WO2020208754A1 - 波長変換部材、バックライトユニット、及び画像表示装置 - Google Patents

波長変換部材、バックライトユニット、及び画像表示装置 Download PDF

Info

Publication number
WO2020208754A1
WO2020208754A1 PCT/JP2019/015688 JP2019015688W WO2020208754A1 WO 2020208754 A1 WO2020208754 A1 WO 2020208754A1 JP 2019015688 W JP2019015688 W JP 2019015688W WO 2020208754 A1 WO2020208754 A1 WO 2020208754A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
wavelength conversion
acrylate
phosphor
compound
Prior art date
Application number
PCT/JP2019/015688
Other languages
English (en)
French (fr)
Inventor
良孝 勝田
中村 智之
及川 太
真弓 佐藤
勝義 坂本
雄麻 吉田
大介 大槻
国廣 桐ヶ谷
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2021513097A priority Critical patent/JPWO2020208754A1/ja
Priority to CN201980093864.3A priority patent/CN113557457A/zh
Priority to PCT/JP2019/015688 priority patent/WO2020208754A1/ja
Priority to US17/437,048 priority patent/US20220187518A1/en
Publication of WO2020208754A1 publication Critical patent/WO2020208754A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/10Refractors for light sources comprising photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters

Definitions

  • the present disclosure relates to a wavelength conversion member, a backlight unit, and an image display device.
  • the wavelength conversion member including the phosphor is arranged in the backlight unit of the image display device, for example.
  • a wavelength conversion member containing a phosphor that emits red light and a phosphor that emits green light when the wavelength conversion member is irradiated with blue light as excitation light, the red light emitted from the phosphor and White light can be obtained by the green light and the blue light transmitted through the wavelength conversion member.
  • the color reproducibility of displays has been expanded from 72% of the conventional NTSC (National Television System Committee) ratio to 100% of the NTSC ratio.
  • the phosphor Since the phosphor is relatively expensive, it is desirable that a sufficient wavelength conversion effect can be obtained with a smaller amount of the phosphor from the viewpoint of reducing the manufacturing cost of the image display device. Further, as the quantum dot phosphor currently used as a phosphor, those containing cadmium (Cd) are the mainstream. On the other hand, the movement to regulate the amount of heavy metals used in electronic and electrical equipment is spreading worldwide. Therefore, it is desired to reduce the amount of quantum dot phosphors required to achieve a good color balance.
  • an object of the present disclosure is to provide a wavelength conversion member capable of achieving a predetermined color tone while suppressing the amount of phosphor, and a backlight unit and an image display device using the wavelength conversion member.
  • Means for solving the above problems include the following aspects.
  • a wavelength conversion member comprising a wavelength conversion layer containing a phosphor and a light diffusing material, having a diffusion transmittance of 50% or less and a thickness of the wavelength conversion layer of 100 ⁇ m or less.
  • ⁇ 3> The wavelength conversion member according to ⁇ 1> or ⁇ 2>, wherein the light diffusing material contains titanium oxide.
  • ⁇ 4> The wavelength conversion member according to any one of ⁇ 1> to ⁇ 3>, wherein the content of the light diffusing material is 2.0% by mass or more of the wavelength conversion layer.
  • ⁇ 5> The wavelength conversion member according to any one of ⁇ 1> to ⁇ 4>, wherein the wavelength conversion layer further contains a cured resin product.
  • ⁇ 6> A wavelength conversion member comprising a wavelength conversion layer containing a phosphor and a light diffusing material, wherein the content of the light diffusing material is 2.0% by mass or more of the entire wavelength conversion layer.
  • ⁇ 7> The wavelength conversion member according to ⁇ 6>, wherein the light diffusing material contains titanium oxide.
  • ⁇ 8> The wavelength conversion member according to ⁇ 6> or ⁇ 7>, wherein the ratio of the diffusion transmittance to the total light transmittance is 80% or more.
  • ⁇ 9> A backlight unit including the wavelength conversion member according to any one of ⁇ 1> to ⁇ 8> and a light source.
  • An image display device including the backlight unit according to ⁇ 9>.
  • a wavelength conversion member capable of achieving a predetermined color tone while suppressing the amount of phosphor, and a backlight unit and an image display device using the wavelength conversion member are provided.
  • each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content rate or content of each component is the total content rate or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
  • a plurality of types of particles corresponding to each component may be contained.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term “layer” or “membrane” is used only in a part of the region in addition to the case where the layer or the membrane is formed in the entire region when the region in which the layer or the membrane exists is observed. The case where it is formed is also included.
  • laminated refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
  • (meth) acrylate means at least one of acrylate and methacrylate
  • (meth) allyl means at least one of allyl and methallyl
  • (meth) acrylic means acrylic and methacrylic.
  • (meth) acryloyl means at least one of acryloyl and methacryloyl.
  • Wavelength conversion member (first embodiment) includes a wavelength conversion layer containing a phosphor and a light diffusing material, has a diffusion transmittance of 50% or less, and has a thickness of 100 ⁇ m or less. It is a wavelength conversion member.
  • a wavelength conversion member satisfying the above conditions can achieve a predetermined color tone while suppressing the amount of phosphor.
  • the reason is not always clear, but it can be considered as follows.
  • the wavelength conversion member In the wavelength conversion member, a part of the incident light (for example, blue light) is converted into light having a different wavelength (for example, red light and green light) by a phosphor, and light having a desired color tone (for example, white light) is converted. ) Is obtained. Therefore, in order to achieve a desired color tone without increasing the amount of the phosphor, it is effective to increase the wavelength conversion efficiency per unit amount of the phosphor.
  • a light diffusing material is contained in the wavelength conversion layer together with the phosphor to improve the wavelength conversion efficiency per unit amount of the phosphor.
  • the diffusion transmittance is set to 50% or less.
  • the amount of the light diffusing material relative to the phosphor is relatively large. This acts to further increase the wavelength conversion efficiency per unit amount of the phosphor, and reduces the amount of the phosphor required to achieve a predetermined color tone.
  • the thickness of the wavelength conversion layer is 100 ⁇ m or less, the amount of phosphor per unit area can be reduced. As a result, a predetermined color tone can be achieved while suppressing the amount of the phosphor.
  • the diffusion transmittance of the wavelength conversion member is preferably in the range of 20% to 50%, preferably in the range of 30% to 50%, from the viewpoint of achieving both improvement of wavelength conversion efficiency by the phosphor and securing of brightness. It is more preferable to be inside.
  • the wavelength conversion member preferably has a diffusion transmittance ratio (haze value) of 80% or more, preferably 90% or more, based on the total light transmittance. More preferably, it is 95% or more.
  • the total light transmittance (TT) and the diffusion transmittance (DIF) of the wavelength conversion member are values measured according to the measurement method of JIS K 7136: 2000.
  • the haze value is a value calculated as (DIF / TT) ⁇ 100 (%).
  • the method of controlling the total light transmittance and the diffusion transmittance of the wavelength conversion member is not particularly limited. For example, it can be controlled by the amount and material of the light diffusing material contained in the wavelength conversion layer, the thickness of the wavelength conversion layer, and the like. In some embodiments of the wavelength conversion member, the amount of the light diffusing material may be 2.0% by mass or more of the entire wavelength conversion layer, and the wavelength conversion layer contains titanium oxide as the light diffusing material. You may.
  • the thickness of the wavelength conversion layer is not particularly limited as long as it is 100 ⁇ m or less. For example, it is preferably 40 ⁇ m to 100 ⁇ m, more preferably 60 ⁇ m to 100 ⁇ m, and even more preferably 60 ⁇ m to 90 ⁇ m. When the thickness of the wavelength conversion layer is 40 ⁇ m or more, the wavelength conversion efficiency tends to be further improved. Further, the thickness of the wavelength conversion layer being 100 ⁇ m or less is also advantageous in that the backlight unit can be made thinner when the wavelength conversion member is applied to the backlight unit described later. The thickness of the wavelength conversion layer is measured using, for example, a micrometer. When the thickness of the wavelength conversion layer is not constant, the thickness is obtained as an average thickness (arithmetic mean value of the thicknesses of any three locations).
  • the wavelength conversion member may be composed of only the wavelength conversion layer or may include other members. For example, a wavelength conversion layer and a coating material arranged on one side or both sides of the wavelength conversion layer may be provided.
  • the wavelength conversion layer included in the wavelength conversion member may be only one layer or only two layers. When there are two or more wavelength conversion layers, the average thickness of the above-mentioned wavelength conversion layers is the total average thickness of the two or more layers.
  • the thickness of the covering material is, for example, preferably 20 ⁇ m to 150 ⁇ m, more preferably 20 ⁇ m to 100 ⁇ m, and even more preferably 20 ⁇ m to 80 ⁇ m.
  • the thickness of the dressing is measured, for example, using a micrometer. If the thickness of the covering material is not constant, the thickness is obtained as an average thickness (arithmetic mean value of the thickness at any three locations).
  • the material of the covering material is not particularly limited, and polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin such as polyethylene (PE) and polypropylene (PP), polyamide such as nylon, and ethylene-vinyl alcohol co-weight. It may be coalescence (EVOH) or the like. From the viewpoint of availability, polyethylene terephthalate is preferable as the material of the coating material.
  • the covering material may be one provided with a barrier layer for enhancing the barrier function (barrier film). Examples of the barrier layer include an inorganic layer containing an inorganic substance such as alumina and silica.
  • the coating material preferably has a barrier property against at least one of oxygen and water, and more preferably has a barrier property against both oxygen and water, from the viewpoint of suppressing a decrease in the luminous efficiency of the phosphor.
  • the type of the coating material having a barrier property against at least one of oxygen and water is not particularly limited, and a barrier film having an inorganic layer or the like can be used.
  • Oxygen permeability of the dressing is preferably 1.0mL / (m 2 ⁇ 24h ⁇ atm) or less, more preferably 0.8mL / (m 2 ⁇ 24h ⁇ atm) or less, 0 and more preferably .6mL / (m 2 ⁇ 24h ⁇ atm) or less.
  • the oxygen permeability of the coating material can be measured using an oxygen permeability measuring device (for example, MOCON, OX-TRAN) under the conditions of a temperature of 23 ° C. and a relative humidity of 90%.
  • the water vapor permeability of the dressing for example, more that that 1 ⁇ 10 is 0 g / (m 2 ⁇ 24h ) or less preferably, 8 ⁇ 10 -1 g / ( m 2 ⁇ 24h) or less preferably, and more preferably 6 ⁇ 10 -1 g / (m 2 ⁇ 24h) or less.
  • the water vapor permeability of the coating material can be measured using a water vapor permeability measuring device (for example, MOCON, AQUATRAN) under the conditions of a temperature of 40 ° C. and a relative humidity of 100%.
  • the type of phosphor contained in the wavelength conversion layer is not particularly limited.
  • an organic phosphor and an inorganic phosphor can be mentioned.
  • Examples of the organic phosphor include a naphthalimide compound and a perylene compound.
  • Examples of the inorganic phosphor include Y 3 O 3 : Eu, YVO 4 : Eu, Y 2 O 2 : Eu, 3.5 MgO / 0.5 MgF 2 , GeO 2 : Mn, (Y ⁇ Cd) BO 2 : Eu, etc.
  • Red light emitting inorganic phosphor ZnS: Cu ⁇ Al, (Zn ⁇ Cd) S: Cu ⁇ Al, ZnS: Cu ⁇ Au ⁇ Al, Zn 2 SiO 4 : Mn, ZnSiO 4 : Mn, ZnS: Ag ⁇ Cu, ( Zn ⁇ Cd) S: Cu, ZnS: Cu, GdOS: Tb, LaOS: Tb, YSiO 4 : Ce ⁇ Tb, ZnGeO 4 : Mn, GeMgAlO: Tb, SrGaS: Eu 2+ , ZnS: Cu ⁇ Co, MgO ⁇ nB 2 O 3 : Green luminescent inorganic phosphors such as Ge ⁇ Tb, LaOBr: Tb ⁇ Tm, La 2 O 2 S: Tb, ZnS: Ag, GaWO 4 , Y 2 SiO 6 : Ce, ZnS: Ag ⁇ Ga ⁇ Cl , Ca 2 B 4
  • the wavelength conversion material contains a quantum dot phosphor as a phosphor.
  • the type of the quantum dot phosphor is not particularly limited, and examples thereof include particles containing at least one selected from the group consisting of a group II-VI compound, a group III-V compound, a group IV-VI compound, and a group IV compound. ..
  • the quantum dot phosphor preferably contains a compound containing at least one of Cd and In.
  • II-VI group compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSte, ZnSeS, ZnSeTe, ZnSte, HgSeS , CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe
  • Group III-V compounds include GaN, GaP, GaAs, GaSb, AlN,
  • IV-VI group compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSte, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbSne, SnPbSe, SnPbSe .
  • Group IV compound include Si, Ge, SiC, and SiGe.
  • the quantum dot phosphor may have a core-shell structure.
  • core / shell By making the band gap of the compound constituting the shell wider than the band gap of the compound constituting the core, it is possible to further improve the quantum efficiency of the quantum dot phosphor.
  • core / shell examples include CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS and the like.
  • the quantum dot phosphor may have a so-called core multi-shell structure in which the shell has a multi-layer structure.
  • the quantum efficiency of the quantum dot phosphor can be further improved. Is possible.
  • the wavelength conversion layer may contain one type of phosphor alone or a combination of two or more types of phosphors.
  • a mode in which two or more types of phosphors are contained in combination include a mode in which two or more types of phosphors having different components but the same average particle size are contained, and a mode in which the average particle size is different but the components are the same. Examples thereof include an embodiment containing two or more types, and an embodiment containing two or more types of phosphors having different components and average particle diameters.
  • the emission center wavelength of the phosphor can be changed by changing at least one of the components of the phosphor and the average particle size.
  • the proportion of the quantum dot phosphor is preferably 50% by mass or more, more preferably 70% by mass or more, and 80% by mass of the entire phosphor. It is more preferably% or more.
  • the wavelength conversion layer contains a phosphor G having an emission center wavelength in the green wavelength region of 520 nm to 560 nm and a phosphor R having an emission center wavelength in the red wavelength region of 600 nm to 680 nm. Good.
  • the wavelength conversion layer containing the phosphor G and the phosphor R is irradiated with excitation light in the blue wavelength range of 430 nm to 480 nm, green light and red light are emitted from the phosphor G and the phosphor R, respectively. ..
  • white light can be obtained by the green light and red light emitted from the phosphor G and the phosphor R and the blue light transmitted through the cured product.
  • the content of the phosphor in the wavelength conversion layer is, for example, preferably 0.01% by mass to 1.0% by mass, and 0.05% by mass to 0.5% by mass of the entire wavelength conversion layer. Is more preferable, and 0.1% by mass to 0.5% by mass is further preferable.
  • the content of the phosphor is 0.01% by mass or more of the entire wavelength conversion layer, a sufficient wavelength conversion function tends to be obtained, and the content of the phosphor is 1.0% by mass or less of the entire wavelength conversion layer. If this is the case, the aggregation of the phosphor tends to be suppressed.
  • the type of the light diffusing material contained in the wavelength conversion layer is not particularly limited, and examples thereof include titanium oxide, barium sulfate, zinc oxide, and calcium carbonate. Among these, titanium oxide is preferable from the viewpoint of light scattering efficiency.
  • the titanium oxide may be rutile-type titanium oxide or anatase-type titanium oxide, and is preferably rutile-type titanium oxide.
  • the proportion of titanium oxide is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more of the entire light diffusing material. preferable.
  • the amount of the light diffusing material in the wavelength conversion layer is not particularly limited, and can be adjusted according to the desired wavelength conversion efficiency, light transmittance, and the like.
  • the content of the light diffusing material is preferably 0.1% by mass to 10.0% by mass, more preferably 1.0% by mass to 7.5% by mass, and 2% by mass of the entire wavelength conversion layer. It is more preferably 0.0% by mass to 5.0% by mass.
  • the average particle size of the light diffusing material is preferably 0.1 ⁇ m to 1 ⁇ m, more preferably 0.2 ⁇ m to 0.8 ⁇ m, and even more preferably 0.2 ⁇ m to 0.5 ⁇ m.
  • the average particle size of the light diffusing material can be measured as follows.
  • the light diffusing material (extracted light diffusing material when contained in the wavelength conversion layer or the resin composition described later) is dispersed in purified water containing a surfactant to obtain a dispersion liquid.
  • a laser diffraction type particle size distribution measuring device for example, Shimadzu Corporation, SALD-3000J
  • the median diameter (D50) is defined as the average particle size (volume average particle size) of the light diffusing material.
  • the light diffusing material As a method for extracting the light diffusing material from the resin composition, for example, it can be obtained by diluting the resin composition with a liquid medium, precipitating the light diffusing material by centrifugation or the like, and distributing the light diffusing material.
  • the cross section of the wavelength conversion layer is observed by observing the particles using a scanning electron microscope, and the geometry equivalent to a circle (major axis and minor axis geometry) is observed for 50 particles. The average) may be calculated, and the value obtained as the arithmetic mean value may be used as the average particle size.
  • the light diffusing material preferably has an organic substance layer containing an organic substance on at least a part of the surface thereof.
  • the organic substances contained in the organic substance layer include organic silane, organosiloxane, fluorosilane, organic phosphonate, organic phosphoric acid compound, organic phosphinate, organic sulfonic acid compound, carboxylic acid, carboxylic acid ester, carboxylic acid derivative, amide, and hydrocarbon. Examples thereof include waxes, polyolefins, copolymers of polyolefins, polyols, derivatives of polyols, alkanolamines, derivatives of alkanolamines, organic dispersants and the like.
  • the organic substance contained in the organic substance layer preferably contains a polyol, an organic silane, or the like, and more preferably contains at least one of the polyol or the organic silane.
  • organic silanes include octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, and hexadecyltriethoxysilane.
  • organosiloxane examples include polydimethylsiloxane (PDMS) terminated with a trimethylsilyl group, polymethylhydrosiloxane (PMHS), polysiloxane induced by functionalization of PMHS with an olefin (by hydrosilylation), and the like. ..
  • organic phosphonates include n-octylphosphonic acid and its ester, n-decylphosphonic acid and its ester, 2-ethylhexylphosphonic acid and its ester, and camphyl phosphonic acid and its ester.
  • organic phosphoric acid compound include organic acidic phosphate, organic pyrophosphate, organic polyphosphate, organic metaphosphate, salts thereof and the like.
  • organic phosphinate examples include n-hexylphosphinic acid and its ester, n-octylphosphinic acid and its ester, di-n-hexylphosphinic acid and its ester, and di-n-octylphosphinic acid and its ester.
  • organic sulfonic acid compound examples include alkyl sulfonic acids such as hexyl sulfonic acid, octyl sulfonic acid, and 2-ethylhexyl sulfonic acid, these alkyl sulfonic acids, metal ions such as sodium, calcium, magnesium, aluminum, and titanium, and ammonium.
  • Examples thereof include salts with ions and organic ammonium ions such as triethanolamine.
  • Specific examples of the carboxylic acid include maleic acid, malonic acid, fumaric acid, benzoic acid, phthalic acid, stearic acid, oleic acid, linoleic acid and the like.
  • Specific examples of the carboxylic acid ester include the above carboxylic acid, ethylene glycol, propylene glycol, trimethylolpropane, diethanolamine, triethanolamine, glycerol, hexanetriol, erythritol, mannitol, sorbitol, pentaerythritol, bisphenol A, hydroquinone, and flo.
  • esters and partial esters produced by reaction with a hydroxy compound such as loglucinol include esters and partial esters produced by reaction with a hydroxy compound such as loglucinol.
  • Specific examples of the amide include stearic acid amide, oleic acid amide, and erucic acid amide.
  • Specific examples of the polyolefin and its copolymer include a copolymer of polyethylene, polypropylene, ethylene and one or more compounds selected from propylene, butylene, vinyl acetate, acrylate, acrylamide and the like.
  • Specific examples of the polyol include glycerol, trimethylolethane, trimethylolpropane and the like.
  • Specific examples of alkanolamines include diethanolamine and triethanolamine.
  • Specific examples of the organic dispersant include high molecular weight organic dispersants having functional groups such as citric acid, polyacrylic acid, polymethacrylic acid, anionic, cationic, bipolar and nonionic
  • the light diffusing material may have a metal oxide layer containing a metal oxide in at least a part of the surface.
  • the metal oxide contained in the metal oxide layer include silicon dioxide, aluminum oxide, zirconia, phosphoria, and boria.
  • the metal oxide layer may be one layer or two or more layers.
  • the light diffusing material has two metal oxide layers, it preferably contains a first metal oxide layer containing silicon dioxide and a second metal oxide layer containing aluminum oxide.
  • the metal oxide layer and the organic material layer are provided on the surface of the light diffusing material in the order of the metal oxide layer and the organic material layer.
  • the light diffusing material has an organic substance layer and two metal oxide layers, a first metal oxide layer containing silicon dioxide and a second metal oxide layer containing aluminum oxide are formed on the surface of the light diffusing material. It is preferable that the organic layer is provided in the order of the first metal oxide layer, the second metal oxide layer and the organic layer (the organic layer is the outermost layer).
  • the wavelength conversion layer may further contain a cured resin product.
  • the cured resin product preferably contains a sulfide structure.
  • the cured resin composition containing a sulfide structure is obtained by curing a resin composition containing, for example, a thiol compound described later and a polymerizable compound having a carbon-carbon double bond that causes an enthiol reaction with a thiol group of the thiol compound. Obtainable.
  • the cured resin product preferably contains an alicyclic structure or an aromatic ring structure.
  • the cured resin product having an alicyclic structure or an aromatic ring structure can be obtained, for example, by curing a resin composition containing a polymer compound having an alicyclic structure or an aromatic ring structure, which will be described later.
  • the cured resin product preferably contains an alkyleneoxy group.
  • the polarity of the cured resin product increases, and non-polar oxygen tends to be difficult to dissolve in the components in the cured product.
  • the flexibility of the cured resin product tends to increase and the adhesion to the coating material tends to improve.
  • the cured resin product containing an alkyleneoxy group can be obtained, for example, by curing a resin composition containing a polymerizable compound having an alkyleneoxy group, which will be described later.
  • the wavelength conversion layer may be a cured product of a composition (hereinafter, also simply referred to as a resin composition) containing a phosphor, a light diffusing material, a polymerizable compound, and a photopolymerization initiator.
  • the resin composition preferably contains a phosphor, a thiol compound, at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound, and a photopolymerization initiator.
  • the resin composition may optionally contain other components. Hereinafter, each component of the resin composition will be described in detail.
  • the details of the phosphor contained in the resin composition are as described above.
  • the phosphor may be used in the state of a phosphor dispersion liquid dispersed in a dispersion medium.
  • the dispersion medium for dispersing the phosphor include various organic solvents, silicone compounds, and monofunctional (meth) acrylate compounds.
  • the phosphor may be used in the state of a phosphor dispersion liquid by using a dispersant, if necessary.
  • the organic solvent that can be used as the dispersion medium is not particularly limited unless precipitation and aggregation of the phosphor are confirmed, and acetonitrile, methanol, ethanol, acetone, 1-propanol, ethyl acetate, butyl acetate, toluene, etc. Examples include hexane.
  • Silicone compounds that can be used as a dispersion medium include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil; amino-modified silicone oil, epoxy-modified silicone oil, carboxy-modified silicone oil, and carbinol-modified silicone. Oil, mercapto-modified silicone oil, heterogeneous functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic special-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid-modified silicone oil, fluorine-modified silicone oil, etc. Modified silicone oil and the like.
  • the monofunctional (meth) acrylate compound that can be used as a dispersion medium is not particularly limited as long as it is liquid at room temperature (25 ° C.), and is a monofunctional (meth) acrylate compound having an alicyclic structure (preferably). Examples thereof include isobornyl (meth) acrylate and dicyclopentanyl (meth) acrylate), methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, and ethoxylated o-phenylphenol (meth) acrylate.
  • dispersant used as needed examples include polyether amines (JEFFAMINE M-1000, Huntsman Corporation) and the like.
  • the mass-based ratio of the phosphor to the phosphor dispersion is preferably 1% by mass to 20% by mass, and more preferably 1% by mass to 10% by mass.
  • the content of the phosphor dispersion liquid in the resin composition is, for example, relative to the total amount of the resin composition when the mass-based ratio of the phosphor to the phosphor dispersion liquid is 1% by mass to 20% by mass. It is preferably 1% by mass to 10% by mass, more preferably 4% by mass to 10% by mass, and further preferably 4% by mass to 7% by mass.
  • the content of the phosphor in the resin composition is preferably, for example, 0.01% by mass to 1.0% by mass, and 0.05% by mass to 0% by mass, based on the total amount of the resin composition. It is more preferably 5% by mass, and even more preferably 0.1% by mass to 0.5% by mass.
  • the content of the phosphor When the content of the phosphor is 0.01% by mass or more, sufficient emission intensity tends to be obtained when the cured product is irradiated with excitation light, and when the content of the phosphor is 1.0% by mass or less. If there is, the aggregation of the phosphor tends to be suppressed.
  • the resin composition contains a polymerizable compound.
  • the polymerizable compound contained in the resin composition is not particularly limited, and examples thereof include a thiol compound, a (meth) acrylic compound, and a (meth) allyl compound.
  • the (meth) allyl compound means a compound having a (meth) allyl group in the molecule
  • the (meth) acrylic compound means a compound having a (meth) acryloyl group in the molecule.
  • Compounds having both a (meth) allyl group and a (meth) acryloyl group in the molecule shall be classified as (meth) allyl compounds for convenience.
  • the resin composition is selected from the group consisting of a thiol compound, a (meth) acrylic compound, and a (meth) allyl compound as the polymerizable compound. It is preferable to include at least one kind.
  • a cured product obtained by curing a resin composition containing a thiol compound as a polymerizable compound and at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound has a thiol group and ( A sulfide structure (RSR', R and R'represents an organic group) formed by an entthiol reaction with a carbon-carbon double bond of a meta) acryloyl group or a (meth) allyl group.
  • RSR', R and R' represents an organic group formed by an entthiol reaction with a carbon-carbon double bond of a meta) acryloyl group or a (meth) allyl group.
  • the thiol compound may be a monofunctional thiol compound having one thiol group in one molecule, or a polyfunctional thiol compound having two or more thiol groups in one molecule.
  • the thiol compound contained in the resin composition may be only one kind or two or more kinds.
  • the thiol compound may or may not have a polymerizable group other than the thiol group (for example, (meth) acryloyl group, (meth) allyl group) in the molecule.
  • a compound containing a thiol group and a polymerizable group other than the thiol group in the molecule shall be classified as a "thiol compound”.
  • the monofunctional thiol compound examples include hexanethiol, 1-heptanethiol, 1-octanethiol, 1-nonanthiol, 1-decanethiol, 3-mercaptopropionic acid, methyl mercaptopropionate, and methoxybutyl mercaptopropionate.
  • Examples thereof include octyl mercaptopropionate, tridecyl mercaptopropionate, 2-ethylhexyl-3-mercaptopropionate, n-octyl-3-mercaptopropionate and the like.
  • polyfunctional thiol compound examples include ethylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptopropionate), tetraethyleneglycolbis (3-mercaptopropionate), 1,2-. Pentaerythritol bis (3-mercaptopropionate), diethylene glycolbis (3-mercaptobutyrate), 1,4-butanediolbis (3-mercaptopropionate), 1,4-butanediolbis (3-mercaptobutyrate) Rate), 1,8-octanediol bis (3-mercaptopropionate), 1,8-octanediol bis (3-mercaptobutyrate), hexanediol bisthioglycolate, trimethylolpropanthris (3-mercaptopro).
  • Trimethylol Propantris (3-Mercaptobutyrate), Trimethylol Propantris (3-Mercaptoisobutyrate), Trimethylol Propantris (2-Mercaptoisobutyrate), Trimethylol Propantristhioglycolate, Tris-[(3-mercaptopropionyloxy) -ethyl] -isosyanurate, trimethyletantris (3-mercaptobutyrate), pentaerythritoltetrakis (3-mercaptopropionate), pentaerythritoltetrakis (3-mercaptobutyrate).
  • Pentaerythritol tetrakis (3-mercaptoisobutyrate), pentaerythritol tetrakis (2-mercaptoisobutyrate), dipentaerythritol hexakiss (3-mercaptopropionate), dipentaerythritol hexakis (2-mercaptopro).
  • dipentaerythritol hexakiss (3-mercaptobutyrate), dipentaerythritol hexaxis (3-mercaptoisobutyrate), dipentaerythritol hexaxis (2-mercaptoisobutyrate), pentaerythritol tetrakisthioglycolate.
  • Examples include rate, dipentaerythritol hexakisthioglycolate and the like.
  • the thiol compound preferably contains a polyfunctional thiol compound from the viewpoint of further improving the adhesion, heat resistance, and moisture heat resistance of the wavelength conversion layer to the adjacent member.
  • the ratio of the polyfunctional thiol compound to the total amount of the thiol compound is, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass.
  • the thiol compound may be in the state of a thioether oligomer that has reacted with the (meth) acrylic compound.
  • the thioether oligomer can be obtained by addition polymerization of a thiol compound and a (meth) acrylic compound in the presence of a polymerization initiator.
  • the content of the thiol compound in the resin composition is preferably, for example, 5% by mass to 80% by mass, and 15% by mass, based on the total amount of the resin composition. It is more preferably to 70% by mass, and further preferably 20% by mass to 60% by mass.
  • the content of the thiol compound is 5% by mass or more, the adhesion of the wavelength conversion layer to the adjacent member tends to be further improved, and when the content of the thiol compound is 80% by mass or less, the wavelength conversion layer of the wavelength conversion layer tends to have better adhesion. Heat resistance and moisture heat resistance tend to be further improved.
  • the (meth) acrylic compound may be a monofunctional (meth) acrylic compound having one (meth) acryloyl group in one molecule, and two or more (meth) acrylic compounds in one molecule. It may be a polyfunctional (meth) acrylic compound having an acryloyl group.
  • the (meth) acrylic compound contained in the resin composition may be one kind or two or more kinds.
  • the monofunctional (meth) acrylic compound examples include (meth) acrylic acid; methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isononyl (meth).
  • Alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms such as acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate; benzyl (meth) acrylate, phenoxyethyl ( A (meth) acrylate compound having an aromatic ring such as a meta) acrylate; an alkoxyalkyl (meth) acrylate such as butoxyethyl (meth) acrylate; an aminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate; Diethylene glycol monoethyl ether (meth) acrylate, triethylene glycol monobutyl ether (meth) acrylate, tetraethylene glycol monomethyl ether (meth) acrylate, hexaethylene glycol monomethyl ether (meth) acrylate
  • N-Isopropyl (meth) acrylamide N, N-dimethylaminopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide and other (meth) acrylamide compounds; Be done.
  • polyfunctional (meth) acrylic compound examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol di (meth) acrylate.
  • Polyalkylene glycol di (meth) acrylate Polyalkylene glycol di (meth) acrylate such as polyethylene glycol di (meth) acrylate and polypropylene glycol di (meth) acrylate; Trimethylol propantri (meth) acrylate, Trimethylol propantri with ethylene oxide (meth) Tri (meth) acrylate compounds such as meth) acrylate and tris (2-acryloyloxyethyl) isocyanurate; ethylene oxide-added pentaerythritol tetra (meth) acrylate, trimethylolpropanetetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like.
  • Tetra (meth) acrylate compounds tricyclodecanedimethanol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, 1,3-adamantan dimethanol di (meth) acrylate, hydrogenated bisphenol A (poly) ethoxydi ( Meta) acrylate, hydrogenated bisphenol A (poly) propoxydi (meth) acrylate, hydrogenated bisphenol F (poly) ethoxydi (meth) acrylate, hydrogenated bisphenol F (poly) propoxydi (meth) acrylate, hydrogenated bisphenol S (poly) Examples thereof include (meth) acrylate compounds having an alicyclic structure such as ethoxydi (meth) acrylate and hydrogenated bisphenol S (poly) propoxydi (meth) acrylate.
  • the (meth) acrylic compound is preferably a (meth) acrylate compound having an alicyclic structure or an aromatic ring structure from the viewpoint of further improving the heat resistance and moisture heat resistance of the cured product.
  • the alicyclic structure or aromatic ring structure include an isobornyl skeleton, a tricyclodecane skeleton, and a bisphenol skeleton.
  • the (meth) acrylic compound may be one having an alkyleneoxy group or a bifunctional (meth) acrylic compound having an alkyleneoxy group.
  • alkyleneoxy group for example, an alkyleneoxy group having 2 to 4 carbon atoms is preferable, an alkyleneoxy group having 2 or 3 carbon atoms is more preferable, and an alkyleneoxy group having 2 carbon atoms is further preferable.
  • the alkyleneoxy group contained in the (meth) acrylic compound may be one type or two or more types.
  • the alkyleneoxy group-containing compound may be a polyalkyleneoxy group-containing compound having a polyalkyleneoxy group containing a plurality of alkyleneoxy groups.
  • the number of alkyleneoxy groups in one molecule is preferably 2 to 30, more preferably 2 to 20, and 3 to 20.
  • the number is more preferably 10, and particularly preferably 3 to 5.
  • the (meth) acrylic compound When the (meth) acrylic compound has an alkyleneoxy group, it preferably has a bisphenol structure. As a result, the heat resistance of the cured product tends to be superior.
  • the bisphenol structure include a bisphenol A structure and a bisphenol F structure, and among them, the bisphenol A structure is preferable.
  • (meth) acrylic compound having an alkyleneoxy group examples include alkoxyalkyl (meth) acrylates such as butoxyethyl (meth) acrylate; diethylene glycol monoethyl ether (meth) acrylate, triethylene glycol monobutyl ether (meth) acrylate, and the like.
  • alkyleneoxy group-containing compound ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate and propoxylated ethoxylated bisphenol A type di (meth) acrylate are preferable, and ethoxylated bisphenol Type A di (meth) acrylate is more preferred.
  • the content of the (meth) acrylic compound in the resin composition is, for example, 40% by mass to 90% by mass with respect to the total amount of the resin composition. It may be 50% by mass to 80% by mass.
  • the (meth) allyl compound may be a monofunctional (meth) allyl compound having one (meth) allyl group in one molecule, and two or more (meth) allyl compounds in one molecule. It may be a polyfunctional (meth) allyl compound having an allyl group.
  • the (meth) allyl compound contained in the resin composition may be only one kind or two or more kinds.
  • the (meth) allyl compound may or may not have a polymerizable group (for example, (meth) acryloyl group) other than the (meth) allyl group in the molecule.
  • a polymerizable group for example, (meth) acryloyl group
  • compounds having a polymerizable group other than the (meth) allyl group in the molecule shall be classified as "(meth) allyl compound”.
  • the monofunctional (meth) allyl compound examples include (meth) allyl acetate, (meth) allyl n-propionate, (meth) allyl benzoate, (meth) allyl phenyl acetate, (meth) allyl phenoxyacetic acid, and (meth). Examples thereof include allyl methyl ether and (meth) allyl glycidyl ether.
  • polyfunctional (meth) allyl compound examples include di (meth) allyl benzenedicarboxylate, di (meth) allyl cyclohexanedicarboxylate, di (meth) allylmaleate, di (meth) allyl adipate, and di (meth).
  • Examples of the (meth) allyl compound include compounds having an isocyanurate skeleton such as tri (meth) allyl isocyanurate, tri (meth) allyl cyanurate, and benzenedicarboxylic acid di (meth) from the viewpoint of heat resistance and moisture heat resistance of the cured product.
  • At least one selected from the group consisting of allyl and di (meth) allyl cyclohexanedicarboxylic acid is preferable, a compound having an isocyanurate skeleton is more preferable, and tri (meth) allyl isocyanurate is further preferable.
  • the content of the (meth) allyl compound in the resin composition is, for example, 10% by mass to 50% by mass with respect to the total amount of the resin composition. It may be 15% by mass to 45% by mass.
  • the polymerizable compound may include a thioether oligomer as a thiol compound and a (meth) allyl compound (preferably a polyfunctional (meth) allyl compound).
  • the phosphor may be in the state of a dispersion liquid dispersed in a silicone compound as a dispersion medium. preferable.
  • the polymerizable compound comprises a thiol compound that is not in the form of a thioether oligomer and a (meth) acrylic compound (preferably a polyfunctional (meth) acrylic compound, more preferably a bifunctional (meth) acrylic compound). It may include.
  • the quantum dot phosphor is a (meth) acrylic as a dispersion medium. It is preferably in the state of a compound, preferably a monofunctional (meth) acrylic compound, more preferably a dispersion dispersed in isobornyl (meth) acrylate.
  • the type of photopolymerization initiator contained in the resin composition is not particularly limited, and examples thereof include compounds that generate radicals when irradiated with active energy rays such as ultraviolet rays.
  • the photopolymerization initiator include benzophenone, N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1, 4,4'-bis (dimethylamino) benzophenone (also referred to as "Michler ketone”), 4,4'-bis (Diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexylphenylketone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4- (4-) Aromatic ketone compounds such as (2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propane-1-one,
  • the photopolymerization initiator is preferably at least one selected from the group consisting of an acylphosphine oxide compound, an aromatic ketone compound, and an oxime ester compound, from the acylphosphine oxide compound and the aromatic ketone compound. At least one selected from the above group is more preferable, and an acylphosphine oxide compound is further preferable.
  • the content of the photopolymerization initiator in the resin composition is preferably, for example, 0.1% by mass to 5% by mass, preferably 0.1% by mass to 3% by mass, based on the total amount of the resin composition. It is more preferably 0.1% by mass to 1.5% by mass.
  • the content of the photopolymerization initiator is 0.1% by mass or more, the sensitivity of the resin composition tends to be sufficient, and when the content of the photopolymerization initiator is 5% by mass or less, the resin The influence on the hue of the composition and the decrease in storage stability tend to be suppressed.
  • Light diffuser The details of the light diffusing material contained in the resin composition are as described above.
  • the resin composition may further contain components other than the above-mentioned components.
  • the resin composition may further contain components such as a solvent, a dispersion medium, a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion imparting agent, and an antioxidant.
  • a solvent such as a solvent, a dispersion medium, a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion imparting agent, and an antioxidant.
  • a solvent such as a solvent, a dispersion medium, a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion imparting agent, and an antioxidant.
  • the resin composition can be prepared by mixing a phosphor, a polymerizable compound, a photopolymerization initiator, and if necessary, other components by a conventional method.
  • the wavelength conversion layer may be one obtained by curing one kind of resin composition, or may be one obtained by curing two or more kinds of resin compositions.
  • the wavelength conversion layer has different emission characteristics from the first cured product layer obtained by curing the resin composition containing the first phosphor and the first phosphor.
  • a resin composition containing a second phosphor may be laminated with a second cured product layer obtained by curing the resin composition.
  • the wavelength conversion layer preferably has a loss tangent (tan ⁇ ) of 0.4 to 1.5 measured under the conditions of a frequency of 10 Hz and a temperature of 25 ° C. by dynamic viscoelasticity measurement. It is more preferably 0.4 to 1.2, and even more preferably 0.4 to 0.6.
  • the loss tangent (tan ⁇ ) of the wavelength conversion layer can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
  • the wavelength conversion layer preferably has a glass transition temperature (Tg) of 85 ° C. or higher, more preferably 85 ° C. to 160 ° C., and 90 ° C., from the viewpoint of further improving adhesion, heat resistance, and moist heat resistance. It is more preferably ° C. to 120 ° C.
  • the glass transition temperature (Tg) of the wavelength conversion layer can be measured under the condition of a frequency of 10 Hz using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
  • the wavelength conversion layer has a storage elastic modulus of 1 ⁇ 10 7 Pa to 1 ⁇ 10 10 Pa measured under the conditions of a frequency of 10 Hz and a temperature of 25 ° C. from the viewpoint of further improving adhesion, heat resistance, and moisture heat resistance. It is preferably 5 ⁇ 10 7 Pa to 1 ⁇ 10 10 Pa, more preferably 5 ⁇ 10 7 Pa to 5 ⁇ 10 9 Pa.
  • the storage elastic modulus of the cured resin can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
  • the wavelength conversion layer can be obtained, for example, by forming a coating film, a molded product, or the like of a resin composition, performing a drying treatment as necessary, and then irradiating with active energy rays such as ultraviolet rays.
  • the wavelength and irradiation amount of the active energy rays can be appropriately set according to the composition of the resin composition. In one aspect, it is irradiated with ultraviolet rays having a wavelength of 280 nm ⁇ 400 nm at an irradiation amount of 100mJ / cm 2 ⁇ 5000mJ / cm 2.
  • Examples of the ultraviolet source include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and the like.
  • FIG. 1 shows an example of the schematic configuration of the wavelength conversion member.
  • the wavelength conversion member of the present disclosure is not limited to the configuration shown in FIG.
  • the wavelength conversion member 10 shown in FIG. 1 includes a wavelength conversion layer 11 which is a film-like cured product, and film-like coating materials 12A and 12B provided on both sides of the wavelength conversion layer 11.
  • the type and thickness of the covering material 12A and the covering material 12B may be the same or different.
  • the covering materials 12A and 12B may be roughened.
  • the wavelength conversion member having the configuration shown in FIG. 1 can be manufactured by, for example, the following manufacturing method.
  • a resin composition for forming a wavelength conversion layer is applied to the surface of a film-like coating material (hereinafter, also referred to as "first coating material") that is continuously conveyed to form a coating film.
  • first coating material a film-like coating material
  • the method of applying the resin composition is not particularly limited, and examples thereof include a die coating method, a curtain coating method, an extrusion coating method, a rod coating method, and a roll coating method.
  • a film-like coating material (hereinafter, also referred to as “second coating material”) that is continuously conveyed is attached onto the coating film of the resin composition.
  • the coating film is cured and a cured product layer is formed by irradiating the active energy rays from the coating material side that can transmit the active energy rays among the first coating material and the second coating material. Then, by cutting out to a specified size, a wavelength conversion member having the configuration shown in FIG. 1 can be obtained.
  • the coating film is irradiated with the active energy ray before the second coating material is bonded, and the cured product layer is formed. May be formed.
  • Wavelength conversion member (second embodiment) includes a wavelength conversion layer containing a phosphor and a light diffusing material, and the content of the light diffusing material is 2.0% by mass or more of the entire wavelength conversion layer. , A wavelength conversion member.
  • a wavelength conversion member satisfying the above conditions can achieve a predetermined color tone while suppressing the amount of phosphor.
  • the reason is not always clear, but it can be considered as follows.
  • the wavelength conversion member In the wavelength conversion member, a part of the incident light (for example, blue light) is converted into light having a different wavelength (for example, red light and green light) by a phosphor, and light having a desired color tone (for example, white light) is converted. ) Is obtained. Therefore, in order to achieve a desired color tone without increasing the amount of the phosphor, it is effective to increase the wavelength conversion efficiency per unit amount of the phosphor.
  • a light diffusing material is contained in the wavelength conversion layer together with the phosphor to scatter the light incident on the wavelength conversion layer and increase the wavelength conversion efficiency per unit amount of the phosphor.
  • the content of the light diffusing material is set to 2.0% by mass or more of the entire wavelength conversion layer. This acts to further increase the wavelength conversion efficiency per unit amount of the phosphor, and reduces the amount of the phosphor required to achieve a predetermined color tone. As a result, a predetermined color tone can be achieved while suppressing the amount of the phosphor.
  • the upper limit of the content of the light diffusing material is not particularly limited. From the viewpoint of ensuring sufficient brightness, it is preferably 10.0% by mass or less, and more preferably 5.0% by mass or less of the entire wavelength conversion layer.
  • the details and preferred embodiments of the wavelength conversion member described above can be referred to.
  • the backlight unit of the present disclosure includes a light source and a wavelength conversion member of the present disclosure.
  • the backlight unit is preferably a multi-wavelength light source from the viewpoint of improving color reproducibility.
  • blue light having an emission center wavelength in the wavelength range of 430 nm to 480 nm and having an emission intensity peak having a half-value width of 100 nm or less, and emission center wavelength in the wavelength range of 520 nm to 560 nm.
  • the light unit can be mentioned.
  • the half-value width of the emission intensity peak means the peak width at a height of 1/2 of the peak height.
  • the emission center wavelength of the blue light emitted by the backlight unit is preferably in the range of 440 nm to 475 nm.
  • the emission center wavelength of the green light emitted by the backlight unit is preferably in the range of 520 nm to 545 nm.
  • the emission center wavelength of the red light emitted by the backlight unit is preferably in the range of 610 nm to 640 nm.
  • the half width of each emission intensity peak of the blue light, green light, and red light emitted by the backlight unit is preferably 80 nm or less, preferably 50 nm or less. It is more preferably 40 nm or less, particularly preferably 30 nm or less, and extremely preferably 25 nm or less.
  • the light source of the backlight unit for example, a light source that emits blue light having a emission center wavelength in the wavelength range of 430 nm to 480 nm can be used.
  • the light source include an LED (Light Emitting Diode) and a laser.
  • the wavelength conversion member preferably contains at least a phosphor R that emits red light and a phosphor G that emits green light. As a result, white light can be obtained from the red light and green light emitted from the wavelength conversion member and the blue light transmitted through the wavelength conversion member.
  • the light source of the backlight unit for example, a light source that emits ultraviolet light having a emission center wavelength in the wavelength range of 300 nm to 430 nm can be used.
  • the light source include LEDs and lasers.
  • the wavelength conversion member preferably includes a phosphor B that is excited by excitation light and emits blue light, together with a phosphor R and a phosphor G. As a result, white light can be obtained from the red light, green light, and blue light emitted from the wavelength conversion member.
  • the backlight unit of the present disclosure may be an edge light type or a direct type.
  • FIG. 2 shows an example of a schematic configuration of an edge light type backlight unit.
  • the backlight unit 20 shown in FIG. 2 includes a light source 21 for emitting the blue light L B, a light guide plate 22 to be emitted guiding the blue light L B emitted from the light source 21, the light guide plate 22 and disposed to face
  • the wavelength conversion member 10 is provided with a retroreflective member 23 arranged to face the light source plate 22 via the wavelength conversion member 10, and a reflector 24 arranged to face the wavelength conversion member 10 via the light guide plate 22. ..
  • Wavelength conversion member 10 emits the red light L R and the green light L G part of the blue light L B as the excitation light, the red light L and R and the green light L G, the blue light was not the excitation light L B is emitted.
  • the red light L R, the green light L G, and the blue light L B, the white light L W is emitted from the retroreflective member 23.
  • the image display device of the present disclosure includes the backlight unit of the present disclosure described above.
  • the image display device is not particularly limited, and examples thereof include a liquid crystal display device.
  • FIG. 3 shows an example of the schematic configuration of the liquid crystal display device.
  • the liquid crystal display device 30 shown in FIG. 3 includes a backlight unit 20 and a liquid crystal cell unit 31 arranged to face the backlight unit 20.
  • the liquid crystal cell unit 31 has a configuration in which the liquid crystal cell 32 is arranged between the polarizing plate 33A and the polarizing plate 33B.
  • the drive method of the liquid crystal cell 32 is not particularly limited, and is a TN (Twisted Nematic) method, an STN (Super Twisted Nematic) method, a VA (Virtical Birefringence) method, an IPS (In-Plane-Switching) method, an OCB (Optical Reference) method.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Virtual Birefringence
  • IPS In-Plane-Switching
  • OCB Optical Reference
  • the obtained resin composition was applied to one side of a PET film having a thickness of 70 ⁇ m as a coating material to form a coating film.
  • the same PET film as above was placed on this coating film.
  • ultraviolet rays were irradiated using an ultraviolet irradiation device (Igraphics Co., Ltd.) (irradiation amount: 1000 mJ / cm 2 ) to cure the resin composition, and coating materials were arranged on both sides of the wavelength conversion layer.
  • the wavelength conversion member of the above was manufactured.
  • Each wavelength conversion member obtained above was cut into dimensions having a width of 210 mm and a length of 300 mm to prepare a measurement sample.
  • the total light transmittance and the diffusion transmittance were measured using a haze meter (Nippon Denshoku Industries Co., Ltd., "NDH 7000SP") according to the measurement method of JIS K 7136: 2000.
  • Table 2 shows the results together with the haze value calculated from the measured value (calculated as diffusion transmittance / total light transmittance ⁇ 100).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

蛍光体と、光拡散材と、を含有する波長変換層を備え、下記(1)又は(2)の少なくともいずれかを満たす、波長変換部材。(1)拡散透過率が50%以下であり、かつ波長変換層厚みが100μm以下である。(2)光拡散材の含有率が前記波長変換層全体の2.0質量%以上である。

Description

波長変換部材、バックライトユニット、及び画像表示装置
 本開示は、波長変換部材、バックライトユニット、及び画像表示装置に関する。
 近年、液晶表示装置等の画像表示装置の分野において、ディスプレイの色再現性を向上させることが求められている。色再現性を向上させる手段として、特表2013-544018号公報及び国際公開第2016/052625号に記載のように、量子ドット蛍光体を含む波長変換部材が注目を集めている。
 蛍光体を含む波長変換部材は、例えば、画像表示装置のバックライトユニットに配置される。赤色光を発光する蛍光体と緑色光を発光する蛍光体とを含む波長変換部材を用いる場合、波長変換部材に対して励起光としての青色光を照射すると、蛍光体から発光された赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。蛍光体を含む波長変換部材の開発により、ディスプレイの色再現性は、従来のNTSC(National Television System Committee)比72%からNTSC比100%へと拡大している。
 蛍光体は比較的高価であるため、画像表示装置の製造コスト低減の観点からはより少ない蛍光体の量で充分な波長変換効果が得られることが望ましい。また、蛍光体として現在使用されている量子ドット蛍光体としては、カドミウム(Cd)を含むものが主流である。一方、電子電気機器類に使用される重金属の量を規制する動きが世界的に広がっている。したがって、良好な色調のバランスを達成するのに必要な量子ドット蛍光体の量を低減することが望まれている。
 上記事情に鑑み、本開示は、蛍光体の量を抑えつつ所定の色調を達成できる波長変換部材、並びに当該波長変換部材を用いたバックライトユニット及び画像表示装置を提供することを目的とする。
 上記課題を解決するための手段は、以下の態様を含む。
<1>蛍光体と、光拡散材と、を含有する波長変換層を備え、拡散透過率が50%以下であり、前記波長変換層の厚みが100μm以下である、波長変換部材。
<2>全光線透過率に対する拡散透過率の割合が80%以上である、<1>に記載の波長変換部材。
<3>前記光拡散材が酸化チタンを含む、<1>又は<2>に記載の波長変換部材。
<4>前記光拡散材の含有率が前記波長変換層の2.0質量%以上である、<1>~<3>のいずれか1項に記載の波長変換部材。
<5>前記波長変換層が樹脂硬化物をさらに含む、<1>~<4>のいずれか1項に記載の波長変換部材。
<6>蛍光体と、光拡散材と、を含有する波長変換層を備え、前記光拡散材の含有率が前記波長変換層全体の2.0質量%以上である、波長変換部材。
<7>前記光拡散材が酸化チタンを含む、<6>に記載の波長変換部材。
<8>全光線透過率に対する拡散透過率の割合が80%以上である、<6>又は<7>に記載の波長変換部材。
<9><1>~<8>のいずれか1項に記載の波長変換部材と、光源と、を備えるバックライトユニット。
<10><9>に記載のバックライトユニットを備える画像表示装置。
 本開示によれば、蛍光体の量を抑えつつ所定の色調を達成できる波長変換部材、並びに当該波長変換部材を用いたバックライトユニット及び画像表示装置が提供される。
波長変換部材の概略構成の一例を示す模式断面図である。 バックライトユニットの概略構成の一例を示す図である。 液晶表示装置の概略構成の一例を示す図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において「(メタ)アクリレート」とはアクリレート及びメタクリレートの少なくとも一方を意味し、「(メタ)アリル」とはアリルとメタアリルの少なくとも一方を意味し、「(メタ)アクリル」とはアクリル及びメタクリルの少なくとも一方を表し、「(メタ)アクリロイル」とは、アクリロイル及びメタクリロイルの少なくとも一方を意味する。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。また、各図面において、実質的に同じ機能を有する部材には、全図面同じ符号を付与し、重複する説明は省略する場合がある。
≪波長変換部材(第1実施形態)≫
 第1実施形態の波長変換部材は、蛍光体と、光拡散材と、を含有する波長変換層を備え、拡散透過率が50%以下であり、前記波長変換層の厚みが100μm以下である、波長変換部材である。
 上記条件を満たす波長変換部材は、蛍光体の量を抑えつつ所定の色調を達成できる。その理由は必ずしも明らかではないが、下記のように考えることができる。
 波長変換部材では、入射する光(例えば、青色光)の一部が蛍光体により別の波長の光(例えば、赤色光及び緑色光)に変換されて、所望の色調の光(例えば、白色光)が得られる。したがって、蛍光体の量を増やさずに所望の色調を達成するためには、蛍光体の単位量あたりの波長変換効率を高めることが有効である。
 本実施形態の波長変換部材では、まず、蛍光体とともに光拡散材を波長変換層に含有させることで、蛍光体の単位量あたりの波長変換効率を高めている。さらに、拡散透過率を50%以下に設定している。拡散透過率が50%以下である波長変換部材では、蛍光体に対する光拡散材の量が相対的に多くなっている。このことが蛍光体の単位量あたりの波長変換効率をさらに高めるように作用し、所定の色調を達成するのに必要な蛍光体の量が低減する。更に波長変換層の厚みが100μm以下であることで、単位面積当たりの蛍光体量を低減することが出来る。その結果、蛍光体の量を抑えつつ所定の色調を達成できる。
 波長変換部材の拡散透過率は、蛍光体による波長変換効率の向上と輝度の確保とを両立する観点からは、20%~50%の範囲内であることが好ましく、30%~50%の範囲内であることがより好ましい。
 波長変換部材は、蛍光体による波長変換効率の向上の観点から、全光線透過率に対する拡散透過率の割合(ヘイズ値)が80%以上であることが好ましく、90%以上であることが好ましく、95%以上であることがより好ましい。
 本開示において波長変換部材の全光線透過率(TT)及び拡散透過率(DIF)は、JIS K 7136:2000の測定法に準拠して測定される値である。ヘイズ値は、(DIF/TT)×100(%)として計算される値である。
 波長変換部材の全光線透過率及び拡散透過率を制御する方法は、特に制限されない。例えば、波長変換層に含まれる光拡散材の量、材質等、波長変換層の厚みなどによって制御することができる。
 波長変換部材のある実施態様では、光拡散材の量が波長変換層全体の2.0質量%以上であるものであってもよく、波長変換層が光拡散材として酸化チタンを含むものであってもよい。
 波長変換層の厚みは、100μm以下であれば特に制限されない。例えば、40μm~100μmであることが好ましく、60μm~100μmであることがより好ましく、60μm~90μmであることがさらに好ましい。波長変換層の厚みが40μm以上であると、波長変換効率がより向上する傾向にある。また、波長変換層の厚みが100μm以下であることは、後述するバックライトユニットに波長変換部材を適用した場合に、バックライトユニットをより薄型化できる点でも有利である。波長変換層の厚みは、例えば、マイクロメータを用いて測定される。波長変換層の厚みが一定でない場合は、その厚みは平均厚み(任意の3箇所の厚みの算術平均値)として求められる。
 波長変換部材は、波長変換層のみからなっていても、その他の部材を備えていてもよい。例えば、波長変換層と、波長変換層の片面又は両面に配置される被覆材と、を備えていてもよい。波長変換部材に含まれる波長変換層は1層のみであっても2層のみであってもよい。波長変換層が2層以上存在する場合、上述した波長変換層の平均厚みは2層以上の合計の平均厚みである。
 波長変換部材が波長変換層の片面又は両面に配置される被覆材を備えることで、波長変換部材の取り扱い性、水分、酸素等に対するバリア性などが向上する傾向にある。
 被覆材の厚みは、例えば、20μm~150μmであることが好ましく、20μm~100μmであることがより好ましく、20μm~80μmであることがさらに好ましい。被覆材の厚みは、例えば、マイクロメータを用いて測定される。被覆材の厚みが一定でない場合は、その厚みは平均厚み(任意の3箇所の厚みの算術平均値)として求められる。
 被覆材の材質は特に制限されず、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン、ナイロン等のポリアミド、エチレン-ビニルアルコール共重合体(EVOH)などであってもよい。入手容易性の観点からは、被覆材の材質はポリエチレンテレフタレートが好ましい。
 被覆材は、バリア機能を高めるためのバリア層を備えたもの(バリアフィルム)であってもよい。バリア層としては、アルミナ、シリカ等の無機物を含む無機層が挙げられる。
 被覆材は、蛍光体の発光効率の低下を抑える観点から、酸素及び水の少なくとも一方に対するバリア性を有することが好ましく、酸素及び水の両方に対するバリア性を有することがより好ましい。酸素及び水の少なくとも一方に対するバリア性を有する被覆材の種類は特に制限されず、無機層を有するバリアフィルム等を用いることができる。
 被覆材の酸素透過率は、例えば、1.0mL/(m・24h・atm)以下であることが好ましく、0.8mL/(m・24h・atm)以下であることがより好ましく、0.6mL/(m・24h・atm)以下であることがさらに好ましい。被覆材の酸素透過率は、酸素透過率測定装置(例えば、MOCON社、OX-TRAN)を用いて、温度23℃かつ相対湿度90%の条件で測定することができる。
 また、被覆材の水蒸気透過率は、例えば、1×10g/(m・24h)以下であることが好ましく、8×10-1g/(m・24h)以下であることがより好ましく、6×10-1g/(m・24h)以下であることがさらに好ましい。被覆材の水蒸気透過率は、水蒸気透過率測定装置(例えば、MOCON社、AQUATRAN)を用いて、温度40℃かつ相対湿度100%の条件で測定することができる。
(蛍光体)
 波長変換層に含まれる蛍光体の種類は特に限定されない。例えば、有機蛍光体及び無機蛍光体を挙げることができる。
 有機蛍光体としては、ナフタルイミド化合物、ペリレン化合物等が挙げられる。
 無機蛍光体としては、Y:Eu、YVO:Eu、Y:Eu、3.5MgO・0.5MgF、GeO:Mn、(Y・Cd)BO:Eu等の赤色発光無機蛍光体、ZnS:Cu・Al、(Zn・Cd)S:Cu・Al、ZnS:Cu・Au・Al、ZnSiO:Mn、ZnSiO:Mn、ZnS:Ag・Cu、(Zn・Cd)S:Cu、ZnS:Cu、GdOS:Tb、LaOS:Tb、YSiO:Ce・Tb、ZnGeO:Mn、GeMgAlO:Tb、SrGaS:Eu2+、ZnS:Cu・Co、MgO・nB:Ge・Tb、LaOBr:Tb・Tm、LaS:Tb等の緑色発光無機蛍光体、ZnS:Ag、GaWO、YSiO:Ce、ZnS:Ag・Ga・Cl、CaOCl:Eu2+、BaMgAl:Eu2+等の青色発光無機蛍光体、量子ドット蛍光体などが挙げられる。
 画像表示装置の色再現性の観点からは、波長変換材料は蛍光体として量子ドット蛍光体を含むことが好ましい。量子ドット蛍光体の種類は特に制限されず、II-VI族化合物、III-V族化合物、IV-VI族化合物、及びIV族化合物からなる群より選択される少なくとも1種を含む粒子が挙げられる。発光効率の観点からは、量子ドット蛍光体は、Cd及びInの少なくとも一方を含む化合物を含むことが好ましい。
 II-VI族化合物の具体例としては、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe等が挙げられる。
 III-V族化合物の具体例としては、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb等が挙げられる。
 IV-VI族化合物の具体例としては、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe等が挙げられる。
 IV族化合物の具体例としては、Si、Ge、SiC、SiGe等が挙げられる。
 量子ドット蛍光体は、コアシェル構造を有するものであってもよい。コアを構成する化合物のバンドギャップよりもシェルを構成する化合物のバンドギャップを広くすることで、量子ドット蛍光体の量子効率をより向上させることが可能となる。コア及びシェルの組み合わせ(コア/シェル)としては、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等が挙げられる。
 量子ドット蛍光体は、シェルが多層構造である、いわゆるコアマルチシェル構造を有するものであってもよい。バンドギャップの広いコアにバンドギャップの狭いシェルを1層又は2層以上積層し、さらにこのシェルの上にバンドギャップの広いシェルを積層することで、量子ドット蛍光体の量子効率をさらに向上させることが可能となる。
 波長変換層が蛍光体を含有する場合、波長変換層は、1種類の蛍光体を単独で含有していてもよく、2種類以上の蛍光体を組み合わせて含有していてもよい。2種類以上の蛍光体を組み合わせて含有する態様としては、例えば、成分は異なるものの平均粒子径を同じくする蛍光体を2種類以上含有する態様、平均粒子径は異なるものの成分を同じくする蛍光体を2種類以上含有する態様、並びに成分及び平均粒子径の異なる蛍光体を2種類以上含有する態様が挙げられる。蛍光体の成分及び平均粒子径の少なくとも一方を変更することで、蛍光体の発光中心波長を変更することができる。
 波長変換層が蛍光体として量子ドット蛍光体を含有する場合、量子ドット蛍光体の割合は蛍光体全体の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。
 例えば、波長変換層は、520nm~560nmの緑色の波長域に発光中心波長を有する蛍光体Gと、600nm~680nmの赤色の波長域に発光中心波長を有する蛍光体Rとを含有していてもよい。蛍光体Gと蛍光体Rとを含有する波長変換層に対して430nm~480nmの青色の波長域の励起光を照射すると、蛍光体G及び蛍光体Rからそれぞれ緑色光及び赤色光が発光される。その結果、蛍光体G及び蛍光体Rから発光される緑色光及び赤色光と、硬化物を透過する青色光とにより、白色光を得ることができる。
 波長変換層中の蛍光体の含有率は、例えば、波長変換層全体の0.01質量%~1.0質量%であることが好ましく、0.05質量%~0.5質量%であることがより好ましく、0.1質量%~0.5質量%であることがさらに好ましい。蛍光体の含有率が波長変換層全体の0.01質量%以上であると、充分な波長変換機能が得られる傾向にあり、蛍光体の含有率が波長変換層全体の1.0質量%以下であると、蛍光体の凝集が抑えられる傾向にある。
(光拡散材)
 波長変換層に含まれる光拡散材の種類は特に制限されず、酸化チタン、硫酸バリウム、酸化亜鉛、炭酸カルシウム等が挙げられる。これらの中でも、光散乱効率の観点からは、酸化チタンが好ましい。酸化チタンはルチル型酸化チタンであってもアナターゼ型酸化チタンであってもよく、ルチル型酸化チタンであることが好ましい。
 光拡散材が酸化チタンを含む場合、酸化チタンの割合は光拡散材全体の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。
 波長変換層中の光拡散材の量は特に制限されず、所望の波長変換効率、光透過率等に応じて調節できる。例えば、光拡散材の含有率は波長変換層全体の0.1質量%~10.0質量%であることが好ましく、1.0質量%~7.5質量%であることがより好ましく、2.0質量%~5.0質量%であることがさらに好ましい。
 光拡散材の平均粒子径は、0.1μm~1μmであることが好ましく、0.2μm~0.8μmであることがより好ましく、0.2μm~0.5μmであることがさらに好ましい。
 本開示において光拡散材の平均粒子径は、以下のようにして測定することができる。
 光拡散材(波長変換層又は後述する樹脂組成物に含まれている場合は、抽出した光拡散材)を、界面活性剤を含んだ精製水に分散させ、分散液を得る。この分散液を用いてレーザー回折式粒度分布測定装置(例えば、株式会社島津製作所、SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))を光拡散材の平均粒子径(体積平均粒子径)とする。樹脂組成物から光拡散材を抽出する方法としては、例えば、樹脂組成物を液状媒体で希釈し、遠心分離処理等により光拡散材を沈澱させて分収することで得ることができる。
 光拡散材が波長変換層に含まれた状態である場合は、波長変換層の断面を走査型電子顕微鏡を用いた粒子の観察により、50個の粒子について円相当径(長径と短径の幾何平均)を算出し、その算術平均値として求められる値を平均粒子径としてもよい。
 波長変換層中での分散性を向上する観点からは、光拡散材は、表面の少なくとも一部に有機物を含む有機物層を有することが好ましい。有機物層に含まれる有機物としては、有機シラン、オルガノシロキサン、フルオロシラン、有機ホスホネート、有機リン酸化合物、有機ホスフィネート、有機スルホン酸化合物、カルボン酸、カルボン酸エステル、カルボン酸の誘導体、アミド、炭化水素ワックス、ポリオレフィン、ポリオレフィンのコポリマー、ポリオール、ポリオールの誘導体、アルカノールアミン、アルカノールアミンの誘導体、有機分散剤等が挙げられる。
 有機物層に含まれる有機物は、ポリオール、有機シラン等を含むことが好ましく、ポリオール又は有機シランの少なくとも一方を含むことがより好ましい。
 有機シランの具体例としては、オクチルトリエトキシシラン、ノニルトリエトキシシラン、デシルトリエトキシシラン、ドデシルトリエトキシシラン、トリデシルトリエトキシシラン、テトラデシルトリエトキシシラン、ペンタデシルトリエトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリエトキシシラン等が挙げられる。
 オルガノシロキサンの具体例としては、トリメチルシリル基で終端されたポリジメチルシロキサン(PDMS)、ポリメチルヒドロシロキサン(PMHS)、PMHSのオレフィンによる官能化(ヒドロシリル化による)により誘導されるポリシロキサン等が挙げられる。
 有機ホスホネートの具体例としては、例えば、n-オクチルホスホン酸及びそのエステル、n-デシルホスホン酸及びそのエステル、2-エチルヘキシルホスホン酸及びそのエステル並びにカンフィル(camphyl)ホスホン酸及びそのエステルが挙げられる。
 有機リン酸化合物の具体例としては、有機酸性ホスフェート、有機ピロホスフェート、有機ポリホスフェート、有機メタホスフェート、これらの塩等が挙げられる。
 有機ホスフィネートの具体例としては、例えば、n-ヘキシルホスフィン酸及びそのエステル、n-オクチルホスフィン酸及びそのエステル、ジ-n-ヘキシルホスフィン酸及びそのエステル並びにジ-n-オクチルホスフィン酸及びそのエステルが挙げられる。
 有機スルホン酸化合物の具体例としては、ヘキシルスルホン酸、オクチルスルホン酸、2-エチルヘキシルスルホン酸等のアルキルスルホン酸、これらアルキルスルホン酸と、ナトリウム、カルシウム、マグネシウム、アルミニウム、チタン等の金属イオン、アンモニウムイオン、トリエタノールアミン等の有機アンモニウムイオンなどとの塩が挙げられる。
 カルボン酸の具体例としては、マレイン酸、マロン酸、フマル酸、安息香酸、フタル酸、ステアリン酸、オレイン酸、リノール酸等が挙げられる。
 カルボン酸エステルの具体例としては、上記カルボン酸と、エチレングリコール、プロピレングリコール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、グリセロール、ヘキサントリオール、エリトリトール、マンニトール、ソルビトール、ペンタエリトリトール、ビスフェノールA、ヒドロキノン、フロログルシノール等のヒドロキシ化合物との反応により生成するエステル及び部分エステルが挙げられる。
 アミドの具体例としては、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド等が挙げられる。
 ポリオレフィン及びそのコポリマーの具体例としては、ポリエチレン、ポリプロピレン、エチレンと、プロピレン、ブチレン、酢酸ビニル、アクリレート、アクリルアミド等から選択される1種又は2種以上の化合物との共重合体などが挙げられる。
 ポリオールの具体例としては、グリセロール、トリメチロールエタン、トリメチロールプロパン等が挙げられる。
 アルカノールアミンの具体例としては、ジエタノールアミン、トリエタノールアミン等が挙げられる。
 有機分散剤の具体例としては、クエン酸、ポリアクリル酸、ポリメタクリル酸、陰イオン性、陽イオン性、双性、非イオン性等の官能基をもつ高分子有機分散剤などが挙げられる。
 波長変換層中での分散性の向上の観点からは、光拡散材は、表面の少なくとも一部に金属酸化物を含む金属酸化物層を有していてもよい。金属酸化物層に含まれる金属酸化物としては、二酸化ケイ素、酸化アルミニウム、ジルコニア、ホスホリア(phosphoria)、ボリア(boria)等が挙げられる。金属酸化物層は一層であっても二層以上であってもよい。光拡散材が二層の金属酸化物層を有する場合、二酸化ケイ素を含む第一金属酸化物層及び酸化アルミニウムを含む第二金属酸化物層を含むものであることが好ましい。
 光拡散材が有機物を含む有機物層と金属酸化物層とを有する場合、光拡散材の表面に、金属酸化物層及び有機物層が、金属酸化物層及び有機物層の順に設けられることが好ましい。
 光拡散材が有機物層と二層の金属酸化物層とを有するものである場合、光拡散材の表面に、二酸化ケイ素を含む第一金属酸化物層、酸化アルミニウムを含む第二金属酸化物層及び有機物層が、第一金属酸化物層、第二金属酸化物層及び有機物層の順に設けられる(有機物層が最外層となる)ことが好ましい。
(樹脂硬化物)
 波長変換層は、樹脂硬化物をさらに含んでもよい。
 樹脂硬化物の他部材(被覆材等)に対する密着性、及び硬化時の体積収縮によるシワの発生の抑制の観点からは、樹脂硬化物はスルフィド構造を含有することが好ましい。スルフィド構造を含有する樹脂硬化物は、例えば、後述するチオール化合物と、当該チオール化合物のチオール基とエンチオール反応を生じる炭素炭素二重結合を有する重合性化合物と、を含む樹脂組成物を硬化させて得ることができる。
 波長変換層の耐熱性及び耐湿熱性の観点からは、樹脂硬化物は脂環式構造又は芳香環構造を含有することが好ましい。脂環式構造又は芳香環構造を有する樹脂硬化物は、例えば、後述する重合性化合物として脂環式構造又は芳香環構造を有するものを含む樹脂組成物を硬化させて得ることができる。
 蛍光体と酸素との接触を抑制する観点からは、樹脂硬化物はアルキレンオキシ基を含有することが好ましい。樹脂硬化物がアルキレンオキシ基を含有すると、樹脂硬化物の極性が増大し、非極性の酸素が硬化物中の成分に溶解しにくくなる傾向にある。また、樹脂硬化物の柔軟性が増して被覆材との密着性が向上する傾向にある。
 アルキレンオキシ基を含有する樹脂硬化物は、例えば、後述する重合性化合物としてアルキレンオキシ基を有するものを含む樹脂組成物を硬化させて得ることができる。
 波長変換層は、蛍光体と、光拡散材と、重合性化合物と、光重合開始剤と、を含む組成物(以下、単に樹脂組成物ともいう)の硬化物であってもよい。樹脂組成物は、蛍光体と、チオール化合物と、(メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、光重合開始剤と、を含有することが好ましい。樹脂組成物は、任意でその他の成分を含有していてもよい。
 以下、樹脂組成物の各成分について詳述する。
(蛍光体)
 樹脂組成物に含まれる蛍光体の詳細は、上述のとおりである。蛍光体は、分散媒体に分散された蛍光体分散液の状態で用いてもよい。蛍光体を分散する分散媒体としては、各種有機溶剤、シリコーン化合物、及び単官能(メタ)アクリレート化合物が挙げられる。蛍光体は、必要に応じて分散剤を用いて蛍光体分散液の状態で用いてもよい。
 分散媒体として使用可能な有機溶剤としては、蛍光体の沈降及び凝集が確認されなければ特に限定されるものではなく、アセトニトリル、メタノール、エタノール、アセトン、1-プロパノール、酢酸エチル、酢酸ブチル、トルエン、ヘキサン等が挙げられる。
 分散媒体として使用可能なシリコーン化合物としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイル;アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、メルカプト変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸変性シリコーンオイル、フッ素変性シリコーンオイル等の変性シリコーンオイルなどが挙げられる。
 分散媒体として使用可能な単官能(メタ)アクリレート化合物としては、室温(25℃)において液体であれば特に限定されるものではなく、脂環式構造を有する単官能(メタ)アクリレート化合物(好ましくはイソボルニル(メタ)アクリレート、及びジシクロペンタニル(メタ)アクリレート)、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、エトキシ化o-フェニルフェノール(メタ)アクリレート等が挙げられる。
 必要に応じて用いられる分散剤としては、ポリエーテルアミン(JEFFAMINE M-1000、HUNTSMAN社)等が挙げられる。
 蛍光体分散液に占める蛍光体の質量基準の割合は、1質量%~20質量%であることが好ましく、1質量%~10質量%であることがより好ましい。
 樹脂組成物中の蛍光体分散液の含有率は、蛍光体分散液に占める蛍光体の質量基準の割合が1質量%~20質量%である場合、樹脂組成物の全量に対して、例えば、1質量%~10質量%であることが好ましく、4質量%~10質量%であることがより好ましく、4質量%~7質量%であることがさらに好ましい。
 また、樹脂組成物中の蛍光体の含有率は、樹脂組成物の全量に対して、例えば、0.01質量%~1.0質量%であることが好ましく、0.05質量%~0.5質量%であることがより好ましく、0.1質量%~0.5質量%であることがさらに好ましい。蛍光体の含有率が0.01質量%以上であると、硬化物に励起光を照射する際に充分な発光強度が得られる傾向にあり、蛍光体の含有率が1.0質量%以下であると、蛍光体の凝集が抑えられる傾向にある。
(重合性化合物)
 樹脂組成物は、重合性化合物を含有する。樹脂組成物に含まれる重合性化合物は特に制限されず、チオール化合物、(メタ)アクリル化合物、(メタ)アリル化合物等が挙げられる。なお、(メタ)アリル化合物は、分子中に(メタ)アリル基を有する化合物を意味し、(メタ)アクリル化合物は、分子中に(メタ)アクリロイル基を有する化合物を意味する。分子中に(メタ)アリル基及び(メタ)アクリロイル基の両方を有する化合物は、便宜上、(メタ)アリル化合物に分類するものとする。
 波長変換層の隣接する部材(被覆材等)に対する密着性の観点からは、樹脂組成物は重合性化合物としてチオール化合物と、(メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、を含むことが好ましい。
 重合性化合物としてチオール化合物と、(メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、を含む樹脂組成物を硬化して得られる硬化物は、チオール基と(メタ)アクリロイル基又は(メタ)アリル基の炭素炭素二重結合との間でエンチオール反応が進行して形成されるスルフィド構造(R-S-R’、R及びR’は有機基を表す)を含む。これにより、波長変換層の隣接する部材に対する密着性が向上する傾向にある。また、波長変換層の光学特性がより向上する傾向にある。
 以下、チオール化合物、(メタ)アクリル化合物、及び(メタ)アリル化合物について詳述する。
A.チオール化合物
 チオール化合物は、1分子中に1個のチオール基を有する単官能チオール化合物であってもよく、1分子中に2個以上のチオール基を有する多官能チオール化合物であってもよい。樹脂組成物に含まれるチオール化合物は、1種のみでも2種以上であってもよい。
 チオール化合物は、分子中にチオール基以外の重合性基(例えば、(メタ)アクリロイル基、(メタ)アリル基)を有していても、有していなくてもよい。
 本開示において分子中にチオール基と、チオール基以外の重合性基を含む化合物は、「チオール化合物」に分類するものとする。
 単官能チオール化合物の具体例としては、ヘキサンチオール、1-ヘプタンチオール、1-オクタンチオール、1-ノナンチオール、1-デカンチオール、3-メルカプトプロピオン酸、メルカプトプロピオン酸メチル、メルカプトプロピオン酸メトキシブチル、メルカプトプロピオン酸オクチル、メルカプトプロピオン酸トリデシル、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート等が挙げられる。
 多官能チオール化合物の具体例としては、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、1,2-プロピレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトブチレート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトブチレート)、1,8-オクタンジオールビス(3-メルカプトプロピオネート)、1,8-オクタンジオールビス(3-メルカプトブチレート)、ヘキサンジオールビスチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトイソブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、トリメチロールプロパントリスチオグリコレート、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトイソブチレート)、ペンタエリスリトールテトラキス(2-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(2-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(2-メルカプトイソブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサキスチオグリコレート等が挙げられる。
 波長変換層の隣接する部材に対する密着性、耐熱性、及び耐湿熱性をより向上させる観点からは、チオール化合物は、多官能チオール化合物を含むことが好ましい。チオール化合物の全量に対する多官能チオール化合物の割合は、例えば、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることがさらに好ましい。
 チオール化合物は、(メタ)アクリル化合物と反応したチオエーテルオリゴマーの状態であってもよい。チオエーテルオリゴマーは、チオール化合物と(メタ)アクリル化合物とを重合開始剤の存在下で付加重合させることにより得ることができる。
 樹脂組成物がチオール化合物を含有する場合、樹脂組成物中のチオール化合物の含有率は、樹脂組成物の全量に対して、例えば、5質量%~80質量%であることが好ましく、15質量%~70質量%であることがより好ましく、20質量%~60質量%であることがさらに好ましい。
 チオール化合物の含有率が5質量%以上であると、波長変換層の隣接する部材に対する密着性がより向上する傾向にあり、チオール化合物の含有率が80質量%以下であると、波長変換層の耐熱性及び耐湿熱性がより向上する傾向にある。
B.(メタ)アクリル化合物
 (メタ)アクリル化合物は、1分子中に1個の(メタ)アクリロイル基を有する単官能(メタ)アクリル化合物であってもよく、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリル化合物であってもよい。樹脂組成物に含まれる(メタ)アクリル化合物は、1種でも2種以上であってもよい。
 単官能(メタ)アクリル化合物の具体例としては、(メタ)アクリル酸;メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~18であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香環を有する(メタ)アクリレート化合物;ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート;ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノブチルエーテル(メタ)アクリレート、テトラエチレングリコールモノメチルエーテル(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテル(メタ)アクリレート、オクタエチレングリコールモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールモノエチルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート;ヘキサエチレングリコールモノフェニルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアリールエーテル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する(メタ)アクリレート化合物;(メタ)アクリロイルモルホリン、テトラヒドロフルフリル(メタ)アクリレート等の複素環を有する(メタ)アクリレート化合物;ヘプタデカフルオロデシル(メタ)アクリレート等のフッ化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート化合物;2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート等のイソシアネート基を有する(メタ)アクリレート化合物;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物;などが挙げられる。
 多官能(メタ)アクリル化合物の具体例としては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;トリシクロデカンジメタノールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、水添ビスフェノールA(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールA(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)プロポキシジ(メタ)アクリレート等の脂環構造を有する(メタ)アクリレート化合物などが挙げられる。
 (メタ)アクリル化合物は、硬化物の耐熱性及び耐湿熱性をより向上させる観点からは、脂環構造又は芳香環構造を有する(メタ)アクリレート化合物が好ましい。脂環構造又は芳香環構造としては、イソボルニル骨格、トリシクロデカン骨格、ビスフェノール骨格等が挙げられる。
 (メタ)アクリル化合物は、アルキレンオキシ基を有するものであってもよく、アルキレンオキシ基を有する2官能(メタ)アクリル化合物であってもよい。
 アルキレンオキシ基としては、例えば、炭素数が2~4のアルキレンオキシ基が好ましく、炭素数が2又は3のアルキレンオキシ基がより好ましく、炭素数が2のアルキレンオキシ基がさらに好ましい。
 (メタ)アクリル化合物が有するアルキレンオキシ基は、1種でも2種以上であってもよい。
 アルキレンオキシ基含有化合物は、複数個のアルキレンオキシ基を含むポリアルキレンオキシ基を有するポリアルキレンオキシ基含有化合物であってもよい。
 (メタ)アクリル化合物がアルキレンオキシ基を有する場合、一分子中のアルキレンオキシ基の数は、2個~30個であることが好ましく、2個~20個であることがより好ましく、3個~10個であることがさらに好ましく、3個~5個であることが特に好ましい。
 (メタ)アクリル化合物がアルキレンオキシ基を有する場合、ビスフェノール構造を有することが好ましい。これにより、硬化物の耐熱性により優れる傾向にある。ビスフェノール構造としては、例えば、ビスフェノールA構造及びビスフェノールF構造が挙げられ、中でも、ビスフェノールA構造が好ましい。
 アルキレンオキシ基を有する(メタ)アクリル化合物の具体例としては、ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノブチルエーテル(メタ)アクリレート、テトラエチレングリコールモノメチルエーテル(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテル(メタ)アクリレート、オクタエチレングリコールモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールモノエチルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート;ヘキサエチレングリコールモノフェニルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアリールエーテル(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート等の複素環を有する(メタ)アクリレート化合物;トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート化合物;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレート等のビスフェノール型ジ(メタ)アクリレート化合物;などが挙げられる。
 アルキレンオキシ基含有化合物としては、中でも、エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート及びプロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレートが好ましく、エトキシ化ビスフェノールA型ジ(メタ)アクリレートがより好ましい。
 樹脂組成物が(メタ)アクリル化合物を含有する場合、樹脂組成物中の(メタ)アクリル化合物の含有率は、樹脂組成物の全量に対して、例えば、40質量%~90質量%であってもよく、50質量%~80質量%であってもよい。
C.(メタ)アリル化合物
 (メタ)アリル化合物は、1分子中に1個の(メタ)アリル基を有する単官能(メタ)アリル化合物であってもよく、1分子中に2個以上の(メタ)アリル基を有する多官能(メタ)アリル化合物であってもよい。樹脂組成物に含まれる(メタ)アリル化合物は、1種のみでも2種以上であってもよい。
 (メタ)アリル化合物は、分子中に(メタ)アリル基以外の重合性基(例えば、(メタ)アクリロイル基)を有していても、有していなくてもよい。
 本開示において分子中に(メタ)アリル基以外の重合性基を有する化合物(ただし、チオール化合物を除く)は、「(メタ)アリル化合物」に分類するものとする。
 単官能(メタ)アリル化合物の具体例としては、(メタ)アリルアセテート、(メタ)アリルn-プロピオネート、(メタ)アリルベンゾエート、(メタ)アリルフェニルアセテート、(メタ)アリルフェノキシアセテート、(メタ)アリルメチルエーテル、(メタ)アリルグリシジルエーテル等が挙げられる。
 多官能(メタ)アリル化合物の具体例としては、ベンゼンジカルボン酸ジ(メタ)アリル、シクロヘキサンジカルボン酸ジ(メタ)アリル、ジ(メタ)アリルマレエート、ジ(メタ)アリルアジペート、ジ(メタ)アリルフタレート、ジ(メタ)アリルイソフタレート、ジ(メタ)アリルテレフタレート、グリセリンジ(メタ)アリルエーテル、トリメチロールプロパンジ(メタ)アリルエーテル、ペンタエリスリトールジ(メタ)アリルエーテル、1,3-ジ(メタ)アリル-5-グリシジルイソシアヌレート、トリ(メタ)アリルシアヌレート、トリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルトリメリテート、テトラ(メタ)アリルピロメリテート、1,3,4,6-テトラ(メタ)アリルグリコールウリル、1,3,4,6-テトラ(メタ)アリル-3a-メチルグリコールウリル、1,3,4,6-テトラ(メタ)アリル-3a,6a-ジメチルグリコールウリル等が挙げられる。
 (メタ)アリル化合物としては、硬化物の耐熱性及び耐湿熱性の観点から、トリ(メタ)アリルイソシアヌレート等のイソシアヌレート骨格を有する化合物、トリ(メタ)アリルシアヌレート、ベンゼンジカルボン酸ジ(メタ)アリル、及びシクロヘキサンジカルボン酸ジ(メタ)アリルからなる群より選択される少なくとも1種が好ましく、イソシアヌレート骨格を有する化合物がより好ましく、トリ(メタ)アリルイソシアヌレートがさらに好ましい。
 樹脂組成物が(メタ)アリル化合物を含有する場合、樹脂組成物中の(メタ)アリル化合物の含有率は、樹脂組成物の全量に対して、例えば、10質量%~50質量%であってもよく、15質量%~45質量%であってもよい。
 ある実施態様では、重合性化合物はチオール化合物としてチオエーテルオリゴマーと、(メタ)アリル化合物(好ましくは、多官能(メタ)アリル化合物)とを含むものであってもよい。
 重合性化合物がチオール化合物としてチオエーテルオリゴマーと(メタ)アリル化合物とを含み、蛍光体として蛍光体を使用する場合、蛍光体は、分散媒体としてシリコーン化合物に分散された分散液の状態であることが好ましい。
 ある実施態様では、重合性化合物はチオール化合物としてチオエーテルオリゴマーの状態ではないものと、(メタ)アクリル化合物(好ましくは多官能(メタ)アクリル化合物、より好ましくは2官能(メタ)アクリル化合物)とを含むものであってもよい。
 重合性化合物がチオール化合物としてチオエーテルオリゴマーの状態ではないものと、(メタ)アクリル化合物とを含み、蛍光体として量子ドット蛍光体を使用する場合、量子ドット蛍光体は、分散媒体として(メタ)アクリル化合物、好ましくは、単官能(メタ)アクリル化合物、より好ましくはイソボルニル(メタ)アクリレートに分散された分散液の状態であることが好ましい。
(光重合開始剤)
 樹脂組成物に含まれる光重合開始剤の種類は特に制限されず、紫外線等の活性エネルギー線の照射によりラジカルを発生する化合物が挙げられる。
 光重合開始剤の具体例としては、ベンゾフェノン、N,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1、4,4’-ビス(ジメチルアミノ)ベンゾフェノン(「ミヒラーケトン」とも称される)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等の芳香族ケトン化合物;アルキルアントラキノン、フェナントレンキノン等のキノン化合物;ベンゾイン、アルキルベンゾイン等のベンゾイン化合物;ベンゾインアルキルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン、1,7-(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル化合物;7-ジエチルアミノ-4-メチルクマリン等のクマリン化合物;2,4-ジエチルチオキサントン等のチオキサントン化合物;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、2,4,6-トリメチルベンゾイル-フェニル-エトキシ-ホスフィンオキサイド等のアシルホスフィンオキサイド化合物;などが挙げられる。樹脂組成物は、1種類の光重合開始剤を単独で含有していてもよく、2種類以上の光重合開始剤を組み合わせて含有していてもよい。
 光重合開始剤としては、硬化性の観点から、アシルホスフィンオキサイド化合物、芳香族ケトン化合物、及びオキシムエステル化合物からなる群より選択される少なくとも1種が好ましく、アシルホスフィンオキサイド化合物及び芳香族ケトン化合物からなる群より選択される少なくとも1種がより好ましく、アシルホスフィンオキサイド化合物がさらに好ましい。
 樹脂組成物中の光重合開始剤の含有率は、樹脂組成物の全量に対して、例えば、0.1質量%~5質量%であることが好ましく、0.1質量%~3質量%であることがより好ましく、0.1質量%~1.5質量%であることがさらに好ましい。光重合開始剤の含有率が0.1質量%以上であると、樹脂組成物の感度が充分なものとなる傾向にあり、光重合開始剤の含有率が5質量%以下であると、樹脂組成物の色相への影響及び保存安定性の低下が抑えられる傾向にある。
(光拡散材)
 樹脂組成物に含まれる光拡散材の詳細は、上述したとおりである。
(その他の成分)
 樹脂組成物は、上述した成分以外の成分をさらに含有していてもよい。例えば、樹脂組成物は、溶媒、分散媒、重合禁止剤、シランカップリング剤、界面活性剤、密着付与剤、酸化防止剤などの成分をさらに含有していてもよい。各成分は、1種を単独で用いても2種以上を併用してもよい。
(樹脂組成物の調製方法)
 樹脂組成物は、蛍光体、重合性化合物、光重合開始剤、及び必要に応じてその他の成分を常法により混合することで調製することができる。
 波長変換層は、1種類の樹脂組成物を硬化したものであってもよく、2種類以上の樹脂組成物を硬化したものであってもよい。例えば、波長変換部材がフィルム状である場合、波長変換層は、第1の蛍光体を含有する樹脂組成物を硬化した第1の硬化物層と、第1の蛍光体とは発光特性が異なる第2の蛍光体を含有する樹脂組成物を硬化した第2の硬化物層とが積層されたものであってもよい。
 波長変換層は、密着性をより向上させる観点から、動的粘弾性測定により周波数10Hzかつ温度25℃の条件で測定した損失正接(tanδ)が0.4~1.5であることが好ましく、0.4~1.2であることがより好ましく、0.4~0.6であることがさらに好ましい。波長変換層の損失正接(tanδ)は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。
 波長変換層は、密着性、耐熱性、及び耐湿熱性をより向上させる観点から、ガラス転移温度(Tg)が85℃以上であることが好ましく、85℃~160℃であることがより好ましく、90℃~120℃であることがさらに好ましい。波長変換層のガラス転移温度(Tg)は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて、周波数10Hzの条件で測定することができる。
 また、波長変換層は、密着性、耐熱性、及び耐湿熱性をより向上させる観点から、周波数10Hzかつ温度25℃の条件で測定した貯蔵弾性率が1×10Pa~1×1010Paであることが好ましく、5×10Pa~1×1010Paであることがより好ましく、5×10Pa~5×10Paであることがさらに好ましい。樹脂硬化物の貯蔵弾性率は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。
 波長変換層は、例えば、樹脂組成物の塗膜、成形体等を形成し、必要に応じて乾燥処理を行った後、紫外線等の活性エネルギー線を照射することにより得ることができる。活性エネルギー線の波長及び照射量は、樹脂組成物の組成に応じて適宜設定することができる。一態様では、280nm~400nmの波長の紫外線を100mJ/cm~5000mJ/cmの照射量で照射する。紫外線源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯等が挙げられる。
 波長変換部材の概略構成の一例を図1に示す。但し、本開示の波長変換部材は図1の構成に限定されるものではない。
 図1に示す波長変換部材10は、フィルム状の硬化物である波長変換層11と、波長変換層11の両面に設けられたフィルム状の被覆材12A及び12Bと、を有する。被覆材12A及び被覆材12Bの種類及び厚みは、それぞれ同一であっても異なっていてもよい。被覆材12A及び12Bは粗面化されていてもよい。
 図1に示す構成の波長変換部材は、例えば、以下のような製造方法により製造することができる。
 まず、連続搬送されるフィルム状の被覆材(以下、「第1の被覆材」ともいう。)の表面に波長変換層形成用の樹脂組成物を付与し、塗膜を形成する。樹脂組成物の付与方法は特に制限されず、ダイコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法、ロールコーティング法等が挙げられる。
 次いで、樹脂組成物の塗膜の上に、連続搬送されるフィルム状の被覆材(以下、「第2の被覆材」ともいう。)を貼り合わせる。
 次いで、第1の被覆材及び第2の被覆材のうち活性エネルギー線を透過可能な被覆材側から活性エネルギー線を照射することにより、塗膜を硬化し、硬化物層を形成する。その後、規定のサイズに切り出すことにより、図1に示す構成の波長変換部材を得ることができる。
 なお、第1の被覆材及び第2の被覆材のいずれも活性エネルギー線を透過可能でない場合には、第2の被覆材を貼り合わせる前に塗膜に活性エネルギー線を照射し、硬化物層を形成してもよい。
≪波長変換部材(第2実施形態)≫
 第2実施形態の波長変換部材は、蛍光体と、光拡散材と、を含有する波長変換層を備え、前記光拡散材の含有率が前記波長変換層全体の2.0質量%以上である、波長変換部材である。
 上記条件を満たす波長変換部材は、蛍光体の量を抑えつつ所定の色調を達成できる。その理由は必ずしも明らかではないが、下記のように考えることができる。
 波長変換部材では、入射する光(例えば、青色光)の一部が蛍光体により別の波長の光(例えば、赤色光及び緑色光)に変換されて、所望の色調の光(例えば、白色光)が得られる。したがって、蛍光体の量を増やさずに所望の色調を達成するためには、蛍光体の単位量あたりの波長変換効率を高めることが有効である。
 本実施形態の波長変換部材では、まず、蛍光体とともに光拡散材を波長変換層に含有させることで、波長変換層に入射した光を散乱させ、蛍光体の単位量あたりの波長変換効率を高めている。さらに、光拡散材の含有率を波長変換層全体の2.0質量%以上に設定している。このことが蛍光体の単位量あたりの波長変換効率をさらに高めるように作用し、所定の色調を達成するのに必要な蛍光体の量が低減する。その結果、蛍光体の量を抑えつつ所定の色調を達成できる。
 光拡散材の含有率の上限値は、特に制限されない。充分な輝度を確保する観点からは、前記波長変換層全体の10.0質量%以下であることが好ましく、5.0質量%以下であることがさらに好ましい。
 本実施形態の波長変換部材及びその構成要素の詳細及び好ましい態様については、上述した波長変換部材の詳細及び好ましい態様を参照できる。
≪バックライトユニット≫
 本開示のバックライトユニットは、光源と、本開示の波長変換部材と、を有する。
 バックライトユニットとしては、色再現性を向上させる観点から、多波長光源化されたものが好ましい。好ましい一態様としては、430nm~480nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する青色光と、520nm~560nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する緑色光と、600nm~680nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する赤色光と、を発光するバックライトユニットを挙げることができる。なお、発光強度ピークの半値幅とは、ピーク高さの1/2の高さにおけるピーク幅を意味する。
 色再現性をより向上させる観点から、バックライトユニットが発光する青色光の発光中心波長は、440nm~475nmの範囲であることが好ましい。同様の観点から、バックライトユニットが発光する緑色光の発光中心波長は、520nm~545nmの範囲であることが好ましい。また、同様の観点から、バックライトユニットが発光する赤色光の発光中心波長は、610nm~640nmの範囲であることが好ましい。
 また、色再現性をより向上させる観点から、バックライトユニットが発光する青色光、緑色光、及び赤色光の各発光強度ピークの半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることがさらに好ましく、30nm以下であることが特に好ましく、25nm以下であることが極めて好ましい。
 バックライトユニットの光源としては、例えば、430nm~480nmの波長域に発光中心波長を有する青色光を発光する光源を用いることができる。光源としては、例えば、LED(Light Emitting Diode)及びレーザーが挙げられる。青色光を発光する光源を用いる場合、波長変換部材は、少なくとも、赤色光を発光する蛍光体R及び緑色光を発光する蛍光体Gを含むことが好ましい。これにより、波長変換部材から発光される赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。
 また、バックライトユニットの光源としては、例えば、300nm~430nmの波長域に発光中心波長を有する紫外光を発光する光源を用いることもできる。光源としては、例えば、LED及びレーザーが挙げられる。紫外光を発光する光源を用いる場合、波長変換部材は、蛍光体R及び蛍光体Gとともに、励起光により励起され青色光を発光する蛍光体Bを含むことが好ましい。これにより、波長変換部材から発光される赤色光、緑色光、及び青色光により、白色光を得ることができる。
 本開示のバックライトユニットは、エッジライト方式であっても直下型方式であってもよい。エッジライト方式のバックライトユニットの概略構成の一例を図に示す。
 図2に示すバックライトユニット20は、青色光Lを出射する光源21と、光源21から出射された青色光Lを導光して出射させる導光板22と、導光板22と対向配置される波長変換部材10と、波長変換部材10を介して導光板22と対向配置される再帰反射性部材23と、導光板22を介して波長変換部材10と対向配置される反射板24とを備える。波長変換部材10は、青色光Lの一部を励起光として赤色光L及び緑色光Lを発光し、赤色光L及び緑色光Lと、励起光とならなかった青色光Lとを出射する。この赤色光L、緑色光L、及び青色光Lにより、再帰反射性部材23から白色光Lが出射される。
≪画像表示装置≫
 本開示の画像表示装置は、上述した本開示のバックライトユニットを備える。画像表示装置としては特に制限されず、例えば、液晶表示装置が挙げられる。
 液晶表示装置の概略構成の一例を図3に示す。
 図3に示す液晶表示装置30は、バックライトユニット20と、バックライトユニット20と対向配置される液晶セルユニット31とを備える。液晶セルユニット31は、液晶セル32が偏光板33Aと偏光板33Bとの間に配置された構成とされる。
 液晶セル32の駆動方式は特に制限されず、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Virtical Alignment)方式、IPS(In-Plane-Switching)方式、OCB(Optically Compensated Birefringence)方式等が挙げられる。
  以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1~4、比較例1~3>
(波長変換部材の作製)
 下記に示す材料を表1の割合で混合して、樹脂組成物を調製した。
 ベース樹脂1…トリシクロデカンジメタノールジアクリレート(サートマー株式会社、「SR833NS」)
 ベース樹脂2…ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(Evans Chemetics LP社、「PETMP」)
 光拡散材…酸化チタン粒子(ケマーズ株式会社、「タイピュアR-706」、体積平均粒子径:0.36μm)
 光重合開始剤…2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド(ソート株式会社、「SBPI-718」)
 添加剤…酢酸(関東化学株式会社)
 蛍光体1……緑色光を発光するCdSeからなるコアとZnSからなるシェルとを有する量子ドット蛍光体(ピーク波長:526nm、半値幅:21nm、分散媒体:イソボルニルアクリレート、量子ドット蛍光体濃度:10質量%、Nanosys社)
 蛍光体2…赤色光を発光するInPからなるコアとZnSからなるシェルとを有する量子ドット蛍光体(ピーク波長:625nm、半値幅:46nm、分散媒体:イソボルニルアクリレート、量子ドット蛍光体濃度:10質量%、Nanosys社)
Figure JPOXMLDOC01-appb-T000001
 得られた樹脂組成物を、被覆材としての厚みが70μmのPETフィルムの片面に塗布して塗膜を形成した。この塗膜上に、上記と同じPETフィルムを配置した。次いで、紫外線照射装置(アイグラフィックス株式会社)を用いて紫外線を照射し(照射量:1000mJ/cm)、樹脂組成物を硬化させて、波長変換層の両面に被覆材が配置された状態の波長変換部材を作製した。このとき、波長変換部材に波長449nmの青色LED光を照射して得られる光の色調がホワイトポイント(x,y)=(0.270,0.240)の条件を満たすように、波長変換層の厚みを調節した。
(評価)
 上記で得られた各波長変換部材を、幅210mm、長さ300mmの寸法に裁断して測定サンプルを作製した。得られたサンプルに対し、ヘイズメーター(日本電色工業株式会社、「NDH 7000SP」)を用いて、JIS K 7136:2000の測定法に準拠して全光線透過率及び拡散透過率を測定した。測定値から計算されるヘイズ値(拡散透過率/全光線透過率×100として計算)とともに結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、拡散透過率が50%以下であり波長変換層の厚みが100μm以下であるか、又は光拡散材の割合が波長変換層全体の2.0質量%以上である実施例の波長変換部材は、同水準のホワイトポイントを満たすときの量子ドット蛍光体の単位面積当たりの使用量が比較例の波長変換部材よりも少なかった。これらの結果から、実施例の波長変換部材は、より少ない蛍光体で所定の色調を達成できることがわかる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 10…波長変換部材
 11…波長変換層
 12A…被覆材
 12B…被覆材
 20…バックライトユニット
 21…光源
 22…導光板 
 23…再帰反射性部材
 24…反射板
 30…液晶表示装置
 31…液晶セルユニット
 32…液晶セル
 33A…偏光板
 33B…偏光板
 L…青色光
 L…赤色光
 L…緑色光
 L…白色光

Claims (10)

  1.  蛍光体と、光拡散材と、を含有する波長変換層を備え、拡散透過率が50%以下であり、前記波長変換層の厚みが100μm以下である、波長変換部材。
  2.  全光線透過率に対する拡散透過率の割合が80%以上である、請求項1に記載の波長変換部材。
  3.  前記光拡散材が酸化チタンを含む、請求項1又は請求項2に記載の波長変換部材。
  4.  前記光拡散材の含有率が前記波長変換層の2.0質量%以上である、請求項1~請求項3のいずれか1項に記載の波長変換部材。
  5.  前記波長変換層が樹脂硬化物をさらに含む、請求項1~請求項4のいずれか1項に記載の波長変換部材。
  6.  蛍光体と、光拡散材と、を含有する波長変換層を備え、前記光拡散材の含有率が前記波長変換層全体の2.0質量%以上である、波長変換部材。
  7.  前記光拡散材が酸化チタンを含む、請求項6に記載の波長変換部材。
  8.  全光線透過率に対する拡散透過率の割合が80%以上である、請求項6又は請求項7に記載の波長変換部材。
  9.  請求項1~請求項8のいずれか1項に記載の波長変換部材と、光源と、を備えるバックライトユニット。
  10.  請求項9に記載のバックライトユニットを備える画像表示装置。
PCT/JP2019/015688 2019-04-10 2019-04-10 波長変換部材、バックライトユニット、及び画像表示装置 WO2020208754A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021513097A JPWO2020208754A1 (ja) 2019-04-10 2019-04-10
CN201980093864.3A CN113557457A (zh) 2019-04-10 2019-04-10 波长转换构件、背光单元和图像显示装置
PCT/JP2019/015688 WO2020208754A1 (ja) 2019-04-10 2019-04-10 波長変換部材、バックライトユニット、及び画像表示装置
US17/437,048 US20220187518A1 (en) 2019-04-10 2019-04-10 Wavelength conversion member, backlight unit, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/015688 WO2020208754A1 (ja) 2019-04-10 2019-04-10 波長変換部材、バックライトユニット、及び画像表示装置

Publications (1)

Publication Number Publication Date
WO2020208754A1 true WO2020208754A1 (ja) 2020-10-15

Family

ID=72751203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015688 WO2020208754A1 (ja) 2019-04-10 2019-04-10 波長変換部材、バックライトユニット、及び画像表示装置

Country Status (4)

Country Link
US (1) US20220187518A1 (ja)
JP (1) JPWO2020208754A1 (ja)
CN (1) CN113557457A (ja)
WO (1) WO2020208754A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034582A1 (ja) * 2003-10-01 2005-04-14 Idemitsu Kosan Co., Ltd. 色変換層及び発光素子
KR100507844B1 (ko) * 2005-01-19 2005-08-17 주식회사 맥스필 광확산 및 파장 변환 필름
JP2012185492A (ja) * 2011-02-15 2012-09-27 Mitsubishi Chemicals Corp 蛍光スクリーン及びインキ
JP2013197325A (ja) * 2012-03-21 2013-09-30 Nippon Electric Glass Co Ltd 波長変換部材および発光デバイス
KR20150090458A (ko) * 2014-01-29 2015-08-06 엘지이노텍 주식회사 광변환기판 및 이를 포함하는 조명장치, 차량용 램프
KR20180077935A (ko) * 2016-12-29 2018-07-09 코오롱인더스트리 주식회사 양자점 조성물 및 광 변환 필름

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699096B2 (ja) * 2012-01-26 2015-04-08 東京応化工業株式会社 感光性組成物、パターンおよびパターンを有する表示装置
JP6295237B2 (ja) * 2014-09-30 2018-03-14 富士フイルム株式会社 バックライトユニット、液晶表示装置および波長変換部材
JP6339053B2 (ja) * 2014-09-30 2018-06-06 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置
TW201835297A (zh) * 2017-01-06 2018-10-01 日商Jsr股份有限公司 含螢光體粒子組成物、波長轉換層及波長轉換層的製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034582A1 (ja) * 2003-10-01 2005-04-14 Idemitsu Kosan Co., Ltd. 色変換層及び発光素子
KR100507844B1 (ko) * 2005-01-19 2005-08-17 주식회사 맥스필 광확산 및 파장 변환 필름
JP2012185492A (ja) * 2011-02-15 2012-09-27 Mitsubishi Chemicals Corp 蛍光スクリーン及びインキ
JP2013197325A (ja) * 2012-03-21 2013-09-30 Nippon Electric Glass Co Ltd 波長変換部材および発光デバイス
KR20150090458A (ko) * 2014-01-29 2015-08-06 엘지이노텍 주식회사 광변환기판 및 이를 포함하는 조명장치, 차량용 램프
KR20180077935A (ko) * 2016-12-29 2018-07-09 코오롱인더스트리 주식회사 양자점 조성물 및 광 변환 필름

Also Published As

Publication number Publication date
US20220187518A1 (en) 2022-06-16
JPWO2020208754A1 (ja) 2020-10-15
CN113557457A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2019189270A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
EP3767345A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
JP2019174562A (ja) 波長変換部材、バックライトユニット及び画像表示装置
WO2019189269A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
US10960651B2 (en) Laminate, wavelength conversion member, backlight unit, and image display device
WO2019186728A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
WO2021029240A1 (ja) 波長変換材、波長変換材の製造方法、積層体、バックライトユニット、及び画像表示装置
WO2021106556A1 (ja) 波長変換部材及びその製造方法、バックライトユニット、並びに画像表示装置
JP6702515B2 (ja) 波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物
WO2020208754A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
JP2020101803A (ja) 波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物
JP2020101804A (ja) 波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物
WO2019186735A1 (ja) 波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物
WO2021152738A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
WO2021152739A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
JP6798655B1 (ja) 波長変換部材及びその使用、バックライトユニット、並びに画像表示装置
WO2021152737A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
JP2020196264A (ja) 積層体、波長変換部材、バックライトユニット、及び画像表示装置
JP2021043462A (ja) 波長変換部材及びその使用、バックライトユニット、並びに画像表示装置
WO2019186730A1 (ja) 波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513097

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19924394

Country of ref document: EP

Kind code of ref document: A1