WO2020206735A1 - 柔性导电薄膜及其制备方法、显示面板 - Google Patents
柔性导电薄膜及其制备方法、显示面板 Download PDFInfo
- Publication number
- WO2020206735A1 WO2020206735A1 PCT/CN2019/083978 CN2019083978W WO2020206735A1 WO 2020206735 A1 WO2020206735 A1 WO 2020206735A1 CN 2019083978 W CN2019083978 W CN 2019083978W WO 2020206735 A1 WO2020206735 A1 WO 2020206735A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive layer
- film
- base film
- conductive
- flexible
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000010409 thin film Substances 0.000 title abstract 9
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 239000010410 layer Substances 0.000 claims description 121
- 239000011241 protective layer Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 21
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 19
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 14
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 14
- 239000002042 Silver nanowire Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 229920003225 polyurethane elastomer Polymers 0.000 claims description 11
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 claims description 8
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 8
- 229920000265 Polyparaphenylene Polymers 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910021389 graphene Inorganic materials 0.000 claims description 6
- -1 polyphenylene Polymers 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 150000001336 alkenes Chemical class 0.000 claims 1
- 229910002804 graphite Inorganic materials 0.000 claims 1
- 239000010439 graphite Substances 0.000 claims 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 239000002585 base Substances 0.000 description 60
- 230000035882 stress Effects 0.000 description 11
- 238000005452 bending Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000006355 external stress Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 230000008602 contraction Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 235000008113 selfheal Nutrition 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/283—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/02—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
- B32B3/08—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
- B32B3/085—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts spaced apart pieces on the surface of a layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/30—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/16—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D165/00—Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/124—Intrinsically conductive polymers
- H01B1/127—Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/124—Intrinsically conductive polymers
- H01B1/128—Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0009—Apparatus or processes specially adapted for manufacturing conductors or cables for forming corrugations on conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0026—Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/60—Forming conductive regions or layers, e.g. electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
- B32B2255/205—Metallic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/28—Multiple coating on one surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2274/00—Thermoplastic elastomer material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/202—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/546—Flexural strength; Flexion stiffness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2383/00—Polysiloxanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/142—Side-chains containing oxygen
- C08G2261/1424—Side-chains containing oxygen containing ether groups, including alkoxy
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/322—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
- C08G2261/3223—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/70—Post-treatment
- C08G2261/79—Post-treatment doping
- C08G2261/794—Post-treatment doping with polymeric dopants
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/91—Photovoltaic applications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/95—Use in organic luminescent diodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04102—Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the invention relates to the field of optics, in particular to a flexible conductive film, a preparation method thereof, and a display panel.
- transparent conductive films have been widely used in the field of optoelectronic devices such as liquid crystal displays, touch screens, organic light-emitting diodes, and solar cells due to their combination of conductivity, light transmission, and bending resistance.
- Common transparent conductive films are mainly indium tin oxide (ITO) film, metal mesh film, nano silver wire film, etc.
- the ITO film technology is mature, but the raw material cost is high, the conductivity is limited, and it is not resistant to bending; the raw material of the metal mesh film is cheap, anti-electromagnetic interference, but the metal line is wide and there is Murray interference; silver nanowire The line width is small, and the conductive film prepared by it has the advantages of low square resistance, high light transmittance, and bending resistance.
- the manufacturing method of the flexible electrode is mainly to transfer the nanowires in parallel on the flexible substrate. Under the action of external stress, the flexibility of the silver nanowires is limited, and the electrical properties and the service life of the electrodes are affected after fracture.
- the present invention provides a flexible conductive film, a preparation method thereof, and a display panel, so as to solve the technical problem that the existing flexible conductive film has poor stability and limited flexibility, thereby causing the reliability and life of the flexible conductive film to be affected.
- the invention provides a method for preparing a flexible conductive film, including:
- Step S10 preparing a base film, and applying a pre-stretching stress to the base film
- Step S20 forming a conductive layer on the pre-stretched base film
- Step S30 releasing the pre-stretching stress applied to the base film, wherein the base film and the conductive layer are elastically contracted, and the conductive layer and the side of the base film close to the conductive layer The surface shrinks and is wavy.
- the preparation method of the flexible conductive film further includes:
- Step S40 forming a protective layer on the conductive layer.
- the step S20 includes:
- the materials of the first conductive layer and the second conductive layer are silver nano, 3,4-ethylenedioxythiophene/polyphenylene sulfonic acid, and graphene oxide.
- the materials of the first conductive layer and the second conductive layer are silver nano, 3,4-ethylenedioxythiophene/polyphenylene sulfonic acid, and graphene oxide.
- the step S20 includes:
- the protective layer has the same film structure and material as the base film.
- the material of the base film is one of bisamino-polydimethylsiloxane and polyurethane elastomer.
- the present invention also provides a flexible conductive film, comprising: a base film and a conductive layer disposed on the base film, wherein the conductive layer and the surface of the base film close to the conductive layer are both wavy .
- the conductive layer includes a first conductive layer disposed on the base film and a second conductive layer disposed on the first conductive layer.
- the first conductive layer and the second conductive layer are both wavy.
- the materials of the first conductive layer and the second conductive layer are silver nano, 3,4-ethylenedioxythiophene/polyphenylene sulfonic acid, and graphene oxide.
- the materials of the first conductive layer and the second conductive layer are silver nano, 3,4-ethylenedioxythiophene/polyphenylene sulfonic acid, and graphene oxide.
- the flexible conductive film further includes a protective layer disposed on the conductive layer.
- the protective layer has the same film structure and material as the base film.
- the material of the base film is one of bisamino-polydimethylsiloxane and polyurethane elastomer.
- the present invention also provides a display panel, including: a base substrate and a flexible conductive film disposed on the base substrate, the conductive film includes a base film and a conductive layer disposed on the base film, wherein The conductive layer and the surface of the base film on the side close to the conductive layer are both wavy.
- the conductive layer includes a first conductive layer disposed on the base film and a second conductive layer disposed on the first conductive layer.
- the first conductive layer and the second conductive layer are both wavy.
- the flexible conductive film further includes a protective layer disposed on the conductive layer.
- the protective layer has the same film structure and material as the base film.
- the material of the base film is one of bisamino-polydimethylsiloxane and polyurethane elastomer.
- the method for preparing the flexible conductive film provided by the present invention can improve the flexibility and use stability of the conductive layer, thereby increasing the service life of the flexible conductive film.
- Figure 1 is a preparation method of the flexible conductive film of the present invention
- FIG. 2 is a schematic diagram of the three-dimensional structure of the flexible conductive film of the present invention.
- 3 to 5 are schematic diagrams of the structure during the preparation process of the flexible conductive film according to the first embodiment of the present invention.
- Fig. 6 is a front view of a flexible conductive film according to the second embodiment of the present invention.
- the present invention is directed to the existing flexible conductive film. Because the existing conductive film has problems such as poor stability and limited flexibility, which further affects the reliability and service life of the conductive film, this embodiment can solve the defects.
- the present invention provides a flexible conductive film 100, comprising a base film 10 and a conductive layer 20 disposed on the base film 10, the conductive layer 20 and the base film 10 are close to the conductive layer
- the surface of one side of 20 is wavy.
- the method for preparing the flexible conductive film 100 includes: step S10, preparing a base film 10, and applying a pre-stretching stress to the base film 10; step S20, pre-stretching the base film 10 A conductive layer 20 is formed on the film 10; in step S30, the pre-stretch stress applied on the base film 10 is released, wherein the base film 10 and the conductive layer 20 undergo elastic contraction, and the conductive layer 20 and the The surface of the base film 10 close to the conductive layer shrinks in a wave shape.
- the flexible conductive film 100 further includes a protective layer 30 disposed on the conductive layer 20.
- the preparation method further includes: forming the protective layer 30 on the conductive layer 20 after the step S30.
- the material of the protective layer is the same as the material of the base film, and the material of the base film 10 is modified polydimethylsiloxane, such as bisamino-polydimethylsiloxane (H2N-PDMS). -NH2), the imine bond contained in it can undergo Schiff base reaction with polytriphenylaldehyde at room temperature to complete the healing. Therefore, when the base film 10 has cracks, it can self-heal at room temperature to complete the repair of cracks and improve The production yield of the flexible conductive film 100 can extend the service life of the flexible conductive film 100 to a certain extent.
- polydimethylsiloxane such as bisamino-polydimethylsiloxane (H2N-PDMS).
- H2N-PDMS bisamino-polydimethylsiloxane
- the material of the base film 10 can also be a transparent polyurethane elastomer, which has high flexibility and transparency.
- the material of the conductive layer 20 is one or a combination of silver nano, 3,4-ethylenedioxythiophene/polyphenylene sulfonic acid (PEDOT/PSS), and graphene oxide.
- the conductive layer 20 of the inner layer has a zigzag wavy structure, and when the base film 10 of the outer layer is bisamino-polydimethylsiloxane, bisamino-polydimethylsiloxane itself has better
- the elasticity when subjected to external tensile stress, the outer bisamino-polymethylsiloxane film is stretched, and the inner wavy conductive layer 20 can be stretched accordingly. It will break, so its conductivity will not be affected. When the stress disappears, the bisamino-polydimethylsiloxane film will elastically shrink, and the inner conductive layer 20 will resume its wave shape.
- the sandwich structure can give the flexible conductive film better protection and reduce the damage to the conductive layer 20 caused by the mechanical external force during and after the actual production of the product; when the flexible conductive film is a semi-sandwich structure, it can meet the requirements of the flexible conductive film as a whole surface
- the conductive electrode is used.
- the flexible conductive film 100 in this embodiment includes a base film 10 and a conductive layer disposed on the base film 10, wherein the conductive layer and the base film are close to one of the conductive layers.
- the side surfaces are all wavy.
- the preparation method of the flexible conductive film 100 includes:
- Step S10 preparing a base film 10, and applying a pre-stretching stress to the base film 10;
- a bisamino-dimethylsiloxane film is prepared as the base film 10, and the transparency of the base film 10 is adjusted by pre-stretching stress, so that the transparency of the base film 10 reaches With a setting value, the transparency of the base film 10 is controlled within a range of 55% to 88%. When the stretch rate of the base film 10 is 50%, the transparency of the base film 10 is 75%.
- Step S20 forming a conductive layer 20 on the pre-stretched base film 10;
- step S20 a first conductive layer (not shown in the figure) is formed on the pre-stretched base film 10, and then a second conductive layer (not shown in the figure) is formed on the first conductive layer. Out).
- the specific preparation method can refer to the prior art, and then transfer the silver nanowires to the pre-stretched base film 10 to form the first conductive layer; then, spin coating Method or inkjet printing method, coating a mixture of 3,4-ethylenedioxythiophene (PEDOT) and polyphenylene sulfonic acid (PSS) on the base film 10 to form a second conductive layer, and the second The conductive layer is a full-surface conductive film layer.
- PEDOT 3,4-ethylenedioxythiophene
- PSS polyphenylene sulfonic acid
- step S30 the pre-stretching stress applied on the base film is released, wherein the base film 10 and the conductive layer 20 undergo elastic contraction, and the conductive layer 20 and the base film 10 The surface of one side close to the conductive layer 20 is all contracted and wavy;
- the pre-stretched bisamino-polydimethylsiloxane film releases a certain external tension to make it elastically shrink.
- the upper surface of the base film 10 (the surface on the side close to the conductive layer 20) A fixed regular wave-like folds are formed in the stretching direction, and the silver nanowires and the PSS/PEDOT film deposited on the film shrink accordingly, forming microscopic wave-like folds.
- the flexible conductive film 100 can react with mesitylene aldehyde at room temperature after completing the subsequent production of finished products when cracks are generated during use to complete self-healing and crack repair. This self-healing process requires manual addition An appropriate amount of triphenylformaldehyde can be added manually after the preparation of the flexible conductive film 100, after the manufacturing process, or during use.
- the conductive layer 20 formed by the preparation method has a wavy structure.
- the wavy conductive layer 20 is not easy to be broken by external stress and damage its conductive performance due to the buffering characteristics of its physical structure. To achieve the effect of prolonging the service life.
- the flexible conductive film can be applied to touch screens and display panels.
- This embodiment also provides a display panel including a base substrate and a flexible conductive film disposed on the base substrate.
- the flexible conductive film can refer to the above The preparation method is used for preparation, and will not be repeated here.
- the flexible conductive film further includes a protective layer 30 disposed on the conductive layer 20, and the protective layer 30 covers the conductive layer 20.
- a layer of flexible protective layer is added, so that the upper and lower surfaces of the conductive layer 20 form a protective flexible transparent material.
- step S30 in the first embodiment another layer of bisamino-polydimethylsiloxane film, which is the same as the base film 10, is prepared, and the film is pressed on the conductive layer 20 by a molding method to form Protective layer 30.
- the protective layer 30 can react with mesitylene aldehyde at room temperature to complete self-healing and crack repair.
- the flexible conductive film in this embodiment has two upper and lower layers of flexible transparent material protection, which can improve the stability of PEDOT/PSS; the outer base film 10 and the protective layer 30 have self-healing properties, and the external force is very small. Damage can be self-repaired at room temperature, thereby extending the service life.
- the structure of the flexible conductive film in this embodiment is the same as that of the first embodiment, and the preparation method of the flexible conductive film in this embodiment includes:
- Step S10 preparing a base film, and applying a pre-stretching stress to the base film
- a transparent polyurethane elastomer as a base film, and pre-stretch the base film.
- the transparency of the polyurethane elastomer is relatively high. According to the transparency requirements of the base film, different types of polyurethane elastomers can be selected;
- Step S20 forming a conductive layer on the pre-stretched base film
- the second conductive layer prepare silver nanowires, and then transfer the silver nanowires to the base film to form the first conductive layer; then, prepare graphene oxide by the hummers method, and form a film on the base film by the chemical reduction method.
- the second conductive layer First, prepare silver nanowires, and then transfer the silver nanowires to the base film to form the first conductive layer; then, prepare graphene oxide by the hummers method, and form a film on the base film by the chemical reduction method.
- Step S30 releasing the pre-stretching stress applied on the base film, wherein the base film and the conductive layer are elastically contracted, and the conductive layer and the base film are close to the surface of the conductive layer. All shrink and become wavy.
- the pre-stretched base film releases a certain external tension to make it elastically shrink, and the silver nanowires and graphene oxide deposited on the base film shrink accordingly to form a microscopic wave shape.
- step S30 another layer of polyurethane elastomer can be prepared and pressed onto the conductive layer by a molding method to form a protective layer.
- the two ends of the conductive layer can be connected.
- Flexible electrodes forming a sandwich structure.
- the method for preparing the flexible conductive film provided by the present invention can improve the flexibility and use stability of the conductive layer, thereby increasing the service life of the flexible conductive film.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
Abstract
一种柔性导电薄膜的制备方法,包括:制备基底薄膜,对基底薄膜施加预拉伸应力;在已进行预拉伸的基底薄膜上形成导电层;释放施加在基底薄膜上的预拉伸应力,基底薄膜和导电层发生弹性收缩,导电层和基底薄膜靠近导电层的一侧表面均收缩呈波浪状。能够提高导电层的柔韧性和使用稳定性,进而提高柔性导电薄膜的使用寿命。
Description
本发明涉及光学领域,尤其涉及一种柔性导电薄膜及其制备方法、显示面板。
近年来,柔性透明导电薄膜由于其兼具导电性、透光性、耐弯折性,被广泛应用于液晶显示器、触摸屏、有机发光二极管、太阳能电池等光电器件领域。常见的透明导电薄膜主要为氧化铟锡(Indium tin oxide,ITO)膜、金属网格膜、纳米银线膜等。
其中,ITO膜技术成熟,但原料成本高、导电性存在极限、且不耐弯折;金属网格膜的原料价格低廉、抗电磁干扰,但金属线较宽且存在莫瑞干涉;银纳米线线宽小,以其制备导电薄膜具有方阻低、透光度高、耐弯折的优点,但是当为降低电阻值而增大纳米线用量后,透明度下降显著,且现有的银纳米线柔性电极的制作方法主要是将纳米线平行转移在柔性基底上,在外界应力作用下,银纳米线的柔韧性有限,发生断裂后影响电性及电极的使用寿命。
综上所述,现有的各类柔性导电薄膜虽然有诸多优点,但在柔性电子的应用中,仍然在性能、可靠性、寿命等方面存在问题。
本发明提供一种柔性导电薄膜及其制备方法、以及显示面板,以解决现有的柔性导电薄膜的稳定性差、柔韧性有限,从而导致柔性导电薄膜的使用可靠性和寿命受到影响的技术问题。
为解决上述问题,本发明提供的技术方案如下:
本发明提供一种柔性导电薄膜的制备方法,包括:
步骤S10,制备基底薄膜,对所述基底薄膜施加预拉伸应力;
步骤S20,在已进行预拉伸的所述基底薄膜上形成导电层;
步骤S30,释放施加在所述基底薄膜上的预拉伸应力,其中,所述基底薄膜和所述导电层发生弹性收缩,所述导电层和所述基底薄膜的靠近所述导电层的一侧表面均收缩呈波浪状。
在本发明的一种实施例中,所述柔性导电薄膜的制备方法还包括:
步骤S40,在所述导电层上形成保护层。
在本发明的一种实施例中,所述步骤S20包括:
S201,在已进行预拉伸的所述基底薄膜上形成第一导电层;
S202,在所述第一导电层上形成第二导电层。
在本发明的一种实施例中,所述第一导电层和所述第二导电层的材料均为银纳米、3,4-乙烯二氧噻吩/聚苯烯磺酸、以及氧化石墨烯中的一种。
在本发明的一种实施例中,所述步骤S20包括:
S201,制备银纳米线,将所述银纳米线移至已进行预拉伸的所述基底薄膜上,形成所述第一导电层;
S202,在所述第一导电层上涂布3,4-乙烯二氧噻吩和聚苯烯磺酸的混合物,并干燥,形成所述第二导电层。
在本发明的一种实施例中,所述保护层与所述基底薄膜的膜层结构和材质相同。
在本发明的一种实施例中,所述基底薄膜的材料为双氨基-聚二甲基硅氧烷、聚氨酯弹性体中的一种。
本发明还提供一种柔性导电薄膜,包括:基底薄膜和设置于所述基底薄膜上的导电层,其中,所述导电层和所述基底薄膜靠近所述导电层的一侧表面均为波浪状。
在本发明的一种实施例中,所述导电层包括设置于所述基底薄膜上的第一导电层和设置于所述第一导电层上的第二导电层。
在本发明的一种实施例中,所述第一导电层和所述第二导电层均为波浪状。
在本发明的一种实施例中,所述第一导电层和所述第二导电层的材料均为银纳米、3,4-乙烯二氧噻吩/聚苯烯磺酸、以及氧化石墨烯中的一种。
在本发明的一种实施例中,所述柔性导电薄膜还包括设置于所述导电层上的保护层。
在本发明的一种实施例中,所述保护层与所述基底薄膜的膜层结构和材质相同。
在本发明的一种实施例中,所述基底薄膜的材料为双氨基-聚二甲基硅氧烷、聚氨酯弹性体中的一种。
本发明还提供一种显示面板,包括:衬底基板和设置于所述衬底基板上的柔性导电薄膜,所述导电薄膜包括基底薄膜和设置于所述基底薄膜上的导电层,其中,所述导电层和所述基底薄膜靠近所述导电层的一侧表面均为波浪状。
在本发明的一种实施例中,所述导电层包括设置于所述基底薄膜上的第一导电层和设置于所述第一导电层上的第二导电层。
在本发明的一种实施例中,所述第一导电层和所述第二导电层均为波浪状。
在本发明的一种实施例中,所述柔性导电薄膜还包括设置于所述导电层上的保护层。
在本发明的一种实施例中,所述保护层与所述基底薄膜的膜层结构和材质相同。
在本发明的一种实施例中,所述基底薄膜的材料为双氨基-聚二甲基硅氧烷、聚氨酯弹性体中的一种。
本发明的有益效果为:本发明提供的柔性导电薄膜的制备方法,能够提高导电层的柔韧性和使用稳定性,进而提高柔性导电薄膜的使用寿命。
图1为本发明柔性导电薄膜的制备方法;
图2为本发明柔性导电薄膜的立体结构示意图;
图3~图5为本发明实施例一的柔性导电薄膜制备过程中的结构示意图;
图6为本发明实施例二的柔性导电薄膜的正视图。
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有的柔性导电薄膜,由于现有的导电薄膜存在稳定性差、柔韧度有限等问题,进而影响到导电薄膜的使用可靠性和使用寿命,本实施例能够解决该缺陷。
如图2所示,本发明提供一种柔性导电薄膜100,包括基底薄膜10和设置于所述基底薄膜10上的导电层20,所述导电层20和所述基底薄膜10靠近所述导电层20的一侧表面均为波浪状。
如图1所示,所述柔性导电薄膜100的制备方法包括:步骤S10,制备基底薄膜10,对所述基底薄膜10施加预拉伸应力;步骤S20,在已进行预拉伸的所述基底薄膜10上形成导电层20;步骤S30,释放施加在所述基底薄膜10上的预拉伸应力,其中,所述基底薄膜10和所述导电层20发生弹性收缩,所述导电层20和所述基底薄膜10靠近所述导电层的一侧表面均收缩呈波浪状。
如图6所示,所述柔性导电薄膜100还包括设置于所述导电层20上的保护层30。所述制备方法还包括:在所述步骤S30之后,在所述导电层20上形成所述保护层30。
所述保护层的材料与所述基底薄膜的材料相同,所述基底薄膜10的材料为改性后的聚二甲基硅氧烷,例如双氨基-聚二甲基硅氧烷(H2N-PDMS-NH2),其含有的亚胺键可与聚三苯甲醛在室温下进行席夫碱反应完成愈合,故当所述基底薄膜10出现裂纹时,可室温下自愈合,完成修复裂纹,提高所述柔性导电薄膜100的生产良率,并一定程度延长所述柔性导电薄膜100的使用寿命。
所述基底薄膜10的材料还可为透明的聚氨酯弹性体,聚氨酯弹性体的柔韧性及透明度均较高。
所述导电层20的材料为为银纳米、3,4-乙烯二氧噻吩/聚苯烯磺酸(PEDOT/PSS)、以及氧化石墨烯中的一种或多种组合。
内层的所述导电层20为曲折的波浪状结构,外层的所述基底薄膜10选用双氨基-聚二甲基硅氧烷时,双氨基-聚二甲基硅氧烷自身具有较好的弹性,当承受外界的拉伸应力时,外层的双氨基-聚甲基硅氧烷薄膜被拉伸,内层波浪状的导电层20可随之拉伸,在一定拉伸范围内不会发生断裂,故其导电性也并不会受影响,应力消失时,双氨基-聚二甲基硅氧烷薄膜发生弹性收缩,内层的导电层20则恢复其波浪形态。
三明治结构能够赋予柔性导电薄膜更好的保护,降低实际产品制作中后制程中的机械外力对导电层20的破坏;所述柔性导电薄膜为半三明治结构时,能够满足柔性导电薄膜作为整面性导通的电极使用。
下面结合具体实施例,对上述的柔性导电薄膜及其制备方法进行详细说明。
实施例一
如图2所示,本实施例中的柔性导电薄膜100包括基底薄膜10和设置于所述基底薄膜10上的导电层,其中,所述导电层和所述基底薄膜靠近所述导电层的一侧表面均为波浪状。
如图1所示,所述柔性导电薄膜100的制备方法包括:
步骤S10,制备基底薄膜10,对所述基底薄膜10施加预拉伸应力;
如图3和图4所示,首先,制备双氨基-二甲基硅氧烷薄膜作为基底薄膜10,并通过预拉伸应力调节该基底薄膜10的透明度,使得所述基底薄膜10的透明度达到设定值,所述基底薄膜10的透明度控制在55%~88%范围内,当所述基底薄膜10的拉伸率为50%时,所述基底薄膜10的透明度为75%。
步骤S20,在已进行预拉伸的所述基底薄膜10上形成导电层20;
在步骤S20中,先在已经预拉伸的所述基底薄膜10上形成第一导电层(图中未示出),之后在所述第一导电层上形成第二导电层(图中未示出)。
首先,制备银纳米线,具体的制备方法可参考现有技术,再将该银纳米线转移至已经预拉伸的所述基底薄膜10上,形成所述第一导电层;之后,利用旋涂法或喷墨打印法,将3,4-乙烯二氧噻吩(PEDOT)和聚苯烯磺酸(PSS)的混合物涂布在所述基底薄膜10上,形成第二导电层,所述第二导电层为整面式导电膜层。
如图5所示,步骤S30,释放施加在所述基底薄膜上的预拉伸应力,其中,所述基底薄膜10和所述导电层20发生弹性收缩,所述导电层20和所述基底薄膜10靠近所述导电层20的一侧表面均收缩呈波浪状;
将已预拉伸的双氨基-聚二甲基硅氧烷薄膜释放一定的外界拉力,使其发生弹性收缩,所述基底薄膜10的上表面(靠近所述导电层20一侧的表面)在拉伸方向上形成固定规律的波浪状的褶皱,沉积在薄膜的上银纳米线和PSS/PEDOT薄膜均随之发生收缩,形成微观形态的波浪状的褶皱。
所述柔性导电薄膜100在完成后续成品制作后,在使用过程中产生裂纹时,在室温下可与均三苯甲醛发生反应,完成自愈合和裂纹的修复,该自愈合过程需要人工添加适量三苯甲醛,可在柔性导电薄膜100制备完成后、后制程、或者使用过程中均可人工添加三苯甲醛。
该制备方法形成的导电层20为波浪状结构,在柔性导电薄膜100受到外界应力时,波浪形的导电层20由于自身物理结构的缓冲特性,不易受到外界应力破环而损害其导电性能,从达到延长使用寿命的效果。
所述柔性导电薄膜可应用于触摸屏和显示面板中,本实施例还提供一种显示面板,包括衬底基板和设置于所述衬底基板上的柔性导电薄膜,所述柔性导电薄膜可参考上述制备方法来制备,这里不再赘述。
实施例二
如图6所示,所述柔性导电薄膜还包括设置于所述导电层20上的保护层30,所述保护层30覆盖所述导电层20。
本实施例在实施例一的制备方法的基础上,增加一层柔性保护层,使得导电层20的上下表面形成具有保护作用的柔性透明材料。
在实施例一的步骤S30之后,制备与基底薄膜10相同的另外一层双氨基-聚二甲基硅氧烷薄膜,通过模压的方法,将该薄膜压合在所述导电层20上,形成保护层30。
同样地,所述保护层30在发生裂纹时,在室温下,可与均三苯甲醛发生反应,完成自愈合及裂纹的修复。
本实施例中的所述柔性导电薄膜具有上下两层柔性透明材料保护,能够提高PEDOT/PSS的使用稳定性;外层的基底薄膜10和保护层30具有自愈合性能,外力作用下的微小破坏可以在室温下完成自我修复,进而延长使用寿命。
实施例三
本实施例中的柔性导电薄膜的结构与实施例一相同,本实施例的柔性导电薄膜的制备方法包括:
步骤S10,制备基底薄膜,对所述基底薄膜施加预拉伸应力;
制备透明的聚氨酯弹性体作为基底薄膜,并对所述基底薄膜进行预拉伸,聚氨酯弹性体的透明度较高,根据基底薄膜对透明度的要求,可选择不同种类的聚氨酯弹性体;
步骤S20,在已进行预拉伸的所述基底薄膜上形成导电层;
首先制备银纳米线,再将银纳米线转移至所述基底薄膜上,形成第一导电层;之后,通过hummers法制备氧化石墨烯,通过化学还原法,在所述基底薄膜上成膜,形成第二导电层。
步骤S30,释放施加在所述基底薄膜上的预拉伸应力,其中,所述基底薄膜和所述导电层发生弹性收缩,所述导电层和所述基底薄膜靠近所述导电层的一侧表面均收缩呈波浪状。
将已经预拉伸的所述基底薄膜释放一定的外界拉力,使其发生弹性收缩,沉积在所述基底薄膜上的银纳米线及氧化石墨烯随之发生收缩,形成微观形态的波浪形状。
在其他实施例中,可在步骤S30之后,制备另外一层聚氨酯弹性体,通过模压的方法,压合在所述导电层上,形成保护层,将所述导电层的两端导通,可形成三明治结构的柔性电极。
有益效果:本发明提供的柔性导电薄膜的制备方法,能够提高导电层的柔韧性和使用稳定性,进而提高柔性导电薄膜的使用寿命。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
Claims (20)
- 一种柔性导电薄膜的制备方法,其中,包括:步骤S10,制备基底薄膜,对所述基底薄膜施加预拉伸应力;步骤S20,在已进行预拉伸的所述基底薄膜上形成导电层;步骤S30,释放施加在所述基底薄膜上的预拉伸应力,其中,所述基底薄膜和所述导电层发生弹性收缩,所述导电层和所述基底薄膜的靠近所述导电层的一侧表面均收缩呈波浪状。
- 根据权利要求1所述的制备方法,其中,所述柔性导电薄膜的制备方法还包括:步骤S40,在所述导电层上形成保护层。
- 根据权利要求1所述的制备方法,其中,所述步骤S20包括:S201,在已进行预拉伸的所述基底薄膜上形成第一导电层;S202,在所述第一导电层上形成第二导电层。
- 根据权利要求3所述的制备方法,其中,所述第一导电层和所述第二导电层的材料均为银纳米、3,4-乙烯二氧噻吩/聚苯烯磺酸、以及氧化石墨烯中的一种。
- 根据权利要求4所述的制备方法,其中,所述步骤S20包括:S201,制备银纳米线,将所述银纳米线移至已进行预拉伸的所述基底薄膜上,形成所述第一导电层;S202,在所述第一导电层上涂布3,4-乙烯二氧噻吩和聚苯烯磺酸的混合物,并干燥,形成所述第二导电层。
- 根据权利要求2所述的制备方法,其中,所述保护层与所述基底薄膜的膜层结构和材质相同。
- 根据权利要求6所述的制备方法,其中,所述基底薄膜的材料为双氨基-聚二甲基硅氧烷、聚氨酯弹性体中的一种。
- 一种柔性导电薄膜,其中,包括:基底薄膜;导电层,设置于所述基底薄膜上;其中,所述导电层和所述基底薄膜靠近所述导电层的一侧表面均为波浪状。
- 根据权利要求8所述的柔性导电薄膜,其中,所述导电层包括设置于所述基底薄膜上的第一导电层和设置于所述第一导电层上的第二导电层。
- 根据权利要求9所述的柔性导电薄膜,其中,所述第一导电层和所述第二导电层均为波浪状。
- 根据权利要求9所述的柔性导电薄膜,其中,所述第一导电层和所述第二导电层的材料均为银纳米、3,4-乙烯二氧噻吩/聚苯烯磺酸、以及氧化石墨烯中的一种。
- 根据权利要求8所述的柔性导电薄膜,其中,所述柔性导电薄膜还包括设置于所述导电层上的保护层。
- 根据权利要求12所述的柔性导电薄膜,其中,所述保护层与所述基底薄膜的膜层结构和材质相同。
- 根据权利要求8所述的柔性导电薄膜,其中,所述基底薄膜的材料为双氨基-聚二甲基硅氧烷、聚氨酯弹性体中的一种。
- 一种显示面板,其中,包括:衬底基板;柔性导电薄膜,设置于所述衬底基板上,所述导电薄膜包括基底薄膜和设置于所述基底薄膜上的导电层;其中,所述导电层和所述基底薄膜靠近所述导电层的一侧表面均为波浪状。
- 根据权利要求15所述的柔性导电薄膜,其中,所述导电层包括设置于所述基底薄膜上的第一导电层和设置于所述第一导电层上的第二导电层。
- 根据权利要求16所述的柔性导电薄膜,其中,所述第一导电层和所述第二导电层均为波浪状。
- 根据权利要求15所述的柔性导电薄膜,其中,所述柔性导电薄膜还包括设置于所述导电层上的保护层。
- 根据权利要求18所述的柔性导电薄膜,其中,所述保护层与所述基底薄膜的膜层结构和材质相同。
- 根据权利要求15所述的柔性导电薄膜,其中,所述基底薄膜的材料为双氨基-聚二甲基硅氧烷、聚氨酯弹性体中的一种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/496,442 US20220016874A1 (en) | 2019-04-09 | 2019-04-24 | Flexible conductive film, producing method thereof, and display panel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910280192.9A CN110033900A (zh) | 2019-04-09 | 2019-04-09 | 柔性导电薄膜及其制备方法、显示面板 |
CN201910280192.9 | 2019-04-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020206735A1 true WO2020206735A1 (zh) | 2020-10-15 |
Family
ID=67237676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/083978 WO2020206735A1 (zh) | 2019-04-09 | 2019-04-24 | 柔性导电薄膜及其制备方法、显示面板 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220016874A1 (zh) |
CN (1) | CN110033900A (zh) |
WO (1) | WO2020206735A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110441945A (zh) * | 2019-08-01 | 2019-11-12 | 深圳市华星光电技术有限公司 | 在显示面板中制备褶皱结构的方法、褶皱结构及显示面板 |
CN110393507B (zh) * | 2019-08-01 | 2020-12-25 | 清华大学 | 柔性可延展电子器件的结构设计及其制造方法 |
CN114379069A (zh) * | 2020-10-20 | 2022-04-22 | 西安工程大学 | 一种可调控的褶皱形貌制备方法 |
CN112489853B (zh) * | 2020-11-25 | 2022-11-22 | 北京石墨烯研究院 | 一种柔性导电膜、其制备方法及柔性电子器件 |
CN113380700A (zh) * | 2021-05-20 | 2021-09-10 | 绵阳惠科光电科技有限公司 | 一种柔性屏的制备方法和柔性屏 |
CN114190930A (zh) * | 2021-12-03 | 2022-03-18 | 北京服装学院 | 具有生理参数监测功能的内衣及其制备方法 |
CN114515516B (zh) * | 2022-01-27 | 2023-07-07 | 南京工业大学 | 一种高通量波纹状pdms纳米纤维复合膜及其制备方法 |
CN114628062B (zh) * | 2022-03-28 | 2023-06-02 | Tcl华星光电技术有限公司 | 一种导电薄膜及显示面板 |
CN115135128A (zh) * | 2022-07-06 | 2022-09-30 | 郑州大学 | 一种仿篱笆结构可拉伸透明电磁屏蔽薄膜及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104053256A (zh) * | 2014-05-14 | 2014-09-17 | 中国科学院合肥物质科学研究院 | 基于银纳米线透明导电薄膜的加热器及其制备方法 |
CN106229038A (zh) * | 2016-09-07 | 2016-12-14 | 东华大学 | 一种基于多级结构石墨烯的可拉伸透明导电弹性体的制备方法 |
CN106847688A (zh) * | 2017-01-11 | 2017-06-13 | 北京大学 | 一种基于双轴预拉伸的可拉伸电极制备方法 |
CN107093500A (zh) * | 2017-03-30 | 2017-08-25 | 华南理工大学 | 一种银纳米线柔性透明导电薄膜的图形化方法 |
CN107525613A (zh) * | 2016-06-21 | 2017-12-29 | 中国科学院苏州纳米技术与纳米仿生研究所 | 可拉伸的柔性压力传感器及其制造方法 |
CN107610802A (zh) * | 2016-07-11 | 2018-01-19 | 中国科学院上海高等研究院 | 透明导电薄膜、光电器件及其制作方法 |
JP2018097770A (ja) * | 2016-12-16 | 2018-06-21 | 富士通コンポーネント株式会社 | タッチパネル |
CN108877517A (zh) * | 2018-06-26 | 2018-11-23 | 深圳市华星光电技术有限公司 | 一种柔性可拉伸基板及其制备方法 |
-
2019
- 2019-04-09 CN CN201910280192.9A patent/CN110033900A/zh active Pending
- 2019-04-24 US US16/496,442 patent/US20220016874A1/en not_active Abandoned
- 2019-04-24 WO PCT/CN2019/083978 patent/WO2020206735A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104053256A (zh) * | 2014-05-14 | 2014-09-17 | 中国科学院合肥物质科学研究院 | 基于银纳米线透明导电薄膜的加热器及其制备方法 |
CN107525613A (zh) * | 2016-06-21 | 2017-12-29 | 中国科学院苏州纳米技术与纳米仿生研究所 | 可拉伸的柔性压力传感器及其制造方法 |
CN107610802A (zh) * | 2016-07-11 | 2018-01-19 | 中国科学院上海高等研究院 | 透明导电薄膜、光电器件及其制作方法 |
CN106229038A (zh) * | 2016-09-07 | 2016-12-14 | 东华大学 | 一种基于多级结构石墨烯的可拉伸透明导电弹性体的制备方法 |
JP2018097770A (ja) * | 2016-12-16 | 2018-06-21 | 富士通コンポーネント株式会社 | タッチパネル |
CN106847688A (zh) * | 2017-01-11 | 2017-06-13 | 北京大学 | 一种基于双轴预拉伸的可拉伸电极制备方法 |
CN107093500A (zh) * | 2017-03-30 | 2017-08-25 | 华南理工大学 | 一种银纳米线柔性透明导电薄膜的图形化方法 |
CN108877517A (zh) * | 2018-06-26 | 2018-11-23 | 深圳市华星光电技术有限公司 | 一种柔性可拉伸基板及其制备方法 |
Non-Patent Citations (2)
Title |
---|
ZHANG, TAILIANG ET AL.: "Fabrication and Performance of PU/AgNWs/PDMS Flexible Conductive Composite", NEW CHEMICAL MATERIALS, vol. 44, no. 05, 15 May 2016 (2016-05-15), ISSN: 1005-3536, DOI: 9040300 * |
ZHANG, TAILIANG ET AL.: "Fabrication and Performance of PU/AgNWs/PDMS Flexible Conductive Composite", NEW CHEMICAL MATERIALS, vol. 44, no. 05, 15 May 2016 (2016-05-15), ISSN: 1005-3536, DOI: 9040301 * |
Also Published As
Publication number | Publication date |
---|---|
US20220016874A1 (en) | 2022-01-20 |
CN110033900A (zh) | 2019-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020206735A1 (zh) | 柔性导电薄膜及其制备方法、显示面板 | |
CN102522145B (zh) | 一种纳米银透明电极材料及其制备方法 | |
CN109309113B (zh) | 有机发光二极管触控显示设备 | |
Takamatsu et al. | Transparent conductive-polymer strain sensors for touch input sheets of flexible displays | |
WO2014121584A1 (zh) | 导电膜及其制备方法以及包含该导电膜的触摸屏 | |
CN107610802B (zh) | 透明导电薄膜、光电器件及其制作方法 | |
US20220199704A1 (en) | Display panel, manufacturing method of display panel, and display apparatus | |
US20180062044A1 (en) | Transparent electrode and manufacturing method thereof | |
KR102003427B1 (ko) | 섬유기반 접힘 투명 전극을 이용한 유연 액정 필름 및 이의 제조방법 | |
WO2015043165A1 (zh) | 一种柔性基板及其制作方法、以及显示装置 | |
WO2016206158A1 (zh) | 石墨烯/pedot:pss混合溶液的制备方法及具有石墨烯/pedot:pss复合透明导电膜的基板的制备方法 | |
KR20150027956A (ko) | 플렉서블 표시장치 및 터치 스크린 패널의 제조 방법 | |
CN204028877U (zh) | 一种基于纳米银线的双层电容式触摸屏用透明导电薄膜组 | |
RU2011117340A (ru) | Электропроводный оптический прибор, способ его изготовления, сенсорная панель, дисплей и жидкокристаллическое устройство отображения | |
US9445506B2 (en) | Preparation method of patterned film, display substrate and display device | |
WO2017020372A1 (zh) | 柔性显示屏的制作方法、柔性玻璃基板及柔性显示屏 | |
WO2016082338A1 (zh) | 导电柔性基板及其制作方法与oled显示装置及其制作方法 | |
TWI447030B (zh) | 氣阻膜及其製造方法 | |
Luo et al. | A stretchable and printable PEDOT: PSS/PDMS composite conductors and its application to wearable strain sensor | |
CN102208547B (zh) | 一种柔性光电子器件用基板及其制备方法 | |
CN107579168B (zh) | 一种彩膜基板及其制备方法、显示面板以及封装方法 | |
CN105446555A (zh) | 纳米银线导电层叠结构及触控面板 | |
TWI632500B (zh) | Touch sensing device | |
CN204855991U (zh) | 一种柔性调光器件及含有该器件的透光量可调节窗 | |
US20160202563A1 (en) | Display Unit with Touch Function, Manufacturing Method Thereof and Display Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19924061 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19924061 Country of ref document: EP Kind code of ref document: A1 |