WO2020206933A1 - 一种绿色环保非氰提金剂、制备方法及其应用 - Google Patents

一种绿色环保非氰提金剂、制备方法及其应用 Download PDF

Info

Publication number
WO2020206933A1
WO2020206933A1 PCT/CN2019/106477 CN2019106477W WO2020206933A1 WO 2020206933 A1 WO2020206933 A1 WO 2020206933A1 CN 2019106477 W CN2019106477 W CN 2019106477W WO 2020206933 A1 WO2020206933 A1 WO 2020206933A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
aqueous solution
green
environmentally friendly
extracting agent
Prior art date
Application number
PCT/CN2019/106477
Other languages
English (en)
French (fr)
Inventor
杨鹏
王咚
Original Assignee
陕西师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西师范大学 filed Critical 陕西师范大学
Priority to EP19924044.1A priority Critical patent/EP3943625A4/en
Publication of WO2020206933A1 publication Critical patent/WO2020206933A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/046Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper or baths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/16Extraction of metal compounds from ores or concentrates by wet processes by leaching in organic solutions
    • C22B3/1666Leaching with heterocyclic compounds
    • C22B3/1675Leaching with a mixture of organic agents wherein one agent at least is a heterocyclic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to the field of gold alchemy, in particular to a green and environmentally friendly non-cyanide gold extracting agent, a preparation method and application thereof, and more particularly to a green gold extracting solution comprising basic Br and solid pyridine derivatives, a preparation method and application thereof .
  • gold mines As a natural resource, gold mines have limited reserves on the earth. According to the world, the identified gold reserves are 100,000 tons. In 2017, China’s gold production reached 481.8 tons, accounting for 12.6% of the world’s gold production.
  • many gold-bearing ores are sulfur-containing, arsenic-containing, and carbon-containing ores that are difficult to extract from gold. They need to be calcined before gold can be extracted. This increases the cost of gold leaching.
  • gold mines can be divided into easy-leaching and hard-leaching gold mines.
  • Refractory gold ore refers to a gold ore whose leaching rate is less than 50% after being treated with a gold extracting agent without pretreatment. Therefore, pretreatment is a necessary production process for refractory gold mines.
  • Today, refractory gold mines account for 60% of the world's reserves, and so does China.
  • One third of the gold produced in the world comes from refractory ore.
  • the mainstream gold extraction method in the industry is the cyanidation method, which has the characteristics of complete process flow, economic feasibility, and strong ore adaptability.
  • cyanide there are also acidic or corrosive solutions such as thiourea and thiosulfate for leaching gold mines and electronic waste.
  • acidic or corrosive solutions such as thiourea and thiosulfate for leaching gold mines and electronic waste.
  • the currently used and researched leaching agents have great shortcomings, such as cyanide and thiourea are highly toxic, and thiosulfate is unstable; secondly, considering that the leaching agent needs extremely alkaline or extremely acidic pH during use Conditions, the pH required for cyanide is about 11, and that for thiourea is about 1.5.
  • the above obvious shortcomings are not conducive to the environment and human health. Therefore, there is an urgent need to develop a green gold extraction reagent for gold mines and electronic waste. .
  • the purpose of the present invention is to provide a green and environment-friendly non-cyanide gold extracting agent, a preparation method and application thereof.
  • the green and environmentally friendly non-cyanide gold extracting agent provided by the present invention includes solid pyridine derivatives, N-bromosuccinimide and alkali, which is not subject to the small liquid-solid ratio required in industrial production (for gold extracting reagents, industrial If the amount of liquid used in production is large, the requirements for equipment will be increased, and the treatment of waste liquid will be more difficult. Therefore, the requirements for liquid-solid ratio in industrial production are extremely strict), which can allow low liquid-solid ratio in industry.
  • the preparation method of the green environmental protection non-cyanide gold extracting agent provided by the invention has mild preparation conditions and simple preparation process.
  • embodiments of the present invention provide a green and environmentally friendly non-cyanide gold extracting agent, which includes solid pyridine derivatives, N-bromosuccinimide and alkali.
  • alkali and N-bromosuccinimide can form a basic Br aqueous solution after mixing in an aqueous solution; in the basic Br aqueous solution, NBS is transformed into molecular bromine and bromine ions, which have a much smaller molecular size than NBS , The ability to diffuse into the gold mine and the degree of reaction have been greatly improved.
  • the green and environmentally friendly non-cyanide gold extracting agent is in the form of sales or transportation.
  • the solid pyridine derivatives include pyridine hydrochloride, 4-dimethylaminopyridine, 4-hydroxypyridine or 2,2-bipyridine. At least one.
  • the alkali includes at least one of potassium hydroxide, sodium hydroxide, quicklime, sodium carbonate or sodium bicarbonate.
  • the ratio of the amount of N-bromosuccinimide and solid pyridine derivatives in the green environmentally friendly non-cyanide gold extracting agent is 1-50 : 5-300, optionally 5-20: 10-200.
  • the embodiment of the present invention also provides a green and environmentally friendly non-cyanide gold extracting agent aqueous solution, including a basic Br aqueous solution and a solid pyridine derivative; the basic Br aqueous solution includes N-bromosuccinimide, alkali and water .
  • the green and environmentally friendly non-cyanide gold extracting agent aqueous solution is in the form when the gold extracting agent is used.
  • the embodiment of the present invention also provides a method for preparing a green and environment-friendly non-cyanide gold extracting agent aqueous solution, which includes the following steps:
  • the solid pyridine derivatives are dissolved in an alkaline Br aqueous solution to obtain a green and environmentally friendly non-cyanide gold extracting agent aqueous solution.
  • the solid pyridine derivatives include pyridine hydrochloride, 4-dimethylaminopyridine, 4-hydroxypyridine, 2,2- At least one of bipyridine.
  • the alkali includes at least one of potassium hydroxide, sodium hydroxide, quicklime, sodium carbonate or sodium bicarbonate.
  • the concentration of N-bromosuccinimide in the alkaline Br aqueous solution is 1-50 mM, optionally 5-20 mM, It is further optionally 10-15 mM.
  • the concentration of the solid pyridine derivative in the green and environmentally friendly non-cyanide gold extracting agent aqueous solution and the preparation method is 5-300mM, optionally 10-200mM, Further optionally 50-100 mM.
  • the amount of alkali added can dissolve the N-bromosuccinimide, which is not particularly limited.
  • the solid pyridine derivative is dissolved in a basic Br aqueous solution and the pH is adjusted to 4-9; alternatively 6-9; further alternatively 7-8 .
  • the embodiment of the present invention also provides the application of the above-mentioned green environmental protection non-cyanide gold extracting agent in extracting gold from low-grade ore and electronic waste.
  • low-grade ore or electronic waste is added to the above-mentioned environmentally friendly non-cyanide gold extracting agent aqueous solution at a solid-liquid ratio of 1:2, stirred at 300 rpm for 20 hours, and filtered. Obtain the leaching gold solution of low-grade ore or electronic waste.
  • the solid reagent does not have the strong smell of liquid pyridine, and its use is not restricted by long-distance transportation, which is convenient for large-scale industrial use.
  • the green environmental protection non-cyanide gold extracting agent or the green environmental protection non-cyanide gold extracting agent aqueous solution provided in the embodiment of the present invention utilizes alkaline Br aqueous solution and solid pyridine derivatives to oxidize gold atoms to trivalent gold ions, and then pyridine derivatives It forms complexes with trivalent gold ions, continuously reacts with gold atoms, and has a high gold leaching rate.
  • Solid pyridine derivatives can obtain industrially acceptable high gold leaching under the conditions of low liquid-to-solid ratio (such as 2:1 or 1.5:1) and low reagent concentration (such as 10mM). Rate (above 80%); and low toxicity, low price, and can be used for gold extraction from various types of gold mines and various electronic wastes, with high adaptability.
  • Solid pyridine derivatives such as pyridine hydrochloride and 4-methylaminopyridine have higher solubility and water solubility, and can be better dispersed in aqueous solutions than liquid pyridine.
  • NBS N-bromosuccinimide
  • sodium hydroxide, potassium hydroxide or quicklime in an aqueous solution to form an alkaline Br aqueous solution
  • NBS in an alkaline Br aqueous solution, NBS is transformed into molecular bromine and bromine Ions, which have a much smaller molecular size than NBS, have greatly improved their ability to diffuse into the gold mine and the degree of reaction.
  • the preparation method of the green environmental protection non-cyanide gold extracting agent aqueous solution provided in the embodiments of the present invention can further improve the effect of the green environmental protection non-cyanide gold extracting agent on ore and electrons by controlling the concentration of NBS and the concentration of solid pyridine derivatives.
  • the preparation method of the green and environmentally friendly non-cyanide gold extracting agent aqueous solution provided in the embodiment of the present invention has mild preparation conditions, simple preparation process and environmentally friendly.
  • Figure 1 is an aqueous solution of an alkaline Br/pyridine hydrochloride green and environmentally friendly non-cyanide gold extracting agent prepared in Example 1 of the present invention.
  • Figure 2 is the test example 1 of the present invention, NBS/Py gold extraction solution (curve 1), alkaline Br/pyridine hydrochloride green environmentally friendly non-cyanide gold extracting agent aqueous solution (curve 2), alkaline Br/DMAP green environmentally friendly non-cyanide gold extracting solution
  • curve 1 NBS/Py gold extraction solution
  • Curve 2 alkaline Br/pyridine hydrochloride green environmentally friendly non-cyanide gold extracting agent aqueous solution
  • Curve 3 alkaline Br/DMAP green environmentally friendly non-cyanide gold extracting solution
  • Figure 3 is the test example 1 of the present invention, NBS/Py gold extraction solution (curve 1), alkaline Br/pyridine hydrochloride green non-cyanide gold extracting agent aqueous solution (curve 2), alkaline Br/DMAP green environmental protection The leaching rate of cyanide gold extracting agent aqueous solution (curve 3) on the e-waste of the three solutions at different pH.
  • Figure 4 is the test example 2 of the present invention, NBS/Py gold extraction solution (curve 1), alkaline Br/pyridine hydrochloride green non-cyanide gold extractant aqueous solution (curve 2), alkaline Br/DMAP green environmental protection
  • Figure 5 is the test example 2 of the present invention, NBS/Py gold extraction solution (curve 1), alkaline Br/pyridine hydrochloride green non-cyanide gold extracting agent aqueous solution (curve 2), alkaline Br/DMAP green environmental protection
  • curve 1 NBS/Py gold extraction solution
  • curve 2 alkaline Br/pyridine hydrochloride green non-cyanide gold extracting agent aqueous solution
  • curve 2 alkaline Br/DMAP green environmental protection
  • the leaching rate of e-waste in three solutions of cyanide gold extracting agent aqueous solution (curve 3) at different concentrations of pyridine derivatives.
  • Figure 6 is the test example 3 of the present invention, NBS/Py gold extraction solution (curve 1), alkaline Br/pyridine hydrochloride green non-cyanide gold extracting agent aqueous solution (curve 2), alkaline Br/DMAP green environmental protection
  • Figure 7 is the test example 3 of the present invention, NBS/Py gold extraction solution (curve 1), alkaline Br/pyridine hydrochloride green non-cyanide gold extracting agent aqueous solution (curve 2), alkaline Br/DMAP green environmental protection
  • An alkali-type Br/pyridine hydrochloride green and environmentally friendly non-cyanide gold extracting agent comprising: 0.0178 g of N-bromosuccinimide (NBS), 0.005 g of sodium hydroxide, and 0.1157 g of pyridine hydrochloride.
  • An alkaline-type Br/DMAP environmentally friendly non-cyanide gold extracting agent comprising: 0.0178 g of N-bromosuccinimide, 0.005 g of sodium hydroxide, and 0.1227 g of 4-methylaminopyridine (DMAP).
  • An alkaline Br/pyridine hydrochloride green and environmentally friendly non-cyanide gold extracting agent aqueous solution comprising: 0.0178 g of N-bromosuccinimide (NBS), 0.005 g of sodium hydroxide, and 0.1157 g of pyridine hydrochloride , And 10g of water;
  • the preparation method is:
  • N-bromosuccinimide Add 0.0178g of N-bromosuccinimide to 10mL of aqueous solution, add 0.005g of sodium hydroxide, and then fully stir to obtain 10mL of N-bromosuccinimide with a concentration of 10mmol/L and a pH of 5.2 ⁇ basic Br solution;
  • An alkaline Br/DMAP green environmentally friendly non-cyanide gold extracting agent aqueous solution comprising: 0.0178g of N-bromosuccinimide, 0.005g of sodium hydroxide, 0.1227g of 4-methylaminopyridine (DMAP), and 10g of water;
  • the preparation method is:
  • N-bromosuccinimide Add 0.0178g of N-bromosuccinimide to 10mL of aqueous solution, add 0.005g of sodium hydroxide, and then fully stir to obtain 10mL of N-bromosuccinimide with a concentration of 10mmol/L and a pH of 5.2 ⁇ basic Br solution;
  • NBS/Py gold extraction solution is prepared by the following steps:
  • N-bromosuccinimide Add 0.0178g of N-bromosuccinimide to 10mL of aqueous solution, add 81 ⁇ L of pyridine, adjust the pH to 7.0 with NaOH, and prepare N-bromosuccinimide with a concentration of 10mmol/L and a pyridine concentration of 100mmol/L NBS/Py gold extraction solution.
  • An alkaline Br/Py gold extraction solution is prepared by the following steps:
  • N-bromosuccinimide Add 0.0178g of N-bromosuccinimide to 10mL of aqueous solution, add 0.005g of sodium hydroxide, and then fully stir to obtain 10mL of N-bromosuccinimide with a concentration of 10mmol/L and a pH of 5.2 ⁇ basic Br solution;
  • NBS/pyridine hydrochloride gold extraction solution is prepared by the following steps:
  • N-bromosuccinimide to 10mL of aqueous solution, add 0.1157g of pyridine hydrochloride to prepare N-bromosuccinimide concentration of 10mmol/L and pyridine hydrochloride concentration of 100mmol /L NBS/pyridine hydrochloride gold extraction solution.
  • the preparation method is the same as that in Example 1, except that: after adding 0.1157g of pyridine hydrochloride to the alkaline Br solution, Adjust the pH value to 4, 5, 6, 7, 8, 9 with NaOH, respectively, to obtain 6 parts of alkaline Br/pyridine hydrochloride green environmental protection non-cyanide gold extracting agent aqueous solution with different pH values;
  • the preparation method is the same as that in Example 1, except that: 0.1227g 4-methylaminopyridine (DMAP) is added to the alkaline Br solution , Adjust the pH value to 4, 5, 6, 7, 8, 9 with NaOH respectively, to obtain 6 parts of alkaline Br/DMAP green environmental protection non-cyanide gold extracting agent aqueous solution with different pH values.
  • DMAP 4-methylaminopyridine
  • the preparation method is the same as that of Comparative Example 1, except that: after adding pyridine, adjust the pH value to 4, 5, 6, 7, 8, 9 with NaOH respectively, to obtain 6 parts NBS/Py gold extraction solutions with different pH values.
  • ICP-Ms The leaching rate of low-grade gold ore was measured: ICP-Ms was used to detect the gold content in the green environmental protection non-cyanide gold extracting agent aqueous solution, NBS/Py gold extracting solution and aqua regia.
  • the leaching rate is the ratio of the gold content in the green environment-friendly non-cyanide gold extracting agent aqueous solution or the NBS/Py gold extracting solution to the gold content in the aqua regia.
  • Figure 2 shows the NBS/Py gold extraction solution (curve 1), the alkaline Br/pyridine hydrochloride green non-cyanide gold extractor aqueous solution (curve 2), and the alkaline Br/DMAP green environmental non-cyanide gold extractor aqueous solution ( Curve 3)
  • the leaching rate of gold ore by the three solutions at different pH, and the optimal pH conditions corresponding to the highest leaching rate, namely NBS/Py gold extraction solution, alkaline Br/pyridine hydrochloride green environmental protection non-cyanide gold extraction The change curve of gold leaching rate under various pH conditions of aqueous solution of alkaline Br/DMAP green and environmentally friendly non-cyanide gold extracting agent.
  • the dotted line in the figure is the minimum leaching rate requirement in the process of gold extraction from gold mines and electronic waste in industry .
  • the leaching rate of the mobile phone circuit board was determined by the same method as above, and the result is shown in Figure 3.
  • Figure 3 shows the NBS/Py gold extraction solution (curve 1), the alkaline Br/pyridine hydrochloride green non-cyanide gold extractor aqueous solution (curve 2), and the alkaline Br/DMAP green environmental non-cyanide gold extractor aqueous solution ( Curve 3)
  • the dotted line in the figure is the minimum leaching rate requirement in the gold extraction process of gold mines and e-waste in industry.
  • the preparation method is the same as that in Example 1, except that 0.0116g, 0.0578g, 0.1157g, and 0.2314g pyridine are respectively used.
  • the hydrochloride was added to the basic Br solution, and the pH value was adjusted to 7.0 with NaOH to obtain 4 parts of pyridine hydrochloride with different concentrations (the pyridine hydrochloride concentration was 10mmol/L, 50mmol/L, 100mmol/L, 200mmol/L, respectively).
  • NBS/Py gold extraction solutions with different pyridine concentrations The preparation method is the same as that of Comparative Example 1. The only difference is that after adding 20 ⁇ L, 40 ⁇ L, 80 ⁇ L and 120 ⁇ L of pyridine, adjust the pH value to 7.0 with NaOH to obtain 4 pyridine concentrations Different NBS/Py gold extraction solutions.
  • the leaching rate of low-grade gold ore is measured: ICP-Ms is used to detect the gold content in the green non-cyanide gold extracting agent aqueous solution, NBS/Py gold extracting solution and aqua regia, and the green non-cyanide gold extracting agent aqueous solution or NBS/ The ratio of the gold content in the Py gold extraction solution to the gold content in the aqua regia is the leaching rate.
  • ICP-Ms is used to detect the gold content in the green non-cyanide gold extracting agent aqueous solution, NBS/Py gold extracting solution and aqua regia
  • the ratio of the gold content in the Py gold extraction solution to the gold content in the aqua regia is the leaching rate. The results are shown in Figure 4.
  • Figure 4 shows the NBS/Py gold extraction solution (curve 1), the alkaline Br/pyridine hydrochloride green non-cyanide gold extractor aqueous solution (curve 2), and the alkaline Br/DMAP green environmental non-cyanide gold extractor aqueous solution ( Curve 3)
  • the leaching rate of gold ore in three solutions at different concentrations of pyridine derivatives is the minimum leaching rate requirement in the gold extraction process from gold mines and electronic waste in industry.
  • the leaching rate of the gold extraction reagent prepared by N-bromosuccinimide and pyridine does not exceed 60% of the minimum leaching rate required in the gold extraction process from gold mines and electronic waste in various conditions.
  • the leaching rate of the mobile phone circuit board was determined by the same method as above, and the result is shown in Figure 5.
  • Figure 5 shows the NBS/Py gold extraction solution (curve 1), the alkaline Br/pyridine hydrochloride green non-cyanide gold extractor aqueous solution (curve 2), and the alkaline Br/DMAP green environmental non-cyanide gold extractor aqueous solution ( Curve 3)
  • the dotted line in the figure is the minimum leaching rate requirement in the gold extraction process of e-waste in industry. From the experimental results, it can be seen that when the pH of the combination of basic Br and pyridine derivatives is 7-8, the leaching rate of gold is higher than that at other pHs. The neutral pH is suitable for the actual e-waste extraction. gold.
  • the combination of basic Br and pyridine derivatives has a higher leaching rate of gold in electronic waste than the NBS/Py gold extraction solution.
  • NBS/Py gold extraction solutions with different NBS concentrations The preparation method is the same as that of Comparative Example 1, except that 0.0089g, 0.0178g, 0.0267g, and 0.0356g N-bromosuccinimide were added to 10mL of aqueous solution. In the process, 4 NBS/Py gold extraction solutions with different NBS concentrations were obtained.
  • the leaching rate of low-grade gold ore is measured: ICP-Ms is used to detect the gold content in the green non-cyanide gold extracting agent aqueous solution, NBS/Py gold extracting solution and aqua regia, and the green non-cyanide gold extracting agent aqueous solution or NBS/ The ratio of the gold content in the Py gold extraction solution to the gold content in the aqua regia is the leaching rate. The results are shown in Figure 6.
  • Figure 6 shows the NBS/Py gold extraction solution (curve 1), the alkaline Br/pyridine hydrochloride green non-cyanide gold extractor aqueous solution (curve 2), and the alkaline Br/DMAP green environmentally friendly non-cyanide gold extractor aqueous solution ( Curve 3)
  • the leaching rate of gold ore with the three solutions at different concentrations of N-bromosuccinimide is the minimum leaching rate requirement in the gold extraction process from gold mines and electronic waste in industry.
  • the leaching rate of the circuit board of the mobile phone was determined by the same method as above, and the result is shown in Figure 7.
  • Figure 7 shows the NBS/Py gold extraction solution (curve 1), the alkaline Br/pyridine hydrochloride green non-cyanide gold extractor aqueous solution (curve 2), and the alkaline Br/DMAP green environmental non-cyanide gold extractor aqueous solution ( Curve 3)
  • the leaching rate of e-waste by the three solutions at different concentrations of N-bromosuccinimide is the minimum leaching rate requirement in the gold extraction process of gold mines and e-waste in industry.
  • This application utilizes a green and environmentally friendly non-cyanide gold extractor for low-grade gold mines and electronic waste prepared by basic Br and solid pyridine derivatives, and NBS/Py gold extractor prepared by N-bromosuccinimide and liquid pyridine Compared with the solution, when the solid-liquid ratio is 1:2 (the solid-liquid ratio is required to be 1:2 in industrial production), the green and environmentally friendly non-cyanide gold extracting agent of this application has a higher gold leaching rate, while NBS/ Under various conditions, the leaching rate of the Py gold extraction solution does not exceed 60% of the minimum leaching rate required in the gold extraction process of gold mines and electronic waste in the industry. This is because pyridine is an organic liquid.
  • the degree of dispersion of the organic liquid is not good, so that the NBS/Py gold extraction solution has a low leaching rate of gold from ore and electronic waste, while the alkali type
  • the main components of the environmentally friendly non-cyanide gold extracting agent compounded with Br and solid pyridine derivatives are solid reagents, which can be well dispersed in the aqueous solution, so that the leaching rate of gold is improved.
  • the green and environmentally friendly non-cyanide gold extracting agent provided in this application is more suitable for industrial applications.
  • the leaching rate of low-grade gold ore was measured using the same method as above, and the results are shown in Table 2.
  • the leaching rate of the mobile phone circuit board was determined by the same method as above, and the results are shown in Table 3.
  • the embodiment of the present invention provides a green environmental protection non-cyanide gold extracting agent, preparation method and application thereof, wherein the green environmental protection non-cyanide gold extracting agent includes solid pyridine derivatives, N-bromosuccinimide and Alkali;
  • the preparation method of the green and environmentally friendly non-cyanide gold extracting agent aqueous solution includes: dissolving N-bromosuccinimide in the aqueous solution, adding an alkali, and stirring to obtain a basic Br aqueous solution; solid pyridine derivatives Dissolved in alkaline Br aqueous solution.
  • the green and environment-friendly non-cyanide gold extracting agent provided by the present invention is not affected by the small liquid-solid ratio required in industrial production, and can be obtained under the conditions of low liquid-solid ratio allowed in industry and at low reagent concentration
  • the industrially acceptable high gold leaching rate is suitable for industrial applications; and the gold leaching rate is high, and the toxicity is low; the reagents used are cheap and easy to obtain, and the use is not restricted by long-distance transportation, which is convenient for large-scale industrial use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明实施例涉及炼金领域,具体涉及一种绿色环保非氰提金剂、制备方法及其应用。所述绿色环保非氰提金剂包括固体吡啶类衍生物、N-溴代丁二酰亚胺和碱。绿色环保非氰提金剂水溶液的制备方法包括:将N-溴代丁二酰亚胺溶解在水溶液中,加入碱,搅拌,即得碱型Br水溶液;将固体吡啶类衍生物溶解在碱型Br水溶液中。本发明提供的绿色环保非氰提金剂,不受工业生产中要求的液固比小的影响,可在工业上允许的低液固比条件下,且在低的试剂浓度下时即可取得工业上能接受的高的金浸出率,适于工业化应用;且对金的浸出率高,毒性较低;所用的试剂廉价易得,使用不受长途运输的限制,便于大规模工业化使用。

Description

一种绿色环保非氰提金剂、制备方法及其应用
交叉引用
本发明要求在中国专利局提交的、申请号为201910288556.8、发明名称为“一种绿色环保非氰提金剂、制备方法及其应用”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明涉及炼金领域,具体涉及一种绿色环保非氰提金剂、制备方法及其应用,更具体涉及一种包括碱型Br和固体吡啶类衍生物的绿色提金溶液、制备方法及其应用。
背景技术
金矿作为一种自然资源,在地球上的储量是有限的。根据全世界已查明的金矿储量为10万吨。2017年,中国的黄金产量达到了481.8吨,占世界黄金产量的12.6%,但很多含金矿石都是难以提取出黄金的含硫含砷含碳的矿石,需要煅烧后才能进行金的提取,这增大了黄金的浸出成本。据此可将金矿分为易浸和难浸金矿。难浸金矿是指在不做预处理的情况下,通过提金剂处理后,浸出率小于50%的金矿。因此,前处理对于难浸金矿是一个必需的生产流程。今天难浸金矿占世界储量60%,中国也是如此。世界上生产的金有三分之一来源于难浸矿。
对黄金的需求量巨大,而金矿是有限的,电子垃圾中含有的金高于金矿中的金含量,提取电子垃圾里的金可以增加黄金的产量,全球的电子垃圾数量在惊人增长着,2014年达到了4180万吨,其中全世界最大的是美国达到了710万吨,排在第二的是中国,达到了600万吨。预计2017年底全球电子垃圾将达到6540万吨。中国作为一个人口大国,同样也是一电子产品消费的大国,每年都会产生数量巨大的电子垃圾。此外全世界大约有80%的电子垃圾最终流向了发展中国家,如中国、印度和巴基斯坦。
目前工业上主流的提金方法是氰化法,该方法具有工艺流程完善,经济可行,矿石适应性强的特点。除了氰化物外,还有使用酸性或腐蚀性溶液,如硫脲和硫代硫酸盐对金矿和电子垃圾进行浸出。但是目前使用和研究的浸出剂都具有很大的缺点,如氰化物、硫脲有高的毒性,硫代硫酸盐不稳定; 其次考虑到浸出剂在使用过程中需要极碱或者极酸的pH条件,氰化物需要的pH在11左右,硫脲需要的pH在1.5左右,以上的明显缺点都不利于环境和人体身体健康,因此急需开发出一种针对金矿和电子垃圾的绿色提金试剂。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
发明目的
为解决上述技术问题,本发明的目的在于提供一种绿色环保非氰提金剂、制备方法及其应用。本发明提供的绿色环保非氰提金剂,包括固体吡啶类衍生物、N-溴代丁二酰亚胺和碱,其不受工业生产中要求的液固比小(对于提金试剂,工业生产中如果液体用量大,则对设备的要求提高,且会加大废液的处理难度,因此,工业生产中对液固比要求极为严格)的限制,可在工业上允许的低液固比条件下,且在低的试剂浓度下时即可取得工业上能接受的高的金浸出率,适于工业化应用;且对金的浸出率高,毒性较低;所用的试剂廉价易得,使用不受长途运输的限制,便于大规模工业化使用。本发明提供的绿色环保非氰提金剂的制备方法,制备条件温和,制备过程简单。
解决方案
为实现本发明目的,本发明实施例提供了一种绿色环保非氰提金剂,包括:固体吡啶类衍生物、N-溴代丁二酰亚胺和碱。其中,碱和N-溴代丁二酰亚胺在水溶液中混合后可形成碱型Br水溶液;碱型Br水溶液中,NBS转变为分子溴和溴离子,其具有比NBS小得多的分子尺寸,扩散进入金矿内部的能力和反应程度得到极大提高。所述绿色环保非氰提金剂为销售或运输时的形式。
上述绿色环保非氰提金剂在一种可能的实现方式中,所述固体吡啶类衍生物包括吡啶盐酸盐、4-二甲氨基吡啶、4-羟基吡啶或2,2-联吡啶中的至少一种。
上述绿色环保非氰提金剂在一种可能的实现方式中,所述碱包括氢氧化钾、氢氧化钠、生石灰、碳酸钠或碳酸氢钠中的至少一种。
上述绿色环保非氰提金剂在一种可能的实现方式中,绿色环保非氰提 金剂中N-溴代丁二酰亚胺和固体吡啶类衍生物的物质的量的比为1-50:5-300,可选地为5-20:10-200。
本发明实施例还提供了一种绿色环保非氰提金剂水溶液,包括碱型Br水溶液和固体吡啶类衍生物;所述碱型Br水溶液包括N-溴代丁二酰亚胺、碱和水。所述绿色环保非氰提金剂水溶液为提金剂使用时的形式。
本发明实施例还提供了一种绿色环保非氰提金剂水溶液的制备方法,包括下述步骤:
将N-溴代丁二酰亚胺溶解在水溶液中,加入碱,搅拌,即得碱型Br水溶液;
将固体吡啶类衍生物溶解在碱型Br水溶液中,即得绿色环保非氰提金剂水溶液。
上述绿色环保非氰提金剂水溶液、制备方法在一种可能的实现方式中,所述固体吡啶类衍生物包括吡啶盐酸盐、4-二甲氨基吡啶、4-羟基吡啶、2,2-联吡啶中的至少一种。
上述绿色环保非氰提金剂水溶液、制备方法在一种可能的实现方式中,所述碱包括氢氧化钾、氢氧化钠、生石灰、碳酸钠或碳酸氢钠中的至少一种。
上述绿色环保非氰提金剂水溶液、制备方法在一种可能的实现方式中,碱型Br水溶液中N-溴代丁二酰亚胺的浓度为1-50mM,可选地为5-20mM,进一步可选地为10-15mM。
上述绿色环保非氰提金剂水溶液、制备方法在一种可能的实现方式中,绿色环保非氰提金剂水溶液中固体吡啶类衍生物的浓度为5-300mM,可选地为10-200mM,进一步可选地为50-100mM。
上述绿色环保非氰提金剂水溶液、制备方法在一种可能的实现方式中,碱的加入量使N-溴代丁二酰亚胺溶解即可,没有特别限制。
上述制备方法在一种可能的实现方式中,将固体吡啶类衍生物溶解在碱型Br水溶液中后调节pH值至4-9;可选地为6-9;进一步可选地为7-8。
本发明实施例还提供了上述绿色环保非氰提金剂在提取低品位矿石和电子垃圾中的金的应用。
上述应用在一种可能的实现方式中,将低品位矿石或电子垃圾按固液比为1:2的比例加入到上述绿色环保非氰提金剂水溶液中,在300rpm下搅拌20h,抽滤,得到低品位矿石或电子垃圾的浸出金溶液。
有益效果
(1)本发明实施例中提供的绿色环保非氰提金剂,固体试剂不具有液体吡啶极强的臭味,且使用不受长途运输的限制,便于大规模工业化使用。本发明实施例中提供的绿色环保非氰提金剂或绿色环保非氰提金剂水溶液,利用碱型Br水溶液和固体吡啶类衍生物把金原子氧化为三价金离子,然后吡啶类衍生物与三价金离子形成配合物,不断与金原子反应,对金的浸出率高。
固体吡啶类衍生物可在工业上允许的低液固比条件下(如2:1或1.5:1),在低的试剂浓度下(如10mM)即可取得工业上能接受的高的金浸出率(80%以上);且毒性低,价格低廉,并可对多种类型的金矿和各种电子垃圾进行金的提取,适应性较高。
吡啶盐酸盐,4-甲氨基吡啶等固体吡啶类衍生物具有更加高的溶解度和水溶性,与液体吡啶相比,可更好地分散在水溶液中。
将氧化剂N-溴代丁二酰亚胺(NBS)在水溶液中用氢氧化钠、氢氧化钾或生石灰进行预处理可形成碱型Br水溶液;碱型Br水溶液中,NBS转变为分子溴和溴离子,其具有比NBS小得多的分子尺寸,扩散进入金矿内部的能力和反应程度得到极大提高。
(2)本发明实施例中提供的绿色环保非氰提金剂水溶液的制备方法,将固体吡啶类衍生物溶解在碱型Br水溶液中后调节pH值至7-8,对金的浸出率高。在低pH下,由于吡啶会形成盐,无法参与金的浸出过程,在高pH下,氧化剂碱型Br水溶液对金的氧化性降低,造成对金的浸出率不高。
(3)本发明实施例中提供的绿色环保非氰提金剂水溶液的制备方法,通过控制NBS的浓度,固体吡啶类衍生物的浓度,可进一步提高绿色环保非氰提金剂对矿石和电子垃圾的金的浸出率。
(4)本发明实施例中提供的绿色环保非氰提金剂水溶液的制备方法,制备条件温和,制备过程简单,环境友好。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
图1是本发明实施例1制备的碱型Br/吡啶盐酸盐绿色环保非氰提金剂 水溶液。
图2是本发明试验例1中,NBS/Py提金溶液(曲线1)、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液(曲线2)、碱型Br/DMAP绿色环保非氰提金剂水溶液(曲线3)三种溶液在不同pH下对金矿的浸出率。
图3是本发明试验例1中,NBS/Py提金溶液(曲线1)、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液(曲线2)、碱型Br/DMAP绿色环保非氰提金剂水溶液(曲线3)三种溶液在不同pH下对电子垃圾的浸出率。
图4是本发明试验例2中,NBS/Py提金溶液(曲线1)、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液(曲线2)、碱型Br/DMAP绿色环保非氰提金剂水溶液(曲线3)三种溶液在吡啶类衍生物不同浓度下对金矿的浸出率。
图5是本发明试验例2中,NBS/Py提金溶液(曲线1)、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液(曲线2)、碱型Br/DMAP绿色环保非氰提金剂水溶液(曲线3)三种溶液在吡啶类衍生物不同浓度下对电子垃圾的浸出率。
图6是本发明试验例3中,NBS/Py提金溶液(曲线1)、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液(曲线2)、碱型Br/DMAP绿色环保非氰提金剂水溶液(曲线3)三种溶液在N-溴代丁二酰亚胺不同浓度下对金矿的浸出率。
图7是本发明试验例3中,NBS/Py提金溶液(曲线1)、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液(曲线2)、碱型Br/DMAP绿色环保非氰提金剂水溶液(曲线3)三种溶液在N-溴代丁二酰亚胺不同浓度下对电子垃圾的浸出率。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合一个或多个实施例以及与之对应的附图对本发明实施例中的技术方案进行清楚、完整的示例性说明。
显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换 如“包含”或“包括有”等等将被理解为包括所陈述的组成部分,而并未排除其它元件或其它组成部分。
这些实施例并不构成对保护范围的限定。除非另有说明,这里的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本发明,在下文的实施例中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实施例中,对于本领域技术人员熟知的方法、手段、元件、通常按照常规条件以及手册中所述的条件或按照制造厂商所建议的条件的实验方法未作详细描述,以便于凸显本发明的主旨。所用的材料、试剂等,如无特殊说明,均为常规可由商业途径获得的。
实施例1
1.一种碱型Br/吡啶盐酸盐绿色环保非氰提金剂,包括:N-溴代丁二酰亚胺(NBS)0.0178g,氢氧化钠0.005g,吡啶盐酸盐0.1157g。
2.一种碱型Br/DMAP绿色环保非氰提金剂,包括:N-溴代丁二酰亚胺0.0178g,氢氧化钠0.005g,4-甲氨基吡啶(DMAP)0.1227g。
3.一种碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液,包括:N-溴代丁二酰亚胺(NBS)0.0178g,氢氧化钠0.005g,吡啶盐酸盐0.1157g,和水10g;
其制备方法为:
将0.0178g N-溴代丁二酰亚胺加入到10mL水溶液中,加入0.005g氢氧化钠,之后充分搅拌,得到10mL N-溴代丁二酰亚胺浓度为10mmol/L的pH值为5.2的碱型Br溶液;
将0.1157g吡啶盐酸盐加入到上述碱型Br溶液中,用NaOH调节pH值至7.0,配制成N-溴代丁二酰亚胺浓度为10mmol/L、吡啶盐酸盐浓度为100mmol/L的混合水溶液,即碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液。
由图1可见,该绿色环保非氰提金剂水溶液无色透明。
4.一种碱型Br/DMAP绿色环保非氰提金剂水溶液,包括:N-溴代丁二酰亚胺0.0178g,氢氧化钠0.005g,4-甲氨基吡啶(DMAP)0.1227g,和水10g;
其制备方法为:
将0.0178g N-溴代丁二酰亚胺加入到10mL水溶液中,加入0.005g氢氧 化钠,之后充分搅拌,得到10mL N-溴代丁二酰亚胺浓度为10mmol/L的pH值为5.2的碱型Br溶液;
将0.1227g 4-甲氨基吡啶加入到上述碱型Br溶液中,用NaOH调节pH值至7.0,配制成N-溴代丁二酰亚胺浓度为10mmol/L、4-甲氨基吡啶浓度为100mmol/L的混合水溶液,即碱型Br/DMAP绿色环保非氰提金剂水溶液。
对比例1
一种NBS/Py提金溶液,由下述步骤制得:
将0.0178g N-溴代丁二酰亚胺加入到10mL水溶液中,加入81μL吡啶,用NaOH调节pH值至7.0,配制成N-溴代丁二酰亚胺浓度为10mmol/L、吡啶浓度为100mmol/L的NBS/Py提金溶液。
对比例2
一种碱型Br/Py提金溶液,由下述步骤制得:
将0.0178g N-溴代丁二酰亚胺加入到10mL水溶液中,加入0.005g氢氧化钠,之后充分搅拌,得到10mL N-溴代丁二酰亚胺浓度为10mmol/L的pH值为5.2的碱型Br溶液;
加入81μL吡啶,用NaOH调节pH值至7.0,配制成N-溴代丁二酰亚胺浓度为10mmol/L、吡啶浓度为100mmol/L的碱型Br/Py提金溶液。
对比例3
一种NBS/吡啶盐酸盐提金溶液,由下述步骤制得:
将0.0178g N-溴代丁二酰亚胺加入到10mL水溶液中,加入0.1157g吡啶盐酸盐,配制成N-溴代丁二酰亚胺浓度为10mmol/L、吡啶盐酸盐浓度为100mmol/L的NBS/吡啶盐酸盐提金溶液。
试验例1
1.配制不同pH值的绿色环保非氰提金剂水溶液
pH值不同的碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液的制备:制备方法同实施例1,差别仅在于:将0.1157g吡啶盐酸盐加入到碱型Br溶液中后,分别用NaOH调节pH值至4、5、6、7、8、9,得到6份pH值不同的碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液;
pH值不同的碱型Br/DMAP绿色环保非氰提金剂水溶液的制备:制备方法同实施例1,差别仅在于:将0.1227g 4-甲氨基吡啶(DMAP)加入到碱型Br溶液中后,分别用NaOH调节pH值至4、5、6、7、8、9,得到6份pH值不同的碱型Br/DMAP绿色环保非氰提金剂水溶液。
2.配制不同pH值的NBS/Py提金溶液
pH值不同的NBS/Py提金溶液的制备:制备方法同对比例1,差别仅在于:加入吡啶后,分别用NaOH调节pH值至4、5、6、7、8、9,得到6份pH值不同的NBS/Py提金溶液。
3.测定对低品位金矿的浸出率
将1g低品位金矿按照固液比1:2分别加入到上述制得的绿色环保非氰提金剂水溶液、NBS/Py提金溶液和王水中,在300rpm下搅拌20h,抽滤,得到低品位金矿的浸出金溶液。
对低品位金矿的浸出率进行测定:用ICP-Ms分别检测绿色环保非氰提金剂水溶液、NBS/Py提金溶液和王水中的金含量。
本发明中,浸出率为绿色环保非氰提金剂水溶液或NBS/Py提金溶液中的金含量和王水中的金含量的比。
结果见图2。
图2表示了NBS/Py提金溶液(曲线1)、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液(曲线2)、碱型Br/DMAP绿色环保非氰提金剂水溶液(曲线3)三种溶液在不同pH下对金矿的浸出率,以及对应最高浸出率的最佳pH条件,即NBS/Py提金溶液、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液、碱型Br/DMAP绿色环保非氰提金剂水溶液在各种pH条件下,金浸出率的变化曲线,图中虚线是工业中金矿和电子垃圾提金过程中的最低浸出率要求。
4.测定对手机电路板的浸出率
将5g手机电路板按照固液比1:2分别加入到上述制得的绿色环保非氰提金剂水溶液和王水中,在300rpm下搅拌20h,抽滤,得到手机电路板的浸出金溶液。
对手机电路板的浸出率进行测定,方法同上,结果见图3。
图3表示了NBS/Py提金溶液(曲线1)、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液(曲线2)、碱型Br/DMAP绿色环保非氰提金剂水溶液(曲线3)三种溶液在不同pH下对电子垃圾的浸出率,以及对应最高浸出率的最佳pH条件,图中虚线是工业中金矿和电子垃圾提金过程中的最低浸出率要求。
试验例2
1.配制吡啶衍生物浓度不同的绿色环保非氰提金剂水溶液
吡啶衍生物浓度不同的碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液的制备:制备方法同实施例1,差别仅在于:分别将0.0116g、0.0578g、0.1157g、0.2314g吡啶盐酸盐加入到碱型Br溶液中,用NaOH调节pH值至7.0,得到4份吡啶盐酸盐浓度不同(吡啶盐酸盐浓度分别为10mmol/L、50mmol/L、100mmol/L、200mmol/L)的碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液;
吡啶衍生物浓度不同的碱型Br/DMAP绿色环保非氰提金剂水溶液的制备:制备方法同实施例1,差别仅在于:分别将0.0123g、0.0545g、0.1227g、0.2454g 4-甲氨基吡啶加入到碱型Br溶液中,用NaOH调节pH值至7.0,得到4份4-甲氨基吡啶浓度不同(4-甲氨基吡啶浓度分别为10mmol/L、50mmol/L、100mmol/L、200mmol/L)的碱型Br/DMAP绿色环保非氰提金剂水溶液。
2.配制吡啶浓度不同的NBS/Py提金溶液
吡啶浓度不同的NBS/Py提金溶液的制备:制备方法同对比例1,差别仅在于:分别加入20μL,40μL,80μL和120μL的吡啶后,用NaOH调节pH值至7.0,得到4份吡啶浓度不同的NBS/Py提金溶液。
3.测定对低品位金矿的浸出率
将1g低品位金矿按照固液比1:2分别加入到上述制得的绿色环保非氰提金剂水溶液、NBS/Py提金溶液和王水中,在300rpm下搅拌20h,抽滤,得到低品位金矿的浸出金溶液。
对低品位金矿的浸出率进行测定:用ICP-Ms分别检测绿色环保非氰提金剂水溶液、NBS/Py提金溶液和王水中的金含量,绿色环保非氰提金剂水溶液或NBS/Py提金溶液中的金含量和王水中的金含量的比为浸出率。结果见图4。
图4表示了NBS/Py提金溶液(曲线1)、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液(曲线2)、碱型Br/DMAP绿色环保非氰提金剂水溶液(曲线3)三种溶液在吡啶类衍生物不同浓度下对金矿的浸出率,图中虚线是工业中金矿和电子垃圾提金过程中的最低浸出率要求。N-溴代丁二酰亚胺和吡啶制备的提金试剂的浸出率在各种条件下,都没有超过工业中金矿和电子垃圾提金过程中的最低浸出率要求的60%。
4.测定对手机电路板的浸出率
将5g手机电路板按照固液比1:2分别加入到上述制得的绿色环保非氰提金剂水溶液和王水中,在300rpm下搅拌20h,抽滤,得到手机电路板的浸出金溶液。
对手机电路板的浸出率进行测定,方法同上,结果见图5。
图5表示了NBS/Py提金溶液(曲线1)、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液(曲线2)、碱型Br/DMAP绿色环保非氰提金剂水溶液(曲线3)三种溶液在吡啶类衍生物不同浓度下对电子垃圾的浸出率,图中虚线是工业中电子垃圾提金过程中的最低浸出率要求。通过实验结果可以看出,碱型Br和吡啶类衍生物的组合的pH在7-8时,对金的浸出率比其他pH下的浸出率高,中性的pH适用于实际的电子垃圾提金。且碱型Br和吡啶类衍生物的组合对电子垃圾中的金的浸出率比NBS/Py提金溶液高。
试验例3
1.配制NBS浓度不同的绿色环保非氰提金剂水溶液
NBS浓度不同的碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液的制备:制备方法同实施例1,差别仅在于:分别将0.0089g、0.0178g、0.0267g、0.0356g N-溴代丁二酰亚胺加入到10mL水溶液中,再分别加入0.001g、0.005g、0.009g、0.013g的氢氧化钠,之后充分搅拌,配制成N-溴代丁二酰亚胺浓度分别为5mmol/L、10mmol/L、15mmol/L、20mmol/L的碱型Br溶液;其余步骤同实施例1,配制成N-溴代丁二酰亚胺浓度分别为5mmol/L、10mmol/L、15mmol/L、20mmol/L,吡啶盐酸盐浓度为100mmol/L的4份碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液;
NBS浓度不同的碱型Br/DMAP绿色环保非氰提金剂水溶液的制备:制备方法同实施例1,差别仅在于:分别将0.0089g、0.0178g、0.0267g、0.0356g N-溴代丁二酰亚胺加入到10mL水溶液中,再分别加入0.001g、0.005g、0.009g、0.013g的氢氧化钠,之后充分搅拌,配制成N-溴代丁二酰亚胺浓度分别为5mmol/L、10mmol/L、15mmol/L、20mmol/L的碱型Br溶液;其余步骤同实施例1,配制成N-溴代丁二酰亚胺浓度分别为5mmol/L、10mmol/L、15mmol/L、20mmol/L,吡啶盐酸盐浓度为100mmol/L的4份碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液。
2.配制NBS浓度不同的NBS/Py提金溶液
NBS浓度不同的NBS/Py提金溶液的制备:制备方法同对比例1,差别仅在于:分别将0.0089g、0.0178g、0.0267g、0.0356g N-溴代丁二酰亚胺加入到10mL水溶液中,得到4份NBS浓度不同的NBS/Py提金溶液。
3.测定对低品位金矿的浸出率
将1g低品位金矿按照固液比1:2分别加入到上述制得的绿色环保非氰 提金剂水溶液、NBS/Py提金溶液和王水中,在300rpm下搅拌20h,抽滤,得到低品位金矿的浸出金溶液。
对低品位金矿的浸出率进行测定:用ICP-Ms分别检测绿色环保非氰提金剂水溶液、NBS/Py提金溶液和王水中的金含量,绿色环保非氰提金剂水溶液或NBS/Py提金溶液中的金含量和王水中的金含量的比为浸出率。结果见图6。
图6表示了NBS/Py提金溶液(曲线1)、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液(曲线2)、碱型Br/DMAP绿色环保非氰提金剂水溶液(曲线3)三种溶液在N-溴代丁二酰亚胺不同浓度下对金矿的浸出率,图中虚线是工业中金矿和电子垃圾提金过程中的最低浸出率要求。
4.测定对手机电路板的浸出率
将5g手机电路板按照固液比1:2分别加入到上述制得的绿色环保非氰提金剂水溶液和王水中,在300rpm下搅拌20h,抽滤,得到手机电路板的浸出金溶液。
对手机电路板的浸出率进行测定,方法同上,结果见图7。
图7表示了NBS/Py提金溶液(曲线1)、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液(曲线2)、碱型Br/DMAP绿色环保非氰提金剂水溶液(曲线3)三种溶液在N-溴代丁二酰亚胺不同浓度下对电子垃圾的浸出率,图中虚线是工业中金矿和电子垃圾提金过程中的最低浸出率要求。
NBS/Py提金溶液、碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液、碱型Br/DMAP绿色环保非氰提金剂水溶液三种提金剂的比较见下表1:
表1
Figure PCTCN2019106477-appb-000001
本申请利用碱型Br和固体吡啶类衍生物制备的针对低品位金矿和电子垃圾的绿色环保非氰提金剂与N-溴代丁二酰亚胺和液体吡啶制备的NBS/Py提金溶液相比,在固液比为1:2的情况下(工业生产中要求固液比为1:2),本申请的绿色环保非氰提金剂对金的浸出率较高,而NBS/Py提金溶液的浸 出率在各种条件下,都没有超过工业中金矿和电子垃圾提金过程中的最低浸出率要求的60%。这是因为:吡啶是有机液体,在固液比1:2的条件下,有机液体分散程度不好,使得NBS/Py提金溶液对矿石和电子垃圾的金的浸出率不高,而碱型Br和固体吡啶类衍生物复配的绿色环保非氰提金剂的主成分都是固体试剂,能够很好的分散在水溶液中,使得对金的浸出率提高。本申请提供的绿色环保非氰提金剂更适合工业化应用。
试验例4
1.取实施例1制得的碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液、对比例1制得的NBS/Py提金溶液、对比例2制得的碱型Br/Py提金溶液、对比例3制得的NBS/吡啶盐酸盐提金溶液,测定其在不同固液比条件下,对低品位金矿的浸出率:
将1g低品位金矿分别按照固液比1:0.5、1:1、1:1.5、1:2,分别加入到上述制得的提金剂(或提金溶液)和王水中,在300rpm下搅拌20h,抽滤,得到低品位金矿的浸出金溶液。
对低品位金矿的浸出率进行测定,方法同上,结果见表2。
表2
Figure PCTCN2019106477-appb-000002
2.取实施例1制得的碱型Br/吡啶盐酸盐绿色环保非氰提金剂水溶液、对比例1制得的NBS/Py提金溶液、对比例2制得的碱型Br/Py提金溶液、对比例3制得的NBS/吡啶盐酸盐提金溶液,测定其在不同固液比条件下,对手机电路板的浸出率:
将5g手机电路板分别按照固液比1:0.5、1:1、1:1.5、1:2,分别加入到上述制得的提金剂(或提金溶液)和王水中,在300rpm下搅拌20h,抽滤,得到手机电路板的浸出金溶液。
对手机电路板的浸出率进行测定,方法同上,结果见表3。
表3
Figure PCTCN2019106477-appb-000003
Figure PCTCN2019106477-appb-000004
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明实施例提供的一种绿色环保非氰提金剂、制备方法及其应用,其中,所述绿色环保非氰提金剂包括固体吡啶类衍生物、N-溴代丁二酰亚胺和碱;所述绿色环保非氰提金剂水溶液的制备方法包括:将N-溴代丁二酰亚胺溶解在水溶液中,加入碱,搅拌,即得碱型Br水溶液;将固体吡啶类衍生物溶解在碱型Br水溶液中。本发明提供的绿色环保非氰提金剂,不受工业生产中要求的液固比小的影响,可在工业上允许的低液固比条件下,且在低的试剂浓度下时即可取得工业上能接受的高的金浸出率,适于工业化应用;且对金的浸出率高,毒性较低;所用的试剂廉价易得,使用不受长途运输的限制,便于大规模工业化使用。

Claims (10)

  1. 一种绿色环保非氰提金剂,包括:固体吡啶类衍生物、N-溴代丁二酰亚胺和碱。
  2. 一种绿色环保非氰提金剂水溶液,包括碱型Br水溶液和固体吡啶类衍生物;所述碱型Br水溶液包括N-溴代丁二酰亚胺、碱和水。
  3. 一种绿色环保非氰提金剂水溶液的制备方法,包括下述步骤:
    将N-溴代丁二酰亚胺溶解在水溶液中,加入碱,搅拌,即得碱型Br水溶液;
    将固体吡啶类衍生物溶解在碱型Br水溶液中,即得绿色环保非氰提金剂水溶液。
  4. 根据权利要求1所述的绿色环保非氰提金剂或权利要求2所述的绿色环保非氰提金剂水溶液或权利要求3所述的制备方法,其特征在于:固体吡啶类衍生物包括吡啶盐酸盐、4-二甲氨基吡啶、4-羟基吡啶或2,2-联吡啶中的至少一种。
  5. 根据权利要求1所述的绿色环保非氰提金剂或权利要求2所述的绿色环保非氰提金剂水溶液或权利要求3所述的制备方法,其特征在于:碱包括氢氧化钾、氢氧化钠、生石灰、碳酸钠或碳酸氢钠中的至少一种。
  6. 根据权利要求1所述的绿色环保非氰提金剂,其特征在于:N-溴代丁二酰亚胺和固体吡啶类衍生物的物质的量的比为1-50:5-300,可选地为5-20:10-200。
  7. 根据权利要求2所述的绿色环保非氰提金剂水溶液或权利要求3所述的制备方法,其特征在于:碱型Br水溶液中N-溴代丁二酰亚胺的浓度为1-50mM,可选地为5-20mM,进一步可选地为10-15mM。
  8. 根据权利要求2所述的绿色环保非氰提金剂水溶液或权利要求3所述的制备方法,其特征在于:绿色环保非氰提金剂水溶液中固体吡啶类衍生物的浓度为5-300mM,可选地为10-200mM,进一步可选地为50-100mM。
  9. 根据权利要求3所述的制备方法,其特征在于:将固体吡啶类衍生物溶解在碱型Br水溶液中后调节pH值至4-9;可选地为6-9;进一步可选地为7-8。
  10. 权利要求1所述的绿色环保非氰提金剂或权利要求2所述的绿色环保非氰提金剂水溶液或权利要求3所述的制备方法制得的绿色环保非氰提金剂在提取低品位矿石和电子垃圾中的金的应用;
    可选地,将低品位矿石或电子垃圾按固液比为1:2的比例加入到上述绿色环保非氰提金剂水溶液中,在300rpm下搅拌20h,抽滤,得到低品位矿石或电子垃圾的浸出金溶液。
PCT/CN2019/106477 2019-04-11 2019-09-18 一种绿色环保非氰提金剂、制备方法及其应用 WO2020206933A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19924044.1A EP3943625A4 (en) 2019-04-11 2019-09-18 ENVIRONMENTALLY FRIENDLY CYANIDE-FREE GOLD EXTRACTOR, METHOD FOR PREPARATION AND USE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910288556.8 2019-04-11
CN201910288556.8A CN110029230B (zh) 2019-04-11 2019-04-11 一种绿色环保非氰提金剂、制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2020206933A1 true WO2020206933A1 (zh) 2020-10-15

Family

ID=67238111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106477 WO2020206933A1 (zh) 2019-04-11 2019-09-18 一种绿色环保非氰提金剂、制备方法及其应用

Country Status (3)

Country Link
EP (1) EP3943625A4 (zh)
CN (1) CN110029230B (zh)
WO (1) WO2020206933A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110029230B (zh) * 2019-04-11 2020-07-21 陕西师范大学 一种绿色环保非氰提金剂、制备方法及其应用
CN115074545B (zh) * 2022-07-15 2023-08-29 西安矿源有色冶金研究院有限公司 环保提金剂的制备方法及应用
CN115449630A (zh) * 2022-08-12 2022-12-09 上海师范大学 一种光催化含腈-胺溶液体系选择性金属浸出的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103935954A (zh) * 2014-04-21 2014-07-23 陕西师范大学 利用自组装单分子膜对贵金属进行正性和负性刻蚀的方法
CN107540604A (zh) * 2017-09-19 2018-01-05 济南大学 一种2‑氨基‑5‑溴吡啶的制备方法
CN110029230A (zh) * 2019-04-11 2019-07-19 陕西师范大学 一种绿色环保非氰提金剂、制备方法及其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997532A (en) * 1988-12-30 1991-03-05 Satec Ltd. Process for extracting noble metals
CN1031760C (zh) * 1991-12-10 1996-05-08 河南省地质矿产厅第二地质调查队 一种无毒提金工艺方法
AU677450B2 (en) * 1993-10-21 1997-04-24 E.I. Du Pont De Nemours And Company Gold lixiviation using nitrogen and sulfur heterocyclic aromatic compounds
CN100386450C (zh) * 2005-03-23 2008-05-07 中南大学 低品位难处理金矿的配合浸出方法
FI118302B (fi) * 2006-02-17 2007-09-28 Outotec Oyj Menetelmä kullan talteenottamiseksi
CN101603123B (zh) * 2009-06-26 2011-04-20 云南大学 用大孔吸附树脂从碱性氰化液中固相萃取金的方法
CN101760624B (zh) * 2009-11-09 2013-05-29 广东奥美特集团有限公司 一种电路板阳极泥提金方法
CN104745832A (zh) * 2013-12-26 2015-07-01 杨毓华 一种环保无毒提金剂
CN106256914B (zh) * 2016-08-29 2021-03-23 许良秋 一种溴-溴化钠黄金精炼方法
CN109338120B (zh) * 2018-10-24 2020-12-25 郭鹏 硫氰酸铵-溴化十六烷基吡啶-水体系浮选分离金的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103935954A (zh) * 2014-04-21 2014-07-23 陕西师范大学 利用自组装单分子膜对贵金属进行正性和负性刻蚀的方法
CN107540604A (zh) * 2017-09-19 2018-01-05 济南大学 一种2‑氨基‑5‑溴吡啶的制备方法
CN110029230A (zh) * 2019-04-11 2019-07-19 陕西师范大学 一种绿色环保非氰提金剂、制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943625A4 *
乐春林 (LE, CHUNLIN): "利用NBS/Py体系从金矿和电子垃圾中提取金的应用研究 (Non-official translation: Application Research of Using NBS / Py System to Extract Gold from Gold Mine and Electronic Waste)", 中国优秀硕士学位论文全文数据库 工程科技I辑 (CHINESE MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY I), no. 2018, 5, 15 May 2018 (2018-05-15), XP55742078, ISSN: 1674-0246, DOI: 20191102233113A *

Also Published As

Publication number Publication date
EP3943625A4 (en) 2022-06-08
EP3943625A1 (en) 2022-01-26
CN110029230B (zh) 2020-07-21
CN110029230A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
WO2020206933A1 (zh) 一种绿色环保非氰提金剂、制备方法及其应用
Ashiq et al. Hydrometallurgical recovery of metals from e-waste
US20220364201A1 (en) Methods for selective leaching and extraction of precious metals in organic solvents
Muir et al. Thiosulphate as an alternative to cyanide for gold processing–issues and impediments
CN101509069B (zh) 一种全湿法选择性浸出水钴矿的方法
Zhang et al. Selective recovery of palladium from waste printed circuit boards by a novel non-acid process
CN102409165B (zh) 一种高砷冶金废料梯度脱砷方法
CN109621276A (zh) 一种富铁铜渣处理有色冶炼污酸中砷的方法
Barrueto et al. Properties and application of ionic liquids in leaching base/precious metals from e-waste. A review.
CN110282720A (zh) 一种含砷污酸、赤泥和铁锰矿的联合处理方法
Kumbasar et al. Separation and concentration of cobalt from ammoniacal solutions containing cobalt and nickel by emulsion liquid membranes using 5, 7-dibromo-8-hydroxyquinoline (DBHQ)
Li et al. Thiocyanate hydrometallurgy for the recovery of gold. Part IV: Solvent extraction of gold with Alamine 336
KR102156227B1 (ko) 할로겐화구리 함유 유기 용매계를 이용한 귀금속의 회수 방법
CN102690947A (zh) 一种银精矿的冶炼工艺
Ma et al. A review of thiocyanate hydrometallurgy for the recovery of gold
Kaiser et al. Recovery of Al, Co, Cu, Fe, Mn, and Ni from Spent LIBs after Li selective separation by the COOL‐Process. Part 1: Leaching of solid residue from COOL‐process
Sceresini Gold-copper ores
Pourhossein et al. Improvement of gold bioleaching extraction from waste telecommunication printed circuit boards using biogenic thiosulfate by Acidithiobacillus thiooxidans
Bertuol et al. Metal recovery using supercritical carbon dioxide
CN101497940A (zh) 无氨硫代硫酸盐溶液从矿石中浸出银的工艺
JP5296482B2 (ja) 非鉄製錬用の精鉱の砒素除去方法及び該方法より得られた非鉄製錬用の精鉱
CN100392122C (zh) 一种萃取富集碱性氰化浸金贵液中金(i)的方法
US9416432B2 (en) Leaching method of rare-earth metals using hydrochloric acid from manganese nodule
CN112831671B (zh) 一种选择性浸出含金物料中金的金浸剂及制备方法和用途
TWI583771B (zh) A method for separating rare earth elements from phosphor powders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019924044

Country of ref document: EP

Effective date: 20211019