WO2020206615A1 - 显示面板的驱动器件及其驱动方法、显示装置 - Google Patents

显示面板的驱动器件及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2020206615A1
WO2020206615A1 PCT/CN2019/081953 CN2019081953W WO2020206615A1 WO 2020206615 A1 WO2020206615 A1 WO 2020206615A1 CN 2019081953 W CN2019081953 W CN 2019081953W WO 2020206615 A1 WO2020206615 A1 WO 2020206615A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
terminal
power supply
circuit
Prior art date
Application number
PCT/CN2019/081953
Other languages
English (en)
French (fr)
Inventor
姜燕妮
郑中基
吴国强
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/649,374 priority Critical patent/US11455949B2/en
Priority to PCT/CN2019/081953 priority patent/WO2020206615A1/zh
Priority to EP19858693.5A priority patent/EP3955240A1/en
Priority to CN201980000471.3A priority patent/CN112136174B/zh
Publication of WO2020206615A1 publication Critical patent/WO2020206615A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/026Arrangements or methods related to booting a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD

Definitions

  • the present disclosure relates to the field of display, in particular to a driving device of a display panel, a driving method thereof, and a display device.
  • the display device generally includes a display panel and a display driver integrated circuit (DDIC).
  • the DDIC is used to provide a driving voltage for the display panel to drive the display panel to display images.
  • DDIC may include internal driving circuits and digital circuits.
  • the internal driving circuit can provide a digital voltage for the digital circuit under the drive of the power supply terminal, and the digital circuit can provide a drive voltage for the display panel under the drive of the digital voltage.
  • the present disclosure provides a driving device of a display panel, a driving method thereof, and a display device.
  • the technical solution is as follows:
  • a driving device for a display panel includes:
  • a power management circuit for providing a first power voltage to the digital power terminal
  • the internal driving circuit is used for converting the second power supply voltage provided by the power supply terminal into a third power supply voltage and providing the third power supply voltage to the digital power terminal, and the digital power terminal is used for providing a driving voltage for the display panel.
  • the power management circuit is configured to continuously provide a first power voltage to the digital power terminal
  • the internal drive circuit is used to convert the second power voltage provided by the power supply terminal into a third power voltage and then provide it to the digital power terminal when the voltage of the digital power terminal is less than a reference voltage.
  • the voltage of the digital power terminal is not less than the reference voltage, stop providing the power supply voltage, and the reference voltage is less than the rated operating voltage of the digital power terminal.
  • the internal driving circuit is also used to detect whether the voltage of the digital power terminal is less than the reference voltage.
  • the internal driving circuit is configured to detect whether the voltage of the digital power terminal is less than the reference voltage after receiving the first enable instruction.
  • the difference between the rated working voltage and the reference voltage is less than or equal to 0.05 volts.
  • the power management circuit is configured to provide the first power supply voltage to the digital power supply terminal after receiving the second enable command.
  • the internal drive circuit is further connected to the power management circuit, and the internal drive circuit is further configured to send the second enable instruction to the power management circuit;
  • the internal driving circuit is configured to send a second enable command to the power management circuit after power-on.
  • the internal driving circuit is configured to send a second enable command to the power management circuit after receiving the first enable command.
  • the internal drive circuit includes: a low dropout linear regulator
  • the input terminal of the low dropout linear regulator is connected to the power supply terminal, the output terminal and the feedback signal terminal of the low dropout linear regulator are respectively connected to the digital power terminal, and the low dropout linear regulator
  • the reference signal terminal of the converter is connected to the reference power terminal for providing the reference voltage.
  • the driving device further includes: a digital circuit
  • the digital circuit is connected to the digital power terminal, and is used to provide a driving voltage for the display panel under the drive of the digital power terminal.
  • the driving device further includes: a flexible circuit board;
  • the power management circuit is located on a printed circuit board, the internal driving circuit is located on a chip on film, and the flexible circuit board is respectively connected to the printed circuit board and the chip on film.
  • a driving method for driving a device includes:
  • the second power supply voltage provided by the power supply terminal is converted into a third power supply voltage by an internal driving circuit and then provided to the digital power terminal.
  • the digital power terminal is used to provide a driving voltage for the display panel.
  • the providing the first power voltage to the digital power terminal through the power management circuit includes: continuously providing the first power voltage to the digital power terminal through the power management circuit;
  • the converting the second power supply voltage provided by the power supply terminal into the third power supply voltage through the internal driving circuit and then providing the third power supply voltage to the digital power terminal includes:
  • the second power supply voltage provided by the power supply terminal is converted into a third power supply voltage through an internal driving circuit and then supplied to the digital power supply terminal;
  • the method further includes: when the voltage of the digital power terminal is not less than the reference voltage, controlling the internal driving circuit to stop providing the power voltage.
  • the method further includes:
  • the providing the first power supply voltage to the digital power terminal through the power management circuit includes:
  • the internal drive circuit sends a second enable command to the power management circuit, and drives the power management circuit to provide the digital power terminal with a first power voltage.
  • the sending a second enable command to the power management circuit through the internal drive circuit includes:
  • a display device in yet another aspect, includes a display panel, and the driving device as described in the above aspect connected to the display panel.
  • the display panel is an organic light emitting diode display panel.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium.
  • the computer-readable storage medium runs on a computer, the computer can execute the drive described in the above-mentioned aspect. method.
  • FIG. 1 is a schematic structural diagram of a driving device for a display panel provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another display panel driving device provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of another display panel driving device provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of still another display panel driving device provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a power management circuit provided by an embodiment of the present disclosure with independent power supply
  • FIG. 6 is a schematic diagram of an internal driving circuit provided by an embodiment of the present disclosure with independent power supply
  • FIG. 7 is a flowchart of a driving method of a driving device provided by an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of another driving method of a driving device provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a driving device for a display panel provided by an embodiment of the present disclosure.
  • the driving device may include: a power management circuit 100 and an internal driving circuit 200.
  • the power management circuit 100 is used to provide a first power voltage to the digital power terminal DVDD.
  • the internal driving circuit 200 is used to convert the second power supply voltage provided by the power supply terminal VDD into a third power supply voltage, and provide the third power supply voltage for the digital power terminal DVDD.
  • the power management circuit 100 can be connected to the digital power terminal DVDD, and the internal driving circuit 200 can be respectively connected to the digital power terminal DVDD and the power supply terminal VDD.
  • the digital power terminal DVDD can be connected to each signal line on the display panel through the digital circuit in the display drive circuit (such as DDIC), and the digital power terminal DVDD can provide digital voltage (also called logic level) for the digital circuit. ), so as to drive the digital circuit to provide driving voltages such as the gate high-level voltage VGH and the gate low-level voltage VGL for the display panel, and then drive the display panel to emit light.
  • the embodiments of the present disclosure provide a driving device.
  • the power management circuit and the internal driving circuit in the driving device can both provide a power supply voltage for the digital power supply terminal, that is, both can supply power for the digital power supply terminal. Therefore, the driving device can realize the coordinated power supply of the power management circuit and the internal driving circuit, which effectively improves the driving flexibility.
  • the driving device provided in the embodiments of the present disclosure can realize multiple power supply modes such as power management circuit 100 alone, internal driving circuit 200 alone, and power management circuit 100 and internal driving circuit 200 at the same time.
  • the embodiments of the present disclosure take the following two power supply modes as examples for description:
  • the first power supply mode the power management circuit 100 supplies power alone.
  • the internal driving circuit 200 stops outputting the power supply voltage, that is, in a stopped working state, and only the power management circuit 100 provides the first power supply voltage for the digital power supply terminal DVDD.
  • the internal driving circuit 200 needs to step down the second power voltage to provide the digital power terminal DVDD
  • the third power supply voltage, the third power supply voltage may be equal to the rated operating voltage, so the power consumption of the internal driving circuit 200 when powering is relatively large.
  • the power management circuit 100 can directly provide the first power supply voltage for the digital power terminal DVDD, and the first power supply voltage is also equal to the rated working voltage. Therefore, the power consumption of the power management circuit 100 is relatively small when supplying power.
  • the second power supply mode the power management circuit 100 and the internal drive circuit 200 supply power at the same time.
  • the power management circuit 100 provides a first power supply voltage for the digital power supply terminal DVDD, and at the same time, the internal driving circuit 200 is driven by the second power supply voltage provided by the power supply terminal VDD to provide the digital power supply
  • the terminal DVDD provides the third power supply voltage.
  • the power management circuit and the internal drive circuit supply power at the same time, because the power management circuit has a strong power supply capability, that is, a strong current supply capability, it can effectively share the power supply pressure of the internal drive circuit, so that the internal drive circuit outputs a smaller current , And the power management circuit outputs a larger current, so compared to the internal driving circuit alone, the driving power consumption when powered by the power management circuit and the internal driving circuit at the same time is also lower.
  • the power management circuit 100 and the internal driving circuit 200 can also alternately supply power to the digital power terminal DVDD.
  • one of the circuits can continuously supply power to the digital power terminal DVDD, and the other circuit can supply power to the digital power terminal DVDD for a period of time at regular intervals.
  • the power supply duration of the internal driving circuit 200 can be shortened or the power supply pressure of the internal driving circuit 200 can be shared, the driving power consumption of the display panel can also be reduced.
  • the power supply duration of each circuit can be configured by the driving device before leaving the factory, or can be independently set by the user.
  • the power management circuit 100 can be used to continuously provide the first power voltage to the digital power terminal DVDD. That is, the power management circuit 100 can continue to supply power to the digital power terminal DVDD after it is turned on until it is turned off.
  • the internal driving circuit 200 can be used to detect whether the voltage of the digital power terminal DVDD is less than the reference voltage, and when the voltage of the digital power terminal DVDD is less than the reference voltage, convert the second power voltage provided by the power supply terminal VDD into the third power After the voltage is applied, it is provided to the digital power terminal DVDD, and when the voltage of the digital power terminal DVDD is not less than the reference voltage, the power supply voltage is stopped.
  • the power management circuit 100 and the internal driving circuit 200 can jointly supply power to the digital power terminal DVDD.
  • the power management circuit 100 can independently supply power to the digital power terminal DVDD.
  • the reference voltage may be less than the rated working voltage of the digital power terminal DVDD.
  • the voltage value of the reference voltage may be pre-configured in the driving device. For example, it can be configured before the drive device leaves the factory, that is, the voltage value of the reference voltage can be a fixed value. Alternatively, the voltage value of the reference voltage can be configured manually before the driving device works, that is, the voltage value of the reference voltage is adjustable.
  • the internal driving circuit 200 can receive a reference voltage configuration instruction, and can configure the voltage value of the reference voltage according to the voltage value carried in the reference voltage configuration instruction.
  • the difference between the rated working voltage and the reference voltage may be less than or equal to 0.05 volt (V).
  • the difference between the rated working voltage and the reference voltage may refer to the difference of the rated working voltage minus the reference voltage.
  • the rated working voltage may be 1.2V, and the reference voltage may be 1.15V.
  • the rated working voltage may be 1.0V, and the reference voltage may be 0.95V.
  • the internal driving circuit 200 and the digital power terminal DVDD are usually integrated in the same circuit, that is, the line impedance between the two is relatively small.
  • the power management circuit 100 and the internal drive circuit 200 are usually two independent circuits, that is, the power management circuit 100 and the digital power terminal DVDD are respectively integrated in different circuits, so the power management circuit 100 and the digital power terminal DVDD The line impedance is larger.
  • the load current of the display panel is usually larger.
  • the load current of the display panel is generally 100 milliamperes (mA) to 200 mA.
  • the resistance voltage drop (IR Drop) generated by the line impedance between the power management circuit 100 and the digital power terminal DVDD is relatively large. If the power management circuit 100 is used alone to supply power to the digital power terminal DVDD, the voltage of the digital power terminal DVDD will be less than or equal to the reference voltage, that is, the digital power terminal DVDD will be under-voltage and insufficient, causing the display panel to appear screened. , Which seriously affects the display effect.
  • the internal driving circuit 200 and the power management circuit 100 can simultaneously supply power to the digital power terminal DVDD, that is, The hybrid power supply mode supplies power to the digital power terminal DVDD. Since the power management circuit 100 has a strong drive capability, that is, a strong current supply capability, when the power supply is mixed, most of the load current is provided by the power management circuit 100, and a small part of the load current is provided by the internal drive circuit 200, that is, flows through the internal drive The current of the circuit 200 is relatively small, so that the power consumption of the internal driving circuit 200 can be effectively reduced.
  • the power consumption of this hybrid power supply method is also lower.
  • the internal driving circuit 200 can assist the power management circuit 100 to supply power to the digital power terminal DVDD to ensure that the digital power terminal DVDD is greater than or equal to the reference voltage, it can also avoid the excessive voltage drop due to the resistance when the power management circuit 100 supplies power alone. This leads to the undervoltage problem of DVDD at the digital power supply terminal.
  • the load current of the display panel is relatively small.
  • the load current of the display panel is generally 50 mA to 70 mA.
  • the power management circuit 100 provides the first power supply voltage for the digital power terminal DVDD
  • the resistance voltage drop (IR Drop) generated by the line impedance between the power management circuit 100 and the digital power terminal DVDD is small, and the digital power supply
  • the voltage of the terminal DVDD is greater than the reference voltage, and the driving voltage provided by the digital power terminal DVDD for the display panel can ensure the display effect of the display panel.
  • the internal driving circuit 200 can stop providing the third power voltage to the digital power terminal DVDD, that is, the internal driving circuit 200 Can be in a stopped working state.
  • the power management circuit 100 can separately supply power to the digital power terminal DVDD, so that the driving power consumption of the display panel can be effectively reduced.
  • the internal driving circuit 200 may include: a low dropout regulator (LDO).
  • LDO low dropout regulator
  • the input terminal of the LDO is connected to the power supply terminal VDD, the output terminal and the feedback signal terminal of the LDO are respectively connected to the digital power terminal DVDD, and the reference signal terminal of the LDO can be connected to the reference power terminal REF for providing the reference voltage. connection.
  • An error amplifier (error AMP) inside the LDO can compare the voltage V DVDD of the digital power terminal DVDD with the reference voltage V REF of the reference power terminal REF.
  • V DVDD ⁇ V REF the LDO may be in a normal working state, and the LDO may step down the second power supply voltage provided by the power supply terminal VDD, and then provide the third power supply voltage to the digital power terminal DVDD.
  • V DVDD > V REF the LDO can be in a high impedance state (Hi-Z), that is, the LDO is in a stopped working state and no longer supplies power to the digital power terminal DVDD.
  • the second power supply voltage provided by the power supply terminal VDD may be 1.8V
  • the rated working voltage of the digital power terminal DVDD may be 1.2V.
  • the second power supply voltage of 1.8V can be stepped down to a third power supply voltage of 1.2V and provided to the digital power terminal DVDD.
  • the 0.6V voltage difference is converted into heat energy by the transistor in the LDO and consumed, so its power consumption is relatively high.
  • the greater the current flowing through the LDO the greater the power consumption of the transistor.
  • the voltage of the power supply terminal VDD may also be provided by the power management circuit 100, and the power supply terminal VDD may also be referred to as the internal input/output (IO) voltage terminal of the driving device, which provides The second power supply voltage can also be referred to as the internal IO voltage.
  • the power supply terminal VDD may also be referred to as the internal input/output (IO) voltage terminal of the driving device, which provides
  • the second power supply voltage can also be referred to as the internal IO voltage.
  • the internal drive circuit 200 can also be used to: after receiving the first enable command, detect whether the voltage of the digital power terminal DVDD is less than the reference voltage, and then determine according to the detection result Whether it is necessary to supply power to the digital power terminal DVDD.
  • the internal driving circuit 200 may also stop supplying the power supply voltage before receiving the first enable command, or provide a third power supply for the digital power supply terminal DVDD under the driving of the second power supply voltage provided by the power supply terminal VDD Voltage.
  • the internal driving circuit 200 can continue to maintain a stopped working state or a normal working state. After receiving the first enable command, the internal driving circuit 200 adjusts its working state according to the voltage of the digital power terminal DVDD.
  • the first enabling instruction may be triggered by an operator (for example, a user) through a preset operation.
  • the preset operation may be an operation of pressing a designated button or clicking a designated icon.
  • the internal driving circuit is triggered by the first enabling instruction to switch between the two working states, which can effectively improve the flexibility of driving.
  • the internal driving circuit 200 can detect in real time whether the voltage of the digital power terminal DVDD is less than the reference voltage after being powered on, and then determine whether the digital power terminal DVDD needs to be sent to the digital power terminal according to the detection result. powered by.
  • the function of switching between the two working states can be automatically turned on without the first enable command to trigger.
  • the power management circuit 100 may be used to provide the digital power terminal DVDD with the first power voltage after receiving the second enable command.
  • the power management circuit 100 may not provide the first power voltage to the digital power terminal DVDD before receiving the second enable command.
  • the internal driving circuit 200 may also be connected to the power management circuit 100.
  • the internal driving circuit 200 may be connected to the enable pin of the power management circuit 100.
  • the internal driving circuit 200 can also send a second enable command to the power management circuit 100.
  • the power management circuit 100 can provide the digital power terminal DVDD with a first power voltage after receiving the second enable command. That is, the power management circuit 100 can start to supply power to the digital power terminal DVDD under the instruction of the internal driving circuit 200.
  • the internal driving circuit 200 may send a second enable command to the power management circuit 100 immediately after power-on to instruct the power management circuit 100 to work.
  • the internal driving circuit 200 may also send a second enabling command to the power management circuit 100 after receiving the first enabling command. That is, before the internal driving circuit 200 receives the first enable command, the internal driving circuit 200 can separately supply power to the digital power terminal DVDD.
  • the driving device may further include: a digital circuit 201, the digital circuit 201 may be connected to the digital power terminal DVDD and the display panel (neither shown in FIGS. 2 and 3), the digital circuit 201 is used to provide a driving voltage for the display panel under the driving of the digital power terminal DVDD.
  • the internal driving circuit 200 and the digital circuit 201 may both be internal circuits of the display driving circuit 20.
  • the display driving circuit 20 may be a DDIC.
  • the digital power terminal DVDD can be a pin on the DDIC.
  • the power management circuit 100 may also be an integrated circuit, that is, the power management circuit 100 may be a (power management IC, PMIC).
  • FIG. 4 is a schematic structural diagram of another driving device provided by an embodiment of the present disclosure.
  • the driving device may include: a printed circuit board (PCB) 001, a chip on film (COF) 002, and a flexible printed circuit (FPC) 003.
  • PCB printed circuit board
  • COF chip on film
  • FPC flexible printed circuit
  • the power management circuit 100 is located on the PCB 001, and the internal driving circuit 200 is located on the COF 002.
  • the DDIC 20 is integrated on the COF 002.
  • the FPC 003 is connected to the PCB 01 and the COF002 respectively.
  • the power management circuit between a power supply terminal 100 and the DVDD digital PCB001 presence of line impedance R 1, FPC line impedance of the line impedance R 003 and R 2 COF 002 3.
  • the IR Drop between the power management circuit 100 and the digital power terminal DVDD is relatively large. When the load current of the display panel is large, the voltage at the digital power terminal DVDD will be under-voltage. After measurement, if the rated working voltage of the digital power terminal DVDD is 1.2V, when the voltage of the digital power terminal DVDD drops below 1.15V, the display panel will appear blurry, which will seriously affect the display effect.
  • the reference voltage can be set to 1.15V, thereby enabling the internal driving circuit 200 to have the voltage of the digital power terminal DVDD less than 1.15V
  • the power management circuit 100 and the power management circuit 100 jointly supply power to the digital power terminal DVDD, so as to prevent the voltage at the digital power terminal DVDD from undervoltage.
  • the embodiments of the present disclosure take a 6.39-inch active-matrix organic light-emitting diode (AMOLED) as an example to test the driving power consumption of the AMOLED display panel under three different power supply modes ,
  • the test results are shown in Table 1.
  • the three power supply modes include: the power management circuit 100 shown in FIG. 5 provides power alone, the internal driving circuit 200 shown in FIG. 6 provides power alone, and the driving device provided in the embodiment of the present disclosure provides power supply.
  • the power supply of the driving device provided by the embodiment of the present disclosure refers to: the power management circuit 100 continuously supplies power to the digital power terminal DVDD, and the internal driving circuit 200 supplies power to the digital power terminal DVDD when the voltage of the digital power terminal DVDD is less than the reference voltage. When the voltage of the digital power terminal DVDD is not less than the reference voltage, the power supply to the digital power terminal DVDD is stopped.
  • the driving power consumption P of the display panel is 80.28 milliwatts (mW).
  • the drive device provided by the embodiment of the present disclosure is used for power supply, since the load current when the white screen is displayed is small, and the voltage of the digital power terminal DVDD is not less than the reference voltage, the internal drive circuit 200 stops providing the power supply voltage, and the power management circuit 100 supplies power alone ,
  • the driving power consumption P of the display panel is 80.28mW.
  • the second power supply voltage provided by the power supply terminal VDD is 1.8V, and the output current I 1 thereof is 64.0 mA.
  • the power management circuit 100 no longer provides voltage for the digital power terminal DVDD, and the output current I 2 is 0, and the driving power consumption P of the display panel at this time is 115.2 mW.
  • the second power supply voltage provided by the power supply terminal VDD is 1.8V
  • the output current I 1 is 0.6 mA
  • the first power supply voltage provided by 100 for the digital power supply terminal DVDD is 1.2V
  • the output current I 2 is 107.0 mA
  • the driving power consumption P of the display panel is 129.48 mW.
  • the driving device provided by the embodiments of the present disclosure is used for power supply
  • the load current when the display panel displays color images is relatively large, and the voltage of the digital power terminal DVDD is less than the reference voltage
  • the internal driving circuit 200 and the power management circuit 100 need to be mixed for power supply.
  • the power management circuit 100 has a strong drive capability, that is, a strong current supply capability, as shown in Table 1, when the power supply is mixed, the current I 1 output by the internal drive circuit 200 is 9.1 mA, and the current I output by the power management circuit 100 is 2 is 99.0mA, and the driving power consumption P of the display panel is 135.18mW.
  • the second power supply voltage provided by the power supply terminal VDD is 1.8V
  • the output current I 1 is 105.0mA.
  • the power management circuit 100 no longer provides voltage for the digital power terminal DVDD, and its output
  • the current I 2 is 0, and the driving power consumption P of the display panel is 189 mW at this time.
  • the driving power consumption when the driving device provided in the embodiment of the present disclosure is used for power supply is the same as the driving power consumption when the power management circuit 100 is powered alone. Compared with the drive power consumption of the internal drive circuit 200 when it is powered alone, it is 34.92mW lower.
  • the driving power consumption when powered by the driving device provided in the embodiment of the present disclosure is increased by 5.7mW compared with the driving power consumption when the power management circuit 100 is powered alone, but is higher than when the internal driving circuit 200 is powered alone.
  • the drive power consumption is reduced by 53.82mW.
  • the hybrid power supply solution provided by the embodiments of the present disclosure can ensure the stability of the voltage of the digital power terminal DVDD, thereby effectively avoiding the phenomenon of screen blur on the display panel.
  • the embodiments of the present disclosure provide a new driving device.
  • the power management circuit and the internal driving circuit in the driving device can both provide power supply voltage for the digital power supply terminal, that is, both can supply power for the digital power supply terminal. Therefore, the driving device can realize the coordinated power supply of the power management circuit and the internal driving circuit, which effectively improves the driving flexibility.
  • the driving power consumption of the display panel can be effectively reduced.
  • the power management circuit and the internal drive circuit in the drive device supply power at the same time, because the power management circuit has a strong power supply capability, that is, a strong current supply capability, it can effectively share the power supply pressure of the internal drive circuit, so that the internal drive circuit A smaller current is output, and a larger current is output by the power management circuit. Therefore, compared to the internal driving circuit alone, the power consumption when the power management circuit and the internal driving circuit are simultaneously powered is also lower.
  • the digital power supply terminal can be prevented from under-voltage and the display panel can be effectively prevented from appearing on the screen.
  • FIG. 7 is a flowchart of a driving method of a driving device mentioned in an embodiment of the present disclosure.
  • the driving method can be applied to the driving device provided in the above embodiment, for example, it can be applied to the driving device shown in any one of FIGS. 1 to 4.
  • the method may include:
  • Step 501 Provide a first power supply voltage to the digital power terminal through the power management circuit.
  • the digital power terminal is used to provide driving voltage for the display panel.
  • Step 502 Convert the second power supply voltage provided by the power supply terminal to the third power supply voltage through the internal driving circuit and provide it to the digital power terminal.
  • the first power supply voltage can be provided to the digital power terminal through the power management circuit
  • the third power supply voltage can be provided to the digital power terminal through the internal driving circuit. Since the power supply can be supplied by the power management circuit and the internal driving circuit, the driving flexibility is effectively improved.
  • FIG. 8 is a flowchart of a driving method of a driving device mentioned in an embodiment of the present disclosure.
  • the driving method can be applied to the driving device provided in the above embodiment, for example, it can be applied to the driving device shown in any one of FIGS. 1 to 4.
  • the method may include:
  • Step 601 Receive a first enable instruction.
  • the first enabling instruction may be triggered by an operator (for example, a user) through a preset operation.
  • the preset operation may be an operation of pressing a designated button or clicking a designated icon.
  • the driving device may execute step 602 and step 605.
  • the driving device may receive the first enable command through an internal driving circuit.
  • Step 602 Detect whether the voltage of the digital power terminal is less than the reference voltage.
  • step 603 When the voltage of the digital power terminal is less than the reference voltage, step 603 is executed; when the voltage of the digital power terminal is not less than the reference voltage, step 604 is executed.
  • the driving device can detect whether the voltage of the digital power terminal is less than the reference voltage through an internal driving circuit.
  • the driving device may execute the following step 603 or step 604 before receiving the first enable instruction. That is, the internal driving circuit can be controlled to be in a normal working state, or the internal driving circuit can be controlled to be in a stopped working state.
  • Step 603 Convert the second power supply voltage provided by the power supply terminal to the third power supply voltage through the internal driving circuit and provide it to the digital power terminal.
  • the driving device can be driven by the second power supply voltage provided by the power supply terminal to obtain the second power supply through the internal driving circuit.
  • the voltage is converted into a third power supply voltage, and the third power supply voltage is provided for the digital power terminal.
  • the internal driving circuit and the power management circuit can be mixed to supply power to ensure that the voltage of the digital power terminal is greater than or equal to the reference voltage, and the digital circuit can be driven normally, so that the digital circuit can drive the display panel normally, and avoid the display panel blooming.
  • Step 604 Control the internal driving circuit to stop providing the power supply voltage.
  • the driving device can control the internal driving circuit to stop supplying the power supply voltage, and the power management circuit alone supplies power to the digital power supply terminal to effectively reduce the driving power consumption of the display panel.
  • Step 605 Send a second enable command to the power management circuit to drive the power management circuit to provide a first power voltage to the digital power terminal.
  • the driving device can send a second enabling instruction to the power management circuit, so as to drive the power management circuit to provide the digital power terminal with the first power voltage.
  • the driving device may also send the second enable command to the power management circuit after the internal driving circuit is powered on.
  • the driving device can control the internal driving circuit to send the second enable command to the power management circuit.
  • powering on a certain component in the driving device may mean that the power management circuit provides power for the component.
  • the circuit in the driving device providing the power supply voltage to the digital power supply terminal may mean that the circuit loads the power supply voltage between the digital power supply terminal and the ground terminal (for example, the VSS signal terminal).
  • the digital power terminal providing the driving voltage for the display panel may mean that the digital power terminal loads the driving voltage between the display panel and the ground terminal.
  • step 601 may be executed before step 602, or executed simultaneously with step 602.
  • step 601 can also be deleted according to the situation, and step 605 can be directly executed after the driving device is powered on.
  • step of sending the second enable command in step 605 can also be deleted according to the situation, that is, the power management circuit can continue to provide the first power voltage to the digital power terminal after power-on.
  • the driving method of the driving device provided by the embodiments of the present disclosure can provide the first power supply voltage to the digital power terminal through the power management circuit, and can provide the third power supply voltage to the digital power terminal through the internal driving circuit. Since the power supply can be supplied by the power management circuit and the internal driving circuit, the driving flexibility is effectively improved.
  • the driving power consumption of the display panel can be effectively reduced.
  • the power management circuit has a strong power supply capability, that is, a strong current supply capability
  • the power management circuit can effectively share the power supply pressure of the internal drive circuit, so that the internal drive circuit A smaller current is output, and a larger current is output by the power management circuit. Therefore, compared with the power supply through the internal driving circuit alone, the power consumption is also lower when the power management circuit and the internal driving circuit are simultaneously powered.
  • it when power is supplied through the power management circuit and the internal driving circuit at the same time, it can also avoid the situation of undervoltage at the digital power supply terminal, thereby avoiding the phenomenon of screen blur on the display panel.
  • FIG. 9 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • the display device may include: a display panel 01 and a driving device 00 connected to the display panel 01.
  • the driving device 00 may be the driving device 00 shown in any one of FIGS. 1 to 4.
  • the display panel 01 may be an organic light-emitting diode (OLED) display panel.
  • the display panel 01 may be an AMOLED display panel.
  • the AMOLED display panel has the advantages of fast response speed, low power consumption, vivid color, bendable, etc., and can be widely used in different types of display devices.
  • the display device may be: a liquid crystal display device, an electronic paper, an OLED display device, an AMOLED display device, a mobile phone, a wearable device (such as a bracelet or a watch), a vehicle display device, a tablet Computers, TVs, monitors, laptops, digital photo frames or navigators, and any other products or components with display functions.
  • the embodiments of the present disclosure also provide a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer (for example, a display device), the computer can execute the above-mentioned method implementation.
  • a computer for example, a display device
  • the computer-readable storage medium may be integrated on the DDIC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示面板(01)的驱动器件(00)及其驱动方法、显示装置,显示面板(01)的驱动器件(00)包括:电源管理电路(100)和内部驱动电路(200);其中,电源管理电路(100)用于为数字电源端(DVDD)提供第一电源电压,该内部驱动电路(200)用于将电源供应端(VDD)提供的第二电源电压转换为第三电源电压,并为数字电源端(DVDD)提供第三电源电压,数字电源端(DVDD)用于为显示面板(01)提供驱动电压。驱动器件(00)可以实现电源管理电路(100)和内部驱动电路(200)的配合供电,提高了对显示面板(01)进行驱动时的灵活性。

Description

显示面板的驱动器件及其驱动方法、显示装置 技术领域
本公开涉及显示领域,特别涉及一种显示面板的驱动器件及其驱动方法、显示装置。
背景技术
显示装置一般包括显示面板以及显示驱动集成电路(display driver integrated circuit,DDIC),该DDIC用于为显示面板提供驱动电压,以驱动显示面板显示图像。
相关技术中,DDIC可以包括内部驱动电路和数字电路。该内部驱动电路可以在电源供应端的驱动下,为该数字电路提供数字电压,该数字电路可以在该数字电压的驱动下,为显示面板提供驱动电压。
内容
本公开提供了一种显示面板的驱动器件及其驱动方法、显示装置。所述技术方案如下:
一方面,提供了一种显示面板的驱动器件,所述驱动器件包括:
电源管理电路,用于为所述数字电源端提供第一电源电压;
内部驱动电路,用于将电源供应端提供的第二电源电压转换为第三电源电压提供至所述数字电源端,所述数字电源端用于为所述显示面板提供驱动电压。
可选的,所述电源管理电路用于持续为所述数字电源端提供第一电源电压;
所述内部驱动电路用于在所述数字电源端的电压小于参考电压时,将所述电源供应端提供的第二电源电压转换为第三电源电压后提供至所述数字电源端,以及在所述数字电源端的电压不小于所述参考电压时,停止提供电源电压,所述参考电压小于所述数字电源端的额定工作电压。
可选的,所述内部驱动电路还用于检测所述数字电源端的电压是否小于所述参考电压。
可选的,所述内部驱动电路用于在接收到第一使能指令后,检测所述数字电源端的电压是否小于所述参考电压。
可选的,所述额定工作电压与所述参考电压的差值小于或等于0.05伏特。
可选的,所述电源管理电路用于在接收到第二使能指令后,为所述数字电源端提供第一电源电压。
可选的,所述内部驱动电路还与所述电源管理电路连接,所述内部驱动电路还用于向所述电源管理电路发送所述第二使能指令;
可选的,所述内部驱动电路用于在上电后向所述电源管理电路发送第二使能指令。或者,所述内部驱动电路用于在接收到第一使能指令后,向所述电源管理电路发送第二使能指令。
可选的,所述内部驱动电路包括:低压差线性稳压器;
所述低压差线性稳压器的输入端与所述电源供应端连接,所述低压差线性稳压器的输出端和反馈信号端分别与所述数字电源端连接,所述低压差线性稳压器的参考信号端与用于提供所述参考电压的参考电源端连接。
可选的,所述驱动器件还包括:数字电路;
所述数字电路与所述数字电源端连接,用于在所述数字电源端的驱动下,为所述显示面板提供驱动电压。
可选的,所述驱动器件还包括:柔性电路板;
所述电源管理电路位于印制电路板上,所述内部驱动电路位于覆晶薄膜上,所述柔性电路板分别与所述印制电路板和所述覆晶薄膜连接。
另一方面,提供了一种驱动器件的驱动方法,所述方法包括:
通过电源管理电路为数字电源端提供第一电源电压;
通过内部驱动电路将电源供应端提供的第二电源电压转换为第三电源电压后提供至所述数字电源端,所述数字电源端用于为所述显示面板提供驱动电压。
可选的,所述通过电源管理电路为数字电源端提供第一电源电压,包括:通过电源管理电路持续为数字电源端提供第一电源电压;
所述通过内部驱动电路将电源供应端提供的第二电源电压转换为第三电源电压后提供至所述数字电源端,包括:
在所述数字电源端的电压小于参考电压时,通过内部驱动电路将电源供应端提供的第二电源电压转换为第三电源电压后提供至所述数字电源端;
所述方法还包括:在所述数字电源端的电压不小于参考电压时,控制所述内部驱动电路停止提供电源电压。
可选的,通过内部驱动电路将电源供应端提供的第二电源电压转换为第三电源电压后提供至所述数字电源端之前,所述方法还包括:
在接收到第一使能指令后,检测所述数字电源端的电压是否小于所述参考电压。
可选的,所述通过电源管理电路为所述数字电源端提供第一电源电压,包括:
通过所述内部驱动电路向所述电源管理电路发送第二使能指令,驱动所述电源管理电路为所述数字电源端提供第一电源电压。
可选的,所述通过所述内部驱动电路向所述电源管理电路发送第二使能指令,包括:
在所述内部驱动电路在上电后,通过所述内部驱动电路向所述电源管理电路发送第二使能指令;
或者,在接收到第一使能指令后,向所述电源管理电路发送第二使能指令。
又一方面,提供了一种显示装置,所述显示装置包括:显示面板,以及与所述显示面板连接的如上述方面所述的驱动器件。
可选的,所述显示面板为有机发光二极管显示面板。
再一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述计算机可读存储介质在计算机上运行时,使得计算机执行如上述方面所述的驱动方法。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种显示面板的驱动器件的结构示意图;
图2是本公开实施例提供的另一种显示面板的驱动器件的结构示意图;
图3是本公开实施例提供的又一种显示面板的驱动器件的结构示意图;
图4是本公开实施例提供的再一种显示面板的驱动器件的结构示意图;
图5是本公开实施例提供的一种电源管理电路单独供电的示意图;
图6是本公开实施例提供的一种内部驱动电路单独供电的示意图;
图7是本公开实施例提供的一种驱动器件的驱动方法的流程图;
图8是本公开实施例提供的另一种驱动器件的驱动方法的流程图;
图9是本公开实施例提供的一种显示装置的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1是本公开实施例提供的一种显示面板的驱动器件的结构示意图,参考图1,该驱动器件可以包括:电源管理电路100和内部驱动电路200。
该电源管理电路100,用于为该数字电源端DVDD提供第一电源电压。
该内部驱动电路200,用于将该电源供应端VDD提供的第二电源电压转换为第三电源电压,并为该数字电源端DVDD提供第三电源电压。
其中,该电源管理电路100可以与数字电源端DVDD连接,内部驱动电路200可以分别与该数字电源端DVDD和电源供应端VDD连接。例如,该数字电源端DVDD可以通过显示驱动电路(例如DDIC)中的数字电路与显示面板上的各信号线连接,该数字电源端DVDD能够为数字电路提供数字电压(也可以称为逻辑电平),从而驱动该数字电路为该显示面板提供栅极高电平电压VGH和栅极低电平电压VGL等驱动电压,进而驱动该显示面板发光。
本公开实施例提供了一种驱动器件,该驱动器件中的电源管理电路和内部驱动电路均可以为数字电源端提供电源电压,即均可以为数字电源端供电。因此,该驱动器件可以实现电源管理电路和内部驱动电路的配合供电,有效提高了驱动灵活性。
示例的,本公开实施例提供的驱动器件可以实现电源管理电路100单独供电,内部驱动电路200单独供电,以及电源管理电路100和内部驱动电路200同时供电等多种供电方式。本公开实施例以以下两种供电方式为例进行说明:
第一种供电方式:电源管理电路100单独供电。
在该供电方式下,内部驱动电路200停止输出电源电压,即处于停止工作 状态,仅由电源管理电路100为数字电源端DVDD提供第一电源电压。
由于电源供应端VDD为内部驱动电路200提供的第二电源电压通常大于数字电源端DVDD的额定工作电压,内部驱动电路200需要对该第二电源电压进行降压后,为该数字电源端DVDD提供第三电源电压,该第三电源电压可以等于该额定工作电压,因此该内部驱动电路200供电时的功耗相对较大。而电源管理电路100可以直接为数字电源端DVDD提供第一电源电压,该第一电源电压也等于该额定工作电压,因此该电源管理电路100供电时的功耗相对较小。
根据上述分析可知,当由电源管理电路100单独供电时,相比于相关技术中由内部驱动电路200单独供电,可有效降低显示面板的驱动功耗。
第二种供电方式:电源管理电路100和内部驱动电路200同时供电。
在该供电方式下,该电源管理电路100为该数字电源端DVDD提供第一电源电压,同时,该内部驱动电路200在该电源供应端VDD提供的第二电源电压的驱动下,为该数字电源端DVDD提供第三电源电压。
当电源管理电路和内部驱动电路同时供电时,由于电源管理电路的供电能力较强,即电流供应能力较强,因此可以有效分担该内部驱动电路的供电压力,使得内部驱动电路输出较小的电流,而由电源管理电路输出较大的电流,因此相比于内部驱动电路单独供电,由电源管理电路和内部驱动电路同时供电时的驱动功耗也较低。
需要说明的是,除上述供电方式之外,该电源管理电路100和内部驱动电路200还可以交替为数字电源端DVDD供电。或者,其中一个电路可以持续为数字电源端DVDD供电,另一个电路则可以每隔一定的时间间隔,为数字电源端DVDD供电一段时间。相比于相关技术中持续由内部驱动电路200供电,由于可以缩短内部驱动电路200的供电时长或者分担该内部驱动电路200的供电压力,因此也可以降低显示面板的驱动功耗。其中,每个电路的供电时长可以是驱动器件出厂前配置的,也可以是由用户自主设置的。
可选的,由于电源管理电路100的功耗相对较低,因此该电源管理电路100可以用于持续为该数字电源端DVDD提供第一电源电压。即该电源管理电路100可以在开启后,持续为该数字电源端DVDD供电,直至关闭。
该内部驱动电路200则可以用于:检测数字电源端DVDD的电压是否小于参考电压,在数字电源端DVDD的电压小于参考电压时,将电源供应端VDD 提供的第二电源电压转换为第三电源电压后,提供至该数字电源端DVDD,以及在数字电源端DVDD的电压不小于参考电压时,停止提供电源电压。
也即是,在数字电源端DVDD的电压小于参考电压时,该电源管理电路100和内部驱动电路200可以共同为该数字电源端DVDD供电。在该数字电源端DVDD的电压不小于参考电压时,该电源管理电路100可以单独为数字电源端DVDD供电。
其中,该参考电压可以小于该数字电源端DVDD的额定工作电压。该参考电压的电压值可以为驱动器件中预先配置的。例如,可以在驱动器件出厂前配置,即参考电压的电压值可以为固定值。或者,参考电压的电压值可以在驱动器件工作前人为配置,即参考电压的电压值可调。例如,内部驱动电路200可以接收参考电压配置指令,并可以根据该参考电压配置指令中携带的电压值,配置参考电压的电压值。
示例的,该额定工作电压与该参考电压的差值可以小于或等于0.05伏特(V)。额定工作电压与该参考电压的差值可以是指额定工作电压减去该参考电压的差值。例如,该额定工作电压可以为1.2V,该参考电压可以为1.15V。或者,该额定工作电压可以为1.0V,该参考电压可以为0.95V。
在本公开实施例中,该内部驱动电路200与该数字电源端DVDD通常集成在同一个电路中,即两者之间的线路阻抗较小。而电源管理电路100与内部驱动电路200通常为两个独立的电路,即电源管理电路100与数字电源端DVDD分别集成在不同的电路中,因此该电源管理电路100与该数字电源端DVDD之间的线路阻抗较大。
当显示面板显示的画面的颜色较为复杂时,显示面板的负载电流通常较大。例如显示彩图时,显示面板的负载电流一般为100毫安(mA)至200mA。此时,该电源管理电路100与数字电源端DVDD之间的线路阻抗所产生的电阻压降(IR Drop)较大。若单独采用该电源管理电路100为数字电源端DVDD供电,则该数字电源端DVDD的电压会小于或等于参考电压,即该数字电源端DVDD会出现欠压不足的情况,导致显示面板出现花屏现象,严重影响显示效果。
因此在本公开实施例中,当显示面板的负载电流较大使得数字电源端DVDD的电压不大于参考电压时,内部驱动电路200可以和电源管理电路100同时为数字电源端DVDD供电,即可以采用混合供电的方式为该数字电源端 DVDD供电。由于电源管理电路100的驱动能力较强,即电流供应能力较强,因此混合供电时,大部分负载电流由电源管理电路100提供,少部分负载电流由内部驱动电路200提供,即流过内部驱动电路200的电流较小,由此可以有效降低内部驱动电路200的功耗。即相比于内部驱动电路200单独供电,该混合供电的方式的功耗也较低。并且,由于内部驱动电路200能够辅助电源管理电路100为数字电源端DVDD供电,确保该数字电源端DVDD大于或等于参考电压,因此还可以避免电源管理电路100单独供电时,由于电阻压降过大而导致数字电源端DVDD欠压的问题。
当显示面板显示的画面的颜色较为单一时,显示面板的负载电流较小。例如显示灰阶为255的白画面时,显示面板的负载电流一般为50mA至70mA。此时,该电源管理电路100为数字电源端DVDD提供第一电源电压时,该电源管理电路100与数字电源端DVDD之间的线路阻抗所产生的电阻压降(IR Drop)较小,数字电源端DVDD的电压大于参考电压,该数字电源端DVDD为显示面板提供的驱动电压可以确保显示面板的显示效果。
因此在本公开实施例中,当显示面板的负载电流较小使得数字电源端DVDD的电压大于参考电压时,内部驱动电路200可以停止向数字电源端DVDD提供第三电源电压,即内部驱动电路200可以处于停止工作状态。此时,电源管理电路100可以单独为数字电源端DVDD供电,从而能够有效减小显示面板的驱动功耗。
作为本公开实施例的可选实现方式,参考图2,该内部驱动电路200可以包括:低压差线性稳压器(low dropout regulator,LDO)。
该LDO的输入端与该电源供应端VDD连接,该LDO的输出端和反馈信号端分别与该数字电源端DVDD连接,该LDO的参考信号端可以与用于提供该参考电压的参考电源端REF连接。
该LDO内部的误差放大器(error amplifier,error AMP)可以将数字电源端DVDD的电压V DVDD与参考电源端REF的参考电压V REF进行对比。当V DVDD≤V REF时,LDO可以处于正常工作状态,LDO可以对电源供应端VDD提供的第二电源电压进行降压后,向数字电源端DVDD提供第三电源电压。当V DVDD>V REF时,LDO可以处于高阻态(Hi-Z),即该LDO处于停止工作状态,不再向数字电源端DVDD供电。
可选的,电源供应端VDD提供的第二电源电压可以为1.8V,数字电源端DVDD的额定工作电压可以为1.2V。则该LDO正常工作时,可以将该1.8V的第二电源电压降压为1.2V的第三电源电压,并提供至数字电源端DVDD。其中0.6V的压差被该LDO中的晶体管转换为热能而消耗掉,因此其功耗较高。并且,流过该LDO内部的电流越大,该晶体管消耗的功耗就越大。
根据上文的分析可知,由于该内部驱动电路200与电源管理电路100混合供电时,流过内部驱动电路200内部的电流较小,因此可以有效降低该内部驱动电路200中LDO的功耗。
可选的,该电源供应端VDD的电压也可以是由电源管理电路100提供的,且该电源供应端VDD也可以称为驱动器件的内部输入输出(input/output,IO)电压端,其提供的第二电源电压也可以称为内部IO电压。
作为一种可选的实现方式,该内部驱动电路200还可以用于:在接收到第一使能指令后,检测该数字电源端DVDD的电压是否小于该参考电压,进而再根据检测的结果确定是否需要向数字电源端DVDD供电。
该内部驱动电路200还可以在接收到该第一使能指令前,停止提供电源电压,或者在该电源供应端VDD提供的第二电源电压的驱动下,为该数字电源端DVDD提供第三电源电压。
也即是,在接收到该第一使能指令前,内部驱动电路200可以持续保持停止工作状态或者正常工作状态。当接收到第一使能指令后,该内部驱动电路200再根据数字电源端DVDD的电压调整其工作状态。
其中,该第一使能指令可以是操作人员(例如用户)通过预设操作触发的。该预设操作可以为按压指定按钮或者点击指定图标的操作。通过第一使能指令触发内部驱动电路开启其在两种工作状态之间切换的功能,可以有效提高驱动的灵活性。
作为另一种可选的实现方式,该内部驱动电路200可以在上电后,实时检测该数字电源端DVDD的电压是否小于该参考电压,进而再根据检测的结果确定是否需要向数字电源端DVDD供电。
也即是,该内部驱动电路200上电后即可自动开启其在两种工作状态之间切换的功能,而无需该第一使能指令触发。
在本公开实施例中,电源管理电路100可以用于在接收到第二使能指令后, 为数字电源端DVDD提供第一电源电压。电源管理电路100在接收到该第二使能指令之前,可以不为数字电源端DVDD提供第一电源电压。
可选的,参考图3,该内部驱动电路200还可以与该电源管理电路100连接。例如,该内部驱动电路200可以与该电源管理电路100的使能引脚连接。该内部驱动电路200还可以向该电源管理电路100发送第二使能指令。该电源管理电路100可以在接收到该第二使能指令后,为该数字电源端DVDD提供第一电源电压。即该电源管理电路100可以在该内部驱动电路200的指示下开始为数字电源端DVDD供电。
在本公开实施例中,该内部驱动电路200可以在上电后即向该电源管理电路100发送第二使能指令,以指示该电源管理电路100工作。
或者,该内部驱动电路200还可以在接收到该第一使能指令后,再向该电源管理电路100发送第二使能指令。即在该内部驱动电路200接收到该第一使能指令之前,可以由内部驱动电路200单独为数字电源端DVDD供电。
参考图2和图3,该驱动器件还可以包括:数字电路201,该数字电路201可以分别与该数字电源端DVDD和显示面板(图2和图3中均未示出)连接,该数字电路201用于在该数字电源端DVDD的驱动下,为该显示面板提供驱动电压。
其中,该内部驱动电路200和数字电路201可以均为显示驱动电路20的内部电路。该显示驱动电路20可以为DDIC。相应的,该数字电源端DVDD可以为该DDIC上的一个引脚。
可选的,该电源管理电路100也可以为集成电路,即该电源管理电路100可以为(power management IC,PMIC)。
图4是本公开实施例提供的又一种驱动器件的结构示意图。参考图4,该驱动器件可以包括:印制电路板(printed circuit board,PCB)001、覆晶薄膜(chip on film,COF)002以及柔性电路板(flexible printed circuit,FPC)003。
该电源管理电路100位于PCB 001上,该内部驱动电路200位于COF 002上,例如该DDIC 20集成在COF 002上。该FPC 003分别与该PCB 01和该COF002连接。
其中,该PCB 001可以为显示装置中的主板,主要用于为显示装置中的各器件提供电源(由电源管理电路100提供)以及发送通信指令。FPC 003上可以 设置有DDIC 20的外围电路及存储器,该存储器可以为闪存(Flash)。
参考图4可以看出,电源管理电路100与数字电源端DVDD之间,存在PCB001的线路阻抗R 1,FPC 003的线路阻抗R 2以及COF 002的线路阻抗R 3。该电源管理电路100与数字电源端DVDD之间的IR Drop较大,当显示面板的负载电流较大时,会使得数字电源端DVDD处的电压出现欠压不足的情况。经过测量,若数字电源端DVDD的额定工作电压为1.2V,则当该数字电源端DVDD的电压跌至1.15V以下时,显示面板会出现花屏现象,严重影响显示效果。
因此,在本公开实施例中,当数字电源端DVDD的额定工作电压为1.2V时,可以将参考电压设置为1.15V,由此使得内部驱动电路200能够在数字电源端DVDD的电压小于1.15V时,与电源管理电路100共同为数字电源端DVDD供电,避免该数字电源端DVDD处的电压出现欠压不足的情况。
本公开实施例以6.39英寸的有源矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)为例,对三种不同供电方式下,该AMOLED显示面板的驱动功耗进行了测试,测试结果如表1所示。该三种供电方式包括:如图5所示的电源管理电路100单独供电,如图6所示的内部驱动电路200单独供电,以及本公开实施例提供的驱动器件供电。其中,本公开实施例提供的驱动器件供电是指:电源管理电路100持续为数字电源端DVDD供电,内部驱动电路200在该数字电源端DVDD的电压小于参考电压时,为数字电源端DVDD供电,在数字电源端DVDD的电压不小于参考电压时,停止为数字电源端DVDD供电。
表1
Figure PCTCN2019081953-appb-000001
参考表1,当驱动该AMOLED显示面板显示白画面(即每个像素的灰阶均为255)时,在电源管理电路100单独供电的供电方式下,电源供应端VDD提供的第二电源电压为1.8V,内部驱动电路200停止工作,电源供应端VDD输出的电流I 1为0.6mA。电源管理电路100为数字电源端DVDD提供的第一电源电压为1.2V,其输出的电流I 2为66.0mA。此时,显示面板的驱动功耗P为80.28 毫瓦(mW)。
采用本公开实施例提供的驱动器件供电时,由于显示白画面时的负载电流较小,数字电源端DVDD的电压不小于参考电压,故内部驱动电路200停止提供电源电压,电源管理电路100单独供电,显示面板的驱动功耗P为80.28mW。
采用内部驱动电路200单独供电时,电源供应端VDD提供的第二电源电压为1.8V,其输出的电流I 1为64.0mA。电源管理电路100不再为数字电源端DVDD提供电压,其输出的电流I 2为0,此时显示面板的驱动功耗P为115.2mW。
当驱动该AMOLED显示面板显示彩图时,在电源管理电路100单独供电的供电方式下,电源供应端VDD提供的第二电源电压为1.8V,其输出的电流I 1为0.6mA,电源管理电路100为数字电源端DVDD提供的第一电源电压为1.2V,其输出的电流I 2为107.0mA,显示面板的驱动功耗P为129.48mW。
采用本公开实施例提供的驱动器件供电时,由于显示面板显示彩图时的负载电流较大,数字电源端DVDD的电压小于参考电压,故需要通过内部驱动电路200和电源管理电路100混合供电。由于电源管理电路100的驱动能力较强,即电流供应能力较强,因此如表1所示,混合供电时,内部驱动电路200输出的电流I 1为9.1mA,电源管理电路100输出的电流I 2为99.0mA,显示面板的驱动功耗P为135.18mW。
采用内部驱动电路200单独供电时,电源供应端VDD提供的第二电源电压为1.8V,其输出的电流I 1为105.0mA,电源管理电路100不再为数字电源端DVDD提供电压,其输出的电流I 2为0,此时显示面板的驱动功耗P为189mW。
根据上述表1所示的测试结果可知,驱动显示面板显示白画面时,采用本公开实施例提供的驱动器件供电时的驱动功耗,与电源管理电路100单独供电时的驱动功耗相同,但比内部驱动电路200单独供电时的驱动功耗降低了34.92mW。
显示面板在显示彩图时,采用本公开实施例提供的驱动器件供电时的驱动功耗,比电源管理电路100单独供电时的驱动功耗增加了5.7mW,但比内部驱动电路200单独供电时的驱动功耗降低了53.82mW。并且,与电源管理电路100单独供电的方案相比,本公开实施例提供的混合供电的方案能确保数字电源端DVDD的电压的稳定性,从而有效避免显示面板出现花屏现象。
综上所述,本公开实施例提供了一种新的驱动器件,该驱动器件中的电源 管理电路和内部驱动电路均可以为数字电源端提供电源电压,即均可以为数字电源端供电。因此,该驱动器件可以实现电源管理电路和内部驱动电路的配合供电,有效提高了驱动灵活性。
其中,当该驱动器件中的内部驱动电路停止工作,由电源管理电路单独供电时,相比于相关技术中由内部驱动电路单独供电,可以有效降低显示面板的驱动功耗。当该驱动器件中的电源管理电路和内部驱动电路同时供电时,由于电源管理电路的供电能力较强,即电流供应能力较强,因此可以有效分担该内部驱动电路的供电压力,使得内部驱动电路输出较小的电流,而由电源管理电路输出较大的电流,因此相比于内部驱动电路单独供电,由电源管理电路和内部驱动电路同时供电时的功耗也较低。并且,电源管理电路和内部驱动电路同时供电时,还可以避免数字电源端出现欠压不足的情况,进而可以有效避免显示面板出现花屏现象。
图7是本公开实施例提过的一种驱动器件的驱动方法的流程图。该驱动方法可以应用于上述实施例所提供的驱动器件中,例如可以应用于图1至图4任一所示的驱动器件。参考图7,该方法可以包括:
步骤501、通过电源管理电路为数字电源端提供第一电源电压。
该数字电源端用于为该显示面板提供驱动电压。
步骤502、通过内部驱动电路将电源供应端提供的第二电源电压转换为第三电源电压提供至该数字电源端。
本公开实施例提供的驱动器件的驱动方法,可以通过电源管理电路为数字电源端提供第一电源电压,并可以通过内部驱动电路为数字电源端提供第三电源电压。由于可以通过电源管理电路和内部驱动电路配合供电,因此有效提高了驱动灵活性。
图8是本公开实施例提过的一种驱动器件的驱动方法的流程图。该驱动方法可以应用于上述实施例所提供的驱动器件中,例如可以应用于图1至图4任一所示的驱动器件。参考图8,该方法可以包括:
步骤601、接收第一使能指令。
其中,该第一使能指令可以是操作人员(例如用户)通过预设操作触发的。 该预设操作可以为按压指定按钮或者点击指定图标的操作。驱动器件在接收到第一使能指令后,可以执行步骤602和步骤605。
示例的,驱动器件可以通过内部驱动电路接收该第一使能指令。
步骤602、检测数字电源端的电压是否小于参考电压。
当该数字电源端的电压小于参考电压时,执行步骤603;在该数字电源端的电压不小于参考电压时,执行步骤604。示例的,驱动器件可以通过内部驱动电路检测数字电源端的电压是否小于参考电压。
可选的,驱动器件在接收到该第一使能指令前,可以执行下述步骤603或者步骤604。也即是,可以控制内部驱动电路处于正常工作状态,或者控制该内部驱动电路处于停止工作状态。
步骤603、通过内部驱动电路将电源供应端提供的第二电源电压转换为第三电源电压提供至该数字电源端。
当该数字电源端的电压小于参考电压时,说明该数字电源端存在欠压不足的情况,因此驱动器件可以在电源供应端提供的第二电源电压的驱动下,通过内部驱动电路将该第二电源电压转换为第三电源电压,并为该数字电源端提供第三电源电压。由此可以实现内部驱动电路和电源管理电路混合供电,确保数字电源端的电压大于或等于参考电压,进而能够正常驱动数字电路,使得数字电路可以正常驱动显示面板,避免显示面板出现花屏现象。
步骤604、控制该内部驱动电路停止提供电源电压。
在该数字电源端的电压不小于参考电压时,说明该数字电源端不存在欠压不足的情况,电源管理电路单独供电也可以确保正常的显示效果。故此时驱动器件可以控制该内部驱动电路停止提供电源电压,由电源管理电路单独为数字电源端供电,以有效降低显示面板的驱动功耗。
步骤605、向该电源管理电路发送第二使能指令,驱动该电源管理电路为该数字电源端提供第一电源电压。
驱动器件在接收到第一使能指令后,可以向该电源管理电路发送第二使能指令,从而驱动该电源管理电路为该数字电源端提供第一电源电压。
或者,驱动器件也可以在该内部驱动电路上电后,向该电源管理电路发送第二使能指令。
示例的,该驱动器件可以控制内部驱动电路向该电源管理电路发送第二使 能指令。
需要说明的是,在本公开实施例中,驱动器件中的某个部件上电可以是指电源管理电路为该部件提供供电。驱动器件中的电路为数字电源端提供电源电压可以是指电路在该数字电源端和地端(例如VSS信号端)之间加载电源电压。数字电源端为显示面板提供驱动电压可以是指数字电源端在该显示面板和地端之间加载驱动电压。
还需要说明的是,本公开实施例提供的驱动方法的步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减。例如步骤601可以在步骤602之前执行,或者与步骤602同步执行。又或者,步骤601也可以根据情况删除,驱动器件上电后可以直接执行步骤605。再或者,步骤605中发送第二使能指令的步骤也可以根据情况删除,即电源管理电路可以在上电后,持续为数字电源端提供第一电源电压。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本公开实施例提供的驱动器件的驱动方法,可以通过电源管理电路为数字电源端提供第一电源电压,并可以通过内部驱动电路为数字电源端提供第三电源电压。由于可以通过电源管理电路和内部驱动电路配合供电,因此有效提高了驱动灵活性。
其中,当控制内部驱动电路停止工作,并通过电源管理电路单独供电时,相比于相关技术中通过内部驱动电路单独供电,可以有效降低显示面板的驱动功耗。当通过电源管理电路和内部驱动电路同时供电时,由于电源管理电路的供电能力较强,即电流供应能力较强,因此该电源管理电路可以有效分担该内部驱动电路的供电压力,使得内部驱动电路输出较小的电流,而由电源管理电路输出较大的电流。因此相比于通过内部驱动电路单独供电,通过电源管理电路和内部驱动电路同时供电时的功耗也较低。并且,通过电源管理电路和内部驱动电路同时供电时,还可以避免数字电源端出现欠压不足的情况,进而可以避免显示面板出现花屏现象。
图9是本公开实施例提供的一种显示装置的结构示意图,参考图9,该显示装置可以包括:显示面板01,以及与该显示面板01连接的驱动器件00。该驱 动器件00可以为如图1至图4任一所示的驱动器件00。
可选的,该显示面板01可以为有机发光二极管(organic light-emitting diode,OLED)显示面板。例如,该显示面板01可以为AMOLED显示面板。该AMOLED显示面板作为自发光器件,同时具备响应速度快,功耗较低,色彩逼真及可弯折等优点,可以广泛应用于不同类型的显示装置。
可选的,在本公开实施例中,该显示装置可以为:液晶显示装置、电子纸、OLED显示装置、AMOLED显示装置、手机、可穿戴设备(例如手环或者手表)、车载显示设备、平板电脑、电视机、显示器、笔记本电脑、数码相框或导航仪等任何具有显示功能的产品或部件。
本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当计算机可读存储介质在计算机(例如显示装置)上运行时,使得计算机执行如上述方法实施例所述的驱动方法。
示例的,该计算机可读存储介质可以集成在DDIC上。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的驱动方法的具体工作过程,可以参考前述装置实施例中的对应描述,在此不再赘述。
以上所述仅为本公开的示例性实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种显示面板的驱动器件,包括:
    电源管理电路,用于为数字电源端提供第一电源电压;
    内部驱动电路,用于将电源供应端提供的第二电源电压转换为第三电源电压提供至所述数字电源端;
    其中,所述数字电源端用于为所述显示面板提供驱动电压。
  2. 根据权利要求1所述的驱动器件,其中,
    所述内部驱动电路用于在所述数字电源端的电压小于参考电压时,将电源供应端提供的第二电源电压转换为第三电源电压提供至所述数字电源端,以及在所述数字电源端的电压不小于所述参考电压时,停止提供电源电压;
    其中,所述参考电压小于所述数字电源端的额定工作电压。
  3. 根据权利要求2所述的驱动器件,其中,所述内部驱动电路还用于检测所述数字电源端的电压是否小于所述参考电压。
  4. 根据权利要求3所述的驱动器件,其中,所述内部驱动电路用于在接收到第一使能指令后,检测所述数字电源端的电压是否小于所述参考电压。
  5. 根据权利要求2至4任一所述的驱动器件,其中,所述额定工作电压与所述参考电压的差值小于或等于0.05伏特。
  6. 根据权利要求1至5任一所述的驱动器件,其中,
    所述电源管理电路用于在接收到第二使能指令后,为所述数字电源端提供第一电源电压。
  7. 根据权利要求1至6任一所述的驱动器件,其中,所述内部驱动电路还与所述电源管理电路连接;
    所述内部驱动电路还用于向所述电源管理电路发送所述第二使能指令。
  8. 根据权利要求7所述的驱动器件,其中,所述内部驱动电路用于在上电后向所述电源管理电路发送所述第二使能指令。
  9. 根据权利要求7所述的驱动器件,其中,所述内部驱动电路用于在接收到第一使能指令后,向所述电源管理电路发送所述第二使能指令。
  10. 根据权利要求1至9任一所述的驱动器件,其中,所述内部驱动电路包括:低压差线性稳压器;
    所述低压差线性稳压器的输入端与所述电源供应端连接,所述低压差线性稳压器的输出端和反馈信号端分别与所述数字电源端连接,所述低压差线性稳压器的参考信号端与用于提供所述参考电压的参考电源端连接。
  11. 根据权利要求1至10任一所述的驱动器件,包括:数字电路;
    所述数字电路与所述数字电源端连接,用于在所述数字电源端的驱动下,为所述显示面板提供驱动电压。
  12. 根据权利要求1至11任一所述的驱动器件,包括:柔性电路板;
    所述电源管理电路位于印制电路板上,所述内部驱动电路位于覆晶薄膜上,所述柔性电路板分别与所述印制电路板和所述覆晶薄膜连接。
  13. 一种驱动器件的驱动方法,包括:
    通过电源管理电路为数字电源端提供第一电源电压;
    通过内部驱动电路将电源供应端提供的第二电源电压转换为第三电源电压后提供至所述数字电源端;
    所述数字电源端用于为所述显示面板提供驱动电压。
  14. 根据权利要求13所述的方法,其中,所述通过内部驱动电路将电源供应端提供的第二电源电压转换为第三电源电压后提供至所述数字电源端包括:
    在所述数字电源端的电压小于参考电压时,通过内部驱动电路将电源供应 端提供的第二电源电压转换为第三电源电压后提供至所述数字电源端;
    所述方法还包括:在所述数字电源端的电压不小于参考电压时,控制所述内部驱动电路停止提供电源电压;
    其中,所述参考电压小于所述数字电源端的额定工作电压。
  15. 根据权利要求14所述的方法,其中,在所述通过内部驱动电路将电源供应端提供的第二电源电压转换为第三电源电压后提供至所述数字电源端之前,所述方法还包括:
    在接收到第一使能指令后,检测所述数字电源端的电压是否小于所述参考电压。
  16. 根据权利要求13至15任一所述的方法,其中,所述通过电源管理电路为所述数字电源端提供第一电源电压,包括:
    通过所述内部驱动电路向所述电源管理电路发送第二使能指令,驱动所述电源管理电路为所述数字电源端提供第一电源电压。
  17. 根据权利要求16所述的方法,其中,所述通过所述内部驱动电路向所述电源管理电路发送第二使能指令,包括:
    在所述内部驱动电路在上电后,通过所述内部驱动电路向所述电源管理电路发送第二使能指令;
    或者,在接收到第一使能指令后,向所述电源管理电路发送第二使能指令。
  18. 一种显示装置,包括:显示面板,以及与所述显示面板连接的如权利要求1至12任一所述的驱动器件。
  19. 根据权利要求18所述的显示装置,其中,所述显示面板为有机发光二极管显示面板。
  20. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述计算机可读存储介质在计算机上运行时,使得计算机执行如权利要求 13至17任一所述的驱动方法。
PCT/CN2019/081953 2019-04-09 2019-04-09 显示面板的驱动器件及其驱动方法、显示装置 WO2020206615A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/649,374 US11455949B2 (en) 2019-04-09 2019-04-09 Drive device for display panel, drive method thereof and display apparatus
PCT/CN2019/081953 WO2020206615A1 (zh) 2019-04-09 2019-04-09 显示面板的驱动器件及其驱动方法、显示装置
EP19858693.5A EP3955240A1 (en) 2019-04-09 2019-04-09 Driving device of display panel and driving method therefor, and display apparatus
CN201980000471.3A CN112136174B (zh) 2019-04-09 2019-04-09 显示面板的驱动器件及其驱动方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081953 WO2020206615A1 (zh) 2019-04-09 2019-04-09 显示面板的驱动器件及其驱动方法、显示装置

Publications (1)

Publication Number Publication Date
WO2020206615A1 true WO2020206615A1 (zh) 2020-10-15

Family

ID=72752193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081953 WO2020206615A1 (zh) 2019-04-09 2019-04-09 显示面板的驱动器件及其驱动方法、显示装置

Country Status (4)

Country Link
US (1) US11455949B2 (zh)
EP (1) EP3955240A1 (zh)
CN (1) CN112136174B (zh)
WO (1) WO2020206615A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203122B (zh) * 2021-11-30 2023-03-14 维沃移动通信有限公司 显示屏的驱动电路、电子设备及驱动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035174A (zh) * 2011-09-29 2013-04-10 乐金显示有限公司 有机发光二极管显示器
CN105679230A (zh) * 2016-04-25 2016-06-15 京东方科技集团股份有限公司 一种显示驱动电路、其驱动方法及显示装置
CN105741785A (zh) * 2014-12-29 2016-07-06 乐金显示有限公司 数据驱动器和使用该数据驱动器的显示装置
CN107038996A (zh) * 2017-04-24 2017-08-11 上海天马有机发光显示技术有限公司 一种有机电致发光显示面板的供电方法及显示装置
KR20180036138A (ko) * 2016-09-30 2018-04-09 엘지디스플레이 주식회사 제어 인쇄회로기판 및 이를 포함하는 표시 장치
CN109448621A (zh) * 2018-10-19 2019-03-08 深圳市华星光电技术有限公司 一种驱动电路及显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4275166B2 (ja) * 2006-11-02 2009-06-10 Necエレクトロニクス株式会社 データドライバ及び表示装置
JP5538012B2 (ja) 2010-03-18 2014-07-02 シチズンホールディングス株式会社 工作機械
TWI440401B (zh) * 2011-11-04 2014-06-01 Au Optronics Corp 具交錯驅動機制之光源系統
KR101974024B1 (ko) * 2012-11-26 2019-05-02 온세미컨덕터코리아 주식회사 저전압 차단 회로, 이를 포함하는 스위치 제어 회로 및 전력 공급 장치
KR101610008B1 (ko) * 2012-12-31 2016-04-07 엘지디스플레이 주식회사 전원 공급 장치 및 이를 포함하는 표시 장치
JP6613584B2 (ja) * 2015-03-18 2019-12-04 セイコーエプソン株式会社 電気光学装置、表示ドライバー及び電子機器
CN110546847B (zh) * 2017-03-07 2024-08-13 伏特技术有限公司 具有电压调节装置的电池
US10216210B2 (en) * 2017-03-23 2019-02-26 O2Micro Inc. Dual input power management method and system
CN107731186B (zh) * 2017-10-31 2020-07-31 京东方科技集团股份有限公司 一种控制电路、控制方法及显示装置
CN109272940B (zh) * 2018-11-15 2020-08-07 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示基板
US10802523B2 (en) * 2019-03-07 2020-10-13 Semiconductor Components Industries, Llc System and method for controlling a low-dropout regulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035174A (zh) * 2011-09-29 2013-04-10 乐金显示有限公司 有机发光二极管显示器
CN105741785A (zh) * 2014-12-29 2016-07-06 乐金显示有限公司 数据驱动器和使用该数据驱动器的显示装置
CN105679230A (zh) * 2016-04-25 2016-06-15 京东方科技集团股份有限公司 一种显示驱动电路、其驱动方法及显示装置
KR20180036138A (ko) * 2016-09-30 2018-04-09 엘지디스플레이 주식회사 제어 인쇄회로기판 및 이를 포함하는 표시 장치
CN107038996A (zh) * 2017-04-24 2017-08-11 上海天马有机发光显示技术有限公司 一种有机电致发光显示面板的供电方法及显示装置
CN109448621A (zh) * 2018-10-19 2019-03-08 深圳市华星光电技术有限公司 一种驱动电路及显示装置

Also Published As

Publication number Publication date
CN112136174B (zh) 2023-07-21
US20210241685A1 (en) 2021-08-05
EP3955240A1 (en) 2022-02-16
CN112136174A (zh) 2020-12-25
US11455949B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
US10523122B2 (en) Power supply apparatus and display apparatus including the same
KR101323493B1 (ko) 유기발광다이오드 표시소자
KR102469801B1 (ko) 유기 발광 디스플레이 장치의 소비전력 감소를 위한 구동전압 설정 방법
CN106297673B (zh) 像素、有机发光显示设备和有机发光显示设备的驱动方法
TWI444974B (zh) 有機發光二極體顯示裝置及其低功率驅動方法
US7212187B2 (en) Power control apparatus for a display device and method of controlling the same
WO2020248762A1 (zh) 供电控制电路、供电控制方法和显示装置
KR101539593B1 (ko) 표시 장치
US10332452B2 (en) OLED panel and power driving system associated to same
JP2007316639A (ja) 画素およびディスプレイパネル
US10748488B2 (en) Display device and a method for driving the same
US10347186B2 (en) Display panel driving unit, driving method thereof, and display device including the same
US20220215803A1 (en) Display device and power setting method thereof
WO2022252627A1 (zh) 电源电路、驱动装置和显示装置
WO2020206615A1 (zh) 显示面板的驱动器件及其驱动方法、显示装置
KR102337377B1 (ko) 전력관리 집적회로, 유기발광표시장치 및 그 구동방법
KR102597749B1 (ko) 표시장치
CN110364105B (zh) 显示设备和用于驱动该显示设备的方法
KR102339651B1 (ko) 유기발광다이오드 표시장치
US20240046868A1 (en) Display device and method of driving the same
KR20190067489A (ko) 표시 장치 및 표시 장치의 제어 방법
KR20240092270A (ko) 표시 장치
CN115188793A (zh) 显示面板、电源管理方法及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019858693

Country of ref document: EP

Effective date: 20211109