TW201230358A - Optical electricity storage device - Google Patents

Optical electricity storage device Download PDF

Info

Publication number
TW201230358A
TW201230358A TW100119701A TW100119701A TW201230358A TW 201230358 A TW201230358 A TW 201230358A TW 100119701 A TW100119701 A TW 100119701A TW 100119701 A TW100119701 A TW 100119701A TW 201230358 A TW201230358 A TW 201230358A
Authority
TW
Taiwan
Prior art keywords
photoelectric conversion
conversion element
layer
conductive layer
metal
Prior art date
Application number
TW100119701A
Other languages
Chinese (zh)
Inventor
Jose Briceno
Original Assignee
Nusola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nusola Inc filed Critical Nusola Inc
Publication of TW201230358A publication Critical patent/TW201230358A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the Schottky type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is an optical electricity storage device which uses a photoelectric conversion element to widen the wavelength band capable of photoelectric conversion, and which can be employed even when the power usage time is offset from the light reception time. An optical electricity storage device (1) is provided with a photovoltaic generator (2) and a power storage unit (3). The photovoltaic generator (2) includes first and second photoelectric conversion elements (10, 20). Each of the photoelectric conversion elements (10, 20) includes semiconductor layers (11, 21), conductive layers (12, 22), and metal nanostructures (13, 23) having a plurality of periodic structures (13c) of random periods. The semiconductor layer (11) of the first photoelectric conversion element (10) is an n-type semiconductor layer. The semiconductor layer (21) of the second photoelectric conversion element (20) is a p-type semiconductor layer.

Description

201230358 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種由光電轉換進行發電且將發電之電力 進行蓄電之光蓄電裝置。 【先前技術】 例如於專利文獻丨中,記載有一種利用表面電漿子共振 之光電轉換元件。於元件之金屬層之表面形成一致性週期 之凹凸結構。於凹凸結構上積層半導體層,進而於該半導 體層上積層透明電極。於金屬層之背面積層其他電極。若 光入射至元件’則金屬層之凹凸結構侧之表面之電子與入 射光共振地進行振動,從而產生電流。 專利文獻2記載之光電轉換元件係於表面設置2種以上之 微粒子,且於至少2個波長帶中引起表面電漿子共振。 又,自1960年起,已知可藉由11型以上積層有厚度數4111 以上之Au之肖特基型光感測器來檢測可見光。 於非專利文獻1中,記載有可藉*nsSi上積層有以以] 之光感測器而檢測1 μηι〜2 μηι之近紅外光。 於非專利文獻2中,記載有可藉由{5型以以上積層有 CoSh之光感測器而檢測1 μηι〜5 μηι之紅外光。201230358 6. TECHNOLOGICAL FIELD OF THE INVENTION The present invention relates to an optical power storage device that performs power generation by photoelectric conversion and stores power generated by power generation. [Prior Art] For example, in the patent document, a photoelectric conversion element utilizing surface plasmon resonance is described. A concave-convex structure of a uniform period is formed on the surface of the metal layer of the element. A semiconductor layer is laminated on the uneven structure, and a transparent electrode is laminated on the semiconductor layer. The other layers of the back layer of the metal layer. When light is incident on the element ', the electrons on the surface of the uneven layer side of the metal layer vibrate in resonance with the incident light to generate an electric current. The photoelectric conversion element described in Patent Document 2 is provided with two or more kinds of fine particles on the surface, and causes surface plasmonic resonance in at least two wavelength bands. Further, since 1960, it has been known that visible light can be detected by a Schottky type photosensor having a thickness of 4111 or more laminated with 11 or more layers. Non-Patent Document 1 discloses that near-infrared light of 1 μm to 2 μm can be detected by a photosensor on a *nsSi layer. Non-Patent Document 2 describes that infrared light of 1 μm to 5 μm can be detected by a photosensor of a type 5 and a CoSh laminated thereon.

於非專利文獻3中,記載有可藉由刑Q 」稽田&上積層有pt之光 感測器而檢測1 μηι〜6 μιη之紅外光。 於非專利文獻4中,記載有可藉由μ 』精由Sl上積層有Ir之光感測 器而檢測10 μιη以下之光。 [先行技術文獻] 156673.doc 201230358 [專利文獻] [專利文獻1]曰本專利特開2007-073794號公報 [專利文獻2]曰本專利特開2010-021189號公報 [非專利文獻]In Non-Patent Document 3, it is described that infrared light of 1 μm to 6 μm can be detected by the pt light sensor of the Quaternary & Non-Patent Document 4 describes that light of 10 μm or less can be detected by a photosensor in which Ir is laminated on S1. [Patent Document 1] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2007-073794 (Patent Document 2) Japanese Patent Laid-Open Publication No. 2010-021189 [Non-Patent Document]

The International Society for Optical Engineering 2525 (2), 456 (1995) ^ij S. Kolondinski, et al., Proceedings of SPIE-The International Society for Optical Engineering 2525 (2), 456 (1995) ^ij S. Kolondinski, et al., Proceedings of SPIE-

The International Society for Optical Engineering 2554, 175 (1995) [非專利文獻3]J.M.MooneyanciJ.Silverman,IEEETrans· Electron DevicesED-32, 33-39 (1985) [非專利文獻4] B-Y. Tsaur,M.M. Weeks, R. Trubiano and P. W. Pellegrini, IEEE Electron Device Left.9, 650-653 (1988) 【發明内容】 [發明所欲解決之問題] 亦如非專利文獻1〜4所知,肖特基光電二極體等光電轉 換元件之感應頻帶係因半導體為η型抑或是p型而不同。η 型係對可見光區至近紅外區具有感度,且對相較近紅外區 為長波長之紅外區感應欠佳。ρ型係對紅外區具有感度, 而對可見光區感應欠佳。又,電力使用時,未必僅限於與 受光時乃至發電時一致。 本發明係鑒於上述情況研製而成者,其目的在於擴大可 進行光電轉換之波長帶,提高光之利用效率,且即便電力 156673.doc 201230358 使用時與受光時錯開亦可進行應對,從而提高便利性。 [解決問題之技術手段] 本發明係為解決上述課題而完成者,其特徵在於包含: 光發電部,其利用光進行發電;及蓄電部,其連接於上述 光發電部,謂上述發電之電力進行;上述光發電部 包含:相互串聯、並聯、或串並聯地連接之第〖、第2光電 轉換元件,上述第丨、第2光電轉換元件各自包含半導體 層;導電層,其積層於上述半導體層;及金屬奈米結構, 其積層於上述導電層,且含有複數個(較佳為多個)週期結 構;上述各週期結構包含於上述積層之方向突出之複數個 第1凸4,上述第1凸部之配置間隔相應於上述週期結構而 不同;上述第1光電轉換元件之半導體層係n型半導體層, 上述第2光電轉換元件之半導體層係ρ型半導體層。 若光入射至各光電轉換元件,則於半導體層與導電層之 肖特基接合部中,ϋ由光電轉換而生成光載子。且,可藉 由上述肖特基接合部附近之金屬奈米結構而提昇光電轉換 之感度。第1光電轉換元件可對可見光區至近紅外區之光 提昇感度。第2光電轉換元件可對紅外區之光提昇感度。 因此,可藉由組合第丨、第2光電轉換元件而擴大能夠進行 光電轉換之波長帶’且可提高光之利用效率。由於將由該 等光電轉換元件發電之電力蓄電於蓄電部,故即便非受光 過程中’亦可供給電力。 上述第1光電轉換元件與上述第2光電轉換元件亦可曼合 於彼此之厚度方向上。 156673.doc 201230358 藉此’便可充分地增大各光電轉換元件之受光面積。因 此’可增大受光量乃至發電量。尤其可充分地增大配置於 表側(光之入射側)之光電轉換元件之受光量乃至發電量。 可將第1光電轉換元件配置於表側(光之入射側),亦可將第 2光電轉換元件配置於表側(光之入射側)。於入射光由可見 光區偏向近紅外區之情形時,較佳為,將第1光電轉換元 件配置於表側(光之入射側)。於入射光偏向紅外區之情形 時’較佳為’將第2光電轉換元件配置於表側(光之入射 側)〇 上述第1光電轉換元件與上述第2光電轉換元件亦可排列 於與彼此之厚度方向正交之面方向上。 藉此’便可使光分別直接入射至第1、第2光電轉換元 件。因此,第1、第2光電轉換元件各自可充分地接收入射 光中之感應波長成分’引起光電轉換。由此,可增大光發 電部之發電量。 較佳為,於上述第1光電轉換元件中設置有包含對紫外 區具有感度之η型半導體之奈米結構體。 藉此’便可提高第1光電轉換元件之光電轉換感度。尤 其可提南第1光電轉換元件之感應頻帶中之短波長側之感 度。所謂對紫外區具有感度之半導體係指具有於照射波長 例如為0.4 μιη以下之紫外光時載子被激發之性質的半導 體。作為此種半導體,可舉出例如作為〇型半導體之氧化 辞(ΖηΟ) ’此外’可舉出η型氮化鎵(n_GaN#。較佳為,η 型半導體奈米結構體成為奈米線、奈米針、奈米管、奈米 156673.doc 201230358 棒等奈米結構。藉此’便可提高量子效率,進而可確實地 k昇第1光電轉換元件之感度。其結果為,可增大發電 量。 較佳為’於上述第2光電轉換元件中,設置有包含對紅 外區具有感度之p型半導體之奈米結構體。 藉此’便可提高第2光電轉換元件之光電轉換感度。尤 其可提高第2光電轉換元件之感應頻帶中之長波長側之感 度。所謂對紅外區具有感度之半導體係指具有於照射波長 例如為0.7 μπι以上之紅外光時載子被激發之性質的半導 體。作為此種半導體,可舉出例如ρ型氮化鎵(p_GaN)或碳 等。較佳為,p型半導體奈米結構體成為奈米管、奈米 線、奈米針、奈米管、奈米棒等奈米結構。藉此,便可提 高量子效率,進而可確實地提昇第2光電轉換元件之感 度,其結果為,可增大發電量。 作為構成各光電轉換元件之導電層之金屬成分,可舉出 例如Co、Fe' W、Ni、A卜或Ti。該等列舉之金屬元素係 熔點相對較高’且高溫下之機械性質優異。上述導電層既 可為金屬’亦可為金屬與半導體之混合物乃至合金。作為 金屬與半導體之混合物乃至合金,可舉出例如金屬矽化 物。於上述半導體層包含矽之情形時,上述導電層亦可為 由上述金屬成分與上述半導體層之表層部分相互擴散而成 之金屬石夕化物。上述擴散例如可藉由退火處理而進行。上 述列舉之金屬(Co、Fe、W、Ni、A卜Ti)係適合於矽化。 較佳為’於各光電轉換元件之導電層中設置正負一對電 156673.doc 201230358 極,且將該等電極作為與另一光電轉換元件或蓄電部連接 之連接端子。 較佳為,使極性確定層介置於第丨光電轉換元件之陰極 電極與導電層之間^較佳為,使極性確定層介置於第2光 電轉換it件之陽極電極與導電層之間。極性確定層可為包 含紹、樹脂等絕緣體等之障壁層,亦可為自元件之半導體 層一體地突出之凸層。 、,於請電轉換元件中,入射光由半導體層與導電層之 肖特基接合部吸收而生成光載子(電子電洞對),且電子因 工乏層之電場而朝向半導體層之側移動。隨之,電子自陽 極電極流入至導電層。電子係沿著導電層流向陰極電極之 側。 ,於第2光電轉換元件中,入射光由半導體層與導電層之 肖特基接。吸收而生成光載子(電子_電洞對),且電洞因 空之層之電場而朝向半導體層之側移動。隨之’電洞自陰 極電極流入至導電層。電洞係沿著導電層流向陽極電極之 可以此方式’確實地確定各光電轉換元件之成為㈣ 電極與成為陰極之電極。 於第1光電轉換元件中,μ ,+.权u + ^ 述極性確定層為包含絕緣f 寻之障壁層之情形時,险 ^ ^ ◎極電極與導電層夾著障壁層,升 成電容器。藉此,於導雷 增 ^ 積電子。於第2光電轉換分杜士 ' ^ f 1 轉換TG件中,上述極性 絕緣體等之障壁層之情开^作疋 月形時,%極電極與導電層夾著障璧 156673.doc 201230358 層,形成電容器。藉此,於導電層中之與陽極電極對向之 部分中蓄積電洞。因此,可確實地確定成為陽極之電極與 成為陰極之電極。 上述障壁層之厚度較佳為未達丨nm。藉此,載子可因穿 隧效應等而確實地穿過障壁層,從而可確實地取出光致電 流。 於上述第丨光電轉換元件中,較佳為,上述凸層與上述 導電層之陰極電極側之端面為肖特基接觸,且與上述陰極 電極為歐姆接觸》藉此’於凸層與導電層之肖特基接:部 中,可使載子之電子朝向凸層側乃至陰極電極流動,從而 可確實地確定極性。 於上述第2光電轉換元件中’較佳為,上述凸層與上述 導電層之陽極電極側之端面為肖特基接觸,且與上述陽極 電極為歐姆接觸。藉此,於凸層與導電層之肖特基接合部 中’可使載子之電洞朝向凸層側乃至陽極電極流動,從而 可確實地確定極性。 可藉由使上述導電層之成分組成等沿著自一電極朝向另 -電極之方向變得不均一,而確定成為陽極之電 陰極之電極。 '、氚馬 +若光入射至上述金屬奈米結構’則會引起電渡子共振。 藉此金屬奈米結構將有助於光致電場之增大。 較佳為,上述金屬奈米結構為奈米尺寸之金屬微粒子之 集合體。作為構成上述金屬微粒子之金屬,較佳為使用 ^、^、^^或心該等列舉之金屬元素係化學穩 156673.doc 201230358 定性相對較高,難以合金化,且難以與Si等半導體進行化 合。因此,可確實地形成表面電漿子。 較佳為,上述金屬奈米結構設置於上述導電層之上述一 對電極彼此間之部分上,更佳為廣泛分佈於上述一對電極 彼此間之部分。 上述金屬奈米結構係例如以如下方式形成。將應成為上 述金屬奈米結構之金屬原料配置於上述導電.層上,實施退 火處理。上述金屬原料之形狀乃至性狀並無特別限定,可 為薄膜狀、小片狀、小塊狀、粒狀、粉體狀、膠體狀、纖 維狀、線狀、點狀之任一形狀’亦可為其他形狀乃至性 狀。藉由上述退火處理,而使上述金屬原料之微粒子沿著 上述導電層之表面進行擴散。藉由該擴散,而使上述金屬 原料之微粒子多段乃至多重地分支,成為例如碎形結構之 集合體。因此’可容易地形成上述金屬奈米結構。於上述 金屬奈米結構之表面,形成有次微米乃至奈米級之凹凸。 上述金屬奈米結構之表面係包含沿積層方向(厚度方向)突 出之多個凸部,且成為例如簇團狀。 亦可將上述電極兼用作上述金屬奈米結構之金屬原料。 亦可使構成上述電極之金屬藉由實施退火處理而於上述電 極之周邊以成為職狀或碎形之方式擴散。如此般,便可 於上述電極之附近形成上述金屬奈米結構。於該情形時, 上逑電極與上述金屬奈米結構包含彼此相同之金屬成分。 於上述金屬奈米結構中,較佳為,上述週期結構且有隨 之週^ °㈣為上述週期結構之週期進行變化。即,較 156673.doc 201230358 佳為,上述第1凸部之配置間隔相應於週期結構而不同。 藉此可對相應於週期結構而不同之波長之光產生感應。 2此,作為整體而言,可擴大金屬奈米結構可感應之波長 ▼。由此,可提供一種能夠對應於由可見光區遍及紅外光 區之寬頻帶之光電轉換元件。 第1凸郤之配置間隔(週期)較佳為入射光之波長λ之約〇^ 倍1U右’更佳為波長人之01倍左右。或者,第1凸部 之配置間隔(週期)較佳為由半導體層與導電層製成之肖特 基元件之感應波長之約0 i倍〜丨倍左右。上述週期結構係 對於具有構成該週期結構的第i凸部之週期之約i倍〜10倍 左右(尤其為上述週期之10倍左右)之波長入的入射光靈敏地 產生感應,引起電漿子共振,從而有助於光致電場之放 大。 第1光電轉換元件之週期結構之週期(第i凸部之配置間 隔)較佳為小於第2光電轉換元件之週期結構之週期(第i凸 部之配置間隔)。第i光電轉換元件之第i凸部之配置間隔 (週期)更佳為約100 nm以下。藉此,對波長Μ㈣以下之 紅外光區〜可見光區之光可具有良好之感度。第2光電轉換 元件之第1凸部之配置間隔(週期)更佳為約15〇 nm以下。 藉此’對波長約1 μηι〜4㈣之紅外光可具有良好之感度。 第1凸4之突出高度較佳為約1 0 nm〜20 nm左右。 /又佳為,上述週期結構之至少一個具有某波長範圍内 (較佳為自可見光區至紅外光區)之任意波長之約〇.丨倍〜丨倍 之大小(特別是〇1倍左右之大小)的配置間隔。藉此,若入 156673.doc 201230358 射光包含於上述波長範圍内,則可使金屬奈米結構之至少 一個週期結構對於該入射光具有感度。 較佳為’上述金屬奈米結構更包含較上述第1凸部更大 地大出之複數個第2凸部,該等第2凸部相互分散,且各第 2凸部與上述週期結構之任一個疊合或近接地配置。 右·光入射至上述金屬奈求結構,則於構成上述隨機結構 之第2凸部彼此間或第1、第2凸部彼此間產生近場相互作 用(#A?、K.Kobayashi,et.al.,ProgressinNano-Electro-Optecs I. ed. M. Ohtsu, p.119 (Sptinger-Verlag, Berlin, 2003))。可藉由該近場相互作用與電漿子共振之相乘效 果’而使光致電場進一步放大,從而可提高感度。即便入 射光微弱,亦可高感度地產生光電動勢。 上述第2凸部之突出高度較佳為約5〇 nm〜200 nm左右。 上述第2凸部之分散間隔(相鄰第2凸部彼此之隔離距離) 較佳為大於入射光之波長,且較佳為大於由半導體層與導 電層製成之肖特基元件之感應波長。 第1光電轉換元件之第2凸部的分散間隔較佳為小於第2 光電轉換元件之第2凸部的分散間隔。例如,第1光電轉換 元件之上述第2凸部之分散間隔較佳為1 μιη以上,更佳為 約2 μιη〜3 μηι左右。第2光電轉換元件之上述第2凸部之分 散間隔較佳為約3 μιη~5 μιη左右。藉此,可避免相鄰之第2 凸部彼此干擾而減弱電場。 第1光電轉換元件之第2凸部之分散間隔之上限較佳為3 μιη〜5 μιη左右,第2光電轉換元件之第2凸部之分散間隔之 156673.doc -12 - 201230358 上限較佳為5 μιη~6 μιη左右。藉此,可確保第2凸部之存在 密度,且可確保能夠產生與第2凸部之相互作用之週期結 構的數量,從而可確實地擴大感應頻帶。 於上述金屬奈米結構中亦可混合有碳化合物等絕緣體, 形成 M-I-M(metal-inSUlat〇r-metal,金屬-絕緣體 _ 金屬)結 構。 、口 [發明之效果] 根據本發明,可將自可見光區遍及紅外區之寬波長帶之 光轉換為電力,且可將上述電力進行蓄電。因此,即便於 未由光發電部進行發電時或發電量較小時,亦可供給預先 蓄電之電力’從而可提高便利性。 【實施方式】 以下’根據圖式說明本發明之實施形態。 圖1係表示本發明第i實施形態之光蓄電裝置丨者。光蓄 電裝置1係包含光發電部2、及連接於該光發電部2之蓄電 部3。光發電部2係由入射光進行發電。蓄電部3係將上述 發電之電力進行蓄電。以下,進行詳細描述。 光發電部2係包含第丨光電轉換元件1〇、及第2光電轉換 元件20。该等光電轉換元件1 〇、2〇為電性並聯連接。 第1光電轉換元件1〇係包含η型半導體層u、導電層I〗、 及金屬奈米結構13。於η型半導體層丨丨上積層有導電屏 12。於導電層12上積層有金屬奈米結構13〇 ΒThe International Society for Optical Engineering 2554, 175 (1995) [Non-Patent Document 3] JM Mooneyanci J. Silverman, IEEE Trans Electron Devices ED-32, 33-39 (1985) [Non-Patent Document 4] BY. Tsaur, MM Weeks, R Trubiano and PW Pellegrini, IEEE Electron Device Left. 9, 650-653 (1988) [Problems to be Solved by the Invention] As also known from Non-Patent Documents 1 to 4, Schottky Photodiodes, etc. The sensing band of the photoelectric conversion element differs depending on whether the semiconductor is n-type or p-type. The η-type system has sensitivity to the visible region to the near-infrared region, and is less sensitive to the infrared region having a longer wavelength than the near-infrared region. The p-type system has sensitivity to the infrared region and poor sensing to the visible region. Moreover, when the power is used, it is not necessarily limited to the same as when the light is received or even when the power is generated. The present invention has been developed in view of the above circumstances, and an object of the present invention is to increase the wavelength band that can be photoelectrically converted, to improve the light use efficiency, and to cope with the fact that even when the power is used, the 156673.doc 201230358 is misaligned with the light receiving time, thereby improving convenience. Sex. [Means for Solving the Problems] The present invention has been made to solve the above problems, and the present invention includes a photovoltaic power generation unit that generates power by light, and a power storage unit that is connected to the photovoltaic power generation unit The photo power generation unit includes: a second photoelectric conversion element connected in series, in parallel, or in series and parallel, wherein each of the second and second photoelectric conversion elements includes a semiconductor layer; and a conductive layer laminated on the semiconductor And a metal nanostructure, which is laminated on the conductive layer and includes a plurality of (preferably a plurality of) periodic structures; each of the periodic structures includes a plurality of first protrusions 4 protruding in a direction of the layer, the first The arrangement interval of the convex portions differs depending on the periodic structure; the semiconductor layer of the first photoelectric conversion element is an n-type semiconductor layer, and the semiconductor layer of the second photoelectric conversion element is a p-type semiconductor layer. When light is incident on each of the photoelectric conversion elements, photons are generated by photoelectric conversion in the Schottky junction between the semiconductor layer and the conductive layer. Further, the sensitivity of the photoelectric conversion can be improved by the metal nanostructure in the vicinity of the Schottky junction. The first photoelectric conversion element can enhance the sensitivity of the light in the visible light region to the near-infrared region. The second photoelectric conversion element can enhance the sensitivity of the light in the infrared region. Therefore, by combining the second and second photoelectric conversion elements, the wavelength band which can be photoelectrically converted can be enlarged, and the light use efficiency can be improved. Since the electric power generated by the photoelectric conversion elements is stored in the electric storage unit, electric power can be supplied even during the non-light receiving process. The first photoelectric conversion element and the second photoelectric conversion element may be combined in the thickness direction of each other. 156673.doc 201230358 By this, the light receiving area of each photoelectric conversion element can be sufficiently increased. Therefore, the amount of received light or the amount of power generated can be increased. In particular, the amount of light received or the amount of power generated by the photoelectric conversion element disposed on the front side (the incident side of light) can be sufficiently increased. The first photoelectric conversion element may be disposed on the front side (light incident side), or the second photoelectric conversion element may be disposed on the front side (light incident side). In the case where the incident light is deflected from the visible region to the near-infrared region, it is preferable that the first photoelectric conversion element is disposed on the front side (light incident side). When the incident light is deflected toward the infrared region, it is preferable that the second photoelectric conversion element is disposed on the front side (light incident side). The first photoelectric conversion element and the second photoelectric conversion element may be arranged in the same manner. The thickness direction is orthogonal to the plane direction. Thereby, light can be directly incident on the first and second photoelectric conversion elements, respectively. Therefore, each of the first and second photoelectric conversion elements can sufficiently receive the induced wavelength component in the incident light to cause photoelectric conversion. Thereby, the amount of power generation by the photovoltaic power generation unit can be increased. Preferably, the first photoelectric conversion element is provided with a nanostructure including an n-type semiconductor having sensitivity to an ultraviolet region. Thereby, the photoelectric conversion sensitivity of the first photoelectric conversion element can be improved. In particular, the sensitivity of the short-wavelength side in the sensing band of the south first photoelectric conversion element can be mentioned. The semiconductor having sensitivity to the ultraviolet region means a semiconductor having a property that the carrier is excited when ultraviolet light having an irradiation wavelength of, for example, 0.4 μm or less is excited. As such a semiconductor, for example, an oxidized word (ΖηΟ) of the bismuth-type semiconductor is mentioned, and n-type gallium nitride (n-GaN# is preferable. Preferably, the η-type semiconductor nanostructure is a nanowire, Nano-needle, nanotube, nano 156673.doc 201230358 Nanostructures such as rods, which can improve the quantum efficiency and further positively increase the sensitivity of the first photoelectric conversion element. As a result, it can be increased. The amount of power generation is preferably 'in the second photoelectric conversion element described above, a nanostructure including a p-type semiconductor having sensitivity to the infrared region is provided. Thereby, the photoelectric conversion sensitivity of the second photoelectric conversion element can be improved. In particular, the sensitivity of the long-wavelength side in the inductive frequency band of the second photoelectric conversion element can be increased. The semiconductor having sensitivity to the infrared region means a semiconductor having a property that the carrier is excited when the irradiation wavelength is, for example, 0.7 μm or more. Examples of such a semiconductor include p-type gallium nitride (p_GaN), carbon, etc. Preferably, the p-type semiconductor nanostructure is a nanotube, a nanowire, a nanoneedle, or a nanotube. Nano By using a nanostructure, the quantum efficiency can be improved, and the sensitivity of the second photoelectric conversion element can be surely improved, and as a result, the amount of power generation can be increased. As a metal component of the conductive layer constituting each photoelectric conversion element, For example, Co, Fe' W, Ni, A or Ti may be mentioned. The metal elements listed above have a relatively high melting point' and are excellent in mechanical properties at high temperatures. The above-mentioned conductive layer may be either metal or metal. a mixture of semiconductors or an alloy. As a mixture or alloy of a metal and a semiconductor, for example, a metal telluride may be mentioned. When the semiconductor layer contains germanium, the conductive layer may be a surface portion of the metal component and the semiconductor layer. The metal oxide formed by interdiffusion, the diffusion can be carried out, for example, by annealing. The above-mentioned metals (Co, Fe, W, Ni, A, Ti) are suitable for deuteration. A positive and negative pair of electric 156673.doc 201230358 poles are disposed in the conductive layer of the conversion element, and the electrodes are connected to another photoelectric conversion element or power storage unit. Preferably, the polarity determining layer is interposed between the cathode electrode of the second photoelectric conversion element and the conductive layer. Preferably, the polarity determining layer is interposed between the anode electrode and the conductive layer of the second photoelectric conversion element. The polarity determining layer may be a barrier layer including an insulator such as a resin, or a bump layer integrally protruding from the semiconductor layer of the element. In the electric conversion element, the incident light is made of a semiconductor layer and a conductive layer. The Schottky junction of the layer absorbs to form a photocarrier (electron hole pair), and the electron moves toward the side of the semiconductor layer due to the electric field of the working layer. Accordingly, electrons flow from the anode electrode to the conductive layer. The conductive layer flows along the side of the cathode electrode. In the second photoelectric conversion element, the incident light is connected to the Schottky base of the semiconductor layer and the conductive layer. The photocarriers (electron-hole pairs) are generated by absorption, and the holes move toward the side of the semiconductor layer due to the electric field of the empty layer. The hole then flows from the cathode electrode to the conductive layer. The electric holes flow along the conductive layer toward the anode electrode. In this way, it is possible to surely determine the (four) electrode and the electrode to be the cathode of each photoelectric conversion element. In the first photoelectric conversion element, when the polarity determining layer is a barrier layer including the insulating f-seeking layer, the barrier electrode layer and the conductive layer sandwich the barrier layer and are raised into a capacitor. In this way, the thunder increases the electrons. In the second photoelectric conversion of the Dusit' ^ f 1 conversion TG, when the barrier layer of the above-mentioned polar insulator is opened, the % electrode and the conductive layer sandwich the barrier layer 156673.doc 201230358, Form a capacitor. Thereby, a hole is accumulated in a portion of the conductive layer opposite to the anode electrode. Therefore, the electrode serving as the anode and the electrode serving as the cathode can be surely determined. The thickness of the barrier layer is preferably less than 丨nm. Thereby, the carrier can surely pass through the barrier layer due to the tunneling effect or the like, so that the photo-induced flow can be surely taken out. Preferably, in the second photoelectric conversion element, the convex layer and the end surface of the conductive layer on the cathode electrode side are Schottky contacts, and are in ohmic contact with the cathode electrode, thereby forming a convex layer and a conductive layer. The Schottky connection: in the portion, the electrons of the carrier can be caused to flow toward the convex layer side or even the cathode electrode, so that the polarity can be surely determined. In the second photoelectric conversion element, it is preferable that the convex layer and the end surface on the anode electrode side of the conductive layer are in Schottky contact, and are in ohmic contact with the anode electrode. Thereby, the hole of the carrier can flow toward the convex layer side or the anode electrode in the Schottky junction portion between the convex layer and the conductive layer, so that the polarity can be surely determined. The electrode serving as the anode of the anode can be determined by making the composition of the above-mentioned conductive layer or the like non-uniform in the direction from the one electrode toward the other electrode. ', Hummer + If light is incident on the above metal nanostructure', it will cause electric resonance. Thereby the metal nanostructure will contribute to the increase of the photonic field. Preferably, the metal nanostructure is an aggregate of metal fine particles of a nanometer size. As the metal constituting the metal fine particles, it is preferable to use a metal element such as ^, ^, ^^, or the like. The chemical stability is 156673.doc 201230358. The qualitative property is relatively high, it is difficult to alloy, and it is difficult to combine with a semiconductor such as Si. . Therefore, the surface plasmonics can be surely formed. Preferably, the metal nanostructure is provided on a portion of the conductive layer between the pair of electrodes, and more preferably distributed over a portion of the pair of electrodes. The above metal nanostructure is formed, for example, in the following manner. The metal material to be the metal nanostructure described above is placed on the above-mentioned conductive layer, and an annealing treatment is performed. The shape and even the shape of the metal material are not particularly limited, and may be any of a film shape, a small piece shape, a small block shape, a granular shape, a powder shape, a gel shape, a fiber shape, a wire shape, and a dot shape. For other shapes and even traits. The fine particles of the metal raw material are diffused along the surface of the conductive layer by the annealing treatment. By this diffusion, the fine particles of the above-mentioned metal raw material are branched in a plurality of stages or even multiples, and become, for example, an aggregate of a fractal structure. Therefore, the above metal nanostructure can be easily formed. On the surface of the above metal nanostructure, irregularities of a submicron or nanometer order are formed. The surface of the metal nanostructure includes a plurality of convex portions protruding in the lamination direction (thickness direction), and is, for example, a cluster. The above electrode may also be used as a metal material for the above metal nanostructure. The metal constituting the electrode may be diffused in a shape or a shape around the electrode by annealing treatment. In this manner, the above-described metal nanostructure can be formed in the vicinity of the above electrode. In this case, the upper electrode and the metal nanostructure described above contain the same metal component as each other. In the above metal nanostructure, it is preferable that the periodic structure has a period in which the period (4) is a period of the periodic structure. That is, it is preferable that the arrangement interval of the first convex portions differs depending on the periodic structure, as compared with 156673.doc 201230358. Thereby, it is possible to induce light of a wavelength corresponding to a different periodic structure. 2, as a whole, the wavelength at which the metal nanostructure can be induced can be expanded. Thereby, it is possible to provide a photoelectric conversion element which can correspond to a wide frequency band which is spread over the infrared light region by the visible light region. The arrangement interval (period) of the first projection is preferably about 〇^ times 1U right' of the wavelength λ of the incident light, more preferably about 01 times the wavelength of the person. Alternatively, the arrangement interval (period) of the first convex portions is preferably about 0 to about 1 times the wavelength of the induction of the Schottky device made of the semiconductor layer and the conductive layer. The periodic structure is sensitive to the incident light having a wavelength of about i times to about 10 times (particularly about 10 times of the above-mentioned period) of the period of the ith convex portion constituting the periodic structure, causing the plasm Resonance, which helps to amplify the photo-induced field. The period of the periodic structure of the first photoelectric conversion element (the arrangement interval of the i-th convex portion) is preferably smaller than the period of the periodic structure of the second photoelectric conversion element (the arrangement interval of the i-th convex portion). The arrangement interval (period) of the i-th convex portion of the i-th photoelectric conversion element is more preferably about 100 nm or less. Thereby, the light in the infrared light region to the visible light region below the wavelength Μ (4) can have a good sensitivity. The arrangement interval (period) of the first convex portion of the second photoelectric conversion element is more preferably about 15 Å nm or less. Thereby, the infrared light having a wavelength of about 1 μηι to 4 (4) can have a good sensitivity. The protrusion height of the first protrusion 4 is preferably about 10 nm to 20 nm. And preferably, at least one of the periodic structures has a wavelength of about 〇.丨 times to 丨 times in a certain wavelength range (preferably from the visible light region to the infrared light region) (especially about 1 time Size) configuration interval. Thereby, if the 156673.doc 201230358 light is included in the above wavelength range, at least one periodic structure of the metal nanostructure can be made sensitive to the incident light. Preferably, the metal nanostructure further includes a plurality of second convex portions that are larger than the first convex portion, and the second convex portions are dispersed with each other, and each of the second convex portions and the periodic structure are A stacked or nearly grounded configuration. When the right light is incident on the metal-need structure, a near-field interaction occurs between the second convex portions constituting the random structure or the first and second convex portions (#A?, K.Kobayashi, et. Al., Progressin Nano-Electro-Optecs I. ed. M. Ohtsu, p. 119 (Sptinger-Verlag, Berlin, 2003)). The photo-induced field can be further amplified by the multiplication effect of the near-field interaction and the plasmon resonance, thereby improving the sensitivity. Even if the incident light is weak, the photoelectromotive force can be generated with high sensitivity. The protrusion height of the second convex portion is preferably about 5 〇 nm to 200 nm. The dispersion interval of the second convex portions (the separation distance between adjacent second convex portions) is preferably larger than the wavelength of the incident light, and is preferably larger than the sensing wavelength of the Schottky device made of the semiconductor layer and the conductive layer. . The dispersion interval of the second convex portion of the first photoelectric conversion element is preferably smaller than the dispersion interval of the second convex portion of the second photoelectric conversion element. For example, the dispersion interval of the second convex portion of the first photoelectric conversion element is preferably 1 μm or more, and more preferably about 2 μm to 3 μm. The second projection of the second photoelectric conversion element preferably has a dispersion interval of about 3 μm to 5 μm. Thereby, the adjacent second convex portions can be prevented from interfering with each other to weaken the electric field. The upper limit of the dispersion interval of the second convex portion of the first photoelectric conversion element is preferably about 3 μm to about 5 μm, and the upper limit of the dispersion interval of the second convex portion of the second photoelectric conversion element is preferably 156673.doc -12 - 201230358 5 μιη~6 μιη or so. Thereby, the density of the second convex portion can be ensured, and the number of periodic structures that can interact with the second convex portion can be ensured, and the induced frequency band can be surely expanded. An insulator such as a carbon compound may be mixed in the above metal nanostructure to form an M-I-M (metal-in SUlat〇r-metal, metal-insulator _ metal) structure. Port [Effect of the Invention] According to the present invention, light of a wide wavelength band extending from the visible light region in the infrared region can be converted into electric power, and the electric power can be stored. Therefore, even when power generation is not performed by the photovoltaic power generation unit or when the amount of power generation is small, the power stored in advance can be supplied, thereby improving convenience. [Embodiment] Hereinafter, embodiments of the present invention will be described based on the drawings. Fig. 1 is a view showing a light storage device according to an i-th embodiment of the present invention. The optical power storage device 1 includes a photovoltaic power generation unit 2 and a power storage unit 3 connected to the optical power generation unit 2. The photovoltaic power generation unit 2 generates electric power from incident light. Power storage unit 3 stores electric power generated by the above-described power generation. Hereinafter, a detailed description will be made. The photovoltaic power generation unit 2 includes a second photoelectric conversion element 1A and a second photoelectric conversion element 20. The photoelectric conversion elements 1 〇 and 2 〇 are electrically connected in parallel. The first photoelectric conversion element 1 includes an n-type semiconductor layer u, a conductive layer I, and a metal nanostructure 13. A conductive screen 12 is laminated on the n-type semiconductor layer. A metal nanostructure 13 〇 is deposited on the conductive layer 12

半導體層11係包含矽(Si)。然而,並不僅限於此,半導 體層11亦可包含Ge、GaAs等其他半導體。於半導體層U 156673.doc -13- 201230358 中,摻雜有P(磷)等11型雜質。半導體層u係構成η型半 體。 η型半導體層11係兼作第丨光電轉換元件1〇之基板。半導 體層11係包含矽基板。於矽基板中摻雜有η型雜質。作為 矽基板,可使用矽晶圓等。第!光電轉換元件1〇之形狀保 持性係由矽基板確保^亦可與η型半導體層丨丨分開地另行 設置基板。例如,亦可於包含玻璃或樹脂膜之基板上,覆 膜η型半導體層11β亦可於上述另行設置之基板之表面藉 由 CVD (Chemical Vapor Deposition,化學氣相沈積)等而 將η型半導體層11成膜。 導電層12係覆蓋基板11之整個表面(圖1中為上表面導 電層12由金屬矽化物構成,且具有導電性。矽基板丨丨之表 層之矽係自組合成,構成導電層12之矽成分。作為構成導 電層12之金屬成分,可舉出c〇、Fe、W、Ni、A卜Ti等。 然而’上述金屬成分並不限定於該等。此處,使用Co作為 構成導電層12之金屬成分》導電層12由CoSix構成,較佳 由CoSh構成。藉此,於導電層12與半導體層11之間形成 良好之肖特基界面。導電層12亦可僅由金屬成分構成。導 電層12之厚度為數nm〜數十nm左右,較佳為數nm左右。圖 式之導電層12之厚度相對於基板11、電極14、15、或金屬 奈米結構13等之厚度誇大表示。 於導電層12之表面(圖1中為上表面)設置有金屬奈米結 構13。金屬奈米結構13係廣泛地分佈於導電層12之表面。 此處,金屬奈米結構13係配置於導電層12之表面上之下述 156673.doc • 14· 201230358 電極14、15彼此之間的部分(以下稱為「電極間部分」), 更佳為分佈於上述電極間部分之整體.金屬奈米結構13亦 可僅積層於導電層12之一部分。例如,金屬奈米結構〗3亦 可僅設置於導電層12之電極丨4或15之附近部分。 金屬奈米結構13係以Au、Ag、Pt、Cu、Pd等金屬為主 成分而構成。此處,使用Au作為構成金屬奈米結構13之金 屬。金屬奈米結構13係富含Au之結構物。可於構成金屬奈 米結構13之金屬中混雜碳化合物等絕緣體,金屬奈米結構 13亦可形成為金屬-絕緣體_金屬metaMnsulat〇r_ metal)結構。 於金屬奈米結構13之表面’形成有次微米乃至奈米級之 凸°羊、、’田而s,金屬奈米結構13係成為使Au之奈米微粒 子集合成誤團狀或碎形之結構(參照圖8及圖9)。金層奈米 結和之Au奈米微粒子之集合體包含於^光電轉換元件 10之厚度方向乃至積層方向(圖4為上方)突出之凸部。該 等凸部集合成竊團狀。或者,成為AU奈米粒子之集合體以 多重分支之方式擴散之碎形結構。金屬奈米結構^包含多 個第1凸部⑸、及第2凸部⑽。上述多個凸部之一部分構 成第1凸部而另—部分構成第2凸部13b。 金屬奈米結構13包含至少一個週期結構.較佳為, 金層奈,結構13含有複數個乃至多個甚至無數個週期結構 .错由金屬奈米結構13之上述多個凸部中之相鄰的複 數個凸部13a、13a m ^ ·.·而構成一個週期結構〗3c。構成各 I56673.doc 201230358 (與積層方向正父之方向)以某一間隔(週期)排列。第丨凸部 13a之配置間隔(週期)係相應於週期結構丨孔而不同。該等 週期結構Uc中之第丨凸部13a之配置間隔(週期)較佳為數十 nm至數μιη左右,更佳為約4〇 nm〜1〇〇 nm左右。該配置間 隔週期)較佳為入射光L之波長之約〇」倍〜丨倍左右,更佳 為約〇.1倍左右。it而,上述配置間隔(週期)較佳為包含n 型半導體層11與導電層12之肖特基元件之感應波長(自可 見光區至紅外光區)的約0‘丨倍〜丨倍左右,更佳為約〇 ι倍左 右。金屬奈米結構1 3較佳為至少包含一個具有上述肖特基 兀件之感應區内之任意波長之約〇1倍〜丨倍之大小的配置 間隔的週期結構。 進而,於金屬奈米結構13上,分散地配置有複數個第2 凸部13b。各第2凸部13b係以與任一週期結構13c疊合之方 式配置。或者,各第2凸部13b係與任一週期結構13c近接 地配置。第2凸部13b係突出高度大於第!凸部Ua,且峭度 (突出咼度與底部寬度之比)大於第】凸部]3a。第2凸部i3b 之大出尚度較佳為約50 nm~200 nm左右。第2凸部13b彼此 之分散間隔較佳為大於入射光之波長。例如,上述分散間 隔較佳為1 μιη以上,且較佳為約2 μιη〜3 μιη左右。第2凸部 13b彼此之分散間隔之上限較佳為3 μιη~5 左右。 於導電層12上之彼此分離之位置上配置有一對電極μ、 15。此處,一電極14(陰極電極)係配置於導電層12之上表 面之一端部(圖1中為右側)。另—電極15(陽極電極)係配置 於導電層12之上表面之另一端部(圊j中為左側)。電極、 -16 - 156673.docThe semiconductor layer 11 contains germanium (Si). However, it is not limited thereto, and the semiconductor layer 11 may include other semiconductors such as Ge or GaAs. In the semiconductor layer U 156673.doc -13- 201230358, a type 11 impurity such as P (phosphorus) is doped. The semiconductor layer u constitutes an n-type half. The n-type semiconductor layer 11 also serves as a substrate for the second photoelectric conversion element 1〇. The semiconductor layer 11 includes a germanium substrate. The ruthenium substrate is doped with an n-type impurity. As the germanium substrate, a germanium wafer or the like can be used. The first! The shape retention of the photoelectric conversion element 1 is ensured by the germanium substrate, and the substrate may be separately provided separately from the n-type semiconductor layer. For example, the n-type semiconductor layer 11β may be coated on the substrate including the glass or the resin film, or the n-type semiconductor may be formed by CVD (Chemical Vapor Deposition) or the like on the surface of the separately provided substrate. Layer 11 is formed into a film. The conductive layer 12 covers the entire surface of the substrate 11 (the upper surface conductive layer 12 is composed of a metal telluride in FIG. 1 and has electrical conductivity. The lanthanum of the surface layer of the ruthenium substrate is self-assembled to form a conductive layer 12. The metal component constituting the conductive layer 12 is c〇, Fe, W, Ni, A, Ti, etc. However, the above metal component is not limited thereto. Here, Co is used as the conductive layer 12 The metal component>>the conductive layer 12 is composed of CoSix, preferably CoSh. Thereby, a good Schottky interface is formed between the conductive layer 12 and the semiconductor layer 11. The conductive layer 12 may also be composed only of a metal component. The thickness of the layer 12 is about several nm to several tens of nm, preferably about several nm. The thickness of the conductive layer 12 of the drawing is expressed with respect to the thickness of the substrate 11, the electrode 14, 15, or the metal nanostructure 13 and the like. The surface of the layer 12 (the upper surface in Fig. 1) is provided with a metal nanostructure 13. The metal nanostructure 13 is widely distributed on the surface of the conductive layer 12. Here, the metal nanostructure 13 is disposed on the conductive layer 12 On the surface of the following 156673.doc • 14· 201230358 The portion between the electrodes 14, 15 (hereinafter referred to as "interelectrode portion") is more preferably distributed over the entire interelectrode portion. The metal nanostructure 13 may be laminated only on one portion of the conductive layer 12. For example, the metal nanostructure 3 may be provided only in the vicinity of the electrode 丨 4 or 15 of the conductive layer 12. The metal nanostructure 13 is mainly composed of a metal such as Au, Ag, Pt, Cu, or Pd. Here, Au is used as the metal constituting the metal nanostructure 13. The metal nanostructure 13 is a structure rich in Au, and an insulator such as a carbon compound can be mixed in the metal constituting the metal nanostructure 13, and the metal nanostructure 13 can also be formed into a metal-insulator-metal metaMnsulat〇r_metal structure. On the surface of the metal nanostructure 13 'forms a sub-micron or nano-scale convex sheep, 'Tian s, metal nanostructure 13 series to make the Au nano-particles into a mis- or a fragment Structure (refer to Figs. 8 and 9). The aggregate of the gold layer nano-junction and the Au nano-particles is included in the convex portion of the photoelectric conversion element 10 in the thickness direction or even in the lamination direction (above in Fig. 4). The convex portions are gathered into a stealth shape. Alternatively, it becomes a fractal structure in which an aggregate of AU nanoparticles is diffused in a multi-branch manner. The metal nanostructures include a plurality of first convex portions (5) and second convex portions (10). One of the plurality of convex portions constitutes a first convex portion and the other portion constitutes a second convex portion 13b. The metal nanostructure 13 comprises at least one periodic structure. Preferably, the gold layer has a plurality of or even a plurality of even periodic structures. The adjacent ones of the plurality of convex portions of the metal nanostructure 13 are adjacent. The plurality of convex portions 13a, 13a m ^ ··· constitute a periodic structure 〖3c. Each of the I56673.doc 201230358 (the direction with the parent of the lamination direction) is arranged at a certain interval (period). The arrangement interval (period) of the second convex portion 13a differs depending on the periodic structure pupil. The arrangement interval (period) of the second convex portion 13a in the periodic structure Uc is preferably about several tens of nm to several μm, more preferably about 4 〇 nm to about 1 〇〇 nm. The arrangement interval period is preferably about 倍 to about 丨 times the wavelength of the incident light L, and more preferably about 1. Preferably, the arrangement interval (period) is preferably about 0' times to about 丨 times the inductive wavelength (from the visible light region to the infrared light region) of the Schottky element including the n-type semiconductor layer 11 and the conductive layer 12. More preferably about 〇 times. The metal nanostructure 13 is preferably a periodic structure having at least one arrangement interval having a size of about 1 to 1 times the arbitrary wavelength of the sensing region in the Schottky element. Further, a plurality of second convex portions 13b are dispersedly arranged on the metal nanostructure 13. Each of the second convex portions 13b is disposed so as to overlap with any of the periodic structures 13c. Alternatively, each of the second convex portions 13b is disposed in close proximity to any of the periodic structures 13c. The second convex portion 13b has a protruding height greater than the first! The convex portion Ua has a kurtosis (ratio of the protruding width to the bottom width) larger than the first convex portion 3a. The degree of occurrence of the second convex portion i3b is preferably about 50 nm to 200 nm. The dispersion interval of the second convex portions 13b is preferably larger than the wavelength of the incident light. For example, the dispersion interval is preferably 1 μm or more, and preferably about 2 μm to 3 μm. The upper limit of the interval between the second convex portions 13b is preferably about 3 μm to about 5. A pair of electrodes μ, 15 are disposed on the conductive layer 12 at positions separated from each other. Here, an electrode 14 (cathode electrode) is disposed at one end of the upper surface of the conductive layer 12 (the right side in Fig. 1). Further, the electrode 15 (anode electrode) is disposed at the other end of the upper surface of the conductive layer 12 (left side in 圊j). Electrode, -16 - 156673.doc

S 201230358 15之配置並不限於以上所述。例如,亦可將電極i4、^之 一者配置於第1光電轉換元件10之中央部,且將電極14、 15之另一者配置於第i光電轉換元件1〇之四角(周邊部)。 電極14、15係包含如、Ag、Pt、Cu、Pd等金屬。此 . 處,使用Au作為構成電極14、15之第2金屬《因此,電極 • 14、15係包含與構成金屬奈米結構13之金屬成分相同之金 屬成分。構成金屬奈米結構13之金屬成分與構成電極14、 15之金屬成分亦可相互不同。2個電極14、15亦可包含相 互不同之金屬成分。 於陰極電極14與導電層12之間介置障壁層16(極性確定 層)。障壁層16係包含鋁、Si〇2、SiN、碳化合物(例如樹 脂)等絕緣體。障壁層16之厚度係小至足以能夠產生穿隧 效應之程度。例如,障壁層16之厚度為埃級即未達丨。 於圖式中,障壁層16之厚度係相對於導電層12或金屬奈米 結構13等之厚度而誇大表示。 藉由電極14與導電層12夾著障壁層16對向而構成電容 器。如下所述,於導電層12之與電極14對向之部分,蓄積 有藉由光電轉換而產生之載子(電子)。藉此,電極14成為 陰極。電極15成為陽極。 ' 陽極電極15與導電層12為直接接觸。較佳為,陽極電極 15與導電層12歐姆接合。 其次,對第2光電轉換元件20進行說明。第2光電轉換光 件20係成為與第1光電轉換元件1〇大致相同之結構。即, 第2光電轉換元件20係包含半導體層21、導電層22、及金 156673.doc 201230358 屬奈米結構2 3。j4£.道sla a 、牛導體層21上積層有導電層22。於導電 層22上積層有金屬奈米結構23。 第2光電轉換70件2G與第1光電轉換元件10不同之處在 於’半導體層21為p型。於半導體層对,換雜有b(刪)等 P里雜質+導體層21係包含石夕(si)。但並不僅限於此,半 導體層21亦可包含Ge、GaAs等其他半導體。 P型半導體層21係兼作第2光電轉換元件20之基板。p型 半導體層21係包含摻雜有P型雜質之矽基板。作為矽基 板,可使用矽晶圓等。第2光電轉換元件2〇之形狀保持性 係由矽基板確保。基板亦可與p型半導體層21分開地另行 設置。例如’亦可於包含玻璃或樹脂薄膜之基板上覆膜p 型半導體層21。亦可於上述另行設置之基板之表面藉由 CVD等而將p型半導體層21成膜。 導電層22係覆蓋基板21之整個表面(圖1中為上表面)。 導電層22係包含金屬矽化物,且具有導電性。矽基板21之 表層之矽係自組合成’構成導電層22之矽成分.。作為構成 導電層22之金屬成分,可舉出c〇、Fe、W、Ni、八卜Ti 等。然而’上述金屬成分並不限定於該等。此處,使用c〇 作為構成導電層22之金屬成分。導電層22係包含c〇Six, 較佳為包含CoSi2 ^藉此,於導電層22與半導體層21之間 形成良好之肖特基界面。導電層22亦可僅由金屬成分構 成。導電層22之厚度為數nm〜數十nm左右。圖式之導電層 22之厚度係相對於基板21及金屬奈米結構23等之厚度而誇 大表示。 156673.doc 201230358 於導電層22之表面(圖1中為上表面)設置有金屬奈米結 構23。金屬奈米結構23係廣泛地分佈於導電層22之表面。 此處,金屬奈米結構23係配置於導電層22之表面中之下述 電極24、25彼此之間的部分(以下稱為「電極間部分」), 更佳為分佈於上述電極間部分之整體中。金屬奈米結構23 並不僅限於積層於導電層22之表面之大致整體,亦可僅積 層於導電層22之一部分。 金屬奈米結構23係以Au、Ag、Pt、Cu、Pd等金屬為主 成分而構成。此處,使用Au作為構成金屬奈米結構23之金 屬。金屬奈米結構23係富含Au之結構物。可於構成金屬奈 米結構23之金屬中混雜碳化合物等絕緣體,金屬奈米結構 23亦可成為M-I-M結構。 於金屬奈米結構23之表面,形成有次微米乃至奈米級之 凹凸。詳細而言,金屬奈米結構23係成為使八11之奈米微粒 子集合成簇團狀或碎形之結構(參照圖8及圖9) ^金屬奈米 結構23之Au奈米微粒子之集合體係包含沿著第2光電轉換 元件20之厚度方向乃至積層方向(圖2中為上方)突出之多個 凸部。該等凸部係集合成鎮團狀。或者,成為使Au奈米粒 子之集合體以多重分支之方式擴散之碎形結構。金屬奈米 結構23係包含多個第i凸部23a、及第2凸部23卜金屬夺米 結構23中之上述多個凸部之一部分構成第i凸部仏二另、 一部分構成第2凸部23b。 金屬奈米結構2 3係包含至少_個週期結構2 3 c。較佳 為,金屬奈米結構23含有複數個乃至多個甚至無數個_ 156673.doc -19· 201230358 結構23c。藉由金屬奈米結構23之上述多個凸部中之相鄰 的複數個凸部23a、23a…而構成一個週期結構23<^。構成 各週期結構23c之第i凸部23a、23a彼此沿著元件ι〇之面 方向(與積層方向正交之方向)以$一間隔(週期)排列而 成。第1凸部23a之配置間隔(週期)係相應於週期結構23β而 不同。該等週期結構23c中之第!凸部23a之配置間隔(週期) 較佳為數十nm至數㈣左^,更佳為略微大於第丨光電轉換 兀件中之配置間隔’且更佳為約6〇 nm〜15〇咖左右。該配 置間隔(週期)較佳為入射光L之波長之約〇1倍〜丨倍左右, 更佳為約0·1倍左右。進而’上述配置間隔(週期)較佳為包 含Ρ型半導體層21與導電層22之肖特基元件之錢波長(紅 外光區)的約0J倍〜i倍左右,更佳為約〇1倍左右。金屬奈 米結構23較佳為至少包含—個具有包含p型半導體層21與 導電層22之肖特基元件之感應區内之任意波長之約〇」倍〜 1倍之大小的配置間隔的週期結構。 進而,於金屬奈米結構23中,分散地配置有複數個第2 凸部23b。各第2凸部23b係以與任一週期結構23c疊合之方 式而配置。或者,各第2凸部23b係與任一週期結構23c近 接地配置。第2凸部23b係突出高度大於第!凸部23a,且峭 度(突出高度與底部寬度之比)大於第!凸部23a。第2凸部 之犬出咼度較佳為約5〇 nm〜2〇〇 nm左右。第2凸部23b 彼此之分散間隔較佳為大於入射波長乃至包含p型半導體 層21與導電層22之$特基元件之感應波長,較佳為大於第 1光電轉換元件10之第2凸部13b之分散間隔。例如第2凸部 156673.doc 201230358 23b彼此之分散間隔較佳為3 gm〜5 μιη左右。第2凸部23b彼 此之分散間隔之上限較佳為5 μιη〜6 μηι左右。 於導電層22上之相互分離之位置上配置有一對電極24、 25 ^此處,一電極24(陽極電極)係配置於導電層22之上表 面之一端部(圖1中為右側)。另一電極25(陰極電極)係配置 於導電層22之上表面之另—端部(圖}中為左側)。電極24、 25之配置並不限於以上所述。例如,亦可將電極24、25之 一者配置於第2光電轉換元件2〇之中央部,且將電極24、 25之另一者配置於第2光電轉換元件2〇之四角(周邊部)。 電極24、25係包含Au、Ag、Pt、Cu、Pd等金屬。此 處,使用AU作為構成電極24、25之第2金屬。因此,電極 24、25係包含與構成金屬奈米結構23之金屬成分相同之金 屬成分。構成金屬奈米結構23之金屬成分與構成電極24、 25之金屬成分亦可相互不同^ 2個電極24、乃亦可包含相 互不同之金屬成分。電極24、25亦可包含與第1光電轉換 元件10之電極I4、15不同之金屬成分。 於陽極電極24與導電層22之間介置障壁層26(極性確定 層)。障壁層26係包含鋁、Si〇2、SiN、碳化合物(例如樹 脂)等絕緣體。障壁層26之厚度係小至足以能夠產生穿隧 效應之程度。例如,障壁層26之厚度為埃級即未達丄。 於圖式中,障壁層26之厚度係相對於導電層22或金屬奈米 結構2 3專之厚度.而誇大表示。 藉由電極24與導電層22夾著障壁層26對向’而構成電容 器。如下所述,於導電層22之與電極24對向之部分,蓄積 156673.doc • 21 · 201230358 有由光電轉換而產生之載子(電洞)。藉此,電極24成為陽 極。電極25成為陰極。 陰極電極25與導電層22為直接接觸。較佳為,陰極電極 25與導電層22歐姆接合。 第1光電轉換元件10與第2光電轉換元件20疊合於彼此之 厚度方向(圖1中為上下)。此處,第1光電轉換元件1〇係配 置於表侧(光L之入射側,上側),第2光電轉換元件20係配 置於背側(下側)。於光電轉換元件10、20彼此之間形成有 若干間隙。 各光電轉換元件10、20係配置為與光L之入射方向交 叉’較佳為配置為與上述入射方向大致正交。各光電轉換 凡件10、20之金屬奈米結構13、23係朝向表侧(光L之入射 側),基板11、21係朝向背側。 第1光電轉換元件10與第2光電轉換元件2〇係為並聯連 接。 蓄電部3係包含-對電極31、32及夹在該等電極^、32 之間之介電質層33 ’從而構成電容器。介電質層33之材質 為介電質(絕緣體),且可舉出例如紐、樹脂、氧化石夕、氮 化石夕等。然而,上述材質並不限定於該等。於負極31設置 有端子31e。於正極32設置有端子32e。 於光發電部2之負極連接有蓄雷+ & π 另頁電邛3之負極端子31e。於 光發電部2之正極連有蓄電部2之正極端子 以下說明光蓄電裝置丨之製造方法。 第1光電轉換元件1 〇係以如下方式製作。 156673.docThe configuration of S 201230358 15 is not limited to the above. For example, one of the electrodes i4 and φ may be disposed in the central portion of the first photoelectric conversion element 10, and the other of the electrodes 14 and 15 may be disposed at the four corners (peripheral portion) of the ith photoelectric conversion element 1A. The electrodes 14, 15 include metals such as Ag, Pt, Cu, and Pd. Here, Au is used as the second metal constituting the electrodes 14, 15. Therefore, the electrodes 14 and 15 contain the same metal component as the metal component constituting the metal nanostructure 13. The metal component constituting the metal nanostructure 13 and the metal components constituting the electrodes 14 and 15 may be different from each other. The two electrodes 14, 15 may also contain mutually different metal components. A barrier layer 16 (polarity determining layer) is interposed between the cathode electrode 14 and the conductive layer 12. The barrier layer 16 contains an insulator such as aluminum, Si 〇 2, SiN, or a carbon compound (e.g., a resin). The thickness of the barrier layer 16 is small enough to produce a tunneling effect. For example, the barrier layer 16 has a thickness of angstroms, i.e., less than 丨. In the drawings, the thickness of the barrier layer 16 is exaggerated relative to the thickness of the conductive layer 12 or the metal nanostructure 13 or the like. The capacitor 14 is formed by the electrode 14 and the conductive layer 12 facing each other across the barrier layer 16. As described below, a carrier (electron) generated by photoelectric conversion is accumulated in a portion of the conductive layer 12 opposed to the electrode 14. Thereby, the electrode 14 becomes a cathode. The electrode 15 becomes an anode. The anode electrode 15 is in direct contact with the conductive layer 12. Preferably, the anode electrode 15 is ohmically bonded to the conductive layer 12. Next, the second photoelectric conversion element 20 will be described. The second photoelectric conversion device 20 has substantially the same configuration as that of the first photoelectric conversion element 1A. That is, the second photoelectric conversion element 20 includes the semiconductor layer 21, the conductive layer 22, and the gold structure 156673.doc 201230358. The conductive layer 22 is laminated on the conductor layer 21 of the bob. A metal nanostructure 23 is laminated on the conductive layer 22. The second photoelectric conversion 70 2G differs from the first photoelectric conversion element 10 in that the 'semiconductor layer 21 is p-type. In the semiconductor layer pair, the impurity (b) and the conductor layer 21 in the P layer are included in the semiconductor layer. However, the semiconductor layer 21 may not include other semiconductors such as Ge or GaAs. The P-type semiconductor layer 21 also serves as a substrate of the second photoelectric conversion element 20. The p-type semiconductor layer 21 includes a germanium substrate doped with a P-type impurity. As the ruthenium substrate, a ruthenium wafer or the like can be used. The shape retention of the second photoelectric conversion element 2 is ensured by the ruthenium substrate. The substrate may be separately provided separately from the p-type semiconductor layer 21. For example, the p-type semiconductor layer 21 may be coated on a substrate including a glass or a resin film. The p-type semiconductor layer 21 may be formed on the surface of the substrate separately provided as described above by CVD or the like. The conductive layer 22 covers the entire surface of the substrate 21 (the upper surface in Fig. 1). The conductive layer 22 contains a metal halide and is electrically conductive. The ruthenium of the surface layer of the ruthenium substrate 21 is self-assembled into a ruthenium component constituting the conductive layer 22. Examples of the metal component constituting the conductive layer 22 include c〇, Fe, W, Ni, and bab Ti. However, the above metal components are not limited to these. Here, c 〇 is used as the metal component constituting the conductive layer 22. The conductive layer 22 comprises c〇Six, preferably containing CoSi2^, thereby forming a good Schottky interface between the conductive layer 22 and the semiconductor layer 21. The conductive layer 22 may also be composed only of a metal component. The thickness of the conductive layer 22 is about several nm to several tens of nm. The thickness of the conductive layer 22 of the drawing is exaggerated with respect to the thickness of the substrate 21, the metal nanostructure 23, and the like. 156673.doc 201230358 A metal nanostructure 23 is provided on the surface of the conductive layer 22 (the upper surface in FIG. 1). The metal nanostructures 23 are widely distributed on the surface of the conductive layer 22. Here, the metal nanostructure 23 is disposed on a portion of the surface of the conductive layer 22 between the electrodes 24 and 25 (hereinafter referred to as "interelectrode portion"), and more preferably distributed between the electrodes. In the whole. The metal nanostructure 23 is not limited to being substantially entirely laminated on the surface of the conductive layer 22, but may be laminated only on one portion of the conductive layer 22. The metal nanostructure 23 is mainly composed of a metal such as Au, Ag, Pt, Cu or Pd. Here, Au is used as the metal constituting the metal nanostructure 23. The metal nanostructure 23 is a structure rich in Au. An insulator such as a carbon compound may be mixed with the metal constituting the metal nanostructure 23, and the metal nanostructure 23 may also have an M-I-M structure. On the surface of the metal nanostructure 23, irregularities of a submicron or nanometer order are formed. Specifically, the metal nanostructure 23 is a structure in which the nanoparticles of the eight 11 are aggregated into a cluster or a fractal (refer to FIGS. 8 and 9 ). The collection system of the Au nanoparticles of the metal nanostructure 23 A plurality of convex portions that protrude along the thickness direction of the second photoelectric conversion element 20 or even in the lamination direction (upward in FIG. 2) are included. The protrusions are grouped into a town. Alternatively, it is a fractal structure in which aggregates of Au nanoparticles are diffused in multiple branches. The metal nanostructure 23 includes a plurality of i-th convex portions 23a and a second convex portion 23, and one of the plurality of convex portions in the metal rice structure 23 constitutes an i-th convex portion, and a portion constitutes a second convex portion. Part 23b. The metal nanostructures 2 3 comprise at least one periodic structure 2 3 c. Preferably, the metal nanostructure 23 contains a plurality of or even more than a few _ 156673.doc -19· 201230358 structures 23c. A periodic structure 23<^ is formed by a plurality of adjacent convex portions 23a, 23a, ... among the plurality of convex portions of the metal nanostructure 23. The i-th convex portions 23a and 23a constituting each periodic structure 23c are arranged at intervals of (a period) along the plane direction of the element ι (the direction orthogonal to the lamination direction). The arrangement interval (period) of the first convex portions 23a differs depending on the periodic structure 23β. The first of these periodic structures 23c! The arrangement interval (period) of the convex portions 23a is preferably tens of nm to several (four) left ^, more preferably slightly larger than the arrangement interval in the second photoelectric conversion element and more preferably about 6 〇 nm to 15 〇 . The arrangement interval (period) is preferably about 1 to about 1 times the wavelength of the incident light L, more preferably about 0.1 times. Further, the arrangement interval (period) is preferably about 0 to about 1 times, more preferably about 1 time, of the money wavelength (infrared light region) of the Schottky element including the germanium-type semiconductor layer 21 and the conductive layer 22. about. The metal nanostructure 23 preferably includes a period of at least one arrangement interval having a size of about 1 to 1 times the arbitrary wavelength of the Schottky element including the p-type semiconductor layer 21 and the conductive layer 22. structure. Further, in the metal nanostructure 23, a plurality of second convex portions 23b are dispersedly arranged. Each of the second convex portions 23b is disposed so as to overlap with any of the periodic structures 23c. Alternatively, each of the second convex portions 23b is disposed in close proximity to any of the periodic structures 23c. The second convex portion 23b has a protruding height greater than the first! The convex portion 23a, and the kurtosis (ratio of the protruding height to the bottom width) is larger than the first! Concave portion 23a. The dog's exiting degree of the second convex portion is preferably about 5 〇 nm to 2 〇〇 nm. The dispersion distance between the second convex portions 23b is preferably larger than the incident wavelength or even the inductive wavelength of the special element including the p-type semiconductor layer 21 and the conductive layer 22, and is preferably larger than the second convex portion of the first photoelectric conversion element 10. The dispersion interval of 13b. For example, the second convex portion 156673.doc 201230358 23b is preferably spaced apart from each other by about 3 gm to 5 μm. The upper limit of the dispersion interval of the second convex portions 23b is preferably about 5 μηη to 6 μηι. A pair of electrodes 24, 25 are disposed at positions spaced apart from each other on the conductive layer 22. Here, an electrode 24 (anode electrode) is disposed at one end of the upper surface of the conductive layer 22 (right side in Fig. 1). The other electrode 25 (cathode electrode) is disposed on the other end of the upper surface of the conductive layer 22 (left side in Fig.). The configuration of the electrodes 24, 25 is not limited to the above. For example, one of the electrodes 24 and 25 may be disposed in the central portion of the second photoelectric conversion element 2, and the other of the electrodes 24 and 25 may be disposed in the four corners (peripheral portion) of the second photoelectric conversion element 2 . The electrodes 24 and 25 are made of a metal such as Au, Ag, Pt, Cu, or Pd. Here, AU is used as the second metal constituting the electrodes 24 and 25. Therefore, the electrodes 24, 25 contain the same metal component as the metal component constituting the metal nanostructure 23. The metal component constituting the metal nanostructure 23 and the metal components constituting the electrodes 24 and 25 may be different from each other. The two electrodes 24 may contain metal components different from each other. The electrodes 24 and 25 may also contain a metal component different from the electrodes I4 and 15 of the first photoelectric conversion element 10. A barrier layer 26 (polarity determining layer) is interposed between the anode electrode 24 and the conductive layer 22. The barrier layer 26 contains an insulator such as aluminum, Si 〇 2, SiN, or a carbon compound (e.g., a resin). The thickness of the barrier layer 26 is small enough to produce a tunneling effect. For example, the barrier layer 26 has a thickness of angstroms, i.e., less than 丄. In the drawings, the thickness of the barrier layer 26 is exaggerated relative to the thickness of the conductive layer 22 or the metallic nanostructure. The capacitor is formed by the electrode 24 and the conductive layer 22 facing the opposite side of the barrier layer 26. As described below, in the portion of the conductive layer 22 opposite to the electrode 24, 156673.doc • 21 · 201230358 has a carrier (hole) generated by photoelectric conversion. Thereby, the electrode 24 becomes an anode. The electrode 25 serves as a cathode. The cathode electrode 25 is in direct contact with the conductive layer 22. Preferably, the cathode electrode 25 is ohmically bonded to the conductive layer 22. The first photoelectric conversion element 10 and the second photoelectric conversion element 20 are superposed on each other in the thickness direction (upper and lower in Fig. 1). Here, the first photoelectric conversion element 1 is disposed on the front side (the incident side and the upper side of the light L), and the second photoelectric conversion element 20 is disposed on the back side (lower side). A plurality of gaps are formed between the photoelectric conversion elements 10, 20 with each other. Each of the photoelectric conversion elements 10 and 20 is disposed so as to intersect with the incident direction of the light L. It is preferably arranged to be substantially orthogonal to the incident direction. The metal nanostructures 13 and 23 of the respective photoelectric conversion elements 10 and 20 are oriented toward the front side (the incident side of the light L), and the substrates 11 and 21 are oriented toward the back side. The first photoelectric conversion element 10 and the second photoelectric conversion element 2 are connected in parallel. The power storage unit 3 includes a counter electrode 31, 32 and a dielectric layer 33' interposed between the electrodes ^, 32 to constitute a capacitor. The material of the dielectric layer 33 is a dielectric (insulator), and examples thereof include a neon, a resin, an oxidized oxide, and a nitrogen oxide. However, the above materials are not limited to these. A terminal 31e is provided in the negative electrode 31. A terminal 32e is provided on the positive electrode 32. A negative electrode terminal 31e of the lightning storage + & π other page electrode 3 is connected to the negative electrode of the photovoltaic power generation unit 2. The positive electrode terminal of the power storage unit 2 is connected to the positive electrode of the photovoltaic power generation unit 2. A method of manufacturing the light storage device 以下 will be described below. The first photoelectric conversion element 1 was produced in the following manner. 156673.doc

S -22- 201230358 [第1導電層原料覆膜步驟] 準備摻雜P之η型矽基板Π。於基板丨丨上將作為導電層12 之原料成为之Co成膜。作為Co成膜方法,可採用濺鑛或 蒸鐘等 PVD(Physical Vapour Deposition,物理氣相沈積)。 亦可不限於PVD,而由旋塗等其他成膜方法將c〇覆膜。 [第1障壁配置步驟] 於上述Co膜上之應配置第1電極14之位置上,配置包含 埃級厚度之絕緣體(例如銘)之障壁層16。障壁層16之配置 可用CVD專之各種成膜方法進行。 [第1電極配置步驟] 於上述障壁層16上設置成為第丨電極14之金屬原料 (Au)。又,於Co膜上之應配置第2電極15之位置上,設置 成為第2電極15之金屬原料(Au)。用於電極14、15之金屬 原料(Au)之配置可用濺鍍、蒸鍍等之各種成膜方法進行。 [第1金屬奈米結構原料配置步驟] 進而’於上述Co膜上之電極14、15間之部分,配置成為 金屬奈米結構U之金屬原料(Au)。上述金屬奈米結構Μ 金屬原料(Au)之形狀乃至性狀並無特別限定,可為薄膜 狀、小片狀、小塊狀、粒狀、粉體狀 '膠體狀、、 線狀、點狀等任-者,亦可為其他形狀乃至性狀。於上述 =屬原料(Au)為薄膜狀之情形時,例如可藉由濺鑛或 等PVD來進行成膜。亦可使成為上述電極14、15之金屬: 料(Au)之-部分於下述擴散步驟中擴散至電極間部分,形 成金屬奈米結構13,此情形時,亦可省略金屬奈米結構原 156673.doc -23· 201230358 料配置步驟。 [第1擴散步驟] 其次,將基板11置入退火處理槽中進行退火處理。退火 處理之溫度條件較佳為400。(:〜800°C左右,更佳為600°C左 右。退火處理儘可能地於100%之惰性氣體環境中進行。 作為退火處理用之惰性氣體,可使用He、Ar、Ne等稀有 氣體’此外’亦可使用Ns。退火處理之壓力條件為接近大 氣壓,例如為相較大氣壓為數pa左右之低壓。 藉由上述退火處理而使Co擴散至構成基板^之表面部分 之S i中。藉此’形成將s i基板11之表面部分自組合成所得 之CoSix層12’從而可確實地使半導體層丨丨與導電層12進 行肖特基接合® 進而’藉由上述退火處理,而使配置於導電層丨2上之Au 之微粒子沿著導電層12之表面以形成簇團或碎形之方式進 行擴散。即’ Au微粒子以多重分支之方式擴散,成為碎形 結構之集合體。集合體之表面具有次微米乃至奈米級之凹 凸’且成為簇團狀。藉此’可自然形成金屬奈米結構13。 可以此方式,製作第1光電轉換元件10。 其次’說明第2光電轉換元件20之製作順序。 於製作第2光電轉換元件20時,準備摻雜B之p型石夕基板 21作為基板。繼而,以與第1光電轉換元件1〇之製作順序 相同之方式’對p型矽基板21依序實施導電層原料覆膜步 驟、障壁配置步驟、金屬奈米結構原料配置步驟、及擴散 步驟。 156673.doc -24-S -22- 201230358 [Step 1 of the first conductive layer material preparation] An n-type ruthenium substrate 掺杂 doped with P is prepared. Co is formed as a material of the conductive layer 12 on the substrate 成为. As the Co film formation method, PVD (Physical Vapour Deposition) such as sputtering or steaming can be used. It is not limited to PVD, and c〇 is coated by another film forming method such as spin coating. [First barrier arranging step] A barrier layer 16 including an insulator (e.g., angstrom) having an angstrom thickness is disposed at a position on the Co film where the first electrode 14 is to be placed. The arrangement of the barrier layer 16 can be carried out by various film forming methods for CVD. [First Electrode Arrangement Step] A metal material (Au) serving as the second electrode 14 is provided on the barrier layer 16 described above. Further, a metal material (Au) serving as the second electrode 15 is provided on the Co film at a position where the second electrode 15 is to be placed. The arrangement of the metal material (Au) for the electrodes 14 and 15 can be carried out by various film forming methods such as sputtering and vapor deposition. [First metal nanostructure material arrangement step] Further, a metal material (Au) which is a metal nanostructure U is disposed in a portion between the electrodes 14 and 15 on the Co film. The metal nanostructure Μ metal material (Au) is not particularly limited in shape and properties, and may be in the form of a film, a small piece, a small piece, a granule, a powder, a colloid, a wire, a dot, or the like. Anyone can also be in other shapes or even traits. In the case where the above-mentioned raw material (Au) is in the form of a film, for example, film formation can be carried out by sputtering or the like. Alternatively, the metal-forming material (Au) may be diffused to the inter-electrode portion in the diffusion step described below to form the metal nanostructure 13. In this case, the metal nanostructure may be omitted. 156673.doc -23· 201230358 Material configuration steps. [First Diffusion Step] Next, the substrate 11 is placed in an annealing treatment bath to be annealed. The temperature condition for the annealing treatment is preferably 400. (: ~800 ° C or so, more preferably about 600 ° C. Annealing treatment as much as possible in 100% inert gas environment. As an inert gas for annealing, you can use rare gases such as He, Ar, Ne' In addition, Ns can also be used. The pressure condition of the annealing treatment is near atmospheric pressure, for example, a low pressure of a large pressure of about several pa. The Co is diffused to the surface constituting the surface portion of the substrate by the above annealing treatment. 'Forming the surface portion of the Si substrate 11 to be self-assembled into the obtained CoSix layer 12' so that the semiconductor layer 丨丨 and the conductive layer 12 can be subjected to Schottky bonding and further 'disposed by the above annealing treatment The particles of Au on the layer 2 are diffused along the surface of the conductive layer 12 to form clusters or fractals. That is, the 'Au particles are diffused in multiple branches to form a collection of fractal structures. It has a submicron or nano-scale unevenness and becomes a cluster shape. Thus, the metal nanostructure 13 can be naturally formed. In this manner, the first photoelectric conversion element 10 can be produced. 2. The order of fabrication of the photoelectric conversion element 20. When the second photoelectric conversion element 20 is produced, a p-type Si-Xy substrate 21 doped with B is prepared as a substrate. Then, in the same manner as the first photoelectric conversion element 1 is produced. 'The p-type germanium substrate 21 is sequentially subjected to a conductive layer material material coating step, a barrier arrangement step, a metal nanostructure material arrangement step, and a diffusion step. 156673.doc -24-

S 201230358 [第2導電層原料覆臈步驟] 於P型石夕基板21上,藉由pVD等而將作為導電層22之原 料成分之Co成膜。 [第2障壁配置步驟]S 201230358 [Second conductive layer material covering step] Co is formed as a raw material component of the conductive layer 22 on the P-type slab substrate 21 by pVD or the like. [2nd barrier configuration step]

• *於上述C〇膜上之應配置第1電極24之位置上,藉由CVD ' 等而將包含埃級之厚度之絕緣體(例如鋁)的障壁層26成 膜。 [第2電極配置步驟] 於上述障壁層26上,配置成為第1電極24之金屬原料 (AU)。又,於Co膜上之應配置第2電極25之位置上,配置 成為第2電極25之金屬原料(Au)。用於電極24、25之金屬 原料(Au)之配置可利用濺鍍、蒸鍍等各種成膜方法進行。 [第2金屬奈米結構原料配置步驟] 進而,於上述Co膜上之電極24、25間之部分,配置成為 金屬奈米結構23之金屬原料(Au)。上述金屬奈米結構23之 金屬原料(Au)之形狀乃至性狀並無特別限定,可為薄膜 狀、小片狀、小塊狀、粒狀、粉體狀、膠體狀、纖維狀、 線狀、點狀等之任一者,亦可為其他形狀乃至性狀。於上 述金屬奈米結構23之金屬原料(Au)為薄膜狀之情形時,例 • 如可藉由濺鍍或蒸鍍等PVD來進行成膜。亦可使成為上述 電極24、25之金屬原料(Au)之一部分,於下述第2擴散步 驟中擴散至電極間部分,形成金屬奈米結構23,於此情形 時’亦可省略第2金屬奈米結構原料配置步驟。 [第2擴散步驟] 156673.doc -25- 201230358 其次’將基板21置入退火處理槽中進行退火處理。退火 處理之溫度條件較佳為40CTC〜800°C左右,更佳為6〇〇〇c左 右。退火處理儘可能地於1 〇〇%之惰性氣體環境中進行。 作為退火處理用之惰性氣體’可使用He、Ar、Ne等稀有 氣體,此外,亦可使用N2。退火處理之壓力條件為接近大 氣壓,例如相較大氣壓為數Pa左右之低壓。 藉由上述退火處理,而使(:0擴散至構成基板21之表面部 分之S!*。藉此,形成將幻基板2〗之表面部分自組合成所 得之CoSix層22,從而可確實地使半導體層21與導電層22 進行肖特基接合。 進而藉由上述退火處理,而使配置於導電層22上之Au 之微粒子沿著導電層22之表面以形成簇團或碎形之方式進 打擴散。#,Au微粒子以多重分支之方式擴散,成為碎形 構之集β體°集合體之表面係包含次微米乃至奈米級之 凹凸,且成為簇團狀。藉此’可自然形成金屬奈米結構 23 ° 可以此方式,製作第2光電轉換元件2〇。 亦可併行地進行第!光電轉換元件1〇之製造與第2光電轉 換7G件20之I k m亦可將基板! ^、η置人共通之退 火處理槽中’同時地進行第1、第2擴散步驟。 使以上述方式製作之第1光電轉換元件W及第2光電轉換 70# 20« itn進而’將光發電部2與蓄電部3連接。可 以此方式,製作光蓄電裝置丄。 以下說明上述光蓄電裝置1之動作。 156673.doc• A barrier layer 26 of an insulator (for example, aluminum) having a thickness of an ergic layer is formed by CVD ' or the like at a position on the C 〇 film where the first electrode 24 is to be placed. [Second Electrode Arrangement Step] A metal material (AU) serving as the first electrode 24 is disposed on the barrier layer 26 described above. Further, a metal material (Au) serving as the second electrode 25 is disposed on the Co film at a position where the second electrode 25 is to be placed. The arrangement of the metal material (Au) for the electrodes 24 and 25 can be carried out by various film forming methods such as sputtering and vapor deposition. [Second metal nanostructure material arrangement step] Further, a metal material (Au) serving as the metal nanostructure 23 is disposed in a portion between the electrodes 24 and 25 on the Co film. The shape and even the shape of the metal material (Au) of the metal nanostructure 23 are not particularly limited, and may be in the form of a film, a small piece, a small piece, a granule, a powder, a gel, a fiber, or a wire. Any of the dots or the like may be other shapes or even traits. In the case where the metal material (Au) of the metal nanostructure 23 is in the form of a film, for example, film formation can be performed by PVD such as sputtering or vapor deposition. A part of the metal material (Au) serving as the electrodes 24 and 25 may be diffused into the inter-electrode portion in the second diffusion step described below to form the metal nanostructure 23, and in this case, the second metal may be omitted. Nano structure raw material configuration steps. [Second Diffusion Step] 156673.doc -25- 201230358 Next, the substrate 21 is placed in an annealing treatment bath to be annealed. The temperature condition for the annealing treatment is preferably about 40 CTC to 800 ° C, more preferably about 6 〇〇〇 c. The annealing treatment is carried out as much as possible in an inert gas atmosphere of 1%. As the inert gas for annealing treatment, a rare gas such as He, Ar or Ne can be used, and N2 can also be used. The pressure condition for the annealing treatment is close to atmospheric pressure, for example, a relatively large pressure of about several Pa. By the above annealing treatment, (:0 is diffused to S?* which constitutes the surface portion of the substrate 21. Thereby, the surface portion of the magic substrate 2 is formed by self-combination into the obtained CoSix layer 22, thereby reliably making The semiconductor layer 21 and the conductive layer 22 are Schottky-bonded. Further, by the annealing treatment, the particles of Au disposed on the conductive layer 22 are formed along the surface of the conductive layer 22 to form clusters or fractals. Diffusion. #,Au microparticles are diffused in multiple branches, and the surface of the collection of β-body aggregates consists of submicron or nano-scale bumps and becomes clusters. The nanostructure 23 ° can be produced in this manner. The second photoelectric conversion element 2 can be fabricated in this manner. The fabrication of the second photoelectric conversion element 1 and the second photoelectric conversion of the 7G photoelectric element 20 can also be performed in parallel with the substrate! ^, The first and second diffusion steps are simultaneously performed in the annealing treatment tank in which the η is placed in the same manner. The first photoelectric conversion element W and the second photoelectric conversion 70# 20« itn produced in the above manner are further referred to as the photovoltaic power generation unit 2 Connected to the power storage unit 3. This can be Type, making an optical storage device Shang. Next, the operation of the optical storage device 1. 156673.doc

S -26· 201230358 光L係入射至第1光電轉換元件1〇中。藉此,於第1光電 轉換元件10中引起光電轉換,從而產生電力。穿透第1光 電轉換元件10之光L進而入射至第2光電轉換元件20。藉 此,於第2光電轉換元件2〇中引起光電轉換,從而產生電 力。將由光電轉換元件1〇、20產生之電力蓄電於蓄電部 3。由此,即便並非受光過程乃至發電過程,亦可供給電 力。 光蓄電裝置1可使各光電轉換元件1〇、2〇之面積成為與 光蓄電裝置1之設置面積大致相同之大小。因此,可充分 提高受光效率。 以下更詳細地描述光電轉換元件10、20之作用。 第1光電轉換元件1〇係藉由入射光L而於η型半導體層U 與導電層12之肖特基接合部中產生光載子。尤其η型第1光 電轉換元件10對於入射光L中之自可見光區至近紅外區(具 體而言波長為約〇·4 μιη〜2 μηι左右)之光具有感度。 上述光載子之電子係因空乏層之電場而朝向心以層 移動。隨之,電子自電極15流入至導電層12。於電極。與 導%層12之間,電流可順利地進行流動。電子係沿著導電 層12流向電極14側。於導電層12之與電極14對向之部分蓄 積電子。該電子可藉由穿隧效應而穿越障壁層^,移動至 電極14。藉此’可取出光致電流。因&,電極14成為陰 極。電極15成為陽極。可以此方式,確定成為陽極之電極 15與成為陰極之電極14,從而可控制光致電流之流向。由 此,可使電流電麗特性於正側與負侧確f地成為非對 156673.doc -27· 201230358 稱’從而可獲得清晰之二極體特性。 由於光致電場係沿著導電層12之面方向形成,故而,可 使載子於上述面方向上加速,以化合物半導體水準之高速 進行移動。 進而,可藉由上述肖特基接合部附近之金屬奈米結構13 而提昇第1光電轉換元件10之光電轉換之感度。於構成金 屬奈米結構13之Au奈米微粒子之表面局部地存在電漿子。 §玄表面電漿子與入射光進行共振,產生較大之電場。金屬 奈米結構13之週期結構13c係提昇光電轉換之對於與該週 期(第1凸部13 a之配置間隔)對應之波長之入射光的感度。 週期結構13c係對於其週期之約1倍〜1〇倍左右、尤其約1〇 倍之波長之入射光靈敏地感應而引起電漿子共振。第1凸 部13a之週期係相應於週期結構13c而不同,因此,可擴大 金屬奈米.結構1 3所能夠感應之波長帶。進而,於第2凸部 13b之周圍產生近場光。藉由該近場光與上述週期結構13c 之電漿子共振之相乘效果’而可產生較大之光致電場。藉 此’可對於自可見光區遍及紅外光區之波長之光靈敏地感 應’而確實地引起光電轉換。即便入射光微弱,亦可高感 度地產生光電動勢。可藉由使第2凸部13b之分散間隔大於 入射光之波長(可見光區〜紅外光區),較佳為1 以上, 更佳為2 μιη〜3 μιη,而避免鄰接之第2凸部13b、13b彼此干 擾而減弱電場。可藉由使第2凸部1 3 b之分散間隔之上限為 3 μπι~5 μιη ’而較高地維持第2凸部13b之存在密度,故可 確保能夠產生與第2凸部13b之相互作用之週期結構13c的 156673.doc -28 - 201230358 數量’從而可確實地擴大感應頻帶。由此,可提供一種能 夠應對自可見光區遍及紅外光區之寬頻帶之光電轉換元件 1 ° 入射至第1光電轉換元件10之光L中之一部分將穿透第J . 光電轉換元件10。穿透光主要具有第1光電轉換元件10之 . 感應頻帶外之波長。可藉由使構成第1光電轉換元件10之 膜12、13變薄而確實地獲得上述穿透光。 上述穿透光入射至第2光電轉換元件20 ^藉此,於p型半 導體層21與導電層22之肖特基結合部產生光載子。尤其, P型第2光電轉換元件2〇係對於紅外區(具體而言波長為約i μπι〜4 μιη左右)之光具有感度。 上述光載子之電洞係因空乏層之電場而朝向卜以層21側 移動。隨之,電洞自電極25流入至導電層22。於電極25與 導電層22之間,電流可順利地流動。電洞沿著導電層22流 向電極24側。於導電層22中之與電極24對向之部分蓄積電 洞。該電洞可藉由穿隧效應而穿越障壁層26,移動至電極 24 ^藉此,可取出光致電流。因此,電極24成為陽極。電 . 極25成為陰極。以此方式可確定成為陽極之電極24與成為 陰極之電極25,從而可控制光致電流之流向。由此,可使 . 電流電壓特性於正側與負側確實地成為非對稱,從而可 獲得清晰之二極體特性。 由於光致電場係沿著導電層22之面方向形成,故而可使 載子於上述面方向上加冑,以4匕合物|導體水準之高速移 動0 156673.doc -29- 201230358 進而’可藉由上述肖特基接合部附近之金屬奈米結構23 而提高第2光電轉換元件20之光電轉換之感度β於構成金 屬奈米結構23之Au奈米微粒子之表面局部地存在電聚子。 3玄表面電聚子與入射光共振,產生較大之電場。金屬奈米 結構23之週期結構23c係提昇對於與該週期(第1凸部23&之 配置間隔)對應之波長之入射光的光電轉換之感度。週期 結構2 3 c係對於其週期之約1倍〜1 〇倍左右、尤其約1 〇倍之 波長之入射光靈敏地感應,從而引起電漿子共振。第1凸 «Ρ 2 3 a之週期係相應於週期結構2 3 c而不同,因此,可擴大 金屬奈米結構23所能感應之波長帶。進而,於第2凸部23B 之周圍產生近場光。可藉由該近場光與上述週期結構23c 之電漿子共振之相乘效果’而產生較大之光致電場。因 此’可對於穿透第1光電轉換元件i之約i μΓη〜4 μιη之紅外 光區之光靈敏地感應,從而確實地引起光電轉換。即便入 射光微弱’亦可高感度地產生光電動勢。可藉由使第2凸 部23b之分散間隔大於入射光之波長’來避免鄰接之第2凸 4 23b、23b彼此干擾而減弱電場。可藉由規定第2凸部23b 之分散間隔之上限(例如5 μηι〜6 μηι左右),而較高地維持 第2凸部23b之存在密度,故可確保能夠產生與第2凸部23b 之相互作用之週期結構23c的數量,從而可確實地擴大感 應頻帶。由此,可提供一種可與紅外光區充分對應之光電 轉換元件1A。 根據光蓄電裝置1,白畫自不必說,即便日落後亦可將 散射於大氣中之紅外光進行光電轉換,獲得電力,並將該 156673.docS -26· 201230358 Light L is incident on the first photoelectric conversion element 1〇. Thereby, photoelectric conversion is caused in the first photoelectric conversion element 10, and electric power is generated. The light L that has passed through the first photoelectric conversion element 10 is further incident on the second photoelectric conversion element 20. As a result, photoelectric conversion is caused in the second photoelectric conversion element 2A, thereby generating electric power. The electric power generated by the photoelectric conversion elements 1A and 20 is stored in the electric storage unit 3. As a result, power can be supplied even in a light-receiving process or a power generation process. The optical power storage device 1 can make the area of each of the photoelectric conversion elements 1A and 2B substantially the same as the area where the optical power storage device 1 is disposed. Therefore, the light receiving efficiency can be sufficiently improved. The role of the photoelectric conversion elements 10, 20 will be described in more detail below. The first photoelectric conversion element 1 generates photocarriers in the Schottky junction between the n-type semiconductor layer U and the conductive layer 12 by the incident light L. In particular, the n-type first photoelectric conversion element 10 has sensitivity to light in the incident light L from the visible light region to the near-infrared region (specifically, the wavelength is about 〇·4 μηη to 2 μηι). The electrons of the above photocarriers move toward the center by the electric field of the depletion layer. Accordingly, electrons flow from the electrode 15 to the conductive layer 12. On the electrode. The current can flow smoothly with the % layer 12. The electrons flow along the conductive layer 12 toward the electrode 14 side. Electrons are accumulated in a portion of the conductive layer 12 opposite to the electrode 14. The electrons can travel through the barrier layer to the electrode 14 by tunneling. Thereby, the photocurrent can be taken out. Due to &, the electrode 14 becomes a cathode. The electrode 15 becomes an anode. In this manner, the electrode 15 which becomes the anode and the electrode 14 which becomes the cathode can be determined, so that the flow of the photocurrent can be controlled. As a result, the current characteristics of the current can be made positive on the positive side and the negative side, and the sharp diode characteristics can be obtained by the term "156673.doc -27· 201230358". Since the photo-electric field is formed along the surface direction of the conductive layer 12, the carrier can be accelerated in the above-described plane direction and moved at a high speed of the compound semiconductor level. Further, the sensitivity of photoelectric conversion of the first photoelectric conversion element 10 can be improved by the metal nanostructure 13 in the vicinity of the Schottky junction. A plasmonic is locally present on the surface of the Au nanoparticle constituting the metal nanostructure 13. § The surface plasmon resonates with the incident light to produce a large electric field. The periodic structure 13c of the metal nanostructure 13 enhances the sensitivity of the photoelectric conversion to the incident light of the wavelength corresponding to the period (the arrangement interval of the first convex portions 13a). The periodic structure 13c is sensitively induced to incident light of a wavelength of about 1 to 1 〇, especially about 1 其 of its period to cause plasmon resonance. The period of the first convex portion 13a is different depending on the periodic structure 13c, so that the wavelength band which the metal nanostructure 13 can sense can be enlarged. Further, near-field light is generated around the second convex portion 13b. A large photo-emission field can be generated by the multiplication effect of the near-field light and the plasmon resonance of the periodic structure 13c. By this, it is possible to positively cause photoelectric conversion for light sensitive to light from the wavelength of the visible light region throughout the infrared light region. Even if the incident light is weak, the photoelectromotive force can be generated with high sensitivity. The dispersion interval of the second convex portion 13b can be made larger than the wavelength of the incident light (visible light region to infrared light region), preferably 1 or more, more preferably 2 μm to 3 μm, and the adjacent second convex portion 13b can be avoided. And 13b interfere with each other to weaken the electric field. By keeping the upper limit of the dispersion interval of the second convex portion 1 3 b to 3 μπι to 5 μηη′, the density of the second convex portion 13b can be maintained high, so that the interaction with the second convex portion 13b can be ensured. The number 156673.doc -28 - 201230358 of the periodic structure 13c can thus positively expand the sensing band. Thereby, it is possible to provide a photoelectric conversion element capable of coping with a wide frequency band from the visible light region to the infrared light region. 1 ° Part of the light L incident on the first photoelectric conversion element 10 will penetrate the J. photoelectric conversion element 10. The transmitted light mainly has a wavelength outside the sensing band of the first photoelectric conversion element 10. The above-mentioned transmitted light can be surely obtained by thinning the films 12 and 13 constituting the first photoelectric conversion element 10. The above-mentioned transmitted light is incident on the second photoelectric conversion element 20, whereby a photocarrier is generated at the Schottky junction of the p-type semiconductor layer 21 and the conductive layer 22. In particular, the P-type second photoelectric conversion element 2 has sensitivity to light in the infrared region (specifically, a wavelength of about i μπι to 4 μηη). The hole of the photocarrier described above moves toward the layer of the layer 21 due to the electric field of the depletion layer. Accordingly, the holes flow from the electrode 25 to the conductive layer 22. Between the electrode 25 and the conductive layer 22, current can flow smoothly. The hole flows along the conductive layer 22 toward the electrode 24 side. A hole is formed in a portion of the conductive layer 22 opposite to the electrode 24. The hole can pass through the barrier layer 26 by tunneling effect and move to the electrode 24, whereby the photocurrent can be taken out. Therefore, the electrode 24 becomes an anode. Electricity. The pole 25 becomes the cathode. In this way, the electrode 24 which becomes the anode and the electrode 25 which becomes the cathode can be determined, so that the flow of the photocurrent can be controlled. Thereby, the current-voltage characteristics can be surely asymmetrical on the positive side and the negative side, so that clear diode characteristics can be obtained. Since the photo-electric field is formed along the surface of the conductive layer 22, the carrier can be twisted in the above-mentioned plane direction, and the high-speed movement of the conductor can be performed at a high speed of 0 156673.doc -29-201230358. The photoelectric conversion sensitivity β of the second photoelectric conversion element 20 is increased by the metal nanostructure 23 in the vicinity of the Schottky junction, and the electropolymer is locally present on the surface of the Au nanoparticle constituting the metal nanostructure 23. The mysterious surface electropolymer resonates with the incident light to generate a large electric field. The periodic structure 23c of the metal nanostructure 23 enhances the sensitivity of photoelectric conversion of incident light of a wavelength corresponding to the period (the arrangement interval of the first convex portions 23 & The periodic structure 2 3 c is sensitively induced to incident light having a wavelength of about 1 to 1 〇, especially about 1 〇 of its period, thereby causing plasmon resonance. The period of the first convex «Ρ 2 3 a is different depending on the periodic structure 2 3 c , and therefore, the wavelength band which the metal nanostructure 23 can induce can be enlarged. Further, near-field light is generated around the second convex portion 23B. A large photo-emission field can be generated by the multiplication effect of the near-field light and the plasmon resonance of the periodic structure 23c. Therefore, it is possible to sensitively sense the light of the infrared light region of about i μΓη to 4 μm which penetrates the first photoelectric conversion element i, thereby surely causing photoelectric conversion. Even if the incident light is weak, the photoelectromotive force can be generated with high sensitivity. By making the dispersion interval of the second convex portions 23b larger than the wavelength ' of the incident light, the adjacent second convex portions 23 23b and 23b can be prevented from interfering with each other to weaken the electric field. By setting the upper limit of the dispersion interval of the second convex portion 23b (for example, about 5 μηι to 6 μηι), the density of the second convex portion 23b can be maintained high, so that mutual interference with the second convex portion 23b can be ensured. The number of periodic structures 23c is such that the induced frequency band can be surely expanded. Thereby, a photoelectric conversion element 1A which can sufficiently correspond to the infrared light region can be provided. According to the optical power storage device 1, it is needless to say that even after sunset, the infrared light scattered in the atmosphere can be photoelectrically converted to obtain electric power, and the 156673.doc can be obtained.

S •30· 201230358 電力進行蓄電。可藉由吸收紅外光而防止紅外光之熱轉 換,故亦可期待作為地球溫暖化對策之手段。 其次,說明本發明之其他實施形態。於以下實施形態 中,對於與如上所述之形態重複之内容,於圖式中標註相 同符號且省略其說明。 圖2係表示本發明第2實施形態者。於第2實施形態中, 光電轉換元件1 0、20係取代第1實施形態之並聯連接而進 行串聯連接》第2實施形態之除此以外之構成係與第丨實施 形態相同。 於上述第1、第2實施形態中,可充分地增大各光電轉換 元件10、20之受光面積乃至可發電之面積。另一方面,就 下側之光電轉換元件20而言’入射光之一部分將由上側之 光電轉換元件10遮蔽。尤其,下側之光電轉換元件2〇之感 應頻帶中之與上侧之光電轉換元件丨〇之感應頻帶重複之波 長的光谷易由上側之光電轉換元件遮蔽。以下第3、第4 實施形態係將第1、第2實施形態之上述缺點消除者。 圖3係表示本發明第3實施形態者。第3實施形態係第1光 電轉換元件10及第2光電轉換元件20排列於與彼此之厚度 方向正交之面方向上。光電轉換元件10、20係並聯連接。 於第3實施形態中’光l係分別直接入射至第1光電轉換 元件與第2光電轉換元件20。無論光電轉換元件1〇抑或 是光電轉換元件2〇 ’入射光均未受到另一光電轉換元件遮 蔽°因此’兩光電轉換元件10、20可充分地接收相互重複 之感應頻帶之光,進行光電轉換。由此,可充分地呈現該 156673.doc 31 201230358 等光電轉換元件10、20之光電轉換能力。 如圖4所示,本發明第4實施形態係光電轉換元件1〇、2〇 取代第3實施形態之並聯連接而進行串聯連接。第4實施形 態之除此以外之構成係與第3實施形態相同。 於第3、第4實施形態中,各光電轉換元件1〇、2〇之受光 面積成為第1、第2實施形態之約一半。 *於優先受光面積之情形時,較佳為採用ρ、第2實施形 態。或者,於進行光電轉換之光之波長帶偏向光電轉換元 件1〇、20之任-方之感應頻帶之情形時,較佳為採用第 1、第2實施形態。於需要充分利用光電轉換元件1〇、2〇兩 者之光電轉換能力之情形時,較佳為採用第3、第4實施形 態。 圖5係表示本發明第5實施形態者。第5實施形態係關於 第4實施形態之變形例。於第i光電轉換元件ι〇之表面(圖5 中為上表面)設置有氧化鋅之奈米結構體41。氧化辞係構 成η型半導體。奈米結構體41係包含奈米線,且突立於第【 光電轉換元件10之表面。此處,奈米結構體41係自金屬奈 米結構體13突出。再者,於金屬奈米結構體丨3僅由導電層 12之一部分覆膜之情形時,就金屬奈米結構體13未經覆膜 之部分而言,亦可使奈米結構體41自導電層12突出。奈米 線可由CVD、PVD、溶膠-凝膠法等形成。奈米結構體41 並不限於奈米線’亦可為奈米針、奈米管、奈米棒。 於第2光電轉換元件2〇之表面(圖5中為上表面)設置有碳 奈米結構體42。碳奈米結構體42係包含碳(carbon)奈来 156673.doc ^.S •30· 201230358 Electricity is stored. By absorbing infrared light and preventing thermal conversion of infrared light, it is expected to be a means of countermeasures for global warming. Next, other embodiments of the present invention will be described. In the following embodiments, the same reference numerals are given to the same as those in the above-described embodiments, and the description thereof will be omitted. Fig. 2 is a view showing a second embodiment of the present invention. In the second embodiment, the photoelectric conversion elements 10 and 20 are connected in series instead of the parallel connection of the first embodiment. The other embodiments of the second embodiment are the same as those of the second embodiment. In the first and second embodiments described above, the light receiving area of each of the photoelectric conversion elements 10 and 20 and the area where power can be generated can be sufficiently increased. On the other hand, as for the photoelectric conversion element 20 on the lower side, a part of the incident light will be shielded by the photoelectric conversion element 10 on the upper side. In particular, in the sensing band of the lower side photoelectric conversion element 2, the wavelength of the wavelength overlapping with the sensing band of the upper photoelectric conversion element 易 is easily blocked by the upper photoelectric conversion element. In the following third and fourth embodiments, the above disadvantages of the first and second embodiments are eliminated. Fig. 3 is a view showing a third embodiment of the present invention. In the third embodiment, the first photoelectric conversion element 10 and the second photoelectric conversion element 20 are arranged in a direction orthogonal to the thickness direction of each other. The photoelectric conversion elements 10 and 20 are connected in parallel. In the third embodiment, the light 1 is directly incident on the first photoelectric conversion element and the second photoelectric conversion element 20, respectively. Regardless of whether the photoelectric conversion element 1 is degraded or the photoelectric conversion element 2 〇 'incident light is not blocked by the other photoelectric conversion element, the two photoelectric conversion elements 10 and 20 can sufficiently receive the light of the mutually inductive frequency band for photoelectric conversion. . Thereby, the photoelectric conversion capability of the photoelectric conversion elements 10, 20 such as 156673.doc 31 201230358 can be sufficiently exhibited. As shown in Fig. 4, in the fourth embodiment of the present invention, the photoelectric conversion elements 1A and 2B are connected in series instead of the parallel connection in the third embodiment. The other configuration of the fourth embodiment is the same as that of the third embodiment. In the third and fourth embodiments, the light-receiving area of each of the photoelectric conversion elements 1 and 2 is about half of that of the first and second embodiments. * In the case of the preferential light receiving area, it is preferable to adopt ρ and the second embodiment. Alternatively, in the case where the wavelength band of the light for photoelectric conversion is biased to the sensing band of any of the photoelectric conversion elements 1 and 20, the first and second embodiments are preferably employed. In the case where it is necessary to make full use of the photoelectric conversion capabilities of the photoelectric conversion elements 1 and 2, it is preferable to adopt the third and fourth embodiments. Fig. 5 is a view showing a fifth embodiment of the present invention. The fifth embodiment is a modification of the fourth embodiment. A zinc oxide nanostructure 41 is provided on the surface (upper surface in Fig. 5) of the i-th photoelectric conversion element ι. The oxidized word structure constitutes an n-type semiconductor. The nanostructure 41 includes a nanowire and protrudes from the surface of the [photoelectric conversion element 10]. Here, the nanostructures 41 protrude from the metal nanostructures 13. Further, in the case where the metal nanostructure 丨3 is partially covered only by one of the conductive layers 12, the nanostructures 41 may be self-conductive in terms of the uncoated portion of the metal nanostructures 13. Layer 12 is prominent. The nanowires can be formed by CVD, PVD, sol-gel methods, and the like. The nanostructure 41 is not limited to a nanowire, and may be a nanoneedle, a nanotube, or a nanorod. A carbon nanostructure 42 is provided on the surface (upper surface in Fig. 5) of the second photoelectric conversion element 2A. The carbon nanostructure 42 contains carbon (carbon) 156673.doc ^.

S 201230358 管,且突立於第2光電轉換元件2〇之表面。此處,碳奈米 結構體42係自金屬奈米結構體23突出。再者,於金屬奈米 結構體23僅由導電層22之一部分覆膜之情形時,就金屬奈 米結構體23未經覆膜之部分而言,亦可使碳奈米結構體a 自導電層22突出。奈米碳管可由CVD、pVD、溶膠-凝膠 法等形成《奈米結構體42並不限於奈米管,亦可為奈米 線、奈米針、奈米棒。 根據第5實施形態,可藉由氧化辞奈米結構體4ι而提昇 第1光電轉換元件10之光電轉換感度。尤其可提昇第丨光電 轉換元件10之感應頻帶中之短波長側之感度。具體而言, 可對於自約未達0.4 μηκ紫外光域至i μιη左右之可見光區 為止之光,提昇感度。由於氧化鋅奈米結構體41為奈米 線,故而可提高量子效率,進而可確實地提昇第丨光電轉 換兀件ίο之感度。進而,可藉由碳奈米結構體42而提昇第 2光電轉換το件20之光電轉換感度。尤其可提昇第2光電轉 換兀件20之感應頻帶中之長波長側之感度。具體而言,可 對於自2 μπι左右之可見光區至約略超4 μιη之红外光區為止 之光’提昇感度。由於碳奈米結構體41包含奈米碳管,故 而可提向量子效率,進而可確實地提昇第2光電轉換元件 20之感度。藉此,無論於短波長側抑或是於長波長側,皆 可進一步擴大能夠進行光電轉換之波長帶。 圖6係表示本發明第6實施形態者。第6實施形態係關於 極性確定層之變形例。於η型第1光電轉換元件1〇中,取代 如上所述之障壁層16而設置凸層17作為極性確定層。凸層 156673.doc -33- 201230358 17係與η型半導體層11形成為一體。使半導體層丨丨之表面 (上表面)之靠近陰極電極14之部分突出,且該突出部構成 凸層17。凸層17之突出高度係與導電層12之厚度為相同程 度’例如為約1 nm〜10 nm左右’較佳為數nrn左右。凸層 17之寬度尺寸(圖6中為左右之尺寸)例如為數1〇〇 〜約i mm左右。於圖6中,凸層17之突出高度(上下尺寸)係相對 於寬度(左右尺寸)而誇大表示。 凸層17介置於導電層12之陰極電極14側之端部與陰極電 極14之間。凸層17之一側面(圖6中為左側面)係與導電層12 之端面肖特基接觸。凸層17之另一側面(圖6中為右側面)係 與陰極電極14歐姆接觸。金屬奈米結構13係以自導電層12 橫跨凸層17之上表面之方式形成。金屬奈米結構13亦可僅 設置於凸層17之上表面。或者金屬奈米結構13亦可僅設置 於導電層12之上表面。 於P型第2光電轉換元件20中’取代如上所述之障壁層% 而設置凸層27作為極性確定層《凸層27係與p型半導體層 21形成為一體。使半導體層21之表面(上表面)之靠近陽極 電極24之部分突出,且該突出部構成凸層27。凸層27之突 出局度係與導電層22之厚度為相同程度,例如為約1 nm〜10 nm左右,較佳為數nm左右,凸層27之寬度尺寸(圖 6中為左右之尺寸)例如為數100 μηι〜約1 mm左右。於圖6 中’凸層27之突出高度(上下尺寸)係相對於寬度(左右尺 寸)而誇大表示。 凸層27介置於導電層22之陽極電極24側之端部與陽極電 156673.doc -34- 201230358 極24之間。凸層27之一側面(圖6中為右側面)係與導電層22 之端面肖特基接觸。凸層27之另一側面(圖6中為左側面)係 與陽極電極24歐姆接觸。金屬奈米結構B係以自導電層22 橫跨凸層27之上表面之方式形成。金屬奈米結構23亦可僅 3又置於凸層27之上表面》或者,金屬奈米結構23亦可僅設 置於導電層22之上表面。 若光入射至第6實施形態之光發電部2,則於n型第1光電 轉換元件10中,不僅在導電層12之底部與半導體層η之間 之肖特基接合部中生成光載子,而且亦在導電層12之端部 與凸層17之肖特基接合部中生成光載子。該載子之電子係 因導電層12與凸層17之間之空乏層電場而朝向凸層17側乃 至電極14流動《因此,可使電極14為陰極。可使電極15為 陽極。 , 又,於ρ型第2光電轉換元件2〇中,不僅在導電層22之底 部與半導體層21之間之肖特基接合部中生成光載子,而且 亦在導電層22之端部與凸層27之肖特基接合部中生成光載 子。該載子之電洞係因導電層22與凸層27之間之空乏層電 %而朝向凸層27側乃至電極24流動。因此,可使電極24為 陽極。可使電極25為陰極。 本發明並不限定於上述實施形態,只要不變更發明之精 神便可進行各種更改。 例如,光發電部2亦可含有2個以上的第丨光電轉換元件 10與第2光電轉換元件2〇之至少一者。光發電部2亦可含有 3個以上的光電轉換元件1〇、2〇。亦可串並聯地連接2個以 156673.doc •35· 201230358 上之光電轉換元件ίο、20。 障壁層16、26只要介置於導電層12、22與電極14、24之 間之至少一部分即可,無需介置於導電層12、22與電極 14、24之間之整體中。 構成導電層I2、22之金屬成分並不限於Co,亦可為Fe、 W、Ni、Al、Ti 等。 構成金屬奈米結構13、23之金屬成分並不限於Au,亦可 為 Ag、Pt、Cu、Pd 等。 亦可將複數個實施形態相互加以組合。例如亦可使第i 光電轉換元件與第2光電轉換元件局部地疊合於彼此之厚 度方向’且於與上述厚度方向正交之面方向上錯位。 於第1〜第3實施形態之光電轉換元件1〇、2〇中,亦可設 置與第5實施形態相同之奈米結構體41、42。於第〖〜第^實 施形態中’作為極性確定層,亦可取代障壁層16、%而使 用與第6實施形態(圖6)相同之凸層丨7、27。 亦可將2種奈米結構體41、42中之僅氧化鋅奈米結構體 41設置於第!光電轉換元件1〇中,且於第2光電轉換元件2〇 中不設置碳奈米結構體42。 亦可將2種奈米結構體41、42中 τ之僅奴奈米結構體42設 置於第2光電轉換元件2〇中,且 τ 立於第1光電轉換元件10中不 設置氧化辞奈米結構體41。 光蓄電裝置1之製造步驟& 亦可適备地進行順序之更換乃 至變更。 於第1、第2實施形態申,介’⑽ ? 亦可將第2光電轉換元件20配 156673.docS 201230358 tube, and stands on the surface of the second photoelectric conversion element 2〇. Here, the carbon nanotube structure 42 protrudes from the metal nanostructures 23. Further, in the case where the metal nanostructure 23 is partially covered only by one of the conductive layers 22, the carbon nanostructures a may be self-conductive in terms of the uncoated portion of the metal nanostructures 23. Layer 22 is prominent. The carbon nanotubes can be formed by CVD, pVD, sol-gel method, etc. "The nanostructures 42 are not limited to the nanotubes, but also nanowires, nanoneedles, and nanorods. According to the fifth embodiment, the photoelectric conversion sensitivity of the first photoelectric conversion element 10 can be improved by oxidizing the Nylon structure. In particular, the sensitivity of the short wavelength side in the sensing band of the second photoelectric conversion element 10 can be improved. Specifically, the sensitivity can be improved for light from a visible light region of about 0.4 μηκ ultraviolet light to about μ μηη. Since the zinc oxide nanostructure 41 is a nanowire, the quantum efficiency can be improved, and the sensitivity of the third photoelectric conversion element can be surely improved. Further, the photoelectric conversion sensitivity of the second photoelectric conversion element 20 can be improved by the carbon nanostructure 42. In particular, the sensitivity of the long wavelength side in the sensing band of the second photoelectric conversion element 20 can be improved. Specifically, the sensitivity can be increased for light from a visible light region of about 2 μπι to an infrared light region of about 4 μιηη. Since the carbon nanostructures 41 include carbon nanotubes, the vector sub-efficiency can be improved, and the sensitivity of the second photoelectric conversion element 20 can be surely improved. Thereby, the wavelength band capable of photoelectric conversion can be further expanded regardless of the short wavelength side or the long wavelength side. Fig. 6 is a view showing a sixth embodiment of the present invention. The sixth embodiment relates to a modification of the polarity determining layer. In the n-type first photoelectric conversion element 1A, the convex layer 17 is provided as the polarity determining layer instead of the barrier layer 16 as described above. The bump layer 156673.doc -33- 201230358 17 is formed integrally with the n-type semiconductor layer 11. A portion of the surface (upper surface) of the semiconductor layer which is close to the cathode electrode 14 is protruded, and the protrusion constitutes the convex layer 17. The protruding height of the convex layer 17 is the same as the thickness of the conductive layer 12, for example, about 1 nm to 10 nm or so, preferably about several nrn. The width dimension of the convex layer 17 (the size of the left and right in Fig. 6) is, for example, about 1 〜 to about i mm. In Fig. 6, the protruding height (upper and lower dimensions) of the convex layer 17 is exaggerated with respect to the width (left and right dimensions). The convex layer 17 is interposed between the end of the conductive layer 12 on the cathode electrode 14 side and the cathode electrode 14. One side surface (left side in FIG. 6) of the convex layer 17 is in Schottky contact with the end surface of the conductive layer 12. The other side of the convex layer 17 (the right side in Fig. 6) is in ohmic contact with the cathode electrode 14. The metal nanostructure 13 is formed so as to straddle the upper surface of the convex layer 17 from the conductive layer 12. The metal nanostructure 13 may also be provided only on the upper surface of the convex layer 17. Alternatively, the metal nanostructure 13 may be provided only on the upper surface of the conductive layer 12. In the P-type second photoelectric conversion element 20, the convex layer 27 is provided as a polarity determining layer instead of the barrier layer % as described above. The convex layer 27 is integrally formed with the p-type semiconductor layer 21. A portion of the surface (upper surface) of the semiconductor layer 21 which is close to the anode electrode 24 is protruded, and the protrusion constitutes the convex layer 27. The protruding degree of the convex layer 27 is the same as the thickness of the conductive layer 22, for example, about 1 nm to 10 nm, preferably about several nm, and the width dimension of the convex layer 27 (the left and right dimensions in Fig. 6), for example. It is about 100 μηι~ about 1 mm. In Fig. 6, the protruding height (upper and lower dimensions) of the convex layer 27 is exaggerated with respect to the width (left and right dimensions). The bump 27 is interposed between the end of the conductive layer 22 on the anode electrode 24 side and the anode electrode 156673.doc -34 - 201230358. One side surface (the right side surface in FIG. 6) of the convex layer 27 is in Schottky contact with the end surface of the conductive layer 22. The other side of the convex layer 27 (the left side in Fig. 6) is in ohmic contact with the anode electrode 24. The metal nanostructure B is formed so as to straddle the upper surface of the convex layer 27 from the conductive layer 22. The metal nanostructure 23 may be placed on the upper surface of the convex layer 27 only 3 or the metal nanostructure 23 may be provided only on the upper surface of the conductive layer 22. When the light is incident on the photovoltaic power generation unit 2 of the sixth embodiment, the n-type first photoelectric conversion element 10 generates photocarriers not only in the Schottky junction between the bottom of the conductive layer 12 and the semiconductor layer η. And a photocarrier is also generated in the Schottky junction of the end of the conductive layer 12 and the convex layer 17. The electrons of this carrier flow toward the side of the convex layer 17 or the electrode 14 due to the electric field of the depletion layer between the conductive layer 12 and the convex layer 17. Therefore, the electrode 14 can be made the cathode. The electrode 15 can be made to be an anode. Further, in the p-type second photoelectric conversion element 2, not only a photo-carrier is generated in the Schottky junction between the bottom of the conductive layer 22 and the semiconductor layer 21, but also at the end of the conductive layer 22. A photocarrier is generated in the Schottky junction of the convex layer 27. The hole of the carrier flows toward the convex layer 27 side or the electrode 24 due to the depletion layer electricity between the conductive layer 22 and the convex layer 27. Therefore, the electrode 24 can be made to be an anode. The electrode 25 can be made a cathode. The present invention is not limited to the above embodiment, and various modifications can be made without changing the spirit of the invention. For example, the photovoltaic power generation unit 2 may include at least one of two or more second photoelectric conversion elements 10 and second photoelectric conversion elements 2A. The photovoltaic power generation unit 2 may also include three or more photoelectric conversion elements 1A and 2B. It is also possible to connect two photoelectric conversion elements ίο, 20 on 156673.doc •35· 201230358 in series and in parallel. The barrier layers 16, 26 need only be interposed between at least a portion of the conductive layers 12, 22 and the electrodes 14, 24, and need not be interposed between the conductive layers 12, 22 and the electrodes 14, 24. The metal component constituting the conductive layers I2 and 22 is not limited to Co, and may be Fe, W, Ni, Al, Ti, or the like. The metal components constituting the metal nanostructures 13 and 23 are not limited to Au, and may be Ag, Pt, Cu, Pd or the like. A plurality of embodiments may also be combined with each other. For example, the i-th photoelectric conversion element and the second photoelectric conversion element may be partially overlapped in the thickness direction of each other and may be displaced in a direction orthogonal to the thickness direction. In the photoelectric conversion elements 1A and 2B of the first to third embodiments, the nanostructures 41 and 42 similar to those of the fifth embodiment can be provided. In the first to fourth embodiments, as the polarity determining layer, the convex layers 7 and 27 which are the same as those in the sixth embodiment (Fig. 6) may be used instead of the barrier layer 16 and %. The zinc oxide nanostructures 41 of the two types of nanostructures 41 and 42 may be provided in the first photoelectric conversion element 1〇, and the carbon nanostructures may not be provided in the second photoelectric conversion element 2〇. 42. In the second type of nanostructures 41 and 42 , only the nunion structure 42 of τ may be provided in the second photoelectric conversion element 2 , and τ may be provided in the first photoelectric conversion element 10 without oxidizing the symmetry. Structure 41. The manufacturing steps & of the optical power storage device 1 can be appropriately replaced or changed in sequence. In the first and second embodiments, the second photoelectric conversion element 20 can also be provided with 156673.doc.

-36 - 201230358 置於表側(入射側、上側),且將第1光電轉換元件1 〇配置於 背側(下側)。 亦可使光電轉換元件10之基板11朝向表側(光L之入射 側),且使金屬奈米結構13朝向背側。亦可使光電轉換元 • 件2 〇之基板21朝向表側(光L之入射側),且使金屬奈米社 : 構23朝向背側。 [實施例1] 以下說明實施例。當然’本發明並不限定於以下實施 例0 實施例1係進行金屬奈米結構之製作及觀察。金屬奈米 結構係以如下方式製作。 於大致正方形之η型Si基板之整個表面上,藉由錢錄而 使Co膜成膜。c〇膜之厚度係設為8 nm。 其次’進行5分鐘之有機清洗後,進行遮罩印刷,於c〇 膜表面之四角與中央’利用濺鍍使Au膜成膜。au膜之厚 度為約10 nm。 繼而,進行退火處理。退火處理之環境氣體設為1〇〇% 之He。退火溫度為600eC ^退火處理時間設為3分鐘。 藉由退火處理,而使Co擴散至n型Si基板之表層部分, : 形成 CoSix。 利用 SEM(scanning electron microscope,掃描型電子顯 微鏡)觀察上述Au膜附近之2個部位。圖7(a)及(b)係其之圖 像。確認到Au膜之微粒子沿著CoSix膜之表面擴散,且於 Au膜之周圍自然形成有金屬奈米結構。金屬奈米結構之形 156673.doc •37- 201230358 態係相應於部位而不同。如該圖(b)所示,於金屬奈米結構 中’視部位而形成有碎形結構。 對上述金屬奈米結構之若干處照射雷射光(波長635 nm) ’ 並利用 AFM(at〇mic f〇rce micr〇sc〇pe,原子力顯微 鏡)立體地觀察零偏壓(zer〇 bias)下之光致電流達到最大之 處的表面結構。 圖8係其之圖像。圖9係將圖8之圖像複製進行解說者。 於金屬奈米結構之表面,形成有次奈米級乃至奈米級之 凹凸,且確認有簇團結構乃至碎形結構。進而,於上述凹 凸形狀之中,確認有多個週期結構Uc、與多個第2凸部 12b。各週期結構13c係包含複數個第1凸部13&,且該等第 1凸部13a係以與週期結構13c對應之隨機週期(配置間隔)進 行排列。週期結構l3c之週期為約1〇〇 nm以下。各第i凸部 13a之犬出尚度為約1〇 ηιη〜20 nm左右。各第2凸部13b係與 某一週期結構13 c疊合di配置,或者配置於週期結構丨3c之 附近。第2凸部13b之突出高度係高於第1凸部13&之突出高 度,且為約50 nm〜200 nm左右。第2凸部13b之分散間隔為 約2 μηι〜3 μιη左右。 [產業上之可利用性] 本發明可應用於例如光感測器或太陽電池。 【圖式簡單說明】 圖1係表示本發明第1實施形態之光蓄電裝置之概略結構 的剖面圖。 圖2係表示本發明第2實施形態之光蓄電裝置之概略結構 156673.doc -38 - 201230358 的剖面圖。 圖3係表示本發 ^ 月第3貫施形態之光畜電裝置之概略結構 的剖面圖。 圖4係表示本發明 1 赞月第4貫施形態之光蓄電裝置之概略結構 _ 的剖面圖。 • 圖5係表示本路日日结c ^ ^ 赞明苐5貫施形態之光蓄電裝置之概略結構 的剖面圖》 圖6係表不本發明第6實施形態之光蓄電裝置之概略結構 的剖面圖。 圖7U)係利用SEM(掃描型電子顯微鏡)觀察實施例i之金 屬奈米結構之表面之一部位所得的圖像。 圖7(b)係利用SEM觀察實施例i之金屬奈米結構之表面之 與圖7(a)不同之部位所得的圖像。 圖8係利用AFM(原子力顯微鏡)觀察實施例1之金屬奈米 結構之表面結構所得的立體圖像。 圖9係圖8之立體圖像之解說圖。 【主要元件符號說明】 1 光蓄電裝置 2 光發電部 ' 3 蓄電部 10 第1光電轉換元件 11 η型半導體層、基板 12 ' 22 導電層 13 ' 23 金屬奈米結構 156673.doc -39- 201230358 13a、23a 第1凸部 13b 、 23b 第2凸部 13c ' 23c 週期結構 14、24 第1電極(一方之電極) 15 > 25 第2電極(另一方之電極) 16 ' 26 障壁層(極性確定層) 17、27 凸層(極性確定層) 20 第2光電轉換元件 21 p型半導體層、基板 23d 隨機結構 31 負極 31e ' 32e 端子 32 正極 33 介電質層 41 氧化鋅奈米結構體 42 碳奈米結構體 L 入射光 156673.doc -40--36 - 201230358 is placed on the front side (incident side, upper side), and the first photoelectric conversion element 1 〇 is placed on the back side (lower side). The substrate 11 of the photoelectric conversion element 10 may be directed toward the front side (the incident side of the light L), and the metal nanostructure 13 may be oriented toward the back side. Alternatively, the substrate 21 of the photoelectric conversion element 2 may be oriented toward the front side (the incident side of the light L), and the metal nano-structure 23 may be oriented toward the back side. [Example 1] Hereinafter, examples will be described. Of course, the present invention is not limited to the following embodiment. Example 1 is the production and observation of a metal nanostructure. The metal nanostructure is produced in the following manner. On the entire surface of the substantially square n-type Si substrate, the Co film was formed by recording. The thickness of the c〇 film is set to 8 nm. Next, after performing organic cleaning for 5 minutes, mask printing was performed, and the Au film was formed by sputtering at the four corners and the center of the c〇 film surface. The thickness of the au film is about 10 nm. Then, an annealing treatment is performed. The ambient gas to be annealed was set to 1% by weight of He. The annealing temperature was 600 eC ^ The annealing treatment time was set to 3 minutes. Co is diffused to the surface portion of the n-type Si substrate by annealing treatment to form CoSix. Two sites in the vicinity of the Au film were observed by SEM (scanning electron microscope). Figures 7(a) and (b) are images thereof. It was confirmed that the fine particles of the Au film were diffused along the surface of the CoSix film, and a metal nanostructure was naturally formed around the Au film. Shape of the metal nanostructure 156673.doc •37- 201230358 The state system differs depending on the location. As shown in Fig. 2(b), a fractal structure is formed in the metal nanostructure. The laser light (wavelength 635 nm) is irradiated to several places of the above metal nanostructures and the zero bias (zero bias) is observed by AFM (at mic 显微镜 f 〇 ce mic , 原子 原子 原子 原子 原子 原子 原子 原子 原子 原子The surface structure where the photoinduced current reaches its maximum. Figure 8 is an image thereof. Figure 9 is a diagram of the image of Figure 8 being copied. On the surface of the metal nanostructure, irregularities of the sub-nano or nano-scale are formed, and a cluster structure or a fractal structure is confirmed. Further, among the concave and convex shapes, a plurality of periodic structures Uc and a plurality of second convex portions 12b are confirmed. Each of the periodic structures 13c includes a plurality of first convex portions 13& and the first convex portions 13a are arranged in a random cycle (arrangement interval) corresponding to the periodic structure 13c. The period of the periodic structure l3c is about 1 〇〇 nm or less. The dog out degree of each of the i-th convex portions 13a is about 1 〇 ηιη to 20 nm or so. Each of the second convex portions 13b is disposed to be overlapped with a certain periodic structure 13c or disposed adjacent to the periodic structure 丨3c. The protruding height of the second convex portion 13b is higher than the protruding height of the first convex portion 13& and is about 50 nm to 200 nm. The dispersion interval of the second convex portion 13b is about 2 μηι to 3 μιη. [Industrial Applicability] The present invention is applicable to, for example, a photo sensor or a solar cell. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a schematic configuration of an optical power storage device according to a first embodiment of the present invention. Fig. 2 is a cross-sectional view showing a schematic configuration of a photovoltaic power storage device according to a second embodiment of the present invention 156673.doc -38 - 201230358. Fig. 3 is a cross-sectional view showing the schematic configuration of a photo-electrical device in the third embodiment of the present invention. Fig. 4 is a cross-sectional view showing a schematic configuration _ of the optical power storage device of the fourth embodiment of the present invention. Fig. 5 is a cross-sectional view showing a schematic configuration of an optical power storage device of a sixth embodiment of the present invention. Fig. 6 is a schematic view showing a schematic configuration of an optical power storage device according to a sixth embodiment of the present invention. Sectional view. Fig. 7U) is an image obtained by observing a part of the surface of the metal nanostructure of Example i by SEM (Scanning Electron Microscope). Fig. 7(b) shows an image obtained by observing a portion of the surface of the metal nanostructure of Example i which is different from Fig. 7(a) by SEM. Fig. 8 is a stereoscopic image obtained by observing the surface structure of the metal nanostructure of Example 1 by AFM (atomic force microscope). Figure 9 is an illustration of a stereoscopic image of Figure 8. [Description of main component symbols] 1 Optical power storage device 2 Photovoltaic power generation unit 3 Power storage unit 10 First photoelectric conversion element 11 n-type semiconductor layer, substrate 12 ' 22 Conductive layer 13 ' 23 Metal nanostructure 156673.doc -39- 201230358 13a, 23a First convex portion 13b, 23b Second convex portion 13c' 23c Periodic structure 14 and 24 First electrode (one electrode) 15 > 25 Second electrode (other electrode) 16 ' 26 Barrier layer (Polar Determining layer) 17, 27 convex layer (polarity determining layer) 20 second photoelectric conversion element 21 p-type semiconductor layer, substrate 23d random structure 31 negative electrode 31e ' 32e terminal 32 positive electrode 33 dielectric layer 41 zinc oxide nanostructure 42 Carbon nanostructure L incident light 156673.doc -40-

Claims (1)

201230358 七、申請專利範圍: l -種光蓄電裝置’其特徵在於包含:光發電部,1利用 光進行發電;及蓄電部’其連接於上述光發電部,且將 丨述發電之電力進行蓄電;上述光發電部包含相互串 . 聯、並聯、或串並聯地連接之第卜第2光電轉換元件, ’ 上述第1、第2光電轉換元件各自包含:半導體層;導電 層,其積層於上述半導體層;及金屬奈米結構,其積層 於上述導電層,.且含有複數個週期結構;上述各週期結 構包含於上述積層之方向突出之複數個第1凸部,上述 第1凸部之配置間隔相應於上述週期結構而不同;上述 第1光電轉換兀件之半導體層係n型半導體層,上述第2 光電轉換元件之半導體層係p型半導體層。 2. 如請求項1之光蓄電裝置,其中 上述週期結構之至少一個具有自可見光區至紅外區之 某波長範圍内之任意波長之0‘丨倍〜丨倍之大小的配置間 隔。 3. 如請求項1之光蓄電裝置,其中 上述金屬奈米結構更包含較上述第i凸部更大地突出 之複數個第2凸部,該等第2凸部相互分散,且各第2凸 : 部與上述週期結構之任一個疊合或近接地配置》 4. 如睛求項1至3中任一項之光蓄電裝置,其中 上述第1光電轉換元件與上述第2光電轉換元件疊合於 彼此之厚度方向上。 5. 如請求項1至3中任一項之光蓄電裝置,其中 156673.doc 201230358 上述第1光電轉換元件與上述第2光電轉換元件排列於 與彼此之厚度方向正交之面方向上。 、 6·如請求項1至3中任一項之光蓄電裝置,其中 於上述第1光電轉換元件中,設置有包含對紫外區具 有感度之η型半導體之奈米結構體。 7·如請求項1至3中任一項之光蓄電裝置’其中 於上述第2光電轉換元件中,設置有包含對紅外區具 有感度之Ρ型半導體之奈米結構體。 156673.doc201230358 VII. Patent application scope: l - A light storage device is characterized in that: a photovoltaic power generation unit 1 is used to generate electricity by light; and a power storage unit is connected to the photovoltaic power generation unit, and the power generated by the power generation is stored. The photo power generation unit includes a second photoelectric conversion element that is connected in series, in parallel, or in series and parallel, and the first and second photoelectric conversion elements each include a semiconductor layer and a conductive layer laminated on the above a semiconductor layer; and a metal nanostructure which is laminated on the conductive layer and includes a plurality of periodic structures; each of the periodic structures includes a plurality of first protrusions protruding in a direction of the laminate, and the first protrusions are disposed The interval differs depending on the periodic structure; the semiconductor layer of the first photoelectric conversion element is an n-type semiconductor layer, and the semiconductor layer of the second photoelectric conversion element is a p-type semiconductor layer. 2. The optical power storage device of claim 1, wherein at least one of the periodic structures has a configuration interval of 0 丨 to 丨 times the arbitrary wavelength in a certain wavelength range from the visible light region to the infrared region. 3. The optical power storage device according to claim 1, wherein the metal nanostructure further includes a plurality of second convex portions that protrude larger than the i-th convex portion, and the second convex portions are dispersed with each other and each of the second convex portions The optical power storage device according to any one of the preceding claims, wherein the first photoelectric conversion element is overlapped with the second photoelectric conversion element In the thickness direction of each other. 5. The optical power storage device according to any one of claims 1 to 3, wherein the first photoelectric conversion element and the second photoelectric conversion element are arranged in a direction orthogonal to a thickness direction of each other. The optical power storage device according to any one of claims 1 to 3, wherein the first photoelectric conversion element is provided with a nanostructure including an n-type semiconductor having sensitivity to an ultraviolet region. The optical power storage device according to any one of claims 1 to 3, wherein the second photoelectric conversion element is provided with a nanostructure including a germanium semiconductor having sensitivity to the infrared region. 156673.doc
TW100119701A 2010-06-03 2011-06-03 Optical electricity storage device TW201230358A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128099 2010-06-03

Publications (1)

Publication Number Publication Date
TW201230358A true TW201230358A (en) 2012-07-16

Family

ID=45066817

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100119701A TW201230358A (en) 2010-06-03 2011-06-03 Optical electricity storage device

Country Status (3)

Country Link
JP (1) JP5437487B2 (en)
TW (1) TW201230358A (en)
WO (1) WO2011152459A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747907B (en) * 2016-05-31 2021-12-01 法商佛托尼斯法國公司 Photocathode with nanowires and method of manufacturing such a photocathode

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186230A1 (en) * 2014-06-05 2015-12-10 株式会社日立製作所 Solar cell
WO2020202736A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Optical device, photoelectric conversion device, and fuel-generating apparatus
EP4181218A1 (en) * 2021-11-10 2023-05-17 Soltec Innovations, S.L. Photovoltaic assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154684A (en) * 1984-01-25 1985-08-14 Nec Corp Solar battery panel
JPS61174756U (en) * 1985-04-18 1986-10-30
JPH02121274A (en) * 1988-10-31 1990-05-09 Brother Ind Ltd Manufacture of storage battery
JP5242009B2 (en) * 2005-09-29 2013-07-24 国立大学法人名古屋大学 Photovoltaic device using carbon nanowall
GB0614891D0 (en) * 2006-07-27 2006-09-06 Univ Southampton Plasmon-enhanced photo voltaic cell
EP2083450A1 (en) * 2006-11-17 2009-07-29 Kyosemi Corporation Stacked solar cell device
JP5077109B2 (en) * 2008-07-08 2012-11-21 オムロン株式会社 Photoelectric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747907B (en) * 2016-05-31 2021-12-01 法商佛托尼斯法國公司 Photocathode with nanowires and method of manufacturing such a photocathode

Also Published As

Publication number Publication date
JP5437487B2 (en) 2014-03-12
WO2011152459A1 (en) 2011-12-08
JPWO2011152459A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
US10283668B2 (en) Photovoltaic devices with an interfacial band-gap modifying structure and methods for forming the same
Huang et al. p-Si nanowires/SiO2/n-ZnO heterojunction photodiodes
TW200849613A (en) Photovoltaic cell with reduced hot-carrier cooling
TW200845404A (en) Photovoltaic cell and method of making thereof
TW201001726A (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
US20090007956A1 (en) Distributed coax photovoltaic device
US20120227787A1 (en) Graphene-based photovoltaic device
TW201201393A (en) Solar cell and method for fabricating the heterojunction thereof
KR102103999B1 (en) Carrier Selective Contact Silicon Solar Cell And Method For The Same
TW200952194A (en) Photovoltaic devices with enhanced efficiencies using high-aspect-ratio nanostructures
JP5379811B2 (en) Photovoltaic devices using high aspect ratio nanostructures and methods for making same
Church et al. Quantum dot Ge/TiO2 heterojunction photoconductor fabrication and performance
TW201230358A (en) Optical electricity storage device
JP5437486B2 (en) Photoelectric conversion element
Zhu et al. Sputtering-grown undoped GeSn/Ge multiple quantum wells on n-Ge for low-cost visible/shortwave infrared dual-band photodetection
JP5443602B2 (en) Photoelectric conversion element and manufacturing method thereof
JP6255417B2 (en) Photoelectric conversion device
JP2013115417A (en) Photoelectric conversion element and manufacturing method thereof
JP2013115418A (en) Optical power storage device
JP2013106025A (en) Photoelectric conversion element
US8436444B2 (en) Thin film photoelectric conversion device and method for manufacturing thin film photoelectric conversion device
US20110308585A1 (en) Dual transparent conductive material layer for improved performance of photovoltaic devices
KR102101504B1 (en) Carrier Selective Contact Silicon Solar Cell Having Capping Layer And Method For The Same
KR20140036080A (en) Iii-v group compound solar cell and method for preparing the same
KR101629690B1 (en) Hot Electron Energy Device using MetalInsulatorMetal structure