WO2020203872A1 - セパレータ材料および非水系電気化学デバイス - Google Patents

セパレータ材料および非水系電気化学デバイス Download PDF

Info

Publication number
WO2020203872A1
WO2020203872A1 PCT/JP2020/014274 JP2020014274W WO2020203872A1 WO 2020203872 A1 WO2020203872 A1 WO 2020203872A1 JP 2020014274 W JP2020014274 W JP 2020014274W WO 2020203872 A1 WO2020203872 A1 WO 2020203872A1
Authority
WO
WIPO (PCT)
Prior art keywords
atmospheric pressure
separator material
electrolyte composition
mass
thin film
Prior art date
Application number
PCT/JP2020/014274
Other languages
English (en)
French (fr)
Inventor
裕之 米丸
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2021512058A priority Critical patent/JPWO2020203872A1/ja
Publication of WO2020203872A1 publication Critical patent/WO2020203872A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator material and a non-aqueous electrochemical device using the separator material.
  • primary batteries such as lithium primary batteries
  • non-aqueous secondary batteries such as lithium ion secondary batteries, lithium metal secondary batteries, sodium ion secondary batteries, potassium ion secondary batteries, magnesium secondary batteries, aluminum secondary batteries, etc.
  • Solar batteries such as dye-sensitized solar cells
  • Capsules such as electric double layer capacitors and lithium ion capacitors
  • Electrochromic display devices Electrochemical light emitting elements
  • Electrochemical double layer transistors In non-aqueous electrochemical devices such as electrochemical actuators
  • a separator is used as a member for separating the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode.
  • Patent Document 1 comprises an electrolytic solution composed of a mixture of ethylene carbonate, dimethyl sulfone and lithium tetrafluoroborate (LiBF 4 ), and a glass fiber filter (product name: Whatman (registered trademark), thickness: 675 ⁇ m).
  • LiBF 4 dimethyl sulfone and lithium tetrafluoroborate
  • a lithium ion secondary battery including a separator is disclosed.
  • the non-aqueous electrochemical device is hard to burn and is hard to burn even when it is ignited from the inside due to abnormal heat generation or the like, or when it is caught in a fire and ignited from the outside. It is required that there is little leakage of substances to the outside.
  • an object of the present invention is to provide a technique for obtaining a non-aqueous electrochemical device that is hard to burn and has little leakage of substances to the outside even when ignited from the inside or the outside.
  • the present inventor uses a separator material obtained by impregnating a porous thin film material having a predetermined property with an electrolyte composition having a predetermined composition, from the inside or the outside.
  • a non-aqueous electrochemical device having excellent safety can be obtained even when ignited, and completed the present invention.
  • the present invention aims to advantageously solve the above problems, and the separator material of the present invention comprises impregnating a porous thin film material having a thickness of 300 ⁇ m or less with an electrolyte composition.
  • the electrolyte composition contains at least one ionic substance and an organic composition, and is liquid at atmospheric pressure of 100 ° C., and the organic composition has an atmospheric pressure of 5 ° C. It is characterized in that it contains a compound that is solid below in a proportion of 80% by mass or more, and the content ratio of a low boiling point organic compound having a boiling point of less than 130 ° C. under atmospheric pressure is 0% by mass or more and 20% by mass or less.
  • the porous thin film material having the above-mentioned predetermined thickness is impregnated with the electrolyte composition having the above-mentioned predetermined composition and properties, the combustibility is low and the porosity such as perforation due to heating is impregnated. It is possible to obtain a separator material in which the thin film material is less likely to be damaged and the substance is less likely to leak to the outside even when the exterior is destroyed by ignition or the like.
  • the "thickness" of the porous thin film material refers to the thickness measured in accordance with JIS K7130. Further, in the present invention, the "boiling point" can be measured by boiling under standard atmospheric pressure to reflux and measuring the recondensation temperature of steam with a thermometer.
  • the organic composition preferably contains two or more kinds of compounds that are solid at atmospheric pressure at a temperature of 5 ° C., and more preferably three or more kinds. This is because the more types of compounds that are solid under atmospheric pressure at a temperature of 5 ° C., the easier it is for the ionic substance to dissolve and the better the performance of the electrolyte composition.
  • the organic composition further contains a flame retardant. If the organic composition contains a flame retardant, the separator material can be made more difficult to burn.
  • the electrolyte composition further contains a polymer component. If the electrolyte composition contains a polymer component, the separator material can be made more difficult to burn.
  • the “polymer component” refers to a component having a weight average molecular weight of 10,000 or more measured in accordance with JIS K7252.
  • the porous thin film material has a melting point. If the porous thin film material is melted by heating, the separator material can be suppressed from burning.
  • nonflammable fine particles are attached to the surface of the porous thin film material. If a porous thin film material having nonflammable fine particles adhered to the surface is used, the separator material can be made more difficult to burn.
  • the electrolyte composition preferably has an ionic conductivity of 1.0 ⁇ 10 -4 S / cm or more at a temperature of ⁇ 20 ° C.
  • ionic conductivity refers to the ionic conductivity measured by the AC method, and the sample is placed on two parallel plates made of stainless steel in a constant temperature bath controlled at a measurement temperature of ⁇ 1 ° C. It can be obtained by reciprocaling the volume eigenresistance calculated from the arc diameter of the Nyquist plot obtained by applying an AC in the range of 10 to 100 mV.
  • the content ratio of the organic compound which is a liquid at atmospheric pressure of 40 ° C. is preferably 0% by mass or more and 20% by mass or less.
  • the separator material can be made more difficult to burn.
  • the present invention is intended to advantageously solve the above problems, and the non-aqueous electrochemical device of the present invention is characterized by comprising any of the above-mentioned separator materials.
  • the non-aqueous electrochemical device of the present invention is characterized by comprising any of the above-mentioned separator materials.
  • a non-aqueous electrochemical device that is hard to burn and has little material leakage to the outside can be obtained even when ignited from the inside or the outside.
  • the separator material of the present invention is not particularly limited, and is, for example, a primary battery such as a lithium primary battery; a lithium ion secondary battery, a lithium metal secondary battery, a sodium ion secondary battery, a potassium ion secondary battery, and a magnesium secondary battery.
  • a primary battery such as a lithium primary battery
  • a lithium ion secondary battery such as a lithium metal secondary battery
  • a sodium ion secondary battery such as a potassium ion secondary battery
  • a magnesium secondary battery such as magnesium secondary battery.
  • Non-aqueous secondary batteries such as secondary batteries and aluminum secondary batteries; solar cells such as dye-sensitized solar batteries; capacitors such as electric double layer capacitors and lithium ion capacitors; electrochromic display devices; electrochemical light emitting elements; electric secondary batteries Multi-layer transistor; Can be used for non-aqueous electrochemical devices such as electrochemical actuators.
  • the separator material of the present invention can be suitably used for a non-aqueous secondary battery, particularly a lithium ion secondary battery.
  • the separator material of the present invention has low flammability, and even if the exterior is destroyed by ignition or the like, the substance is unlikely to leak to the outside. Further, the non-aqueous electrochemical device of the present invention is difficult to burn even when ignited from the inside or the outside, and there is little leakage of substances to the outside.
  • the separator material of the present invention is a porous thin film material having a thickness of 300 ⁇ m or less impregnated with an electrolyte composition.
  • the porous thin film material of the separator material of the present invention is not particularly limited, and for example, pores such as a polyolefin porous film, a polyolefin non-woven fabric, a fluororesin porous film, paper, a cellulose non-woven fabric, an aramid non-woven fabric, and a glass fiber filter can be formed. A large number of thin film materials can be used.
  • the porous thin film material needs to have a thickness of 300 ⁇ m or less, preferably 200 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • a thickness of the porous thin film material exceeds 300 ⁇ m, it becomes easy to burn and the substance easily leaks to the outside.
  • the thickness of the porous thin film material is not more than the above upper limit value, a separator material having low flammability and less likely to leak substances to the outside can be obtained.
  • the flammability of the separator material is lowered by setting the thickness of the porous thin film material to 300 ⁇ m or less, the holding amount of the electrolyte composition is reduced and the movement of the electrolyte composition is suppressed. It is presumed that this is because the electrolyte composition can be prevented from contributing to combustion.
  • the porous thin film material preferably has a melting point, and more preferably the melting start temperature is 100 ° C. or higher and 400 ° C. or lower. If the end of the porous thin film material is melted by heating and loses its porous shape, the porous thin film material becomes the core and suppresses the combustion of the separator material when ignited from the inside or outside of the electrochemical device. Can be done.
  • the "melting start temperature” can be obtained from the melting peak when the temperature is raised at 3 ° C./min by differential scanning calorimetry (DSC).
  • the surface of the porous thin film material is preferably nonflammable fine particles, and more preferably nonflammable fine particles are attached to the surface of a portion other than the outer edge portion of the porous thin film material. If nonflammable fine particles are attached to the surface, the separator material can be made more difficult to burn.
  • non-combustible means that it does not ignite or ignite even when heated to 800 ° C.
  • the nonflammable fine particles are not particularly limited, and examples thereof include inorganic fine particles such as silica fine particles and alumina fine particles, and fine particles of oxides, sulfates, and carbonates of other metals.
  • the particle size of the fine particles is not particularly limited, and is preferably, for example, 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the "particle diameter" can be measured according to JIS K8825.
  • the porous thin film material may be hydrophilized.
  • the hydrophilization treatment can enhance the wettability of the electrolyte composition.
  • the method for hydrophilizing the porous thin film material is not particularly limited, and for example, a corona treatment, a plasma treatment, a surfactant treatment, a hydrophilic polymer coating treatment, an inorganic filler addition, or the like is used. be able to.
  • the electrolyte composition contains at least one ionic substance and an organic composition containing a predetermined compound in a predetermined ratio, and may optionally further contain a polymer component and / or an additive.
  • the electrolyte composition of the present invention needs to be liquid under atmospheric pressure at a temperature of 100 ° C.
  • the ionic substance any ionic substance depending on the type of ions used in the electrochemical reaction in the non-aqueous electrochemical device in which the separator material is used can be used.
  • the blending amount of the ionic substance can be appropriately set according to the type of the non-aqueous electrochemical device.
  • the concentration of the ionic substance in the electrolyte composition is preferably 0.01 mol / L or more and less than 2.5 mol / L from the viewpoint of setting the viscosity range in which the electrolyte composition is easy to handle.
  • the concentration of the ionic substance in the electrolyte composition is preferably 2.5 mol / L or more.
  • the ionic substance is not particularly limited, and for example, LiBF 4 or LiPF. 6.
  • Lithium salts such as lithium bis (oxalate) borate, lithium bis (fluorosulfonyl) imide, and lithium bis (trifluoromethanesulfonyl) imide can be used.
  • the non-aqueous electrochemical device in which the separator material is used is a magnesium secondary battery or the like
  • the ionic substance is not particularly limited, and for example, a magnesium salt such as magnesium bis (trifluoromethanesulfonyl) imide is used. Can be used. These ionic substances may be used alone or in combination of two or more.
  • Organic composition is required to contain a compound which is solid at atmospheric pressure of 5 ° C. in a proportion of 80% by mass or more, and optionally from a compound and a flame retardant which are liquid at atmospheric pressure of 5 ° C. It may further contain at least one selected from the group. Further, the organic composition is required to have a content ratio of a low boiling point organic compound having a boiling point of less than 130 ° C. under atmospheric pressure of 0% by mass or more and 20% by mass or less. Unless the content ratio of the compound which is solid at the atmospheric pressure of 5 ° C. and the low boiling point organic compound is within the above range, the electrolyte composition is sufficiently prevented from leaking to the outside when the exterior is destroyed by ignition or the like.
  • the electrolyte composition may leak to the outside when the exterior is destroyed by ignition or the like.
  • the reason why it can be suppressed is not clear, but by using an organic composition containing a compound as a main component, which is a solid at an atmospheric pressure of 5 ° C., the electrolyte composition becomes highly viscous and a fire or the like occurs. It is presumed that this is because some of the components volatilize when exposed to a high temperature and the electrolyte composition deviates from the range in which the liquid state can be maintained (solid precipitates).
  • the compound which is solid at the atmospheric pressure of 5 ° C. is not particularly limited, and examples thereof include high boiling point organic compounds having a boiling point of 130 ° C. or higher under atmospheric pressure. Further, a compound that is solid under atmospheric pressure at a temperature of 5 ° C. is usually a compound that does not have flame retardancy, and is different from a flame retardant. Further, the compound which is solid at atmospheric pressure at a temperature of 5 ° C. preferably has a molecular weight of less than 10,000. Examples of the compound that is solid under atmospheric pressure at a temperature of 5 ° C.
  • a polar compound having an oxygen atom and / or a nitrogen atom should be used as the compound which is solid at an atmospheric pressure of 5 ° C.
  • a polar compound having an oxygen atom and / or a nitrogen atom should be used as the compound which is solid at an atmospheric pressure of 5 ° C.
  • the compound that is solid at atmospheric pressure at a temperature of 5 ° C. is preferably a compound having 8 or less carbon atoms, and is preferably a compound having 5 or less carbon atoms. Is more preferable. If you want to know the composition that becomes liquid using a compound that is solid at a temperature of 5 ° C., mix all the compounds used in the composition in equal amounts, and the most of those compounds.
  • the composition is quantified by a gas chromatograph or a liquid chromatograph, the composition exhibiting a liquid can be known.
  • the content ratio of the compound that is solid under atmospheric pressure at a temperature of 5 ° C. in the organic composition is preferably 80% by mass or more and 100% by mass or less, and preferably 85% by mass or more and 100% by mass or less.
  • the compound that is liquid under atmospheric pressure at a temperature of 5 ° C. is not particularly limited, and examples thereof include high boiling point organic compounds having a boiling point of 130 ° C. or higher under atmospheric pressure. Further, a compound that is liquid under atmospheric pressure at a temperature of 5 ° C. is usually a compound that does not have flame retardancy and is different from a flame retardant. Further, the compound which is liquid at atmospheric pressure at a temperature of 5 ° C. preferably has a molecular weight of less than 10,000. Examples of the compound that is liquid at an atmospheric pressure of 5 ° C.
  • propylene carbonate examples include triethylhexyl phosphate, adiponitrile, 1,3-propanesulton, tributyl phosphate, tetraglime, trisbutoxyethyl phosphate, vinylethylene carbonate, and the like.
  • propylene carbonate examples include propylene carbonate, triglime, triethyl phosphate, citraconic acid anhydride, N-methylpyrrolidone, ⁇ -butyrolactone, and trimethyl phosphate. These compounds may be used alone or in combination of two or more. Above all, from the viewpoint of handleability and ease of preparation of the electrolyte composition, it is preferable to use propylene carbonate as the compound which is liquid at atmospheric pressure of 5 ° C.
  • the content ratio of the compound that is liquid under atmospheric pressure at a temperature of 5 ° C. in the organic composition is usually 0% by mass or more and 20% by mass or less, and preferably 0% by mass or more and 15% by mass or less. ..
  • phosphoric acid esters having 24 or less carbon atoms phosphoric acid esters having 24 or less carbon atoms, phosphite esters having 24 or less carbon atoms, phosphazenes and the like can be used. Then, if the organic composition contains a flame retardant, the separator material can be made more difficult to burn.
  • examples of the phosphoric acid esters having 24 or less carbon atoms include alkyl phosphate esters such as trimethyl phosphate, triethyl phosphate, triphenyl phosphate, tricresyl phosphate and trixylenyl phosphate; and tris phosphate.
  • alkyl phosphate esters such as trimethyl phosphate, triethyl phosphate, triphenyl phosphate, tricresyl phosphate and trixylenyl phosphate; and tris phosphate.
  • Examples of phosphite esters having 24 or less carbon atoms include alkyl phosphite esters such as triethyl phosphate, triisopropyl phosphite and tributyl phosphite.
  • alkyl phosphite esters such as triethyl phosphate, triisopropyl phosphite and tributyl phosphite.
  • examples of phosphazenes include monoethoxycypentafluorocyclotriphosphazene, diethoxysitetrafluorocyclotriphosphazene, monophenoxypentafluorocyclotriphosphazene and the like. The above-mentioned compounds may be used alone or in combination of two or more.
  • the flame-retardant compound moves together without being separated from the electrolytic solution in the event of a fire or the like, it is preferable that the compound is a liquid at an atmospheric pressure of 5 ° C. Further, the flame-retardant compound preferably has a boiling point of 130 ° C. or higher under atmospheric pressure.
  • the content ratio of the flame retardant in the organic composition is usually 0% by mass or more and 20% by mass or less, and from the viewpoint of suppressing deterioration of the performance of the non-aqueous electrochemical device, it is 0% by mass or more and 10% by mass or less. From the viewpoint of reducing the effect on human health when a phosphorus compound is used as the flame retardant, it is more preferably 0% by mass or more and 5% by mass or less.
  • the low boiling point organic compound is not particularly limited as long as the boiling point under atmospheric pressure is less than 130 ° C., for example, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethyl acetate, ethyl propionate, propyl propionate and the like. Can be mentioned. These compounds may be used alone or in combination of two or more.
  • the low boiling point organic compound preferably has a molecular weight of less than 10,000.
  • the content ratio of the low boiling point organic compound in the organic composition is 0% by mass or more and 20% by mass. It is necessary that it is 0% by mass or more and 10% by mass or less.
  • the content of the organic compound which is a liquid at atmospheric pressure of 40 ° C. is preferably 0% by mass or more and 20% by mass or less, and is 0. It is more preferably mass% or more and 10 mass% or less.
  • the organic compound that is liquid under atmospheric pressure at a temperature of 40 ° C. is not particularly limited, and is, for example, sulfolane, ethylmethylsulfone, ethylene carbonate, N-methyloxazolidone, fluoroethylene carbonate, dimethylimidazolidinone. , Vinylene carbonate, dimethyl sulfoxide, and other high-boiling organic compounds having a boiling point of 130 ° C. or higher under atmospheric pressure. These compounds may be used alone or in combination of two or more.
  • An organic compound that is liquid under atmospheric pressure at a temperature of 40 ° C. is usually a compound that does not have flame retardancy and is different from a flame retardant. Further, the organic compound that is liquid at atmospheric pressure of 40 ° C. is preferably solid at atmospheric pressure of 5 ° C. Further, the organic compound which is liquid under atmospheric pressure at a temperature of 40 ° C. preferably has a molecular weight of less than 10,000.
  • the organic composition containing the above-mentioned compound is not particularly limited, and for example, ethylene carbonate alone, a mixture of ethylene carbonate and dimethyl sulfone, a mixture of ethylene carbonate and propylene carbonate, ethylene carbonate and succinonitrile.
  • examples thereof include a mixture of a carbonate, a dimethyl sulfone and a vinylene carbonate, a mixture of an ethylene carbonate, a dimethyl sulfone and a flame retardant (for example, trimethyl phosphate).
  • the polymer component which is an optional component is not particularly limited, and examples thereof include a polymer having an ethylene oxide chain which may have a substituent and an epichlorohydrin-based polymer.
  • examples of the polymer having an ethylene oxide chain which may have a substituent include polyethylene oxide, ethylene oxide-propylene oxide copolymer, ethylene oxide-propylene oxide-allyl glycidyl ether copolymer, and ethylene oxide-.
  • Examples thereof include ethylene oxide-based polymers such as allyl glycidyl ether copolymers and polyacrylate-based polymers having an oxyethylene chain. These polymers may be used alone or in combination of two or more. Then, if the electrolyte composition contains a polymer component, the separator material can be made more difficult to burn.
  • the polymer component contained in the separator material of the present invention may be polymerized internally by a polymerization method such as thermal polymerization after assembling the non-aqueous electrochemical device. Then, it is preferable that the polymer component is uniformly dissolved in the electrolyte composition at an operating temperature such as in the manufacture of a non-aqueous electrochemical device.
  • the weight average molecular weight of the polymer component is not particularly limited as long as it is 10,000 or more, but is preferably 100,000 or more and 30 million or less.
  • the polymer component may have a crosslinked structure, it is preferable that the polymer component does not have a crosslinked structure from the viewpoint of good dissolution in the electrolyte composition.
  • the crosslinked structure can be introduced into the polymer component by using an arbitrary crosslinked method such as irradiation with ultraviolet rays.
  • the polymer component preferably has a low gel content.
  • the gel content is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less of the polymer components.
  • the gel content of the polymer component is such that the polymer component is added at a ratio of 5% by mass to propylene carbonate, dissolved by stirring at 100 ° C. for 12 hours, and the insoluble component is filtered through a membrane filter at 100 ° C. Separately, it can be known by vacuum drying to remove propylene carbonate and measuring the residual weight.
  • the content ratio of the polymer component in the electrolyte composition is usually 0 parts by mass or more and 100 parts by mass or less per 100 parts by mass of the organic composition, from the viewpoint of suppressing a decrease in ionic conductivity of the electrolyte composition. , 0 parts by mass or more and preferably 50 parts by mass or less.
  • the additive as an optional component is not particularly limited, and any additive that can be used in the field of electrochemical devices such as a wetting agent can be used.
  • the wetting agent is not particularly limited as long as it has a hydrophilic portion and a hydrophobic portion in the molecule, for example, a long-chain alkyl carboxylate having 8 or more carbon atoms and a long-chain having 8 or more carbon atoms.
  • examples thereof include a long-chain perfluoroalkyl phosphate ester, a fluorine-substituted ether, an ethylene oxide polymer having a terminal alkyl group having 8 or more carbon atoms, and an ethylene oxide (EO) -propylene oxide (PO) block copolymer.
  • the alkyl group contained in the above compound may partially have an unsaturated bond or may have a branched chain. Then, these wetting agents may be used alone or in combination of two or more.
  • the blending amount of the wetting agent is not particularly limited, and is, for example, preferably 5 parts by mass or less, and more preferably 3 parts by mass or less per 100 parts by mass of the organic composition.
  • the electrolyte composition needs to be liquid under atmospheric pressure at a temperature of 100 ° C.
  • liquid includes, in addition to a single liquid phase state, a state in which one or more other liquid phases are present in the main liquid phase at a rate of 5% by volume or less, or 5 volumes in the liquid phase. It also includes a state containing a trace amount of solid phase of% or less.
  • the electrolyte composition preferably has an ionic conductivity of 1.0 ⁇ 10 -4 S / cm or more at a temperature of ⁇ 20 ° C., and the electrolyte composition has an ionic conductivity of 1. It is preferably 0 ⁇ 10 -3 S / cm or more.
  • the ionic conductivity of the electrolyte composition is at least the above lower limit value, the electrochemical reaction can proceed satisfactorily in the non-aqueous electrochemical device using the separator material.
  • the viscosity of the electrolyte composition is preferably 10 mPa ⁇ s or more, more preferably 20 mPa ⁇ s or more, and even more preferably 50 mPa ⁇ s or more. If the viscosity of the electrolyte composition is equal to or higher than the above lower limit, the electrolyte composition is less likely to leak to the outside when the exterior is destroyed by ignition or the like, and even if the electrolyte composition is burned, the entire amount is less likely to burn. Therefore, the flammability is reduced.
  • viscosity means that the organic composition does not volatilize under closed conditions using an EMS viscometer (manufactured by Kyoto Electronics Industry, EMS-1000S) at a temperature of 25 ° C., and moisture in the air does not mix. It refers to the viscosity measured at a motor rotation speed of 1000 rpm.
  • the viscosity measured by this measuring method is basically the same as the value measured in accordance with JIS Z8803.
  • the viscosity of the electrolyte composition can be adjusted by changing the composition of the electrolyte composition. Specifically, for example, the viscosity of the electrolyte composition can be increased by blending a high-viscosity compound or increasing the concentration of the ionic substance.
  • the impregnation of the electrolyte composition into the porous thin film material is not particularly limited, and any method such as immersion of the porous thin film material in the electrolyte composition and injection of the electrolyte composition into the porous thin film material is possible. Can be done using.
  • the non-aqueous electrochemical device of the present invention comprises the separator material of the present invention.
  • the non-aqueous electrochemical device of the present invention usually includes a positive electrode and a negative electrode, a separator material that separates the positive electrode and the negative electrode, and an electrolytic solution. Since the non-aqueous electrochemical device of the present invention includes the separator material of the present invention, it is difficult to burn even when ignited from the inside or the outside, and there is little leakage of substances to the outside.
  • any positive electrode and the negative electrode that can be used in the field of non-aqueous electrochemical devices can be used without particular limitation.
  • the electrolytic solution the electrolyte composition used in the separator material of the present invention can be used.
  • ⁇ Ignized compound Dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl acetate, ethyl propionate, propyl propionate, ethylene oxide-propylene oxide copolymer (powder) ⁇ Compound that did not ignite> Flame retardants such as succinonitrile, ethylene carbonate, dimethyl sulfone, dimethyl oxalate, glycolide, adiponitrile, tetraglime, propylene carbonate, fluoroethylene carbonate, trimethyl phosphate, hydrin rubber (lump), acrylic rubber (lump)
  • a compound such as propylene carbonate which is a liquid at an atmospheric pressure of 5 ° C., showed a behavior of moving to the surroundings when the amount of vapor adhered to the glass and then increased. From this, it was found that the compound, which is solid at atmospheric pressure at a temperature of 5 ° C., does not easily flow even in the event of a fire or the like, and does not easily cause the expansion of combustion.
  • ⁇ Thickness of porous thin film material The thickness of the porous thin film material was measured using a constant pressure digital thickness gauge (manufactured by Toyo Seiki).
  • ⁇ Viscosity of electrolyte composition> The viscosity of the electrolyte composition was measured at a temperature of 25 ° C. using an EMS viscometer (manufactured by Kyoto Electronics Industry, EMS-1000S) at a motor rotation speed of 1000 rpm.
  • EMS viscometer manufactured by Kyoto Electronics Industry, EMS-1000S
  • ⁇ Ignition test of separator material> The prepared separator material was sandwiched between two disc-shaped stainless steel plates having a diameter of 16 mm and a thickness of 500 ⁇ m so that the separator material protruded from the entire circumference by 2 mm to form a test piece. Then, a burner was applied to the vicinity of the protruding portion of the test piece to check for ignition. Then, the combustibility was evaluated by irradiating the central part of the test piece with a burner for 5 seconds. Specifically, the presence or absence of continuous combustion after the burner was turned off and the state of the protruding portion were visually observed.
  • the stainless steel plate was peeled off, and it was observed whether the separator material in the portion in contact with the stainless steel plate was dry or damp, and whether the porous thin film material of the separator material was damaged (perforated). Then, it was determined that the ratio of the area of the moist portion (wet area) reflects the amount of the electrolyte composition remaining without burning.
  • Example 1 ⁇ Preparation of electrolyte composition> 10 g of LiBF 4 as an ionic substance and 80 g of ethylene carbonate and 20 g of dimethyl sulfone as an organic composition were weighed and mixed to obtain an electrolyte composition of a uniform solution. Then, the viscosity and the ionic conductivity were measured. The results are shown in Table 2.
  • ⁇ Making separator material> The porous thin film material was immersed in the electrolyte composition, and the porous thin film material was impregnated with the electrolyte composition. Then, the porous thin film material impregnated with the electrolyte composition was pulled up, and the excess electrolyte was scraped off to obtain a separator material. Then, an ignition test was conducted. The results are shown in Table 2.
  • Example 2 At the time of preparing the porous thin film material, the glass fibers of the glass fiber filter (manufactured by ADVANTEC, GA-55) were carefully peeled from the surface with tweezers to make the thickness 100 ⁇ m (Example 2) and 50 ⁇ m (Example 3), respectively. Except for the above, the electrolyte composition was prepared, the porous thin film material was prepared, and the separator material was prepared in the same manner as in Example 1. Then, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 5 29 ⁇ m alumina-coated polyolefin (PO) microporous film (Example 5), 100 ⁇ m-thick PTFE membrane filter (Merck, Omnipore JMWP04700) (Example 7), and 35 ⁇ m-thick paper (Nippon Advanced Paper Industry Co., Ltd.,
  • the electrolyte composition, the porous thin film material, and the separator material were prepared in the same manner as in Example 1 except that TF4535) (Example 8) was used. Then, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 2.
  • the polyolefin (PO) microporous membrane (manufactured by Polypore, Celgard 2325) of Example 4 was used after being hydrophilized according to the examples of JP-A-2000-103886. Further, as the alumina-coated polyolefin (PO) microporous film of Example 5, both sides of the polyolefin (PO) microporous film of Example 4 which has been hydrophilized are described in JP-A-2014-149935. According to the method, an alumina particle layer having a thickness of 2 ⁇ m was formed on a portion other than the end portion of 3 mm.
  • Example 8 to 11 Preparation of electrolyte composition, preparation of porous thin film material, and separator material in the same manner as in Example 1 except that the compounds shown in Table 2 were used as the organic composition in the preparation of the electrolyte composition. Was produced. Then, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 12 to 15 and 17 to 18 When preparing the electrolyte composition, 30 g of lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) was used instead of 10 g of LiBF 4 as the ionic substance, and the amount of the compound shown in Table 2 as the organic composition was shown in Table 2.
  • the electrolyte composition was prepared, the porous thin film material was prepared, and the separator material was prepared in the same manner as in Example 1 except that it was used in 1. Then, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 16 When preparing the electrolyte composition, 40 g of lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) was used instead of 10 g of LiBF 4 as the ionic substance, and the amount of the compound shown in Table 2 as the organic composition was shown in Table 2.
  • the electrolyte composition was prepared, the porous thin film material was prepared, and the separator material was prepared in the same manner as in Example 1 except that it was used in 1. Then, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 19 When preparing the electrolyte composition, 30 g of magnesium bis (trifluoromethanesulfonyl) imide (Mg (TFSI) 2 ) was used instead of 10 g of LiBF 4 as the ionic substance, and the compounds shown in Table 2 are shown as the organic composition.
  • the electrolyte composition was prepared, the porous thin film material was prepared, and the separator material was prepared in the same manner as in Example 1 except that the amounts used in 2 were used. Then, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 2.
  • Comparative Example 2 Comparative Example 1 and Comparative Example 1 except that a 25 ⁇ m-thick polyolefin (PO) microporous film (Polypore, Celguard 2325) was used instead of the glass fiber filter (ADVANTEC, GA-55) when preparing the porous thin film material.
  • PO polyolefin
  • ADVANTEC glass fiber filter
  • Example 3 When preparing a porous thin film material, a glass fiber filter (GE Healthcare Life Sciences, Whatman (registered trademark) GF / B) with a thickness of 675 ⁇ m is used instead of the glass fiber filter (ADVANTEC, GA-55).
  • the electrolyte composition, the porous thin film material, and the separator material were prepared in the same manner as in Example 1 except for the above. Then, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 2.
  • the separator materials of Examples 1 to 19 have a large proportion of the wet area after the ignition test, and since there are no holes in the porous thin film material, they burn even when ignited from the outside. It turns out to be difficult. Further, from Table 2, it can be seen that the separator materials of Comparative Examples 1, 3 and 4 have a small proportion of the wet area after the ignition test, and the electrolyte composition is easily burned. Further, from Table 2, it can be seen that in the separator materials of Comparative Examples 2 and 5, the porous thin film material has holes and the porous thin film material is easily damaged, so that the electrochemical device is easily short-circuited internally. In addition, the separator materials of Examples 1 to 19 had a high proportion of compounds that were solid at atmospheric pressure at a temperature of 5 ° C., and material leakage to the outside was unlikely to occur.
  • Example 20 A positive electrode having a positive electrode mixture layer (positive electrode active material: lithium iron phosphate) impregnated with the same electrolyte composition as the separator material with the separator material produced in Example 10 interposed therebetween, and a negative electrode made of lithium metal.
  • the lithium ion secondary battery was manufactured by laminating. Immediately after the production, repeated charging / discharging was performed under the conditions of a voltage of 3.8 to 3.0 V and a current value of 0.1 C, and it was confirmed that charging / discharging was possible.
  • a non-aqueous electrochemical device that is hard to burn and has little material leakage to the outside can be obtained even when ignited from the inside or the outside.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、内部または外部から着火した場合であっても、燃焼し難く、且つ、外部への物質漏えいが少ない非水系電気化学デバイスが得られる技術を提供する。本発明のセパレータ材料は、厚さが300μm以下の多孔性薄膜材料に対して電解質組成物を含浸させてなり、電解質組成物は、少なくとも1種のイオン性物質と、有機組成物とを含有し、且つ、温度100℃の大気圧下において液状であり、有機組成物は、温度5℃の大気圧下において固体である化合物を80質量%以上の割合で含み、大気圧下における沸点が130℃未満の低沸点有機化合物の含有割合が0質量%以上20質量%以下である。

Description

セパレータ材料および非水系電気化学デバイス
 本発明は、セパレータ材料および当該セパレータ材料を用いた非水系電気化学デバイスに関するものである。
 従来、リチウム一次電池等の一次電池;リチウムイオン二次電池、リチウム金属二次電池、ナトリウムイオン二次電池、カリウムイオン二次電池、マグネシウム二次電池、アルミニウム二次電池等の非水系二次電池;色素増感型太陽電池等の太陽電池;電気二重層キャパシタ、リチウムイオンキャパシタ等のキャパシタ;エレクトロクロミック表示デバイス;電気化学発光素子;電気二重層トランジスタ;電気化学アクチュエータなどの非水系電気化学デバイスでは、正極と負極とを隔離して正極と負極との間の短絡を防ぐ部材としてセパレータが用いられている。
 そして、例えば特許文献1には、エチレンカーボネート、ジメチルスルホンおよびテトラフルオロほう酸リチウム(LiBF4)の混合物よりなる電解液と、ガラス繊維フィルター(製品名:Whatman(登録商標)、厚み:675μm)よりなるセパレータとを備えるリチウムイオン二次電池が開示されている。
国際公開第2015/188932号
 ここで、非水系電気化学デバイスには、安全性の観点から、異常発熱等により内部から着火した場合や、火災等に巻き込まれて外部から着火した場合であっても、燃焼し難く、且つ、外部への物質漏えいが少ないことが求められている。
 しかし、従来の非水系電気化学デバイスには、燃焼性を低下させると共に着火等により外装が破壊された際の外部への物質漏えいを抑制して安全性を高めるという点において改善の余地があった。
 そこで、本発明は、内部または外部から着火した場合であっても、燃焼し難く、且つ、外部への物質漏えいが少ない非水系電気化学デバイスが得られる技術を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討した結果、所定の性状を有する多孔性薄膜材料に所定の組成を有する電解質組成物を含浸させてなるセパレータ材料を用いれば、内部または外部から着火した場合であっても安全性に優れる非水系電気化学デバイスが得られることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のセパレータ材料は、厚さが300μm以下の多孔性薄膜材料に対して電解質組成物を含浸させてなり、前記電解質組成物は、少なくとも1種のイオン性物質と、有機組成物とを含有し、且つ、温度100℃の大気圧下において液状であり、前記有機組成物は、温度5℃の大気圧下において固体である化合物を80質量%以上の割合で含み、大気圧下における沸点が130℃未満の低沸点有機化合物の含有割合が0質量%以上20質量%以下であることを特徴とする。このように、上述した所定の厚さを有する多孔性薄膜材料に対して上述した所定の組成および性状を有する電解質組成物を含浸させれば、燃焼性が低く、加熱による穴あきなどの多孔性薄膜材料の損傷が生じにくく、且つ、着火等により外装が破壊された場合であっても外部に物質が漏えいし難いセパレータ材料が得られる。
 なお、本発明において、多孔性薄膜材料の「厚さ」は、JIS K7130に準拠して測定した厚みを指す。また、本発明において、「沸点」は、標準大気圧下で沸騰させて還流を行い、蒸気の再凝縮温度を温度計で計測することにより測定することができる。
 ここで、本発明のセパレータ材料において、前記有機組成物は、温度5℃の大気圧下において固体である化合物を2種類以上含むことが好ましく、3種類以上含むことがより好ましい。温度5℃の大気圧下において固体である化合物の種類が多いほど、イオン性物質が溶解し易くなると共に、電解質組成物の性能が向上するからである。
 また、本発明のセパレータ材料において、前記有機組成物は、難燃剤を更に含有することが好ましい。有機組成物が難燃剤を含有していれば、セパレータ材料を更に燃焼し難くすることができる。
 更に、本発明のセパレータ材料において、前記電解質組成物は、高分子成分を更に含有することが好ましい。電解質組成物が高分子成分を含有していれば、セパレータ材料を更に燃焼し難くすることができる。
 なお、本発明において、「高分子成分」とは、JIS K7252に準拠して測定した重量平均分子量が10000以上の成分を指す。
 また、本発明のセパレータ材料は、前記多孔性薄膜材料が融点を有するものであることが好ましい。多孔性薄膜材料が加熱により溶融すれば、セパレータ材料が燃焼するのを抑制することができる。
 更に、本発明のセパレータ材料は、前記多孔性薄膜材料の表面に不燃性の微粒子が付着していることが好ましい。表面に不燃性の微粒子が付着した多孔性薄膜材料を使用すれば、セパレータ材料を更に燃焼し難くすることができる。
 また、本発明のセパレータ材料において、前記電解質組成物は、温度-20℃におけるイオン伝導度が1.0×10-4S/cm以上であることが好ましい。電解質組成物のイオン伝導度が上記下限値以上であれば、セパレータ材料を用いた非水系電気化学デバイスにおいて電気化学反応を良好に進行させることができる。
 なお、本発明において、「イオン伝導度」は、交流法にて測定したイオン伝導度を指し、測定温度±1℃に制御した恒温槽中で、サンプルを2枚のステンレス製の平行極板に挟んで10~100mVの範囲の交流を印可して得られたナイキストプロットの円弧直径から算出される体積固有抵抗を逆数にすることにより求めることができる。
 そして、本発明のセパレータ材料において、前記有機組成物は、温度40℃の大気圧下において液体である有機化合物の含有割合が0質量%以上20質量%以下であることが好ましい。温度40℃の大気圧下において液体である有機化合物の含有割合が上記範囲内であれば、セパレータ材料を更に燃焼し難くすることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系電気化学デバイスは、上述したセパレータ材料の何れかを備えることを特徴とする。このように、上述したセパレータ材料を用いれば、内部または外部から着火した場合であっても、燃焼し難く、且つ、外部への物質漏えいが少ない非水系電気化学デバイスが得られる。
 本発明によれば、内部または外部から着火した場合であっても、燃焼し難く、且つ、外部への物質漏えいが少ない非水系電気化学デバイスが得られる。
 本発明のセパレータ材料は、特に限定されることなく、例えば、リチウム一次電池等の一次電池;リチウムイオン二次電池、リチウム金属二次電池、ナトリウムイオン二次電池、カリウムイオン二次電池、マグネシウム二次電池、アルミニウム二次電池等の非水系二次電池;色素増感型太陽電池等の太陽電池;電気二重層キャパシタ、リチウムイオンキャパシタ等のキャパシタ;エレクトロクロミック表示デバイス;電気化学発光素子;電気二重層トランジスタ;電気化学アクチュエータなどの非水系電気化学デバイスに用いることができる。中でも、本発明のセパレータ材料は、非水系二次電池、特にはリチウムイオン二次電池に好適に用いることができる。
 そして、本発明のセパレータ材料は、燃焼性が低く、且つ、着火等により外装が破壊された場合であっても外部に物質が漏えいし難い。また、本発明の非水系電気化学デバイスは、内部または外部から着火した場合であっても、燃焼し難く、且つ、外部への物質漏えいが少ない。
(セパレータ材料)
 本発明のセパレータ材料は、厚さが300μm以下の多孔性薄膜材料に対して電解質組成物を含浸させたものである。
<多孔性薄膜材料>
 本発明のセパレータ材料の多孔性薄膜材料としては、特に限定されることなく、例えば、ポリオレフィン多孔膜、ポリオレフィン不織布、フッ素樹脂多孔膜、紙、セルロース不織布、アラミド不織布およびガラス繊維フィルターなどの細孔を多数有する薄膜材料を用いることができる。
 そして、多孔性薄膜材料は、厚さが300μm以下であることを必要とし、200μm以下であることが好ましく、50μm以下であることがより好ましい。多孔性薄膜材料の厚さが300μm超の場合、燃焼し易くなると共に外部に物質が漏えいし易くなる。一方、多孔性薄膜材料の厚さが上記上限値以下であれば、燃焼性が低く、且つ、外部に物質が漏えいし難いセパレータ材料が得られる。
 なお、多孔性薄膜材料の厚さを300μm以下とすることでセパレータ材料の燃焼性が低下する理由は、明らかではないが、電解質組成物の保持量を低減すると共に電解質組成物の移動を抑制することで、電解質組成物が燃焼に寄与するのを防止することができるためであると推察される。
 また、多孔性薄膜材料は、融点を有するものであることが好ましく、溶融開始温度が100℃以上400℃以下であることがより好ましい。多孔性薄膜材料の端部が加熱によって溶融し、多孔形状を失えば、電気化学デバイスの内部または外部から着火した際に多孔性薄膜材料が芯となってセパレータ材料が燃焼するのを抑制することができる。
 なお、本発明において、「溶融開始温度」は、示差走査熱量測定(DSC)により3℃/分で昇温した時の融解ピークから求めることができる。
 そして、多孔性薄膜材料は、表面に不燃性の微粒子が付着していることが好ましく、多孔性薄膜材料の外縁部以外の部分の表面に不燃性の微粒子が付着していることがより好ましい。表面に不燃性の微粒子が付着していれば、セパレータ材料を更に燃焼し難くすることができる。
 なお、本発明において、「不燃」とは、800℃まで加熱しても発火も引火もしないことを指す。
 ここで、不燃性の微粒子としては、特に限定されることなく、例えば、シリカ微粒子やアルミナ微粒子等の無機微粒子、並びに、その他の金属の酸化物、硫酸塩および炭酸塩の微粒子などが挙げられる。
 そして、微粒子の粒子径は、特に限定されることなく、例えば10μm以下であることが好ましく、0.1μm以上5μm以下であることがより好ましい。なお、本発明において、「粒子径」は、JIS K8825に準拠して測定することができる。
 また、多孔性薄膜材料は、親水化処理が施されていてもよい。親水化処理を施せば、電解質組成物に対する濡れ性を高め得る。ここで、多孔性薄膜材料を親水化処理する方法としては、特に限定されることなく、例えば、コロナ処理、プラズマ処理、界面活性剤処理、親水性ポリマー被覆処理、無機フィラー添加などの方法を用いることができる。
<電解質組成物>
 電解質組成物は、少なくとも1種のイオン性物質と、所定の化合物を所定の割合で含む有機組成物とを含有し、任意に、高分子成分および/または添加剤を更に含有し得る。そして、本発明の電解質組成物は、温度100℃の大気圧下において液状であることを必要とする。
[イオン性物質]
 ここで、イオン性物質としては、セパレータ材料が用いられる非水系電気化学デバイスにおける電気化学反応に利用されるイオンの種類に応じた任意のイオン性物質を用いることができる。
 なお、イオン性物質の配合量は、非水系電気化学デバイスの種類に応じて適宜に設定することができる。具体的には、電解質組成物中のイオン性物質の濃度は、電解質組成物を取り扱い易い粘度範囲とする観点からは、0.01mol/L以上2.5mol/L未満とすることが好ましい。一方、電気化学デバイスの安全性、耐熱性および寿命を向上する観点からは、電解質組成物中のイオン性物質の濃度は、2.5mol/L以上とすることが好ましい。
 具体的には、セパレータ材料が用いられる非水系電気化学デバイスがリチウムイオン二次電池やリチウムイオンキャパシタ等の場合には、イオン性物質としては、特に限定されることなく、例えば、LiBF4、LiPF6、リチウムビス(オキサレート)ボレート、リチウムビス(フルオロスルホニル)イミド、リチウムビス(トリフルオロメタンスルホニル)イミドなどのリチウム塩を用いることができる。また、セパレータ材料が用いられる非水系電気化学デバイスがマグネシウム二次電池等の場合には、イオン性物質としては、特に限定されることなく、例えば、マグネシウムビス(トリフルオロメタンスルホニル)イミド等のマグネシウム塩を用いることができる。
 これらのイオン性物質は、1種単独で用いてもよいし、2種以上を併用してもよい。
[有機組成物]
 有機組成物は、温度5℃の大気圧下において固体である化合物を80質量%以上の割合で含むことを必要とし、任意に、温度5℃の大気圧下において液体である化合物および難燃剤からなる群より選択される少なくとも1種を更に含有し得る。また、有機組成物は、大気圧下における沸点が130℃未満の低沸点有機化合物の含有割合が0質量%以上20質量%以下であることを必要とする。
 温度5℃の大気圧下において固体である化合物および低沸点有機化合物の含有割合が上記範囲内でなければ、着火等により外装が破壊された際に電解質組成物が外部に漏えいするのを十分に抑制することができない。なお、温度5℃の大気圧下において固体である化合物および低沸点有機化合物の含有割合を上記範囲内とすることで着火等により外装が破壊された際に電解質組成物が外部に漏えいするのを抑制することができる理由は、明らかではないが、温度5℃の大気圧下において固体である化合物を主成分とする有機組成物を用いることで、電解質組成物が高粘度になると共に、火災などで高温にさらされた際に成分の一部が揮散して電解質組成物が液状を保てる範囲を逸脱する(固体が析出する)ためであると推察される。
〔温度5℃の大気圧下において固体である化合物〕
 ここで、温度5℃の大気圧下において固体である化合物としては、特に限定されることなく、大気圧下における沸点が130℃以上の高沸点有機化合物が挙げられる。また、温度5℃の大気圧下において固体である化合物は、通常、難燃性を有さない化合物であり、難燃剤とは異なるものである。更に、温度5℃の大気圧下において固体である化合物は、分子量が10000未満であることが好ましい。
 そして、温度5℃の大気圧下において固体である化合物としては、例えば、グルタル酸無水物、コハク酸無水物、スクシノニトリル、ジグリコール酸無水物、スルホラン、エチルメチルスルホン、ジメチルスルホン、ジエチルスルホン、スルホレン、硫酸エチレン(1,3,2-ジオキサチオラン-2,2-ジオキシド)、イタコン酸無水物、エチレンカーボネート、N-メチルオキサゾリドン、フルオロエチレンカーボネート、メチルカーバメート、N,N-ジメチルイミダゾリジノン、シュウ酸ジメチル、ビニレンカーボネート、ジメチルスルホキシドなどが挙げられる。
 これらの化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。中でも、温度5℃の大気圧下において固体である化合物は、2種類以上を併用することが好ましく、3種類以上を併用することがより好ましい。
 中でも、イオン性物質の溶解性向上および電解質組成物の性能向上の観点からは、温度5℃の大気圧下において固体である化合物としては、酸素原子および/または窒素原子を有する極性化合物を用いることが好ましく、エチレンカーボネート、ジメチルスルホン、スクシノニトリル、イタコン酸無水物、ジグリコール酸無水物、スルホレン、1,3,2-ジオキサチオラン2,2-ジオキシド、ビニレンカーボネートおよびフルオロエチレンカーボネートからなる群より選択される1種以上を用いることがより好ましく、上記群より選択される2種以上を用いることが更に好ましく、上記群より選択される3種以上を用いることが特に好ましい。
 また、燃焼時に発生する熱を低減する観点からは、温度5℃の大気圧下において固体である化合物は、炭素数が8以下の化合物であることが好ましく、炭素数5以下の化合物であることがより好ましい。
 なお、温度5℃の大気圧下において固体である化合物を用いて液状となる組成を知りたい場合は、組成物の配合に使用する化合物全てを等量ずつ混合し、それらの化合物のうちの最も融点の高い化合物の融点以上にまで全体を加熱して融解させ、その後液体として使用したい温度まで冷却して、全体が液状のままならばそのまま使用でき、一部が固体となった場合は上澄みの組成をガスクロマトグラフや液体クロマトグラフにて定量すれば、液状を呈する組成を知ることができる。
 そして、温度5℃の大気圧下において固体である化合物の有機組成物中における含有割合は、80質量%以上100質量%以下であり、85質量%以上100質量%以下であることが好ましい。
〔温度5℃の大気圧下において液体である化合物〕
 また、温度5℃の大気圧下において液体である化合物としては、特に限定されることなく、大気圧下における沸点が130℃以上の高沸点有機化合物が挙げられる。また、温度5℃の大気圧下において液体である化合物は、通常、難燃性を有さない化合物であり、難燃剤とは異なるものである。更に、温度5℃の大気圧下において液体である化合物は、分子量が10000未満であることが好ましい。
 そして、温度5℃の大気圧下において液体である化合物としては、例えば、リン酸トリスエチルヘキシル、アジポニトリル、1,3-プロパンスルトン、リン酸トリブチル、テトラグライム、リン酸トリスブトキシエチル、ビニルエチレンカーボネート、プロピレンカーボネート、トリグライム、リン酸トリエチル、シトラコン酸無水物、N-メチルピロリドン、γ-ブチロラクトン、リン酸トリメチルなどが挙げられる。
 これらの化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
中でも、ハンドリング性および電解質組成物の調製の容易性の観点から、温度5℃の大気圧下において液体である化合物としては、プロピレンカーボネートを用いることが好ましい。
 なお、温度5℃の大気圧下において液体である化合物の有機組成物中における含有割合は、通常、0質量%以上20質量%以下であり、0質量%以上15質量%以下であることが好ましい。
〔難燃剤〕
 難燃剤としては、炭素数が24以下のリン酸エステル類、炭素数が24以下の亜リン酸エステル類、ホスファゼン類などを用いることができる。そして、有機組成物に難燃剤を含有させれば、セパレータ材料を更に燃焼し難くすることができる。
 ここで、炭素数が24以下のリン酸エステル類としては、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、リン酸トリクレジルおよびリン酸トリキシレニル等のアルキルリン酸エステル;並びに、リン酸トリス(トリフルオロエチル)、リン酸ビス(トリフルオロエチル)メチルおよびリン酸トリス(ヘキサフルオロイソプロピル)等のフッ素化リン酸エステル;などが挙げられる。
 また、炭素数が24以下の亜リン酸エステル類としては、例えば、亜リン酸トリエチル、亜リン酸トリイソプロピルおよび亜リン酸トリブチル等のアルキル亜リン酸エステルなどが挙げられる。
 更に、ホスファゼン類としては、例えば、モノエトキシシペンタフルオロシクロトリホスファゼン、ジエトキシシテトラフルオロシクロトリホスファゼン、モノフェノキシペンタフルオロシクロトリホスファゼンなどが挙げられる。
 なお、上述した化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
 そして、難燃性を有する化合物は、火災等の際には電解液から分離せずに共に移動した方がよいことから、温度5℃の大気圧下において液体であることが好ましい。また、難燃性を有する化合物は、大気圧下における沸点が130℃以上であることが好ましい。
 なお、有機組成物中における難燃剤の含有割合は、通常、0質量%以上20質量%以下であり、非水系電気化学デバイスの性能低下を抑制する観点から、0質量%以上10質量%以下であることが好ましく、難燃剤としてリン化合物を用いた場合に人体の健康への影響を少なくする観点からは、0質量%以上5質量%以下であることがより好ましい。
〔低沸点有機化合物〕
 低沸点有機化合物としては、大気圧下における沸点が130℃未満であれば特に限定されることなく、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、酢酸エチル、プロピオン酸エチル、プロピオン酸プロピルなどが挙げられる。これらの化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
 なお、低沸点有機化合物は、分子量が10000未満であることが好ましい。
 そして、着火等により外装が破壊された際に電解質組成物が外部に漏えいするのを十分に抑制する観点から、有機組成物中における低沸点有機化合物の含有割合は、0質量%以上20質量%以下であることが必要であり、0質量%以上10質量%以下であることが好ましい。
 なお、セパレータ材料を更に燃焼し難くする観点から、有機組成物は、温度40℃の大気圧下において液体である有機化合物の含有割合が0質量%以上20質量%以下であることが好ましく、0質量%以上10質量%以下であることがより好ましい。
 ここで、温度40℃の大気圧下において液体である有機化合物としては、特に限定されることなく、例えば、スルホラン、エチルメチルスルホン、エチレンカーボネート、N-メチルオキサゾリドン、フルオロエチレンカーボネート、ジメチルイミダゾリジノン、ビニレンカーボネート、ジメチルスルホキシドなどの大気圧下における沸点が130℃以上の高沸点有機化合物が挙げられる。これらの化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
 なお、温度40℃の大気圧下において液体である有機化合物は、通常、難燃性を有さない化合物であり、難燃剤とは異なるものである。また、温度40℃の大気圧下において液体である有機化合物は、温度5℃の大気圧下において固体であることが好ましい。更に、温度40℃の大気圧下において液体である有機化合物は、分子量が10000未満であることが好ましい。
 そして、上述した化合物を含む有機組成物としては、特に限定されることなく、例えば、エチレンカーボネート単体、エチレンカーボネートとジメチルスルホンとの混合物、エチレンカーボネートとプロピレンカーボネートとの混合物、エチレンカーボネートとスクシノニトリルとの混合物、ジメチルスルホンとスクシノニトリルとの混合物、スクシノニトリルとイタコン酸無水物との混合物、エチレンカーボネートとフルオロエチレンカーボネートとの混合物、エチレンカーボネートとジメチルスルホンとスクシノニトリルとの混合物、エチレンカーボネートとジメチルスルホンとビニレンカーボネートとの混合物、エチレンカーボネートとジメチルスルホンと難燃剤(例えば、リン酸トリメチル)との混合物などが挙げられる。
[高分子成分]
 任意成分である高分子成分としては、特に限定されることなく、例えば、置換基を有していてもよいエチレンオキシド連鎖を有する重合体、および、エピクロロヒドリン系重合体が挙げられる。そして、置換基を有していてもよいエチレンオキシド連鎖を有する重合体としては、例えば、ポリエチレンオキサイド、エチレンオキサイド-プロピレンオキサイド共重合体、エチレンオキサイド-プロピレンオキサイド-アリルグリシジルエーテル共重合体、エチレンオキサイド-アリルグリシジルエーテル共重合体、オキシエチレン連鎖を有するポリアクリレート系重合体などのエチレンオキサイド系重合体が挙げられる。これらの重合体は、1種単独で用いてもよいし、2種以上を併用してもよい。そして、電解質組成物に高分子成分を含有させれば、セパレータ材料を更に燃焼し難くすることができる。
 ここで、本発明のセパレータ材料に含まれる高分子成分は、非水系電気化学デバイスの組み立て後に内部で熱重合などの重合方法を用いて重合したものであってもよい。そして、高分子成分は、非水系電気化学デバイスの製造などの操作温度に於いて電解質組成物に均一に溶解している方が好ましい。
 また、高分子成分の重量平均分子量は、10000以上であれば特に限定はされないが、10万以上3000万以下であることが好ましい。
 更に、高分子成分は、架橋構造を有していてもよいが、電解質組成物中で良好に溶解させる観点からは架橋構造を有さないことが好ましい。ここで、架橋構造は、例えば紫外線照射などの任意の架橋方法を用いて高分子成分に導入することができる。また、電解質組成物中で良好に溶解させる観点から、高分子成分は、ゲル含有量が少ないことが好ましい。ゲル含有量は高分子成分のうちの20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが更に好ましい。高分子成分のゲル含有量は、プロピレンカーボネートに対して高分子成分を5質量%の比率で添加して、100℃で12時間掛けて攪拌溶解させて、不溶分を100℃においてメンブレンフィルタで濾別し、真空乾燥してプロピレンカーボネートを除去し、残渣重量を測ることにより知ることができる。
 そして、電解質組成物中における高分子成分の含有割合は、有機組成物100質量部当たり、通常、0質量部以上100質量部以下であり、電解質組成物のイオン伝導度の低下を抑制する点から、0質量部以上50質量部以下であることが好ましい。
[添加剤]
 任意成分である添加剤としては、特に限定されることなく、例えば濡れ剤などの電気化学デバイスの分野において使用し得る任意の添加剤を用いることができる。
〔濡れ剤〕
 ここで、濡れ剤としては、親水部と疎水部を分子内に有するものであれば特に限定されることなく、例えば、炭素数8以上の長鎖アルキルカルボン酸塩、炭素数8以上の長鎖アルキルスルホン酸塩、炭素数8以上の長鎖パーフルオロアルキルカルボン酸塩、炭素数8以上の長鎖パーフルオロアルキルスルホン酸塩、炭素数8以上の長鎖アルキルリン酸エステル、炭素数8以上の長鎖パーフルオロアルキルリン酸エステル、フッ素置換エーテル、炭素数8以上の末端アルキル基を有するエチレンオキシド重合体、エチレンオキサイド(EO)-プロピレンオキサイド(PO)ブロック共重合体などが挙げられる。なお、上記の化合物が有するアルキル基は、一部に不飽和結合を有していてもよいし、分岐鎖を有していてもよい。そして、これらの濡れ剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
 なお、濡れ剤の配合量は、特に限定されることなく、例えば、有機組成物100質量部当たり、5質量部以下とすることが好ましく、3質量部以下とすることがより好ましい。
[電解質組成物の性状]
 電解質組成物は、温度100℃の大気圧下において液状であることを必要とする。ここで、「液状」には、単一の液相状態以外に、主となる液相中に5体積%以下の割合で別の液相が一つ以上する状態や、液相中に5体積%以下の微量な固相を含む状態も含まれる。
 そして、電解質組成物は、温度-20℃におけるイオン伝導度が1.0×10-4S/cm以上であることが好ましく、また、電解質組成物は、温度25℃におけるイオン伝導度が1.0×10-3S/cm以上であることが好ましい。電解質組成物のイオン伝導度が上記下限値以上であれば、セパレータ材料を用いた非水系電気化学デバイスにおいて電気化学反応を良好に進行させることができる。
 また、電解質組成物は、粘度が、10mPa・s以上であることが好ましく、20mPa・s以上であることがより好ましく、50mPa・s以上であることが更に好ましい。電解質組成物の粘度が上記下限値以上であれば、着火等により外装が破壊された際に電解質組成物が更に外部に漏えいし難くなると共に、電解質組成物が燃えたとしても全量が燃え難くなるので燃焼性が低下する。
 なお、本発明において、「粘度」とは、温度25℃においてEMS粘度計(京都電子工業製、EMS-1000S)を用いて密閉条件で有機組成物が揮散せず、空気中の水分が混入しないようにモーター回転数1000rpmで測定した粘度を指す。なお、この測定方法で測定した粘度は、基本的には、JIS Z8803に準拠して測定した値と同じ値となる。そして、電解質組成物の粘度は電解質組成物の組成を変更することにより調整することができる。具体的には、例えば、高粘度の化合物を配合したり、イオン性物質の濃度を高くしたりすることで、電解質組成物の粘度を高めることができる。
<セパレータ材料の作製>
 多孔性薄膜材料への電解質組成物の含浸は、特に限定されることなく、電解質組成物中への多孔性薄膜材料の浸漬、多孔性薄膜材料への電解質組成物の注液などの任意の方法を用いて行うことができる。
(非水系電気化学デバイス)
 本発明の非水系電気化学デバイスは、本発明のセパレータ材料を備えている。具体的には、本発明の非水系電気化学デバイスは、通常、正極および負極と、正極と負極とを隔離するセパレータ材料と、電解液とを備えている。そして、本発明の非水系電気化学デバイスは、本発明のセパレータ材料を備えているので、内部または外部から着火した場合であっても、燃焼し難く、且つ、外部への物質漏えいが少ない。
 ここで、正極および負極としては、特に限定されることなく、非水系電気化学デバイスの分野において使用し得る任意の正極および負極を用いることができる。
 また、電解液としては、本発明のセパレータ材料に用いられている電解質組成物を用いることができる。
 まず、下記の参考例1~2を実施し、様々な化合物について単体での燃焼性を調査した。
(参考例1)
 直径2cmのステンレス製の皿に評価対象の化合物100mgを入れ、ライターの炎を1秒間当てて着火の有無を調べた。結果を以下に示す。
 この結果より、沸点が130℃を下回る化合物や、表面積の大きい評価対象は着火し易いことが分かる。
<着火した化合物>
ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、酢酸エチル、プロピオン酸エチル、プロピオン酸プロピル、エチレンオキサイド-プロピレンオキサイド共重合体(粉末状)
<着火しなかった化合物>
スクシノニトリル、エチレンカーボネート、ジメチルスルホン、シュウ酸ジメチル、グリコリド、アジポニトリル、テトラグライム、プロピレンカーボネート、フルオロエチレンカーボネート、リン酸トリメチル等の難燃剤、ヒドリンゴム(塊状)、アクリルゴム(塊状)
(参考例2)
 参考例1で着火しなかった化合物のうち、スクシノニトリル、エチレンカーボネート、ジメチルスルホン、シュウ酸ジメチル、グリコリド、アジポニトリル、テトラグライム、プロピレンカーボネートおよびフルオロエチレンカーボネートについて、着火するまで炎を当て続ける試験を実施した。
 その結果、いずれの化合物も着火した。なお、スクシノニトリル、エチレンカーボネート、ジメチルスルホン、シュウ酸ジメチル、グリコリドおよびフルオロエチレンカーボネートの燃焼は、アジポニトリル、テトラグライムおよびプロピレンカーボネートの燃焼と比較して穏やかであり、炎は皿の内側に収まっていた。
 次に、以下の参考例3を実施し、様々な化合物について単体での揮発性を調査した。
(参考例3)
 エチレンカーボネートやジメチルスルホン等の温度5℃の大気圧下において固体である化合物と、プロピレンカーボネート等の温度5℃の大気圧下において液体である化合物とについて、それぞれ、プラスチック製の直径5cmの皿に10g計り取り、125℃のホットプレートに乗せた。そして、上方2cmの位置にガラス板を水平に設置した。
 その結果、エチレンカーボネートやジメチルスルホン等の温度5℃の大気圧下において固体である化合物は、蒸気がガラス上に付着したものの、その場に留まっていた。一方、プロピレンカーボネート等の温度5℃の大気圧下において液体である化合物は、蒸気がガラス上に付着した後、付着量が増えると周囲に移動する挙動を示した。
 これより、温度5℃の大気圧下において固体である化合物は、火災時等でも流動し難く、燃焼の拡大を招き難いことが分かった。
 更に、下記の参考例4~5を実施し、化合物の揮発による電解質組成物の状態変化を確認した。
(参考例4)
 エチレンカーボネートを45g、ジメチルスルホンを45g、LiBF4を10g秤り取り、混合して均一な溶液の電解質組成物とした。
 この電解質組成物をガラス板に1g取り、60℃のホットプレート上で放置しておいたところ有機化合物が揮散して重量の減少が見られた。
 重量の減少に伴って粘性が上がる様子が観察され、重量の20%ほどが失われた時点でホットプレートから降ろして観察したところ固体が析出しており、流動性はなくなっていた。
 これは電解質組成物を構成する有機化合物の一部揮散により、組成がアンバランスになり、有機化合物と塩とが相互に溶けた状態を維持できなくなったためと考えられる。
(参考例5)
 ジメチルカーボネートを90g、LiBF4を10g秤り取り、混合して均一な溶液の電解質組成物とした。
 参考例4と同様に試験したところ、ジメチルカーボネートの沸点が90℃と低いことから重量減少のスピードが著しく早かった。
 重量の60%が失われた時点でホットプレートから降ろして観察したが固体の析出は見られなかった。
 最後に、下記の参考例6を実施し、多孔性薄膜材料について単独で着火試験を行った。
(参考例6)
 表1に示す多孔性薄膜材料をそれぞれ2cm×2cmの正方形に切抜き、ピンセットで1辺をつまんで下から3秒間炎に当てた。そして、着火の有無および形状の変化の有無を確認した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 また、実施例および比較例において、各種評価は以下の方法で行った。
<多孔性薄膜材料の厚み>
 多孔性薄膜材料の厚みは、定圧デジタル測厚計(東洋精機製)を用いて測定した。
<電解質組成物の粘度>
 電解質組成物の粘度は、温度25℃において、EMS粘度計(京都電子工業製、EMS-1000S)を用いてモーター回転数1000rpmで測定した。
<電解質組成物のイオン伝導度>
 インピーダンスアナライザ(ソーラトロン社製)を用いて温度-20℃および25℃において測定した。
<セパレータ材料の着火試験>
 作製したセパレータ材料を、直径16mm、厚み500μmの円盤状ステンレス板2枚で全周からセパレータ材料が2mmはみ出すように挟んで、試験片とした。
 そして、試験片のはみ出し部付近にバーナーを当てて着火の有無を調べた。その後、試験片の中央部に5秒間バーナーの火を当てることにより燃焼性を評価した。具体的には、バーナーの火を離した後の継続燃焼の有無、および、はみ出し部の状態について、目視観察を行った。
 試験後にステンレス板を剥がして、ステンレス板に接していた部分のセパレータ材料が乾いているか湿っているか、および、セパレータ材料の多孔性薄膜材料に損傷(穴空き)があるか否かを観察した。そして、湿っている部分の面積(湿潤面積)の割合が電解質組成物が燃焼せずに残った量を反映していると判断した。
(実施例1)
<電解質組成物の調製>
 イオン性物質としてのLiBF4を10gと、有機組成物としてのエチレンカーボネート80gおよびジメチルスルホン20gとを秤り取り、混合して均一な溶液の電解質組成物とした。
 そして、粘度およびイオン伝導度を測定した。結果を表2に示す。
<多孔性薄膜材料の準備>
 厚み210μmのガラス繊維フィルタ(ADVANTEC社製、GA-55)を直径20mmの円形に切り出し、多孔性薄膜材料とした。
<セパレータ材料の作製>
 電解質組成物に多孔性薄膜材料を浸漬し、電解質組成物を多孔性薄膜材料に含浸させた。そして、電解質組成物が含浸した多孔性薄膜材料を引き上げ、余剰の電解質をこそぎ取ってセパレータ材料とした。
 そして、着火試験を行った。結果を表2に示す。
(実施例2~3)
 多孔性薄膜材料の準備時に、ガラス繊維フィルタ(ADVANTEC社製、GA-55)のガラス繊維を表面からピンセットで慎重に剥がして厚みをそれぞれ100μm(実施例2)および50μm(実施例3)とした以外は実施例1と同様にして、電解質組成物の調製、多孔性薄膜材料の準備およびセパレータ材料の作製を行った。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
(実施例4~7)
 多孔性薄膜材料の準備時に、ガラス繊維フィルタ(ADVANTEC社製、GA-55)に替えて、それぞれ、厚み25μmのポリオレフィン(PO)微多孔膜(ポリポア製、セルガード2325)(実施例4)、厚み29μmのアルミナコートポリオレフィン(PO)微多孔膜(実施例5)、厚み100μmのPTFEメンブレンフィルター(メルク社製、オムニポアJMWP04700)(実施例7)、および、厚み35μmの紙(ニッポン高度紙工業製、TF4535)(実施例8)を用いた以外は実施例1と同様にして、電解質組成物の調製、多孔性薄膜材料の準備およびセパレータ材料の作製を行った。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
 なお、実施例4のポリオレフィン(PO)微多孔膜(ポリポア製、セルガード2325)は、特開2000-103886号公報の実施例に従って親水化処理を行ってから用いた。また、実施例5のアルミナコートポリオレフィン(PO)微多孔膜としては、親水化処理を行った実施例4のポリオレフィン(PO)微多孔膜の両面に対し、特開2014-149935号公報に記載の方法に従って、端部3mmを除く部分に厚さ2μmのアルミナ粒子層を形成したものを用いた。
(実施例8~11)
 電解質組成物の調製時に、有機組成物として表2に示す化合物を表2に示す量で用いた以外は実施例1と同様にして、電解質組成物の調製、多孔性薄膜材料の準備およびセパレータ材料の作製を行った。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
 なお、表中、「EO-PO共重合体」とは、重量平均分子量が100万のエチレンオキサイド(EO)-プロピレンオキサイド(PO)共重合体(EO:PO=90:10)を指す。
(実施例12~15および17~18)
 電解質組成物の調製時に、イオン性物質として10gのLiBF4に替えて30gのリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を使用し、有機組成物として表2に示す化合物を表2に示す量で用いた以外は実施例1と同様にして、電解質組成物の調製、多孔性薄膜材料の準備およびセパレータ材料の作製を行った。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
(実施例16)
 電解質組成物の調製時に、イオン性物質として10gのLiBF4に替えて40gのリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を使用し、有機組成物として表2に示す化合物を表2に示す量で用いた以外は実施例1と同様にして、電解質組成物の調製、多孔性薄膜材料の準備およびセパレータ材料の作製を行った。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
(実施例19)
 電解質組成物の調製時に、イオン性物質として10gのLiBF4に替えて30gのマグネシウムビス(トリフルオロメタンスルホニル)イミド(Mg(TFSI)2)を使用し、有機組成物として表2に示す化合物を表2に示す量で用いた以外は実施例1と同様にして、電解質組成物の調製、多孔性薄膜材料の準備およびセパレータ材料の作製を行った。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
(比較例1)
 電解質組成物の調製時に、有機組成物として表2に示す化合物を表2に示す量で用いた以外は実施例1と同様にして、電解質組成物の調製、多孔性薄膜材料の準備およびセパレータ材料の作製を行った。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
(比較例2)
 多孔性薄膜材料の準備時に、ガラス繊維フィルタ(ADVANTEC社製、GA-55)に替えて、厚み25μmのポリオレフィン(PO)微多孔膜(ポリポア製、セルガード2325)を用いた以外は比較例1と同様にして、電解質組成物の調製、多孔性薄膜材料の準備およびセパレータ材料の作製を行った。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
(比較例3)
 多孔性薄膜材料の準備時に、ガラス繊維フィルタ(ADVANTEC社製、GA-55)に替えて、厚み675μmのガラス繊維フィルタ(GEヘルスケアライフサイエンス社製、Whatman(登録商標) GF/B)を用いた以外は実施例1と同様にして、電解質組成物の調製、多孔性薄膜材料の準備およびセパレータ材料の作製を行った。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
(比較例4~5)
 電解質組成物の調製時に、有機組成物として表2に示す化合物を表2に示す量で用いた以外はそれぞれ比較例1および比較例2と同様にして、電解質組成物の調製、多孔性薄膜材料の準備およびセパレータ材料の作製を行った。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例1~19のセパレータ材料は、着火試験後の湿潤面積の割合が大きく、また、多孔性薄膜材料の穴空きも無いので、外部から着火した場合であっても、燃焼し難いことが分かる。また、表2より、比較例1,3,4のセパレータ材料は、着火試験後の湿潤面積の割合が小さく、電解質組成物が燃焼し易いことが分かる。更に、表2より、比較例2,5のセパレータ材料は、多孔性薄膜材料に穴空きがあり、多孔性薄膜材料が損傷し易いため、電気化学デバイスが内部ショートし易いことが分かる。
 また、実施例1~19のセパレータ材料は、温度5℃の大気圧下において固体である化合物の割合が高く、外部への物質漏えいが起こり難かった。
(実施例20)
 実施例10で作製したセパレータ材料を介在させて、セパレータ材料と同じ電解質組成物を含浸させた正極合材層(正極活物質:リン酸鉄リチウム)を有する正極と、リチウム金属製の負極とを貼り合わせ、リチウムイオン二次電池を製造した。作製後、直ぐに電圧3.8~3.0V、電流値0.1Cの条件で繰り返し充放電を行ったところ、充放電が可能であることが確認された。
 本発明によれば、内部または外部から着火した場合であっても、燃焼し難く、且つ、外部への物質漏えいが少ない非水系電気化学デバイスが得られる。

Claims (10)

  1.  厚さが300μm以下の多孔性薄膜材料に対して電解質組成物を含浸させてなり、
     前記電解質組成物は、少なくとも1種のイオン性物質と、有機組成物とを含有し、且つ、温度100℃の大気圧下において液状であり、
     前記有機組成物は、温度5℃の大気圧下において固体である化合物を80質量%以上の割合で含み、大気圧下における沸点が130℃未満の低沸点有機化合物の含有割合が0質量%以上20質量%以下である、セパレータ材料。
  2.  前記有機組成物は、温度5℃の大気圧下において固体である化合物を2種類以上含む、請求項1に記載のセパレータ材料。
  3.  前記有機組成物は、温度5℃の大気圧下において固体である化合物を3種類以上含む、請求項1または2に記載のセパレータ材料。
  4.  前記有機組成物は、難燃剤を更に含有する、請求項1~3の何れかに記載のセパレータ材料。
  5.  前記電解質組成物は、高分子成分を更に含有する、請求項1~4の何れかに記載のセパレータ材料。
  6.  前記多孔性薄膜材料が融点を有するものである、請求項1~5の何れかに記載のセパレータ材料。
  7.  前記多孔性薄膜材料の表面に不燃性の微粒子が付着している、請求項1~6の何れかに記載のセパレータ材料。
  8.  前記電解質組成物は、温度-20℃におけるイオン伝導度が1.0×10-4S/cm以上である、請求項1~7の何れかに記載のセパレータ材料。
  9.  前記有機組成物は、温度40℃の大気圧下において液体である有機化合物の含有割合が0質量%以上20質量%以下である、請求項1~8の何れかに記載のセパレータ材料。
  10.  請求項1~9の何れかに記載のセパレータ材料を備える、非水系電気化学デバイス。
PCT/JP2020/014274 2019-03-29 2020-03-27 セパレータ材料および非水系電気化学デバイス WO2020203872A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021512058A JPWO2020203872A1 (ja) 2019-03-29 2020-03-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068348 2019-03-29
JP2019-068348 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203872A1 true WO2020203872A1 (ja) 2020-10-08

Family

ID=72668874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014274 WO2020203872A1 (ja) 2019-03-29 2020-03-27 セパレータ材料および非水系電気化学デバイス

Country Status (2)

Country Link
JP (1) JPWO2020203872A1 (ja)
WO (1) WO2020203872A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319269A (ja) * 1988-06-20 1989-12-25 Sanyo Electric Co Ltd 非水電解液二次電池
JPH08241731A (ja) * 1995-03-02 1996-09-17 Japan Storage Battery Co Ltd 有機電解液二次電池
JP2004139888A (ja) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd 有機電解液二次電池
JP2006179244A (ja) * 2004-12-21 2006-07-06 Sanyo Electric Co Ltd リチウム二次電池
JP2011204585A (ja) * 2010-03-26 2011-10-13 Panasonic Corp リチウムイオン電池
JP2011258462A (ja) * 2010-06-10 2011-12-22 Du pont teijin advanced paper co ltd 非水系電気電子部品用薄葉材
US20150024121A1 (en) * 2013-07-22 2015-01-22 Hui He Process for producing non-flammable quasi-solid electrolyte and electrolyte-separator for lithium battery applications
JP2016045987A (ja) * 2014-08-20 2016-04-04 株式会社日立製作所 リチウムイオン二次電池用の電解液およびリチウムイオン二次電池
JP2016134283A (ja) * 2015-01-19 2016-07-25 株式会社日本触媒 非水電解液及びこれを備えた蓄電デバイス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319269A (ja) * 1988-06-20 1989-12-25 Sanyo Electric Co Ltd 非水電解液二次電池
JPH08241731A (ja) * 1995-03-02 1996-09-17 Japan Storage Battery Co Ltd 有機電解液二次電池
JP2004139888A (ja) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd 有機電解液二次電池
JP2006179244A (ja) * 2004-12-21 2006-07-06 Sanyo Electric Co Ltd リチウム二次電池
JP2011204585A (ja) * 2010-03-26 2011-10-13 Panasonic Corp リチウムイオン電池
JP2011258462A (ja) * 2010-06-10 2011-12-22 Du pont teijin advanced paper co ltd 非水系電気電子部品用薄葉材
US20150024121A1 (en) * 2013-07-22 2015-01-22 Hui He Process for producing non-flammable quasi-solid electrolyte and electrolyte-separator for lithium battery applications
JP2016045987A (ja) * 2014-08-20 2016-04-04 株式会社日立製作所 リチウムイオン二次電池用の電解液およびリチウムイオン二次電池
JP2016134283A (ja) * 2015-01-19 2016-07-25 株式会社日本触媒 非水電解液及びこれを備えた蓄電デバイス

Also Published As

Publication number Publication date
JPWO2020203872A1 (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
Deng et al. Nonflammable organic electrolytes for high-safety lithium-ion batteries
Yim et al. Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness
EP2469633B1 (en) A mixed solvent for an electrolyte for a lithium secondary battery and lithium secondary battery comprising the same
Li et al. Inherently flame-retardant solid polymer electrolyte for safety-enhanced lithium metal battery
CN101114716B (zh) 电池用非水电解液以及具备其的非水电解液电池
US9614229B2 (en) Functionalized short chain fluorinated polyether based electrolytes for safe lithium batteries and the cells having the same
US20030190531A1 (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2006038614A1 (ja) 非水電解液及びそれを備えた非水電解液電池
JP2017123324A (ja) バッテリーセルおよびバッテリー
Yusuf et al. Low heat yielding electrospun phosphenanthrene oxide loaded polyacrylonitrile composite separators for safer high energy density lithium-ion batteries.
JP4911888B2 (ja) 非水電解液及びそれを備えた非水電解液2次電池
WO2008007734A1 (en) Electrochemical device
JP4257725B2 (ja) 非水電解液二次電池
JP2008021560A (ja) 非水系電解液
JP2007200605A (ja) 非水電解液及びそれを備えた非水電解液電池
Long et al. Boosting safety and performance of lithium-ion battery enabled by cooperation of thermotolerant fire-retardant composite membrane and nonflammable electrolyte
Guo et al. Safer lithium metal battery based on advanced ionic liquid gel polymer nonflammable electrolytes
CN109478681B (zh) 锂电池用液体电解质
JP2008041413A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
Quan et al. All-climate outstanding-performances lithium-ion batteries enabled by in-situ constructed gel polymer electrolytes
JP4671693B2 (ja) 二次電池の非水電解液用添加剤及び非水電解液二次電池
WO2021172456A1 (ja) 電気化学デバイス用電解液、可塑性組成物、用途及び製造方法
WO2020203872A1 (ja) セパレータ材料および非水系電気化学デバイス
WO2020203871A1 (ja) 電気化学デバイス用電解質組成物および電気化学デバイス
JP2006294334A (ja) 非水電解液、非水電解液電池、非水電解液電気二重層キャパシタ、並びに非水電解液の安全性評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783172

Country of ref document: EP

Kind code of ref document: A1