WO2018113797A1 - 前传网络、数据传输方法及装置、计算机存储介质 - Google Patents

前传网络、数据传输方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2018113797A1
WO2018113797A1 PCT/CN2017/118406 CN2017118406W WO2018113797A1 WO 2018113797 A1 WO2018113797 A1 WO 2018113797A1 CN 2017118406 W CN2017118406 W CN 2017118406W WO 2018113797 A1 WO2018113797 A1 WO 2018113797A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
ftn
channel
network
acc
Prior art date
Application number
PCT/CN2017/118406
Other languages
English (en)
French (fr)
Inventor
李晗
程伟强
王磊
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611209301.0A external-priority patent/CN106888513B/zh
Priority claimed from CN201611209501.6A external-priority patent/CN106888473B/zh
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团公司 filed Critical 中国移动通信有限公司研究院
Priority to JP2019527331A priority Critical patent/JP6800332B2/ja
Priority to US16/466,020 priority patent/US10972941B2/en
Priority to KR1020197015273A priority patent/KR102296176B1/ko
Priority to EP17882822.4A priority patent/EP3554181B1/en
Publication of WO2018113797A1 publication Critical patent/WO2018113797A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • the present invention relates to the field of network technologies, and in particular, to a front-end network (Front-haul Transport Network, FTN), a data transmission method and apparatus, and a computer storage medium.
  • FTN Front-haul Transport Network
  • the Front-haul Transport Network is a transmission network between a Remote Radio Unit (RRU) and a Base Band Unite (BBU).
  • RRU Remote Radio Unit
  • BBU Base Band Unite
  • the FTN front end is connected to the RRU, and the back end is connected to a BBU pool composed of multiple BBUs.
  • the FTN connects to the RRU and the BBU pool in several ways:
  • each RRU and BBU pool is connected by a pair of optical fibers.
  • the number of pairs of fibers used in the FTN is large, and the effective use rate of the single pair of fibers is low.
  • the second type is that the multiple RRUs share a pair of optical fibers that can transmit different wavelengths and are connected to the BUU pool.
  • the direct connection of color light requires each base station to allocate different wavelengths, which makes it difficult to meet the transmission requirements of certain services with high transmission delay requirements.
  • the third type is to provide a pre-transmission scheme based on an existing transport network, such as an Optical Transport Network (OTN) or a Packet Transport Network (PTN).
  • OTN Optical Transport Network
  • PTN Packet Transport Network
  • embodiments of the present invention are directed to providing a preamble network, a data transmission method and apparatus, and a computer storage medium, at least in part to solve the above problems.
  • a first aspect of the embodiments of the present invention provides a preamble network, including:
  • the access type forwarding node FTN-ACC is configured to be connected to the radio remote unit RRU;
  • the convergence type preamble transmitting node FTN-AGG has one end connected to the FTN-ACC and the other end connected to the baseband processing unit pool BUUs;
  • the FTN-ACC and/or the FTN-AGG are configured according to data delay requirements, The corresponding transmission channel is selected for transmission.
  • a second aspect of the embodiments of the present invention provides a data transmission method, which is applied to a pre-transmission network, where the pre-transmission network includes: an access-type pre-transmission node FTN-ACC connected to a radio remote unit RRU, and the FTN a convergence type preamble transmitting node FTN-AGG connected to the ACC and the baseband processing unit pool BUUs; the method comprises:
  • the data is transmitted using the transmission channel.
  • a third aspect of the embodiments of the present invention provides a data transmission apparatus, configured to control data transmission of a preamble network, where the preamble network includes: an access type preamble transmission node FTN-ACC connected to a radio remote unit RRU, and respectively The convergence type forwarding node FTN-AGG connected to the FTN-ACC and the baseband processing unit pool BUUs; the data transmission device includes:
  • a selecting unit configured to select a transmission channel established between the FTN-ACC and the FTN-AGG according to a delay requirement of the data
  • the first sending unit is configured to transmit the data by using the transmission channel.
  • a fourth aspect of the embodiments of the present invention provides a computer storage medium, where the computer storage medium stores computer executable instructions; after the computer executable instructions are executed, the data transmission method provided by the one or more technical solutions can be implemented. .
  • the preamble network, the data transmission method and device, and the computer storage medium provided by the embodiments of the present invention connect the pre-transmission network FTN of the RRU and the BBU, and the FTN is divided into FTN-ACC and FTN-AGG, and the two types of transmission nodes are established.
  • the transmission delays of the two transmission channels are different and the effective utilization of the transmission resources is also different.
  • the corresponding transmission channel is selected for transmission according to the delay requirement of the data. It can meet the delay requirement of data transmission. On the other hand, it can improve the effective utilization of transmission resources as much as possible, so that the delay requirement of data transmission is satisfied, and the no-load of transmission resources is reduced, and the resources are improved. use efficiently.
  • FIG. 1 is a schematic diagram of a connection between a first FTN and BBUs and an RRU according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a structure of an FTN, and FTN and BBUs and RRUs according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another FTN structure and FTN and BBUs and RRUs according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a network topology of an FTN according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a transmission channel of an FTN according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of correspondence between a transmission channel and a protection channel according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a positioning fault according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram and a connection diagram of an FTN-ACC, an RRU, and a PTN node according to an embodiment of the present invention
  • FIG. 9 is a schematic flowchart diagram of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart diagram of another data transmission method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a superframe of an FTN according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a data transmission apparatus of an FTN according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another FTN data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic flowchart diagram of another FTN data transmission apparatus according to an embodiment of the present invention.
  • this embodiment provides a front-end network FTN.
  • One end of the FTN is connected to the RRU, and the other end is connected to the BBUs.
  • the FTN may further include:
  • An access type forward transmission node FTN-ACC 110 configured to be connected to the radio remote unit RRU;
  • the convergence type preamble transmitting node FTN-AGG 120 has one end connected to the FTN-ACC and the other end connected to the baseband processing unit pool BUUs;
  • the FTN-ACC 110 and the FTN-AGG 120 Establishing at least two transmission channels having different transmission delays between the FTN-ACC 110 and the FTN-AGG 120; the FTN-ACC 110 and/or the FTN-AGG 120 configured to be based on data Delay the request and select the corresponding transmission channel for transmission.
  • At least two types of transmission channels are configured between the FTN-ACC and the FTN-AGG.
  • the transmission channels may be logical channels.
  • Different transmission channels have different transmission delays, so that when performing service transmission, whether the FTN-ACC or the FTN-AGG can select a corresponding transmission channel according to the delay requirement of the currently transmitted data. Data transmission is performed to meet the transmission delay of different data.
  • the uplink data corresponding to the user equipment UE of the radio side is uploaded to the eNB, and if it is transmitted from the FTN-AGG to the FTN-ACC, the base station transmits the data. Downstream data to the UE.
  • the FTN-ACC and the FTN-ACG are communication nodes, including: a communication interface and a processor; and the processor is connected to the communication interface and configured to control data transmission of the communication interface.
  • At least two transmission channels are configured in this embodiment.
  • the transmission delays of different transmission channels are different, and the effective utilization ratio of the corresponding transmission resources is also different.
  • the smaller the transmission delay is the lower the effective utilization of the transmission resource is.
  • the effective utilization of the transmission resource is higher.
  • at least two transmission channels are configured between the FTN-ACC and the FTN-AGG, so that services with high delay requirements are used as much as possible for channel transmission with small transmission delay.
  • the transmission delay channel with a large transmission delay can be selected according to the delay requirement of the data to maximize the effective use of transmission resources.
  • the transmission delay of various data on the other hand, maximize the effective use of transmission resources.
  • it is not necessary to establish a pair of optical fibers for transmission between each RRU and BUU and it is not necessary to adopt the problem that the color fiber cannot meet certain service requirements.
  • the data may include ideal forward data transmitted by an ideal forward RRU and non-ideal forward data of a non-ideal forward RRU transmission.
  • the ideal preamble data needs to be transmitted by using a transmission channel with a small transmission delay, and the non-ideal preamble data may be transmitted by a transmission channel with high resource utilization but a slightly larger transmission delay.
  • the FTN and the wireless network can be divided into a forwarding domain and an administrative domain; the management domain is used for network management, and the forwarding domain is based on management of the management domain for data transmission.
  • the FTN and the management domain of the wireless network are separated, the wireless management domain manages the RRU and the BBUs, and the forward network management domain manages the data forwarding of the FTN. For example, according to the delay requirement of the data, the corresponding channel is selected. Management such as transmission.
  • CPRI Common Public Radio Interface
  • a ring network or a star network is established between the FTN-ACC 110 and the FTN-AGG 120.
  • Figure 4 shows one of the ring networks.
  • the plurality of FTN-ACCs 110 and one of the FTN-AGGs 120 form a ring structure, and data may be transmitted from one of the FTN-AGGs 120 to the plurality of the FTN-ACCs 110, or Transmission from a plurality of said FTN-ACCs 110 to one of said FTN-AGGs 120.
  • the star structure is: the FTN-AGG 120 is the center of the star structure, and there may be multiple FTN-ACCs 110 connected thereto, but the connection closed loop may not be formed between the FTN-ACCs 110.
  • the transmission channel includes at least two of a direct connection channel 101, a shared channel 102, and a hybrid channel 103;
  • the direct connection channel 101 is: a direct transmission channel for transmitting data between the original node and the sink node by using a pre-allocated transmission resource; when the original node is the FTN-ACC, the sink node is the FTN -AGG; when the original node is the FTN-AGG, the sink node is the FTN-ACC.
  • the direct connection channel 101 can directly correspond to a connection channel between the FTN-ACC 110 and the FTN-AGG 120 connected to the RRU, and the intermediate node on the connection channel receives the data only for the data. Transparent transmission and forwarding are performed, and data analysis, identification, and transmission resource allocation are no longer performed.
  • the transmission resource is pre-allocated, and if the intermediate node receives the data transmitted by the transmission resource, it directly forwards to the next transmission node according to the pre-configuration, and does not extract the destination address in the data packet. Then, the current transmission resource status is combined with the destination address for allocation.
  • the transmission delay of the direct connection channel is short and constant, and low-latency transmission can be realized.
  • the transmission resources are pre-allocated, which may result in waste of resources when the low-latency data is small.
  • the shared channel 102 is a statistical multiplexing channel that uses dynamically allocated transmission resources to transmit between any two adjacent transmission nodes; wherein the shared channel is a transmission path between two FTN-ACCs. Or a transmission path between the FTN-ACC and the FTN-AGG.
  • the transmission resource of the shared channel 102 is dynamically allocated. After receiving a data packet, any one of the transmission nodes on the shared channel 102 needs to extract relevant information in the data packet, for example, a destination address, and then dynamically allocate one according to the current load status. The transmission resource is transmitted to the next transmission node. Obviously, the transmission delay is uncertain, and since each transmission node needs to parse, identify, and dynamically allocate data packets, the transmission delay is large. However, this shared channel 102 can maximize the efficient use of transmission resources and save transmission power as much as possible.
  • the transmission channel can be used to transmit control plane signaling, and part of the transmission channel is closed, and the transmission channel is closed, and the corresponding device does not need to provide power consumption to maintain the transmission channel, thereby Save power.
  • the closed transmission channel here may be the direct connection channel 101 or the shared channel 102.
  • the control plane signaling is transmitted by using the transmission channel, so that effective transmission can be improved.
  • the aforementioned direct connection channel 101 is equivalent to a dedicated channel, and is specifically allocated to some data or a transmission channel of some devices, which is equivalent to the type of data transmitted. Once determined, other data cannot be transmitted, if it can be transmitted. The data is less, obviously it will lead to a certain waste of resources.
  • the hybrid channel includes a direct connection path and a shared path; wherein the direct connection path is a path that is transmitted between the transmission nodes by using a predetermined pre-allocated transmission resource; the shared path is dynamically allocated between the transmission nodes. a path through which the transmission resource is transmitted; the transmission node is the FTN-ACC or the FTN-AGG.
  • the ideal preamble data needs to be transmitted by a direct connection channel with a small transmission delay
  • the non-ideal forward transmission data may be transmitted by a shared channel or a hybrid channel with a high resource utilization rate but a slightly larger transmission delay.
  • the transmission resource includes a transmission wavelength or a transmission time slot; the transmission time slot includes a transmission time of a transmission wavelength application.
  • the FTN may be a fiber optic transmission network, and the optical fiber transmission network uses optical waves for transmission. Broadcasting of different wavelengths during transmission is one of the transmission resources.
  • each of the optical waves can be time-multiplexed, so that combined with the transmission wavelength and the transmission time, one transmission time slot can be formed. Therefore, the classification of the direct connection channel 101, the direct connection path or the shared channel 102 can be determined for the manner in which the transmission resources are allocated differently.
  • the direct connection channel 101 is equivalent to pre-configured transmission resources. Once the entire FTN is configured, when the data transmitted by the transmission resource is received, the transmission node can no longer perform data analysis and identification and resource allocation. Knowing which transfer node needs to be forwarded, it is clear that low-latency transmission of data is achieved.
  • the transmission channel further includes a protection channel; wherein the protection channel is for an alternate channel when the direct connection channel and/or the direct connection path fails.
  • the transmission channel further includes a protection channel, and the protection channel may be substantially referred to as a backup channel.
  • the design of the backup channel may be used to transmit corresponding data when the direct connection channel or the direct connection link is faulty. To ensure the data transmission delay.
  • the protection channel is configured in a 1:N configuration manner, except that the protection channel is configured in a 1:1 configuration manner.
  • the N is the number of the direct connection channel 101 or the direct connection path, and the number 1 is the number of the protection channels.
  • the N may be an integer of not less than 2.
  • the protection channel may be a special channel of the direct connection channel.
  • the transmission resources of the protection channel are pre-configured.
  • the protection channel may also be a special channel of the shared channel.
  • the transmission resource of the protection channel is a type of dynamically allocated resources. Once the resource is allocated, the transmission resource is applicable to any one of the transmissions. Node, the transit node transparently transmits data when it is forwarded.
  • the protection channel can directly use the common shared channel 102.
  • the shared channel 102 is directly enabled for data transmission.
  • no dedicated protection channel is configured, which can be maximized. The effective use of transmission resources reduces the transmission power consumption of FTN.
  • the FTN is a ring network structure
  • the protection channel of the transmission channel can be established in a counterclockwise direction.
  • the transmission nodes of the FTN, A, B, C, D, and E establish a ring network.
  • the transmission nodes of the FTN include FTN-ACC and FTN-AGG.
  • the working wavelength ⁇ 1 and the protection wavelength ⁇ 11 form a pair of transmission channels and protection channels; the working wavelength ⁇ 2 and the protection wavelength ⁇ 12 form another pair of transmission channels and protection channels; the operating wavelength ⁇ 3 and the protection wavelength ⁇ 13 form another pair of transmission channels And the protection channel; the operating wavelength ⁇ 4 and the protection wavelength ⁇ 14 form yet another transmission channel and protection channel.
  • the preamble network further includes a controller; for example, the controller may be a Software Defined Network (SDN) controller.
  • SDN Software Defined Network
  • the controller is configured to locate a fault between any two adjacent transit nodes of the channel by using an operation and maintenance management OAM mechanism when the transmission channel is faulty.
  • the controller may be specifically configured to: when the direct connection channel and/or the direct connection path is faulty, use an operation and maintenance management OAM mechanism in any adjacent of the direct connection channel and/or the direct connection path.
  • a fault is located between two transit nodes.
  • the controller When performing positioning, the controller is configured to control the mth detection wavelength to transmit detection data between the first transmission and the mth transmission node, where the m is less than M; the M is a transmission path The total number of transmission nodes. For example, if the M is equal to 4, the detection is performed between the first transmission node and the second transmission node by using four different wavelengths. For example, the first transmission node transmits the detection data by using the first detection wavelength, and the second transmission is performed. The node transmits the feedback data after receiving the detection data by using the first detection wavelength; and according to the detection status of the detection data and the feedback data based on the detection data, it can be determined whether the two transmission nodes are faulty and the fault location.
  • the second transmission node does not receive the detection data, and it is apparent that the first transmission node or the first transmission node to the second transmission node has a failure. If the second transmission node receives the detection data, but the first detection node does not receive the feedback data, there may be a failure of the second transmission node or a failure of the return path. If the feedback data and the feedback path correspond to the same fiber or interface of the physical layer, it is obviously the second transmission node failure.
  • the fault point can be easily and quickly located.
  • the fault location between the corresponding transmission nodes can be performed by using the wavelength ⁇ 1, the wavelength ⁇ 2, the wavelength ⁇ 3, and the wavelength ⁇ 4, respectively, to realize operation and maintenance. management.
  • the preamble network further includes a controller and a preamble network interface NGFI connected to the RRU.
  • NGFIs there are shown n NGFIs in Figure 8, numbered from NGFI 1, NGFI 2 ... NGFI n respectively.
  • the NGFI is used to obtain load status information; both the RRU and the BUUs can be regarded as a wireless side of a wireless network; and the NGFI is an interface connected to the RRU or BUUs.
  • the NGFI interface can detect the load status information.
  • the load status information of the current FTN can be comprehensively determined according to the number of antennas of the RRU, the modulation mode, and the like.
  • the load status information herein may be information capable of reflecting the transmission load or transmission load rate of the FTN.
  • FIG. 8 Also shown in Figure 8 is a multiplexer Mux and a demultiplexer DeMux.
  • the FTN-ACC performs mapping separately according to the selected channel.
  • the numbers of CH for example, 1, 2, 3 and 4, indicate the number of the channel in the corresponding node.
  • the FTN is a fiber-optic network, and the RRU receives the electromagnetic signal sent by the terminal, and may need to perform node electrical layer processing and convert into optical signal transmission.
  • the controller is configured to dynamically configure different types of the transmission channels according to the load status information.
  • the controller will dynamically configure different types of transmission channels according to the load information.
  • the dynamic configuration transmission channel may include adding transmission channels and reducing transmission channels.
  • the specific configuration manner may include increasing transmission resources of the corresponding channel, or reducing transmission resources of the corresponding channel, thereby implementing dynamic configuration of the channel to meet transmission requirements under different load conditions, thereby reducing unnecessary unloaded conditions of the FTN transmission. Therefore, the waste of the transmission resources of the FTN is reduced, for example, the partial illumination device can be turned off, thereby reducing the transmission of a specific wavelength, or activating a part of the illumination device, thereby realizing activation of a certain transmission wavelength.
  • the controller can also implement dynamic configuration of the transmission channel by adjusting the transmission bandwidth of each wavelength.
  • the load status information may include a wireless load index; the wireless load index is information reflecting a wireless load ratio.
  • the embodiment provides a data transmission method
  • the application and the pre-transmission network include: an access type pre-transmission node FTN-ACC connected to the radio remote unit RRU, and the FTN-ACC and The convergence type preamble transmission node FTN-AGG connected to the baseband processing unit pool BUUs.
  • the data transmission method described in this embodiment is a method applied to the foregoing preamble network.
  • the method includes:
  • Step S110 Select a transmission channel established between the FTN-ACC and the FTN-AGG according to a delay requirement of the data;
  • Step S120 transmitting the data by using the transmission channel.
  • the method described in this embodiment may be a method applied to a control surface of FTN-ACC or FTN-AGG.
  • the FTN-ACC or FTN-AGG will obtain the delay requirement of the data, for example, determining the delay requirement of the data according to the service type of the data, the receiving interface, etc., and then selecting to satisfy the delay according to the delay requirement.
  • the transmission channel required by the data delay can meet the data delay requirement on the one hand, and can effectively improve the effective utilization of the transmission resource on the other hand.
  • the control plane can control the forwarding plane to perform data transmission by using a corresponding transmission channel.
  • the transmission channel includes at least two of a direct connection channel, a shared channel, and a hybrid channel;
  • the direct connection channel is: a pre-allocated transmission resource between the original node and the sink node for data transmission.
  • a direct transmission channel when the original node is the FTN-ACC, the sink node is the FTN-AGG; when the original node is the FTN-AGG, the sink node is the FTN- ACC;
  • the shared channel is: a statistical multiplexing channel that uses dynamically allocated transmission resources to transmit between any two adjacent transmission nodes; wherein the shared channel is a transmission path between two FTN-ACCs, or a transmission path between the FTN-ACC and the FTN-AGG;
  • the hybrid channel includes a direct connection path and a shared path; wherein the direct connection path is a path that is transmitted between the transmission nodes by using a predetermined pre-allocated transmission resource; the shared path is dynamically allocated between the transmission nodes. a path through which the transmission resource is transmitted; the transmission node is the FTN-ACC or the FTN-AGG;
  • the step S110 may include at least two of the following:
  • the first transmission delay is smaller than the second transmission delay
  • the second transmission delay is less than the third transmission delay.
  • different transmission channels are equivalent to being in different transmission layers, which is equivalent to hierarchical transmission according to the data delay requirement; can meet the transmission delay of different data, and utilize layered transmission to maximize the maximum Improve the effective use of resources. Therefore, in the embodiment, for the time delay requirement, the direct connection channel or the hybrid channel is preferentially used for data transmission; for the data with low delay requirement, the shared channel may be preferentially used for transmission, so that the transmission of different data is obviously satisfied. Delay, while maximizing the use of transmission resources.
  • the method further includes:
  • the data is transmitted using the protection channel.
  • the protection channel is directly activated for data transmission, and the protection channel is obviously introduced.
  • the introduction of the protection mechanism can ensure that the data delay requirement is still met when the transmission channel fails.
  • the method further includes:
  • the transmission channel is dynamically configured according to the load status information.
  • the NFGI is used to acquire parameters such as the wireless load index of the RRU.
  • the transmission channel is dynamically configured according to the wireless load index. For example, the number of configured transmission channels may be determined according to the load status information, and according to the status information of the load, a delay requirement corresponding to the current load may be determined, and the type and/or quantity of each transmission channel may be determined. .
  • the method further comprises: locating a fault between any two adjacent transit nodes of the transport channel using an operation and maintenance management OAM mechanism when the transmission channel fails.
  • the controller of the control plane of the FTN can be utilized.
  • the OAM mechanism can locate the fault node by node (ie, hop by hop), thereby conveniently and quickly locate the fault.
  • this embodiment provides a method for controlling an FTN, including:
  • Step S210 monitoring traffic status information on the wireless network side
  • Step S220 analyzing the traffic status information, determining a delay requirement of the traffic and a required bandwidth
  • Step S230 Determine network configuration parameters of the forward transmission network FTN according to the delay requirement of the traffic and the required bandwidth.
  • Step S240 Send the network configuration parameter to the FTN.
  • the step S110 may include: selecting, according to the network configuration parameter, a transmission channel established between the FTN-ACC and the FTN-AGG.
  • the traffic status information of the data transmitted by the wireless network side is automatically acquired.
  • the wireless network side here includes the RRU or BBU.
  • the step S210 may include acquiring traffic status information at the RRU.
  • NGFI is used to automatically perceive traffic status information at the RRU.
  • the RRU here is an access network that can be received by a user equipment (User Equipment, UE), and can usually perform information interaction with the UE through an air interface. The more terminals access, the more information needs to be transmitted.
  • the data transmitted by the FTN may also include uplink data to be transmitted from the RRU to the BBU, and may also include downlink data transmitted from the BBU to the RRU.
  • the data traffic and data types of these data will be reflected at the RRU for convergence or aggregation.
  • the traffic status information at the BBU can also be monitored, thereby obtaining information such as the traffic size and traffic type currently required to be transmitted by the FTN network.
  • the step S210 may include: periodically monitoring the traffic status information, analyzing the currently detected traffic status information, determining a delay requirement of the traffic, and a required bandwidth. For example, the traffic status information of the mth period is monitored to obtain the delay requirement and the required bandwidth; in step S230, the network configuration parameter of the m+1th period is generated. The FTN will configure the network attributes and/or network status of the m+1th period for transmitting data according to the network configuration parameters. Certainly, the step S210 may also monitor the traffic state information in real time, generate the network configuration parameter in real time, and adjust the network attribute and/or state of the FTN in real time once the network configuration parameter is changed. Certainly, the traffic status information monitored in step S210 may also be the statistical data in multiple monitoring periods before the current time.
  • step S230 the network configuration parameters of the current period are obtained according to the statistics of the plurality of historical periods, and used for the FTN.
  • the state herein may include an on or off state of the transmission node or port, and the network attributes may include various types of transmission channels, types of services that can be carried, and the like.
  • the delay requirement of the traffic and the required bandwidth will be obtained.
  • the delay requirement is determined by the type of data.
  • the type of data includes a service type.
  • the required bandwidth is determined by the amount of data.
  • step S230 the network configuration parameter is determined according to the delay requirement and the required bandwidth, and the network configuration parameter is sent to the FTN, and after receiving the network configuration parameter, the FTN, according to the network configuration parameter, Perform configuration adjustments for the network topology or network architecture.
  • the network configuration of the FTN is usually static. Once the configuration is rarely adjusted unless abnormal, the transmission of the traffic is very small, and many devices that generate optical signals remain connected or The illuminating state leads to a significant increase in the no-load rate. On the one hand, it consumes the power consumption required to generate optical signals and transmit optical signals. On the other hand, the long-term use accelerates the aging of the device, resulting in shortened service life of the device. The important thing is that the effective use of many resources is greatly reduced.
  • the step S230 may include:
  • the FTN can be configured with multiple transmission channels.
  • the transmission channel here can be a logical channel.
  • the transmission channel may include a direct connection channel, a shared channel, and a hybrid channel.
  • the transmission delays of different transmission channels are different, and the effective utilization ratio of the corresponding transmission resources is also different.
  • the transmission channel may include: at least two of the direct connection channel 101, the shared channel 102, and the hybrid channel 103;
  • the direct connection channel 101 is: a direct transmission channel for transmitting data between the original node and the sink node by using a pre-allocated transmission resource; when the original node is the FTN-ACC, the sink node is the FTN -AGG; when the original node is the FTN-AGG, the sink node is the FTN-ACC.
  • the direct connection channel 101 can directly correspond to a connection channel between the FTN-ACC 110 and the FTN-AGG 120 connected to the RRU, and the intermediate node on the connection channel receives the data only for the data. Transparent transmission and forwarding are performed, and data analysis, identification, and transmission resource allocation are no longer performed.
  • the transmission resource is pre-allocated, and if the intermediate node receives the data transmitted by the transmission resource, it directly forwards to the next transmission node according to the pre-configuration, and does not extract the destination address in the data packet. Then, the current transmission resource status is combined with the destination address for allocation.
  • the transmission delay of the direct connection channel is short and constant, and low-latency transmission can be realized.
  • the transmission resources are pre-allocated, which may result in less data in low latency and waste of resources.
  • the shared channel 102 is a statistical multiplexing channel that uses dynamically allocated transmission resources to transmit between any two adjacent transmission nodes on the channel; wherein the shared channel is between the two FTN-ACCs. a transmission path, or a transmission path between the FTN-ACC and the FTN-AGG.
  • the transmission resource of the shared channel 102 is dynamically allocated. After receiving a data packet, any one of the transmission nodes on the shared channel 102 needs to extract relevant information in the data packet, for example, a destination address, and then dynamically allocate one according to the current load status. The transmission resource is transmitted to the next transmission node. Obviously, the transmission delay is uncertain, and since each transmission node needs to parse, identify, and dynamically allocate data packets, the transmission delay is large. However, this shared channel 102 can maximize the efficient use of transmission resources and save transmission power as much as possible.
  • the transmission channel can be used to transmit control plane signaling, and part of the transmission channel is closed, and the transmission channel is closed, and the corresponding device does not need to provide power consumption to maintain the transmission channel, thereby Save power.
  • the closed transmission channel here may be the direct connection channel 101 or the shared channel 102.
  • the control plane signaling is transmitted by using the transmission channel, so that effective transmission can be improved.
  • the aforementioned direct connection channel 101 is equivalent to a dedicated channel, and is specifically allocated to some data or a transmission channel of some devices, which is equivalent to the type of data transmitted. Once determined, other data cannot be transmitted, if it can be transmitted. The data is less, obviously it will lead to a certain waste of resources.
  • the hybrid channel 103 may include a direct connection path and a shared path; wherein the direct connection path is a path between transmission nodes that uses predetermined pre-allocated transmission resources for transmission; and the shared path is dynamic between transmission nodes. a path through which the allocated transmission resource is transmitted; the transmission node is the FTN-ACC or the FTN-AGG.
  • the ideal preamble data needs to be transmitted by a direct connection channel with a small transmission delay
  • the non-ideal forward transmission data may be transmitted by a shared channel or a hybrid channel with a high resource utilization rate but a slightly larger transmission delay.
  • the transmission resource includes a transmission wavelength or a transmission time slot; the transmission time slot includes a transmission wavelength and a transmission time.
  • the type of the open transmission channel may be determined according to the transmission delay of the current FTN required transmission data. For example, if there is currently a data with a high latency requirement, the direct connection channel 101 needs to be enabled or configured. If the current data is data with a low latency requirement, the shared channel 102 only needs to be enabled.
  • the step S230 may include at least one of the following:
  • the network configuration parameter includes a configuration parameter of the hybrid channel, when the delay requirement corresponds to a second transmission time delay
  • the delay requirement corresponds to a third transmission time delay
  • determining that the network configuration parameter includes a configuration parameter of the shared channel The first transmission delay is smaller than the second transmission delay; the second transmission delay is smaller than the third transmission delay.
  • the transmission bandwidth of the FTN is configured according to the required bandwidth, so that some unused bandwidth can be turned off, thereby reducing the no-load of the network bandwidth of the part of the configuration, thereby reducing power consumption and improving the effective use of resources. rate.
  • the method for determining the transmission bandwidth of the transmission channel that is required to be configured by the FTN according to the required bandwidth may be multiple.
  • the following provides several optional modes.
  • one or more of the transmission channels may be used. The combination.
  • the first option is:
  • a number of connection ports opened between the FTN and the radio remote unit RRU Determining, according to the required bandwidth, a number of connection ports opened between the FTN and the radio remote unit RRU.
  • the number of connection ports between the FTN and the RRU will be determined according to the actual required bandwidth.
  • the second option is:
  • connection port Determining the number of connection ports opened between the FTN and the baseband processing unit BBU according to the required bandwidth. Similarly, the number of connection ports between the FTN and the BBU is configured according to actual needs, thereby reducing unnecessary port connections, reducing unnecessary power consumption, bandwidth resources, and device hardware resources consumed by the connection port.
  • the third option is:
  • the carrier here may be an optical carrier, the number of carriers used to transmit data. Some devices are capable of transmitting a carrier of a specific wavelength. If a carrier is not currently configured for transmission, it is obvious that the device will not transmit a carrier optical signal of the wavelength, thereby reducing power consumption of the device.
  • the number of dynamically configured carriers is obviously consistent with the configuration of maintaining the maximum number of carriers, and the unconfigured carriers can be used for other purposes, thereby improving the overall resource utilization of the carrier.
  • the fourth option is:
  • the FTN-ACC is connected to the RRU; the FTN The -AGG is connected to the baseband processing unit BBU.
  • the FTN in this example may include FTN-ACC and FTN-AGG.
  • the convergence ratio may be a ratio of a number of port connections between the FTN and the RRU to a number of connection ports between the FTN and the BBU. The convergence ratio is determined, and the number of port connections between the FTN and the RRU and the BBU is determined, which is bound to close some ports that are not needed, thereby reducing power consumption.
  • the step S230 may further include combining a delay requirement and a required bandwidth, where the two configuration parameters obtain the same network configuration parameter.
  • the step S230 may include determining, according to the delay requirement and the required bandwidth, a superframe format of the FTN transmission, a type of a unit frame in the superframe, a number of the unit frames, and At least one of the locations of the plurality of unit frames within the superframe.
  • the superframe may be composed of a plurality of unit frames, which may be of the same type or different types.
  • the frame parameters of different types of unit frames can be different. For example, the frame length is different, and the transmission channel corresponding to the unit frame is different.
  • the FTN network can also know which transmission channels need to be turned on, and the number of channels required for each transmission channel (corresponding to the transmission bandwidth).
  • the number of unit frames obviously corresponds to the transmission bandwidth.
  • the position of the unit frame in the superframe may correspond to the number of the transmission channel, so that the FTN can determine which ports corresponding to the transmission channels are specifically turned on.
  • FIG. 11 can provide a frame structure of a superframe for this example.
  • Each superframe includes a plurality of logical channels, and the transmission resources corresponding to the logical channels are used for data transmission of the unit frames configured in the logical channel.
  • physical channels 1 to N all data volumes transmitted in each time slot are configured as one superframe.
  • a superframe can transmit multiple unit frames simultaneously.
  • M logical channels are configured in FIG.
  • the logical channels herein may include various types of transmission channels as described above. For example, if the third logical channel is a direct-connected channel, the third logical channel can be selected to remain on according to the current data transmission delay and the required bandwidth, and the third logical channel corresponds to the corresponding time slot.
  • the physical channel should be kept open, and other times can be turned off to save transmission power and improve the effective utilization of transmission resources.
  • the step S230 may further include determining, according to the delay requirement and the required bandwidth, the type of the port that needs to be opened currently and/or the number of ports that need to be opened for each type.
  • the network configuration parameter is used to indicate that the FTN closes a port that is not currently used, and/or closes a port that uses a frequency lower than a predetermined frequency. By closing the port, the power consumption required to maintain the carrier or detection wave required to turn on these ports can be reduced, the power consumption of the FTN can be reduced, and the effective utilization of resources can be improved.
  • the method further includes:
  • Step S230 may include:
  • the network topology may include various types of information such as the type of the transmission node included in the FTN, the number of each type of node, the connection relationship between the nodes, the connection port between the nodes, and the number of available ports.
  • the acquiring the network topology of the FTN may include:
  • the FTN runs the topology discovery protocol by itself, and reports the topology of the FTN to the transmission side coordinator to obtain the network topology of the FTN.
  • the RRU or the BBU may also send the connection information to the coordinator on the transmission side according to its own connection with the FTN.
  • the coordinator on the transmission side can obtain the entire network topology of the FTN according to one or two of the foregoing two modes, thereby facilitating the determination of the network configuration parameters and reducing the phenomenon that the network configuration parameters are not supported by the FTN. While improving the effective utilization of FTN resources, the power consumption of the FTN is reduced as much as possible.
  • the embodiment further provides a data transmission apparatus, configured to control data transmission of a pre-transmission network, where the pre-transmission network includes: an access-type pre-transmission node FTN-ACC connected to the RRU, and the FTN-ACC and the baseband respectively A convergence type preamble transmission node FTN-AGG connected to the processing unit pool BUUs.
  • the data transmission device includes:
  • the selecting unit 101 is configured to select a transmission channel established between the FTN-ACC and the FTN-AGG according to a delay requirement of the data;
  • the first sending unit 102 is configured to transmit the data by using the transmission channel.
  • the selection unit and the second sending unit may both be program modules, and may be used to select a transmission channel to be established after being executed by the processor, and use the established transmission channel to perform data transmission.
  • the data transmission device further includes:
  • the monitoring unit 110 is configured to monitor traffic status information on the wireless network side;
  • the analyzing unit 120 is configured to analyze the traffic status information, determine a delay requirement of the traffic, and a required bandwidth;
  • the determining unit 130 is configured to determine network configuration parameters of the pre-transmission network FTN according to the delay requirement of the traffic and the required bandwidth;
  • the second sending unit 140 is configured to send the network configuration parameter to the FTN.
  • the control device described in this embodiment may be an information processing device applied to the aforementioned transmission side collaborator.
  • the monitoring unit 110 may correspond to a structure for acquiring traffic status information by an information collector or the like.
  • Both the analyzing unit 120 and the determining unit 130 may correspond to a processor or a processing circuit.
  • the processor can include a central processing unit, a microprocessor, a digital signal processor, an application processor or a programmable array, and the like.
  • the processing circuit can include an application specific integrated circuit.
  • the processor or processing circuitry can effect operation of the analysis unit 120 and the determination unit 130 by execution of predetermined instructions.
  • the second sending unit 140 may correspond to a sending interface, and may send the network configuration information to a transit node in the FTN or the FTN, so that the transport node in the FTN network or the FTN performs a corresponding network configuration operation to improve the FTN network.
  • the effective utilization of resources reduces power consumption.
  • the determining unit 130 is specifically configured to determine, according to the delay requirement, a type of a transmission channel that is required to be configured by the FTN; and/or determine the FTN according to the required bandwidth. The transmission bandwidth of the transmission channel that you need to configure.
  • the determining unit 130 directly determines the type and transmission bandwidth of the transmission channel required for the FTN according to the delay requirement and the required bandwidth, and implements dynamic network configuration of the FTN, which can be satisfied on the one hand.
  • Transmission requirements on the other hand, reduce power consumption as much as possible, and improve the effective utilization of resources.
  • the transmission channel includes at least two of a direct connection channel, a shared channel, and a hybrid channel.
  • the determining unit 130 is specifically configured to perform at least one of the following:
  • the network configuration parameter includes a configuration parameter of the hybrid channel, when the delay requirement corresponds to a second transmission time delay
  • the network configuration parameter includes a configuration parameter of the shared channel, when the delay requirement corresponds to a third transmission time delay
  • the first transmission delay is smaller than the second transmission delay; the second transmission delay is smaller than the third transmission delay.
  • the FTN network can be configured with three types of transmission channels, and the corresponding transmission channels are configured to perform data transmission. On the one hand, the transmission delay requirement is satisfied, and on the other hand, the various expenses of the FTN are reduced as much as possible.
  • the determining unit 130 is specifically described in the above embodiment, and the configured transmission channel is selected according to the delay requirement. In the embodiment, the determining unit 130 is specifically configured to configure the FTN according to the required bandwidth. For example, the determining unit 130 is specifically configured to determine, according to the required bandwidth, a number of connection ports that are opened between the FTN and the radio remote unit RRU; and/or, according to the required bandwidth, determine the a number of connection ports opened between the FTN and the baseband processing unit BBU; and/or determining a number of carriers required to be configured by the FTN according to the required bandwidth; and/or determining the number according to the required bandwidth a convergence ratio between the FTN access type forward transmission node FTN-ACC and the convergence type preamble transmission node FTN-AGG; the FTN-ACC is connected to the RRU; and the FTN-AGG is connected to the baseband processing unit BBU.
  • the determining unit 130 may perform network configuration simultaneously with the delay requirement and the required bandwidth.
  • the determining unit 130 is specifically configured to determine, according to the delay requirement and the required bandwidth, a superframe format of the FTN transmission, a type of a unit frame in the superframe, and a number of the unit frames. And at least one of the locations of the plurality of said unit frames within said superframe.
  • the network configuration parameter is used to instruct the FTN to close a port that is not currently being used, and/or to close a port that uses a frequency lower than a predetermined frequency.
  • the apparatus further includes:
  • An obtaining unit configured to acquire a network topology of the FTN
  • the determining unit 130 is configured to determine the network configuration parameter according to the delay requirement, the required bandwidth, and the network topology.
  • the acquisition unit herein may correspond to a communication interface, and the network topology may be obtained by receiving information from other devices, for example, a respective network topology transmitted from a transmission node of the FTN, for example, FTN-AGG or FTN-ACC.
  • the determining unit 130 determines the network configuration parameters according to the delay requirement, the required bandwidth, and the network topology, so as to implement targeted configuration of the FTN network.
  • the obtaining unit is specifically configured to discover a network topology of the FTN by using a network discovery protocol; and/or, receiving connection information of the radio remote unit RRU and the FTN, and/or a baseband processing unit BBU Connection information with the FTN.
  • the acquiring unit in this embodiment may be based on the network topology of the FTN according to the discovery protocol, or may directly receive the connection information from the FTN-ACC, the FTN-AGG, the RUU, or the BUU or the NGFI, thereby obtaining a network topology, but specifically When implemented, it is not limited to these technical solutions.
  • a front-haul transport network consists of an access type preamble transport network element (FTN-ACC) and a converged preamble transport network node (FTN-AGG), FTN-ACC and FTN-AGG.
  • FTN access type preamble transport network element
  • FN-AGG converged preamble transport network node
  • FTN-ACC FTN-AGG
  • a straight-through wavelength channel is established between each FTN-ACC and FTN-AGG, and the requirements for flexible interconnection of non-ideal forward transmission interfaces are met.
  • the shared wavelength channel can be used for the transmission and transmission of OAM and protection protocols between FTN-AGG and FTN-ACC in addition to the transmission of services.
  • the access-type pre-transport network node is in the service access point, that is, connected to the RRU. It can connect multiple RRUs in the vicinity through NGFI (Next Generation Front-Haul Interface) to sense delay-sensitive services and non-real-time. Sensitive services, which are sensitive to delay and have high bandwidth requirements, are directly mapped to wavelengths directly connected to the FTN-AGG point-to-point, while non-ideal forward interfaces and other services that are not sensitive to delay requirements are mapped to point-by-point. The shared wavelength of the way down.
  • the Reconfigurable Optical Add-Drop Multiplexer (ROADM) technology is used to implement flexible scheduling of different wavelengths in the node.
  • ROADM Reconfigurable Optical Add-Drop Multiplexer
  • the ROADM bypasses it directly, and the other nodes come over.
  • the wavelength is shared, and the ROADM sends it down to the electrical processing module of the FTN node for further processing.
  • the shared wavelength can be the wavelength configured for the shared channel.
  • FTN-AGG Converged Pre-Transport Network Node
  • the forwarding plane of the FTN is divided into three levels.
  • the access point FTN is directly mapped to the corresponding wavelength, and the service access FTN-ACC and the FTN-AGG are forwarded by the optical layer through, that is, the direct connection channel is used for transmission.
  • the optical layer is transferred to the channel layer, and is transmitted from the channel layer to the next node, that is, the hybrid channel is used for transmission.
  • the optical layer is scheduled, and after the channel layer, packet switching is performed, that is, the shared channel is used for transmission.
  • the same device can be implemented for different delay services.
  • the FTN forwarding plane runs a basic OAM mechanism, including CC/CV, on the optical layer of the point-to-point wavelength; and runs the OAM mechanism on the hop-by-hop node electrical layer.
  • the OAM of the optical layer needs to perform a comprehensive comparison to determine the problem of the optical layer, and then notify the relevant fault detection situation through the hop-by-hop transmission of the electrical layer.
  • the protection wavelength is established.
  • the protection signaling is transmitted through the point-by-point shared wavelength to implement protection switching.
  • the NGFI interface can carry the load requirements of the wireless side.
  • the real-time load index (the index of the pre-transmission bandwidth demand calculated by the number of base station antennas, modulation system, etc.) can be transmitted to the FTN node through NGFI, and the interface of the NGFI can be adjusted.
  • the number of wavelengths or channels is activated to adapt the corresponding wireless load index.
  • the NGFI interface can carry different delay requirements and map the traffic to different wavelengths or channels according to the delay requirement.
  • the FTN wavelengths are divided into three categories according to different delay requirements: the channel mapping to the punch-through wavelength required for very low delay, the direct connection to the original node, the direct optical layer punch-through of the intermediate node, and the channel required for higher delay (eg
  • the horizontal traffic like the X2 interface is mapped to the downstream wavelength of some nodes. This wavelength is only down the node with the directly connected link, and the other nodes are not on the way; the other services are mapped to the point-by-point downstream wavelength, in each Each node goes down and performs packet switching to achieve sufficient statistical multiplexing.
  • the management domain of the FTN network adopts a software-defined software defined network (SDN) controller to realize the linkage between wireless and transmission.
  • SDN software-defined software defined network
  • the wavelength and bandwidth are dynamically allocated according to the delay requirement.
  • This example utilizes the cooperation between the wireless side and the forward transmission network to optimize the utilization of resources and save equipment hardware resources under the premise of ensuring service requirements.
  • the wireless and transmission synchronizer is used to monitor the traffic on the RRU side, the service delay requirement, the bandwidth requirement, etc., and analyze the monitored information to further obtain the number of wavelengths, the convergence ratio, and the cells in the block superframe of the FTN network.
  • the number and location information, the relevant information is configured to the FTN network device.
  • the specific implementation steps of this example include:
  • Step S1 The coordinator obtains the network topology of the FTN by using the topology discovery protocol; the synthesizer here may be provided on both the transmission side and the radio side, or only on the transmission side.
  • the transmission side here corresponds to the FTN; the wireless side corresponds to the RRU and the BBUs.
  • Step S2 Importing the connection information of the RRU connected to the FTN into the collaborator for topology improvement; or obtaining the connection relationship between the RRU and the FTN device by using a specific topology discovery protocol.
  • Step S3 The synchronizer monitors the traffic situation of the RRU in real time, and after the traffic comes up, monitors the traffic size and the service type;
  • Step S4 After receiving the information, the collaborator analyzes the service type of the traffic, and obtains the requirements for bandwidth and delay.
  • Step S5 The number of carriers of the channel directly connected to the RRU and the FTN is set by using the bandwidth requirement.
  • the basic granularity of transmission of RRU and FTN is 25G, and the direct interface of each RRU and FTN can include four 25G direct connectors. That is, the bandwidth of the transmission of the RRU and the FTN is at most 100G. If 100G traffic is transmitted, all the lasers that need to be interconnected are turned on. If only the traffic below 25G is transmitted, only one laser can be turned on, which can greatly save power. (25G, 100G are hypothetical, can be changed)
  • Step S6 Set the number and location of the block superframe cells in the FTN network element according to various delay requirements of the service.
  • the processing of different logical channels is different.
  • the RRU transmits multiple service traffic to the FTN different traffic needs to be mapped to different logical channels, and the number of cells of the block frame and Locations can be flexibly and dynamically set.
  • Steps S5 and S6 are not in a certain order, and may be as shown in FIG. 7. Step S6 may be performed first, and then step S5 may be performed. For example, step S5 may be performed according to the structure of the superframe determined in step S6. Turn it on and off.
  • Step S7 The synchronizer uses the traffic information to obtain the convergence ratio of the traffic in the FTN ring, and calculates the NE information of the FTN to be passed and the number of channels to be configured, and starts a specific number of lasers for traffic transmission, and the service
  • the configuration information is delivered to different FTN network elements.
  • the FTN node For the connection between the FTN node and the FTN node, it can be a multi-port interconnection (taking 4 pairs of ports as an example).
  • the basic granularity of the channel on each pair of ports is 25G, and the maximum capacity can accommodate 4*25G traffic, that is, between FTN and FTN.
  • the flow rate can reach 4*4*25G.
  • 16 lasers need to be turned on.
  • the traffic cannot reach the peak every moment, the traffic can be monitored, and the result of the statistical multiplexing can be used to control the laser, which can greatly save the laser resources, and can also realize the transmission of multiple RRU flows by using fewer resources.
  • 25G and 100G are bandwidth distances, and various bandwidths can be used for specific implementation, which is not limited herein.
  • Step S8 The collaborator uses the flow information to implement the setting of the channel of the FTN device and the BBU device.
  • the specific implementation may be as in step S5 and/or step S6.
  • This example describes the BUUs of the BBU in detail, performs the workflow of the control plane of the preamble network, performs port opening and closing, dynamic wavelength allocation, and dynamic scheduling based on RRU traffic monitoring, which can well meet the future 5G pre-transmission and backhaul use.
  • the demand for the same equipment greatly saves the investment cost of the transmission network construction.
  • the aforementioned FTN network element may include the aforementioned FTN-ACC and/or FTN-AGG.
  • the embodiment of the present invention provides a computer storage medium, where the computer storage medium stores computer executable instructions. After the computer executable instructions are executed, the data transmission method provided by the foregoing one or more technical solutions can be implemented, for example, The data transmission method shown in FIG.
  • the computer storage medium may be: a removable storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes; Optional for non-transitory storage media.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may be separately used as one unit, or two or more units may be integrated into one unit; the above integration
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • a pre-transmission network is introduced between the RRU and the BBU, and the pre-transmission network includes two types of transmission nodes: FTN-ACC and FTN-AGG. At least two types of transmission channels are established between the two types of transmission nodes. The transmission delays of the two transmission channels are different and the effective utilization of the transmission resources is also different. When data transmission is performed, the corresponding response is selected according to the delay requirement of the data.
  • the transmission channel is transmitted to meet the transmission delay requirements of different data, has a positive industrial effect, and at the same time has the characteristics of simple implementation, and can be widely used in industry.

Abstract

一种前传网络及数据传输方法,所述前传网络包括:接入型前传传送节点FTN-ACC,用于与射频拉远单元RRU连接;汇聚型前传传送节点FTN-AGG,一端与所述FTN-ACC连接,另一端与基带处理单元池BUUs连接;所述FTN-ACC与所述FTN-AGG之间建立至少有两种具有不同传输时延的传输通道;所述FTN-ACC和/或所述FTN-AGG,具体用于根据数据的时延要求,选择对应的所述传输通道进行传输。

Description

前传网络、数据传输方法及装置、计算机存储介质
相关申请的交叉引用
本申请基于申请号为201611209301.0及201611209501.6、申请日均为2016年12月23日的中国专利申请提出,并要求这两件中国专利申请的优先权,这两件中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及网络技术领域,尤其涉及一种前传网络Front-haul Transport Network,FTN)、数据传输方法及装置、计算机存储介质。
背景技术
前传网络(Front-haul Transport Network,FTN)是一种位于射频拉远单元(Remote Radio Unite,RRU)和基带处理单元(Base Band Unite,BBU)之间的传送网络。所述FTN前端与所述RRU连接,后端与多个BBU组成的BBU池连接。
在现有技术中,所述FTN连接所述RRU和所述BBU池有几种方式:
第一种:采用光纤直连的方式,每一个RRU和BBU池之间采用一对光纤进行连接,这样的话,FTN中使用的光纤对数多,单对光纤的有效使用率低。
第二种:采用彩光直连的方式,多个RRU共用一对可以传输不同波长的光纤,与所述BUU池进行连接。彩光直连的方式需要每个基站分配不同的波长,这样很难满足某些对传输时延要求高的业务的传输需求。
第三种:采用基于现有传送网,如:光传送网(OpticalTransportNetwork,OTN)或分组传送网(Packet Transport Network,PTN)提供前传承载的方 案。目前OTN或PTN节点处理时延都在50us以上,而前传网络中最敏感的业务希望端到端时延在100us以内,显然很难满足多跳组网时如此低时延的需求。
故提出一种既能够满足传输时延需求,又能够减少故障定位和/或维护成本的前传网络是现有技术亟待解决的问题。
发明内容
有鉴于此,本发明实施例期望提供一种前传网络、数据传输方法及装置、计算机存储介质,至少部分用于解决上述问题。
本发明的技术方案是这样实现的:
本发明实施例第一方面提供一种前传网络,包括:
接入型前传传送节点FTN-ACC,配置为与射频拉远单元RRU连接;
汇聚型前传传送节点FTN-AGG,一端与所述FTN-ACC连接,另一端与基带处理单元池BUUs连接;
所述FTN-ACC与所述FTN-AGG之间建立至少有两种具有不同传输时延的传输通道;所述FTN-ACC和/或所述FTN-AGG,配置为根据数据的时延要求,选择对应的所述传输通道进行传输。
本发明实施例第二方面提供一种数据传输方法,应用于前传网络中,所述前传网络包括:与射频拉远单元RRU连接的接入型前传传送节点FTN-ACC,及分别与所述FTN-ACC及基带处理单元池BUUs连接的汇聚型前传传送节点FTN-AGG;所述方法包括:
根据数据的时延要求,选择建立在所述FTN-ACC和所述FTN-AGG之间的传输通道;
利用所述传输通道,发送所述数据。
本发明实施例第三方面提供一种数据传输装置,配置为控制前传网络的数据传输,所述前传网络包括:与射频拉远单元RRU连接的接入型前传 传送节点FTN-ACC,及分别与所述FTN-ACC及基带处理单元池BUUs连接的汇聚型前传传送节点FTN-AGG;所述数据传输装置,包括:
选择单元,配置为根据数据的时延要求,选择建立在所述FTN-ACC和所述FTN-AGG之间的传输通道;
第一发送单元,配置为利用所述传输通道,发送所述数据。
本发明实施例第四方面提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被执行后,能够实现前述一个或多个技术方案提供的数据传输方法。
本发明实施例提供的前传网络、数据传输方法及装置、计算机存储介质,将连接RRU和BBU的前传网络FTN,且FTN划分为了FTN-ACC和FTN-AGG,且这两类传输节点之间建立有至少两种传输通道,这两种传输通道的传输时延不同且传输资源的有效利用率也不同,在进行数据传输时,根据数据的时延要求选择对应的传输通道进行传输,这样一方面可以满足数据传输的时延要求,另一方面可以尽可能的提高传输资源的有效利用率,从而很好的数据传输的时延要求的满足,同时减少了传输资源的空载,提升了资源的有效利用。
附图说明
图1为本发明实施例提供的第一种FTN与BBUs和RRU的连接示意图;
图2为本发明实施例提供的一种FTN的结构及FTN与BBUs和RRU的示意图;
图3为本发明实施例提供的另一种FTN的结构及FTN与BBUs和RRU的示意图;
图4为本发明实施例提供的一种FTN的网络拓扑示意图;
图5为本发明实施例提供的FTN的传输通道示意图;
图6为本发明实施例提供的传输通道和保护通道的对应示意图;
图7为本发明实施例提供的一种定位故障的示意图;
图8为本发明实施例提供的FTN-ACC与RRU及PTN节点的结构及连接示意图;
图9为本发明实施例提供的一种数据传输方法的流程示意图;
图10为本发明实施例提供的另一种数据传输方法的流程示意图;
图11为本发明实施例提供的一种FTN的超帧的示意图;
图12为本发明实施例提供的一种FTN的数据传输装置的结构示意图;
图13为本发明实施例提供的另一种FTN的数据传输装置的结构示意图;
图14为本发明实施例提供的另一种FTN的数据传输装置的流程示意图。
具体实施方式
以下结合说明书附图及具体实施例对本发明的技术方案做进一步的详细阐述。
如图1所示,本实施例提供一种前传网络FTN,FTN一端连接着RRU,另一端连接着BBUs。如图2和图3所示,所述FTN又可包括:
接入型前传传送节点FTN-ACC 110,用于与射频拉远单元RRU连接;
汇聚型前传传送节点FTN-AGG 120,一端与所述FTN-ACC连接,另一端与基带处理单元池BUUs连接;
所述FTN-ACC 110与所述FTN-AGG 120之间建立至少有两种具有不同传输时延的传输通道;所述FTN-ACC110和/或所述FTN-AGG 120,配置为根据数据的时延要求,选择对应的传输通道进行传输。
在本实施例中所述FTN-ACC与FTN-AGG之间至少配置两种以上的传输通道,在本实施例中所述传输通道都可为逻辑通道。
不同的传输通道具有不同的传输时延,这样的话,在进行业务传输时, 不管是所述FTN-ACC或是所述FTN-AGG都可以根据当前传输的数据的时延要求选择对应的传输通道进行数据传输,从而满足不同数据的传输时延。
若数据从所述FTN-ACC传输给所述FTN-AGG,则对应于无线侧的用户设备UE上传给基站的上行数据,若从所述FTN-AGG传输给FTN-ACC,即为基站下传给UE的下行数据。
在本实施例中所述FTN-ACC及FTN-ACG均为通信节点,包括:通信接口及处理器;所述处理器,与所述通信接口连接,配置为控制所述通信接口的数据传输。
在本实施例中配置了至少两种传输通道。通常不同的传输通道的传输时延不同,则对应的传输资源的有效利用率也不同。通常传输时延越小,则传输资源的有效利用率就越低,若传输时延越大,则传输资源的有效利用率越高。在本实施例中所述FTN-ACC与所述FTN-AGG之间配置有至少两种传输通道,这样的话,对某些时延要求高的业务尽可能的利用传输时延小的通道传输,而对于时延要求低的业务,就可以根据数据的时延要求在满足时延要求的同时,选择传输时延较大的传输通道,以最大限度提升传输资源的有效利用,从而可以实现一方面确保各种数据的传输延时,另一方面最大限度的提升传输资源的有效利用。显然这样就不用每一个RRU和BUU之间都建立一对光纤进行传输,也不用都采用采用彩光纤无法满足某些业务需求的问题。
例如,如图1所示,所述数据可包括理想前传RRU发送的理想前传数据,以及非理想前传RRU传输的非理想前传数据。所述理想前传数据需要采用传输时延小的传输通道传输,而所述非理想前传数据则可采用资源利用率高但是传输时延稍大的传输通道传输。
在如图3所示,FTN和无线网都可分为转发域和管理域;管理域用于网络进行管理,转发域基于管理域的管理进行数据传输。在本实施例中, 所述FTN和无线网的管理域是分离的,无线管理域管理RRU和BBUs,前传网络管理域管理FTN的数据转发,例如,根据数据的时延要求,选择对应的通道传输等管理。在图3中显示有通用公共接口(Common Public Radio Interface,CPRI),可用于连接BBU和RRU。
在本实施例中,所述FTN-ACC 110与所述FTN-AGG 120之间建立环形网络或星型网络。图4所示的即为一个所述环形网络。
若建立环形网络,则多个FTN-ACC 110和一个所述FTN-AGG 120组成一个环状结构,数据可以从一个所述FTN-AGG 120传输到多个所述FTN-ACC 110上,也可以从多个所述FTN-ACC 110传输到一个所述FTN-AGG 120上。
当然,所述星型结构则是:所述FTN-AGG 120为星型结构的中心,可以有多个FTN-ACC 110与其连接,但是FTN-ACC 110之间,可能不会形成连接闭环。
在一些实施例中,如图5所示,所述传输通道包括直连通道101、共用通道102和混合通道103中的至少两个;
所述直连通道101为:原节点和宿节点之间采用预分配的传输资源进行数据传输的直传通道;当所述原节点为所述FTN-ACC时,所述宿节点为所述FTN-AGG;当所述原节点为所述FTN-AGG时,所述宿节点为所述FTN-ACC。
在本实施例中所述直连通道101可直接对应于位于一个与RRU连接的FTN-ACC110和FTN-AGG 120之间的连接通道,在该连接通道上的中间节点,接收到数据仅对数据进行透传转发,不再进行数据的解析、识别及传输资源的分配。在直连通道101中,传输资源是预先分配的,中间节点若接收到以该传输资源传输的数据,就直接根据预先配置转发到下一条传输节点,并不会提取该数据包中的目的地址,再进行当前传输资源状况结合 目的地址进行分配的操作。显然,这样的话,直连通道的传输时延短且一定,可以实现低时延的传输。但是传输资源预先分配,可能在低延时数据较少时,出现资源浪费的现象。
所述共用通道102为:任意相邻两个传输节点之间均采用动态分配传输资源进行传输的统计复用通道;其中,所述共用通道为两个所述FTN-ACC之间的传输路径,或所述FTN-ACC与所述FTN-AGG之间的传输路径。
共用通道102的传输资源是动态分配的,共用通道102上任意一个传输节点在接收到一个数据包之后,需要提取数据包中的相关信息,例如,目的地址,再结合当前负载状况,动态分配一个传输资源,传输到下一个传输节点,显然这种传输时延不确定,且由于每一个传输节点都需要进行数据包的解析、识别和资源动态分配,传输时延较大。但是这种共用通道102,可以最大化的传输资源的有效利用,并尽可能的节省传输功耗。例如,当目前传输的数据量少时,就可以利用这种传输通道来传输控制面信令,关闭部分传输通道,传输通道关闭了,对应设备就不用需要提供功耗维持该传输通道,从而可以节省功耗。这里的关闭的传输通道可为直连通道101,也可以为所述共用通道102。利用该传输信道传输控制面信令,从而可以提升有效传输。而前述的直连通道101相当于专用通道,专门分配给某些数据或某些设备的传输通道,相当于传输的数据类型也相当确定,一旦确定就无法进行其他数据的传输,若其可传输的数据少了,显然就可能会导致一定的资源浪费。
所述混合通道包括直连路径和共用路径;其中,所述直连路径为传输节点之间采用预定的预先分配的传输资源进行传输的路径;所述共用路径为传输节点之间采用动态分配的传输资源进行传输的路径;所述传输节点为所述FTN-ACC或所述FTN-AGG。
例如,所述理想前传数据需要采用传输时延小的直连通道传输,而所述非理想前传数据则可采用资源利用率高但是传输时延稍大的共用通道或混合通道传输。
所述传输资源包括传输波长或传输时隙;所述传输时隙包括传输波长应用的传输时间。
所述FTN可为光纤传输网络,光纤传输网络利用光波进行传输。传输的过程中不同波长的广播就为所述传输资源的一种。
从时间维度上来说,每一个所述光波都可以进行时间复用,故结合传输波长和传输时间,就可以形成一个个的传输时隙。故直连通道101、直连路径或共用通道102的分类,可为传输资源的分配方式不同而确定的。
所述直连通道101相当于预先配置传输资源,一旦配置整个FTN都知道了,当接收到这种传输资源传输的数据,传输节点可以不再进行数据的解析和识别及资源分配的基础上,就知道需要转发给哪一个传输节点,显然就实现了数据的低时延透传。
在一些实施例中,所述传输通道还包括保护通道;其中,所述保护通道用于当所述直连通道和/或所述直连路径故障时的备用通道。
在本实施例中所述传输通道还包括保护通道,保护通道实质上又可称之为备用通道,备用通道的设计,可用于当直连通道或直连链路故障时,进行对应数据的传输,以确保数据的传输时延。
在本实施例中为了提升传输资源的有效利用率,减少传输资源的空载。在本实施例中,除了采用1:1的配置方式配置保护通道,还可以采用1:N的配置方式配置所述保护通道。所述N为所述直连通道101或直连路径的条数,所述1为所述保护通道的个数。所述N可为不小于2的整数。这样的话,就实现了多个传输通道共用一个保护通道,实现资源的有效提升。在本实施例中,所述保护通道可为所述直连通道的一种特殊通道。例如, 所述保护通道的传输资源是预先配置的。在具体实现时,所述保护通道也可以为一种共用通道的特殊通道,例如,所述保护通道的传输资源是动态分配资源的一种,资源一旦分配完毕,该传输资源适用于任意一个传输节点,传输节点在进行数据转发时进行透传。
当然在具体实现时,所述保护通道可直接使用普通的共用通道102。这样的话,在传输过程中,FTN的控制器一旦发现某一个直连通道101或直连路径故障,则直接启用共用通道102进行数据传输,这样的话,没有配置专用保护通道,可以最大限度的提升传输资源的有效利用,减少FTN的传输功耗。
若FTN是环状网络结构,当某一个工作波长在正时针方向设立了一个传输通道,则可以在逆时针方向建立该传输通道的保护通道。如图6所示,FTN的传输节点,A、B、C、D、E建立了一个环形网络。这里FTN的传输节点包括FTN-ACC和FTN-AGG。工作波长λ1和保护波长λ11,形成了一对传输通道和保护通道;工作波长λ2和保护波长λ12形成了另一对传输通道和保护通道;工作波长λ3和保护波长λ13形成了另一对传输通道和保护通道;工作波长λ4和保护波长λ14形成了又一个传输通道和保护通道。
在一些实施例中,所述前传网络还包括控制器;例如,所述控制器可为软件定义网络(Software Defined Network,SDN)控制器。
所述控制器,配置为当传输通道故障时,采用运维管理OAM机制在所述通道的任意相邻两个传输节点之间定位故障。例如,所述控制器,可具体用于当所述直连通道和/或所述直连路径故障时,采用运维管理OAM机制在所述直连通道和/或直连路径的任意相邻两个传输节点之间定位故障。
在进行定位时,所述控制器,配置为控制第m检测波长在第1传输和第m传输节点之间传输检测数据,其中,所述m为小于M;所述M为一个传输路径所经过的传输节点总数。例如,所述M等于4,则利用4个不 同的波长,分别在第1传输节点和第2传输节点之间进行检测,例如,第一传输节点利用第1检测波长发送检测数据,第2传输节点利用第一检测波长在接收到所述检测数据之后,发送反馈数据;根据检测数据和基于检测数据的反馈数据的传输状况,就可以确定出这两个传输节点是否出现故障以及故障位置。例如,第2传输节点未接收到检测数据,显然第1传输节点或第1传输节点到第2传输节点的链路上出现故障。若第2传输节点接收到检测数据,但是第1检测节点未接收到反馈数据,故可能是第2传输节点出现故障,或返回路径出现了故障。如反馈数据和反馈路径对应的是物理层的同一根光纤或接口,显然就是第2传输节点故障。依次类推根据OAM机制,可以简便快速定位出故障点。
如图7所示,在传输节点A、传输节点B、传输节点C、传输节点D,可以利用波长λ1、波长λ2、波长λ3及波长λ4分别进行对应传输节点之间的故障定位,实现运维管理。
如图8所示,所述前传网络还包括控制器及与所述RRU连接的前传网络接口NGFI。在图8中显示有n个NGFI,分别编号从NGFI 1、NGFI 2……NGFI n。所述NGFI,用于获取负荷状况信息;所述RRU和所述BUUs都可视为无线网络的无线侧;所述NGFI为与所述RRU或BUUs连接的接口。在本实施例中所述NGFI接口可以检测负荷状况信息,例如,可以根据RRU的天线数、调制方式等综合确定出当前FTN的负荷状况信息。这里的负荷状况信息可为能够反映所述FTN的传输负载或传输负载率的信息。
在图8中还显示有复用器Mux和解复用器DeMux。图8中显示有三种通道,分别为对应着直连通道的中间节点穿透波长、对应着混合通道的部分中间节点穿透波长及对应着共用通道的分组交换。FTN-ACC根据选择的通道不同,分别进行映射。在图8中CH表示的信道,CH的数字,例如,1,2,3及4,均表示的该信道在对应的节点中的编号。通常FTN为光纤 网络,RRU接收到终端发送的电磁信号,可能需要进行节点电层处理,转换成光信号传输。
所述控制器,配置为根据所述负荷状况信息,动态配置不同类型的所述传输通道。
所述控制器将根据负荷信息,动态配置不同类型的传输通道,这里的动态配置传输通道,可包括增加传输通道,减少传输通道。具体的配置方式,可包括增加对应通道的传输资源,或减少对应通道的传输资源,从而实现通道的动态配置,以满足不同负载状况下的传输需求,从而减少FTN传输的不必要的空载状况,从而减少FTN的传输资源的浪费,具体如可以关闭部分发光设备,从而减少特定波长的发送,或激活部分发光设备,从而实现某一个传输波长的激活。所述控制器还可以通过调整每一种波长的传输带宽来实现传输通道的动态配置。所述负载状况信息可包括无线负载指数;所述无线负载指数为反映无线负载比的信息。
本实施例提供一种数据传输方法,应用与于前传网络中,所述前传网络包括:与射频拉远单元RRU连接的接入型前传传送节点FTN-ACC,及分别与所述FTN-ACC及基带处理单元池BUUs连接的汇聚型前传传送节点FTN-AGG。总之,本实施例所述的数据传输方法为应用于前述的前传网络的方法。
如图9所示,所述方法包括:
步骤S110:根据数据的时延要求,选择建立在所述FTN-ACC和所述FTN-AGG之间的传输通道;
步骤S120:利用所述传输通道,发送所述数据。
本实施例中所述方法可为应用于FTN-ACC或FTN-AGG的控制面的方法。首先,所述FTN-ACC或FTN-AGG将获取数据的时延要求,例如,根据数据的业务类型、接收接口等确定该数据的时延要求;然后再根据所述 时延要求,选择满足该数据的时延要求的传输通道,一方面可以满足数据的时延要求,另一方面可以尽可能的提升传输资源的有效利用率。在步骤S120中控制面可以控制转发平面利用对应的传输通道,进行数据传输。
在有些实施例中,所述传输通道包括直连通道、共用通道和混合通道中的至少两个;所述直连通道为:原节点和宿节点之间采用预分配的传输资源进行数据传输的直传通道;当所述原节点为所述FTN-ACC时,所述宿节点为所述FTN-AGG;当所述原节点为所述FTN-AGG时,所述宿节点为所述FTN-ACC;
所述共用通道为:任意相邻两个传输节点之间均采用动态分配传输资源进行传输的统计复用通道;其中,所述共用通道为两个所述FTN-ACC之间的传输路径,或所述FTN-ACC与所述FTN-AGG之间的传输路径;
所述混合通道包括直连路径和共用路径;其中,所述直连路径为传输节点之间采用预定的预先分配的传输资源进行传输的路径;所述共用路径为传输节点之间采用动态分配的传输资源进行传输的路径;所述传输节点为所述FTN-ACC或所述FTN-AGG;
所述步骤S110可包括以下至少两个:
当所述时延要求对应于第一传输时延时,选择所述直连通道;
当所述时延要求对应于第二传输时延时,选择所述混合通道;
当所述时延要求对应于第三传输时延时,选择所述共用通道;
其中,所述第一传输时延小于所述第二传输时延;
所述第二传输时延小于所述第三传输时延。
在本实施例中不同的传输通道,相当于处于不同的传输层,相当于将根据数据的时延要求,进行分层传输;可以满足不同数据的传输时延,同时利用分层传输最大限度的提升资源的有效利用。故在本实施例中针对于时延要求高的,优先采用直连通道或混合通道进行数据传输;针对时延要 求低的数据,可以优先采用共用通道进行传输,这样显然可以满足不同数据的传输时延,同时可以最大限度的利用传输资源。
在一些实施例中,所述方法还包括:
当选择的所述传输通道故障时,利用保护通道传输所述数据。
在本实施例中若选择的传输通道故障,则直接启动保护通道进行数据传输,显然引入了保护通道,这种保护机制的引入,可以确保在传输通道故障时,依然满足数据的时延要求。
在一些实施例中,所述方法还包括:
获取负载状况信息;
根据所述负载状况信息,动态配置所述传输通道。
例如,利用NFGI获取所述RRU的无线负荷指数等参数。根据所述无线负荷指数来动态配置所述传输通道。例如,可以根据所述负载状况信息,确定配置的传输通道的数目,根据所述负载的状况信息,可确定当前负载对应的时延要求,可确定出每一种传输通道的类型和/或数量。
在一些实施例中,所述方法还包括:当所述传输通道故障时,采用运维管理OAM机制在所述传输通道的任意相邻两个传输节点之间定位故障。
在本实施例中可以利用FTN的控制面的控制器,在传输通道出现故障时,可以OAM机制逐节点(即逐跳)定位故障,从而简便快捷定位出故障。
如图10所示,本实施例提供一种FTN的控制方法,包括:
步骤S210:监控无线网络侧的流量状况信息;
步骤S220:分析所述流量状况信息,确定流量的时延要求及所需带宽;
步骤S230:根据流量的时延要求及所需带宽,确定所述前传网络FTN的网络配置参数;
步骤S240:将所述网络配置参数发送给所述FTN。
对应地,所述步骤S110可包括:根据所述网络配置参数,选择建立在 所述FTN-ACC和所述FTN-AGG之间的传输通道。
在本实施例中提供的方法,会自动获取无线网络侧传输的数据的流量状况信息。这里的无线网侧包括所述RRU或BBU。在本实施例中,所述步骤S210可包括获取RRU处的流量状况信息。例如,利用NGFI自动感知所述RRU处的流量状况信息。这里的RRU为可供用户设备(User Equipment,UE)接收的接入网,通常可以通过空口与UE进行信息交互。终端接入的越多,则需要传输的信息就越多。所述FTN传输的数据同样可包括将从RRU传输到BBU的上行数据,还可包括从BBU传输到RRU的下行数据。这些数据的数据流量、数据类型都将体现到RRU处进行交汇或汇总。当然,在具体实现时,也可以监控BBU处的流量状况信息,从而获得FTN网络当前所需传输的流量大小和流量类型等信息。
所述步骤S210可包括:周期性监控所述流量状况信息,对当前所检测的流量状况信息进行分析,确定流量的时延要求及所需带宽。例如,监控第m周期的流量状况信息,获得所述时延要求和所需带宽;在步骤S230中,生成第m+1周期的网络配置参数。FTN将根据网络配置参数,配置第m+1周期用于传输数据的网络属性和/或网络状态。当然,所述步骤S210中也可以为实时监控所述流量状态信息,实时生成所述网络配置参数,一旦网络配置参数有变更,就实时调整所述FTN的网络属性和/或状态。当然,步骤S210中监控的流量状况信息也可以为当前时刻以前多个监控周期内的统计数据,在步骤S230中根据多个历史周期的统计数据,获得当前周期的网络配置参数,用于FTN的当前网络属性和/或状态的配置。这里的状态可包括传输节点或端口的开启或关闭状态,所述网络属性可包括传输通道的类型、可承载的业务种类等各种参数。
在检测到所述流量状况信息,将获得流量的时延要求及所需带宽。通常所述时延要求决定于数据的类型。所述数据的类型包括业务类型。所述 所需带宽决定于数据量。
在步骤S230中,将根据所述时延要求及所需带宽,确定网络配置参数,并将所述网络配置参数发送给FTN,FTN在接收到所述网络配置参数之后,将根据网络配置参数,进行网络拓扑或网络架构的配置调整。
研究发现在现有技术中,FTN的网络配置通常是静态的,一旦配置除非异常通常很少调整,这样的话,在传输的流量很小时,很多产生光信号的设备,也一直保持在连通状态或发光状态,导致空载率大大提升,一方面消耗了产生光信号、传输光信号所需的功耗,另一方面因为长时间使用加速了设备的老化,导致设备的使用期限的缩短,更为重要的是很多资源的有效使用率大大的降低了。
在一些实施例中,所述步骤S230可包括:
根据所述时延要求,确定所述FTN所需配置的传输通道的类型;
和/或,
根据所述所需带宽,确定所述FTN所需配置的传输通道的传输带宽。
在本实施例中所述FTN可配置多种传输通道。这里的传输通道可为逻辑通道。所述传输通道可包括直连通道、共用通道和混合通道。通常不同的传输通道的传输时延不同,则对应的传输资源的有效利用率也不同。
如图5示,所述传输通道可包括:直连通道101、共用通道102和混合通道103中的至少两个;
所述直连通道101为:原节点和宿节点之间采用预分配的传输资源进行数据传输的直传通道;当所述原节点为所述FTN-ACC时,所述宿节点为所述FTN-AGG;当所述原节点为所述FTN-AGG时,所述宿节点为所述FTN-ACC。
在本实施例中所述直连通道101可直接对应于位于一个与RRU连接的FTN-ACC110和FTN-AGG 120之间的连接通道,在该连接通道上的中间节 点,接收到数据仅对数据进行透传转发,不再进行数据的解析、识别及传输资源的分配。在直连通道101中,传输资源是预先分配的,中间节点若接收到以该传输资源传输的数据,就直接根据预先配置转发到下一条传输节点,并不会提取该数据包中的目的地址,再进行当前传输资源状况结合目的地址进行分配的操作。显然,这样的话,直连通道的传输时延短且一定,可以实现低时延的传输。但是传输资源预先分配,可能在低延时数据较少,出现资源浪费的现象。
所述共用通道102为:通道上的任意相邻两个传输节点之间均采用动态分配传输资源进行传输的统计复用通道;其中,所述共用通道为两个所述FTN-ACC之间的传输路径,或所述FTN-ACC与所述FTN-AGG之间的传输路径。
共用通道102的传输资源是动态分配的,共用通道102上任意一个传输节点在接收到一个数据包之后,需要提取数据包中的相关信息,例如,目的地址,再结合当前负载状况,动态分配一个传输资源,传输到下一个传输节点,显然这种传输时延不确定,且由于每一个传输节点都需要进行数据包的解析、识别和资源动态分配,传输时延较大。但是这种共用通道102,可以最大化的传输资源的有效利用,并尽可能的节省传输功耗。例如,当目前传输的数据量少时,就可以利用这种传输通道来传输控制面信令,关闭部分传输通道,传输通道关闭了,对应设备就不用需要提供功耗维持该传输通道,从而可以节省功耗。这里的关闭的传输通道可为直连通道101,也可以为所述共用通道102。利用该传输信道传输控制面信令,从而可以提升有效传输。而前述的直连通道101相当于专用通道,专门分配给某些数据或某些设备的传输通道,相当于传输的数据类型也相当确定,一旦确定就无法进行其他数据的传输,若其可传输的数据少了,显然就可能会导致一定的资源浪费。
所述混合通道103可包括直连路径和共用路径;其中,所述直连路径为传输节点之间采用预定的预先分配的传输资源进行传输的路径;所述共用路径为传输节点之间采用动态分配的传输资源进行传输的路径;所述传输节点为所述FTN-ACC或所述FTN-AGG。
例如,所述理想前传数据需要采用传输时延小的直连通道传输,而所述非理想前传数据则可采用资源利用率高但是传输时延稍大的共用通道或混合通道传输。
所述传输资源包括传输波长或传输时隙;所述传输时隙包括传输波长和传输时间。
故在一些实施例中,可以根据当前FTN所需传输数据的传输时延,确定开启的传输通道的种类。例如,当前存在时延要求很高的数据,则需要开启或配置所述直连通道101,若当前的数据都是对时延要求很低的数据,则可以仅需开启共用通道102即可。
例如,所述步骤S230可包括以下至少其中之一:
当所述时延要求对应于第一传输时延时,确定所述网络配置参数包括所述直连通道的配置参数;
当所述时延要求对应于第二传输时延时,确定所述网络配置参数包括所述混合通道的配置参数;
当所述时延要求对应于第三传输时延时,确定所述网络配置参数包括所述共用通道的配置参数。其中,所述第一传输时延小于所述第二传输时延;所述第二传输时延小于所述第三传输时延。
在一些实施例中,根据所述所需带宽,配置FTN的传输带宽,这样可以关闭一些无需使用的带宽,从而减少这一部分配置的网络带宽的空载,从而减少功耗,提升资源的有效使用率。
所述根据所述所需带宽,确定所述FTN所需配置的传输通道的传输带 宽,的方式有多种,以下提供几种可选方式,在具体实现时,可以使用其中一种或多种的组合。
第一种可选方式:
根据所述所需带宽,确定所述FTN与射频拉远单元RRU之间开启的连接端口数目。通常开启的端口数越多,则处于配置的传输带宽越大,产生用作于载波的光信号的光设备越多,则消耗的资源越多。在本实施中将根据实际所需带宽,确定FTN与RRU之间的连接端口数目。
第二种可选方式:
根据所述所需带宽,确定所述FTN与基带处理单元BBU之间开启的连接端口数。同样的,将根据实际需求,配置FTN与BBU之间的连接端口数目,从而减少不必要的端口连接,减少连接端口空载所消耗的无用功耗和占用的带宽资源和设备硬件资源等。
第三种可选方式:
根据所述所需带宽,确定所述FTN所需配置的载波数目。这里的载波可为光载波,用于传输数据的载波的数量。有一些设备能够发射特定波长的载波,若一种载波当前未被配置进行传输,则显然该设备就不会发射该波长的载波光信号,从而减少设备的功耗。当然,动态配置载波数目,显然相对一致保持最大载波数目的配置,可以将未配置的载波用于完成其他用途,从而提升载波整体的资源有效利用率。
第四种可选方式:
根据所述所需带宽,确定所述FTN的接入型前传传送节点FTN-ACC与汇聚型前传传送节点FTN-AGG之间的收敛比;所述FTN-ACC与所述RRU连接;所述FTN-AGG与基带处理单元BBU连接。
如图2所示,本示例中所述FTN可包括FTN-ACC和FTN-AGG。在实施例中所述收敛比可为:所述FTN与RRU之间的端口连接数与所述FTN 与BBU之间的连接端口数的比值。收敛比确定了,则FTN与RRU和BBU之间的端口连接数确定,势必关闭一些无需使用到的端口,从而也可以减少功耗。
在具体实现时,所述步骤S230还可包括结合时延要求和所需带宽,这两个配置参数得到同一种网络配置参数。例如,所述步骤S230可包括:根据所述时延要求和所述所需带宽,确定所述FTN传输的超帧格式、所述超帧内的单元帧的类型、所述单元帧数目、及各种所述单元帧在所述超帧内的位置的至少之一。
所述超帧可以由多个单元帧组成,这些单元帧可以为同一个类型,也可以为不同的类型。不同类型的单元帧的帧参数可不同。例如,帧长不同,单元帧对应的传输通道不同。显然,这样的话,通过超帧格式的确定,FTN网络也可以知道需要开启哪些传输通道,每一种传输通道所需的通道个数(对应于所述传输带宽)。所述单元帧的数目显然对应于传输带宽。所述单元帧在超帧中的位置,可以与传输通道的编号相对应,方便FTN确定具体开启哪些传输通道对应的端口。
图11所示可为本示例提供一种超帧的帧结构。每一个超帧内包括多个逻辑通道,这些逻辑通道对应的传输资源,就用于该逻辑通道内配置的单元帧进行数据传输。例如将物理通道1至N,每一个时隙传输的所有数据量配置为一个超帧。一个超帧可同时传输多个单元帧。例如,在图11中配置有M个逻辑通道。这里的逻辑通道,可包括上述各种类型的传输通道。例如,第3个逻辑通道为直连通道,则根据当前数据的传输时延和所需带宽,可选择第3个逻辑通道保持开启状态,则在对应的时隙内,第3个逻辑通道对应的物理通道要保持开启状态,其他时间可以处于关闭状态,以节省传输功耗、提升传输资源的有效利用率。
在一些实施例中,所述步骤S230还可包括:直接根据所述时延要求及 所述所需带宽,确定出当前需要开启的端口类型和/或每个类型所需开启的端口数。
进一步地,所述网络配置参数,用于指示所述FTN关闭当前不使用的端口,和/或,关闭使用频次低于预定频次的端口。通过端口的关闭,可以减少保持这些端口开启所需消耗的载波或检测波所需的功耗,降低FTN的功耗,提升资源的有效利用率。
在一些实施例中。所述方法还包括:
获取所述FTN的网络拓扑;
所步骤S230可包括:
根据所述时延要求、所述所需带宽及所述网络拓扑,确定所述网络配置参数。
所述网络拓扑可包括所述FTN包括的传输节点类型,每一种节点类型的数量,节点之间的连接关系、节点之间的连接端口、可用端口数量等各种信息。
生成具体的网络配置参数,需要结合FTN网络的网络拓扑,若脱离网络拓扑,可能产生的网络配置参数,FTN网根本就没有办法支撑。
在本实施例中,所述获取所述FTN的网络拓扑,可包括:
利用网络发现协议发现所述FTN的网络拓扑;
接收射频拉远单元RRU与所述FTN的连接信息和/或基带处理单元BBU与所述FTN的连接信息。
例如,所述FTN自行运行拓扑发现协议,将自身的拓扑分别上报给所述传输侧协同器,从而获取所述FTN的网络拓扑。当然,所述RRU或BBU,也可以根据自身与FTN的连接,将所述连接信息发送给传输侧的协同器。所述传输侧的协同器,可以根据上述两种方式中的一种或两种,获得FTN的整个网络拓扑,从而方便所述网络配置参数的确定,减少网络配置参数 不被FTN支撑的现象,在提升FTN的资源有效利用率的同时,尽可能降低FTN的功耗。
本实施例还提供一种数据传输装置,配置为控制前传网络的数据传输,所述前传网络包括:与RRU连接的接入型前传传送节点FTN-ACC,及分别与所述FTN-ACC及基带处理单元池BUUs连接的汇聚型前传传送节点FTN-AGG。如图12所示,所述数据传输装置,包括:
选择单元101,配置为根据数据的时延要求,选择建立在所述FTN-ACC和所述FTN-AGG之间的传输通道;
第一发送单元102,配置为利用所述传输通道,发送所述数据。
所述选择单元和第二发送单元,均可为程序模块,可以用于通过被处理器执行后,选择需要建立的传输通道,并利用建立的传输通道进行数据的传输。
如图13所示,所述数据传输装置还包括:
监控单元110,配置为监控无线网络侧的流量状况信息;
分析单元120,配置为分析所述流量状况信息,确定流量的时延要求及所需带宽;
确定单元130,配置为根据流量的时延要求及所需带宽,确定所述前传网络FTN的网络配置参数;
第二发送单元140,配置为将所述网络配置参数发送给所述FTN。
本实施例所述的控制装置可为应用于前述传输侧协同器中的信息处理装置。
所述监控单元110可对应于信息采集器等获取流量状况信息的结构。
所述分析单元120及确定单元130都可对应于处理器或处理电路。所述处理器可包括中央处理器、微处理器、数字信号处理器、应用处理器或可编程阵列等。所述处理电路可包括专用集成电路。所述处理器或处理电 路可通过预定指令的执行,实现上述分析单元120和确定单元130的操作。
所述第二发送单元140可对应于发送接口,能够向FTN或FTN内的传输节点发送所述网络配置信息,方便所述FTN网络或FTN内的传输节点执行对应网络配置操作,以提升FTN网络的资源有效利用率,降低功耗。
在有些实施例中,所述确定单元130,具体用于根据所述时延要求,确定所述FTN所需配置的传输通道的类型;和/或,根据所述所需带宽,确定所述FTN所需配置的传输通道的传输带宽。
在本实施例中,所述确定单元130直接根据所述时延要求和所需带宽,来确定FTN所需配置的传输通道的类型和传输带宽,实现了FTN的网络动态配置,一方面可以满足传输需求,另一方面尽可能的降低功耗,提升资源的有效利用率。
在有些实施例中,所述传输通道包括直连通道、共用通道及混合通道的至少两种;所述确定单元130,具体单元具体用于执行以下至少之一:
当所述时延要求对应于第一传输时延时,确定所述网络配置参数包括所述直连通道的配置参数;
当所述时延要求对应于第二传输时延时,确定所述网络配置参数包括所述混合通道的配置参数;
当所述时延要求对应于第三传输时延时,确定所述网络配置参数包括所述共用通道的配置参数;
其中,所述第一传输时延小于所述第二传输时延;所述第二传输时延小于所述第三传输时延。
在本实施例中所述FTN网络可配置三种传输通道,配置对应的传输通道进行数据的传输,一方面确保传输时延要求的满足,另一方面尽可能的降低FTN的各种开销。
在上述实施例中具体介绍了所述确定单元130,根据时延要求选择配置 的传输通道,在本实施例中具体提供所述确定单元130,如何根据所需带宽配置FTN。例如,所述确定单元130,具体用于根据所述所需带宽,确定所述FTN与射频拉远单元RRU之间开启的连接端口数目;和/或,根据所述所需带宽,确定所述FTN与基带处理单元BBU之间开启的连接端口数;和/或,根据所述所需带宽,确定所述FTN所需配置的载波数目;和/或,根据所述所需带宽,确定所述FTN的接入型前传传送节点FTN-ACC与汇聚型前传传送节点FTN-AGG之间的收敛比;所述FTN-ACC与所述RRU连接;所述FTN-AGG与基带处理单元BBU连接。
当然,在具体实现时,所述确定单元130可以结合时延要求和所需带宽,同时进行网络配置。例如,所述确定单元130,具体用于根据所述时延要求和所述所需带宽,确定所述FTN传输的超帧格式、所述超帧内的单元帧的类型、所述单元帧数目、及各种所述单元帧在所述超帧内的位置的至少之一。
在一些实施例中,所述网络配置参数,用于指示所述FTN关闭当前不使用的端口,和/或,关闭使用频次低于预定频次的端口。通过不适用的端口或使用频次很低的端口的关闭,可以降低维持该端口的功耗,减少空载现象,提升资源的有效利用率。
在另一些实施例中,所述装置还包括:
获取单元,配置为获取所述FTN的网络拓扑;
所述确定单元130,配置为根据所述时延要求、所述所需带宽及所述网络拓扑,确定所述网络配置参数。
这里的获取单元,可对应于通信接口,可以通过从其他设备接收信息获取所述网络拓扑,例如,从FTN的传输节点,例如,FTN-AGG或FTN-ACC传输的各自的网络拓扑。
在本实施例中所述确定单元130,将根据时延要求、所需带宽及网络拓 扑,有针对性的进行网络配置参数的确定,从而实现对FTN的网络有针对性的配置。
在一些实施例中,所述获取单元,具体用于利用网络发现协议发现所述FTN的网络拓扑;和/或,接收射频拉远单元RRU与所述FTN的连接信息和/或基带处理单元BBU与所述FTN的连接信息。
本实施例中所述获取单元,可以基于发现协议所述FTN的网络拓扑,也可以直接从FTN-ACC、FTN-AGG、RUU或BUU或NGFI接收所述连接信息,从而获得网络拓扑,但是具体实现时,不局限于这些技术方案。
以下结合上述任意实施例提供几个具体示例:
示例1:
本示例中前传传输网络(front-haul transport network,FTN)由接入型前传传送网元节点(FTN-ACC)和汇聚型前传传送网节点(FTN-AGG)构成,FTN-ACC和FTN-AGG可以组成环形网络或星型网络。
为了满足采用理想前传接口的RRU连接到BBUs所要求极低时延和大带宽,在每个FTN-ACC与FTN-AGG之间建立一个直通波长通道,同时为了满足非理想前传接口灵活互联的需求在环中建立一个逐点下路的共用的波长通道。共用波长通道,除了能够进行业务的传送之外,还可以用于FTN-AGG与FTN-ACC之间的OAM及保护协议建立及拆除。
接入型前传传送网节点(FTN-ACC):处于业务接入点,即与RRU连接,通过NGFI(Next Generation Front-Haul Interface)能够连接附近的多个RRU,实时感知时延敏感业务和非敏感业务,对于时延敏感,带宽要求较大的理想前传接口数据,直接映射至与FTN-AGG点对点直连的波长,而对于时延要求不敏感的非理想前传接口及其他业务映射至逐点下路的共用波长。采用可重构光分插复用器(Reconfigurable Optical Add-Drop Multiplexer,ROADM)技术实现节点内不同波长的灵活调度,对于其他节点过来的直通 波长,ROADM直接将其绕过,对于其他节点过来的共用波长,ROADM将其下路,送至FTN节点的电处理模块,进行更进一步的处理。共用波长可为配置给共用通道的波长。
汇聚型前传传送网节点(FTN-AGG):处于业务汇聚点,以环网或星型组网的方式,将多个不同的接入层FTN-ACC的业务进行收敛汇聚,并送至BBU池。FTN-AGG将所有波长下路,做FTN节点电处理和交换,并能与BBU池联动,实现BBU池的负载与FTN的信道调度和波长使用动态联动。
为了实现极低时延的转发,以及基于时延区分不同业务等级,FTN的转发平面分为三个层次。对于极低时延要求的业务在接入点FTN直接映射至相应的波长,在业务接入FTN-ACC与FTN-AGG之间以光层穿通的方式转发,即采用直连通道进行传输。对于较低时延的业务,由光层转至信道层,由信道层做转发送至下一节点,即采用混合通道进行传输。对于普通时延的分组业务,经由光层调度,信道层后,再进行分组交换,即采用共用通道进行传输。采用分层的处理架构,可以做到同一种设备实现,面向不同时延业务的处理。
FTN转发面对于点对点的波长的光层上,运行基本的OAM机制,包括CC/CV等;在逐跳的各跳的节点电层上运行OAM机制。光层的OAM需要进行综合比对以确定光层的问题,然后通过电层的逐跳传递通知相关的故障检测情况。
对于点对点的工作波长连接,均建立保护波长,当出现故障时,保护信令通过逐点的共用波长进行传递,实现保护倒换。
1)NGFI接口可以携带无线侧的负荷要求,实时的负荷指数(由基站天线数、调制制式、等综合计算的对前传带宽需求的指数)能够通过NGFI传递给FTN节点,NGFI的接口可以通过调整激活波长或信道的数量来适配相应的无线负荷指数。
2)NGFI接口可以携带不同的时延需求,并根据时延要求将流量映射到不同的波长或信道中。FTN的波长对应不同的时延要求被分为三类:对极低时延要求的信道映射至穿通波长,直接连接原宿节点,中间节点直接光层穿通;对较高时延要求的信道(如类似X2接口的横向流量)映射至部分节点下路波长,这种波长仅在有直连链路的节点下路,在其他节点不下路;对其他业务均映射至逐点下路波长,在每个节点都下路并进行分组交换,实现充分的统计复用。
FTN网络的管理域采用管控一体的软件定义网络(Software Defined Network,SDN)控制器,实现无线与传输的联动,根据网络的实际业务需求,根据时延需求,动态调配波长和带宽。
示例2:
本示例利用无线侧与前传网络的协同,实现资源的优化利用,在保证业务需求的前提下节约设备硬件资源。利用无线与传输协同器对RRU侧的业务流量以及业务时延要求,带宽要求等进行监控,将监控的信息进行分析,进一步得出FTN网络关于波长数目、收敛比以及块状超帧中单元格的数目以及位置的信息,将相关信息配置到FTN网络设备。
如图14所示,本示例的具体的实现步骤包括:
步骤S1:协同器利用拓扑发现协议,得到FTN的网络拓扑;这里的协同器可同时在传输侧和无线侧都设置有,或仅设置在传输侧。这里的传输侧对应于FTN;所述无线侧对应于RRU和BBUs。
步骤S2:将与FTN相连接的RRU的连接信息导入到协同器中进行拓扑完善;或者采用特定拓扑发现协议得出RRU与FTN设备连接关系。
步骤S3:协同器实时监测RRU处流量情况,当流量上来以后,要监控流量大小以及业务类型;
步骤S4:协同器收到该信息后,对流量的业务类型进行分析,得出其 对带宽以及时延的要求。
步骤S5:利用带宽要求设置RRU与FTN直联的通道的载波数目。例如,RRU与FTN的传送基本粒度是25G,每个RRU与FTN的直联接口,均可包括4个25G的直连接口。即RRU与FTN的传输的带宽最大是100G。如果传送100G的流量,则需要两者互联的所有激光器均开启,如果只传输25G以下流量,则只需开启一个激光器,可以大大节约功耗。(25G、100G为假设,可更改)
所述S6:根据业务的各种时延要求,设置FTN网元中块状超帧单元格的数目以及位置。在FTN网元中,不同的逻辑通道的处理是不同的,当RRU传输给FTN多种业务流量时,需要将不同的流量映射到不同的逻辑通道里,此时块状帧的单元格数目以及位置都可以灵活动态设置。这里的步骤S5和步骤S6没有一定的先后顺序,可以如图7所示,也可以先执行步骤S6,再执行步骤S5,例如,步骤S5可以根据步骤S6确定的超帧的结构,来进行端口的开启和关闭。
步骤S7:协同器利用流量信息得出FTN环中流量的收敛比,并计算出需要经过的FTN的网元信息以及需要配置的通道的数目,开启特定数量的激光器进行流量的传输,并将业务配置信息下发到不同的FTN网元。
对于FTN节点与FTN节点的连接,可以是多端口互联(以4对端口相连为例),每对端口上通道的基本粒度是25G,最大可以容纳4*25G流量,即FTN与FTN之间的流量可以达到4*4*25G,此时,需要打开16个激光器。但是流量不可能每时每刻都达到峰值,可以对流量进行监测,利用统计复用的结果进行激光器的控制,可以大大节约激光器资源,也可以利用较少的资源实现多个RRU流量的传输。25G、100G均为带宽距离,具体实现时可以采用各种带宽,在此不作限定。
步骤S8:协同器利用流量信息实现FTN设备与BBU设备的通道的设 置,具体实现方式可如步骤S5和/或步骤S6。
本示例详细说明BBU组成的BUUs,进行前传网络的控制面的工作流程,基于RRU的流量监控进行端口开关闭,波长的动态分配以及动态调度,能够很好地满足未来5G的前传与回传使用同一种设备的需求,大大地节约传送网建设的投资成本。
前述FTN网元可包括前述的FTN-ACC和/或FTN-AGG。
本发明实施例提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被执行后,能够实现前述一个或多个技术方案提供的数据传输方法,例如,如图9所示的数据传输方法。
所述计算机存储介质可为;移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质;可选为非瞬间存储介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的 部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明实施例公开的技术方案,在RRU和BBU之间引入了前传网络,且前传网络包括:FTN-ACC和FTN-AGG两类传输节点。且这两类传输节点之间建立有至少两种传输通道,这两种传输通道的传输时延不同且传输资源的有效利用率也不同,在进行数据传输时,根据数据的时延要求选择对应的传输通道进行传输,从而满足不同数据的传输延时需求,具有积极的工业效果,与此同时具有实现简单的特点,可在工业上广泛推广使用。

Claims (22)

  1. 一种前传网络,包括:
    接入型前传传送节点FTN-ACC,配置为与射频拉远单元RRU连接;
    汇聚型前传传送节点FTN-AGG,一端与所述FTN-ACC连接,另一端与基带处理单元池BUUs连接;
    所述FTN-ACC与所述FTN-AGG之间建立至少有两种具有不同传输时延的传输通道;所述FTN-ACC和/或所述FTN-AGG,配置为根据数据的时延要求,选择对应的所述传输通道进行传输。
  2. 根据权利要求1所述的前传网络,其中,
    所述FTN-ACC与所述FTN-AGG之间建立环形网络或星型网络。
  3. 根据权利要求1或2所述的前传网络,其中,
    所述传输通道包括直连通道、共用通道和混合通道中的至少两个;
    所述直连通道为:原节点和宿节点之间采用预分配的传输资源进行数据传输的直传通道;当所述原节点为所述FTN-ACC时,所述宿节点为所述FTN-AGG;当所述原节点为所述FTN-AGG时,所述宿节点为所述FTN-ACC;
    所述共用通道为:任意相邻两个传输节点之间均采用动态分配传输资源进行传输的统计复用通道;其中,所述共用通道为两个所述FTN-ACC之间的传输路径,或所述FTN-ACC与所述FTN-AGG之间的传输路径;
    所述混合通道包括直连路径和共用路径;其中,所述直连路径为传输节点之间采用预定的预先分配的传输资源进行传输的路径;所述共用路径为传输节点之间采用动态分配的传输资源进行传输的路径;所述传输节点为所述FTN-ACC或所述FTN-AGG。
  4. 根据权利要求3所述的前传网络,其中,
    所述传输资源包括传输波长或传输时隙;
    所述传输时隙包括传输波长应用的传输时间。
  5. 根据权利要求3所述的前传网络,其中,
    所述传输通道还包括保护通道;
    其中,所述保护通道配置为当作所述直连通道和/或所述直连路径故障时的备用通道。
  6. 根据权利要求3所述的前传网络,其中,
    所述前传网络还包括控制器;
    所述控制器,配置为当所述传输通道故障时,采用运维管理OAM机制在所述传输通道的任意相邻两个传输节点之间定位故障。
  7. 根据权利要求1或2所述的前传网络,其中,
    所述FTN-ACC包括前传网络接口NGFI;其中,所述NGFI与所述RRU连接;
    所述前传网络还包括控制器;
    所述NGFI,配置为获取负荷状况信息;
    所述控制器,配置为根据所述负荷状况信息,动态配置不同类型的所述传输通道。
  8. 一种数据传输方法,应用于前传网络中,所述前传网络包括:与射频拉远单元RRU连接的接入型前传传送节点FTN-ACC,及分别与所述FTN-ACC及基带处理单元池BUUs连接的汇聚型前传传送节点FTN-AGG;所述方法包括:
    根据数据的时延要求,选择建立在所述FTN-ACC和所述FTN-AGG之间的传输通道;
    利用所述传输通道,发送所述数据。
  9. 根据权利要求8所述的方法,其中,
    所述传输通道包括直连通道、共用通道和混合通道中的至少两个;
    所述直连通道为:原节点和宿节点之间采用预分配的传输资源进行数据传输的直传通道;当所述原节点为所述FTN-ACC时,所述宿节点为所述FTN-AGG;当所述原节点为所述FTN-AGG时,所述宿节点为所述FTN-ACC;
    所述共用通道为:任意相邻两个传输节点之间均采用动态分配传输资源进行传输的统计复用通道;其中,所述共用通道为两个所述FTN-ACC之间的传输路径,或所述FTN-ACC与所述FTN-AGG之间的传输路径;
    所述混合通道包括直连路径和共用路径;其中,所述直连路径为传输节点之间采用预定的预先分配的传输资源进行传输的路径;所述共用路径为传输节点之间采用动态分配的传输资源进行传输的路径;所述传输节点为所述FTN-ACC或所述FTN-AGG;
    所述根据数据的传输时延,选择建立在所述FTN-ACC和所述FTN-AGG之间的传输通道,包括以下至少两个:
    当所述时延要求对应于第一传输时延时,选择所述直连通道;
    当所述时延要求对应于第二传输时延时,选择所述混合通道;
    当所述时延要求对应于第三传输时延时,选择所述共用通道;
    其中,所述第一传输时延小于所述第二传输时延;
    所述第二传输时延小于所述第三传输时延。
  10. 根据权利要求9所述的方法,其中,
    所述方法还包括:
    当选择的所述传输通道故障时,利用保护通道传输所述数据。
  11. 根据权利要求8所述的方法,其中,
    所述方法还包括:
    获取负载状况信息;
    根据所述负载状况信息,动态配置所述传输通道。
  12. 根据权利要求8所述的方法,其中,
    所述方法还包括:
    当所述传输通道故障时,采用运维管理OAM机制在所述传输通道的任意相邻两个传输节点之间定位故障。
  13. 根据权利要求8所述的方法,其中,所述方法还包括:
    监控无线网络侧的流量状况信息;
    分析所述流量状况信息,确定流量的时延要求及所需带宽;
    根据流量的时延要求及所需带宽,确定所述前传网络FTN的网络配置参数;
    将所述网络配置参数发送给所述FTN。
  14. 根据权利要求13所述的方法,其特征在于,
    所述根据流量的时延要求及所需带宽,确定所述前传网络FTN的网络配置参数,包括:
    根据所述时延要求,确定所述FTN所需配置的传输通道的类型;
    和/或,
    根据所述所需带宽,确定所述FTN所需配置的传输通道的传输带宽。
  15. 根据权利要求13所述的方法,其特征在于,
    所述传输通道包括直连通道、共用通道及混合通道的至少两种;
    所述根据所述时延要求,确定所述FTN所需配置的传输通道的类型,包括以下至少之一:
    当所述时延要求对应于第一传输时延时,确定所述网络配置参数包括所述直连通道的配置参数;
    当所述时延要求对应于第二传输时延时,确定所述网络配置参数包括所述混合通道的配置参数;
    当所述时延要求对应于第三传输时延时,确定所述网络配置参数包括 所述共用通道的配置参数;
    其中,所述第一传输时延小于所述第二传输时延;所述第二传输时延小于所述第三传输时延。
  16. 根据权利要求14所述的方法,其特征在于,
    所述根据所述所需带宽,确定所述FTN所需配置的传输通道的传输带宽,包括:
    根据所述所需带宽,确定所述FTN与射频拉远单元RRU之间开启的连接端口数目;
    和/或,
    根据所述所需带宽,确定所述FTN与基带处理单元BBU之间开启的连接端口数目;
    和/或,
    根据所述所需带宽,确定所述FTN所需配置的载波数目;
    和/或,
    根据所述所需带宽,确定所述FTN的接入型前传传送节点FTN-ACC与汇聚型前传传送节点FTN-AGG之间的收敛比;所述FTN-ACC与所述RRU连接;所述FTN-AGG与基带处理单元BBU连接。
  17. 根据权利要求13所述的方法,其特征在于,
    所述根据流量的时延要求及所需带宽,确定所述前传网络FTN的网络配置参数,包括:
    根据所述时延要求和所述所需带宽,确定所述FTN传输的超帧格式、所述超帧内的单元帧的类型、所述单元帧数目、及各种所述单元帧在所述超帧内的位置的至少之一。
  18. 根据权利要求13所述的方法,其特征在于,
    所述网络配置参数,用于指示所述FTN关闭当前不使用的端口,和/ 或,关闭使用频次低于预定频次的端口。
  19. 根据权利要求13至18任一项所述的方法,其特征在于,
    所述方法还包括:
    获取所述FTN的网络拓扑;
    所述根据流量的时延要求及所需带宽,确定所述前传网络FTN的网络配置参数,包括:
    根据所述时延要求、所述所需带宽及所述网络拓扑,确定所述网络配置参数。
  20. 根据权利要求19所述的方法,其中,
    所述获取所述FTN的网络拓扑,包括:
    利用网络发现协议发现所述FTN的网络拓扑;
    和/或,
    接收射频拉远单元RRU与所述FTN的连接信息和/或基带处理单元BBU与所述FTN的连接信息。
  21. 一种数据传输装置,配置为控制前传网络的数据传输,所述前传网络包括:与射频拉远单元RRU连接的接入型前传传送节点FTN-ACC,及分别与所述FTN-ACC及基带处理单元池BUUs连接的汇聚型前传传送节点FTN-AGG;所述数据传输装置,包括:
    选择单元,配置为根据数据的时延要求,选择建立在所述FTN-ACC和所述FTN-AGG之间的传输通道;
    第一发送单元,配置为利用所述传输通道,发送所述数据。
  22. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被执行后,能够实现权利要求8至20任一项提供的数据传输方法。
PCT/CN2017/118406 2016-12-23 2017-12-25 前传网络、数据传输方法及装置、计算机存储介质 WO2018113797A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019527331A JP6800332B2 (ja) 2016-12-23 2017-12-25 フロントホール伝送ネットワーク、データ伝送方法及び装置、コンピュータ記憶媒体
US16/466,020 US10972941B2 (en) 2016-12-23 2017-12-25 Front-haul transport network, data transmission method, apparatus and computer storage medium
KR1020197015273A KR102296176B1 (ko) 2016-12-23 2017-12-25 프론트홀 전송 네트워크, 데이터 전송 방법 및 장치, 컴퓨터 저장 매체
EP17882822.4A EP3554181B1 (en) 2016-12-23 2017-12-25 Front-haul transport network, data transmission method, apparatus and computer storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201611209301.0A CN106888513B (zh) 2016-12-23 2016-12-23 前传网络及数据传输方法
CN201611209501.6 2016-12-23
CN201611209301.0 2016-12-23
CN201611209501.6A CN106888473B (zh) 2016-12-23 2016-12-23 前传网络控制方法及装置

Publications (1)

Publication Number Publication Date
WO2018113797A1 true WO2018113797A1 (zh) 2018-06-28

Family

ID=62624560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118406 WO2018113797A1 (zh) 2016-12-23 2017-12-25 前传网络、数据传输方法及装置、计算机存储介质

Country Status (5)

Country Link
US (1) US10972941B2 (zh)
EP (1) EP3554181B1 (zh)
JP (1) JP6800332B2 (zh)
KR (1) KR102296176B1 (zh)
WO (1) WO2018113797A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209095A1 (ja) * 2019-04-12 2020-10-15 日本電信電話株式会社 多重伝送システム及び多重伝送方法
CN114126019A (zh) * 2021-11-30 2022-03-01 北京邮电大学 一种基于能效优化的前传光网络动态资源映射方法及系统
EP3958481A4 (en) * 2019-06-06 2023-01-11 China Mobile Communication Co., Ltd. Research Institute ACTIVE MODULE, MOBILE COMMUNICATIONS FRONTHOUL SYSTEM AND METHOD OF MANAGING AND CONTROLLING MOBILE COMMUNICATIONS FRONTHOUSE

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2701703C1 (ru) * 2015-12-28 2019-09-30 Нек Корпорейшн Радиотерминал, радиостанция, узел базовой сети и способ связи в них
CN106888078B (zh) 2016-12-26 2019-03-12 中国移动通信有限公司研究院 前传网络的数据传输方法及装置
CN109861765B (zh) * 2017-11-30 2021-10-26 华为技术有限公司 一种校正方法及装置
US20220408390A1 (en) * 2019-11-07 2022-12-22 Ntt Docomo, Inc. Communication device
US11184782B2 (en) * 2019-12-03 2021-11-23 At&T Intellectual Property I, L.P. Automated parameter deployment for cellular communication networks
CN113133060B (zh) * 2019-12-30 2022-12-27 华为技术有限公司 接入网系统、传输方法以及相关设备
US20210385686A1 (en) * 2020-06-03 2021-12-09 Mavenir Systems, Inc. Traffic timing control for an open radio access network in a cloud radio access network system
EP4301027A4 (en) * 2021-02-24 2024-04-17 Nec Corp REMOTE UNIT DEVICE, DISTRIBUTED UNIT DEVICE, COMMUNICATIONS SYSTEM, COMMUNICATIONS METHOD AND NON-TRANSITIOUS COMPUTER-READABLE MEDIUM
CN116599833B (zh) * 2023-07-18 2023-10-03 广州世炬网络科技有限公司 对前传网络进行故障排查的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771591A (zh) * 2008-12-26 2010-07-07 大唐移动通信设备有限公司 一种rru与bbu环形组网下的业务传输方法及系统
CN102196482A (zh) * 2011-06-30 2011-09-21 大唐移动通信设备有限公司 一种业务热备份的方法及装置
CN103428125A (zh) * 2013-08-16 2013-12-04 上海华为技术有限公司 远端射频单元间的通道校正方法、相关装置及系统
US20160205611A1 (en) * 2015-01-13 2016-07-14 Fujitsu Limited Control apparatus and method of base station
CN106888513A (zh) * 2016-12-23 2017-06-23 中国移动通信有限公司研究院 前传网络及数据传输方法
CN106888473A (zh) * 2016-12-23 2017-06-23 中国移动通信有限公司研究院 前传网络控制方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098328B (zh) 2007-06-29 2010-06-02 中兴通讯股份有限公司 一种基带与射频系统同步和时延补偿方法
CA2737082A1 (en) 2008-09-15 2010-03-18 Danisco Us Inc. Increased isoprene production using mevalonate kinase and isoprene synthase
US20140036726A1 (en) 2011-04-13 2014-02-06 Nec Corporation Network, data forwarding node, communication method, and program
US20120311173A1 (en) 2011-05-31 2012-12-06 Broadcom Corporation Dynamic Wireless Channel Selection And Protocol Control For Streaming Media
EP2761972A4 (en) 2011-10-01 2015-08-12 Intel Corp REMOTE RADIO UNIT (RRU) AND BASEBAND UNIT (BBU)
KR101738698B1 (ko) 2011-12-30 2017-05-23 한국전자통신연구원 파장 분할 다중화 방식이 적용된 유무선 융합 네트워크 및 신호 전송 방법
CN102723994B (zh) 2012-06-15 2016-06-22 华为技术有限公司 数据传输的方法、装置及系统
JP5967715B2 (ja) 2013-02-20 2016-08-10 日本電信電話株式会社 無線アクセス網における冗長化システム及び方法
CN104333727B (zh) 2013-07-22 2019-04-12 腾讯科技(深圳)有限公司 音视频传输通道调控方法、装置和系统
US10341229B2 (en) 2013-10-04 2019-07-02 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for configuring optical network nodes
CN104734899A (zh) 2013-12-19 2015-06-24 中国移动通信集团四川有限公司 一种调整带宽参数的方法及装置
CN105450373B (zh) 2014-08-22 2019-01-08 上海诺基亚贝尔股份有限公司 一种在前端回传网络上传输数据的方法及其设备
EP3245777B1 (en) 2015-01-13 2021-04-28 RANIOT Technologies Oy A base station and a method thereto
US10355895B2 (en) 2015-03-11 2019-07-16 Phluido, Inc. Baseband unit with adaptive fronthaul link for a distributed radio access network
JP2016208354A (ja) 2015-04-24 2016-12-08 富士通株式会社 光通信システム、及び、光通信方法
CN107615715B (zh) 2015-05-26 2021-05-11 日本电信电话株式会社 站侧装置以及通信方法
US10608734B2 (en) * 2015-10-22 2020-03-31 Phluido, Inc. Virtualization and orchestration of a radio access network
WO2017088911A1 (en) * 2015-11-24 2017-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Switching data signals of at least two types for transmission over a transport network providing both backhaul and fronthaul (xhaul) connectivity
US10666501B2 (en) * 2016-09-15 2020-05-26 At&T Intellectual Property, I, L.P. Software defined network based CPRI switch for improved availability in cloud-based ran

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771591A (zh) * 2008-12-26 2010-07-07 大唐移动通信设备有限公司 一种rru与bbu环形组网下的业务传输方法及系统
CN102196482A (zh) * 2011-06-30 2011-09-21 大唐移动通信设备有限公司 一种业务热备份的方法及装置
CN103428125A (zh) * 2013-08-16 2013-12-04 上海华为技术有限公司 远端射频单元间的通道校正方法、相关装置及系统
US20160205611A1 (en) * 2015-01-13 2016-07-14 Fujitsu Limited Control apparatus and method of base station
CN106888513A (zh) * 2016-12-23 2017-06-23 中国移动通信有限公司研究院 前传网络及数据传输方法
CN106888473A (zh) * 2016-12-23 2017-06-23 中国移动通信有限公司研究院 前传网络控制方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209095A1 (ja) * 2019-04-12 2020-10-15 日本電信電話株式会社 多重伝送システム及び多重伝送方法
JP2020174326A (ja) * 2019-04-12 2020-10-22 日本電信電話株式会社 多重伝送システム及び多重伝送方法
JP7196749B2 (ja) 2019-04-12 2022-12-27 日本電信電話株式会社 多重伝送システム及び多重伝送方法
EP3958481A4 (en) * 2019-06-06 2023-01-11 China Mobile Communication Co., Ltd. Research Institute ACTIVE MODULE, MOBILE COMMUNICATIONS FRONTHOUL SYSTEM AND METHOD OF MANAGING AND CONTROLLING MOBILE COMMUNICATIONS FRONTHOUSE
CN114126019A (zh) * 2021-11-30 2022-03-01 北京邮电大学 一种基于能效优化的前传光网络动态资源映射方法及系统
CN114126019B (zh) * 2021-11-30 2024-04-23 北京邮电大学 一种基于能效优化的前传光网络动态资源映射方法及系统

Also Published As

Publication number Publication date
JP6800332B2 (ja) 2020-12-16
EP3554181A1 (en) 2019-10-16
KR102296176B1 (ko) 2021-09-01
JP2020500484A (ja) 2020-01-09
KR20190079643A (ko) 2019-07-05
US10972941B2 (en) 2021-04-06
EP3554181B1 (en) 2020-09-09
US20190313288A1 (en) 2019-10-10
EP3554181A4 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
WO2018113797A1 (zh) 前传网络、数据传输方法及装置、计算机存储介质
US11974080B2 (en) Apparatus and methods for integrated high-capacity data and wireless IoT (internet of things) services
US10856058B2 (en) Switching data signals of at least two types for transmission over a transport network providing both backhaul and fronthaul (Xhaul) connectivity
Liu et al. New perspectives on future smart FiWi networks: Scalability, reliability, and energy efficiency
Tullberg et al. The METIS 5G system concept: Meeting the 5G requirements
CN106888473B (zh) 前传网络控制方法及装置
CN104703224A (zh) 用于d2d通信的资源配置方法、装置和终端
KR20150088626A (ko) 소프트웨어 정의 네트워킹 방법
CN107637027B (zh) 无线电接入网络中基站之间通信的系统、方法和存储介质
US10999840B2 (en) Method and device for data transmission of front-haul transport network, and computer storage medium
US10057847B2 (en) QOS-based cooperative scheduling for handling of data traffic
CN106888513B (zh) 前传网络及数据传输方法
US20230134743A1 (en) Frequency domain resource configuration in iab
CN115914887A (zh) 一种业务数据的传输方法及相关设备
US8897242B2 (en) Method and system for configuring enhanced dedicated channel transmission bearer mode
KR20160107866A (ko) 동적 파당 할당 기능을 갖는 중앙 기지국 장치
US9877348B2 (en) Method and apparatus for establishing a backhaul link
Ou et al. A control bridge to automate the convergence of passive optical networks and IEEE 802.16 (WiMAX) wireless networks
US20240089940A1 (en) Configure iab frequency-domain resource utilization
Remondo et al. Integration of optical and wireless technologies in the metro-access: QoS support and mobility aspects
Hisano et al. Efficient accommodation of mobile fronthaul and secondary services in a TDM-PON system with wireless TDD frame monitor
Yan et al. Sdn Multi Network Element Routing Optimization Strategy In 5g Scenario
EP4369733A1 (en) Method for processing cascaded onts, and apparatus and system
CN117014743A (zh) 一种光接入设备、光接入的方法和系统
Shen et al. Fixed mobile convergence (FMC) architectures for broadband access: Integration of EPON and WiMAX

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527331

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197015273

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017882822

Country of ref document: EP

Effective date: 20190712