WO2011096062A1 - 帯域調整方法、通信装置及び帯域調整装置 - Google Patents

帯域調整方法、通信装置及び帯域調整装置 Download PDF

Info

Publication number
WO2011096062A1
WO2011096062A1 PCT/JP2010/051618 JP2010051618W WO2011096062A1 WO 2011096062 A1 WO2011096062 A1 WO 2011096062A1 JP 2010051618 W JP2010051618 W JP 2010051618W WO 2011096062 A1 WO2011096062 A1 WO 2011096062A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
communication device
communication
increase
band used
Prior art date
Application number
PCT/JP2010/051618
Other languages
English (en)
French (fr)
Inventor
哲生 富田
文 木村
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2010/051618 priority Critical patent/WO2011096062A1/ja
Priority to EP10845198.0A priority patent/EP2533558A4/en
Priority to JP2011552616A priority patent/JP5522179B2/ja
Publication of WO2011096062A1 publication Critical patent/WO2011096062A1/ja
Priority to US13/567,204 priority patent/US8780879B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth

Definitions

  • the embodiments discussed herein relate to a method of adjusting a frequency band used in a communication system, a communication apparatus, and a band adjustment apparatus.
  • wireless communication systems In recent years, various wireless communication systems have been used together. Examples of wireless communication systems currently in service include 3rd generation mobile communication systems, 3.5th generation mobile communication systems, 3.9th generation mobile communication systems, Wi-Fi (Wireless Fidelity), and WiMAX (Worldwide Interoperability). for Microwave).
  • 3rd generation mobile communication systems 3.5th generation mobile communication systems
  • 3.9th generation mobile communication systems Wi-Fi (Wireless Fidelity), and WiMAX (Worldwide Interoperability). for Microwave).
  • Wi-Fi Wireless Fidelity
  • WiMAX Worldwide Interoperability
  • a wireless communication control method has been proposed that improves the total throughput of wireless communication traffic in a wireless communication area in a wireless communication environment in which a plurality of types of wireless communication methods coexist in adjacent wireless communication areas.
  • the communication link parameter collection unit collects parameters indicating the status of each communication link and determines resource allocation.
  • the communication resource allocation that maximizes the throughput is determined for each resource allocation cycle based on this parameter by the unit, and the multi-mode communication unit is controlled based on the determination result by the communication control unit.
  • a base station that obtains control information for a space / frequency mapping scheme that maps a user terminal on space and frequency, and the control information received Later, a dynamic spatial frequency division multiplexing communication system including a plurality of user terminals that control the transmission scheme of the transmitter using the same has been proposed.
  • resource allocation among different users can be balanced within the areas of transmission power, bandwidth, and spatial channel, so that a high system capacity can be realized and the utilization rate of frequency resources can be improved.
  • a wireless communication system that can dynamically allocate frequencies to a plurality of wireless communication systems that use the same frequency band.
  • the control device uses part of the frequency band overlapping with other wireless communication systems.
  • a plurality of base stations controlled by the control device allocates individual frequency channels to the respective divided bands obtained by dividing the frequency band allocated to the own radio communication system, and sets the frequency band allocated to at least one other radio communication system.
  • Repetitive cell number determining means for determining the number of frequency repetitive cells indicating the number of repetitive uses of the frequency channel to be allocated for each subband based on the use situation, and division allocated to each base station based on the frequency repetitive cell number Frequency band determining means for determining a band.
  • the mobile communication system includes a plurality of base station devices and provides communication services to the mobile station devices.
  • the mobile communication system is configured to acquire information on the usage status of radio resources of the peripheral base station device via the mobile station device existing in the vicinity of the peripheral base station device, and based on the acquired information, Means for disabling use of a radio resource being used by the peripheral base station apparatus or making it difficult to allocate user data to the radio resource.
  • An object of the apparatus and method according to the embodiment is to improve the utilization efficiency of a radio frequency band distributed to a plurality of communication systems used together.
  • the frequency band used by the first communication device in the first communication system is adjusted among the first communication system and the second communication system that share the available frequency band.
  • a bandwidth adjustment method is provided. In this method, it is determined whether or not it is necessary to increase the frequency band used by the first communication device based on the frequency band used by the first communication device and the number of accesses to the first communication device. If it is determined that an increase in the frequency band used in the first communication device is necessary, the coverage overlaps with that of the first communication device and is not used by the second communication device in the second communication system.
  • the first communication device is a band that determines whether or not it is necessary to increase the frequency band used by the first communication device based on the frequency band used by the first communication device and the number of accesses to the first communication device.
  • the first communication device and the coverage overlap A bandwidth increase request transmitter for transmitting a request signal for requesting an increase in a frequency band used in the first communication device to a second communication device in the communication system, and an approval signal for the request signal is the second communication device. Is received from the first communication device, the bandwidth increasing unit increases the frequency band used in the first communication device.
  • a second communication device used in the second communication system among the first communication system and the second communication system sharing the available frequency band with each other.
  • the second communication device receives a request signal for requesting an increase in the frequency band used in the first communication device from the first communication device in the first communication system whose coverage overlaps with that of the second communication device.
  • An increase in the frequency band used in the first communication device when it is determined in the determination in the bandwidth increase permission determination unit and the band increase permission determination unit that the increase in the frequency band used in the first communication device is permitted An approval signal transmitting unit for transmitting an approval signal for approving to the first communication device.
  • the frequency band used by the first communication device in the first communication system is A first band adjustment device for adjustment.
  • the first band adjustment device determines whether or not it is necessary to increase the frequency band used in the first communication device based on the frequency band used by the first communication device and the number of accesses to the first communication device.
  • the coverage overlaps with the first communication device.
  • Bandwidth increase for transmitting a request signal for requesting an increase in the frequency band used in the first communication device to the second bandwidth adjustment device that adjusts the frequency band used in the second communication device in the second communication system
  • the first communication device is provided with an increase instruction unit for instructing an increase in the used frequency band.
  • the frequency band used by the second communication device in the second communication system is A second band adjustment device for adjustment.
  • the second band adjustment device includes: a first band adjustment device that adjusts a frequency band used in the first communication device in the first communication system, the coverage overlapping with the second communication device; Depending on whether there is a band increase request receiving unit that receives a request signal for requesting an increase in the frequency band used in the communication apparatus, and an unused frequency band that is not used by the second communication apparatus, the first communication A band increase permission determination unit that determines whether or not to permit an increase in the frequency band used in the device, and a determination in the band increase permission determination unit that the increase in the frequency band used in the first communication device is permitted If it is, an approval signal transmitting unit that transmits an approval signal for approving an increase in the frequency band used in the first communication device to the first band adjustment device is provided.
  • the utilization efficiency of the radio frequency band distributed to a plurality of communication systems used in combination is improved.
  • FIG. 1 is a diagram illustrating a first configuration example of a communication system.
  • the first communication system 1 includes a first communication device 10.
  • the second communication system 2 includes a second communication device 20.
  • the first communication device 10 performs wireless communication with the third communication devices 30a and 30b.
  • the second communication device 20 performs wireless communication with the third communication device 30c.
  • the third communication devices 30a to 30c may be usable in both the first communication system 1 and the second communication system 2.
  • the third communication devices 30a to 30c may be collectively referred to as “third communication device 30”.
  • the first communication system 1 and the second communication system 2 share a radio frequency band that can be used for wireless communication with the third communication device 30. That is, the radio frequency band functionally usable by the first communication system 1 and the radio frequency band functionally usable by the second communication system 2 partially or entirely overlap.
  • the radio frequency band may be simply referred to as “frequency band”.
  • FIG. 2 is an explanatory diagram of frequency bands that can be used in the communication systems 1 and 2.
  • the entire frequency band shared as the usable frequency band by the first communication system 1 and the second communication system 2 is denoted as “Ba”.
  • the total frequency band Ba is divided into a plurality of frequency band units B1 to Bn.
  • the bandwidth of each frequency band B1 to Bn may be “W”, for example.
  • the first communication system 1 and the second communication system 2 may be a 3.5th generation mobile communication system or a 3.9th generation mobile communication system.
  • the bandwidth Wa of the entire frequency band Ba may be 20 MHz, for example.
  • the total frequency band Ba may be divided into four frequency band units B1 to B4, for example.
  • Each of the frequency bands B1 to B4 may have a bandwidth of 5 MHz.
  • the first communication device 10 and the second communication device 20 dynamically adjust the use frequency band so as not to use the same frequency band.
  • FIG. 3 is a diagram illustrating a first configuration example of the first communication device 10.
  • the first communication device 10 includes an average communication rate calculation unit 11, a band increase necessity determination unit 12, a band increase request transmission unit 13, an approval signal reception unit 14, and a band increase unit 15.
  • the average communication rate calculation unit 11 calculates the average communication rate va for each access to the first communication device 10 based on the frequency band used by the first communication device 10 and the number of accesses to the first communication device 10. To do.
  • the total communication rate that can be used by the entire access to the first communication device 10 is determined by the frequency band used by the first communication device 10 and the standard of the first communication system 1. For example, when the bandwidth of the frequency band used by the first communication device 10 is 5 MHz and the first communication system 1 is a 3.5th generation mobile communication system, the total downlink communication rate is 14 Mbps. is there. Further, for example, when the bandwidth of the frequency band used by the first communication device 10 is 5 MHz and the first communication system 1 is a 3.9th generation mobile communication system, the total communication rate is 37.5 Mbps. is there.
  • the average communication rate calculation unit 11 determines the communication rate of the overall access to the first communication device 10 based on the frequency bandwidth used by the first communication device 10 and the standard of the first communication system 1. Determine the total.
  • the average communication rate calculation unit 11 calculates the average communication rate va for each access by dividing the total communication rate by the current number of accesses to the first communication device.
  • the band increase necessity determination unit 12 determines whether the frequency band used in the first communication device 10 needs to be increased based on the average communication rate. For example, the band increase necessity determination unit 12 determines that the frequency band used by the first communication device 10 needs to be increased when the average communication rate va is smaller than a predetermined lower threshold T1.
  • the band increase necessity determination unit 12 may calculate an increase necessary for the used frequency band of the first communication device 10. For example, the bandwidth increase necessity determination unit 12 may calculate a communication rate difference that is a difference between the lower limit threshold T1 or a value obtained by adding a predetermined margin to the lower limit threshold T1 and the average communication rate va. The band increase necessity determination unit 12 may calculate the smallest number of frequency band units B1 to Bn that can accommodate the calculated communication rate difference as a necessary increase amount.
  • the band increase request transmission unit 13 sends a request signal for requesting an increase in the frequency band used in the first communication device 10 to the second communication when an increase in the frequency band used in the first communication device 10 is necessary. Transmit to device 20.
  • the request signal may include information regarding the necessary increase.
  • the approval signal receiving unit 14 receives an approval signal for the request signal from the second communication device 20.
  • the approval signal may include information related to the increase amount of the use frequency band of the first communication device 10 permitted by the second communication device 20.
  • the band increasing unit 15 increases the frequency band used in the first communication device 10 when receiving the approval signal from the second communication device 20.
  • the band increasing unit 15 may increase the use frequency band of the first communication device 10 by one of the frequency band units B1 to Bn.
  • the band increase unit 15 may increase the use frequency band of the first communication device 10 by the calculated increase.
  • the band increasing unit 15 may increase the use frequency band of the first communication device 10 by the increase amount.
  • FIG. 4 is a diagram illustrating a first configuration example of the second communication device 20.
  • the second communication device 20 includes a band increase request receiving unit 21, a band increase permission determining unit 22, and an approval signal transmitting unit 23.
  • the band increase request receiving unit 21 receives a request signal for requesting an increase in the frequency band used by the first communication apparatus 10 from the first communication apparatus 10.
  • the band increase permission determination unit 22 permits an increase in the frequency band requested by the request signal depending on whether or not there is an unused frequency band that is not used by the second communication device 20 in the entire frequency band Ba. It is determined whether or not to do.
  • the band increase permission determination unit 22 may permit the increase only for a part of the requested increase in the frequency band when the increase cannot be permitted for all of the requested increase in the frequency band. The same applies to other embodiments described below. For example, when the request signal includes information related to the increase required for the frequency band used by the first communication device 10 calculated by the first communication device 10, the band increase permission determination unit 22 Only a part of the frequency band may be allowed to increase.
  • the approval signal transmission unit 23 sends an approval signal for approving the increase in the frequency band used in the first communication device 10 to the first communication. Transmit to device 10.
  • the approval signal transmission unit 23 may transmit a disapproval signal indicating the disapproval of the increase in the frequency band used in the first communication device 10.
  • the band increase permission determination unit 22 permits the increase only for a part of the requested increase in the frequency band, the approval signal may include information on the permitted increase amount.
  • FIG. 5 is an explanatory diagram of processing in the first communication device 10.
  • the following operations AA to AG may be steps.
  • the first communication device 10 may periodically perform operations AA to AG.
  • the average communication rate calculation unit 11 determines the communication rate of the overall access to the first communication device 10 based on the frequency bandwidth used by the first communication device 10 and the standard of the first communication system 1. Determine the sum of.
  • the average communication rate calculation unit 11 acquires the current number of accesses to the first communication device 10.
  • the average communication rate calculation unit 11 calculates the average communication rate va by dividing the total communication rate of all accesses by the current number of accesses to the first communication device 10.
  • the bandwidth increase necessity determination unit 12 determines whether the average communication rate va is smaller than a predetermined lower threshold T1.
  • the processing proceeds to operation AE.
  • the average communication rate va is not smaller than the predetermined lower limit threshold T1 (operation AD: N)
  • the process ends.
  • the band increase request transmission unit 13 transmits a request signal for requesting an increase in the frequency band used by the first communication apparatus 10 to the second communication apparatus 20.
  • the approval signal receiving unit 14 attempts to receive an approval signal transmitted from the second communication device 20 in response to the request signal.
  • the processing proceeds to operation AG.
  • the approval signal is not received (operation AF: N)
  • the process ends.
  • the time when the approval signal is not received may be, for example, when the non-approval signal is received instead of the approval signal.
  • the band increasing unit 15 increases the frequency band used in the first communication device 10.
  • FIG. 6 is an explanatory diagram of a first example of processing in the second communication device 20.
  • the following operations BA to BC may be steps.
  • the second communication device 20 may execute operations BA to BC when receiving a request signal from the first communication device 10.
  • the bandwidth increase request receiving unit 21 receives a request signal from the first communication device 10.
  • the band increase permission determination unit 22 determines whether there is an unused frequency band that is not used by the second communication device 20 in the entire frequency band Ba. It is determined whether or not the increase is permitted.
  • operation BB: Y When there is an unused frequency band that is not used by the second communication device 20 (operation BB: Y), the processing proceeds to operation BC. When there is no unused frequency band that is not used by the second communication device 20 (operation BB: N), the processing ends.
  • the approval signal transmission unit 23 transmits an approval signal for approving an increase in the frequency band used in the first communication device 10 to the first communication device 10.
  • the first communication device 10 dynamically changes the frequency bandwidth used by the first communication device 10 based on the average communication rate va for each access to the first communication device. It becomes possible. According to the present embodiment, since the frequency band is dynamically added to the communication system having an excessive average communication rate va, it is possible to improve the use efficiency of the frequency band.
  • the amount of radio frequency bandwidth allocated to each mobile communication system has been allocated based on the expected amount of access occurring in each mobile communication system. This is because in the conventional mobile communication system, one radio channel is occupied by one access. However, at present, a mobile communication system that shares a single radio channel with a plurality of accesses is also used, so that the conventional allocation method based on the expected number of accesses is not appropriate.
  • one index for determining communication quality is a communication rate
  • a radio frequency band to be used on the basis of a communication rate required for each access It is desirable to determine the width. According to the present embodiment, it is possible to determine the frequency band allocation amount with reference to the average communication rate va for each access.
  • FIG. 7 is a diagram illustrating a second configuration example of the first communication device 10.
  • the connection of the new third communication device 30 is sequentially generated, and the communication rate of access to the first communication device 10 is naturally averaged by using the frequency band to which these are added.
  • the inter-band handover unit 16 transfers one of the accesses accommodated in the frequency band before the increase to the additional part of the frequency band after the increase. Hand over.
  • the inter-band handover unit 16 may perform access handover between frequency bands using an existing inter-frequency handover technique.
  • the added frequency band when the frequency band used in the first communication device 10 is increased, the added frequency band can be used at an early stage, so that the use efficiency of the frequency band is further improved.
  • FIG. 8 is a diagram illustrating a second configuration example of the second communication device 20.
  • the second communication device 20 includes a band increase request receiving unit 21, a band increase permission determining unit 22, an approval signal transmitting unit 23, an average communication rate calculating unit 24, a band reduction allowable determining unit 25, and a band reducing unit. 26.
  • the processing of the band increase request receiving unit 21 and the approval signal transmitting unit 23 is the same as the processing described with reference to FIG.
  • the average communication rate calculation unit 24 calculates the average communication rate va for each access to the second communication device 20 in the same manner as the average communication rate calculation unit 11 described above.
  • the band reduction allowance determination unit 25 determines whether or not to allow a reduction in the frequency band used in the second communication device 20 based on the average communication rate va. For example, the band reduction allowance determination unit 25 determines that the frequency band used in the first communication device 10 may be reduced when the average communication rate va is greater than a predetermined upper limit threshold T2.
  • the band reduction allowance determination unit 25 may calculate the allowable amount of the reduction amount of the used frequency band of the second communication device 20.
  • the bandwidth increase necessity determination unit 12 may calculate a communication rate difference that is a difference between the upper limit threshold T2 or a value obtained by subtracting a predetermined margin from the upper limit threshold T2 and the average communication rate va.
  • the band increase necessity determination unit 12 may calculate the smallest number of frequency band units B1 to Bn that can accommodate the calculated communication rate difference as an allowable amount of reduction.
  • the band increase permission determination unit 22 determines whether the first communication apparatus is based on whether there is an unused frequency band after the frequency band used by the second communication apparatus 20. 10 determines whether to permit an increase in the frequency band used.
  • the band reduction unit 26 reduces the frequency band used by the second communication device 20 when the reduction of the frequency band used by the second communication device 20 is allowed.
  • the band reduction unit 26 may reduce the use frequency band of the second communication device 20 by one of the frequency band units B1 to Bn.
  • the band reducing unit 26 may reduce the use frequency band of the second communication device 20 by this allowable amount.
  • FIG. 9 is an explanatory diagram of a second example of processing in the second communication device 20.
  • the following operations CA to CH may be steps.
  • the second communication device 20 may execute operations CA to CH when receiving a request signal from the first communication device 10.
  • the band increase request receiving unit 21 receives a request signal from the first communication device 10.
  • the average communication rate calculation unit 24 determines the communication rate of the overall access to the second communication device 20 based on the frequency bandwidth used by the second communication device 20 and the standard of the second communication system 2. Determine the sum of.
  • the average communication rate calculation unit 24 acquires the current number of accesses to the second communication device 20.
  • the average communication rate calculation unit 24 calculates the average communication rate va by dividing the total communication rate of all accesses by the current number of accesses to the second communication device 20.
  • the band reduction allowance determination unit 25 determines whether or not the average communication rate va is greater than a predetermined upper limit threshold T2. When the average communication rate va is larger than the upper limit threshold T2 (operation CE: Y), the processing proceeds to operation CF. When the average communication rate va is not greater than the upper limit threshold T2 (operation CE: N), the processing proceeds to operation CG.
  • the band reduction unit 26 reduces the frequency band used in the second communication device 20. Thereafter, the processing proceeds to operation CG.
  • operation CG the band increase permission determination unit 22 determines whether or not an unused frequency band exists. When an unused frequency band exists (operation CG: Y), the processing proceeds to operation CH. When there is no unused frequency band (operation CG: N), the process ends.
  • the approval signal transmission unit 23 transmits an approval signal for approving an increase in the frequency band used by the first communication device 10 to the first communication device 10.
  • the first communication device 10 may instantaneously disconnect each access and reconnect after changing the frequency bandwidth. Further, in order to increase the frequency band in the first communication device 10, a technique for integrating frequency bandwidths such as DC-HSPDA (Dual Cell High High Speed Downlink Packet Access) and frequency aggregation may be used. The same applies when the frequency band is reduced in the second communication device 20. The same applies to the case of changing the frequency band in the other embodiments described below.
  • DC-HSPDA Direct Cell High High Speed Downlink Packet Access
  • the second communication device 20 dynamically changes the frequency bandwidth used by the second communication device 20 according to the average communication rate va for each access to the second communication device. It becomes possible. According to the present embodiment, the use frequency band of the communication system having an excessive average communication rate va is dynamically reduced, so that the use efficiency of the frequency band can be improved.
  • FIG. 10 is an explanatory diagram of a third example of processing in the second communication device 20.
  • the following operations CA to CJ may be steps.
  • the second communication device 20 may execute operations CA to CJ when receiving a request signal from the first communication device 10, for example.
  • the band increase permission determination unit 22 determines whether or not the priority given in advance to the first communication system 1 is higher than the priority given in advance to the second communication system 2.
  • the processing proceeds to operation CJ.
  • the priority of the first communication system 1 is not higher than the priority of the second communication system 2 (operation CI: N)
  • the process ends.
  • the band reduction unit 26 reduces the frequency band used by the second communication device 20. Thereafter, the process proceeds to operation CH.
  • the approval signal transmission unit 23 transmits an approval signal to the first communication device 10.
  • the communication system to which the frequency band is preferentially assigned is determined. It becomes possible.
  • FIG. 11 is a diagram illustrating a third configuration example of the second communication device 20.
  • the second communication device 20 includes an interband handover unit 27.
  • the other components 21 to 26 shown in FIG. 11 are the same as the components 21 to 26 shown in FIG. Other embodiments described below may also include the interband handover unit 27.
  • the inter-band handover unit 27 When the frequency band used in the second communication device 20 is reduced, the inter-band handover unit 27 performs the access accommodated in the frequency band whose use is stopped due to the frequency band reduction even after the frequency band reduction. The second communication apparatus 20 is handed over to a frequency band that is continuously used.
  • FIG. 12 is a diagram illustrating a fourth configuration example of the second communication apparatus 20.
  • the second communication device 20 includes a band increase request receiving unit 21, a band increase permission determining unit 22, an approval signal transmitting unit 23, a remaining frequency band calculating unit 28, and a band changing unit 29.
  • the processing of the band increase request receiving unit 21 and the approval signal transmitting unit 23 is the same as the processing described with reference to FIG.
  • the remaining frequency band calculation unit 28 calculates the remaining frequency bandwidth Wr by the following equation (1).
  • Remaining frequency bandwidth Wr Wa ⁇ (W1 + W2) (1)
  • Wa represents the bandwidth of the entire frequency band Ba.
  • W1 is a used frequency bandwidth of the first communication device 10 when it is increased by an increase requested by the request signal.
  • W2 is a used frequency bandwidth required by the second communication device 20.
  • the remaining frequency band calculation unit 28 determines the required frequency based on the number of accesses to the second communication device 20, the standard of the second communication system 20, and a predetermined target value related to the average communication rate for each access.
  • the bandwidth W2 may be calculated.
  • the remaining frequency band calculation unit 28 may calculate the required frequency bandwidth W2 by a method described later with reference to FIG.
  • the band increase permission determination unit 22 permits an increase in the frequency band requested by the request signal.
  • the band increase permission determination unit 22 may not permit the increase of the frequency band requested by the request signal.
  • the second communication system 20 may transmit a non-approval signal for prohibiting an increase in the frequency band to the first communication system 10.
  • the band increase permission determination unit 22 gives the priority given to the first communication system 1 in advance and the priority given to the second communication system 2 in advance. You may compare with a priority. When the priority of the first communication system 1 is higher than the priority of the second communication system 2, the band increase permission determination unit 22 may permit an increase in the frequency band requested by the request signal.
  • the band changing unit 29 uses the second communication device 20 when the used frequency bandwidth W2 calculated by the remaining frequency band calculating unit 28 is different from the frequency bandwidth actually used by the second communication device 20.
  • the frequency bandwidth used by is changed to the used frequency bandwidth W2.
  • the band change part 29 increases the use frequency band of the 1st communication apparatus 10 as needed. Furthermore, the use frequency band of the 2nd communication apparatus 20 is reduced.
  • FIG. 13 is an explanatory diagram of a fourth example of processing in the second communication device 20.
  • the following operations DA to DI may be steps.
  • the second communication device 20 may execute operations DA to DI when receiving a request signal from the first communication device 10, for example.
  • the band increase request receiving unit 21 receives a request signal from the first communication device 10.
  • the remaining frequency band calculation unit 28 calculates a required frequency bandwidth W2 required by the second communication device 20.
  • FIG. 14 is an explanatory diagram of an example of a calculation processing DB for the required frequency bandwidth W2.
  • the following operations EA to EK may be steps.
  • the frequency band calculation unit 28 acquires the frequency band currently used by the second communication device 20 and determines the bandwidth.
  • the remaining frequency band calculation unit 28 temporarily substitutes the value of the frequency bandwidth currently in use for the value of the required frequency bandwidth W2.
  • the remaining frequency band calculating unit 28 acquires the current number of accesses to the second communication device 20.
  • the remaining frequency band calculation unit 28 calculates the average communication rate va for each access by dividing the communication rate that can be accommodated in the currently used frequency bandwidth by the current number of accesses.
  • the remaining frequency band calculation unit 28 determines whether or not the average communication rate va is smaller than a predetermined lower threshold T1. Instead, the frequency band calculation unit 28 may determine whether the average communication rate va is smaller than a value obtained by adding a margin to the lower limit threshold T1.
  • the processing proceeds to operation EI.
  • the processing proceeds to operation EF.
  • the remaining frequency band calculation unit 28 determines whether or not the average communication rate va is larger than a predetermined upper limit threshold T2. Instead, the frequency band calculation unit 28 may determine whether the average communication rate va is larger than a value obtained by subtracting the margin from the upper limit threshold T2. When the average communication rate va is larger than the predetermined upper limit threshold T2 (operation EF: Y), the processing proceeds to operation EG.
  • the process ends.
  • the average communication rate va calculated by the operation ED based on the frequency bandwidth currently in use is not smaller than the lower limit threshold T1 and not larger than the upper limit threshold T2, the value of the required frequency bandwidth W2 is Equal to the value of the frequency bandwidth.
  • the remaining frequency band calculation unit 28 reduces the value of the required frequency bandwidth W2 by one unit width W.
  • the remaining frequency band calculation unit 28 calculates the average communication rate va for each access by dividing the communication rate that can be accommodated in the reduced required frequency bandwidth W2 by the current number of accesses. Thereafter, the processing returns to operation EF.
  • operations EF to EH are repeatedly executed until the average communication rate va calculated based on the required frequency bandwidth W2 becomes smaller than the upper limit threshold T2.
  • the process ends when the average communication rate va calculated based on the required frequency bandwidth W2 becomes smaller than the upper limit threshold T2.
  • the remaining frequency band calculation unit 28 increases the value of the required frequency bandwidth W2 by one unit width W.
  • the remaining frequency band calculation unit 28 calculates the average communication rate va for each access by dividing the communication rate that can be accommodated in the increased required frequency bandwidth W2 by the current number of accesses.
  • the remaining frequency band calculation unit 28 determines whether or not the average communication rate va is smaller than a predetermined lower threshold T1 as in operation EE.
  • a predetermined lower threshold T1 As in operation EE: Y, the processing returns to operation EI.
  • the average communication rate va is not smaller than the predetermined lower limit threshold T1 (operation EE: N), the process ends.
  • the remaining frequency band calculating unit 28 calculates the remaining frequency bandwidth Wr by the equation (1).
  • the band increase permission determination unit 22 determines whether or not the remaining frequency bandwidth Wr is smaller than “0”. When the remaining frequency bandwidth Wr is smaller than “0” (operation DD: Y), the processing proceeds to operation DE. When the remaining frequency bandwidth Wr is not smaller than “0” (operation DD: N), the processing proceeds to operation DH.
  • the band increase permission determination unit 22 determines whether or not the priority of the first communication system 1 is higher than the priority of the second communication system 2. When the priority of the first communication system 1 is higher than the priority of the second communication system 2 (operation DE: Y), the processing proceeds to operation DH. When the priority of the first communication system 1 is not higher than the priority of the second communication system 2 (operation DE: N), the processing proceeds to operation DF.
  • the second communication system 20 transmits a non-approval signal prohibiting the increase of the frequency band to the first communication system 10.
  • the band changing unit 29 changes the frequency bandwidth used by the second communication device 20 to the used frequency bandwidth W2 as necessary.
  • the approval signal transmission unit 23 transmits an approval signal to the first communication device 10.
  • the band changing unit 29 changes the frequency bandwidth used by the second communication device 20 to the used frequency bandwidth W2 as necessary.
  • the priority of the first communication system 1 is higher than the priority of the second communication system 2, and the use frequency band of the second communication device 20 is increased in order to increase the use frequency band of the first communication device 10.
  • the bandwidth changing unit 29 reduces the used frequency bandwidth of the second communication device 20.
  • the frequency band used by the communication devices of these communication systems can be dynamically adjusted based on the average communication rate according to the usage status of each of the plurality of communication systems.
  • FIG. 15 is a diagram illustrating a second configuration example of the communication system.
  • the configuration example of the communication system illustrated in FIG. 15 includes a first band adjustment device 40 and a second band adjustment device 50.
  • the first band adjustment device 40 executes the above-described process for adjusting the frequency band used by the first communication device 10. Therefore, the first band adjustment device 40 may include the constituent elements 11 to 15 shown in FIG. 3 or the constituent elements 11 to 16 shown in FIG.
  • the second band adjustment device 50 executes the above-described process for adjusting the frequency band used by the second communication device 20.
  • the second band adjusting device 50 includes the constituent elements 21 to 23 shown in FIG. 4, the constituent elements 21 to 26 shown in FIG. 8, the constituent elements 21 to 27 shown in FIG. 11, or the constituent elements 21 to 23, 28 shown in FIG. And 29 may be provided.
  • the first band adjustment device 40 and the second band adjustment device 50 may be separate and independent devices, or may be integrated devices.
  • the present embodiment it is possible to implement the present embodiment without greatly changing the existing device configuration by realizing the bandwidth adjustment device as a device separate from the communication device.
  • FIG. 16 is a diagram illustrating a third configuration example of the communication system.
  • the first communication system 100a includes a first node device 102a and a first base station device 103a.
  • the second communication system 100b includes a second node device 102b and a second base station device 103b.
  • the first base station apparatus 103a and the second base station apparatus 103b are connected to the network 101 via node apparatuses 102a and 102b, respectively.
  • the first base station device 103a performs wireless communication with the mobile station devices 104a and 104b. Further, in the second communication system 100b, the second base station apparatus 103b performs wireless communication with the mobile station apparatus 104c.
  • the mobile station devices 104a to 104c may be usable in both the first communication system 100a and the second communication system 100b.
  • the first communication system 100 a and the second communication system 100 b share a frequency band that can be used for wireless communication with the mobile station device 104. Moreover, the coverage of the 1st base station apparatus 103a and the coverage of the 2nd base station apparatus 103b overlap.
  • node devices 102a and 102b may be collectively referred to as “node device 102”.
  • base station apparatuses 103a and 103b may be collectively referred to as “base station apparatus 103”.
  • mobile station apparatuses 104a to 104c may be collectively referred to as “mobile station apparatus 104”.
  • FIG. 17 is a diagram illustrating a hardware configuration of the base station apparatus 103.
  • the base station apparatus 103 includes a processor 110, a storage unit 111, a network communication interface 112, a wireless communication unit 113, and a bus 114.
  • the processor 110, the storage unit 111, the network communication interface 112, and the wireless communication unit 113 are connected to a bus 114 that transmits data.
  • the storage unit 111 stores various computer programs and data for controlling the operation of the base station apparatus 103.
  • the storage unit 111 may include a storage device such as a memory and an auxiliary storage device such as a hard disk.
  • the processor 110 is a known data processing device, and executes programs stored in the storage unit 111 to execute each process for controlling the operation of the base station device 103.
  • the network communication interface 112 executes a communication interface process between the node device 102 and the base station device 103. Further, the wireless communication unit 113 executes a wireless communication process with the mobile station device 104. Note that the hardware configuration shown in FIG. 17 is merely an example of the hardware configuration of base station apparatus 103. Various types of hardware configurations can be employed for the base station apparatus 103 as long as the processes described below are executed.
  • FIG. 18 is a block diagram illustrating a first configuration example of the base station apparatus 103.
  • the function of each block illustrated in FIG. 18 is realized by the processor 110 executing a program stored in the storage unit 111.
  • the functions related to this embodiment are mainly shown.
  • the base station apparatus 103 includes a base station function unit 120 and a band adjustment unit 121.
  • the base station function unit 120 executes processing of the base station device 103 as a base station device.
  • the base station function unit 120 includes a network interface termination unit 131, a protocol termination unit 132, a resource control unit 133, and a radio interface termination unit 134.
  • the network interface termination unit 131 performs termination processing of signals transmitted / received between the node apparatus 102 or the network 101 and the base station apparatus 103.
  • the radio interface termination unit 134 performs termination processing for radio signals transmitted and received between the mobile station device 104 and the base station device 103.
  • the protocol termination unit 132 performs termination processing of a communication protocol between the mobile station device 104 and the base station device 103. Further, the protocol termination unit 132 performs communication protocol termination processing between the node apparatus 102 or the network 101 and the base station apparatus 103.
  • the resource control unit 133 controls radio resources used by the base station apparatus 103 for radio communication with the mobile station apparatus 104.
  • the resource control unit 133 increases or decreases the frequency band that the base station apparatus 103 uses for wireless communication with the mobile station apparatus 104 in accordance with an instruction from the band adjustment unit 121.
  • the resource control unit 133 outputs a signal indicating the frequency band currently used by the base station apparatus 103 for wireless communication with the mobile station apparatus 104 to the band adjustment unit 121.
  • the resource control unit 133 detects the number of accesses from the mobile station device 104 to the base station device 103.
  • the resource control unit 133 outputs a signal indicating the detected number of accesses to the band adjustment unit 121.
  • FIG. 19 is a block diagram illustrating a first configuration example of the bandwidth adjustment unit 121.
  • the band adjustment unit 121 includes an average communication rate calculation unit 11, a band increase necessity determination unit 12, a band increase request transmission unit 13, an approval signal reception unit 14, a band increase unit 15, and an interband handover unit 16.
  • the band adjusting unit 121 includes a band increase request receiving unit 21, a band increase permission determining unit 22, an approval signal transmitting unit 23, a band reduction allowable determining unit 25, and a band reducing unit 26.
  • the band adjustment unit 121 of the first base station apparatus 103a increases the use frequency band of the first base station apparatus 103a
  • the constituent elements 11 to 16 are the same as the constituent elements 11 to 16 shown in FIG. Similar processing is performed.
  • the average rate calculation unit 11 receives a signal indicating the number of accesses to the first base station apparatus 103a from the resource control unit 133. Further, the average rate calculation unit 11 receives a signal indicating the frequency band currently in use from the resource control unit 133.
  • the band increase unit 15 instructs the resource control unit 133 to increase the use frequency band. The same applies to other embodiments described below.
  • the constituent elements 21 to 26 are the same as the constituent elements 21 to 26 shown in FIG. Process. Further, the average communication rate calculation unit 11 performs the same processing as the average communication rate calculation unit 24 illustrated in FIG.
  • the inter-band handover unit 16 performs the same process as the inter-band handover unit 27 shown in FIG. At this time, the average rate calculation unit 11 receives a signal indicating the number of accesses to the second base station device 103b from the resource control unit 133. Further, the average rate calculation unit 11 receives a signal indicating the frequency band currently in use from the resource control unit 133. When reducing the used frequency band, the band reducing unit 26 instructs the resource control unit 133 to reduce the used frequency band.
  • FIG. 20 is a block diagram illustrating a second configuration example of the bandwidth adjustment unit 121.
  • the band adjustment unit 121 includes an average communication rate calculation unit 11, a band increase necessity determination unit 12, a band increase request transmission unit 13, an approval signal reception unit 14, a band increase unit 15, and an interband handover unit 16.
  • the band adjusting unit 121 includes a band increase request receiving unit 21, a band increase permission determining unit 22, an approval signal transmitting unit 23, a remaining frequency band calculating unit 28, and a band changing unit 29.
  • the bandwidth adjustment unit 121 of the second base station apparatus 103b receives the request signal from the first base station apparatus 103a
  • the constituent elements 21 to 23, 28 and 29 are the constituent elements 21 to 21 shown in FIG.
  • the same processing as 23, 28 and 29 is performed.
  • the interband handover unit 16 performs the same processing as the interband handover unit 27 shown in FIG.
  • the remaining frequency band calculation unit 28 receives a signal indicating the number of accesses to the second base station device 103b from the resource control unit 133.
  • the remaining frequency band calculation unit 28 receives a signal indicating the frequency band currently in use from the resource control unit 133.
  • the band changing unit 29 instructs the resource control unit 133 to change the used frequency band.
  • the present embodiment it is possible to dynamically adjust the frequency bands used by the base station apparatuses in these communication systems based on the average communication rate according to the usage status of each of the plurality of communication systems. it can.
  • FIG. 21 is a block diagram illustrating a second configuration example of the base station apparatus 103.
  • one base station apparatus 103 has both the base station function of the first communication system 100a and the base station function of the second communication system 100b.
  • the base station apparatus 103 includes a first base station function unit 120a, a second base station function unit 120b, a first band adjustment unit 121a, and a second band adjustment unit 121b.
  • the configuration and processing of the first base station function unit 120a and the first band adjustment unit 121a are the same as those of the first base station device 103a described with reference to FIGS. 18 to 20 and the band adjustment unit 121. The same functions and processing may be used.
  • the configuration and processing of the second base station function unit 120b and the second band adjustment unit 121b are the same as the base station function unit 120 and the band adjustment unit 121 described with reference to FIGS. 18 to 20 for the second base station device 103b. The same functions and processing may be used.
  • the frequencies used by the base station apparatuses in these communication systems according to the usage status of each system.
  • the bandwidth can be dynamically adjusted based on the average communication rate.
  • FIG. 22 is a diagram illustrating a fourth configuration example of the communication system.
  • the configuration example of the communication system illustrated in FIG. 22 includes a first band adjustment device 105a and a second band adjustment device 105b.
  • the first band adjustment device 105a executes processing for adjusting the frequency band used by the first base station device 103a. Therefore, the first band adjustment device 105a may include a band adjustment unit 121 illustrated in FIG.
  • the second band adjustment device 105b executes processing for adjusting the frequency band used by the second base station device 103b.
  • the second band adjustment device 105b may include a band adjustment unit 121 illustrated in FIG. Note that the first band adjustment device 105a and the second band adjustment device 105b may be separate and independent devices, or may be integrated devices.
  • the present embodiment it is possible to implement the present embodiment without greatly changing the existing device configuration by realizing the bandwidth adjustment device as a device separate from the base station device.

Abstract

 利用可能な周波数帯域を互いに共有する第1通信システム及び第2通信システムのうち、第1通信システム内の第1通信装置の使用周波数帯域を調整する帯域調整方法であって、第1の通信装置が使用する周波数帯域及び第1の通信装置に対するアクセスの数に基づいて第1通信装置で使用する周波数帯域の増加の要否判定をし、第1通信装置とカバレッジが重複する、第2通信システム内の第2通信装置によって使用されない未使用の周波数帯域の有無に応じて第1通信装置の使用周波数帯域の増加の許諾判定をし、増加が許可される場合、第1通信装置で使用する周波数帯域を増加する。

Description

帯域調整方法、通信装置及び帯域調整装置
 本明細書で論じられる実施態様は、通信システムで使用される周波数帯域の調整方法、通信装置及び帯域調整装置に関する。
 近年様々な無線通信システムが併用されている。現在サービス中の無線通信システムの例としては、第3世代移動通信システム、第3.5世代移動通信システム、第3.9世代移動通信システム、Wi-Fi(Wireless Fidelity)や、WiMAX(Worldwide Interoperability for Microwave)がある。
 なお、近接した無線通信エリア内で複数種の無線通信方式が混在する無線通信環境下において、無線通信エリア内における無線通信トラフィックの総スループットを向上させる無線通信制御方法が提案されている。マルチモード制御局がネットワーク内の複数の端末局に対して複数種類の通信方式を用いて通信を行う場合に、通信リンクパラメータ収集部によって各通信リンクにおける状況を示すパラメータを収集し、リソース割り当て決定部によってこのパラメータに基づいてリソース割り当て周期毎にスループットが最大となる通信リソース割り当てを決定し、通信制御部によってこの決定結果に基づいてマルチモード通信部を制御する。
 また、最適化方程式を利用して最適化計算を行うことによって、ユーザ端末を空間及び周波数上にマッピングする空間/周波数マッピング方式のための制御情報を取得する基地局と、上記制御情報を受信した後、それを利用して、送信機の送信方式を制御する複数のユーザ端末とを含んだ動的空間周波数分割多重通信システムが提案されている。このシステムでは、伝送パワー、帯域幅、及び空間チャネルの領域内で、異なるユーザ間の資源割当を均衡化して、高いシステム容量が実現でき、周波数資源の利用率を向上させることができる。
 また、同一周波数帯域を利用する複数の無線通信システムに対し、動的に周波数を配置することができる無線通信システムが提案されている。制御装置は、他の無線通信システムと周波数帯域の一部を重複して利用する。当該制御装置に制御される複数の基地局は、自無線通信システムの割り当て周波数帯域を分割した各分割帯域に個別の周波数チャネルを割り当て、少なくとも1つの他の無線通信システムに割り当てられた周波数帯域の利用状況に基づいて、分割帯域毎に割り当てる周波数チャネルの繰返し利用数を示す周波数繰返し利用セル数を決定する繰返し利用セル数決定手段と、周波数繰返し利用セル数に基づいて、各基地局へ割り当てる分割帯域を決定する周波数帯域決定手段とを備える。
 また、複数のセルに対して適応的に周波数ブロック、タイムスロット、符号もしくはこれらの組み合わせ等の無線リソースを割り振ることで周波数利用効率を向上させる移動通信システムが提案されている。移動通信システムは、複数の基地局装置を備え、移動局装置に対して通信サービスを提供する。移動通信システムは、周辺基地局装置の近傍に存在する移動局装置を介し、上記周辺基地局装置の無線リソースの使用状況の情報を取得する手段と、取得した情報に基づき、着目基地局装置において上記周辺基地局装置が使用中の無線リソースを使用不可もしくはその無線リソースへのユーザデータの割り振りが行われにくくする手段とを備える。
国際公開第2005/117473号パンフレット 特開2007-184933号公報 特開2005-210703号公報 特開2008-278265号公報
 従来、併用されるそれぞれの無線通信システムに対して、固定的に無線周波数帯域が割り当てられていた。近年の無線通信システムの多様化により、従来の方法ではこれら無線通信システムに効率的に無線周波数帯域を分配することが困難になっている。
 実施態様に係る装置及び方法は、併用される複数の通信システムへ分配される無線周波数帯域の利用効率を向上することを目的とする。
 実施例の一態様によれば、利用可能な周波数帯域を互いに共有する第1通信システム及び第2通信システムのうち、第1通信システム内の第1の通信装置で使用される周波数帯域を調整する帯域調整方法が与えられる。この方法では、第1の通信装置が使用する周波数帯域及び第1の通信装置に対するアクセスの数に基づいて、第1の通信装置で使用する周波数帯域の増加の要否判定をし、要否判定において第1の通信装置で使用する周波数帯域の増加が必要であると判定された場合、第1の通信装置とカバレッジが重複する、第2通信システム内の第2の通信装置によって使用されない未使用の周波数帯域があるか否かに応じて、第1の通信装置で使用する周波数帯域の増加の許諾判定をし、許諾判定において第1の通信装置で使用する周波数帯域の増加を許可すると判定された場合、第1の通信装置で使用する周波数帯域を増加する。
 実施例の他の一態様によれば、利用可能な周波数帯域を互いに共有する第1通信システム及び第2通信システムのうち、第1通信システムで使用される第1の通信装置が与えられる。第1の通信装置は、第1の通信装置が使用する周波数帯域及び第1の通信装置に対するアクセスの数に基づいて、第1の通信装置で使用する周波数帯域の増加の要否を判定する帯域増加要否判定部と、帯域増加要否判定部における判定において第1の通信装置で使用する周波数帯域の増加が必要であると判定された場合、第1の通信装置とカバレッジが重複する、第2通信システム内の第2の通信装置に、第1の通信装置で使用する周波数帯域の増加を要求する要求信号を送信する帯域増加要求送信部と、要求信号に対する承認信号が第2の通信装置から受信された場合、第1の通信装置で使用する周波数帯域の増加する帯域増加部を備える。
 実施例の他の一態様によれば、利用可能な周波数帯域を互いに共有する第1通信システム及び第2通信システムのうち、第2通信システムで使用される第2の通信装置が与えられる。第2の通信装置は、第2の通信装置とカバレッジが重複する、第1通信システム内の第1の通信装置から、第1の通信装置で使用する周波数帯域の増加を要求する要求信号を受信する帯域増加要求受信部と、第2の通信装置によって使用されない未使用の周波数帯域があるか否かに応じて、第1の通信装置で使用する周波数帯域の増加を許可するか否かを判定する帯域増加許可判定部と、帯域増加許可判定部における判定において第1の通信装置で使用する周波数帯域の増加が許可されると判定された場合、第1の通信装置で使用する周波数帯域の増加を承認する承認信号を、第1の通信装置へ送信する承認信号送信部を備える。
 実施例の他の一態様によれば、利用可能な周波数帯域を互いに共有する第1通信システム及び第2通信システムのうち、第1通信システム内の第1の通信装置で使用される周波数帯域を調整する第1の帯域調整装置が与えられる。第1の帯域調整装置は、第1の通信装置が使用する周波数帯域及び第1の通信装置に対するアクセスの数に基づいて、第1の通信装置で使用する周波数帯域の増加の要否を判定する帯域増加要否判定部と、帯域増加要否判定部における判定において第1の通信装置で使用する周波数帯域の増加が必要であると判定された場合、第1の通信装置とカバレッジが重複する、第2通信システム内の第2の通信装置で使用される周波数帯域を調整する第2の帯域調整装置に、第1の通信装置で使用する周波数帯域の増加を要求する要求信号を送信する帯域増加要求送信部と、要求信号に対する承認信号が第2の帯域調整装置から受信された場合、第1の通信装置に、使用周波数帯域の増加を指示する増加指示部を備える。
 実施例の他の一態様によれば、利用可能な周波数帯域を互いに共有する第1通信システム及び第2通信システムのうち、第2通信システム内の第2の通信装置で使用される周波数帯域を調整する第2の帯域調整装置が与えられる。第2の帯域調整装置は、第2の通信装置とカバレッジが重複する、第1通信システム内の第1の通信装置で使用される周波数帯域を調整する第1の帯域調整装置から、第1の通信装置で使用する周波数帯域の増加を要求する要求信号を受信する帯域増加要求受信部と、第2の通信装置によって使用されない未使用の周波数帯域があるか否かに応じて、第1の通信装置で使用する周波数帯域の増加を許可するか否かを判定する帯域増加許可判定部と、帯域増加許可判定部における判定において第1の通信装置で使用する周波数帯域の増加が許可されると判定された場合、第1の通信装置で使用する周波数帯域の増加を承認する承認信号を、第1の帯域調整装置へ送信する承認信号送信部を備える。
 上記実施例によれば、併用される複数の通信システムへ分配される無線周波数帯域の利用効率が向上する。
 本発明の目的及び利点は、特に特許請求の範囲に示した要素及びその組合せを用いて具現化され達成される。前述の一般的な記述及び以下の詳細な記述の両方は、単なる例示及び説明であり、特許請求の範囲のように本発明を限定するものでないと解するべきである。
通信システムの第1構成例を示す図である。 各通信システムにおいて利用可能な周波数帯域の説明図である。 第1の通信装置の第1構成例を示す図である。 第2の通信装置の第1構成例を示す図である。 第1の通信装置における処理の説明図である。 第2の通信装置における処理の第1例の説明図である。 第1の通信装置の第2構成例を示す図である。 第2の通信装置の第2構成例を示す図である。 第2の通信装置における処理の第2例の説明図である。 第2の通信装置における処理の第3例の説明図である。 第2の通信装置の第3構成例を示す図である。 第2の通信装置の第4構成例を示す図である。 第2の通信装置における処理の第4例の説明図である。 所要周波数帯域の算出処理の一例の説明図である。 通信システムの第2構成例を示す図である。 通信システムの第3構成例を示す図である。 基地局装置のハードウエア構成を示す図である。 基地局装置の第1構成例を示すブロック図である。 帯域調整部の第1構成例を示すブロック図である。 帯域調整部の第2構成例を示すブロック図である。 基地局装置の第2構成例を示すブロック図である。 通信システムの第4構成例を示す図である。
 以下、添付される図面を参照して、好ましい実施例について説明する。図1は、通信システムの第1構成例を示す図である。第1の通信システム1は、第1の通信装置10を備える。また第2の通信システム2は、第2の通信装置20を備える。第1の通信システム1において第1の通信装置10は、第3の通信装置30a及び30bとの間で無線通信を行う。また、第2の通信システム2において第2の通信装置20は、第3の通信装置30cとの間で無線通信を行う。なお、第3の通信装置30a~30cは、第1の通信システム1及び第2の通信システム2のどちらにおいても使用可能であってもよい。以下の説明において、第3の通信装置30a~30cを総称して「第3の通信装置30」と表記することがある。
 第1の通信システム1と第2の通信システム2は、第3の通信装置30との間の無線通信のために利用可能な無線周波数帯域を共有している。すなわち、第1の通信システム1が機能上利用可能な無線周波数帯域と、第2の通信システム2が機能上利用可能な無線周波数帯域とは、その一部又は全部が重複している。以下の説明において、無線周波数帯域を単に「周波数帯域」と表記することがある。
 図2は、各通信システム1及び2において利用可能な周波数帯域の説明図である。第1の通信システム1及び第2の通信システム2が、利用可能な周波数帯域として共有する周波数帯域の全体を「Ba」と表記する。全周波数帯域Baは、複数の周波数帯域の単位B1~Bnに分割される。各周波数帯域B1~Bnの帯域幅は例えば「W」であってよい。このとき、全周波数帯域Baの帯域幅は、「Wa=n×W」となる。なお、各周波数帯域B1~Bnの帯域幅は均一でなくともよい。
 例えば、第1の通信システム1及び第2の通信システム2は、第3.5世代移動通信システムや第3.9世代移動通信システムであってよい。このとき、全周波数帯域Baの帯域幅Waは、例えば20MHzであってよい。全周波数帯域Baは、例えば4つの周波数帯域の単位B1~B4に分割されてよい。各周波数帯域B1~B4の帯域幅は、各々5MHzであってよい。
 図1を参照する。第1の通信装置10のカバレッジと第2の通信装置20のカバレッジとが重複する場合を想定する。このとき、第1の通信システム1と第2の通信システム2とが同じ周波数帯域を実際に使用すると、これらの通信システムの間で干渉が生じる。したがって、以下に説明するように、第1の通信装置10及び第2の通信装置20は、同じ周波数帯域を使用しないように使用周波数帯域を動的に調整する。
 図3は、第1の通信装置10の第1構成例を示す図である。第1の通信装置10は、平均通信レート算出部11と、帯域増加要否判定部12と、帯域増加要求送信部13と、承認信号受信部14と、帯域増加部15を備える。
 平均通信レート算出部11は、第1の通信装置10が使用する周波数帯域及び第1の通信装置10に対するアクセスの数に基づいて、第1の通信装置10に対するアクセス毎の平均通信レートvaを算出する。第1の通信装置10に対するアクセス全体が使用可能な通信レートの合計は、第1の通信装置10が使用する周波数帯域と、第1の通信システム1の規格によって定まる。例えば、第1の通信装置10が使用する周波数帯域の帯域幅が5MHzであり、第1の通信システム1が第3.5世代移動通信システムである場合、下りリンクの通信レートの合計は14Mbpsである。また例えば、第1の通信装置10が使用する周波数帯域の帯域幅が5MHzであり、第1の通信システム1が第3.9世代移動通信システムである場合、通信レートの合計は37.5Mbpsである。
 平均通信レート算出部11は、例えば、第1の通信装置10が使用中の周波数帯域幅と、第1の通信システム1の規格に基づいて、第1の通信装置10に対するアクセス全体の通信レートの合計を決定する。平均通信レート算出部11は、通信レートの合計を、第1の通信装置に対する現在のアクセス数で除算することにより、アクセス毎の平均通信レートvaを算出する。
 帯域増加要否判定部12は、平均通信レートに基づいて第1の通信装置10で使用する周波数帯域の増加の要否を判定する。例えば、帯域増加要否判定部12は、平均通信レートvaが所定の下限閾値T1より小さいとき、第1の通信装置10で使用する周波数帯域の増加が必要であると判定する。
 帯域増加要否判定部12は、第1の通信装置10の使用周波数帯域に必要な増量を算出してもよい。例えば、帯域増加要否判定部12は、下限閾値T1又はこれに所定のマージンを加えた値と平均通信レートvaとの差分である通信レート差を算出してよい。帯域増加要否判定部12は、算出された通信レート差を収容することができる最も小さな個数の周波数帯域の単位B1~Bnを、必要な増量として算出してよい。
 帯域増加要求送信部13は、第1の通信装置10で使用する周波数帯域の増加が必要である場合、第1の通信装置10で使用する周波数帯域の増加を要求する要求信号を第2の通信装置20へ送信する。要求信号は、上記の必要な増量に関する情報を含んでいてよい。
 承認信号受信部14は、上記の要求信号に対する承認信号を第2の通信装置20から受信する。後述するように、承認信号は、第2の通信装置20により許可された、第1の通信装置10の使用周波数帯域の増加量に関する情報を含んでいてよい。
 帯域増加部15は、承認信号を第2の通信装置20から受信したとき、第1の通信装置10で使用する周波数帯域を増加する。例えば、帯域増加部15は、周波数帯域の単位B1~Bnの1つ分だけ第1の通信装置10の使用周波数帯域を増加してよい。例えば、帯域増加要否判定部12が上記必要な増量を算出するときは、帯域増加部15は、算出された増量分だけ第1の通信装置10の使用周波数帯域を増加してよい。さらに、例えば、承認信号が増加量に関する情報を含んでいるときは、帯域増加部15は、この増加量の分だけ第1の通信装置10の使用周波数帯域を増加してよい。
 図4は、第2の通信装置20の第1構成例を示す図である。第2の通信装置20は、帯域増加要求受信部21と、帯域増加許可判定部22と、承認信号送信部23とを備える。帯域増加要求受信部21は、第1の通信装置10から、第1の通信装置10で使用する周波数帯域の増加を要求する要求信号を受信する。
 帯域増加許可判定部22は、全周波数帯域Ba内に、第2の通信装置20によって使用されない未使用の周波数帯域があるか否かに応じて、要求信号で要求された周波数帯域の増加を許可するか否かを判定する。
 帯域増加許可判定部22は、要求された周波数帯域の増加の全部について増加を許可できないとき、要求された周波数帯域の増加の一部についてのみ増加を許可してもよい。以下に説明される他の実施例においても同様である。例えば、第1の通信装置10で算出された、第1の通信装置10の使用周波数帯域に必要な増量に関する情報が要求信号に含まれるとき、帯域増加許可判定部22は、この必要な増量の一部のみについて使用周波数帯域の増加を許可してもよい。
 承認信号送信部23は、第1の通信装置10で使用する周波数帯域の増加が許可される場合、第1の通信装置10で使用する周波数帯域の増加を承認する承認信号を、第1の通信装置10へ送信する。第1の通信装置10で使用する周波数帯域の増加が許可されない場合、承認信号送信部23は、第1の通信装置10で使用する周波数帯域の増加の不承認を示す不承認信号を送信してもよい。帯域増加許可判定部22が、要求された周波数帯域の増加の一部についてのみ増加を許可するとき、承認信号には許可された増加量に関する情報を含んでいてもよい。
 図5は、第1の通信装置10における処理の説明図である。なお、他の実施態様においては、下記のオペレーションAA~AGの各オペレーションはステップであってもよい。第1の通信装置10は、例えばオペレーションAA~AGを周期的に実行してよい。
 オペレーションAAにおいて平均通信レート算出部11は、第1の通信装置10が使用中の周波数帯域幅と、第1の通信システム1の規格に基づいて、第1の通信装置10に対するアクセス全体の通信レートの合計を決定する。
 オペレーションABにおいて平均通信レート算出部11は、第1の通信装置10に対する現在のアクセス数を取得する。オペレーションACにおいて平均通信レート算出部11は、アクセス全体の通信レートの合計を、第1の通信装置10に対する現在のアクセス数で除算することにより、平均通信レートvaを算出する。
 オペレーションADにおいて帯域増加要否判定部12は、平均通信レートvaが所定の下限閾値T1より小さいか否かを判定する。平均通信レートvaが所定の下限閾値T1より小さいとき(オペレーションAD:Y)、処理はオペレーションAEへ進む。平均通信レートvaが所定の下限閾値T1より小さくないとき(オペレーションAD:N)、処理は終了する。
 オペレーションAEにおいて帯域増加要求送信部13は、第1の通信装置10で使用する周波数帯域の増加を要求する要求信号を第2の通信装置20へ送信する。オペレーションAFにおいて承認信号受信部14は、要求信号に対して第2の通信装置20から送信される承認信号の受信を試みる。
 承認信号が受信されたとき(オペレーションAF:Y)、処理はオペレーションAGへ進む。承認信号が受信されないとき(オペレーションAF:N)、処理は終了する。承認信号が受信されないときとは、例えば承認信号ではなく非承認信号が受信されたときであってもよい。オペレーションAGにおいて帯域増加部15は、第1の通信装置10で使用する周波数帯域を増加する。
 図6は、第2の通信装置20における処理の第1例の説明図である。なお、他の実施態様においては、下記のオペレーションBA~BCの各オペレーションはステップであってもよい。第2の通信装置20は、例えば、第1の通信装置10から要求信号を受信したときにオペレーションBA~BCを実行してよい。
 オペレーションBAにおいて帯域増加要求受信部21は、第1の通信装置10から要求信号を受信する。オペレーションBBにおいて帯域増加許可判定部22は、全周波数帯域Ba内に、第2の通信装置20によって使用されない未使用の周波数帯域があるか否かに応じて、要求信号で要求された周波数帯域の増加を許可するか否かを判定する。
 第2の通信装置20によって使用されない未使用の周波数帯域があるとき(オペレーションBB:Y)、処理はオペレーションBCへ進む。第2の通信装置20によって使用されない未使用の周波数帯域がないとき(オペレーションBB:N)、処理は終了する。
 オペレーションBCにおいて承認信号送信部23は、第1の通信装置10で使用する周波数帯域の増加を承認する承認信号を、第1の通信装置10へ送信する。
 本実施例によれば、第1の通信装置10は、第1の通信装置に対するアクセス毎の平均通信レートvaに基づいて、第1の通信装置10で使用する周波数帯域幅を動的に変更することが可能となる。本実施例によれば、平均通信レートvaが過小な通信システムに対して周波数帯域を動的に追加するため、周波数帯域の利用効率を向上することが可能となる。
 また、従来、各移動通信システムへの無線周波数帯域幅の割り当て量は、各移動通信システムで生じるアクセス数の予想量を基準にして割り当てられていた。これは、従来の移動通信システムでは、1つのアクセスによって1つの無線チャネルが占有されていたためである。しかしながら、現在では、複数のアクセスで1つの無線チャネルを共用する移動通信システムも使用されているため、アクセス数の予想量を基準にする従来の割り当て方法は適切ではなかった。
 通信品質を決定する1つの指標は通信レートであるため、複数のアクセスで1つの無線チャネルを共用する場合には、各アクセス毎に必要とされる通信レートを基準にして、使用する無線周波数帯域幅を決定することが望ましい。本実施例によれば、アクセス毎の平均通信レートvaを基準として周波数帯域の割り当て量を決定することが可能となる。
 続いて、第1の通信装置10の他の実施例について説明する。図7は、第1の通信装置10の第2構成例を示す図である。図3に示す実施例では、第1の通信装置10で使用する周波数帯域が増加しても、すぐに追加された周波数帯域にアクセスが収容されるわけではない。このため既存の通信レートがすぐに向上するわけではない。新たな第3の通信装置30の接続が順次発生し、これらが追加された周波数帯域を使用することにより、第1の通信装置10に対するアクセスの通信レートが自然に平均化する。
 一方、図7に示す第1の通信装置10は、帯域間ハンドオーバ部16を備える。図7に示す他の構成要素11~15は、図3に示す構成要素11~15とそれぞれ同様である。帯域間ハンドオーバ部16は、第1の通信装置10にて使用される周波数帯域が増加される場合、増加前の周波数帯域に収容されるアクセスのいずれかを、増加後の周波数帯域の追加部分へハンドオーバする。例えば、帯域間ハンドオーバ部16は、既存の異周波数間ハンドオーバ技術を使用して、周波数帯域間におけるアクセスのハンドオーバを実行してよい。
 本実施例によって、第1の通信装置10で使用する周波数帯域が増加したとき、追加された周波数帯域を早期に使用することが可能になるため、周波数帯域の利用効率がより向上される。
 続いて、第2の通信装置20の他の実施例について説明する。図8は、第2の通信装置20の第2構成例を示す図である。第2の通信装置20は、帯域増加要求受信部21と、帯域増加許可判定部22と、承認信号送信部23と、平均通信レート算出部24と、帯域低減許容判定部25と、帯域低減部26を備える。帯域増加要求受信部21及び承認信号送信部23の処理は、図4を参照して説明した処理と同様である。
 平均通信レート算出部24は、上述の平均通信レート算出部11と同様にして、第2の通信装置20に対するアクセス毎の平均通信レートvaを算出する。帯域低減許容判定部25は、平均通信レートvaに基づいて第2の通信装置20で使用する周波数帯域の低減を許容するか否かを判定する。例えば、帯域低減許容判定部25は、平均通信レートvaが所定の上限閾値T2より大きいとき、第1の通信装置10で使用する周波数帯域を低減してもよいと判定する。
 帯域低減許容判定部25は、第2の通信装置20の使用周波数帯域の低減量の許容量を算出してもよい。例えば、帯域増加要否判定部12は、上限閾値T2又はこれから所定のマージンを差し引いた値と平均通信レートvaとの差分である通信レート差を算出してよい。帯域増加要否判定部12は、算出された通信レート差を収容することができる最も小さな個数の周波数帯域の単位B1~Bnを、低減量の許容量として算出してよい。
 周波数帯域の低減が許容される場合、帯域増加許可判定部22は、第2の通信装置20で使用する周波数帯域後に、未使用の周波数帯域があるか否かに基づいて、第1の通信装置10で使用する周波数帯域の増加を許可するか否かを判定する。
 帯域低減部26は、第2の通信装置20で使用する周波数帯域の低減が許容される場合、第2の通信装置20で使用する周波数帯域を低減する。例えば帯域低減部26は、周波数帯域の単位B1~Bnの1つ分だけ第2の通信装置20の使用周波数帯域を低減してよい。例えば、帯域低減許容判定部25が低減量の許容量を算出するときは、帯域低減部26は、この許容量の分だけ第2の通信装置20の使用周波数帯域を低減してよい。
 図9は、第2の通信装置20における処理の第2例の説明図である。なお、他の実施態様においては、下記のオペレーションCA~CHの各オペレーションはステップであってもよい。第2の通信装置20は、例えば、第1の通信装置10から要求信号を受信したときにオペレーションCA~CHを実行してよい。
 オペレーションCAにおいて帯域増加要求受信部21は、第1の通信装置10から要求信号を受信する。オペレーションCBにおいて平均通信レート算出部24は、第2の通信装置20が使用中の周波数帯域幅と、第2の通信システム2の規格に基づいて、第2の通信装置20に対するアクセス全体の通信レートの合計を決定する。
 オペレーションCCにおいて平均通信レート算出部24は、第2の通信装置20に対する現在のアクセス数を取得する。オペレーションCDにおいて平均通信レート算出部24は、アクセス全体の通信レートの合計を、第2の通信装置20に対する現在のアクセス数で除算することにより、平均通信レートvaを算出する。
 オペレーションCEにおいて帯域低減許容判定部25は、平均通信レートvaが所定の上限閾値T2より大きいか否かを判定する。平均通信レートvaが上限閾値T2より大きいとき(オペレーションCE:Y)、処理はオペレーションCFへ進む。平均通信レートvaが上限閾値T2より大きくないとき(オペレーションCE:N)、処理はオペレーションCGへ進む。
 オペレーションCFにおいて帯域低減部26は、第2の通信装置20で使用する周波数帯域を低減する。その後処理はオペレーションCGへ進む。オペレーションCGにおいて帯域増加許可判定部22は、未使用の周波数帯域が存在するか否かを判定する。未使用の周波数帯域が存在するとき(オペレーションCG:Y)、処理はオペレーションCHへ進む。未使用の周波数帯域が存在しないとき(オペレーションCG:N)、処理は終了する。
 オペレーションCHにおいて承認信号送信部23は、第1の通信装置10で使用する周波数帯域の増加を承認する承認信号を、第1の通信装置10へ送信する。
 なお、第1の通信装置10において周波数帯域を増加するために、第1の通信装置10は各アクセスの接続を瞬間的に切断して、周波数帯域幅を変更した後に再接続してもよい。また第1の通信装置10において周波数帯域を増加するために、DC-HSPDA(Dual Cell High Speed Downlink Packet Access)や周波数アグリゲーションのような、周波数帯域幅を統合する技術を使用してもよい。第2の通信装置20において周波数帯域を低減する場合も同様である。また、以下の他の実施例において、周波数帯域を変更する場合も同様である。
 本実施例によれば、第2の通信装置20は、第2の通信装置に対するアクセス毎の平均通信レートvaに応じて、第2の通信装置20で使用する周波数帯域幅を動的に変更することが可能となる。本実施例によれば、平均通信レートvaが過大な通信システムの使用周波数帯域を動的に低減するため、周波数帯域の利用効率を向上することが可能となる。
 続いて、第2の通信装置20による処理の他の実施例について説明する。図10は、第2の通信装置20における処理の第3例の説明図である。なお、他の実施態様においては、下記のオペレーションCA~CJの各オペレーションはステップであってもよい。第2の通信装置20は、例えば、第1の通信装置10から要求信号を受信したときにオペレーションCA~CJを実行してよい。
 オペレーションCA~CHの処理は、図9を参照して説明したオペレーションCA~CHの処理と同様である。但し、本実施例では、オペレーションCGにおいて帯域増加許可判定部22が未使用の周波数帯域が存在しないと判定したとき(オペレーションCG:N)、処理はオペレーションCIへ進む。
 オペレーションCIにおいて帯域増加許可判定部22は、予め第1の通信システム1に与えられた優先度が、予め第2の通信システム2に与えられた優先度よりも高いか否かを判定する。第1の通信システム1の優先度が第2の通信システム2の優先度よりも高いとき(オペレーションCI:Y)、処理はオペレーションCJへ進む。第1の通信システム1の優先度が第2の通信システム2の優先度よりも高くないとき(オペレーションCI:N)、処理は終了する。
 オペレーションCJにおいて帯域低減部26は、第2の通信装置20で使用する周波数帯域を低減する。その後処理はオペレーションCHへ進む。オペレーションCHにおいて承認信号送信部23は、第1の通信装置10へ承認信号を送信する。
 本実施例によれば、複数の通信システム1及び2が割り当てを望む周波数帯域幅の合計が利用可能な周波数帯域幅の全体を超えた場合において、優先して周波数帯域を割り当てる通信システムを決定することが可能となる。
 続いて、第2の通信装置20の他の実施例について説明する。図11は、第2の通信装置20の第3構成例を示す図である。第2の通信装置20は、帯域間ハンドオーバ部27を備える。図11に示す他の構成要素21~26は、図8に示す構成要素21~26とそれぞれ同様である。以下に示す他の実施例も、帯域間ハンドオーバ部27を備えてよい。
 帯域間ハンドオーバ部27は、第2の通信装置20にて使用される周波数帯域を低減するとき、周波数帯域の低減により使用が停止される周波数帯域に収容されるアクセスを、周波数帯域低減後も第2の通信装置20が使用を続ける周波数帯域へハンドオーバする。
 続いて、第2の通信装置20の他の実施例について説明する。図12は、第2の通信装置20の第4構成例を示す図である。第2の通信装置20は、帯域増加要求受信部21と、帯域増加許可判定部22と、承認信号送信部23と、残り周波数帯域算出部28と、帯域変更部29を備える。帯域増加要求受信部21及び承認信号送信部23の処理は、図4を参照して説明した処理と同様である。
 残り周波数帯域算出部28は、次の式(1)により残り周波数帯域幅Wrを算出する。
 残り周波数帯域幅Wr=Wa-(W1+W2)    (1)
 式(1)において、Waは、全周波数帯域Baの帯域幅を示す。W1は、要求信号によって要求された増加分だけ増加させた場合の第1の通信装置10の使用周波数帯域幅である。W2は、第2の通信装置20が必要とする使用周波数帯域幅である。
 所要周波数帯域幅W2を算出方法として、様々な方法を使用することができる。例えば、残り周波数帯域算出部28は、第2の通信装置20に対するアクセスの数と、第2の通信システム20の規格と、アクセス毎の平均通信レートに関する所定の目標値とに基づいて、所要周波数帯域幅W2を算出してよい。例えば、残り周波数帯域算出部28は、図14を参照して後述する方法によって、所要周波数帯域幅W2を算出してもよい。
 帯域増加許可判定部22は、残り周波数帯域幅Wrが「0」より小さくなければ、要求信号で要求された周波数帯域の増加を許可する。帯域増加許可判定部22は、残り周波数帯域幅Wrが「0」より小さいとき、要求信号で要求された周波数帯域の増加を許可しなくてよい。このとき第2の通信システム20は、第1の通信システム10へ、周波数帯域の増加を禁止する非承認信号を送信してもよい。
 また例えば、帯域増加許可判定部22は、残り周波数帯域幅Wrが「0」より小さいとき、予め第1の通信システム1に与えられた優先度と、予め第2の通信システム2に与えられた優先度とを比較してもよい。帯域増加許可判定部22は、第1の通信システム1の優先度が第2の通信システム2の優先度よりも高いとき、要求信号で要求された周波数帯域の増加を許可してよい。
 帯域変更部29は、残り周波数帯域算出部28によって算出された使用周波数帯域幅W2と、第2の通信装置20が実際に使用している周波数帯域幅とが異なるとき、第2の通信装置20が使用する周波数帯域幅を、使用周波数帯域幅W2へ変更する。また帯域変更部29は、第1の通信システム1の優先度が第2の通信システム2の優先度よりも高いとき、必要に応じて、第1の通信装置10の使用周波数帯域を増加させるために、第2の通信装置20の使用周波数帯域を低減する。
 図13は、第2の通信装置20における処理の第4例の説明図である。なお、他の実施態様においては、下記のオペレーションDA~DIの各オペレーションはステップであってもよい。第2の通信装置20は、例えば、第1の通信装置10から要求信号を受信したときにオペレーションDA~DIを実行してよい。
 オペレーションDAにおいて帯域増加要求受信部21は、第1の通信装置10から要求信号を受信する。オペレーションDBにおいて残り周波数帯域算出部28は、第2の通信装置20が必要とする所要周波数帯域幅W2を算出する。
 図14は、所要周波数帯域幅W2の算出処理DBの一例の説明図である。なお、他の実施態様においては、下記のオペレーションEA~EKの各オペレーションはステップであってもよい。オペレーションEAにおいて周波数帯域算出部28は、第2の通信装置20が現在使用中の周波数帯域を取得し、その帯域幅を決定する。
 オペレーションEBにおいて残り周波数帯域算出部28は、所要周波数帯域幅W2の値に、現在使用中の周波数帯域幅の値を仮に代入する。オペレーションECにおいて残り周波数帯域算出部28は、第2の通信装置20に対する現在のアクセスの数を取得する。オペレーションEDにおいて残り周波数帯域算出部28は、現在使用中の周波数帯域幅内に収容可能な通信レートを現在のアクセス数で除算することにより、アクセス毎の平均通信レートvaを算出する。
 オペレーションEEにおいて残り周波数帯域算出部28は、平均通信レートvaが所定の下限閾値T1より小さいか否かを判定する。これに代えて、周波数帯域算出部28は、下限閾値T1にマージンを加えた値よりも平均通信レートvaが小さいか否かを判定してもよい。平均通信レートvaが所定の下限閾値T1より小さいとき(オペレーションEE:Y)、処理はオペレーションEIへ進む。平均通信レートvaが所定の下限閾値T1より小さくないとき(オペレーションEE:N)、処理はオペレーションEFへ進む。
 オペレーションEFにおいて残り周波数帯域算出部28は、平均通信レートvaが所定の上限閾値T2より大きいか否かを判定する。これに代えて、周波数帯域算出部28は、上限閾値T2からマージンを差し引いた値よりも平均通信レートvaが大きいか否かを判定してもよい。平均通信レートvaが所定の上限閾値T2より大きいとき(オペレーションEF:Y)、処理はオペレーションEGへ進む。
 平均通信レートvaが所定の上限閾値T2より大きくないとき(オペレーションEF:N)、処理は終了する。現在使用中の周波数帯域幅に基づいてオペレーションEDで算出した平均通信レートvaが、下限閾値T1より小さくなく、上限閾値T2より大きくないときは、所要周波数帯域幅W2の値は、現在使用中の周波数帯域幅の値と等しくなる。
 オペレーションEGにおいて残り周波数帯域算出部28は、所要周波数帯域幅W2の値を、1単位幅W分だけ低減する。オペレーションEHにおいて残り周波数帯域算出部28は、低減した所要周波数帯域幅W2内に収容可能な通信レートを現在のアクセス数で除算することにより、アクセス毎の平均通信レートvaを算出する。その後処理はオペレーションEFに戻る。
 したがって、オペレーションEF~EHは、所要周波数帯域幅W2に基づいて算出された平均通信レートvaが、上限閾値T2より小さくなるまで繰り返し実行される。所要周波数帯域幅W2に基づいて算出された平均通信レートvaが上限閾値T2より小さくなったとき、処理が終了する。
 オペレーションEIにおいて残り周波数帯域算出部28は、所要周波数帯域幅W2の値を、1単位幅W分だけ増加する。オペレーションEJにおいて残り周波数帯域算出部28は、増加した所要周波数帯域幅W2内に収容可能な通信レートを現在のアクセス数で除算することにより、アクセス毎の平均通信レートvaを算出する。
 オペレーションEKにおいて残り周波数帯域算出部28は、オペレーションEEと同様に平均通信レートvaが所定の下限閾値T1より小さいか否かを判定する。平均通信レートvaが所定の下限閾値T1より小さいとき(オペレーションEE:Y)、処理はオペレーションEIへ戻る。平均通信レートvaが所定の下限閾値T1より小さくないとき(オペレーションEE:N)、処理は終了する。
 したがって、オペレーションEI~EKは、所要周波数帯域幅W2に基づいて算出された平均通信レートvaが、下限閾値T1より大きくまで繰り返し実行される。所要周波数帯域幅W2に基づいて算出された平均通信レートvaが下限閾値T1より大きくなったとき、処理が終了する。
 図13を参照する。オペレーションDCにおいて残り周波数帯域算出部28は、式(1)により残り周波数帯域幅Wrを算出する。オペレーションDDにおいて帯域増加許可判定部22は、残り周波数帯域幅Wrが「0」より小さいか否かを判定する。残り周波数帯域幅Wrが「0」より小さいとき(オペレーションDD:Y)、処理はオペレーションDEへ進む。残り周波数帯域幅Wrが「0」より小さくないとき(オペレーションDD:N)、処理はオペレーションDHへ進む。
 オペレーションDEにおいて帯域増加許可判定部22は、第1の通信システム1の優先度が第2の通信システム2の優先度よりも高いか否かを判定する。第1の通信システム1の優先度が第2の通信システム2の優先度よりも高いとき(オペレーションDE:Y)、処理はオペレーションDHへ進む。第1の通信システム1の優先度が第2の通信システム2の優先度よりも高くないとき(オペレーションDE:N)、処理はオペレーションDFへ進む。
 オペレーションDFにおいて第2の通信システム20は、第1の通信システム10へ、周波数帯域の増加を禁止する非承認信号を送信する。オペレーションDGにおいて帯域変更部29は、必要に応じて、第2の通信装置20が使用する周波数帯域幅を、使用周波数帯域幅W2へ変更する。
 オペレーションDHにおいて承認信号送信部23は、承認信号を第1の通信装置10へ送信する。オペレーションDIにおいて帯域変更部29は、必要に応じて、第2の通信装置20が使用する周波数帯域幅を、使用周波数帯域幅W2へ変更する。第1の通信システム1の優先度が第2の通信システム2の優先度よりも高く、第1の通信装置10の使用周波数帯域の増加のために、第2の通信装置20の使用周波数帯域を低減する必要があるとき、帯域変更部29は第2の通信装置20の使用周波数帯域幅を低減する。
 本実施例によっても、複数の通信システムのそれぞれの利用状況に応じて、これらの通信システムの通信装置が使用する周波数帯域を、平均通信レートに基づいて動的に調整することができる。
 図15は、通信システムの第2構成例を示す図である。図15に示す通信システムの構成例は、第1の帯域調整装置40と、第2の帯域調整装置50を備える。本実施例では、第1の通信装置10が使用する周波数帯域を調整するための上述の処理を、第1の帯域調整装置40が実行する。このため第1の帯域調整装置40は、図3に示す構成要素11~15、又は図7に示す構成要素11~16を備えてよい。
 第2の帯域調整装置50は、第2の通信装置20が使用する周波数帯域を調整するための上述の処理を実行する。第2の帯域調整装置50は、図4に示す構成要素21~23、図8に示す構成要素21~26、図11に示す構成要素21~27又は図12に示す構成要素21~23、28及び29を備えてよい。なお、第1の帯域調整装置40と第2の帯域調整装置50は、それぞれ独立した別個の装置であってよく、一体の装置であってもよい。
 本実施例によれば、帯域調整装置を通信装置と別個の装置として実現することにより、既存の装置構成を大きく変更することなく本実施例を実施することが可能になる。
 次に、上述の第1の通信装置10及び第2の通信装置20を基地局装置に適用し、第3の通信装置を移動局装置に適用した場合の実施例について説明する。図16は、通信システムの第3構成例を示す図である。第1の通信システム100aは、第1のノード装置102aと、第1の基地局装置103aを備える。第2の通信システム100bは、第2のノード装置102bと、第2の基地局装置103bを備える。第1の基地局装置103a及び第2の基地局装置103bは、それぞれノード装置102a及び102bを介して、ネットワーク101に接続されている。
 第1の通信システム100aにおいて第1の基地局装置103aは、移動局装置104a及び104bとの間で無線通信を行う。また、第2の通信システム100bにおいて第2の基地局装置103bは、移動局装置104cとの間で無線通信を行う。なお、移動局装置104a~104cは、第1の通信システム100a及び第2の通信システム100bのどちらにおいても使用可能であってもよい。
 第1の通信システム100aと第2の通信システム100bは、移動局装置104との間の無線通信のために利用可能な周波数帯域を共有している。また、第1の基地局装置103aのカバレッジと第2の基地局装置103bのカバレッジとは重複している。
 以下の説明において、ノード装置102a及び102bを総称して「ノード装置102」と表記することがある。以下の説明において、基地局装置103a及び103bを総称して「基地局装置103」と表記することがある。以下の説明において、移動局装置104a~104cを総称して「移動局装置104」と表記することがある。
 図17は、基地局装置103のハードウエア構成を示す図である。基地局装置103は、プロセッサ110と、記憶部111と、ネットワーク通信インタフェース112と、無線通信部113と、バス114を備える。プロセッサ110、記憶部111と、ネットワーク通信インタフェース112と、無線通信部113は、データを伝送するバス114に接続されている。
 記憶部111には、基地局装置103の動作を制御するための各種コンピュータプログラム及びデータが記憶される。記憶部111は、メモリ等の記憶装置や、ハードディスク等の補助記憶装置を含んでいてよい。プロセッサ110は、公知のデータ処理装置であり、記憶部111に記憶されるプログラムを実行し、基地局装置103の動作を制御するための各処理を実行する。
 ネットワーク通信インタフェース112は、ノード装置102と基地局装置103との間の通信インタフェース処理を実行する。また、無線通信部113は、移動局装置104との間の無線通信処理を実行する。なお、図17に示すハードウエア構成は、あくまで基地局装置103のハードウエア構成の一例である。以下に説明する処理を実行するものであれば、様々な種類のハードウエア構成が基地局装置103のために採用されることができる。
 図18は、基地局装置103の第1構成例を示すブロック図である。図18に示す各ブロックの機能は、記憶部111に記憶されるプログラムをプロセッサ110が実行することにより実現されるものである。なお同図では、この実施例に関係する機能を中心として示している。
 基地局装置103は、基地局機能部120と、帯域調整部121とを備える。基地局機能部120は、基地局装置103の基地局装置としての処理を実行する。基地局機能部120は、ネットワークインタフェース終端部131と、プロトコル終端部132と、リソース制御部133と、無線インタフェース終端部134を備える。
 ネットワークインタフェース終端部131は、ノード装置102やネットワーク101と基地局装置103との間で送受信する信号の終端処理を実行する。無線インタフェース終端部134は、移動局装置104と基地局装置103との間で送受信する無線信号の終端処理を実行する。
 プロトコル終端部132は、移動局装置104と基地局装置103との間の通信プロトコルの終端処理を行う。また、プロトコル終端部132は、ノード装置102やネットワーク101と基地局装置103との間の通信プロトコルの終端処理を行う。
 リソース制御部133は、基地局装置103が移動局装置104との間の無線通信のために使用する無線リソースを制御する。リソース制御部133は、帯域調整部121からの指示に従って、基地局装置103が移動局装置104との間の無線通信のために使用する周波数帯域を増加又は低減する。リソース制御部133は、基地局装置103が移動局装置104との間の無線通信のために現在使用している周波数帯域を示す信号を、帯域調整部121へ出力する。また、リソース制御部133は、基地局装置103に対する移動局装置104からのアクセス数を検出する。リソース制御部133は、検出されたアクセス数を示す信号を帯域調整部121へ出力する。
 図19は、帯域調整部121の第1構成例を示すブロック図である。帯域調整部121は、平均通信レート算出部11と、帯域増加要否判定部12と、帯域増加要求送信部13と、承認信号受信部14と、帯域増加部15と、帯域間ハンドオーバ部16を備える。また、帯域調整部121は、帯域増加要求受信部21と、帯域増加許可判定部22と、承認信号送信部23と、帯域低減許容判定部25と、帯域低減部26を備える。
 第1の基地局装置103aの帯域調整部121が、第1の基地局装置103aの使用周波数帯域の増加を行う場合には、構成要素11~16は、図7に示す構成要素11~16と同様の処理を行う。このとき平均レート算出部11は、リソース制御部133から第1の基地局装置103aに対するアクセス数を示す信号を受信する。また平均レート算出部11は、リソース制御部133から現在使用中の周波数帯域を示す信号を受信する。使用周波数帯域を増加する場合には、帯域増加部15は、リソース制御部133に対して使用周波数帯域の増加を指示する。以下に示す他の実施例でも同様である。
 第2の基地局装置103bの帯域調整部121が、第1の基地局装置103aから要求信号を受信した場合には、構成要素21~26は、図11に示す構成要素21~26と同様の処理を行う。また、平均通信レート算出部11は、図11に示す平均通信レート算出部24と同様の処理を行う。帯域間ハンドオーバ部16は、図11に示す帯域間ハンドオーバ部27と同様の処理を行う。このとき平均レート算出部11は、リソース制御部133から第2の基地局装置103bに対するアクセス数を示す信号を受信する。また平均レート算出部11は、リソース制御部133から現在使用中の周波数帯域を示す信号を受信する。使用周波数帯域を低減する場合には、帯域低減部26は、リソース制御部133に対して使用周波数帯域の低減を指示する。
 図20は、帯域調整部121の第2構成例を示すブロック図である。帯域調整部121は、平均通信レート算出部11と、帯域増加要否判定部12と、帯域増加要求送信部13と、承認信号受信部14と、帯域増加部15と、帯域間ハンドオーバ部16を備える。また、帯域調整部121は、帯域増加要求受信部21と、帯域増加許可判定部22と、承認信号送信部23と、残り周波数帯域算出部28と、帯域変更部29を備える。
 第2の基地局装置103bの帯域調整部121が、第1の基地局装置103aから要求信号を受信した場合には、構成要素21~23、28及び29は、図12に示す構成要素21~23、28及び29と同様の処理を行う。また、帯域間ハンドオーバ部16は、図11に示す帯域間ハンドオーバ部27と同様の処理を行う。このとき残り周波数帯域算出部28は、リソース制御部133から第2の基地局装置103bに対するアクセス数を示す信号を受信する。また残り周波数帯域算出部28は、リソース制御部133から現在使用中の周波数帯域を示す信号を受信する。使用周波数帯域を変更する場合には、帯域変更部29は、リソース制御部133に対して使用周波数帯域の変更を指示する。
 本実施例によれば、複数の通信システムのそれぞれの利用状況に応じて、これらの通信システム内の基地局装置がそれぞれ使用する周波数帯域を、平均通信レートに基づいて動的に調整することができる。
 図21は、基地局装置103の第2構成例を示すブロック図である。本実施例では、1つの基地局装置103が、第1の通信システム100aの基地局機能及び第2の通信システム100bの基地局機能の両方を備える。基地局装置103は、第1の基地局機能部120aと、第2の基地局機能部120bと、第1の帯域調整部121aと、第2の帯域調整部121bを備える。
 第1の基地局機能部120a及び第1の帯域調整部121aの構成及び処理は、第1の基地局装置103aについて図18~20を参照して説明した基地局機能部120及び帯域調整部121の機能及び処理と同様でよい。第2の基地局機能部120b及び第2の帯域調整部121bの構成及び処理は、図18~20を参照して第2の基地局装置103bについて説明した基地局機能部120及び帯域調整部121の機能及び処理と同様でよい。
 本実施例によれば、複数の通信システムの基地局機能を1つの基地局装置で実現する場合において、各システムの利用状況に応じて、これらの通信システム内の基地局装置がそれぞれ使用する周波数帯域を、平均通信レートに基づいて動的に調整することができる。
 図22は、通信システムの第4構成例を示す図である。図22に示す通信システムの構成例は、第1の帯域調整装置105aと、第2の帯域調整装置105bを備える。本実施例では、第1の基地局装置103aが使用する周波数帯域を調整するための処理を、第1の帯域調整装置105aが実行する。このため第1の帯域調整装置105aは、図18に示す帯域調整部121を備えてよい。
 第2の帯域調整装置105bは、第2の基地局装置103bが使用する周波数帯域を調整するための処理を実行する。第2の帯域調整装置105bは、図18に示す帯域調整部121を備えてよい。なお、第1の帯域調整装置105aと第2の帯域調整装置105bは、それぞれ独立した別個の装置であってよく、一体の装置であってもよい。
 本実施例によれば、帯域調整装置を基地局装置と別個の装置として実現することにより、既存の装置構成を大きく変更することなく本実施例を実施することが可能になる。
 ここに記載されている全ての例及び条件的な用語は、読者が、本発明と技術の進展のために発明者により与えられる概念とを理解する際の助けとなるように、教育的な目的を意図したものであり、具体的に記載されている上記の例及び条件、並びに本発明の優位性及び劣等性を示すことに関する本明細書における例の構成に限定されることなく解釈されるべきものである。本発明の実施例は詳細に説明されているが、本発明の精神及び範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であると解すべきである。
 1  第1の通信システム
 2  第2の通信システム
 10  第1の通信装置
 11  平均通信レート算出部
 12  帯域増加要否判定部
 13  帯域増加要求送信部
 14  承認信号受信部
 15  帯域増加部
 20  第2の通信装置
 21  帯域増加要求受信部
 22  帯域増加許可判定部
 23  承認信号送信部

Claims (15)

  1.  利用可能な周波数帯域を互いに共有する第1通信システム及び第2通信システムのうち、前記第1通信システム内の第1の通信装置で使用される周波数帯域を調整する帯域調整方法であって、
     前記第1の通信装置が使用する周波数帯域及び前記第1の通信装置に対するアクセスの数に基づいて、前記第1の通信装置で使用する周波数帯域の増加の要否判定をし、
     前記要否判定において前記第1の通信装置で使用する周波数帯域の増加が必要であると判定された場合、前記第1の通信装置とカバレッジが重複する、前記第2通信システム内の第2の通信装置によって使用されない未使用の周波数帯域があるか否かに応じて、前記第1の通信装置で使用する周波数帯域の増加の許諾判定をし、
     前記許諾判定において前記第1の通信装置で使用する周波数帯域の増加を許可すると判定された場合、前記第1の通信装置で使用する周波数帯域を増加する、前記第1の通信装置により実行される帯域調整方法。
  2.  前記要否判定において前記第1の通信装置で使用する周波数帯域の増加が必要であると判定され、かつ前記第1通信システムの優先度が前記第2通信システムの優先度よりも高い場合、前記第1の通信装置で使用する周波数帯域を増加する請求項1に記載の帯域調整方法。
  3.  前記第2の通信装置が使用する周波数帯域及び前記第2の通信装置に対するアクセスの数に基づいて、前記第2の通信装置で使用する周波数帯域の低減を許容するか否かを判定し、
     前記第2の通信装置で使用する周波数帯域の低減を許容する場合、前記第2の通信装置で使用する周波数帯域を低減する、請求項1又は2に記載の帯域調整方法。
  4.  前記第2の通信装置で使用する周波数帯域の低減により未使用の周波数帯域が生じるか否かに基づいて、前記第1の通信装置で使用する周波数帯域の増加を許可するか否かを判定する請求項3に記載の帯域調整方法。
  5.  前記第1の通信装置にて使用される周波数帯域を増加する場合、増加前の周波数帯域に収容されるアクセスのいずれかを、増加された周波数帯域へハンドオーバする請求項1~4のいずれか一項に記載の方法。
  6.  前記第2の通信装置にて使用される周波数帯域を低減する場合、周波数帯域の低減により前記第2の通信装置が使用を停止する周波数帯域に収容されるアクセスを、周波数帯域の低減後に前記第2の通信装置が使用を続ける周波数帯域へハンドオーバする請求項3又は4に記載の方法。
  7.  利用可能な周波数帯域を互いに共有する第1通信システム及び第2通信システムのうち、前記第1通信システムで使用される第1の通信装置であって、
     前記第1の通信装置が使用する周波数帯域及び前記第1の通信装置に対するアクセスの数に基づいて、前記第1の通信装置で使用する周波数帯域の増加の要否を判定する帯域増加要否判定部と、
     前記帯域増加要否判定部における判定において前記第1の通信装置で使用する周波数帯域の増加が必要であると判定された場合、前記第1の通信装置とカバレッジが重複する、前記第2通信システム内の第2の通信装置に、前記第1の通信装置で使用する周波数帯域の増加を要求する要求信号を送信する帯域増加要求送信部と、
     前記要求信号に対する承認信号が前記第2の通信装置から受信された場合、前記第1の通信装置で使用する周波数帯域の増加する帯域増加部と、
     を備える通信装置。
  8.  前記第1の通信装置にて使用される周波数帯域が増加される場合、増加前の周波数帯域に収容されるアクセスのいずれかを、増加された周波数帯域へハンドオーバする帯域間ハンドオーバ部を、さらに備える請求項7に記載の通信装置。
  9.  利用可能な周波数帯域を互いに共有する第1通信システム及び第2通信システムのうち、前記第2通信システムで使用される第2の通信装置であって、
     前記第2の通信装置とカバレッジが重複する、前記第1通信システム内の第1の通信装置から、前記第1の通信装置で使用する周波数帯域の増加を要求する要求信号を受信する帯域増加要求受信部と、
     第2の通信装置によって使用されない未使用の周波数帯域があるか否かに応じて、前記第1の通信装置で使用する周波数帯域の増加を許可するか否かを判定する帯域増加許可判定部と、
     前記帯域増加許可判定部における判定において前記第1の通信装置で使用する周波数帯域の増加が許可されると判定された場合、前記第1の通信装置で使用する周波数帯域の増加を承認する承認信号を、前記第1の通信装置へ送信する承認信号送信部と、
     を備える通信装置。
  10.  前記要求信号が受信され、前記第1通信システムの優先度が前記第2通信システムの優先度よりも高い場合、前記帯域増加許可判定部は、前記第1の通信装置で使用する周波数帯域の増加を許可する請求項9に記載の通信装置。
  11.  前記第2の通信装置が使用する周波数帯域及び前記第2の通信装置に対するアクセスの数に基づいて、前記第2の通信装置で使用する周波数帯域の低減を許容するか否かを判定する帯域低減許容判定部と、
     前記帯域低減許容判定部における判定において前記第2の通信装置で使用する周波数帯域の低減が許容されると判定された場合、前記第2の通信装置で使用する周波数帯域を低減する帯域低減部と、
     をさらに備える請求項9又は10に記載の通信装置。
  12.  前記帯域増加許可判定部は、前記第2の通信装置で使用する周波数帯域の低減により未使用の周波数帯域が生じるか否かに基づいて、前記第1の通信装置で使用する周波数帯域の増加を許可するか否かを判定する請求項11に記載の通信装置。
  13.  前記第2の通信装置にて使用される周波数帯域を低減する場合、周波数帯域の低減により前記第2の通信装置が使用を停止する周波数帯域に収容されるアクセスを、周波数帯域の低減後に前記第2の通信装置が使用を続ける周波数帯域へハンドオーバする帯域間ハンドオーバ部を、さらに備える請求項11又は12に記載の通信装置。
  14.  利用可能な周波数帯域を互いに共有する第1通信システム及び第2通信システムのうち、前記第1通信システム内の第1の通信装置で使用される周波数帯域を調整する第1の帯域調整装置であって、
     前記第1の通信装置が使用する周波数帯域及び前記第1の通信装置に対するアクセスの数に基づいて、前記第1の通信装置で使用する周波数帯域の増加の要否を判定する帯域増加要否判定部と、
     前記帯域増加要否判定部における判定において前記第1の通信装置で使用する周波数帯域の増加が必要であると判定された場合、前記第1の通信装置とカバレッジが重複する、前記第2通信システム内の第2の通信装置で使用される周波数帯域を調整する第2の帯域調整装置に、前記第1の通信装置で使用する周波数帯域の増加を要求する要求信号を送信する帯域増加要求送信部と、
     前記要求信号に対する承認信号が前記第2の帯域調整装置から受信された場合、前記第1の通信装置に、使用周波数帯域の増加を指示する増加指示部と、
     を備える帯域調整装置。
  15.  利用可能な周波数帯域を互いに共有する第1通信システム及び第2通信システムのうち、前記第2通信システム内の第2の通信装置で使用される周波数帯域を調整する第2の帯域調整装置であって、
     前記第2の通信装置とカバレッジが重複する、前記第1通信システム内の第1の通信装置で使用される周波数帯域を調整する第1の帯域調整装置から、前記第1の通信装置で使用する周波数帯域の増加を要求する要求信号を受信する帯域増加要求受信部と、
     第2の通信装置によって使用されない未使用の周波数帯域があるか否かに応じて、前記第1の通信装置で使用する周波数帯域の増加を許可するか否かを判定する帯域増加許可判定部と、
     前記帯域増加許可判定部における判定において前記第1の通信装置で使用する周波数帯域の増加が許可されると判定された場合、前記第1の通信装置で使用する周波数帯域の増加を承認する承認信号を、前記第1の帯域調整装置へ送信する承認信号送信部と、
     を備える帯域調整装置。
PCT/JP2010/051618 2010-02-04 2010-02-04 帯域調整方法、通信装置及び帯域調整装置 WO2011096062A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2010/051618 WO2011096062A1 (ja) 2010-02-04 2010-02-04 帯域調整方法、通信装置及び帯域調整装置
EP10845198.0A EP2533558A4 (en) 2010-02-04 2010-02-04 BANDWIDTH SETTING METHOD, COMMUNICATION DEVICE AND BANDWIDTH ADJUSTMENT DEVICE
JP2011552616A JP5522179B2 (ja) 2010-02-04 2010-02-04 帯域調整方法、通信装置及び帯域調整装置
US13/567,204 US8780879B2 (en) 2010-02-04 2012-08-06 Frequency band adjusting method, communication apparatus and frequency band adjusting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051618 WO2011096062A1 (ja) 2010-02-04 2010-02-04 帯域調整方法、通信装置及び帯域調整装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/567,204 Continuation US8780879B2 (en) 2010-02-04 2012-08-06 Frequency band adjusting method, communication apparatus and frequency band adjusting apparatus

Publications (1)

Publication Number Publication Date
WO2011096062A1 true WO2011096062A1 (ja) 2011-08-11

Family

ID=44355090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051618 WO2011096062A1 (ja) 2010-02-04 2010-02-04 帯域調整方法、通信装置及び帯域調整装置

Country Status (4)

Country Link
US (1) US8780879B2 (ja)
EP (1) EP2533558A4 (ja)
JP (1) JP5522179B2 (ja)
WO (1) WO2011096062A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526817A (ja) * 2011-09-08 2014-10-06 テレコム・イタリア・エッセ・ピー・アー ワイヤレス通信システムにおける、オペレータ間スペクトル共有制御、オペレータ間干渉コーディネーション方法、及び無線リソーススケジューリング
JP2016524851A (ja) * 2013-05-21 2016-08-18 華為技術有限公司Huawei Technologies Co.,Ltd. 帯域調整方法および帯域調整コントローラ
JP7400794B2 (ja) 2017-07-25 2023-12-19 日本電気株式会社 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム
JP7418589B2 (ja) 2020-08-04 2024-01-19 ソフトバンク株式会社 ユーザ端末及び無線通信方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103270784B (zh) * 2011-01-28 2016-08-10 三菱电机株式会社 无线通信装置及无线通信系统
WO2014071273A1 (en) * 2012-11-05 2014-05-08 Xg Technology, Inc. Method to enable rapid scanning by cognitive radios
EP3905745A4 (en) * 2018-12-27 2022-02-16 Sony Group Corporation COMMUNICATION CONTROL DEVICE, COMMUNICATION DEVICE, AND PROXY DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518766A (ja) * 1997-09-29 2001-10-16 ノキア ネットワークス オサケ ユキチュア 異なるネットワーク間でのデータ送信リソースの割り当て
JP2003333648A (ja) * 2002-05-17 2003-11-21 Ntt Docomo Inc 無線回線制御方法、無線回線制御システム及び無線回線制御局
JP2005210703A (ja) 2003-12-24 2005-08-04 Ntt Docomo Inc 無線通信システム、制御装置及び基地局並びに周波数配置方法
WO2005117473A1 (ja) 2004-05-28 2005-12-08 Matsushita Electric Industrial Co., Ltd. マルチモード制御局、無線通信システム、無線局及び無線通信制御方法
JP2007184933A (ja) 2005-12-29 2007-07-19 Ntt Docomo Inc 動的空間周波数分割多重通信システム及び方法
JP2007259041A (ja) * 2006-03-23 2007-10-04 Nippon Telegr & Teleph Corp <Ntt> 無線パケット通信システムおよび無線パケット通信方法
JP2008278265A (ja) 2007-04-27 2008-11-13 Ntt Docomo Inc 移動通信システム、基地局装置、移動局装置、および、スケジューリング方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456849B1 (en) * 1998-07-31 2002-09-24 Nokia Corporation Apparatus and associated method, for allocating resources in a radio communication system to perform a communication service
EP1220557A1 (en) * 2000-12-29 2002-07-03 Motorola, Inc. Communication system and method of sharing a communication resource
GB2443860B (en) * 2006-10-19 2011-02-16 Vodafone Plc Controlling the use of access points in a telecommunications network
US20090059856A1 (en) * 2007-08-10 2009-03-05 Nokia Corporation Spectrum sharing
WO2009040713A2 (en) * 2007-09-25 2009-04-02 Nokia Corporation Flexible spectrum sharing
GB0801532D0 (en) * 2008-01-28 2008-03-05 Fujitsu Lab Of Europ Ltd Communications systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518766A (ja) * 1997-09-29 2001-10-16 ノキア ネットワークス オサケ ユキチュア 異なるネットワーク間でのデータ送信リソースの割り当て
JP2003333648A (ja) * 2002-05-17 2003-11-21 Ntt Docomo Inc 無線回線制御方法、無線回線制御システム及び無線回線制御局
JP2005210703A (ja) 2003-12-24 2005-08-04 Ntt Docomo Inc 無線通信システム、制御装置及び基地局並びに周波数配置方法
WO2005117473A1 (ja) 2004-05-28 2005-12-08 Matsushita Electric Industrial Co., Ltd. マルチモード制御局、無線通信システム、無線局及び無線通信制御方法
JP2007184933A (ja) 2005-12-29 2007-07-19 Ntt Docomo Inc 動的空間周波数分割多重通信システム及び方法
JP2007259041A (ja) * 2006-03-23 2007-10-04 Nippon Telegr & Teleph Corp <Ntt> 無線パケット通信システムおよび無線パケット通信方法
JP2008278265A (ja) 2007-04-27 2008-11-13 Ntt Docomo Inc 移動通信システム、基地局装置、移動局装置、および、スケジューリング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUYOSHI YAMADA ET AL.: "Cognitive Musen Gijutsu o Mochiita WiMAX/WLAN Togo Network ni Okeru Koritsuteki na Shuhasu Wariate Shuho", IEICE TECHNICAL REPORT NS2007-190, 28 February 2008 (2008-02-28), XP008167763 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526817A (ja) * 2011-09-08 2014-10-06 テレコム・イタリア・エッセ・ピー・アー ワイヤレス通信システムにおける、オペレータ間スペクトル共有制御、オペレータ間干渉コーディネーション方法、及び無線リソーススケジューリング
JP2016524851A (ja) * 2013-05-21 2016-08-18 華為技術有限公司Huawei Technologies Co.,Ltd. 帯域調整方法および帯域調整コントローラ
US10009796B2 (en) 2013-05-21 2018-06-26 Huawei Technologies Co., Ltd. Bandwidth adjustment method and bandwidth adjustment controller
JP7400794B2 (ja) 2017-07-25 2023-12-19 日本電気株式会社 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム
US11962521B2 (en) 2017-07-25 2024-04-16 Nec Corporation Radio communication apparatus, method, program, non-transitory computer readable recording medium, and system
JP7418589B2 (ja) 2020-08-04 2024-01-19 ソフトバンク株式会社 ユーザ端末及び無線通信方法

Also Published As

Publication number Publication date
JP5522179B2 (ja) 2014-06-18
US8780879B2 (en) 2014-07-15
JPWO2011096062A1 (ja) 2013-06-10
US20120294300A1 (en) 2012-11-22
EP2533558A4 (en) 2015-04-01
EP2533558A1 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
US10492193B2 (en) Multi-stream data transmission method, apparatus, and system, and anchor
RU2714104C2 (ru) Системы и способы одновременного использования диапазона частот в активно используемом диапазоне частот
JP5522179B2 (ja) 帯域調整方法、通信装置及び帯域調整装置
JP3938853B2 (ja) 移動通信システムにおけるタイムスロット割当て方法、信号伝送方法、無線基地局制御装置、無線基地局及び移動局
EP3020225B1 (en) Small cell network architecture for servicing multiple network operators
US10021702B2 (en) Measurement-assisted dynamic frequency-reuse in cellular telecommunications networks
JP4447416B2 (ja) マルチバンド移動通信システムおよび送信機
US11012930B2 (en) Dynamic spectrum resource allocation for full spectrum sharing
JP2005504492A (ja) Gsm/edgeのためのトータル無線ネットワークソリューション
JP2014241646A (ja) 通信システムにおける資源使用装置及び方法
JP2012502545A (ja) 通信帯域を割当てるための方法及び関連する装置
CN106060934A (zh) 基于数据通信的动态Wi-Fi多通道转换的方法和设备
CN103687012A (zh) 认知无线电系统中频谱资源管理的方法及装置
CN106912059B (zh) 支持互信息积累的认知中继网络联合中继选择及资源分配方法
WO2017071595A1 (zh) 干扰管理方法、系统
Li et al. Combined channel aggregation and fragmentation strategy in cognitive radio networks
WO2016149916A1 (zh) 一种数据传输的方法及装置
Shi et al. Self-coexistence and spectrum sharing in device-to-device WRANs
Shi et al. Multi-channel management for D2D communications in IEEE 802.22 WRANs
CN112512106B (zh) 一种上行功率分配方法、装置、终端设备及存储介质
WO2022121759A1 (zh) 室内无源系统和有源系统同频组网的频谱共享方法及系统
CN113965956A (zh) 蜂窝网络下d2d通信的信道与功率联合动态分配方法
CN102123496B (zh) 一种基于基站定位的d2d用户对复用蜂窝用户资源的方法
JP5438841B2 (ja) ダウンリンクサービスアドミッション制御方法及び装置
Wu et al. Joint channel and power allocation scheme for cognitive wireless networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845198

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552616

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010845198

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010845198

Country of ref document: EP