WO2020202758A1 - 光デバイス、光電変換装置、および燃料生成装置 - Google Patents

光デバイス、光電変換装置、および燃料生成装置 Download PDF

Info

Publication number
WO2020202758A1
WO2020202758A1 PCT/JP2020/003634 JP2020003634W WO2020202758A1 WO 2020202758 A1 WO2020202758 A1 WO 2020202758A1 JP 2020003634 W JP2020003634 W JP 2020003634W WO 2020202758 A1 WO2020202758 A1 WO 2020202758A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanostructure
optical device
type semiconductor
metal
electrode
Prior art date
Application number
PCT/JP2020/003634
Other languages
English (en)
French (fr)
Inventor
慎也 岡本
石川 篤
安寿 稲田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021511156A priority Critical patent/JPWO2020202758A1/ja
Priority to CN202080018286.XA priority patent/CN113544086A/zh
Publication of WO2020202758A1 publication Critical patent/WO2020202758A1/ja
Priority to US17/463,637 priority patent/US20210399148A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present disclosure relates to optical devices, photoelectric conversion devices, and fuel generation devices.
  • Photoelectric conversion technology using surface plasmon resonance in Schottky structures in which metal nanostructures are arranged on semiconductors is drawing attention. Electrons that are temporarily in a high-energy state due to surface plasmon resonance are called hot electrons. When the hot electrons cross the Schottky barrier between the metal and the semiconductor, charge separation is achieved and photoelectric conversion is realized. Devices in which metal nanostructures are formed on semiconductors are also attracting attention in the field of photocatalysts.
  • Patent Document 1 and Patent Document 2 disclose an example of a photoelectric conversion method using an element in which metal nanoparticles having surface plasmon resonance absorption are arranged on an n-type semiconductor.
  • Non-Patent Document 1 discloses a photoelectric conversion method using a Schottky element in which a metal film having a small work function and a metal film having surface plasmon resonance absorption are formed on an n-type semiconductor.
  • Non-Patent Document 2 discloses a photoelectric conversion device using nanoparticles of tin-doped indium oxide (ITO) that exhibits surface plasmon resonance with respect to light in the infrared region.
  • ITO tin-doped indium oxide
  • One aspect of the present disclosure provides an optical device capable of improving photoelectric conversion efficiency.
  • the optical device includes a nanostructure that induces surface plasmon resonance when irradiated with light, an alloy layer that is in contact with the nanostructure and has a lower work function than the nanostructure.
  • An n-type semiconductor that is Schottky-bonded to the alloy layer is provided.
  • the nanostructure is composed of one selected from the group consisting of monometals, alloys, metal nitrides, and conductive oxides.
  • the alloy layer is composed of at least two kinds of metals.
  • the photoelectric conversion efficiency can be improved.
  • FIG. 1A is a schematic view schematically showing an example of a Schottky device according to the embodiment of the present disclosure.
  • FIG. 1B is a diagram schematically showing a Schottky device according to a modified example.
  • FIG. 1C is a diagram schematically showing a Schottky device according to another modification.
  • FIG. 1D is a diagram schematically showing a Schottky device according to still another modification.
  • FIG. 1E is a diagram schematically showing a Schottky device according to still another modification.
  • FIG. 1F is a diagram schematically showing a Schottky device according to still another modification.
  • FIG. 1G is a diagram schematically showing a Schottky device according to still another modification.
  • FIG. 1A is a schematic view schematically showing an example of a Schottky device according to the embodiment of the present disclosure.
  • FIG. 1B is a diagram schematically showing a Schottky device according to a modified example.
  • FIG. 1C is
  • FIG. 1H is a diagram schematically showing a Schottky device according to still another modification.
  • FIG. 2A is a top view showing an example of arrangement of a plurality of nanoparticles in the Schottky device shown in FIG. 1A.
  • FIG. 2B is a top view showing another example of the arrangement of the plurality of nanoparticles in the Schottky device shown in FIG. 1A.
  • FIG. 2C is a top view showing an example of a Schottky device including a nanostructure having a comb-shaped structure.
  • FIG. 2D is an enlarged view showing the structure in the broken line frame in FIG. 2C.
  • FIG. 3A is a diagram schematically showing the configuration of a photoelectric conversion device including the Schottky device shown in FIG. 1A.
  • FIG. 3B is a diagram schematically showing a configuration of a modified example of the photoelectric conversion device.
  • FIG. 3C is a diagram schematically showing an example of a fuel generator including the Schott
  • the semiconductor photodetector currently in widespread use uses photoelectric conversion based on light absorption by interband transition. Therefore, it is not possible to detect light having an energy lower than the bandgap energy of the semiconductor. It is expected to realize photoelectric conversion in a wider wavelength range than conventional semiconductor photodetectors.
  • near infrared light For example, it is expected to realize an inexpensive photodetector capable of detecting light in the near infrared region (hereinafter referred to as "near infrared light") with high sensitivity.
  • near-infrared light highly sensitive imaging can be performed day and night.
  • near-infrared light is highly safe for the eyes. For this reason, photodetectors in the near-infrared region are expected to be used as sensors for autonomous driving of automobiles.
  • silicon (Si) photodetectors are relatively inexpensive and widely used. However, since light in the near infrared region has lower energy than visible light, it cannot be detected without using a semiconductor having a smaller bandgap energy. Semiconductors with low bandgap energy include, for example, indium gallium arsenide (InGaAs).
  • a metal having excellent plasmonic properties such as gold (Au) can be used.
  • Au gold
  • the work function of metals with excellent plasmonic properties is large, and the Schottky barrier that occurs at the interface with semiconductors becomes high. Therefore, it becomes difficult for hot electrons to cross the Schottky barrier.
  • Non-Patent Document 1 the shot key barrier is reduced by providing titanium (Ti), which is a metal having a relatively small work function, between the semiconductor substrate and Au, which is a metal having excellent plasmonic properties. It has been devised.
  • Non-Patent Document 1 since the plasmonic property of the Ti film is low, the plasmon absorption property of the metal nanostructure on the semiconductor substrate is lowered, and the sensitivity and the photoelectric conversion efficiency are lowered.
  • nanostructures of conductive oxides such as ITO as disclosed in Non-Patent Document 2 and SnO 2 , TiO 2 , or Si, etc. It is also conceivable to use a structure in contact with a semiconductor. However, even with such a structure, it is difficult to achieve an appropriate Schottky barrier. In a typical application, a suitable Schottky barrier size is, for example, about 0.3 eV to 0.5 eV. On the other hand, in the structure in which the ITO nanoparticles and SnO 2 are in contact with each other, the Schottky barrier is as low as about 0.2 eV. On the other hand, in the structure in which ITO nanoparticles are in contact with TiO 2 or Si, the Schottky barrier is as high as about 0.7 eV.
  • the optical device includes a nanostructure that induces surface plasmon resonance when irradiated with light, an alloy layer that is in contact with the nanostructure and has a lower work function than the nanostructure, and the above. It includes an n-type semiconductor that is Schottky-bonded to the alloy layer.
  • the nanostructure may be composed of one selected from the group consisting of monometals, alloys, metal nitrides, and conductive oxides.
  • the alloy layer is composed of at least two kinds of metals.
  • an alloy layer having a lower work function than the nanostructure is provided between the nanostructure and the n-type semiconductor.
  • the Schottky barrier can be reduced and the transport efficiency of hot electrons can be improved as compared with the configuration in which the n-type semiconductor and the nanostructure are in contact with each other.
  • the nanostructure may include, for example, at least one single metal selected from the group consisting of gold (Au), silver (Ag), copper (Cu), aluminum (Al), and palladium (Pd).
  • Au gold
  • Ag silver
  • Cu copper
  • Al aluminum
  • Pd palladium
  • the nanostructure may contain, for example, at least one metal nitride selected from the group consisting of titanium nitride (TiN), zirconium nitride (ZrN), tantalum nitride (TaN), and hafnium nitride (HfN). Good.
  • TiN titanium nitride
  • ZrN zirconium nitride
  • TaN tantalum nitride
  • HfN hafnium nitride
  • the nanostructure may contain, for example, at least one conductive oxide selected from the group consisting of tin-doped indium oxide (ITO), aluminum-doped zinc oxide (AZO), and gallium-doped zinc oxide (GZO). Good.
  • ITO tin-doped indium oxide
  • AZO aluminum-doped zinc oxide
  • GZO gallium-doped zinc oxide
  • the nanostructure may be composed of an alloy having a higher work function than the alloy layer.
  • the nanostructures are, for example, a first metal selected from the group consisting of gold (Au), silver (Ag), copper (Cu), aluminum (Al), and palladium (Pd), and titanium (Ti). ), Chromium (Cr), Nickel (Ni), Manganese (Mn), Iron (Fe), Zinc (Zn), Gallium (Ga), and a second metal selected from the group consisting of tantalum (Ta). It can be an intermetallic compound or a solid solution alloy.
  • the alloy layer is, for example, gold (Au), silver (Ag), copper (Cu), aluminum (Al), palladium (Pd), titanium (Ti), chromium (Cr), nickel (Ni), manganese (Mn). , Iron (Fe), zinc (Zn), gallium (Ga), and tantalum (Ta) can be an intermetal compound or solid solution alloy containing at least two metals selected from the group.
  • the combination of metallic materials that make up the alloy layer is chosen so that the alloy layer has a lower work function than the work function of the nanostructure.
  • the alloy layer may be an intermetallic compound or a solid solution alloy of the first metal and the second metal.
  • the "intermetallic compound or solid solution alloy of the first metal and the second metal” means an intermetallic compound or solid solution alloy containing the first metal and the second metal as main components.
  • the intermetallic compound or solid solution alloy may contain elements other than the first metal and the second metal, for example, impurities.
  • As the second metal a metal having a work function lower than that of the first metal can be selected.
  • FIG. 1A is a schematic view schematically showing an example of the Schottky device 100A according to the exemplary embodiment of the present disclosure.
  • the Schottky device 100A includes a plurality of nanoparticles 11, each of which is a nanostructure, an alloy layer 12, and an n-type semiconductor 13.
  • the plurality of nanoparticles 11 are in contact with the alloy layer 12.
  • the alloy layer 12 is in contact with the n-type semiconductor 13.
  • Each nanoparticle 11 in this example is composed of a single metal having excellent plasmonic properties.
  • the alloy layer 12 is composed of an alloy containing a metal having a lower work function than the nanoparticles 11.
  • the alloy layer 12 may be made of a metal material having a low electrical resistance.
  • the alloy layer 12 shown in FIG. 1A has a uniform film-like structure. Not limited to such a structure, the alloy layer 12 may have, for example, a mottled structure.
  • the nanoparticles 11 can be composed of a single metal having high conductivity, excellent plasmonic properties, and low ionization tendency.
  • the metal can be, for example, one metal selected from the group consisting of gold (Au), silver (Ag), copper (Cu), palladium (Pd), and aluminum (Al).
  • Nanoparticle 11 has surface plasmon resonance absorption.
  • the surface plasmon resonance wavelength of the nanoparticles 11 can be adjusted by changing the particle size, shape, structure, and alloy composition of the nanoparticles 11.
  • the “particle diameter” means the diameter of a circle circumscribing the particle in a microscope image including an image of the particle.
  • the particle size may be referred to as "size”.
  • nanoparticle means a particle having a size on the order of nanometers (nm) that is sufficiently smaller than the wavelength of the light (typically visible light or near infrared light) used. That is, the “nanoparticle” means a particle having a particle diameter of 1 nm or more and less than 1 ⁇ m.
  • the size of the nanoparticles 11 can be, for example, 1 nm or more and 200 nm or less.
  • the size of the nanoparticles 11 can be 1 nm or more and 50 nm or less in some examples and 5 nm or more and 20 nm or less in other examples. Plasmon absorption can be improved by reducing the size of the nanoparticles 11 to 200 nm or less. Further, for example, a microscope image including an image of at least 10 nanoparticles 11 may be acquired, and the arithmetic mean of the sizes of the at least 10 nanoparticles 11 may be obtained based on the microscope image. This arithmetic mean may be 1 nm or more and 200 nm or less, 1 nm or more and 50 nm or less, or 5 nm or more and 20 nm or less. The size of the nanoparticles 11 can be measured by an electron microscope such as a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the nanostructure may have various structures or shapes other than the structure of the spherical nanoparticles 11 shown in FIG. 1A, for example, a wire structure long in a certain direction or a cube structure having a shape close to a cube.
  • a nanostructure 11B instead of the nanoparticles 11, a nanostructure 11B made of the same material as the nanoparticles 11 and having a comb-shaped structure is arranged in contact with the alloy layer 12. You may.
  • all nanoparticles 11 are made of the same single metal. Not limited to such an example, the materials of the plurality of nanoparticles 11 may be different from each other.
  • the alloy layer 12 is an intermetallic compound of two or more kinds of metals, or a solid solution alloy of two or more kinds of metals.
  • the metals constituting the alloy layer 12 include, for example, gold (Au), silver (Ag), copper (Cu), aluminum (Al), palladium (Pd), titanium (Ti), chromium (Cr), and nickel (Ni). ), Manganese (Mn), iron (Fe), zinc (Zn), gallium (Ga), and tantalum (Ta) can be any metal selected from the group. These metals are selected so that the work function of the alloy layer 12 is lower than the work function of the nanoparticles 11.
  • An "intermetallic compound” is a compound in which two or more kinds of metals are bonded at a simple integer ratio, and refers to an alloy in which atoms are regularly arranged in an order over a relatively long distance (for example, 1 nm or more).
  • a "solid solution alloy” is a single-phase alloy in which a plurality of metal elements are uniformly and disorderly distributed in a crystal, and has a structure in which another metal invades or replaces while maintaining the structure of one of the metals. Say something.
  • Whether or not a substance is an alloy can be confirmed, for example, by element mapping using a scanning transmission electron microscope (STEM). If the substance is not separated into the phases of a plurality of metal elements that are its constituent elements, it can be determined to be an alloy. More specifically, for example, if the following conditions (1) and (2) are satisfied, it can be said that the alloy layer 12 is an alloy of the first metal and the second metal.
  • STEM scanning transmission electron microscope
  • Whether or not a substance is a solid solution alloy can be confirmed based on, for example, a diffraction pattern obtained by an X-ray diffraction method. If a peak shift from the peak position of the first metal and the second metal is observed in the diffraction pattern, reflecting the composition ratio based on the Vegard law, the alloy layer 12 is the first metal and the second metal. It can be judged that it is a solid solution alloy of.
  • the alloy layer 12 is an intermetallic compound can be confirmed by, for example, analysis by an electron beam diffraction method or an X-ray diffraction method. If the diffraction pattern obtained by the electron beam diffraction method or the X-ray diffraction method matches the diffraction pattern of the intermetallic compound of the first metal and the second metal disclosed in documents such as specialized books, the alloy layer 12 is the first. It can be determined that it is an intermetallic compound of one metal and a second metal.
  • the composition ratio of the intermetallic compound is different from the composition ratio disclosed in the literature, a slight deviation in the distance between the diffraction spots (peak in the case of X-ray diffraction) may be observed depending on the deviation in the plane spacing.
  • the grid spacing is obtained from the grid image obtained by structural analysis of the particles using STEM, and it is based on whether or not the peak position calculated from this grid spacing matches the peak position disclosed in the literature. It may be determined whether or not an intermetallic compound is contained.
  • the composition ratio of the particles is determined by EDX
  • the lattice spacing is calculated by Vegard's law
  • the intermetallics are based on whether or not the peak position calculated from the lattice spacing matches the peak position disclosed in the literature. It may be determined whether or not the compound is contained.
  • the alloy layer 12 has a work function lower than that of the nanoparticles 11. Therefore, as compared with the structure in which the nanoparticles 11 are in direct contact with the n-type semiconductor 13, the Schottky barrier can be reduced and the current extraction efficiency can be improved. As a result, it is possible to realize a dramatic improvement in performance as compared with the case where the alloy layer 12 does not exist.
  • the electron affinity of the n-type semiconductor 13 is lower than the work function of the alloy layer 12, and Schottky bonding is realized between the n-type semiconductor 13 and the alloy layer 12. As a result, the Schottky device 100A exhibits rectification characteristics.
  • the wavelength corresponding to the bandgap energy of the n-type semiconductor 13 may be shorter than the surface plasmon resonance wavelength of the nanoparticles 11.
  • the energy of the light that causes the surface plasmon resonance in the nanoparticles 11, that is, the energy of the irradiation light may be lower than the band gap energy of the n-type semiconductor 13. Even when the energy of the irradiation light is lower than the bandgap energy of the n-type semiconductor 13, if the generated hot electrons exceed the Schottky barrier, charges are separated.
  • the n-type semiconductor 13 may include at least one selected from the group consisting of, for example, a silicon (Si) semiconductor, a germanium (Ge) semiconductor, and a gallium arsenide (GaAs) semiconductor.
  • the n-type semiconductor 13 may be a Si semiconductor, a Ge semiconductor, or a GaAs semiconductor.
  • the surface plasmon resonance wavelength of the nanoparticles 11 can be, for example, 900 nm or more.
  • the n-type semiconductor 13 may be a wide-gap semiconductor.
  • the wide-gap semiconductor may include at least one selected from the group consisting of titanium oxide (TiO 2 ) semiconductors, gallium nitride (GaN) semiconductors, and strontium titanate (SrTiO 3 ) semiconductors.
  • the wide-gap semiconductor may be a titanium oxide (TiO 2 ) semiconductor, a gallium nitride (GaN) semiconductor, or a strontium titanate (SrTiO 3 ) semiconductor.
  • the surface plasmon resonance wavelength in the nanoparticles 11 can be, for example, 400 nm or more.
  • the n-type semiconductor 13 can be, for example, an inorganic semiconductor.
  • Non-Patent Document 1 a structure in which a metal film having a low work function is provided between an n-type semiconductor substrate and a metal that causes surface plasmon resonance has been known.
  • a highly efficient photoelectric conversion device can be manufactured by a simple method such as a nanoink coating process.
  • an oxide film may be formed on the surface of the substrate of the n-type semiconductor 13 or the surface of the alloy layer 12. In that case, if necessary, the step of removing the oxide film may be included in the manufacturing step.
  • FIG. 1B is a diagram schematically showing a Schottky device 100B according to a modified example of the present embodiment.
  • the Schottky device 100B in this example differs from the configuration of FIG. 1A in that nanoparticles 14, which are nanostructures of metal nitride, are arranged on the alloy layer 12.
  • the nanoparticles 14 in this modification are made of, for example, by at least one metal nitride selected from the group consisting of titanium nitride (TiN), zirconium nitride (ZrN), tantalum nitride (TaN), and hafnium nitride (HfN). Can be configured.
  • TiN titanium nitride
  • ZrN zirconium nitride
  • TaN tantalum nitride
  • HfN hafnium nitride
  • These metal nitrides have high plasmon absorption characteristics for light in the long wavelength region to the near infrared region in the visible region. Therefore, the efficiency of plasmon absorption and the efficiency of hot electron transport for light in the long wavelength region to the near infrared region in the visible region are increased, and the photoelectric conversion efficiency can be improved.
  • FIG. 1C is a diagram schematically showing a Schottky device 100C according to another modification of the present embodiment.
  • the Schottky device 100C differs from the configurations of FIGS. 1A and 1B in that nanoparticles 15, which are nanostructures of conductive oxides, are arranged on the alloy layer 12.
  • the nanoparticles 15 in this modification are, for example, by at least one conductive oxide selected from the group consisting of tin-doped indium oxide (ITO), aluminum-doped zinc oxide (AZO), and gallium-doped zinc oxide (GZO). Can be configured.
  • ITO tin-doped indium oxide
  • AZO aluminum-doped zinc oxide
  • GZO gallium-doped zinc oxide
  • These conductive oxides have high plasmon absorption characteristics for light in the near infrared region with a longer wavelength. Therefore, the efficiency of plasmon absorption and the efficiency of hot electron transport for light in the near-infrared region having a longer wavelength are further increased, and the photoelectric conversion efficiency can be improved.
  • FIG. 1D is a diagram schematically showing a Schottky device 100D according to still another modification of the present embodiment.
  • the Schottky device 100D differs from the configurations of FIGS. 1A to 1C in that nanoparticles 11A, which are nanostructures of the alloy, are arranged on the alloy layer 12.
  • the nanoparticles 11A in this modification is an intermetallic compound or a solid solution alloy containing the first metal 11A1 and the second metal 11A2.
  • the first metal 11A1 has excellent plasmonic properties and has a low ionization tendency.
  • the second metal 11A2 has a lower work function than the first metal 11A1.
  • the composition of the nanoparticles 11A is different from the composition of the alloy layer 12.
  • the first metal 11A1 can be made of a material having high conductivity, excellent plasmonic properties, and low ionization tendency.
  • the first metal 11A1 is, for example, one or more metals selected from the group consisting of gold (Au), silver (Ag), copper (Cu), palladium (Pd), and aluminum (Al). obtain.
  • the second metal 11A2 may be composed of a material having a work function lower than that of the first metal 11A1.
  • the second metal 11A2 is, for example, titanium (Ti), chromium (Cr), silver (Ag), copper (Cu), aluminum (Al), nickel (Ni), manganese (Mn), iron (Fe), zinc ( It can be one or more metals selected from the group consisting of Zn), gallium (Ga), and tantalum (Ta).
  • the nanostructure may be composed of an alloy having a higher work function than the alloy layer 12.
  • FIG. 1E is a diagram schematically showing a Schottky device 100E according to still another modification of the present embodiment.
  • the n-type semiconductor 13 has a trench structure or a texture structure. The upper part thereof is covered with the alloy layer 12 and the single metal layer 11.
  • the outermost single metal layer 11 functions as a nanostructure that induces surface plasmon resonance.
  • the nano-antenna structure increases the efficiency of plasmon absorption and can improve the photoelectric conversion efficiency.
  • FIG. 1F is a diagram schematically showing a Schottky device 100F according to still another modification of the present embodiment.
  • the n-type semiconductor 13 has a trench structure or a texture structure, and the upper portion thereof is covered with an alloy layer 12 and a metal nitride layer 14.
  • the outermost metal nitride layer 14 functions as a nanostructure that induces surface plasmon resonance.
  • the efficiency of plasmon absorption for light in the long wavelength region to the near infrared region in the visible region is increased, and the photoelectric conversion efficiency can be improved.
  • the gold nitride layer 14 is formed of, for example, at least one metal nitride selected from the group consisting of titanium nitride (TiN), zirconium nitride (ZrN), tantalum nitride (TaN), and hafnium nitride (HfN). obtain.
  • FIG. 1G is a diagram schematically showing a Schottky device 100G according to still another modification of the present embodiment.
  • the n-type semiconductor 13 has a trench structure or a texture structure, and the upper portion thereof is covered with an alloy layer 12 and a conductive oxide layer 15.
  • the outermost conductive oxide layer 15 functions as a nanostructure that induces surface plasmon resonance.
  • the efficiency of plasmon absorption for light in the near-infrared region having a longer wavelength is further increased, and the photoelectric conversion efficiency can be improved.
  • the conductive oxide layer 15 is formed of, for example, at least one conductive oxide selected from the group consisting of tin-doped indium oxide (ITO), aluminum-doped zinc oxide (AZO), and gallium-doped zinc oxide (GZO). obtain.
  • ITO tin-doped indium oxide
  • AZO aluminum-doped zinc oxide
  • GZO gallium-doped zinc oxide
  • FIG. 1H is a diagram schematically showing a Schottky device 100H according to still another modification of the present embodiment.
  • the Schottky device 100H differs from the configurations of FIGS. 1E to 1G in that the alloy layer 12 is covered with an alloy layer 11A having a composition different from that of the alloy layer 12.
  • the alloy layer 11A has a higher work function than the work function of the alloy layer 12.
  • the outermost alloy layer 11A functions as a nanostructure that induces surface plasmon resonance.
  • the alloy layer 12 may be covered by an alloy layer 11A having a higher work function.
  • FIG. 2A is a top view showing an arrangement example of a plurality of nanoparticles 11 in the Schottky device 100A shown in FIG. 1A.
  • the plurality of nanoparticles 11 can be arranged two-dimensionally and periodically.
  • the plurality of nanoparticles 11 may be arranged one-dimensionally.
  • the period of arrangement of the plurality of nanoparticles 11 is not particularly limited. For example, the period can be set to about twice the size of the particles.
  • FIG. 2B is a top view showing another example of the arrangement of the plurality of nanoparticles 11 in the Schottky device 100A shown in FIG. 1A.
  • the plurality of nanoparticles 11 in this example do not have a clear periodicity and are arranged randomly or pseudo-randomly. Even with such an arrangement, the effect of the present embodiment can be obtained without any problem.
  • FIGS. 2A and 2B may be adopted in the configuration shown in any of FIGS. 1B to 1D.
  • the structure of the plurality of nanoparticles does not have to be uniform, and the size, shape, and material may be different from each other. Further, the effect of the present embodiment can be obtained even when only a single nanoparticle is provided, not limited to a plurality of particles.
  • the nanostructure may have a one-dimensional or two-dimensional periodic structure or aperiodic structure.
  • FIG. 2C is a top view showing still another modification of the Schottky device.
  • the Schottky device in this example comprises nanostructures 11B having a comb structure.
  • the nanostructure 11B in this example includes a plurality of portions 11Ba extending in one direction and a portion 11Bb connecting the ends of the portions 11Ba.
  • Each of the plurality of portions 11Ba extending in one direction has a diameter on the order of nanometers and functions as a nanowire.
  • each portion 11Ba of the nanostructure 11B is electrically connected to each other by the portion 11Bb.
  • FIG. 2D is a diagram schematically showing an example of the structure in the region surrounded by the broken line circle in FIG. 2C.
  • each metal atom is represented by a sphere.
  • the nanostructure 11B is formed from a single metal.
  • the nanostructure 11B may have a size larger than the nanometer scale as a whole. Even in that case, since each nanowire portion of the comb-shaped nanostructure 11B acts as an antenna, the effect of surface plasmon resonance can be obtained.
  • the material having a nanowire structure as shown in FIG. 2C is not limited to a single metal, and may be a metal nitride, a conductive oxide, or an alloy as in the examples shown in FIGS. 1B to 1D, respectively.
  • FIG. 3A is a diagram schematically showing the configuration of a photoelectric conversion device 200A including the Schottky device 100A shown in FIG. 1A.
  • a current is generated by irradiating the photoelectric conversion device 200A with light from the light source 19.
  • the photoelectric conversion device 200A includes a Schottky device 100A, which is an optical device, an ohmic electrode 17 (also referred to as a first electrode), which is in contact with the n-type semiconductor 13 on the side opposite to the side where the nanoparticles 11 are located, and an ohmic electrode.
  • a lead wire 18 for electrically connecting the 17 and the nanoparticles 11 is provided.
  • the photoelectric conversion device 200A further includes a transparent conductive film 16 provided on the surface on which the nanoparticles 11 are arranged on the alloy layer 12.
  • the transparent conductive film 16 contains nanoparticles 11.
  • the transparent conductive film 16 and the n-type semiconductor 13 are not in contact with each other.
  • the conducting wire 18 electrically connects the ohmic electrode 17 and the transparent conductive film 16.
  • the photoelectric conversion device 200A is manufactured by forming a transparent conductive film 16, an ohmic electrode 17, and a conducting wire 18 on a Schottky device 100A.
  • a material having a high transmittance at the wavelength of the light emitted from the light source 19 can be used.
  • tin-doped indium oxide (ITO), gallium-doped zinc oxide (GZO), aluminum-doped zinc oxide (AZO) and the like can be used.
  • the light source 19 emits light toward a plurality of nanoparticles 11 in the Schottky device 100A.
  • the light source 19 may be a laser, a xenon lamp, a mercury lamp, or a halogen lamp.
  • the light source 19 emits light having an energy equal to or less than the bandgap energy of the n-type semiconductor 13 and corresponding to the plasmon resonance wavelength of the nanoparticles 11.
  • the light source 19 may emit light in a relatively wide wavelength range. The wavelength range is determined to include the surface plasmon resonance wavelength of the nanoparticles 11.
  • the light source 19 may be a component of the photoelectric conversion device 200A, or may be an external element of the photoelectric conversion device 200A.
  • the Schottky barrier can be reduced at a relatively low cost. As a result, it is possible to realize a device that performs photoelectric conversion with higher efficiency.
  • FIG. 3B is a diagram schematically showing a photoelectric conversion device 200B according to a modified example of the second embodiment.
  • the photoelectric conversion device 200B in this example does not include the transparent conductive film 16 shown in FIG. 3A.
  • the alloy layer 12 and the ohmic electrode 17 are electrically connected through the lead wire 18.
  • the Schottky device 100A is irradiated with light from the light source 19, a current flows through the lead wire 18.
  • an electric current is generated by irradiating the Schottky device with light.
  • the generated current can be taken out through the lead wire 18.
  • the wavelength of available light can also be controlled.
  • FIG. 1A an example including the Schottky device 100A shown in FIG. 1A has been described.
  • the configuration is not limited to these, and a photoelectric conversion device including any of the Schottky devices shown in FIGS. 1B to 2D may be configured.
  • FIG. 3C is a diagram schematically showing an example of a fuel generator 200C including the Schottky device 100A shown in FIG. 1A.
  • the fuel generator 200C includes an oxidation reaction tank 20, a reduction reaction tank 21, a proton permeable film 22, a Schottky device 100A, a reduction electrode 25, an ohmic electrode 17, a lead wire 18, and a quartz glass window 26. Be prepared.
  • the first electrolytic solution 23 is held inside the oxidation reaction tank 20.
  • the second electrolytic solution 24 is held inside the reduction reaction tank 21.
  • the oxidation reaction tank 20 and the reduction reaction tank 21 are separated by a proton permeable membrane 22.
  • the Schottky device 100A is at least partially immersed in the first electrolytic solution 23.
  • the reducing electrode 25 is at least partially immersed in the second electrolytic solution 24.
  • An ohmic electrode 17 (also referred to as a first electrode) is provided at the end of the n-type semiconductor 13.
  • the first electrode 17 is electrically connected to the reducing electrode 25 (also referred to as the second electrode) through the conducting wire 18.
  • the example of the first electrolytic solution 23 in the oxidation reaction tank 20 is selected from the group consisting of potassium hydrogen carbonate (KHCO 3 ), sodium hydrogen carbonate (NaHCO 3 ), potassium hydroxide (KOH), and sodium hydroxide (NaOH). It is an aqueous solution containing at least one of the above.
  • the concentration of the electrolyte in the first electrolytic solution 23 can be set to, for example, 0.1 mol / L or more.
  • the first electrolyte 23 can be, for example, basic.
  • a general electrolytic solution can be used for the second electrolytic solution 24 in the reduction reaction tank 21.
  • the second electrolytic solution 24 contains, for example, at least one selected from the group consisting of potassium hydrogen carbonate (KHCO 3 ), sodium hydrogen carbonate (NaHCO 3 ), potassium chloride (KCl), and sodium chloride (NaCl).
  • An aqueous solution can be used.
  • the concentration of the electrolyte in the second electrolyte can be set to, for example, 0.1 mol / L or more.
  • the second electrolyte 24 can be, for example, acidic.
  • the quartz glass window 26 is provided on the side surface of the oxidation reaction tank 20. Light is irradiated by the light source 19 through the quartz glass window 26 to the region immersed in the first electrolytic solution 23 on the light irradiation surface side of the shotkey device 100A. Since the proton permeable membrane 22 is sandwiched between the oxidation reaction tank 20 and the reduction reaction tank 21, the first electrolytic solution 23 and the second electrolytic solution 24 do not mix with each other.
  • the structure of the proton permeable membrane 22 is not particularly limited as long as it allows protons (H + ) to permeate and suppresses the passage of other substances.
  • a specific example of the proton permeable membrane 22 is a Nafion® membrane.
  • the first electrode 17 may be, for example, platinum, an alloy containing platinum, or a platinum compound.
  • hydrogen is generated in the second electrode 25.
  • the Schottky barrier can be reduced at a relatively low cost. Therefore, it is possible to realize a device capable of performing photoelectric conversion and fuel generation with higher efficiency.
  • fuel is generated by arranging an appropriate reducing electrode 25 in the reduction reaction tank 21 and irradiating the Schottky device 100A with light.
  • hydrogen (H 2 ) or the like can be produced as a reduction product. It is also possible to change the type of product by selecting the material type of the catalyst layer material to be used.
  • the fuel generator 200C in the present embodiment may include any of the Schottky devices shown in FIGS. 1B to 2D instead of the Schottky device 100A shown in FIG. 1A.
  • the optical device is a nanostructure that induces surface plasmon resonance when irradiated with light, and is a monometal, an alloy, a metal nitride, and a conductive oxide.
  • an alloy layer having a lower work function than the nanostructure is arranged between the nanostructure and the n-type semiconductor.
  • the Schottky barrier can be reduced, so that the transport efficiency of hot electrons generated from the nanostructure can be improved, and the photoelectric conversion efficiency can be improved.
  • the nanostructures may contain at least one single metal selected from the group consisting of gold (Au), silver (Ag), copper (Cu), aluminum (Al), and palladium (Pd). ..
  • the nanostructure may contain at least one metal nitride selected from the group consisting of titanium nitride (TiN), zirconium nitride (ZrN), tantalum nitride (TaN), and hafnium nitride (HfN). ..
  • the efficiency of plasmon absorption and the efficiency of hot electron transport for light in the long wavelength region to the near infrared region in the visible region are increased, and the photoelectric conversion efficiency can be improved.
  • the nanostructure may contain at least one conductive oxide selected from the group consisting of tin-doped indium oxide (ITO), aluminum-doped zinc oxide (AZO), and gallium-doped zinc oxide (GZO). ..
  • the efficiency of plasmon absorption and the efficiency of hot electron transport for light in the near-infrared region having a longer wavelength are further increased, and the photoelectric conversion efficiency can be improved.
  • the alloy layers include gold (Au), silver (Ag), copper (Cu), aluminum (Al), palladium (Pd), titanium (Ti), chromium (Cr), nickel (Ni), manganese (Mn), and the like. It may be an intermetal compound or a solid solution alloy containing at least two metals selected from the group consisting of iron (Fe), zinc (Zn), gallium (Ga), and tantalum (Ta).
  • the n-type semiconductor may be an inorganic semiconductor.
  • the nanostructure may have a comb-shaped structure.
  • the nanostructure may contain at least one nanoparticle.
  • the particle size of the at least one nanoparticle may be 1 nm or more and 200 nm or less.
  • the photoelectric conversion efficiency can be further improved.
  • the optical device may further include a light source that emits light having an energy equal to or less than the band gap energy of the n-type semiconductor and having an energy corresponding to the plasmon resonance wavelength of the at least one nanostructure.
  • the n-type semiconductor may include at least one selected from the group consisting of silicon semiconductors, germanium semiconductors, and gallium arsenide semiconductors.
  • the surface plasmon resonance wavelength of the nanostructure may be 900 nm or more.
  • the n-type semiconductor may contain at least one selected from the group consisting of titanium oxide (TiO 2 ) semiconductors, gallium nitride (GaN) semiconductors, and strontium titanate (SrTiO 3 ) semiconductors.
  • TiO 2 titanium oxide
  • GaN gallium nitride
  • SrTiO 3 strontium titanate
  • the surface plasmon resonance wavelength in the at least one nanostructure may be 400 nm or more.
  • the photoelectric conversion device includes any of the above-mentioned optical devices, an electrode, and a lead wire for electrically connecting the electrode and the nanostructure.
  • the n-type semiconductor has a first surface in contact with the alloy layer and a second surface opposite to the first surface.
  • the electrode is in contact with the second surface of the n-type semiconductor.
  • the photoelectric conversion device may further include a transparent conductive film covering the nanostructure.
  • the transparent conductive film and the n-type semiconductor may not be in contact with each other.
  • the conducting wire may electrically connect the electrode and the transparent conductive film.
  • the fuel generator according to the embodiment of the present disclosure includes an optical device described above, a first electrode in contact with the n-type semiconductor in the optical device, a first electrolytic solution, and an oxidation reaction tank containing the optical device.
  • the first electrode and the second electrode are connected to the reduction reaction tank containing the second electrolytic solution and the second electrode, the proton permeable film located at the boundary between the oxidation reaction tank and the reduction reaction tank. It is equipped with a lead wire.
  • the optical device is in contact with the first electrolytic solution.
  • the reducing electrode is in contact with the second electrolytic solution.
  • the first electrode may be platinum, an alloy containing platinum, or a platinum compound. Hydrogen may be generated at the second electrode when light having an energy corresponding to the surface plasmon resonance wavelength of the first metal is incident on the intermetallic compound or the solid solution alloy in the optical device.
  • hydrogen can be obtained by water splitting using the first electrode containing platinum.
  • the first electrolytic solution is an aqueous solution containing at least one selected from the group consisting of potassium hydrogen carbonate (KHCO 3 ), sodium hydrogen carbonate (NaHCO 3 ), potassium hydroxide (KOH), and sodium hydroxide (NaOH). It may be.
  • the second electrolytic solution is an aqueous solution containing at least one selected from the group consisting of potassium hydrogen carbonate (KHCO 3 ), sodium hydrogen carbonate (NaHCO 3 ), potassium chloride (KCl), and sodium chloride (NaCl). You may.
  • the technique of the present disclosure can be used for any application in which photoelectric conversion is performed.
  • it can be used for photodetectors such as image sensors, fuel generators, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

光デバイス(100A)は、光が照射されたときに表面プラズモン共鳴を誘起するナノ構造体(11)と、前記ナノ構造体(11)に接し、前記ナノ構造体(11)よりも仕事関数の低い合金層(12)と、前記合金層(12)にショットキー接合するn型半導体(13)とを備える。前記ナノ構造体(11)は、単金属、合金、金属窒化物、および導電性酸化物からなる群から選択される1種によって構成される。前記合金層(12)は、少なくとも2種の金属によって構成される。

Description

光デバイス、光電変換装置、および燃料生成装置
 本開示は、光デバイス、光電変換装置、および燃料生成装置に関する。
 金属ナノ構造体が半導体上に配置されたショットキー構造における表面プラズモン共鳴を利用した光電変換技術が注目されている。表面プラズモン共鳴によって一時的に高エネルギー状態となった電子はホットエレクトロンと呼ばれる。ホットエレクトロンが金属と半導体との間のショットキー障壁を超えることで電荷分離され、光電変換が実現される。半導体上に金属ナノ構造体が形成された素子は、光触媒の分野においても注目されている。
 特許文献1及び特許文献2は、表面プラズモン共鳴吸収性を有する金属ナノ粒子がn型半導体上に配置された素子を用いた光電変換方法の例を開示している。
 非特許文献1は、n型半導体上に、仕事関数の小さい金属膜と、表面プラズモン共鳴吸収性を有する金属膜とが形成されたショットキー素子による光電変換方法を開示している。
 非特許文献2は、赤外域の光に対して表面プラズモン共鳴を示すスズドープ酸化インジウム(ITO)のナノ粒子を用いた光電変換デバイスを開示している。
特開2016-162890号公報 特開2014-67988号公報
Mark W.Knight, Heidar Sobhani, Peter Nordlander, Naomi J.Halas, "Photodetection with Active Optical Antennas", Science, 2011, Vol.332 p.702-704 Masanori Sakamoto et al., "Clear and transparent nanocrystals for infrared-responsive carrier transfer", Nature Communications, 2019, 10, 406
 本開示の一態様は、光電変換効率を向上させることが可能な光デバイスを提供する。
 本開示の一態様に係る光デバイスは、光が照射されたときに表面プラズモン共鳴を誘起するナノ構造体と、前記ナノ構造体に接し、前記ナノ構造体よりも仕事関数の低い合金層と、前記合金層にショットキー接合するn型半導体と、を備える。前記ナノ構造体は、単金属、合金、金属窒化物、および導電性酸化物からなる群から選択される1種によって構成される。前記合金層は、少なくとも2種の金属によって構成される。
 本開示の包括的または具体的な態様は、デバイス、装置、システム、方法、またはこれらの任意な組み合わせで実現されてもよい。
 本開示の実施形態によれば、光電変換効率を向上させることができる。
図1Aは、本開示の実施形態に係るショットキーデバイスの一例を模式的に示す概略図である。 図1Bは、変形例に係るショットキーデバイスを模式的に示す図である。 図1Cは、他の変形例に係るショットキーデバイスを模式的に示す図である。 図1Dは、さらに他の変形例に係るショットキーデバイスを模式的に示す図である。 図1Eは、さらに他の変形例に係るショットキーデバイスを模式的に示す図である。 図1Fは、さらに他の変形例に係るショットキーデバイスを模式的に示す図である。 図1Gは、さらに他の変形例に係るショットキーデバイスを模式的に示す図である。 図1Hは、さらに他の変形例に係るショットキーデバイスを模式的に示す図である。 図2Aは、図1Aに示すショットキーデバイスにおける複数のナノ粒子の配置例を示す上面図である。 図2Bは、図1Aに示すショットキーデバイスにおける複数のナノ粒子の配置の他の例を示す上面図である。 図2Cは、くし形構造をもつナノ構造体を備えるショットキーデバイスの例を示す上面図である。 図2Dは、図2Cにおける破線枠内の構造を拡大して示す図である。 図3Aは、図1Aに示すショットキーデバイスを備えた光電変換装置の構成を模式的に示す図である。 図3Bは、光電変換装置の変形例の構成を模式的に示す図である。 図3Cは、図1Aに示すショットキーデバイスを備える燃料生成装置の一例を模式的に示す図である。
 本開示の実施形態を説明する前に、発明者らによって見出された知見を説明する。
 現在普及している半導体光検出器は、バンド間遷移による光吸収に基づく光電変換を利用している。このため、半導体のバンドギャップエネルギーよりも低いエネルギーを有する光を検出することはできない。従来の半導体光検出器よりも広い波長領域で光電変換を実現することが期待されている。
 例えば、近赤外領域の光(以下、「近赤外光」と称する)を高い感度で検出できる光検出器を安価に実現することが期待されている。近赤外光を利用することで、昼夜を問わず高感度なイメージングが可能となり得る。さらに、近赤外光は、眼に対する安全性が高い。このため、近赤外領域の光検出器は、自動車の自動運転のためのセンサに利用されることが期待されている。
 可視域の光に関しては、シリコン(Si)による光検出器が比較的安価で広く普及している。しかし、近赤外領域の光は、可視光よりもエネルギーが低いため、よりバンドギャップエネルギーの小さい半導体を用いなければ検出することができない。バンドギャップエネルギーの小さい半導体には、例えばインジウムガリウムヒ素(InGaAs)がある。
 他方、特許文献1および2に開示されているような、金属ナノ構造体が半導体上に配置されたショットキー構造を備える光電変換技術が注目されている。金属ナノ構造体における表面プラズモン共鳴によって発生したホットエレクトロンがショットキー障壁を超えることで電荷分離され、光電変換が実現される。この技術は、これまで利用が困難であった長波長の光を含む広い波長領域の光を活用できるため、光電変換のみならず、光触媒の分野においても注目されている。
 金属ナノ構造体には、例えば金(Au)などのプラズモニック特性に優れた金属が使用され得る。しかし、プラズモニック特性に優れた金属の仕事関数は大きく、半導体との界面で生じるショットキー障壁が高くなる。そのため、ホットエレクトロンがショットキー障壁を超えにくくなる。
 非特許文献1では、半導体基板と、プラズモニック特性に優れた金属であるAuとの間に、仕事関数の相対的に小さい金属であるチタン(Ti)を設けることで、ショットキー障壁を低減する工夫がなされている。
 非特許文献1の技術では、Ti膜のプラズモニック特性が低いため、半導体基板上の金属ナノ構造のプラズモン吸収特性が低下し、感度および光電変換効率が低下する。
 赤外域の光に対する光電変換効率を向上させるために、例えば非特許文献2に開示されているような、ITOなどの導電性酸化物のナノ構造体と、SnO、TiO、またはSiなどの半導体とを接触させた構造を利用することも考えられる。しかし、そのような構造を利用したとしても、適切なショットキー障壁を実現することは難しい。典型的な応用例において、適切なショットキー障壁の大きさは、例えば0.3eVから0.5eV程度である。これに対し、ITOナノ粒子とSnOとが接触した構造では、ショットキー障壁が0.2eV程度と低い。一方、ITOナノ粒子とTiOまたはSiとが接触した構造では、ショットキー障壁が0.7eV程度と高い。
 本発明者らは、以上の課題を見出し、この課題を解決するための新規な光デバイスに想到した。以下、本開示の実施形態の概要を説明する。
 本開示の実施形態における光デバイスは、光が照射されたときに表面プラズモン共鳴を誘起するナノ構造体と、前記ナノ構造体に接し、前記ナノ構造体よりも仕事関数の低い合金層と、前記合金層にショットキー接合するn型半導体とを備える。前記ナノ構造体は、単金属、合金、金属窒化物、および導電性酸化物からなる群から選択される1種によって構成され得る。前記合金層は、少なくとも2種の金属によって構成される。
 上記の光デバイスによれば、ナノ構造体とn型半導体との間に、ナノ構造体よりも仕事関数の低い合金層が設けられる。これにより、n型半導体とナノ構造体とが接する構成と比較して、ショットキー障壁を低減し、ホットエレクトロンの輸送効率を向上させることができる。
 ナノ構造体は、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、およびパラジウム(Pd)からなる群から選択される少なくとも1種の単金属を含み得る。優れたプラズモニック特性を有し、且つイオン化傾向の小さい上記のいずれかの金属によってナノ構造体を構成することにより、高い効率のホットエレクトロン生成を実現することができる。また、これらの単金属よりも仕事関数の低い合金層を設けることにより、高い効率のホットエレクトロン生成と低いショットキー障壁による電流取出しとを両立することができる。これにより、光電変換効率を向上させることができる。
 ナノ構造体は、例えば、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化タンタル(TaN)、および窒化ハフニウム(HfN)からなる群から選択される少なくとも1種の金属窒化物を含んでいてもよい。これらの金属窒化物によるナノ構造体を用いた場合、可視域の長波長領域から近赤外領域で、プラズモン吸収の効率が高くなり、光電変換効率を向上させることができる。
 ナノ構造体は、例えば、スズドープ酸化インジウム(ITO)、アルミニウムドープ酸化亜鉛(AZO)、およびガリウムドープ酸化亜鉛(GZO)からなる群から選択される少なくとも1種の導電性酸化物を含んでいてもよい。これらの導電性酸化物によるナノ構造体を用いた場合、より長波長の近赤外領域でプラズモン吸収の効率およびホットエレクトロンの輸送効率が高くなり、光電変換効率を向上させることができる。
 ナノ構造体は、合金層よりも高い仕事関数をもつ合金によって構成されていてもよい。その場合、ナノ構造体は、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、およびパラジウム(Pd)からなる群から選択される第1金属と、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、亜鉛(Zn)、ガリウム(Ga)、およびタンタル(Ta)からなる群から選択される第2金属とを含む金属間化合物または固溶体合金であり得る。
 合金層は、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、パラジウム(Pd)、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、亜鉛(Zn)、ガリウム(Ga)、およびタンタル(Ta)からなる群から選択される少なくとも二種の金属を含む金属間化合物または固溶体合金であり得る。ただし、合金層を構成する金属材料の組み合わせは、合金層がナノ構造体の仕事関数よりも低い仕事関数をもつように選択される。一例として、ナノ構造体が、高いプラズモニック特性を有する第1金属の単体によって構成される場合、合金層は、第1金属および第2金属の金属間化合物または固溶体合金であってもよい。
 ここで、「第1金属および第2金属の金属間化合物または固溶体合金」は、第1金属および第2金属を主成分とする金属間化合物または固溶体合金を意味する。当該金属間化合物または固溶体合金は、第1金属および第2金属以外の元素、例えば不純物を含んでいてもよい。第2金属として、第1金属の仕事関数よりも低い仕事関数を有する金属が選択され得る。
 以下、図面を参照しながら、本開示の例示的な実施の形態を説明する。なお、必要以上に詳細な説明は省略する場合がある。たとえば、既によく知られた事項の詳細説明を省略する場合がある。また、実質的に同一の構成には同一の符号を付し、重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。本発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供する。これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。
 (実施形態1:ショットキーデバイス)
 光デバイスの一例として、ショットキーデバイスの実施形態を説明する。
 図1Aは、本開示の例示的な実施形態によるショットキーデバイス100Aの一例を模式的に示す概略図である。ショットキーデバイス100Aは、各々がナノ構造体である複数のナノ粒子11と、合金層12と、n型半導体13とを備える。複数のナノ粒子11は、合金層12に接触している。合金層12は、n型半導体13に接触している。この例における各ナノ粒子11は、優れたプラズモニック特性を有する金属単体によって構成される。合金層12は、ナノ粒子11よりも仕事関数の低い金属を含む合金によって構成される。合金層12は、電気抵抗の小さい金属材料で構成され得る。図1Aに示す合金層12は、均一な膜状の構造を備える。このような構造に限らず、合金層12は、例えばまだら状の構造を備えていてもよい。
 上記の構成によれば、合金層12とn型半導体13とが広い面積で接合することにより、ショットキー障壁の低減およびホットエレクトロンの輸送効率の向上が実現される。また、単金属のナノ粒子11を用いることにより、合金によるナノ粒子を用いた場合よりも高い効率でプラズモン吸収を実現できる。このため、高い効率で光電変換することが可能な光デバイスを、比較的低いコストで実現できる。
 以下、各構成要素をより具体的に説明する。
 ナノ粒子11は、導電性が高く優れたプラズモニック特性を有し、且つイオン化傾向の小さい金属単体から構成され得る。当該金属は、例えば、金(Au)、銀(Ag)、銅(Cu)、パラジウム(Pd)、およびアルミニウム(Al)からなる群から選択される1種の金属であり得る。
 ナノ粒子11は、表面プラズモン共鳴吸収性を有する。ナノ粒子11における表面プラズモン共鳴波長は、ナノ粒子11の粒子径、形状、構造、および合金の組成を変えることによって調整することができる。
 本開示において、「粒子径」とは、粒子の画像を含む顕微鏡画像における当該粒子に外接する円の直径を意味する。以下、粒子径を「サイズ」と称する場合がある。また、本開示において、「ナノ粒子」とは、利用される光(典型的には可視光または近赤外線)の波長よりも十分に小さいナノメートル(nm)オーダのサイズをもつ粒子を意味する。すなわち、「ナノ粒子」とは、粒子径が1nm以上1μm未満程度の粒子を意味する。ナノ粒子11のサイズは、例えば1nm以上200nm以下であり得る。ナノ粒子11のサイズは、ある例では1nm以上50nm以下、他の例では5nm以上20nm以下であり得る。ナノ粒子11のサイズを200nm以下にすることにより、プラズモン吸収を向上させることができる。また、例えば、少なくとも10個のナノ粒子11の画像を含む顕微鏡画像を取得し、この顕微鏡画像に基づいて、当該少なくとも10個のナノ粒子11のサイズの算術平均を求めてもよい。この算術平均は、1nm以上200nm以下であってもよいし、1nm以上50nm以下であってもよいし、5nm以上20nm以下であってもよい。ナノ粒子11のサイズは、例えば透過型電子顕微鏡(TEM)または走査型電子顕微鏡(SEM)などの電子顕微鏡によって測定することができる。
 ナノ構造体は、図1Aに示す球状のナノ粒子11の構造以外にも、例えば、ある方向に長いワイヤー構造、または立方体に近い形状であるキューブ構造などの、様々な構造または形状をとり得る。以下、球状のナノ粒子11を用いる例について説明するが、ナノ構造体の形状は、ナノ粒子に限らない。例えば、図2Cを参照して後述するように、ナノ粒子11に代えて、ナノ粒子11と同じ材料で構成され、くし形構造を有するナノ構造体11Bが合金層12に接触して配置されていてもよい。図1Aの例では、全てのナノ粒子11が、同一の単金属によって構成されている。このような例に限定されず、複数のナノ粒子11の材料が互いに異なっていてもよい。
 合金層12は、2種以上の金属の金属間化合物、または2種以上の金属の固溶体合金である。合金層12を構成する各金属は、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、パラジウム(Pd)、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、亜鉛(Zn)、ガリウム(Ga)、およびタンタル(Ta)からなる群から選択されるいずれかの金属であり得る。それらの金属は、合金層12の仕事関数が、ナノ粒子11の仕事関数よりも低くなるように選択される。
 「金属間化合物」とは、2種以上の金属が簡単な整数比で結合した化合物であり、原子が比較的長距離(例えば、1nm以上)にわたって秩序を保って規則的に配列した合金をいう。「固溶体合金」とは、結晶内で複数の金属元素が均一かつ無秩序に分布した単相の合金であり、いずれかの金属の構造を保持しながら、他の金属が侵入または置換した構造をもつものをいう。
 ある物質が合金であるか否かは、例えば走査型透過電子顕微鏡(STEM)を用いた元素マッピングによって確認できる。当該物質が、その構成要素である複数の金属元素の相に分離していなければ、合金であると判断できる。より具体的には、例えば以下の(1)および(2)の条件を満足していれば、合金層12が第1金属および第2金属の合金であるといえる。(1)STEMを用いて1nm×1nmの分解能で元素マッピング測定を行ったとき、合金層12が占める全領域のうち80%以上の領域において、第1金属および第2金属が検出される。(2)エネルギー分散型X線分析(EDX)および線分析から、粒子の断面においても組成比を反映した割合で第1金属および第2金属が検出される。
 ある物質が固溶体合金であるか否かは、例えばX線回折法によって得られた回折パターンに基づいて確認できる。当該回折パターンにおいて、Vegard則に基づき、組成比を反映して、第1金属単体および第2金属単体のピーク位置からのピークシフトが観測されれば、合金層12が第1金属および第2金属の固溶体合金であると判断できる。
 一方、合金層12が金属間化合物であるか否かは、例えば電子線回折法またはX線回折法による分析によって確認できる。電子線回折法またはX線回折法によって得られる回折パターンが、専門書などの文献に開示された、第1金属および第2金属の金属間化合物の回折パターンと一致すれば、合金層12が第1金属および第2金属の金属間化合物であると判断できる。
 金属間化合物の組成比が文献に開示された組成比と異なる場合は、面間隔のずれに応じて僅かに回折スポット(X線回折の場合はピーク)の間隔のずれが見られることがある。その場合は、STEMを用いた粒子の構造解析によって得られた格子像から格子間隔を求め、この格子間隔から算出されるピーク位置と文献に開示されたピーク位置とが一致するか否かに基づいて、金属間化合物が含まれているか否かを判断してもよい。あるいは、EDXによって粒子の組成比を求め、Vegard則によって格子間隔を算出し、その格子間隔から算出されるピーク位置と文献に開示されたピーク位置とが一致するか否かに基づいて、金属間化合物が含まれているか否かを判断してもよい。
 合金層12は、ナノ粒子11の仕事関数よりも低い仕事関数を有する。したがって、ナノ粒子11がn型半導体13に直接接する構造と比較して、ショットキー障壁を低減させ、電流の取り出し効率を向上させることができる。これにより、合金層12が存在しない場合と比較して、飛躍的な性能向上を実現することができる。
 n型半導体13の電子親和力は、合金層12の仕事関数よりも低く、n型半導体13と合金層12との間でショットキー接合が実現されている。これにより、ショットキーデバイス100Aは整流特性を示す。
 本実施形態では、n型半導体13のバンドギャップエネルギーに相当する波長は、ナノ粒子11の表面プラズモン共鳴波長よりも短くてもよい。言い換えれば、ナノ粒子11における表面プラズモン共鳴を生じさせる光のエネルギー、つまり照射光のエネルギーは、n型半導体13のバンドギャップエネルギーよりも低くてもよい。照射光のエネルギーがn型半導体13のバンドギャップエネルギーよりも低い場合でも、生成したホットエレクトロンがショットキー障壁を超えれば、電荷分離される。
 n型半導体13は、例えばシリコン(Si)半導体、ゲルマニウム(Ge)半導体、およびガリウムヒ素(GaAs)半導体からなる群から選択される少なくとも1つを含んでいてもよい。n型半導体13は、Si半導体、Ge半導体、またはGaAs半導体であってもよい。その場合、ナノ粒子11における表面プラズモン共鳴波長は、例えば900nm以上であり得る。n型半導体13は、ワイドギャップ半導体でもよい。このワイドギャップ半導体は、酸化チタン(TiO)半導体、窒化ガリウム(GaN)半導体、およびチタン酸ストロンチウム(SrTiO)半導体からなる群から選択される少なくとも1つを含んでもよい。ワイドギャップ半導体は、酸化チタン(TiO)半導体、窒化ガリウム(GaN)半導体、またはチタン酸ストロンチウム(SrTiO)半導体であってもよい。n型半導体13がワイドギャップ半導体である場合、ナノ粒子11における表面プラズモン共鳴波長は、例えば400nm以上であり得る。このように、n型半導体13は、例えば無機半導体であり得る。
 従来、波長900nm以下の光に対しては、高品質な結晶作製技術が確立しているSi半導体が用いられ、高感度の光検出が実現されている。Si半導体のバンドギャップエネルギーよりも低いエネルギーをもつ近赤外光に対しては、InP単結晶基板にエピタキシャル成長させたInGaAs半導体が用いられ、高い感度が実現されている。しかし、InGaAs半導体の作製には、高度な薄膜形成技術が必要となる。本実施形態によれば、Si半導体、Ge半導体、GaAs半導体、またはワイドギャップ半導体を用いた場合であっても、近赤外領域の光を検出することができる。これらの半導体は、製造に高度な薄膜形成技術を必要としないため、コストを低減することができる。特に、Si半導体を用いた場合は、InGaAs半導体に比べ、暗電流を小さくすることができる。
 また、従来、非特許文献1に開示されているように、n型半導体基板と、表面プラズモン共鳴を生じる金属との間に、仕事関数の低い金属膜を設けた構造は知られていた。しかし、本実施形態のように、表面プラズモン共鳴を生じるナノ粒子11と、n型半導体13との間に、プラズモン障壁を低減させる合金層12を設ける試みはなされてこなかった。本実施形態のような構造を採用することにより、ナノインク塗布プロセスなどの簡便な方法で、高い効率の光電変換デバイスを作製することができる。
 なお、ショットキーデバイス100Aの作製に使用される成膜プロセスによっては、n型半導体13の基板の表面または合金層12の表面に酸化膜が形成される場合がある。その場合は、必要に応じて、酸化膜を除去する工程を製造工程に含めてもよい。
 図1Bは、本実施形態の変形例に係るショットキーデバイス100Bを模式的に示す図である。この例におけるショットキーデバイス100Bは、金属窒化物のナノ構造体であるナノ粒子14が合金層12上に配置されている点で、図1Aの構成とは異なっている。
 本変形例におけるナノ粒子14は、例えば、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化タンタル(TaN)、および窒化ハフニウム(HfN)からなる群から選択される少なくとも1種の金属窒化物によって構成され得る。
 これらの金属窒化物は、可視域の長波長領域から近赤外領域の光に対して高いプラズモン吸収特性を有する。このため、可視域の長波長領域から近赤外領域の光に対するプラズモン吸収の効率およびホットエレクトロンの輸送効率が高くなり、光電変換効率を向上できる。
 図1Cは、本実施形態の他の変形例に係るショットキーデバイス100Cを模式的に示す図である。ショットキーデバイス100Cは、導電性酸化物のナノ構造体であるナノ粒子15が合金層12上に配置されている点で、図1Aおよび図1Bの構成とは異なっている。
 本変形例におけるナノ粒子15は、例えば、スズドープ酸化インジウム(ITO)、アルミニウムドープ酸化亜鉛(AZO)、およびガリウムドープ酸化亜鉛(GZO)からなる群から選択される少なくとも1種の導電性酸化物によって構成され得る。
 これらの導電性酸化物は、さらに長波長の近赤外領域の光に対して高いプラズモン吸収特性を有する。このため、さらに長波長の近赤外領域の光に対するプラズモン吸収の効率およびホットエレクトロン輸送効率が高くなり、光電変換効率を向上できる。
 図1Dは、本実施形態のさらに他の変形例に係るショットキーデバイス100Dを模式的に示す図である。ショットキーデバイス100Dは、合金のナノ構造体であるナノ粒子11Aが合金層12上に配置されている点で、図1Aから図1Cの構成とは異なっている。
 本変形例におけるナノ粒子11Aは、第1金属11A1と、第2金属11A2とを含む金属間化合物または固溶体合金である。第1金属11A1は、優れたプラズモニック特性を有し、且つイオン化傾向が小さい。第2金属11A2は、第1金属11A1よりも低い仕事関数を有する。ナノ粒子11Aの組成は、合金層12の組成とは異なる。
 第1金属11A1は、導電性が高く優れたプラズモニック特性を有し、且つイオン化傾向の小さい材料によって構成され得る。第1金属11A1は、例えば、金(Au)、銀(Ag)、銅(Cu)、パラジウム(Pd)、およびアルミニウム(Al)からなる群から選択される1種または2種以上の金属であり得る。
 第2金属11A2は、第1金属11A1の仕事関数よりも低い仕事関数を有する材料によって構成され得る。第2金属11A2は、例えば、チタン(Ti)、クロム(Cr)、銀(Ag)、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、亜鉛(Zn)、ガリウム(Ga)、およびタンタル(Ta)からなる群から選択される1種または2種以上の金属であり得る。
 このように、ナノ構造体は、合金層12よりも高い仕事関数を有する合金によって構成されていてもよい。
 図1Eは、本実施形態のさらに他の変形例に係るショットキーデバイス100Eを模式的に示す図である。この例におけるショットキーデバイス100Eは、n型半導体13がトレンチ構造またはテクスチャー構造を有している。その上部が合金層12と、単金属層11で覆われている。この例では、ショットキーデバイス100Eの表面に複数の凹部または凸部が存在する。これらの凹部または凸部のうちの隣接する2つの中心間距離は、ナノメートルオーダ、すなわち1nm以上1μm未満であり得る。このような構造においては、最表面の単金属層11が、表面プラズモン共鳴を誘起するナノ構造体として機能する。図1Eに示す構成によれば、ナノアンテナ構造によりプラズモン吸収の効率が高くなり、光電変換効率を向上できる。
 図1Fは、本実施形態のさらに他の変形例に係るショットキーデバイス100Fを模式的に示す図である。この例におけるショットキーデバイス100Fでは、n型半導体13がトレンチ構造またはテクスチャー構造を有しており、その上部が合金層12と、金属窒化物層14で覆われている。このような構造においては、最表面の金属窒化物層14が、表面プラズモン共鳴を誘起するナノ構造体として機能する。図1Fに示す構成によれば、可視域の長波長領域から近赤外領域の光に対するプラズモン吸収の効率が高くなり、光電変換効率を向上できる。金層窒化物層14は、例えば、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化タンタル(TaN)、および窒化ハフニウム(HfN)からなる群から選択される少なくとも一種の金属窒化物によって形成され得る。
 図1Gは、本実施形態のさらに他の変形例に係るショットキーデバイス100Gを模式的に示す図である。この例におけるショットキーデバイス100Gでは、n型半導体13がトレンチ構造またはテクスチャー構造を有しており、その上部が合金層12と、導電性酸化物層15で覆われている。このような構造においては、最表面の導電性酸化物層15が、表面プラズモン共鳴を誘起するナノ構造体として機能する。図1Gに示す構成によれば、さらに長波長の近赤外領域の光に対するプラズモン吸収の効率が高くなり、光電変換効率を向上できる。導電性酸化物層15は、例えば、スズドープ酸化インジウム(ITO)、アルミニウムドープ酸化亜鉛(AZO)、およびガリウムドープ酸化亜鉛(GZO)からなる群から選択される少なくとも一種の導電性酸化物によって形成され得る。
 図1Hは、本実施形態のさらに他の変形例に係るショットキーデバイス100Hを模式的に示す図である。ショットキーデバイス100Hでは、合金層12上を、合金層12とは異なる組成の合金層11Aが覆っている点で、図1Eから図1Gの構成とは異なっている。合金層11Aは、合金層12の仕事関数よりも高い仕事関数を有する。このような構造においては、最表面の合金層11Aが、表面プラズモン共鳴を誘起するナノ構造体として機能する。このように、合金層12は、より高い仕事関数を有する合金層11Aによって覆われていてもよい。
 次に、図2Aから図2Cを参照しながら、ナノ構造体の配置の例を説明する。
 図2Aは、図1Aに示すショットキーデバイス100Aにおける複数のナノ粒子11の配置例を示す上面図である。この例のように、複数のナノ粒子11は、2次元的に周期的に配置され得る。複数のナノ粒子11は、1次元的に並んでいてもよい。複数のナノ粒子11の配列の周期は特に限定されない。例えば、粒子のサイズの2倍程度の周期に設定され得る。
 図2Bは、図1Aに示すショットキーデバイス100Aにおける複数のナノ粒子11の配置の他の例を示す上面図である。この例における複数のナノ粒子11は、明確な周期性を有さず、ランダムまたは疑似ランダムに配置されている。このような配置であっても問題なく本実施形態の効果を得ることができる。
 図1Aに限らず、図1Bから図1Dのいずれかに示す構成においても同様に図2Aおよび図2Bに示すような配置を採用してよい。
 なお、複数のナノ粒子の構造は均一である必要はなく、大きさ、形状、および材料が相互に異なっていてもよい。さらに、複数に限らず単数のナノ粒子のみが設けられている場合も本実施形態の効果を得ることができる。
 図1Eから1Hにそれぞれ示す構造においても、ナノ構造体が1次元的または2次元的な周期構造または非周期構造を備えていてもよい。
 図2Cは、ショットキーデバイスのさらに他の変形例を示す上面図である。この例におけるショットキーデバイスは、くし形構造を有するナノ構造体11Bを備える。この例におけるナノ構造体11Bは、一方向に延びる複数の部分11Baと、それらの部分11Baの端部同士を繋ぐ部分11Bbとを備える。一方向に延びる複数の部分11Baの各々は、ナノメートルオーダーの直径を有し、ナノワイヤーとして機能する。このような構造により、ナノ構造体11Bの各部分11Baは部分11Bbによって相互に電気的に接続される。
 図2Dは、図2Cにおける破線の円で囲まれた領域における構造の例を模式的に示す図である。図2Dにおいて、各金属原子が球で表現されている。図2Dに示すように、金属単体からナノ構造体11Bが形成されている。なお、ナノ構造体11Bは、全体として、ナノメートルスケールよりも大きいサイズを有していてもよい。その場合でも、くし形状のナノ構造体11Bの各ナノワイヤー部分がアンテナとしてはたらくため、表面プラズモン共鳴による効果を得ることができる。図2Cに示すようなナノワイヤー構造の材料は、単金属に限定されず、図1Bから図1Dにそれぞれ示す例のように、金属窒化物、導電性酸化物、または合金であってもよい。
 (実施形態2:光電変換装置)
 次に、ショットキーデバイスを備えた光電変換装置の実施形態を説明する。
 図3Aは、図1Aに示すショットキーデバイス100Aを備えた光電変換装置200Aの構成を模式的に示す図である。光電変換装置200Aに光源19から光を照射することで、電流が発生する。
 光電変換装置200Aは、光デバイスであるショットキーデバイス100Aと、ナノ粒子11が位置する側とは反対の側においてn型半導体13に接するオーミック電極17(第1電極とも称する。)と、オーミック電極17とナノ粒子11とを電気的に接続する導線18とを備える。光電変換装置200Aは、さらに、合金層12上においてナノ粒子11が配置された面に設けられた透明導電膜16とをさらに備える。透明導電膜16は、ナノ粒子11を内包する。透明導電膜16とn型半導体13とは接していない。導線18は、オーミック電極17と、透明導電膜16とを電気的に接続する。
 光電変換装置200Aは、ショットキーデバイス100Aに、透明導電膜16、オーミック電極17、および導線18を形成することによって作製される。
 透明導電膜16には、光源19から照射される光の波長において透過率の高い材料を使用することができる。とりわけ可視から近赤外の領域においては、例えばスズドープ酸化インジウム(ITO)、ガリウムドープ酸化亜鉛(GZO)、またはアルミニウムドープ酸化亜鉛(AZO)などが用いられ得る。
 光源19は、ショットキーデバイス100Aにおける複数のナノ粒子11に向けて光を出射する。光源19の具体例は、レーザー、キセノンランプ、水銀ランプ、またはハロゲンランプであり得る。光源19は、n型半導体13のバンドギャップエネルギー以下で、かつ、ナノ粒子11のプラズモン共鳴波長に相当するエネルギーをもつ光を出射する。光源19は、比較的広い波長範囲の光を出射してもよい。当該波長範囲は、ナノ粒子11の表面プラズモン共鳴波長を含むように決定される。光源19は、光電変換装置200Aの構成要素であってもよいし、光電変換装置200Aの外部の要素であってもよい。ショットキーデバイス100Aに、光源19から光が照射されると導線18を通じて電流が流れる。
 以上の構成によれば、比較的低いコストで、ショットキー障壁を低減することができる。その結果、より高い効率で光電変換するデバイスを実現することができる。
 図3Bは、実施形態2の変形例に係る光電変換装置200Bを模式的に示す図である。この例における光電変換装置200Bは、図3Aに示す透明導電膜16を備えていない。合金層12とオーミック電極17とが、導線18を通じて電気的に接続されている。ショットキーデバイス100Aに光源19から光が照射されると、導線18を通じて電流が流れる。
 以上の構成によっても、比較的低いコストで、仕事関数の低い金属の自然酸化を抑制し、且つ、ショットキー障壁を低減することができる。その結果、より高い効率で光電変換するデバイスを実現することができる。
 図3A、3Bに示す例では、ショットキーデバイスへの光照射により、電流が発生する。発生した電流は導線18を通じて外部へ取り出すことができる。ナノ粒子11の構造を調整して表面プラズモン共鳴波長を制御することにより、利用できる光の波長も制御できる。
 本実施形態では、図1Aに示すショットキーデバイス100Aを備えた例を説明した。これらの構成に限定されず、例えば図1Bから図2Dに示すショットキーデバイスのいずれかを備えた光電変換装置を構成してもよい。
 (実施形態3:燃料生成装置)
 次に、光デバイスのさらに他の例として、ショットキーデバイスを備えた燃料生成装置の実施形態を説明する。
 図3Cは、図1Aに示すショットキーデバイス100Aを備える燃料生成装置200Cの一例を模式的に示す図である。この燃料生成装置200Cは、光源19から光が照射されると、光電変換を行い、さらに光化学反応によって燃料を生成する。燃料生成装置200Cは、酸化反応槽20と、還元反応槽21と、プロトン透過膜22と、ショットキーデバイス100Aと、還元電極25と、オーミック電極17と、導線18と、石英ガラス窓26とを備える。酸化反応槽20の内部には、第1電解液23が保持されている。還元反応槽21の内部には第2電解液24が保持されている。酸化反応槽20および還元反応槽21は、プロトン透過膜22によって隔てられている。ショットキーデバイス100Aは、少なくとも部分的に第1電解液23に浸漬されている。還元電極25は、少なくとも部分的に第2電解液24に浸漬されている。n型半導体13の端部にはオーミック電極17(第1電極ともいう)が設けられている。第1電極17は、導線18を通じて還元電極25(第2電極ともいう)に電気的に接続されている。
 酸化反応槽20内の第1電解液23の例は、炭酸水素カリウム(KHCO)、炭酸水素ナトリウム(NaHCO)、水酸化カリウム(KOH)、および水酸化ナトリウム(NaOH)からなる群から選択される少なくとも1種を含む水溶液である。第1電解液23における電解質の濃度は、例えば0.1mol/L以上に設定され得る。第1電解液23は、例えば塩基性であり得る。還元反応槽21内の第2電解液24には一般的な電解液を使用することができる。第2電解液24には、例えば、炭酸水素カリウム(KHCO)、炭酸水素ナトリウム(NaHCO)、塩化カリウム(KCl)、および塩化ナトリウム(NaCl)からなる群から選択される少なくとも1種を含む水溶液を用いることができる。第2電解液が何れの電解質を含む場合も、第2電解液中の電解質の濃度は、例えば0.1mol/L以上に設定され得る。第2電解液24は、例えば酸性であり得る。
 石英ガラス窓26は、酸化反応槽20の側面に設けられている。ショットキーデバイス100Aの光照射面側における第1電解液23に浸漬されている領域に、石英ガラス窓26を通して光が光源19によって照射される。プロトン透過膜22が酸化反応槽20および還元反応槽21の間に挟まれているため、第1電解液23および第2電解液24は互いに混合しない。プロトン透過膜22の構造は、プロトン(H)が透過し、かつ他物質の通過が抑制されるものであればよく、特に限定されない。プロトン透過膜22の具体例は、ナフィオン(登録商標)膜である。
 第1電極17は、例えば、白金、白金を含む合金、または白金化合物であり得る。ナノ粒子11に表面プラズモン共鳴波長に相当するエネルギーの光が入射したときに、第2電極25に水素が発生する。
 以上の構成によれば、比較的低いコストで、ショットキー障壁を低減することができる。このため、より高い効率で光電変換および燃料生成を行うことが可能なデバイスを実現できる。
 図3Cに示す例では、適切な還元電極25を還元反応槽21内に配置し、ショットキーデバイス100Aに光を照射することにより、燃料が生成される。その結果として、例えば水素(H)などが還元生成物として生成され得る。用いられる触媒層材料の材料種を選択することで、生成物の種類を変えることも可能である。
 本実施形態における燃料生成装置200Cは、図1Aに示すショットキーデバイス100Aに代えて、図1Bから図2Dに示すショットキーデバイスのいずれかを備えていてもよい。
 以上のように、本開示の一実施形態による光デバイスは、光が照射されたときに表面プラズモン共鳴を誘起するナノ構造体であって、単金属、合金、金属窒化物、および導電性酸化物からなる群から選択される1種によって構成されるナノ構造体と、前記ナノ構造体に接し、前記ナノ構造体よりも仕事関数の低い合金層と、前記合金層にショットキー接合するn型半導体と、を備える。
 上記構成によれば、ナノ構造体よりも仕事関数の低い合金層がナノ構造体とn型半導体との間に配置される。これにより、ショットキー障壁を低減できるため、ナノ構造体から生じたホットエレクトロンの輸送効率を向上させ、光電変換効率を向上させることができる。
 前記ナノ構造体は、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、およびパラジウム(Pd)からなる群から選択される少なくとも1種の単金属を含んでいてもよい。
 この構成によれば、プラズモニック特性に優れた金属が使用されるので、ナノ構造体のプラズモニック特性を向上させ、光電変換効率を向上させることができる。
 前記ナノ構造体は、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化タンタル(TaN)、および窒化ハフニウム(HfN)からなる群から選択される少なくとも1種の金属窒化物を含んでいてもよい。
 この構成によれば、可視域の長波長領域から近赤外領域の光に対するプラズモン吸収の効率およびホットエレクトロンの輸送効率が高くなり、光電変換効率を向上できる。
 前記ナノ構造体は、スズドープ酸化インジウム(ITO)、アルミニウムドープ酸化亜鉛(AZO)、およびガリウムドープ酸化亜鉛(GZO)からなる群から選択される少なくとも1種の導電性酸化物を含んでいてもよい。
 この構成によれば、さらに長波長の近赤外領域の光に対するプラズモン吸収の効率およびホットエレクトロン輸送効率が高くなり、光電変換効率を向上できる。
 前記合金層は、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、パラジウム(Pd)、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、亜鉛(Zn)、ガリウム(Ga)、およびタンタル(Ta)からなる群から選択される少なくとも二種の金属を含む金属間化合物または固溶体合金であってもよい。
 前記n型半導体は、無機半導体であってもよい。
 前記ナノ構造体は、くし形構造を有していてもよい。
 前記ナノ構造体は、少なくとも1つのナノ粒子を含んでいてもよい。前記少なくとも1つのナノ粒子の粒子径は、1nm以上200nm以下であってもよい。
 この構成によれば、例えば複数のナノ粒子を設けることにより、光電変換効率をさらに向上させることができる。
 前記光デバイスは、前記n型半導体のバンドギャップエネルギー以下で、かつ、前記少なくとも1つのナノ構造体のプラズモン共鳴波長に相当するエネルギーをもつ光を出射する光源をさらに備えていてもよい。
 前記n型半導体は、シリコン半導体、ゲルマニウム半導体、およびガリウムヒ素半導体からなる群から選択される少なくとも1つを含んでいてもよい。前記ナノ構造体の表面プラズモン共鳴波長は900nm以上であってもよい。
 前記n型半導体は、酸化チタン(TiO)半導体、窒化ガリウム(GaN)半導体、チタン酸ストロンチウム(SrTiO)半導体からなる群から選択される少なくとも1つを含んでいてもよい。前記少なくとも1つのナノ構造体における表面プラズモン共鳴波長は400nm以上であってもよい。
 本開示の一実施形態による光電変換装置は、上述したいずれかの光デバイスと、電極と、前記電極と前記ナノ構造体とを電気的に接続する導線と、を備える。前記n型半導体は、前記合金層に接する第1の表面と、前記第1の表面の反対側の第2の表面とを有する。前記電極は、前記n型半導体の前記第2の表面に接する。
 前記光電変換装置は、前記ナノ構造体を覆う透明導電膜をさらに備えていてもよい。前記透明導電膜と前記n型半導体とは接していなくてもよい。前記導線は、前記電極と、前記透明導電膜とを電気的に接続してもよい。
 本開示の一実施形態による燃料生成装置は、上述したいずれかの光デバイスと、前記光デバイスにおける前記n型半導体に接する第1電極と、第1電解液および前記光デバイスを収容する酸化反応槽と、第2電解液および第2電極を収容する還元反応槽と、前記酸化反応槽と前記還元反応槽との境界に位置するプロトン透過膜と、前記第1電極および前記第2電極を接続する導線と、を備える。前記光デバイスは、前記第1電解液に接する。前記還元電極は、前記第2電解液に接する。
 前記第1電極は、白金、白金を含む合金、または白金化合物であってもよい。前記光デバイスにおける前記金属間化合物または前記固溶体合金に、前記第1金属の表面プラズモン共鳴波長に相当するエネルギーの光が入射したときに、前記第2電極に水素が発生してもよい。
 この構成によれば、白金を含む第1電極を用いた水分解によって水素を得ることができる。
 前記第1電解液は、炭酸水素カリウム(KHCO)、炭酸水素ナトリウム(NaHCO)、水酸化カリウム(KOH)、および水酸化ナトリウム(NaOH)からなる群から選択される少なくとも1種を含む水溶液であってもよい。
 前記第2電解液は、炭酸水素カリウム(KHCO)、炭酸水素ナトリウム(NaHCO)、塩化カリウム(KCl)、および塩化ナトリウム(NaCl)からなる群から選択される少なくとも1種を含む水溶液であってもよい。
 本開示の技術は、光電変換が行われる任意の用途に利用され得る。例えば、イメージセンサなどの光検出器、および燃料生成装置などに利用され得る。
11 ナノ粒子
11A 合金によるナノ構造体
11B くし形構造のナノ構造体
12 合金層
13 n型半導体
14 金属窒化物によるナノ構造体
15 導電性酸化物によるナノ構造体
16 透明導電膜
17 オーミック電極
18 導線
19 光源
20 酸化反応槽
21 還元反応槽
22 プロトン透過膜
23 第1電解液
24 第2電解液
25 還元電極
26 石英ガラス窓
100A、100B、100C、100D、100E、100F,100G、100H ショットキーデバイス
200A、200B 光電変換装置
200C 燃料生成装置

Claims (17)

  1.  光が照射されたときに表面プラズモン共鳴を誘起するナノ構造体であって、単金属、合金、金属窒化物、および導電性酸化物からなる群から選択される1種によって構成されるナノ構造体と、
     前記ナノ構造体に接し、前記ナノ構造体よりも仕事関数の低い、少なくとも2種の金属によって構成される合金層と、
     前記合金層にショットキー接合するn型半導体と、を備える光デバイス。
  2.  前記ナノ構造体は、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、およびパラジウム(Pd)からなる群から選択される少なくとも1種の単金属を含む、請求項1に記載の光デバイス。
  3.  前記ナノ構造体は、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化タンタル(TaN)、および窒化ハフニウム(HfN)からなる群から選択される少なくとも1種の金属窒化物を含む、請求項1または2に記載の光デバイス。
  4.  前記ナノ構造体は、スズドープ酸化インジウム(ITO)、アルミニウムドープ酸化亜鉛(AZO)、およびガリウムドープ酸化亜鉛(GZO)からなる群から選択される少なくとも1種の導電性酸化物を含む、請求項1から3のいずれかに記載の光デバイス。
  5.  前記合金層は、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、パラジウム(Pd)、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、亜鉛(Zn)、ガリウム(Ga)、およびタンタル(Ta)からなる群から選択される少なくとも二種の金属を含む金属間化合物または固溶体合金である、請求項1から4のいずれかに記載の光デバイス。
  6.  前記n型半導体は、無機半導体である、請求項1から5のいずれかに記載の光デバイス。
  7.  前記ナノ構造体は、くし形構造を有する、請求項1から6のいずれかに記載の光デバイス。
  8.  前記ナノ構造体は、少なくとも1つのナノ粒子を含み、
     前記少なくとも1つのナノ粒子の粒子径は、1nm以上200nm以下である、請求項1から7のいずれかに記載の光デバイス。
  9.  前記n型半導体のバンドギャップエネルギー以下で、かつ、前記ナノ構造体のプラズモン共鳴波長に相当するエネルギーをもつ光を出射する光源をさらに備える、請求項1から8のいずれかに記載の光デバイス。
  10.  前記n型半導体は、シリコン半導体、ゲルマニウム半導体、およびガリウムヒ素半導体からなる群から選択される少なくとも1つを含み、
     前記ナノ構造体の表面プラズモン共鳴波長は900nm以上である、請求項1から9のいずれかに記載の光デバイス。
  11.  前記n型半導体は、酸化チタン(TiO)半導体、窒化ガリウム(GaN)半導体、チタン酸ストロンチウム(SrTiO)半導体からなる群から選択される少なくとも1つを含み、
     前記ナノ構造体における表面プラズモン共鳴波長は400nm以上である、請求項1から10のいずれかに記載の光デバイス。
  12.  請求項1から11のいずれかに記載の光デバイスと、
     電極と、
     前記電極と前記ナノ構造体とを電気的に接続する導線と、を備える光電変換装置であって、
     前記n型半導体は、前記合金層に接する第1の表面と、前記第1の表面の反対側の第2の表面とを有し、
     前記電極は、前記n型半導体の前記第2の表面に接する、光電変換装置。
  13.  前記ナノ構造体を覆う透明導電膜をさらに備え、
     前記透明導電膜と前記n型半導体とは接しておらず、
     前記導線は、前記電極と、前記透明導電膜とを電気的に接続する、請求項12に記載の光電変換装置。
  14.  請求項1から11のいずれかに記載の光デバイスと、
     前記光デバイスにおける前記n型半導体に接する第1電極と、
     第1電解液および前記光デバイスを収容する酸化反応槽と、
     第2電解液および第2電極を収容する還元反応槽と、
     前記酸化反応槽と前記還元反応槽との境界に位置するプロトン透過膜と、
     前記第1電極および前記第2電極を接続する導線と、を備え、
     前記光デバイスは、前記第1電解液に接し、
     前記還元電極は、前記第2電解液に接している、燃料生成装置。
  15.  前記光デバイスにおける前記ナノ構造体に、前記ナノ構造体の表面プラズモン共鳴波長に相当するエネルギーの光が入射したときに、前記第2電極に水素が発生する、請求項14に記載の燃料生成装置。
  16.  前記第1電解液は、炭酸水素カリウム(KHCO)、炭酸水素ナトリウム(NaHCO)、水酸化カリウム(KOH)、および水酸化ナトリウム(NaOH)からなる群から選択される少なくとも1種を含む水溶液である、請求項14または15に記載の燃料生成装置。
  17.  前記第2電解液は、炭酸水素カリウム(KHCO)、炭酸水素ナトリウム(NaHCO)、塩化カリウム(KCl)、および塩化ナトリウム(NaCl)からなる群から選択される少なくとも1種を含む水溶液である、請求項14から16のいずれかに記載の燃料生成装置。
PCT/JP2020/003634 2019-03-29 2020-01-31 光デバイス、光電変換装置、および燃料生成装置 WO2020202758A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021511156A JPWO2020202758A1 (ja) 2019-03-29 2020-01-31
CN202080018286.XA CN113544086A (zh) 2019-03-29 2020-01-31 光器件、光电转换装置以及燃料生成装置
US17/463,637 US20210399148A1 (en) 2019-03-29 2021-09-01 Optical device, photoelectric converter, and fuel generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-068293 2019-03-29
JP2019068293 2019-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/463,637 Continuation US20210399148A1 (en) 2019-03-29 2021-09-01 Optical device, photoelectric converter, and fuel generator

Publications (1)

Publication Number Publication Date
WO2020202758A1 true WO2020202758A1 (ja) 2020-10-08

Family

ID=72667939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003634 WO2020202758A1 (ja) 2019-03-29 2020-01-31 光デバイス、光電変換装置、および燃料生成装置

Country Status (4)

Country Link
US (1) US20210399148A1 (ja)
JP (1) JPWO2020202758A1 (ja)
CN (1) CN113544086A (ja)
WO (1) WO2020202758A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366236A (zh) * 2020-11-18 2021-02-12 沈阳大学 光能量收集微结构、感光元件和光学器件
DE102021213747B3 (de) 2021-12-02 2023-02-09 BRANDENBURGISCHE TECHNISCHE UNIVERSITÄT COTTBUS-SENFTENBERG, Körperschaft des öffentlichen Rechts Vorrichtung und Verfahren zur Absorption von elektromagnetischer Strahlung, System zur Verwendung in einem Bildsensor, sowie Verfahren zur Herstellung einer Vorrichtung zur Absorption von elektromagnetischer Strahlung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11894489B2 (en) * 2021-03-16 2024-02-06 Epistar Corporation Semiconductor device, semiconductor component and display panel including the same
CN115000232A (zh) * 2022-06-16 2022-09-02 太原理工大学 一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100175745A1 (en) * 2007-07-18 2010-07-15 The Regents Of The University Of California Surface plasmon-enhanced photovoltaic device
JP2015502658A (ja) * 2011-11-14 2015-01-22 パシフィック インテグレイテッド エナジー, インコーポレイテッド 電磁エネルギー収集のためのデバイス、システム、および方法
JP2015055000A (ja) * 2013-09-13 2015-03-23 パナソニック株式会社 光化学電極、水素生成装置、水素生成方法、二酸化炭素還元装置及び二酸化炭素還元方法
CN108855064A (zh) * 2018-07-04 2018-11-23 天津大学 二元合金@TiO2可见光催化材料及其制备方法
WO2019031591A1 (ja) * 2017-08-10 2019-02-14 イムラ・ジャパン株式会社 電気測定型表面プラズモン共鳴センサ及びそれに用いる電気測定型表面プラズモン共鳴センサチップ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100175745A1 (en) * 2007-07-18 2010-07-15 The Regents Of The University Of California Surface plasmon-enhanced photovoltaic device
JP2015502658A (ja) * 2011-11-14 2015-01-22 パシフィック インテグレイテッド エナジー, インコーポレイテッド 電磁エネルギー収集のためのデバイス、システム、および方法
JP2015055000A (ja) * 2013-09-13 2015-03-23 パナソニック株式会社 光化学電極、水素生成装置、水素生成方法、二酸化炭素還元装置及び二酸化炭素還元方法
WO2019031591A1 (ja) * 2017-08-10 2019-02-14 イムラ・ジャパン株式会社 電気測定型表面プラズモン共鳴センサ及びそれに用いる電気測定型表面プラズモン共鳴センサチップ
CN108855064A (zh) * 2018-07-04 2018-11-23 天津大学 二元合金@TiO2可见光催化材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KNIGHT, M. W. ET AL.: "Photodetection with Active Optical Antennas", SCIENCE, vol. 332, 2011, pages 702 - 704, XP055018113, DOI: 10.1126/science.1203056 *
VALENTI, MARCO ET AL.: "Hot Carrier Generation and Extraction of Plasmonic Alloy Nanoparticles", ACS PHOTONICS, vol. 4, 2017, pages 1146 - 1152, XP055685685, DOI: 10.1021/acsphotonics.6b01048 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366236A (zh) * 2020-11-18 2021-02-12 沈阳大学 光能量收集微结构、感光元件和光学器件
DE102021213747B3 (de) 2021-12-02 2023-02-09 BRANDENBURGISCHE TECHNISCHE UNIVERSITÄT COTTBUS-SENFTENBERG, Körperschaft des öffentlichen Rechts Vorrichtung und Verfahren zur Absorption von elektromagnetischer Strahlung, System zur Verwendung in einem Bildsensor, sowie Verfahren zur Herstellung einer Vorrichtung zur Absorption von elektromagnetischer Strahlung

Also Published As

Publication number Publication date
CN113544086A (zh) 2021-10-22
JPWO2020202758A1 (ja) 2020-10-08
US20210399148A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
WO2020202758A1 (ja) 光デバイス、光電変換装置、および燃料生成装置
Eftekhari et al. Photoelectrode nanomaterials for photoelectrochemical water splitting
Zhu et al. Engineering plasmonic hot carrier dynamics toward efficient photodetection
US9472694B2 (en) Composition and method for upconversion of light and devices incorporating same
Wong‐Leung et al. Engineering III–V semiconductor nanowires for device applications
JP5518835B2 (ja) 表面プラズモン共鳴生成ナノ構造を有する太陽光電池
EP2453484A1 (en) Photoelectric conversion element
Tao et al. Significant improvements in InGaN/GaN nano-photoelectrodes for hydrogen generation by structure and polarization optimization
US20210391373A1 (en) Optical device, photoelectric converter, and fuel generator
US11652185B2 (en) Optical device, photoelectric conversion apparatus, and fuel production apparatus
US20220310868A1 (en) Optical device
KR20210136452A (ko) AgAu 합금 나노입자를 포함하는 광검출기용 기판 및 이를 이용하는 GaN 기반의 UV 광검출기
Wang et al. Recent progress in near-infrared light-harvesting nanosystems for photocatalytic applications
KR101749067B1 (ko) 박막형 이종접합 메타구조체 및 그 제조방법
Tao et al. Surface plasmon assisted high-performance photodetectors based on hybrid TiO2@ GaOxNy-Ag heterostructure
JP6802474B2 (ja) 光化学電極、光化学電極の製造方法
Kumari et al. Synthesis, characterization and dye-sensitized solar cell application of Zinc oxide based coaxial core-shell heterostructure
JP6255417B2 (ja) 光電変換装置
Rashed et al. Synthesis and characterization of Au: CuO nanocomposite by laser soldering on porous silicon for photodetector
TW201230358A (en) Optical electricity storage device
Zheng et al. A high-performance UV photodetector with superior responsivity enabled by a synergistic photo/thermal enhancement of localized surface plasmon resonance
WO2011152458A1 (ja) 光電変換素子
Khalid et al. Metal oxide semiconductors for photoelectrochemical water splitting
Sharma et al. MoSe2 nanosheets/SiNWs heterojunction-based photocathode for efficient photoelectrochemical water splitting applications
WO2012073941A1 (ja) 光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20785182

Country of ref document: EP

Kind code of ref document: A1