WO2020209095A1 - 多重伝送システム及び多重伝送方法 - Google Patents

多重伝送システム及び多重伝送方法 Download PDF

Info

Publication number
WO2020209095A1
WO2020209095A1 PCT/JP2020/013842 JP2020013842W WO2020209095A1 WO 2020209095 A1 WO2020209095 A1 WO 2020209095A1 JP 2020013842 W JP2020013842 W JP 2020013842W WO 2020209095 A1 WO2020209095 A1 WO 2020209095A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
transmission band
user
wireless
allocation information
Prior art date
Application number
PCT/JP2020/013842
Other languages
English (en)
French (fr)
Inventor
直剛 柴田
慶太 高橋
達也 福井
英明 木村
浩文 山本
憲行 太田
寺田 純
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/602,954 priority Critical patent/US11804897B2/en
Publication of WO2020209095A1 publication Critical patent/WO2020209095A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1129Arrangements for outdoor wireless networking of information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • the present invention relates to a multiplex transmission system and a multiplex transmission method.
  • the configuration of the base station can be arranged separately for the wireless control device and the wireless device.
  • the wireless control device and the wireless device are connected via an optical section having an optical device and an optical fiber.
  • the optical section having an optical device and an optical fiber is called a mobile fronthaul (MFH).
  • wavelength division multiplexing and time multiplexing of signals of a plurality of operators.
  • individual wavelengths will be used for each business operator.
  • frequency resources suitable for wireless communication have become tight.
  • not all of the frequency bandwidth allocated to wireless communication is always used, and the usage status is biased depending on the location, time, and business operator.
  • one frequency resource can be effectively utilized by allocating a large frequency bandwidth to a business operator having a large amount of traffic and allocating a small frequency band to a business operator having a small amount of traffic.
  • the number of operators n the frequency bandwidth of the frequency resource to be shared by all operators B, and the frequency bandwidth allocated to each operator and x i (1 ⁇ i ⁇ n ).
  • a system that is widely deployed nationwide such as a cellular system
  • a large number of antennas are required for spatial separation, which is difficult to realize.
  • x 1 + x 2 + ... + x n B (0 ⁇ x i ⁇ B, 1 ⁇ ). i ⁇ n).
  • MFH band i-th operators band
  • f i (x i) f i (x i) to obtain the MFH
  • total MFH bands all operators seek is, f 1 (x 1) + f 2 (x 2) + ... f n (x n ). Since the frequency bandwidth also increases MFH band seeking the wider, f i (x i) ( 1 ⁇ i ⁇ n) is a monotonically increasing function.
  • f i is the radio device - interface between the radio controller, the radio device - dependent on the frequency utilization efficiency and the like between radio terminals.
  • split D of eCPRI enhanced common public radio interface
  • the frequency bandwidth is 20 MHz
  • the spatial multiplexing number is 2
  • the modulation multi-value number is 256 QAM
  • the MFH band is about 270 Mbps
  • the MFH band is proportional to the frequency bandwidth and frequency utilization efficiency. It is a linear function.
  • f 1 (x a ) is about 4/3 times that of f 2 (x a ) (0 ⁇ x a ⁇ B).
  • f 1 (x a ) is considered to be about twice as large as f 2 (x a ).
  • FIG. 8 shows a configuration example of the multiplex transmission system 1 at this time.
  • the wireless devices 2-1 to 2-3 of the three operators, the wireless control devices 3-1 to 3-3 of the three operators, and the operators It has a shared multiplex transmission device 4-1 and 4-2, and an allocation determination device 5.
  • wireless device 2 When any one of a plurality of configurations such as wireless devices 2-1 to 2-3 is not specified, it is simply abbreviated as wireless device 2 and the like.
  • Wireless devices 2-1 to 2-3 are devices arranged for each operator to wirelessly communicate with a wireless terminal.
  • the wireless control devices 3-1 to 3-3 are devices arranged for each operator to control wireless communication based on the allocated frequency bandwidth.
  • the allocation determination device 5 determines the frequency bandwidth to be allocated to each operator, and notifies each operator (for example, wireless control devices 3-1 to 3-3).
  • the multiplex transmission devices 4-1 and 4-2 are used between the operators so that each operator can communicate between the wireless devices 2-1 to 2-3 and the wireless control devices 3-1 to 3-3. It is a device shared by.
  • the multiplex transmission device 4-1 has a communication unit 4-1a, a multiplexing unit 4-1b, and a separation unit 4-1c.
  • the communication unit 4-1a performs bidirectional communication with the multiplex transmission device 4-2 by, for example, performing electrical / optical conversion.
  • the communication unit 4-1a can transmit at one wavelength when the required MFH band is smaller than the transmission capacity of one wavelength.
  • the communication unit 4-1a uses a plurality of wavelengths when the required MFH band is larger than the transmission capacity of one wavelength.
  • the multiplex transmission device 4-1 may perform not only electrical / optical conversion processing but also frame conversion, FEC processing, encryption, and the like.
  • the multiplexing unit 4-1b allocates signals transmitted at the same wavelength to each other in a predetermined time band with respect to the signals received from the wireless control devices 3-1 to 3-3, and performs time multiplexing, and the communication unit 4- Output for 1a.
  • the separation unit 4-1c time-separates the signal input from the multiplex transmission device 4-2 via the communication unit 4-1a for each wavelength, and outputs the signal to the wireless control devices 3-1 to 3-3.
  • the separating portion 4-1c may be integrally formed with the multiplexing portion 4-1b.
  • the multiplex transmission device 4-2 has a communication unit 4-2a, a multiplexing unit 4-2b, and a separation unit 4-2c.
  • the communication unit 4-2a performs bidirectional communication with the multiplex transmission device 4-1 by performing, for example, electrical / optical conversion.
  • the communication unit 4-2a can transmit at one wavelength when the required MFH band is smaller than the transmission capacity of one wavelength.
  • the communication unit 4-2a uses a plurality of wavelengths when the required MFH band is larger than the transmission capacity of one wavelength.
  • the multiplex transmission device 4-2 may perform not only electrical / optical conversion processing but also frame conversion, FEC processing, encryption, and the like.
  • the multiplexing unit 4-2b allocates signals transmitted at the same wavelength to each other in a predetermined time band with respect to the signals received from the wireless devices 2-1 to 2-3 and performs time multiplexing, and the communication unit 4-2a Output to.
  • the separation unit 4-2c time-separates the signal input from the multiplex transmission device 4-1 via the communication unit 4-2a for each wavelength, and outputs the signal to the wireless devices 2-1 to 2-3.
  • the separating portion 4-2c may be integrally formed with the multiplexing portion 4-2b.
  • the uplink signal and downlink signal can be multiplexed by wavelength division multiplexing and transmitted within one optical cable, or can be transmitted by two optical cables without wavelength division multiplexing, but physically different resources are used. Since they are the same in terms of use, they are not distinguished here.
  • the MFH band is the maximum value of the required band required by each business operator for MFH.
  • the required band required for MFH is fixed.
  • the required band required for MFH may vary depending on the number of wireless terminals and the wireless environment. However, since this fluctuation depends on the scheduling cycle of the wireless control devices 3-1 to 3-3 and fluctuates in a very short cycle of about 1 ms, the band allocation that follows the cycle is not considered here.
  • Radio wave allocation destination automatic change by minute 5G Ministry of Internal Affairs and Communications, [online], 2018/10/10, Nihon Keizai Shimbun, [2019/02/27 search], Internet ⁇ URL: https://www.nikkei.com / article / DGXMZO36313720Q8A011C1MM8000 />
  • [Online] Mobile Communication Infrastructure Development Association, [2019/02/27 Search]
  • the multiplexing units 4-1b and 4-2b and the separating units 4-1c and 4-2c may allocate a sufficient transmission band to transmit the MFH band of each operator.
  • the frequency bandwidth used by each business varies, so that the MFH band is also 0 ⁇ f 1 (x 1 ) ⁇ f 1 (B), 0 ⁇ . It fluctuates as f 2 (x 2 ) ⁇ f 2 (B) and 0 ⁇ f 3 (x 3 ) ⁇ f 3 (B).
  • business operator # 1 has f 1 (B)
  • business operator # 2 has f 2 (B)
  • business operator # 3 has f 3 (B). It is necessary to allocate the maximum MFH band that each business operator can request. Therefore, the required MFH band becomes large, which is inefficient. On the other hand, even if an attempt is made to dynamically allocate the MFH band to each operator, it cannot be implemented because there is no mechanism for the multiplex transmission devices 4-1 and 4-2 to grasp the fluctuation of the frequency allocation.
  • An object of the present invention is to provide a multiplex transmission system and a multiplex transmission method capable of efficiently utilizing the MFH band.
  • the multiplex transmission system includes a plurality of wireless devices that perform wireless communication with a wireless terminal by allocating a frequency bandwidth that can be used for each user to a common frequency band, and a plurality of the radios.
  • a multiplex transmission system that multiplexes and transmits signals between multiple wireless control devices that control the device for each user, based on allocation information that indicates the allocation of available frequency bandwidth for each user.
  • the bandwidth allocation determination unit that determines the uplink and downlink transmission bands to be allocated to each user and outputs them as uplink transmission band allocation information and downlink transmission band allocation information, respectively, and a plurality of bandwidth allocation determination units based on the downlink transmission band allocation information.
  • the first multiplexing section for multiplexing the downlink signal for each user and the uplink transmission band allocation information output by the wireless control device to the plurality of the wireless devices, and the first multiplexing section are multiplexed.
  • a first separation unit that separates the multiplexed signal received by the communication unit into an uplink signal for each user, and a plurality of the multiplexed signals transmitted by the first communication unit are received.
  • each user The uplink transmission band assigned to each user is changed based on the second separation section that separates the downlink signal and the uplink transmission band allocation information and the uplink transmission band allocation information separated by the second separation section.
  • the multiplex transmission system is characterized in that the first multiplexing unit and the second multiplexing unit multiplex signals by at least one of time multiplexing and wavelength multiplexing.
  • the second communication unit, the second separation unit, the second multiplexing unit, and the band allocation changing unit are provided to each of a plurality of users.
  • the second communication unit is characterized in that it communicates with the first communication unit via the PON.
  • the multiplex transmission system has a traffic collecting unit that collects downlink and uplink traffic for each user, and an allocation determination that determines the frequency bandwidth that can be used for each user.
  • the device further has an allocation change requesting unit that requests the device to change the frequency bandwidth allocated to each user based on the traffic collected by the traffic collecting unit, and the band allocation determining unit is said to have the same. It is characterized in that the uplink transmission band and the downlink transmission band are determined based on the allocation information changed in response to a request from the allocation change request unit.
  • the multiplex transmission method includes a plurality of wireless devices that perform wireless communication with a wireless terminal by allocating a frequency bandwidth that can be used for each user to a common frequency band, and a plurality of radio devices.
  • a multiplex transmission method in which signals between a plurality of wireless control devices that control the wireless device for each user are multiplexed and transmitted, and the allocation information indicating the allocation of the frequency bandwidth that can be used for each user is used. Based on the band allocation determination step of determining the uplink transmission band and the downlink transmission band to be allocated to each user and outputting them as the uplink transmission band allocation information and the downlink transmission band allocation information, respectively, and based on the downlink transmission band allocation information.
  • the bandwidth allocation change process for changing the uplink transmission band assigned to each, and the uplink signal for each user output by the plurality of wireless devices to the plurality of wireless control devices according to the changed uplink transmission band. It is characterized by including a second multiplexing step of multiplexing the above and a second separating step of separating the signal multiplexed by the second multiplexing step into an uplink signal for each user.
  • the MFH band can be efficiently utilized.
  • FIG. 1 is a figure which shows the configuration example of the multiplex transmission system which concerns on 1st Embodiment.
  • A is a figure which shows the operation example in the prior art.
  • B is a figure which shows the 1st operation example of a multiplex transmission system.
  • A) is a figure which shows the operation example in the prior art.
  • B) is a figure which shows the 2nd operation example of the multiplex transmission system.
  • A) is a figure which shows the operation example in the prior art.
  • (B) is a figure which shows the 3rd operation example of a multiplex transmission system. It is a figure which shows the configuration example of the multiplex transmission system which concerns on 2nd Embodiment.
  • FIG. 1 shows a configuration example of the multiplex transmission system 10 according to the first embodiment.
  • the multiplex transmission system 10 includes, for example, wireless devices 20-1 to 20-3 of three operators (operators # 1 to # 3) and wireless control devices 30-1 of three operators. It has ⁇ 30-3, multiplex transmission devices 40-1, 40-2 and allocation determination device 50 shared between operators.
  • the number of businesses is not limited to three if there are a plurality of businesses.
  • the multiplex transmission system 10 includes wireless devices 20-1 to 20-3 and wireless devices 20 in which a frequency bandwidth that can be used for each user is assigned to a common frequency band to perform wireless communication with a wireless terminal.
  • the signals between the wireless control devices 30-1 to 30-3 that control -1 to 20-3 for each user are multiplexed and transmitted.
  • wireless devices 20-1 to 20-3 are devices arranged for each operator to wirelessly communicate with a wireless terminal.
  • the wireless control devices 30-1 to 30-3 are devices arranged for each operator to control wireless communication based on the assigned frequency bandwidth.
  • the allocation determination device 50 determines the frequency bandwidth to be allocated to each operator as allocation information, and assigns the allocation information to each operator (for example, wireless control devices 30-1 to 30-3) and the multiplex transmission device 40-1. Notice.
  • the allocation determination device 50 may set a cycle for determining allocation information to an arbitrary time.
  • the multiplex transmission devices 40-1 and 40-2 are used between the operators so that each operator can communicate between the wireless devices 20-1 to 20-3 and the wireless control devices 30-1 to 30-3. It is a device shared by.
  • the multiplex transmission device 40-1 has a communication unit 401a, a multiplexing unit 401b, a separation unit 401c, an allocation information acquisition unit 401d, and a band allocation determination unit 401e.
  • the communication unit 401a performs bidirectional communication with the multiplex transmission device 40-2 by, for example, performing electrical / optical conversion. Specifically, the communication unit 401a transmits the signal input from the multiplexing unit 401b to the multiplexing transmission device 40-2, and outputs the signal received from the multiplexing transmission device 40-2 to the separation unit 401c. ..
  • the communication unit 401a can transmit at one wavelength. Further, the communication unit 401a uses a plurality of wavelengths when the required MFH band is larger than the transmission capacity of one wavelength.
  • the multiplex transmission device 40-1 may perform not only electrical / optical conversion processing but also frame conversion, FEC processing, encryption, and the like.
  • the allocation information acquisition unit 401d acquires the allocation information indicating the frequency bandwidth to be allocated to each business operator output by the allocation determination device 50, and outputs the allocation information to the band allocation determination unit 401e.
  • the band allocation determination unit 401e allocates the uplink transmission band (uplink transmission band allocation information) of each operator and allocates the downlink communication transmission band based on the allocation information input from the allocation information acquisition unit 401d.
  • the transmission band allocation information including the downlink transmission band allocation information) is determined.
  • the band allocation determination unit 401e outputs the transmission band allocation information of each business operator to the multiplexing unit 401b, and outputs the uplink transmission band allocation information of each business operator to the separation unit 401c.
  • the multiplexing unit 401b Based on the downlink transmission band allocation information, the multiplexing unit 401b allocates signals transmitted at the same wavelength to signals received from the wireless control devices 30-1 to 30-3 in a predetermined time band for time multiplexing. Then, it is output to the communication unit 401a. Further, the multiplexing unit 401b also multiplexes the transmission band allocation information at the same time based on the downlink transmission band allocation information, and outputs the information to the communication unit 401a. That is, the multiplexing unit 401b transmits the downlink signal for each user output from the wireless control devices 30-1 to 30-3 to the wireless devices 20-1 to 20-3 based on the downlink transmission band allocation information. Multiplex the bandwidth allocation information. The multiplexing unit 401b may be configured to multiplex the signal by at least one of time multiplexing and wavelength multiplexing.
  • the separation unit 401c time-separates the signal input from the multiplex transmission device 40-2 via the communication unit 401a for each wavelength based on, for example, the uplink transmission band allocation information, and the radio control devices 30-1 to 30-3. Output to.
  • the separation unit 401c separates the multiplexed signal described later received by the communication unit 401a into an uplink signal for each user.
  • the separation unit 401c may be integrally configured with the multiplexing unit 401b.
  • the multiplex transmission device 40-2 has a communication unit 402a, a multiplexing unit 402b, a separation unit 402c, and a band allocation changing unit 402d.
  • the communication unit 402a performs bidirectional communication with the multiplex transmission device 401, for example, by performing electrical / optical conversion. Specifically, the communication unit 402a includes signals from the radio control devices 30-1 to 30-3 transmitted by the multiplexed multiplex transmission device 40-1, and transmission band allocation information (downlink transmission band allocation information and uplink). Transmission band allocation information) is received. Then, the communication unit 402a outputs the signals from the wireless control devices 30-1 to 30-3 to the separation unit 402c. Further, the communication unit 402a transmits the signal input from the multiplexing unit 402b to the multiplexing transmission device 40-1. That is, the communication unit 402a receives the multiplexed signal transmitted by the communication unit 401a, and the wireless devices 20-1 to 20-3 output to the wireless control devices 30-1 to 30-3 for multiplexing. The signal to be described later is transmitted.
  • the communication unit 402a can transmit at one wavelength when the required MFH band is smaller than the transmission capacity of one wavelength. Further, the communication unit 402a uses a plurality of wavelengths when the required MFH band is larger than the transmission capacity of one wavelength.
  • the multiplex transmission device 4-2 may perform not only electrical / optical conversion processing but also frame conversion, FEC processing, encryption, and the like.
  • the band allocation change unit 402d changes the uplink transmission band of each operator based on the uplink transmission band allocation information input from the separation unit 402c described later, and instructs the multiplexing unit 402b to change the uplink transmission band. .. Further, the band allocation change unit 402d changes the downlink transmission band of each business operator based on the downlink transmission band allocation information input from the separation unit 402c, and instructs the separation unit 402c to change the downlink transmission band. ..
  • the multiplexing unit 402b changes the uplink transmission band according to the uplink transmission band changed by the band allocation changing unit 402d, and transmits the signal received from the wireless devices 20-1 to 20-3 at the same wavelength. They are allocated to each other in a predetermined time band, time-multiplexed, and output to the communication unit 402a.
  • the multiplexing unit 402b may be configured to multiplex the signal by at least one of time multiplexing and wavelength multiplexing.
  • the separation unit 402c changes the downlink transmission band allocation information in response to an instruction from the band allocation change unit 402d, and time-separates the signal input from the multiplex transmission device 40-1 via the communication unit 402a for each wavelength. , Output to wireless devices 20-1 to 20-3.
  • the separation unit 402c separates the downlink signal and the transmission band allocation information for each user from the multiplexed signal received by the communication unit 402a.
  • the separation unit 402c outputs a downlink signal for each separated user to the wireless devices 20-1 to 20-3. Further, the separation unit 402c outputs the uplink transmission band allocation information to the band allocation change unit 402d.
  • the separating portion 402c may be integrally formed with the multiplexing portion 402b.
  • FIG. 2 shows a first operation example of the multiplex transmission system 10 by comparison with the prior art.
  • FIG. 2A shows an operation example in the prior art.
  • FIG. 2B shows a first operation example of the multiplex transmission system 10.
  • the transmission capacity per wavelength is 3f (B) or less.
  • FIG. 3 shows a second operation example of the multiplex transmission system 10 by comparison with the prior art.
  • FIG. 3A shows an operation example in the prior art.
  • FIG. 3B shows a second operation example of the multiplex transmission system 10.
  • f 1 , f 2 and f 3 are linear functions, and f 1 (x a )> f 2 (x a )> f 3 (x a ), f 1 (B)>.
  • the transmission capacity per wavelength shows the case of f 1 (B).
  • the transmission band allocation is changed based on the transmission band allocation information. Specifically, the total required MFH band f 1 (x 1 ) + f 2 (x 2 ) + f 3 (x 3 ) is the maximum when all frequency bandwidths are allocated to the operator # 1, and the value thereof. Since is f 1 (B), only one wavelength is required as a whole.
  • FIG. 4 shows a third operation example of the multiplex transmission system 10 by comparison with the prior art.
  • FIG. 4A shows an operation example in the prior art.
  • FIG. 4B shows a third operation example of the multiplex transmission system 10.
  • f 1 , f 2 and f 3 are linear functions, and f 1 (x a )> f 2 (x a )> f 3 (x a ), f 1 (B) / 2> f 2 (B) + f 3 (B), (0 ⁇ x a ⁇ B), f 1 (B) ⁇ f 1 (x 1 ) + f 2 (x 2 ) + f 3 (x 3 ).
  • the transmission capacity per wavelength shows the case of f 1 (B) / 2.
  • the transmission band allocation is changed based on the transmission band allocation information. Specifically, the total required MFH band f 1 (x 1 ) + f 2 (x 2 ) + f 3 (x 3 ) is the maximum when all frequency bandwidths are allocated to the operator # 1, and the value thereof. Since is f 1 (B), only two wavelengths are required as a whole.
  • FIG. 5 shows a configuration example of the multiplex transmission system 10a according to the second embodiment.
  • the wireless devices 20-1 to 20-3 of the three operators for example, the wireless devices 20-1 to 20-3 of the three operators, the wireless control devices 30-1 to 30-3 of the three operators, and the operators It has a shared multiplex transmission device 40-1, an allocation determination device 50, and three multiplex transmission devices 40-2 shared among operators connected to the optical splitter 100.
  • the same reference numerals are given to the configurations substantially the same as the configurations of the multiplex transmission system 10 shown in FIG.
  • the multiplex transmission system 10a is different from the multiplex transmission system 10 shown in FIG. 1 in that the wireless devices 20-1 to 20-3 of each operator are arranged at positions separated from each other. More specifically, in the multiplex transmission system 10a, the multiplex transmission device 40-2 is arranged for each of the wireless devices 20-1 to 20-3, and the wireless device 20 and the wireless control device 30 of each operator are arranged. The difference is that they are connected by a PON (Passive Optical Network) configuration instead of P-to-P.
  • PON Passive Optical Network
  • the multiplex transmission system 10a includes a communication unit 402a, a multiplexing unit 402b, a separation unit 402c, and a band allocation changing unit 402d for each of a plurality of users, and the plurality of communication units 402a communicate with each other via the PON. Communicate with.
  • the multiplex transmission system 10a also acquires the signals already exchanged by the interface defined between the allocation determination device 50 and the wireless control devices 30-1 to 30-3 by the multiplex transmission devices 40-1 and 40-2. Just do it. Therefore, it is sufficient that the interface is mounted on the multiplex transmission devices 40-1 and 40-2, and it is not necessary to mount a new interface on the allocation determination device 50 and the wireless control devices 30-1 to 30-3. , Easy to implement.
  • FIG. 6 shows a configuration example of the multiplex transmission system 10b according to the third embodiment.
  • the multiplex transmission system 10b is, for example, between the wireless devices 20-1 to 20-3 of the three operators, the wireless control devices 30-1 to 30-3 of the three operators, and the operators. It has a shared multiplex transmission device 40b-1, 40-2, and an allocation determination device 50b.
  • the multiplex transmission device 40b-1 has a communication unit 401a, a multiplexing unit 401b, a separation unit 401c, an allocation information acquisition unit 401d, a band allocation determination unit 401e, a traffic collection unit 401f, and an allocation change request unit 401g.
  • the traffic collecting unit 401f collects the traffic information of the uplink signal of each business operator from the separation unit 401c, collects the traffic information of the downlink signal of each business operator from the multiplexing unit 401b, and allocates the collected traffic information to the allocation change request unit. Output for 401g.
  • the traffic information is the utilization rate of the allocated transmission band and the like.
  • the traffic information collection cycle may be set to any time.
  • the allocation change request unit 401g outputs the allocation change request information indicating the frequency bandwidth change request assigned to each user to the allocation determination device 50b based on the traffic information input from the traffic collection unit 401f.
  • the allocation change request unit 401g increases the allocation of the frequency bandwidth of the business operator and allocates to that effect.
  • the change request information is output to the allocation determination device 50b.
  • the allocation change request unit 401g reduces the allocation of the frequency bandwidth of all other operators or the operator with the smallest average value or maximum utilization rate, and allocates allocation change request information indicating that fact. Output to device 50b.
  • the allocation determination device 50b determines the frequency bandwidth to be allocated to each operator as the allocation information based on the allocation change request information input from the multiplex transmission device 40b-1, and determines each operator (for example, the wireless control device 30-1). ⁇ 30-3) and the multiplex transmission device 40b-1 are notified of the allocation information.
  • the band allocation determination unit 401e has transmission band allocation information (downlink transmission band allocation information and uplink transmission band allocation information) based on the allocation information changed by the allocation determination device 50b in response to the request from the allocation change request unit 401g. Will be decided.
  • FIG. 7 shows a configuration example of the multiplex transmission system 10c according to the fourth embodiment.
  • the multiplex transmission system 10c has a shared radio control device 42-1 and a shared radio device 42-2.
  • the multiplex transmission system 10c is different from the above-described embodiment in which each operator includes a different wireless control device 30 and a wireless device 20, and the shared wireless control device 42-1 and shared wireless device 42- shared by each operator. 2 may be used.
  • the shared wireless control device 42-1 includes wireless control units 30c-1 to 30c-3, communication unit 401a, multiplexing unit 401b, separation unit 401c, band allocation determination unit 401e, and allocation determination unit 50c.
  • the wireless control units 30c-1 to 30c-3 substantially correspond to the above-mentioned wireless control devices 30-1 to 30-3 (see FIG. 1), except that they are provided in the shared wireless control device 42-1. It has a function.
  • the allocation determination unit 50c has a function substantially corresponding to the above-mentioned allocation determination device 50, except that it is provided in the shared radio control device 42-1. That is, the shared wireless control device 42-1 is provided with the allocation determination unit 50c inside, so that the allocation determination device 50 as an external device is unnecessary.
  • the shared wireless device 42-2 has a communication unit 402a, a multiplexing unit 402b, a separation unit 402c, a band allocation changing unit 402d, and wireless units 20c-1 to 20c-3.
  • the wireless units 20c-1 to 20c-3 have functions substantially corresponding to the above-mentioned wireless devices 20-1 to 20-3, except that they are provided in the shared wireless device 42-2.
  • f i (x i) is (1 ⁇ i ⁇ n) is monotonically increasing function, but the case where the frequency bandwidth MFH band is large to obtain the wider is described as an example, the above-described embodiments, f i (x i) is applicable regardless of function.
  • the multiplex transmission systems 10, 10a, 10b, and 10c change the transmission band assigned to each user based on the transmission band allocation information, so that the MFH band can be used efficiently.
  • Each function of the multiplex transmission systems 10, 10a, 10b, and 10c may be implemented by dedicated hardware, or may be implemented as a program on general-purpose hardware having a function as a computer equipped with a CPU. Good. That is, the multiplex transmission systems 10, 10a, 10b, and 10c according to the present invention can be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)

Abstract

利用者ごとに利用可能な周波数帯域幅の割当てを示す割当情報に基づいて、利用者それぞれに割当てる上り伝送帯域及び下り伝送帯域を決定し、それぞれ上り伝送帯域割当情報及び下り伝送帯域割当情報として出力し、下り伝送帯域割当情報に基づいて、複数の無線制御装置が複数の無線装置に向けて出力した利用者ごとの下り信号、及び上り伝送帯域割当情報を多重化し、多重化された信号から、利用者ごとの下り信号及び上り伝送帯域割当情報を分離し、分離した上り伝送帯域割当情報に基づいて、利用者それぞれに割当てられた上り伝送帯域を変更し、変更された上り伝送帯域に応じて、複数の無線装置が複数の無線制御装置に向けて出力した利用者ごとの上り信号を多重化し、多重化された信号を利用者ごとの上り信号に分離する。

Description

多重伝送システム及び多重伝送方法
 本発明は、多重伝送システム及び多重伝送方法に関する。
 セルラーシステムは、基地局の構成を無線制御装置と無線装置に分離して配置することが可能である。このとき、無線制御装置-無線装置間は、光装置及び光ファイバを有する光区間を介して結ばれる。光装置及び光ファイバを有する光区間は、モバイルフロントホール(MFH:Mobile Fronthaul)と呼ばれる。
 セルラーシステムを運用する利用者(以下では事業者とする)は、複数存在しうる。また、各事業者が別々にMFHを構築すると、光装置及び光ファイバも事業者数分必要となる。そこで、各事業者が設置する無線装置及び無線制御装置の位置が近い場合には、共有で用いる光装置及び共有で用いる光ファイバを設置し、当該共有で用いる光装置及び光ファイバによって複数事業者の信号を収容することとすれば、効率的なMFH構築が可能となる。
 このとき、複数の事業者の信号を波長多重することと、時間多重することが考えられる。波長多重だけの場合、事業者ごとに個別の波長を用いることとなる。しかし、波長多重だけでなく、時間多重も用いて、1つの波長を事業者間で共通利用する方が、所要波長数が少なく経済的である。
 近年、無線通信に適した周波数資源は、逼迫している。一方で、無線通信に割当てられた周波数帯域幅の全てが常に利用されているわけではなく、場所・時間・事業者によって、利用状況に偏りがある。
 そこで、周波数資源を複数の事業者で共用とし、各事業者への周波数帯域幅の割当を利用状況に応じて動的に変更することが検討されている。例えば、トラヒックの多い事業者に周波数帯域幅を多く割当て、トラヒックの少ない事業者に少なく周波数帯域を割当てることにより、1つの周波数資源を有効活用することができる。
 以下、事業者数をn、全事業者で共有する周波数資源の周波数帯域幅をB、各事業者に割当てられた周波数帯域幅をx(1≦i≦n)とする。セルラーシステムのように、全国に広く展開されるシステムの場合、複数の事業者が同一の時間・場所でサービスを展開すると考えられる。しかし、同じ周波数帯域を複数の事業者が利用するためには、空間分離をするために多数のアンテナが必要であり、実現が困難である。
 したがって、複数の事業者が同一の時間・場所において、それぞれ異なる周波数帯域を使ってサービス展開すると考えられるため、x+x+・・・+x=B(0≦x≦B,1≦i≦n)となる。ここで、i番目の事業者がMFHに求める帯域(MFH帯域)をf(x)とすると、全事業者が求める合計MFH帯域は、f(x)+f(x)+・・・f(x)となる。周波数帯域幅が広いほど求めるMFH帯域も大きくなるため、f(x)(1≦i≦n)は、単調増加関数である。
 fは、無線装置-無線制御装置間のインタフェース、無線装置-無線端末間の周波数利用効率等に依存する。以下、無線装置-無線制御装置間のインタフェースとしてeCPRI(enhanced common public radio interface)のsplit Dを例にとり説明する。
 制御信号を無視し、周波数帯域幅を20MHz、空間多重数を2、変調多値数を256QAMとすると、MFH帯域は、約270Mbpsであり、MFH帯域は、周波数帯域幅及び周波数利用効率に比例する線形関数である。
 例えば、1番目の事業者が無線通信で用いる最大の変調方式が256QAM、2番目の事業者が無線通信で用いる最大の変調方式が64QAMであるとする。このとき、f(x)は、f(x)の約4/3倍となる(0≦x≦B)。また、1番目の事業者が無線通信で用いるアンテナ数及び最大空間多重数が8、2番目の事業者が無線通信で用いるアンテナ数及び最大空間多重数が4の場合、f(x)は、f(x)の約2倍と考えられる。一方で、1番目の事業者と2番目の事業者が無線通信で用いる周波数利用効率や空間多重数等の条件が同じ場合、f(x)とf(x)は、ほぼ同一と考えられる。
 このときの多重伝送システム1の構成例を図8に示す。図8に示すように、多重伝送システム1は、例えば、3つの事業者の無線装置2-1~2-3、3つの事業者の無線制御装置3-1~3-3、事業者間で共有される多重伝送装置4-1,4-2、及び割当決定装置5を有する。なお、無線装置2-1~2-3のように複数ある構成のいずれかを特定しない場合には、単に無線装置2などと略記する。
 無線装置2-1~2-3は、各事業者がそれぞれ無線端末と無線で通信を行うために配置された装置である。無線制御装置3-1~3-3は、各事業者がそれぞれ割当てられた周波数帯域幅に基づいて無線通信の制御を行うために配置された装置である。割当決定装置5は、各事業者に割当てる周波数帯域幅を決定し、各事業者(例えば無線制御装置3-1~3-3)に対して通知する。
 多重伝送装置4-1,4-2は、各事業者がそれぞれ無線装置2-1~2-3と無線制御装置3-1~3-3との間の通信を行うために、事業者間で共用される装置である。
 多重伝送装置4-1は、通信部4-1a、多重部4-1b、及び分離部4-1cを有する。通信部4-1aは、例えば電気・光変換を行って多重伝送装置4-2に対する双方向の通信を行う。ここで、通信部4-1aは、求められるMFH帯域が1波長の伝送容量より小さい場合、1波長での伝送が可能である。また、通信部4-1aは、求められるMFH帯域が1波長の伝送容量より大きい場合、複数波長を用いる。なお、多重伝送装置4-1は、電気・光変換の処理だけでなく、フレーム変換、FEC処理及び暗号化等を合わせて実施してもよい。
 多重部4-1bは、無線制御装置3-1~3-3から受信した信号に対して、同じ波長で伝送する信号同士を予め定められた時間帯域に割当てて時間多重し、通信部4-1aに対して出力する。
 分離部4-1cは、通信部4-1aを介して多重伝送装置4-2から入力された信号を波長ごとに時間分離し、無線制御装置3-1~3-3に対して出力する。分離部4-1cは、多重部4-1bと一体に構成されてもよい。
 多重伝送装置4-2は、通信部4-2a、多重部4-2b、及び分離部4-2cを有する。通信部4-2aは、例えば電気・光変換を行って多重伝送装置4-1に対する双方向の通信を行う。ここで、通信部4-2aは、求められるMFH帯域が1波長の伝送容量より小さい場合、1波長での伝送が可能である。また、通信部4-2aは、求められるMFH帯域が1波長の伝送容量より大きい場合、複数波長を用いる。なお、多重伝送装置4-2は、電気・光変換の処理だけでなく、フレーム変換、FEC処理及び暗号化等を合わせて実施してもよい。
 多重部4-2bは、無線装置2-1~2-3から受信した信号に対して、同じ波長で伝送する信号同士を予め定められた時間帯域に割当てて時間多重し、通信部4-2aに対して出力する。
 分離部4-2cは、通信部4-2aを介して多重伝送装置4-1から入力された信号を波長ごとに時間分離し、無線装置2-1~2-3に対して出力する。分離部4-2cは、多重部4-2bと一体に構成されてもよい。
 なお、上り信号及び下り信号は、波長多重により多重化して1つの光ケーブル内で送信することも、波長多重せずに2つの光ケーブルで送信することも可能であるが、物理的に別のリソースを用いるという点で同じであるため、ここではこれらを区別しない。また、MFH帯域は、各事業者がMFHに求める所要帯域の最大値とする。
 また、無線装置2-1~2-3と無線制御装置3-1~3-3との間のインタフェースがCPRIの場合、MFHに求められる所要帯域は、固定である。一方、無線装置2-1~2-3と無線制御装置3-1~3-3との間のインタフェースがeCPRIの場合、無線端末数や無線環境によってMFHに求める所要帯域が変動しうる。しかし、この変動は、無線制御装置3-1~3-3のスケジューリング周期に依存し、1ms程度の非常に短い周期で変動するため、ここでは当該周期に追従した帯域割当を考えない。
特許第5876941号公報
電波割当先、分単位で自動変更 5Gにらみ総務省、[online]、2018/10/10、日本経済新聞、[2019/02/27検索]、インターネット<URL:https://www.nikkei.com/article/DGXMZO36313720Q8A011C1MM8000/> 全国の道路トンネル・鉄道トンネル・医療機関へ、大都市圏の地下鉄・地下街へ、携帯電話サービス用の中継設備を構築しています。、[online]、公益社団法人移動通信基盤整備協会、[2019/02/27検索]、インターネット<URL:http://www.jmcia.or.jp/business/>
 従来技術では、多重部4-1b,4-2b及び分離部4-1c,4-2cは、各事業者のMFH帯域を伝送するのに十分な伝送帯域を割当てればよい。ここで、1つの周波数資源を複数の事業者で共用する場合、各事業者が用いる周波数帯域幅が変動するため、MFH帯域も0≦f(x)≦f(B)、0≦f(x)≦f(B)、0≦f(x)≦f(B)と変動する。
 各事業者に固定的に時間帯域を割当てる従来技術では、例えば事業者#1にf(B)、事業者#2にf(B)、事業者#3にf(B)のように、各事業者が求めうる最大のMFH帯域を割当てる必要がある。このため、所要MFH帯域が大きくなってしまい、効率が悪い。一方、各事業者に動的にMFH帯域を割当てようとしても、この周波数割当の変動を多重伝送装置4-1,4-2が把握する仕組みが無いため、実施することができない。
 本発明は、MFH帯域を効率的に活用することができる多重伝送システム及び多重伝送方法を提供することを目的とする。
 本発明の一態様にかかる多重伝送システムは、共通の周波数帯域に対して利用者ごとに利用可能な周波数帯域幅が割当てられて無線端末と無線通信を行う複数の無線装置と、複数の前記無線装置を利用者ごとに制御する複数の無線制御装置との間の信号を多重化して伝送する多重伝送システムであって、利用者ごとに利用可能な周波数帯域幅の割当てを示す割当情報に基づいて、利用者それぞれに割当てる上り伝送帯域及び下り伝送帯域を決定し、それぞれ上り伝送帯域割当情報及び下り伝送帯域割当情報として出力する帯域割当決定部と、前記下り伝送帯域割当情報に基づいて、複数の前記無線制御装置が複数の前記無線装置に向けて出力した利用者ごとの下り信号、及び前記上り伝送帯域割当情報を多重化する第1の多重部と、前記第1の多重部が多重化した信号を前記複数の無線装置に向けて送信するとともに、前記複数の無線装置が複数の前記無線制御装置に向けて出力して多重化された信号を受信する第1の通信部と、前記第1の通信部が受信した多重化された信号を利用者ごとの上り信号に分離する第1の分離部と、前記第1の通信部が送信した多重化された信号を受信するとともに、前記複数の無線装置が複数の前記無線制御装置に向けて出力して多重化された信号を送信する第2の通信部と、前記第2の通信部が受信した多重化された信号から、利用者ごとの下り信号及び前記上り伝送帯域割当情報を分離する第2の分離部と、前記第2の分離部が分離した前記上り伝送帯域割当情報に基づいて、利用者それぞれに割当てられた上り伝送帯域を変更する帯域割当変更部と、前記帯域割当変更部が変更した上り伝送帯域に応じて、複数の前記無線装置が複数の前記無線制御装置に向けて出力した利用者ごとの上り信号を多重化する第2の多重部とを有することを特徴とする。
 また、本発明の一態様にかかる多重伝送システムは、前記第1の多重部及び前記第2の多重部は、時間多重及び波長多重の少なくともいずれかによって信号を多重化することを特徴とする。
 また、本発明の一態様にかかる多重伝送システムは、前記第2の通信部、前記第2の分離部、前記第2の多重部、及び前記帯域割当変更部を複数の利用者それぞれに対して備え、複数の前記第2の通信部は、PONを介して前記第1の通信部と通信を行うことを特徴とする。
 また、本発明の一態様にかかる多重伝送システムは、利用者ごとの下り信号及び上り信号のトラヒックを収集するトラヒック収集部と、利用者ごとに利用可能に割当てられる周波数帯域幅を決定する割当決定装置に対し、前記トラヒック収集部が収集したトラヒックに基づいて、利用者ごとに割当てられる周波数帯域幅を変更するように依頼する割当変更依頼部とをさらに有し、前記帯域割当決定部は、前記割当変更依頼部からの依頼に応じて変更された割当情報に基づいて、前記上り伝送帯域及び前記下り伝送帯域を決定することを特徴とする。
 また、本発明の一態様にかかる多重伝送方法は、共通の周波数帯域に対して利用者ごとに利用可能な周波数帯域幅が割当てられて無線端末と無線通信を行う複数の無線装置と、複数の前記無線装置を利用者ごとに制御する複数の無線制御装置との間の信号を多重化して伝送する多重伝送方法であって、利用者ごとに利用可能な周波数帯域幅の割当てを示す割当情報に基づいて、利用者それぞれに割当てる上り伝送帯域及び下り伝送帯域を決定し、それぞれ上り伝送帯域割当情報及び下り伝送帯域割当情報として出力する帯域割当決定工程と、前記下り伝送帯域割当情報に基づいて、複数の前記無線制御装置が複数の前記無線装置に向けて出力した利用者ごとの下り信号、及び前記上り伝送帯域割当情報を多重化する第1の多重工程と、前記第1の多重工程により多重化された信号から、利用者ごとの下り信号及び前記上り伝送帯域割当情報を分離する第1の分離工程と、前記第1の分離工程により分離した前記上り伝送帯域割当情報に基づいて、利用者それぞれに割当てられた上り伝送帯域を変更する帯域割当変更工程と、変更された上り伝送帯域に応じて、複数の前記無線装置が複数の前記無線制御装置に向けて出力した利用者ごとの上り信号を多重化する第2の多重工程と、前記第2の多重工程により多重化された信号を利用者ごとの上り信号に分離する第2の分離工程とを含むことを特徴とする。
 本発明によれば、MFH帯域を効率的に活用することができる。
第1実施形態にかかる多重伝送システムの構成例を示す図である。 (a)は、従来技術における動作例を示す図である。(b)は、多重伝送システムの第1動作例を示す図である。 (a)は、従来技術における動作例を示す図である。(b)は、多重伝送システムの第2動作例を示す図である。 (a)は、従来技術における動作例を示す図である。(b)は、多重伝送システムの第3動作例を示す図である。 第2実施形態にかかる多重伝送システムの構成例を示す図である。 第3実施形態にかかる多重伝送システムの構成例を示す図である。 第4実施形態にかかる多重伝送システムの構成例を示す図である。 多重伝送システムの構成例を示す図である。
 以下に、図面を用いて多重伝送システムの第1実施形態を説明する。図1は、第1実施形態にかかる多重伝送システム10の構成例を示す。図1に示すように、多重伝送システム10は、例えば、3つの事業者(事業者#1~#3)の無線装置20-1~20-3、3つの事業者の無線制御装置30-1~30-3、事業者間で共有される多重伝送装置40-1,40-2、及び割当決定装置50を有する。なお、事業者の数は、複数であれば3つに限定されない。
 そして、多重伝送システム10は、共通の周波数帯域に対して利用者ごとに利用可能な周波数帯域幅が割当てられて無線端末と無線通信を行う無線装置20-1~20-3と、無線装置20-1~20-3を利用者ごとに制御する無線制御装置30-1~30-3との間の信号を多重化して伝送する。
 例えば、無線装置20-1~20-3は、各事業者がそれぞれ無線端末と無線で通信を行うために配置された装置である。無線制御装置30-1~30-3は、各事業者がそれぞれ割当てられた周波数帯域幅に基づいて無線通信の制御を行うために配置された装置である。
 割当決定装置50は、各事業者に割当てる周波数帯域幅を割当情報として決定し、各事業者(例えば無線制御装置30-1~30-3)及び多重伝送装置40-1に対して割当情報を通知する。割当決定装置50は、割当情報を決定する周期を任意の時間に設定されてよい。
 多重伝送装置40-1,40-2は、各事業者がそれぞれ無線装置20-1~20-3と無線制御装置30-1~30-3との間の通信を行うために、事業者間で共用される装置である。
 多重伝送装置40-1は、通信部401a、多重部401b、分離部401c、割当情報取得部401d及び帯域割当決定部401eを有する。
 通信部401aは、例えば電気・光変換を行って多重伝送装置40-2に対する双方向の通信を行う。具体的には、通信部401aは、多重部401bから入力される信号を多重伝送装置40-2に対して送信し、多重伝送装置40-2から受信した信号を分離部401cに対して出力する。
 ここで、通信部401aは、求められるMFH帯域が1波長の伝送容量より小さい場合、1波長での伝送が可能である。また、通信部401aは、求められるMFH帯域が1波長の伝送容量より大きい場合、複数波長を用いる。なお、多重伝送装置40-1は、電気・光変換の処理だけでなく、フレーム変換、FEC処理及び暗号化等を合わせて実施してもよい。
 割当情報取得部401dは、割当決定装置50が出力する各事業者に割当てる周波数帯域幅を示す割当情報を取得し、帯域割当決定部401eに対して出力する。
 帯域割当決定部401eは、割当情報取得部401dから入力される割当情報に基づいて、各事業者の上り通信の伝送帯域の割当(上り伝送帯域割当情報)、及び下り通信の伝送帯域の割当(下り伝送帯域割当情報)を含む伝送帯域割当情報を決定する。そして、帯域割当決定部401eは、各事業者の伝送帯域割当情報を多重部401bに対して出力し、各事業者の上り伝送帯域割当情報を分離部401cに対して出力する。
 多重部401bは、下り伝送帯域割当情報に基づいて、無線制御装置30-1~30-3から受信した信号に対し、同じ波長で伝送する信号同士を予め定められた時間帯域に割当てて時間多重し、通信部401aに対して出力する。また、多重部401bは、下り伝送帯域割当情報に基づいて、伝送帯域割当情報についても同時に多重化し、通信部401aに対して出力する。つまり、多重部401bは、下り伝送帯域割当情報に基づいて、無線制御装置30-1~30-3が無線装置20-1~20-3に向けて出力した利用者ごとの下り信号、及び伝送帯域割当情報を多重化する。なお、多重部401bは、時間多重及び波長多重の少なくともいずれかによって信号を多重化するように構成されてもよい。
 分離部401cは、例えば上り伝送帯域割当情報に基づいて、通信部401aを介して多重伝送装置40-2から入力された信号を波長ごとに時間分離し、無線制御装置30-1~30-3に対して出力する。例えば、分離部401cは、通信部401aが受信する後述の多重化された信号を利用者ごとの上り信号に分離する。分離部401cは、多重部401bと一体に構成されてもよい。
 多重伝送装置40-2は、通信部402a、多重部402b、分離部402c及び帯域割当変更部402dを有する。
 通信部402aは、例えば電気・光変換を行って多重伝送装置401に対する双方向の通信を行う。具体的には、通信部402aは、多重化された多重伝送装置40-1が送信する無線制御装置30-1~30-3からの信号、及び伝送帯域割当情報(下り伝送帯域割当情報及び上り伝送帯域割当情報)を受信する。そして、通信部402aは、無線制御装置30-1~30-3からの信号を分離部402cに対して出力する。また、通信部402aは、多重部402bから入力される信号を多重伝送装置40-1に対して送信する。つまり、通信部402aは、通信部401aが送信した多重化された信号を受信するとともに、無線装置20-1~20-3が無線制御装置30-1~30-3に向けて出力して多重化される後述の信号を送信する。
 ここで、通信部402aは、求められるMFH帯域が1波長の伝送容量より小さい場合、1波長での伝送が可能である。また、通信部402aは、求められるMFH帯域が1波長の伝送容量より大きい場合、複数波長を用いる。なお、多重伝送装置4-2は、電気・光変換の処理だけでなく、フレーム変換、FEC処理及び暗号化等を合わせて実施してもよい。
 帯域割当変更部402dは、後述の分離部402cから入力される上り伝送帯域割当情報に基づいて、各事業者の上り伝送帯域を変更し、上り伝送帯域の変更を多重部402bに対して指示する。また、帯域割当変更部402dは、分離部402cから入力される下り伝送帯域割当情報に基づいて、各事業者の下り伝送帯域を変更し、下り伝送帯域の変更を分離部402cに対して指示する。
 多重部402bは、帯域割当変更部402dが変更した上り伝送帯域に応じて上り伝送帯域を変更して、無線装置20-1~20-3から受信した信号に対して、同じ波長で伝送する信号同士を予め定められた時間帯域に割当てて時間多重し、通信部402aに対して出力する。なお、多重部402bは、時間多重及び波長多重の少なくともいずれかによって信号を多重化するように構成されてもよい。
 分離部402cは、帯域割当変更部402dからの指示の応じて下り伝送帯域割当情報を変更して、通信部402aを介して多重伝送装置40-1から入力された信号を波長ごとに時間分離し、無線装置20-1~20-3に対して出力する。例えば、分離部402cは、通信部402aが受信した多重化された信号から、利用者ごとの下り信号及び伝送帯域割当情報を分離する。分離部402cは、分離した利用者ごとの下り信号を無線装置20-1~20-3に対して出力する。また、分離部402cは、上り伝送帯域割当情報を帯域割当変更部402dに対して出力する。分離部402cは、多重部402bと一体に構成されてもよい。
 次に、多重伝送システム10の具体的な動作例について説明する。
 図2は、多重伝送システム10の第1動作例を従来技術との比較によって示す。図2(a)は、従来技術における動作例を示す。図2(b)は、多重伝送システム10の第1動作例を示す。図2に示した例においては、f、f及びfが線形関数であり、f(x)=f(x)=f(x)=f(x)、(0≦x≦B)、f(B)=f(x)+f(x)+f(x)である。なお、1波長当たりの伝送容量は、3f(B)以下としている。
 このとき、伝送帯域を固定的に割当てる従来技術では、最大のf(B)を各事業者へ割当てる必要があり、全体で3f(B)が必要となる。一方、多重伝送システム10では、伝送帯域の割当を伝送帯域割当情報に基づいて変更するので、伝送帯域を効率的に利用でき、全体としてf(B)で済む。
 図3は、多重伝送システム10の第2動作例を従来技術との比較によって示す。図3(a)は、従来技術における動作例を示す。図3(b)は、多重伝送システム10の第2動作例を示す。図3に示した例においては、f、f及びfが線形関数であり、f(x)>f(x)>f(x)、f(B)>f(B)+f(B)、(0≦x≦B)、f(B)≧f(x)+f(x)+f(x)である。なお、1波長あたりの伝送容量は、f(B)である場合を示している。
 このとき、従来技術では、全体で2波長必要となる。一方、多重伝送システム10では、伝送帯域の割当を伝送帯域割当情報に基づいて変更する。具体的には、合計所要MFH帯域f(x)+f(x)+f(x)は、事業者#1に全ての周波数帯域幅が割当てられている時に最大となり、その値がf(B)であるため、全体として1波長で済む。
 図4は、多重伝送システム10の第3動作例を従来技術との比較によって示す。図4(a)は、従来技術における動作例を示す。図4(b)は、多重伝送システム10の第3動作例を示す。図4に示した例においては、f、f及びfが線形関数であり、f(x)>f(x)>f(x)、f(B)/2>f(B)+f(B)、(0≦x≦B)、f(B)≧f(x)+f(x)+f(x)である。なお、1波長あたりの伝送容量は、f(B)/2である場合を示している。
 このとき、従来技術では、全体で3波長必要となる。一方、多重伝送システム10では、伝送帯域の割当を伝送帯域割当情報に基づいて変更する。具体的には、合計所要MFH帯域f(x)+f(x)+f(x)は、事業者#1に全ての周波数帯域幅が割当てられている時に最大となり、その値がf(B)であるため、全体として2波長で済む。
 他方、事業者#1に割当てられている周波数帯域幅が小さい場合、f(x)+f(x)+f(x)<f(B)/2となるため、1つの波長で伝送可能な場合もある。このときには、伝送に用いない波長を一時的に停止して、省電力化を図ることができる。
 次に、多重伝送システムの他の実施形態について説明する。
 図5は、第2実施形態にかかる多重伝送システム10aの構成例を示す。図5に示すように、多重伝送システム10aは、例えば、3つの事業者の無線装置20-1~20-3、3つの事業者の無線制御装置30-1~30-3、事業者間で共有される多重伝送装置40-1、割当決定装置50、及び光スプリッタ100に接続された事業者間で共有される3つの多重伝送装置40-2を有する。なお、図1に示した多重伝送システム10の構成と実質的に同一の構成には、同一の符号が付してある。
 多重伝送システム10aは、図1に示した多重伝送システム10に対し、各事業者の無線装置20-1~20-3が互いに離れた位置に配置されている点が異なっている。より具体的には、多重伝送システム10aは、多重伝送装置40-2が無線装置20-1~20-3それぞれに対して配置されており、各事業者の無線装置20と無線制御装置30がP-to-Pではなく、PON(Passive Optical Network)構成によって接続されている点が異なる。
 つまり、多重伝送システム10aは、通信部402a、多重部402b、分離部402c、及び帯域割当変更部402dを複数の利用者それぞれに対して備え、複数の通信部402aがPONを介して通信部401aと通信を行う。
 従来、PONにおいて、無線制御装置と連携して上りの所要MFH帯域を計算し、動的に帯域を割当てる手法も検討されている(特許文献1参照)。当該手法は、下り通信の所要MFH帯域を算出することができない。また、特許文献1に記載された例では、多重伝送装置が無線制御装置の情報を取得するために、無線制御装置に新たなインタフェースを設ける必要があり、実装が困難である。
 一方、多重伝送システム10aは、既に割当決定装置50と無線制御装置30-1~30-3の間で定められたインタフェースでやり取りされている信号を多重伝送装置40-1,40-2でも取得するだけである。よって、当該インタフェースが多重伝送装置40-1,40-2に実装されていればよく、割当決定装置50及び無線制御装置30-1~30-3に新たなインタフェースが実装される必要が無いため、実装が容易である。
 図6は、第3実施形態にかかる多重伝送システム10bの構成例を示す。図6に示すように、多重伝送システム10bは、例えば、3つの事業者の無線装置20-1~20-3、3つの事業者の無線制御装置30-1~30-3、事業者間で共有される多重伝送装置40b-1,40-2、及び割当決定装置50bを有する。
 多重伝送装置40b-1は、通信部401a、多重部401b、分離部401c、割当情報取得部401d、帯域割当決定部401e、トラヒック収集部401f、及び割当変更依頼部401gを有する。
 トラヒック収集部401fは、各事業者の上り信号のトラヒック情報を分離部401cから収集し、各事業者の下り信号のトラヒック情報を多重部401bから収集して、収集したトラヒック情報を割当変更依頼部401gに対して出力する。トラヒック情報は、割当てられた伝送帯域の利用率等である。なお、トラヒック情報の収集周期は、任意の時間に設定されてよい。
 割当変更依頼部401gは、トラヒック収集部401fから入力されるトラヒック情報に基づいて、利用者ごとに割当てられる周波数帯域幅の変更依頼を示す割当変更依頼情報を割当決定装置50bに対して出力する。
 例えば、割当変更依頼部401gは、ある事業者に対して割当てた伝送帯域の利用率が予め定めた閾値を超えた場合に、当該事業者の周波数帯域幅の割当を増やし、その旨を示す割当変更依頼情報を割当決定装置50bに対して出力する。同時に、割当変更依頼部401gは、その他の全ての事業者、若しくは利用率の平均値又は最大値が最も小さい事業者の周波数帯域幅の割当を減らし、その旨を示す割当変更依頼情報を割当決定装置50bに対して出力する。
 割当決定装置50bは、多重伝送装置40b-1から入力される割当変更依頼情報に基づいて、各事業者に割当てる周波数帯域幅を割当情報として決定し、各事業者(例えば無線制御装置30-1~30-3)及び多重伝送装置40b-1に対して割当情報を通知する。
 つまり、帯域割当決定部401eは、割当変更依頼部401gからの依頼に応じて割当決定装置50bが変更した割当情報に基づいて、伝送帯域割当情報(下り伝送帯域割当情報及び上り伝送帯域割当情報)を決定することとなる。
 図7は、第4実施形態にかかる多重伝送システム10cの構成例を示す。図7に示すように、多重伝送システム10cは、共有無線制御装置42-1及び共有無線装置42-2を有する。多重伝送システム10cは、各事業者がそれぞれ異なる無線制御装置30及び無線装置20を備えた上述の実施形態とは異なり、各事業者が共有の共有無線制御装置42-1及び共有無線装置42-2を用いてもよい。
 共有無線制御装置42-1は、無線制御部30c-1~30c-3、通信部401a、多重部401b、分離部401c、帯域割当決定部401e及び割当決定部50cを有する。
 無線制御部30c-1~30c-3は、共有無線制御装置42-1内に設けられる点を除き、実質的に上述の無線制御装置30-1~30-3(図1参照)に対応する機能を備える。
 割当決定部50cは、共有無線制御装置42-1内に設けられる点を除き、実質的に上述の割当決定装置50に対応する機能を備える。すなわち、共有無線制御装置42-1は、内部に割当決定部50cを備えることにより、外部装置としての割当決定装置50を不要としている。
 共有無線装置42-2は、通信部402a、多重部402b、分離部402c、帯域割当変更部402d、及び無線部20c-1~20c-3を有する。
 無線部20c-1~20c-3は、共有無線装置42-2内に設けられる点を除き、実質的に上述の無線装置20-1~20-3に対応する機能を備える。
 なお、事業者の数は、複数であれば3つに限定されない。すなわち、複数の事業者が同一の時間・場所において、それぞれ異なる周波数帯域を使ってサービス展開する場合として、x+x+・・・+x=B(0≦x≦B,1≦i≦n)となる場合を説明したが、これに限定されない。また、上述した各実施形態は、複数の事業者が同一の時間・場所において、同じ周波数帯域を使ってサービス展開する場合にも適用可能である。
 また、f(x)(1≦i≦n)が単調増加関数であり、周波数帯域幅が広いほど求めるMFH帯域も大きい場合を例に説明したが、上述した各実施形態は、f(x)がいかなる関数であっても適用可能である。
 このように、多重伝送システム10,10a,10b,10cは、伝送帯域割当情報に基づいて、利用者それぞれに割当てられた伝送帯域を変更するので、MFH帯域を効率的に活用することができる。
 なお、多重伝送システム10,10a,10b,10cが有する各機能は、専用ハードウェアで実装されてもよいし、CPUを備えたコンピュータとしての機能を有する汎用ハードウェア上にプログラムとして実装されてもよい。すなわち、本発明にかかる多重伝送システム10,10a,10b,10cは、コンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
 以上述べた実施形態は、全て本発明の実施形態を例示的に示すものであって、限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様でも実施することができる。
 10,10a,10b,10c・・・多重伝送システム、20-1~20-3・・・無線装置、20c-1~20c-3・・・無線部、30-1~30-3・・・無線制御装置、30c-1~30c-3・・・無線制御部、40-1,40-2,40b-1・・・多重伝送装置、42-1・・・共有無線制御装置、42-2・・・共有無線装置、50,50b・・・割当決定装置、50c・・・割当決定部、100・・・光スプリッタ、401a,402a・・・通信部、401b,402b・・・多重部、401c,402c・・・分離部、401d・・・割当情報取得部、402d・・・、帯域割当変更部、401e・・・帯域割当決定部、401f・・・トラヒック収集部、401g・・・割当変更依頼部

Claims (5)

  1.  共通の周波数帯域に対して利用者ごとに利用可能な周波数帯域幅が割当てられて無線端末と無線通信を行う複数の無線装置と、複数の前記無線装置を利用者ごとに制御する複数の無線制御装置との間の信号を多重化して伝送する多重伝送システムであって、
     利用者ごとに利用可能な周波数帯域幅の割当てを示す割当情報に基づいて、利用者それぞれに割当てる上り伝送帯域及び下り伝送帯域を決定し、それぞれ上り伝送帯域割当情報及び下り伝送帯域割当情報として出力する帯域割当決定部と、
     前記下り伝送帯域割当情報に基づいて、複数の前記無線制御装置が複数の前記無線装置に向けて出力した利用者ごとの下り信号、及び前記上り伝送帯域割当情報を多重化する第1の多重部と、
     前記第1の多重部が多重化した信号を前記複数の無線装置に向けて送信するとともに、前記複数の無線装置が複数の前記無線制御装置に向けて出力して多重化された信号を受信する第1の通信部と、
     前記第1の通信部が受信した多重化された信号を利用者ごとの上り信号に分離する第1の分離部と、
     前記第1の通信部が送信した多重化された信号を受信するとともに、前記複数の無線装置が複数の前記無線制御装置に向けて出力して多重化された信号を送信する第2の通信部と、
     前記第2の通信部が受信した多重化された信号から、利用者ごとの下り信号及び前記上り伝送帯域割当情報を分離する第2の分離部と、
     前記第2の分離部が分離した前記上り伝送帯域割当情報に基づいて、利用者それぞれに割当てられた上り伝送帯域を変更する帯域割当変更部と、
     前記帯域割当変更部が変更した上り伝送帯域に応じて、複数の前記無線装置が複数の前記無線制御装置に向けて出力した利用者ごとの上り信号を多重化する第2の多重部と
     を有することを特徴とする多重伝送システム。
  2.  前記第1の多重部及び前記第2の多重部は、
     時間多重及び波長多重の少なくともいずれかによって信号を多重化すること
     を特徴とする請求項1に記載の多重伝送システム。
  3.  前記第2の通信部、前記第2の分離部、前記第2の多重部、及び前記帯域割当変更部を複数の利用者それぞれに対して備え、
     複数の前記第2の通信部は、
     PONを介して前記第1の通信部と通信を行うこと
     を特徴とする請求項1又は2に記載の多重伝送システム。
  4.  利用者ごとの下り信号及び上り信号のトラヒックを収集するトラヒック収集部と、
     利用者ごとに利用可能に割当てられる周波数帯域幅を決定する割当決定装置に対し、前記トラヒック収集部が収集したトラヒックに基づいて、利用者ごとに割当てられる周波数帯域幅を変更するように依頼する割当変更依頼部と
     をさらに有し、
     前記帯域割当決定部は、
     前記割当変更依頼部からの依頼に応じて変更された割当情報に基づいて、前記上り伝送帯域及び前記下り伝送帯域を決定すること
     を特徴とする請求項1~3のいずれか1項に記載の多重伝送システム。
  5.  共通の周波数帯域に対して利用者ごとに利用可能な周波数帯域幅が割当てられて無線端末と無線通信を行う複数の無線装置と、複数の前記無線装置を利用者ごとに制御する複数の無線制御装置との間の信号を多重化して伝送する多重伝送方法であって、
     利用者ごとに利用可能な周波数帯域幅の割当てを示す割当情報に基づいて、利用者それぞれに割当てる上り伝送帯域及び下り伝送帯域を決定し、それぞれ上り伝送帯域割当情報及び下り伝送帯域割当情報として出力する帯域割当決定工程と、
     前記下り伝送帯域割当情報に基づいて、複数の前記無線制御装置が複数の前記無線装置に向けて出力した利用者ごとの下り信号、及び前記上り伝送帯域割当情報を多重化する第1の多重工程と、
     前記第1の多重工程により多重化された信号から、利用者ごとの下り信号及び前記上り伝送帯域割当情報を分離する第1の分離工程と、
     前記第1の分離工程により分離した前記上り伝送帯域割当情報に基づいて、利用者それぞれに割当てられた上り伝送帯域を変更する帯域割当変更工程と、
     変更された上り伝送帯域に応じて、複数の前記無線装置が複数の前記無線制御装置に向けて出力した利用者ごとの上り信号を多重化する第2の多重工程と、
     前記第2の多重工程により多重化された信号を利用者ごとの上り信号に分離する第2の分離工程と
     を含むことを特徴とする多重伝送方法。
PCT/JP2020/013842 2019-04-12 2020-03-26 多重伝送システム及び多重伝送方法 WO2020209095A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/602,954 US11804897B2 (en) 2019-04-12 2020-03-26 Multiplex transmission system and multiplex transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019076429A JP7196749B2 (ja) 2019-04-12 2019-04-12 多重伝送システム及び多重伝送方法
JP2019-076429 2019-04-12

Publications (1)

Publication Number Publication Date
WO2020209095A1 true WO2020209095A1 (ja) 2020-10-15

Family

ID=72751083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013842 WO2020209095A1 (ja) 2019-04-12 2020-03-26 多重伝送システム及び多重伝送方法

Country Status (3)

Country Link
US (1) US11804897B2 (ja)
JP (1) JP7196749B2 (ja)
WO (1) WO2020209095A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212707A (ja) * 2016-05-18 2017-11-30 日本電信電話株式会社 通信装置、設定方法及び通信プログラム
WO2018113797A1 (zh) * 2016-12-23 2018-06-28 中国移动通信有限公司研究院 前传网络、数据传输方法及装置、计算机存储介质
JP2018532296A (ja) * 2015-08-28 2018-11-01 エスケー テレコム カンパニー リミテッドSk Telecom Co., Ltd. フロントホール制御装置及びフロントホール制御装置の動作方法と、光波長帯域の割当てを制御するためのプログラム及びそのプログラムが記録されたコンピュータ読取可能記録媒体
WO2020075318A1 (ja) * 2018-10-12 2020-04-16 住友電気工業株式会社 局側装置、加入者側装置、同期方法、及びponシステム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094003A (ja) * 2004-09-22 2006-04-06 Ntt Docomo Inc 移動通信システムおよび周波数帯割当装置ならびに周波数帯割当方法
JP2007266819A (ja) * 2006-03-28 2007-10-11 Kyocera Corp 基地局装置及び信号処理方法
CN104782084B (zh) * 2012-11-14 2018-01-02 日本电信电话株式会社 光用户通信系统、光用户通信方法、上位装置和光用户线路终端装置
JP2016082402A (ja) * 2014-10-16 2016-05-16 富士通株式会社 ベースバンド処理装置、無線装置、及び無線通信システム
JP2016127572A (ja) * 2015-01-08 2016-07-11 富士通株式会社 伝送装置、送信器及び伝送方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532296A (ja) * 2015-08-28 2018-11-01 エスケー テレコム カンパニー リミテッドSk Telecom Co., Ltd. フロントホール制御装置及びフロントホール制御装置の動作方法と、光波長帯域の割当てを制御するためのプログラム及びそのプログラムが記録されたコンピュータ読取可能記録媒体
JP2017212707A (ja) * 2016-05-18 2017-11-30 日本電信電話株式会社 通信装置、設定方法及び通信プログラム
WO2018113797A1 (zh) * 2016-12-23 2018-06-28 中国移动通信有限公司研究院 前传网络、数据传输方法及装置、计算机存储介质
WO2020075318A1 (ja) * 2018-10-12 2020-04-16 住友電気工業株式会社 局側装置、加入者側装置、同期方法、及びponシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAO, AKIHIRO ET AL.: "Virtualization technology to improve spectrum efficiency in 5G/IoT access networks", LECTURE PROCEEDINGS OF THE 2018 GENERAL CONFERENCE OF IEICE: COMMUNICATION 2 B-8-50, 6 March 2018 (2018-03-06), pages 191 *

Also Published As

Publication number Publication date
JP2020174326A (ja) 2020-10-22
US20220200702A1 (en) 2022-06-23
JP7196749B2 (ja) 2022-12-27
US11804897B2 (en) 2023-10-31

Similar Documents

Publication Publication Date Title
US7512094B1 (en) System and method for selecting spectrum
US8184979B2 (en) Optical OFDMA network with dynamic sub-carrier allocation
JP4879327B2 (ja) 通信装置、子局装置および帯域割当方法
JP4854823B1 (ja) 帯域制御方法および通信システム
US20120120998A1 (en) Dynamic Allocation of Transceivers and Frequency Channels in MIMO Systems
US8792923B2 (en) Radio base station, radio communication terminal, radio communication system, radio communication method and communication management method, using allocation of shared frequency
US9578622B2 (en) Method for allocating resources
WO2007110960A1 (ja) 通信装置および端末
JPWO2006098111A1 (ja) 無線通信システム、送信装置、送信方法、プログラム、記録媒体
CN108306750A (zh) 用于管理通信网络的带宽控制方法及系统、相关设备
WO2011096062A1 (ja) 帯域調整方法、通信装置及び帯域調整装置
EP3355523B1 (en) Relay transmission system, relay transmission method, and relay transmission device
WO2020209095A1 (ja) 多重伝送システム及び多重伝送方法
EP2775748B1 (en) Radio base station apparatus, radio resource management method, radio resource management program, wireless communication apparatus, and wireless communication system
US20150349891A1 (en) Apparatus and method for managing multi-wavelength resource of separate-type base station optical link
US20160261935A1 (en) Central base station apparatus capable of dynamically allocating multiple wavelengths
KR101218334B1 (ko) Tv 유휴 채널로 동작하는 스마트 유틸리티 네트워크에서의 무선 접속 제공 장치 및 방법
Kim et al. A radio over fiber based wireless access network architecture for rural areas
CN111491376B (zh) 一种空口资源调度方法及设备
JP7183930B2 (ja) 信号転送システム、信号転送方法及び経路制御装置
KR101502139B1 (ko) 인빌딩의 유무선 통합 장치, 그리고 이의 자원 할당 방법
US20110142012A1 (en) Method of allocating channel time for variable bit rate (vbr) traffic, apparatus for processing data and method thereof
US9543758B1 (en) Adaptive battery power distribution to remote radio heads in long term evolution (LTE) networks
US12010521B2 (en) Signal transfer system, signal transfer method, and path control device
KR20170089689A (ko) 클라우드 라디오 액세스 네트워크에서의 파장 동적 할당 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787247

Country of ref document: EP

Kind code of ref document: A1