000120
    Figure PCTKR2020004755-appb-I000121
    Figure PCTKR2020004755-appb-I000122
    Figure PCTKR2020004755-appb-I000123
  9. 제3항에 있어서,
    상기 화학식 1로 표시되는 화합물(여기서, L은 화학식 6으로 표시되는 치환기임)은 하기 화학식으로 이루어진 군에서 선택되는 화합물.
    Figure PCTKR2020004755-appb-I000124
    Figure PCTKR2020004755-appb-I000125
  10. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 전자수송층 또는 전자수송 보조층 재료인 화합물.
  11. 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 제1항 내지 제10항 중 어느 한 항에 기재된 화합물을 포함하는 유기 전계 발광 소자.
  12. 제11항에 있어서,
    상기 화합물을 포함하는 유기물층은 발광층, 발광보조층, 정공주입층, 정공수송층, 전자주입층, 전자수송층, 및 전자수송 보조층으로 구성된 군에서 선택되는 것을 특징으로 하는 유기 전계 발광 소자.
PCT/KR2020/004755 2019-04-10 2020-04-08 유기 화합물 및 이를 이용한 유기 전계 발광 소자 WO2020209602A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190042124A KR20200119648A (ko) 2019-04-10 2019-04-10 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR10-2019-0042124 2019-04-10

Publications (1)

Publication Number Publication Date
WO2020209602A1 true WO2020209602A1 (ko) 2020-10-15

Family

ID=72751139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004755 WO2020209602A1 (ko) 2019-04-10 2020-04-08 유기 화합물 및 이를 이용한 유기 전계 발광 소자

Country Status (2)

Country Link
KR (1) KR20200119648A (ko)
WO (1) WO2020209602A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080651A1 (ko) * 2020-10-16 2022-04-21 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130074765A (ko) * 2011-12-26 2013-07-04 제일모직주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
CN104045595A (zh) * 2014-06-25 2014-09-17 北京绿人科技有限责任公司 一种有机化合物及其使用该有机化合物的电致发光器件
KR20150094398A (ko) * 2014-02-11 2015-08-19 삼성전자주식회사 카바졸계 화합물 및 이를 포함한 유기 발광 소자
KR20160026744A (ko) * 2014-08-29 2016-03-09 삼성전자주식회사 유기 발광 소자
KR20170135669A (ko) * 2016-05-30 2017-12-08 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130074765A (ko) * 2011-12-26 2013-07-04 제일모직주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR20150094398A (ko) * 2014-02-11 2015-08-19 삼성전자주식회사 카바졸계 화합물 및 이를 포함한 유기 발광 소자
CN104045595A (zh) * 2014-06-25 2014-09-17 北京绿人科技有限责任公司 一种有机化合物及其使用该有机化合物的电致发光器件
KR20160026744A (ko) * 2014-08-29 2016-03-09 삼성전자주식회사 유기 발광 소자
KR20170135669A (ko) * 2016-05-30 2017-12-08 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080651A1 (ko) * 2020-10-16 2022-04-21 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Also Published As

Publication number Publication date
KR20200119648A (ko) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2018038401A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017179809A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2016089080A1 (ko) 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015190718A1 (ko) 유기 전계 발광 소자
WO2016105165A2 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2018038400A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020209679A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014010810A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017209488A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015133804A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016105054A2 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020027463A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015111943A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020116881A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016105123A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017111389A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017095086A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020218680A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015133808A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017105041A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018117493A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019013503A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018212463A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020130660A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2022005249A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788131

Country of ref document: EP

Kind code of ref document: A1