WO2020202655A1 - 永久磁石同期機の駆動装置、永久磁石同期機のトルク補償方法、および電気車 - Google Patents

永久磁石同期機の駆動装置、永久磁石同期機のトルク補償方法、および電気車 Download PDF

Info

Publication number
WO2020202655A1
WO2020202655A1 PCT/JP2019/049067 JP2019049067W WO2020202655A1 WO 2020202655 A1 WO2020202655 A1 WO 2020202655A1 JP 2019049067 W JP2019049067 W JP 2019049067W WO 2020202655 A1 WO2020202655 A1 WO 2020202655A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
permanent magnet
synchronous machine
magnet synchronous
calculation unit
Prior art date
Application number
PCT/JP2019/049067
Other languages
English (en)
French (fr)
Inventor
俊文 坂井
伊藤 誠
岩路 善尚
直希 國廣
健志 篠宮
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201980094992.XA priority Critical patent/CN113646204B/zh
Priority to EP19922242.3A priority patent/EP3950403A4/en
Publication of WO2020202655A1 publication Critical patent/WO2020202655A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/66Controlling or determining the temperature of the rotor
    • H02P29/662Controlling or determining the temperature of the rotor the rotor having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a drive device for a permanent magnet synchronous machine, a torque compensation method for the permanent magnet synchronous machine, and an electric vehicle.
  • a weakening field for suppressing the terminal voltage of the permanent magnet synchronous motor is performed according to the rotation speed of the permanent magnet synchronous motor and the magnitude of the power supply voltage supplied to the power converter.
  • Methods of controlling current have been used. For example, when the amount of magnetic flux of a permanent magnet changes due to a change in the temperature of the permanent magnet, the magnitude of the induced voltage of the permanent magnet synchronous motor changes according to the rotation speed, so in addition to the magnitude of the rotation speed and power supply voltage, the permanent magnet It is also necessary to control the field weakening current depending on the temperature of.
  • the output torque of the permanent magnet synchronous motor will change and the operating efficiency will deteriorate. Therefore, the torque, rotation speed, power supply voltage, magnet temperature, etc. It is necessary to appropriately control the permanent magnet synchronous motor according to the fluctuation of.
  • the voltage value that can be applied to the motor is calculated based on the battery voltage, the corrected voltage value obtained by correcting the voltage value calculated based on the motor temperature is obtained, and the field weakening field is weakened based on the corrected voltage value and the required torque.
  • a technique for compensating for fluctuations in motor characteristics due to a rise in motor temperature and preventing deterioration of output torque characteristics by calculating a current value is disclosed.
  • Patent Document 2 a plurality of dq-axis current command maps according to the battery voltage are used to change the motor current according to the change in the battery voltage and the change in the motor temperature, thereby improving the efficiency when the battery voltage changes and the motor.
  • a technique for suppressing torque fluctuations when a temperature changes is disclosed.
  • an object of the present invention is to suppress an output torque error of a permanent magnet synchronous motor with respect to changes in torque command, rotation speed, power supply voltage, magnet temperature, etc., and to provide an appropriate current command for high-efficiency operation.
  • the purpose of the present invention is to provide a drive device for a permanent magnet synchronous machine, a torque compensation method for the permanent magnet synchronous machine, and an electric vehicle, which can be calculated and enable highly accurate and highly responsive torque control with a simple configuration.
  • a drive device for a permanent magnet synchronous machine having a power converter for driving the permanent magnet synchronous machine and a controller for controlling the power converter.
  • the controller is a current command that generates a current command value for driving and controlling the permanent magnet synchronous machine from a torque correction unit that corrects the input torque command value and a torque command value corrected by the torque correction unit.
  • the torque correction unit includes a calculation unit, and the torque correction unit corrects the torque command value based on a value associated with the magnetic flux of the permanent magnet synchronous machine and a current command value generated by the current command calculation unit. It is characterized by.
  • the function of adjusting the output torque due to the change in the magnet temperature of the permanent magnet synchronous motor and the means for adjusting the output voltage due to the change in the magnet temperature are separated from each other, and the value associated with the magnet magnetic flux of the permanent magnet synchronous motor is separated.
  • FIG. 3 is a block diagram showing a configuration example of the current command calculation unit 111 of the first embodiment.
  • FIG. 5 is a block diagram showing a configuration example of the torque correction coefficient calculation unit 301 of the first embodiment.
  • FIG. 3 is a block diagram showing a configuration example of the reluctance torque ratio correction coefficient calculation unit 402b, which is a modification of the first embodiment.
  • FIG. 3 is a block diagram showing a configuration example of the current command calculation unit 111d of the second embodiment.
  • FIG. FIG. 3 is a block diagram showing a configuration example of the current command calculation unit 111e of the third embodiment.
  • FIG. 3 is a block diagram showing a configuration example of the current command calculation unit 111f of the fourth embodiment.
  • FIG. 5 is a block diagram showing a configuration example of the torque correction coefficient calculation unit 301g of the fifth embodiment.
  • FIG. 3 is a block diagram showing a configuration example of the d-axis current characteristic compensation coefficient calculation unit 902 g of the fifth embodiment.
  • FIG. FIG. 6 is a block diagram showing a configuration example of the iron loss calculation unit 1201h according to the sixth embodiment.
  • FIG. 6 is a block diagram showing a configuration example of an iron loss calculation unit 1201j which is a modification of the sixth embodiment.
  • FIG. 3 is a block diagram showing a configuration example of a permanent magnet synchronous machine drive system which is a modification of the sixth embodiment.
  • FIG. 3 is a block diagram showing a configuration example of an iron loss calculation unit 1201k, which is a modification of the sixth embodiment.
  • FIG. The block diagram which shows the structural example of the torque correction part 110m of Example 7.
  • FIG. FIG. 3 is a block diagram showing a configuration example of the torque correction coefficient calculation unit 1301 m of the seventh embodiment.
  • FIG. 3 is a block diagram showing a configuration example of a torque correction coefficient calculation unit 1301n which is a modification of the seventh embodiment.
  • FIG. 3 is a block diagram showing a configuration example of the torque correction coefficient calculation unit 1301o, which is a modification of the seventh embodiment.
  • FIG. 8 is a diagram showing a schematic configuration of a part of a railroad vehicle equipped with the permanent magnet synchronous machine drive system according to any one of the first to seventh embodiments as the eighth embodiment.
  • FIG. 1 is a block diagram showing a configuration example of the permanent magnet synchronous machine drive system of the first embodiment.
  • the permanent magnet synchronous machine drive system of the first embodiment includes a permanent magnet synchronous machine 103 to be controlled, a power converter 102 for driving the permanent magnet synchronous machine 103, a controller 101 for controlling the power converter 102, and a permanent magnet synchronous machine 103.
  • the command generator 105 that generates the torque command Tm * of the magnet synchronous machine 103, the phase current detection unit 121 that detects the current flowing through the permanent magnet synchronous machine 103, and the magnetic pole position of the rotor of the permanent magnet synchronous machine 103 are detected.
  • the magnet temperature Tmag of the permanent magnet synchronous machine 103 is an example of a value associated with the magnetic flux amount of the permanent magnet of the permanent magnet synchronous machine 103.
  • the power converter 102 is a gate that directly drives the input terminals 123a and 123b that supply power to the power converter 102, the main circuit unit 132 that is composed of six switching elements Supp to Swn, and the main circuit unit 132. It includes a driver 133, a DC resistor 134 attached for overcurrent protection of the power converter 102, and a smoothing capacitor 131.
  • the power converter 102 converts the DC power supplied from the input terminals 123a and 123b into three-phase AC power based on the gate command signal generated by the controller 101, and converts the three-phase AC power into the permanent magnet synchronous machine 103. Supply to.
  • the phase current detection unit 121 detects the three-phase alternating currents iu and iw flowing from the power converter 102 to the permanent magnet synchronous machine 103.
  • the phase current detection unit 121 is realized by, for example, a current sensor using a Hall element.
  • the phase current detection unit 121 in FIG. 1 is configured to detect the alternating current by two-phase detection, it may be three-phase detection.
  • an AC current value estimated from the current value flowing through the DC resistor 134 attached for overcurrent protection of the power converter 102 may be used.
  • the rotation position detection unit 124 detects the rotor position (rotation angle) of the permanent magnet synchronous machine 103.
  • the rotation position detection unit 124 is realized by, for example, a resolver, an encoder, a magnetic sensor, or the like.
  • the vector control unit 112 calculates the rotation speed ⁇ r of the permanent magnet synchronous machine 103 from the detected rotation position. It should be noted that the speed sensorless or position sensorless method is performed by estimating the rotation speed ⁇ r and the magnetic pole position ⁇ d of the permanent magnet synchronous machine 103 based on the voltage command value, the current detection value, etc. without using the rotation position sensor or the speed sensor. It may be configured.
  • the temperature detection unit 125 detects the magnet temperature of the permanent magnet synchronous machine 103.
  • the temperature detection unit 125 is realized by, for example, a temperature sensor.
  • the temperature detection unit 125 detects not the magnet temperature itself but the frame temperature of the permanent magnet synchronous machine 103 and the coil temperature of the stator, and the magnet of the permanent magnet synchronous machine 103 is detected from the frame temperature detection value and the coil temperature detection value. You may use the value which estimated the temperature Tmag. Further, the magnitude of the induced voltage according to the rotation speed of the permanent magnet synchronous machine 103 may be detected or estimated, and the magnet temperature Tmag may be estimated from the value.
  • the command generator 105 is a controller located above the controller 101 that generates a torque command Tm * to the AC motor.
  • the controller 101 controls the generated torque of the permanent magnet synchronous machine 103 based on the torque command Tm * of the command generator 105.
  • a current controller is used when controlling the current flowing through the permanent magnet synchronous machine 103, or a speed controller or a position controller is used when controlling the rotation speed or the position. Used. Since the purpose of this embodiment is to control torque, it operates as a torque controller.
  • the controller 101 includes a torque correction unit 110, a current command calculation unit 111, a vector control unit 112, a polar coordinate conversion unit 113, a phase calculation unit 114, a three-phase coordinate conversion unit 115, and a PWM signal controller 116. Be prepared.
  • the controller 101 is a current control system based on the AC current detection values Iu and Iw, which are the detection values of the three-phase AC currents iu and iw flowing through the permanent magnet synchronous machine 103, and the torque command Tm * from the command generator 105. From the calculation result of the phase control system, a gate command signal for driving the switching element of the power converter 102 is generated and supplied to the gate driver 133 of the power converter 102.
  • the dq-axis coordinate system defined by the d-axis and the q-axis is a rotor coordinate system representing the rotor magnetic pole position of the permanent magnet synchronous machine 103, and rotates in synchronization with the rotor magnetic pole position of the permanent magnet synchronous machine 103.
  • the d-axis is generally based on the north pole direction of the magnetic pole of the permanent magnet attached to the rotor, and the d-axis is also called the magnetic pole axis.
  • the dc-qc-axis coordinate system defined by the dc-axis and the qc-axis is the estimated phase of the rotor magnetic pole position of the permanent magnet synchronous machine 103, that is, the coordinate system that the controller 101 assumes in the d-axis and q-axis directions. Yes, also called the control axis.
  • the coordinate axes combined in each coordinate system are all orthogonal to each other.
  • the torque correction unit 110 has a torque command Tm * output from the command generator 105, a magnet temperature Tmag output from the temperature detection unit 125, and a dc-qc axis coordinate system output from the current command calculation unit 111.
  • the torque command correction value Trq ** calculated based on the current command values Idc * and Iqc * is output.
  • the current command calculation unit 111 has a drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 output from the vector control unit 112, a voltage detection value Ecf of the smoothing capacitor 131, and a torque command correction value Trq output from the torque correction unit 110.
  • the current command values Idc * and Iqc * on the dc-qc axis coordinate system calculated based on ** are output.
  • the vector control unit 112 separates the three-phase AC currents iu and iw, which are the AC current detection values of the permanent magnet synchronous machine 103, into a torque current component (q-axis current component) and a field weakening field current component (d-axis current component). Then, the current is controlled so as to match the current command values Idc * and Iqc * on the dc-qc axis coordinate system output by the current command calculation unit 111. As a result of the current control, the voltage command values Vdc * and Vqc * on the dc-qc axis, which is a rotating coordinate system, are calculated and output.
  • the polar coordinate conversion unit 113 converts the voltage command values Vdc * and Vqc * output by the vector control unit 112 into the voltage amplitude command value V1 * and the voltage command phase ⁇ , and outputs the voltage command values.
  • the phase calculation unit 114 adds the voltage command phase ⁇ to the control phase ⁇ dc and outputs it as the voltage phase ⁇ v.
  • the three-phase coordinate conversion unit 115 converts the voltage amplitude command value V1 output by the polar coordinate conversion unit 113 into three-phase AC voltage commands Vu *, Vv *, and Vw * based on the voltage phase ⁇ v output by the phase calculation unit 114. Then, it is output to the PWM signal controller 116.
  • the PWM signal controller 116 generates a triangular wave carrier based on an arbitrary carrier frequency fc and the voltage detection value Ecf of the smoothing capacitor 131, and is based on the triangular wave carrier and the three-phase AC voltage commands Vu *, Vv *, and Vw *. Compare the magnitude with the modulated wave and perform pulse width modulation.
  • the switching element of the power converter 102 is on / off controlled by the gate command signal generated by the calculation result of the pulse width modulation.
  • FIG. 3 is a block diagram showing a configuration example of the current command calculation unit 111 of the first embodiment.
  • the current command calculation unit 111 includes a magnetic flux amount limit value calculation unit 201, a d-axis current command calculation unit 202, and a q-axis current command calculation unit 203.
  • the current command calculation unit 111 calculates and outputs the torque command correction value Trq **, the magnet temperature Tmag, the voltage detection value Ecf, and the optimum d and q-axis current command values for fluctuations in the drive frequency ⁇ 1. ..
  • the magnetic flux amount limit value calculation unit 201 limits the output voltage of the power converter 102 based on the voltage detection value Ecf of the smoothing capacitor 131 and the drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 output from the vector control unit 112.
  • the magnetic flux amount limit value ⁇ lim which is a value, is calculated and output to the d-axis current command calculation unit 202 and the q-axis current command calculation unit 203.
  • the magnetic flux amount limit value ⁇ lim may be a function that is proportional to the voltage detection value Ecf and inversely proportional to the drive frequency ⁇ 1.
  • the magnetic flux amount limit value ⁇ lim is calculated by, for example, the following equation (1).
  • the d-axis current command calculation unit 202 is based on the torque command correction value Trq ** output from the torque correction unit 110 and the magnetic flux amount limit value ⁇ lim output from the magnetic flux amount limit value calculation unit 201. Calculates and outputs Idc *.
  • the q-axis current command calculation unit 203 is based on the torque command correction value Trq ** output from the torque correction unit 110 and the magnetic flux amount limit value ⁇ lim output from the magnetic flux amount limit value calculation unit 201. Calculates and outputs Iqc *.
  • the current command calculation unit 111 of the first embodiment takes the ratio of the drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 and the voltage detection value Ecf of the smoothing capacitor 131 and sets the magnetic flux amount limit value ⁇ lim.
  • the d and q-axis current command calculations can be configured in the reference table in which the torque command correction value Trq ** and the magnetic flux amount limit value ⁇ lim are input.
  • the reference table for the d-axis current command and the reference table for the q-axis current command for example, those obtained from tests and analyzes in advance may be used.
  • the reference table sets the d and q-axis current command values under arbitrary reference magnet temperature conditions.
  • the current command calculation unit 111 suppresses fluctuations in the output torque due to changes in the torque command and magnet temperature by adjusting the torque command correction value Trq **, and suppresses fluctuations in the output voltage due to changes in the rotation speed and the power supply voltage. It is suppressed by adjusting the magnetic flux amount limit value ⁇ lim. In this way, the current command calculation unit 111 can separately control the fluctuation correction of the output torque and the fluctuation correction of the output voltage with respect to changes in the torque command, the rotation speed, the power supply voltage, and the magnet temperature.
  • the output torque compensation of the permanent magnet synchronous machine 103 due to the change in the magnet temperature is adjusted by the torque correction unit 110 by adjusting the torque command correction value Trq ** based on the magnet temperature Tmag and the current command value. Highly accurate and highly responsive torque control can be realized.
  • FIG. 5 is a block diagram showing a configuration example of the torque correction coefficient calculation unit 301 of the first embodiment.
  • the torque correction coefficient calculation unit 301 includes the magnet temperature Tmag of the permanent magnet synchronous machine 103 detected by the temperature detection unit 125, the d-axis current command value Idc * output from the current command calculation unit 111, and the current command value Idc *.
  • the torque correction coefficient Ktemp * is calculated and output based on the q-axis current command value Iqc *.
  • a reference table in which the magnet temperature Tmag, the d-axis current command value Idc, and the q-axis current command value Iqc * may be input may be used.
  • the reference table of the torque correction coefficient Ktemp * the one obtained from the test or analysis in advance may be used.
  • the current command calculation unit 111 of the first embodiment has a configuration capable of calculating the optimum d and q-axis current commands for changes in the torque command, rotation speed, and power supply voltage when the magnet temperature is constant. Is. Further, as another feature, it is possible to individually control the torque control and the fluctuation of the output voltage due to the change of the rotation speed and the power supply voltage. Therefore, the compensation for the output torque fluctuation due to the change in the magnet temperature of the permanent magnet synchronous machine can be compensated by simply adjusting the torque command value input from the d-axis current command calculation unit 202 and the q-axis current command calculation unit 203. It will be possible.
  • the magnitude of the output torque is C. Further, the magnet temperature condition at this time is set to the reference temperature Tmag0.
  • FIG. 7 is a graph illustrating the relationship between the d and q-axis currents of the permanent magnet synchronous machine and the output torque under a magnet temperature condition higher than the reference temperature Tmag0. According to the torque map shown in FIG. 7, when the permanent magnet synchronous machine is current-controlled at the Z point of the same d-axis current and q-axis current as in FIG. 6, the magnitude of the output torque is smaller than that of C. ..
  • FIG. 8 is a graph illustrating the relationship between the d and q-axis currents of the permanent magnet synchronous machine and the output torque under magnet temperature conditions lower than the reference temperature Tmag0. It can be seen that when the permanent magnet synchronous machine is current-controlled at the Z point of the same d-axis current and q-axis current as in FIGS. 6 and 7, the magnitude of the output torque is larger than that of C.
  • the amount of magnetic flux of the permanent magnet changes due to the temperature change of the permanent magnet, and the output torque fluctuates even if it is controlled to the same current operating point according to the torque command. It ends up.
  • the torque correction unit 110 calculates the torque correction coefficient Ktemp * based on the magnet temperature Tmag, the d-axis current command value Idc *, and the q-axis current command value Iqc *, and this torque correction coefficient Ktemp * is calculated.
  • the torque correction coefficient Ktemp * is calculated.
  • FIG. 9 is a graph illustrating the relationship between the output torque at the reference temperature Tmag0 and the d, q-axis current and the output torque ratio of the permanent magnet synchronous machine under the magnet temperature condition higher than the reference temperature Tmag0.
  • FIG. 9 shows the ratio of the output torque at the reference temperature Tmag0 of FIG. 6 to the output torque at a magnet temperature higher than the reference temperature Tmag0 of FIG. 7 as a table map of the d-axis current id and the q-axis current iq. ..
  • the magnet temperature condition is the d and q-axis current command values calculated at the reference temperature Tmag0.
  • the torque correction coefficient Ktemp * of the torque correction unit 110 is set to the output torque at the reference temperature Tmag 0, which is the same as the calculation conditions of the d-axis current command calculation unit 202 and the q-axis current command calculation unit 203 of the current command calculation unit 111. If the ratio of the output current according to the change in the magnet temperature is provided as a reference table with reference to the above, it is possible to compensate for the change in the output torque due to the change in the magnet temperature.
  • the torque correction coefficient calculation unit 301 of the torque correction unit 110 outputs the torque correction coefficient Ktemp * by inputting the magnet temperature Tmag, the d-axis current command value Idc *, and the q-axis current command value Iqc *.
  • a configuration example using three-dimensional table data is shown. By using multidimensional table data, it is possible to consider complicated state changes with respect to changes in a plurality of inputs, so that more accurate torque compensation control becomes possible.
  • table data of three dimensions or more has problems such as an increase in test, analysis, and adjustment time for calculating d and q-axis current command values, and an increase in the memory capacity of the control device and the calculation load of table reference. Will occur.
  • FIG. 10 is a block diagram showing a configuration example of the torque correction coefficient calculation unit 301b, which is a modification of the first embodiment.
  • a three-dimensional reference table is used instead of the torque correction coefficient calculation unit 301 that uses the three-dimensional reference table for calculating the torque correction coefficient Ktemp * according to the magnet temperature, the d-axis current command, and the q-axis current command. It can also be realized by using the torque correction coefficient calculation unit 301b which is not used.
  • the torque correction coefficient calculation unit 301b includes a magnet temperature-dependent torque correction coefficient calculation unit 401b, a reluctance torque ratio correction coefficient calculation unit 402b, and an adder 802b.
  • the torque correction coefficient calculation unit 301b adds a value obtained by adding the torque correction coefficient Ktemp1 * output from the magnet temperature-dependent torque correction coefficient calculation unit 401b and the torque correction coefficient Ktemp2 * output from the reluctance torque ratio correction coefficient calculation unit 402b. Output as torque correction coefficient Ktemp *.
  • the magnet temperature-dependent torque correction coefficient calculation unit 401b calculates a coefficient corresponding to the amount of change in the magnet torque due to a change in the magnet temperature with reference to the reference temperature Tmag0 based on the magnet temperature Tmag, and sets the torque correction coefficient Ktemp1 *. Output. Since the magnet torque is proportional to the magnitude of the magnet magnetic flux of the permanent magnet synchronous machine, the amount of change in the magnet magnetic flux according to the magnet temperature Tmag is calculated, and the torque correction corresponding to the amount of change in the magnet torque is based on the reference temperature Tmag 0. The coefficient Ktemp1 * may be calculated.
  • the reluctance torque estimation calculation unit 502b estimates and calculates the reluctance torque based on the d-axis current command value Idc * and the q-axis current command value Iqc *, and outputs the reluctance torque to the multiplier 803b.
  • the torque correction coefficient calculation unit 301 sets the d-axis current command value Idc * and the q-axis current command as the magnet magnetic flux ⁇ m0 of the permanent magnet synchronous machine at the reference temperature Tmag0 and the magnet magnetic flux ⁇ m'of the permanent magnet synchronous machine at the magnet temperature Tmag.
  • the fluctuation of the output torque due to the change of the magnet temperature when the current is controlled by the value Iqc * is estimated, and the magnetic flux correction coefficient Ktemp * is calculated.
  • the torque correction coefficient Ktemp * is, for example, calculated by the following equation (3).
  • the magnet magnetic flux ⁇ m'of the permanent magnet synchronous machine at the magnet temperature Tmag may be a function based on the Tmag, and is calculated by the following equation (4), for example.
  • the temperature coefficient needs to be changed depending on the type and characteristics of the permanent magnets used for permanent magnet synchronization.
  • the d-axis current command value Idc * and the q-axis current command By calculating the inductance value based on the value Iqc *, the d-axis current detection value Idc, or the q-axis current detection value Iqc, the output torque accuracy by the torque correction of this embodiment can be improved.
  • the torque correction coefficient calculation unit 301 or 301b calculates the torque correction coefficient Ktemp *, and multiplies the torque command Tm * from the command generator 105 by the torque correction coefficient Ktemp *. Therefore, the torque command correction value Trq ** was calculated, but the torque compensation amount ⁇ Trq-mag * based on the magnet temperature Tmag, the d-axis current command value Idc *, and the q-axis current command value Iqc * was calculated, and this torque compensation amount was calculated.
  • the torque command correction value Trq ** may be calculated and used by adding ⁇ Trq ⁇ mag * to the torque command Tm *.
  • FIG. 12 is a block diagram showing a configuration example of the torque correction unit 110c, which is a modification of the first embodiment.
  • the output torque is corrected by the change of the magnet temperature of the permanent magnet synchronous machine.
  • the torque correction unit 110c includes a torque compensation amount calculation unit 302c and an adder 804c.
  • the torque compensation unit 110c calculates the torque compensation amount ⁇ Trq-mag * based on the magnet temperature Tmag, the d-axis current command value Idc *, and the q-axis current command value Iqc * in the torque compensation amount calculation unit 302c, and this torque compensation amount
  • the calculation result obtained by adding ⁇ Trq ⁇ mag * to the torque command Tm * is output as the torque command correction value Trq **.
  • the torque compensation amount calculation unit 302c is a permanent magnet synchronous machine at the same id and iq current operating points with reference to the reference temperature Tmag0 instead of the torque correction coefficient Ktemp * output by the torque correction coefficient calculation units 301 and 301b. This can be achieved by calculating the amount of fluctuation in the output torque due to the change in the magnet temperature of the above and outputting it as the torque compensation amount ⁇ Trq-mag *.
  • the output torque fluctuation due to the change in the magnet temperature is compensated by correcting the torque command value based on the magnet temperature and the current command value of the permanent magnet synchronous machine. This makes it possible to improve the torque accuracy and torque control response when the magnet temperature fluctuates with a simpler configuration.
  • the magnetic flux amount limit value ⁇ lim is calculated based on the magnet temperature Tmag of the permanent magnet synchronous machine 103 output from the temperature detection unit 125.
  • FIG. 13 is a block diagram showing a configuration example of the permanent magnet synchronous machine drive system of the second embodiment. In the description of the second embodiment, only the differences will be described as compared with the first embodiment shown in FIG.
  • the drive device of the permanent magnet synchronous machine of the second embodiment can be realized by using the current command calculation unit 111d instead of the current command calculation unit 111 of the first embodiment of FIG.
  • FIG. 14 is a block diagram showing a configuration example of the current command calculation unit 111d of the second embodiment.
  • the current command calculation unit 111d includes a magnetic flux amount limit value calculation unit 601d, a d-axis current command calculation unit 202, and a q-axis current command calculation unit 203.
  • the magnetic flux amount limit value calculation unit 601d has a voltage detection value Ecf of the smoothing capacitor 131, a drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 output from the vector control unit 112, and a permanent magnet synchronization output from the temperature detection unit 125.
  • the magnetic flux amount limit value ⁇ lim is calculated based on the magnet temperature Tmag of the machine 103, and is output to the d-axis current command calculation unit 202 and the q-axis current command calculation unit 203.
  • the magnetic flux amount limit value ⁇ lim which is an input variable of the d-axis current command calculation unit 202 and the q-axis current command calculation unit 203, is the ratio of the voltage detection value Ecf and the drive frequency ⁇ 1.
  • a correction value corresponding to an increase or decrease in the magnetic flux generated by the change in the magnet temperature may be added to. For example, it is assumed that the calculation is performed by the following equation (5).
  • equation (5) the right side calculated based on the magnet temperature Tmag of the permanent magnet synchronous machine, the reference temperature Tmag0 set in the calculation of the d-axis current command calculation unit 202 and the q-axis current command calculation unit 203, and the correction coefficient Kv.
  • the first term corresponds to the correction value of the magnetic flux amount limit value according to the amount that the magnet magnetic flux increases or decreases due to the change in the magnet temperature.
  • the correction coefficient Kv may be a constant or may be calculated as a functional expression of the magnet temperature Tmag.
  • the magnetic flux amount limit value ⁇ lim may be obtained by multiplying the ratio of the voltage detection value Ecf and the drive frequency ⁇ 1 by the correction coefficient according to the magnet temperature Tmag. For example, it is assumed that the calculation is performed by the following equation (6).
  • the magnetic flux amount limit value ⁇ lim based on the magnet temperature, it is possible to realize the calculation of the d-axis current command and the q-axis current command in consideration of the fluctuation of the output voltage due to the change of the magnet temperature. As a result, the efficiency of the drive device of the permanent magnet synchronous machine can be improved.
  • FIG. 15 is a block diagram showing a configuration example of the permanent magnet synchronous machine drive system of the third embodiment. Only the differences will be described as compared with Example 1 shown in FIG.
  • the drive device of the permanent magnet synchronous machine of the third embodiment uses the current command calculation unit 111e and the vector control unit 112e instead of the current command calculation unit 111 and the vector control unit 112 of the first embodiment of FIG. It can be realized by.
  • FIG. 16 is a block diagram showing a configuration example of the current command calculation unit 111e of the third embodiment.
  • the current command calculation unit 111e includes a magnetic flux amount limit value calculation unit 601e, a d-axis current command calculation unit 202, and a q-axis current command calculation unit 203.
  • the target limit modulation factor Ymf * When the target limit modulation factor Ymf * is set to a value of 1 or less and PWM control is performed by the power converter 102 with one synchronous pulse at which the maximum output voltage value is obtained, the target limit modulation factor Ymf * becomes 1. Further, Ecf0 is a reference value of the DC voltage of the smoothing capacitor 131 for determining the output voltage control value V1lim.
  • the target modulation factor Ymf * may be, for example, a target modulation factor based on the target voltage value of the field weakening control when the field weakening control is performed by the vector control unit 112e in order to control the output voltage limit value V1lim.
  • the target limiting modulation factor Ymf * may be a target modulation factor determined by the operating conditions of PWM control.
  • the magnetic flux amount limit value ⁇ lim which is an input variable of the d-axis current command calculation unit 202 and the q-axis current command calculation unit 203, takes the ratio of the voltage detection value Ecf and the drive frequency ⁇ 1. It may be obtained by multiplying the value by the target limit modulation factor Ymf * of the power converter 102. For example, it is assumed that the calculation is performed by the following equation (8).
  • the current command calculation unit 111e of the second embodiment has the same configuration as the current command calculation unit 111 of the first embodiment except for the magnetic flux amount limit value calculation unit 601e.
  • the magnetic flux amount limit value ⁇ lim based on the limit value of the output voltage of the power converter 102, the fluctuation amount of the output voltage of the power converter and the output voltage due to the restriction of the PWM control calculation can be adjusted. It will be possible to calculate the d-axis current command and q-axis current command in consideration, and improve the efficiency of the drive device of the permanent magnet synchronous machine according to the specifications, performance, and operating conditions of the power converter and controller. Can be done.
  • the voltage detection value Ecf of the smoothing capacitor 131 and the drive of the permanent magnet synchronous machine 103 output from the vector control unit 112 are driven.
  • a three-dimensional table calculated in advance by a test, simulation analysis, or the like is used based on the frequency ⁇ 1 and the torque command correction value Trq ** output from the torque correction unit 110.
  • FIG. 17 is a block diagram showing a configuration example of the current command calculation unit 111f of the fourth embodiment.
  • the drive device of the permanent magnet synchronous machine of the fourth embodiment can be realized by using the current command calculation unit 111f instead of the current command calculation unit 111 of the first embodiment of FIG. Compared with the first embodiment shown in FIG. 1, only the difference in the configuration will be described.
  • the current command calculation unit 111f includes a d-axis current command three-dimensional table reference unit 701f and a q-axis current command three-dimensional table reference unit 702f.
  • the d-axis current command three-dimensional table calculation unit 701f outputs the voltage detection value Ecf of the smoothing capacitor 131, the drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 output from the vector control unit 112, and the torque correction unit 110.
  • the d-axis current command value Idc * is calculated and output based on the torque command correction value Trq **.
  • the q-axis current command three-dimensional table reference unit 702f is output from the voltage detection value Ecf of the smoothing capacitor 131, the drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 output from the vector control unit 112, and the torque correction unit 110.
  • the q-axis current command value Iqc * is calculated and output based on the torque command correction value Trq **.
  • the three-dimensional table data used for calculating the d-axis current command value Idc * and the q-axis current command value Iqc * is a permanent magnet.
  • the d-axis current command value Idc * and the q-axis current command were calculated using the three-dimensional table data for changes in the torque command, the rotation speed, and the power supply voltage, but the calculation formula was used. You may ask.
  • the d-axis current command and the q-axis current command are calculated based on the three-dimensional table data obtained in advance by testing or analysis, so that the torque command, the rotation speed, and the power supply voltage are changed.
  • the calculation of the optimum d-axis current command value Idc * and the q-axis current command value Iqc * can be realized, and the efficiency of the drive device of the permanent magnet synchronous machine can be improved.
  • the torque correction coefficient Ktemp * is calculated based on *.
  • FIG. 18 is a block diagram showing a configuration example of the permanent magnet synchronous machine drive system of the fifth embodiment. In the description of the fifth embodiment, only the differences will be described as compared with the first embodiment shown in FIG.
  • the drive device of the permanent magnet synchronous machine of the fifth embodiment can be realized by using the torque correction unit 110g instead of the torque correction unit 110 of the first embodiment of FIG.
  • FIG. 20 is a block diagram showing a configuration example of the torque correction coefficient calculation unit 301g of the fifth embodiment.
  • the torque correction coefficient calculation unit 301g includes a magnet temperature compensation coefficient calculation unit 901g and a d-axis current characteristic compensation coefficient calculation unit 902g.
  • the torque correction coefficient calculation unit 301g is based on the magnet temperature Tmag of the permanent magnet synchronous machine 103 detected by the temperature detection unit 125 and the d-axis current command value Idc * output from the current command calculation unit 111. Calculates Ktemp * and outputs it.
  • the magnet temperature compensation coefficient calculation unit 901g calculates a coefficient corresponding to the amount of change in the output torque due to a change in the magnet temperature with reference to the reference temperature Tmag0 based on the magnet temperature Tmag, and outputs the coefficient as a torque correction coefficient Ktemp-mag *. ..
  • the iron loss calculation unit 1201h the mechanical loss calculation unit 1202h, the load loss calculation unit 1203h, the loss torque conversion unit 1204h, and the output adjustment unit 1205h, which are the characteristic parts of the sixth embodiment, will be described in detail.
  • the eddy current loss coefficient ke and the magnetic flux density coefficient kB are values determined based on the material and structure of the permanent magnet synchronous machine 103, and any of a design value, an analysis value, and an actually measured value may be used. Further, the eddy current loss calculation unit 1212h may be configured to use a one-dimensional table that outputs the eddy current loss We obtained in advance from actual measurement or analysis by using the voltage amplitude command value V1 * as an input variable.
  • the adder 813h adds the hysteresis loss Wh output from the hysteresis loss calculation unit 1211h and the eddy current loss We output from the eddy current loss calculation unit 1212h, and outputs the iron loss Wi.
  • FIG. 25 is a block diagram showing a configuration example of the mechanical loss calculation unit 1202h of the sixth embodiment.
  • the mechanical loss calculation unit 1202h includes a bearing loss calculation unit 1221h, a wind loss calculation unit 1222h, and an adder 823h.
  • the bearing loss calculation unit 1221h calculates and outputs the bearing loss Wb based on the drive frequency ⁇ 1 (electric angular frequency) of the permanent magnet synchronous machine 103 output from the vector control unit 112.
  • the bearing loss Wb has a characteristic proportional to the first power of the motor rotation speed (machine angular frequency), and is calculated by, for example, the following equation (11).
  • the bearing loss coefficient kb is a value determined based on the material and structure of the bearing portion of the permanent magnet synchronous machine 103, and any of a design value, an analysis value, and an actually measured value may be used. Further, the bearing loss calculation unit 1221h uses a drive frequency ⁇ 1 (electric angular frequency) or a motor rotation speed (mechanical angular frequency) as an input variable, and outputs a one-dimensional table that outputs a bearing loss Wb obtained in advance from actual measurement or analysis. It may be the configuration to be used.
  • the wind loss calculation unit 1222h calculates and outputs the wind loss Ww based on the drive frequency ⁇ 1 (electric angular frequency) of the permanent magnet synchronous machine 103 output from the vector control unit 112.
  • the wind loss Ww has a characteristic proportional to the cube of the motor rotation speed (machine angular frequency), and is calculated by the following equation (12), for example.
  • the wind loss coefficient kW is a value determined based on the material and structure of the rotating portion of the permanent magnet synchronous machine 103, frictional resistance with air, etc., and any of the design value, the analysis value, and the measured value is used. You may. Further, the wind loss calculation unit 1222h uses a one-dimensional table that outputs the wind loss Ww obtained in advance from actual measurement or analysis by using the drive frequency ⁇ 1 (electric angular frequency) or the motor rotation speed (mechanical angular frequency) as an input variable. May be.
  • FIG. 26 is a block diagram showing a configuration example of the load loss calculation unit 1203h according to the sixth embodiment.
  • the load loss calculation unit 1203h includes a drifting load loss calculation unit 1231h, an external load loss calculation unit 1232h, and an adder 833h.
  • the external load loss calculation unit 1232h calculates the external load loss Wo based on the torque command Tm * output from the command generator 105 and the drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 output from the vector control unit 112. ,Output.
  • the external load loss Wo is for compensating for the load characteristic connected to the permanent magnet synchronous machine 103, which fluctuates according to the output torque and the number of rotations, and is used for a constant torque load such as a conveyor or a crane, or a fan. It is determined according to the type and application of the load of the drive device, such as the squared reduction load of the pump and the constant output load of the winder.
  • the external load loss calculation unit 1232h can be realized by using a two-dimensional table that outputs the external load loss Wo obtained in advance from actual measurement or analysis by using the torque command Tm * and the drive frequency ⁇ 1 as input variables. When these load characteristics are taken into consideration in the torque command Tm * output from the command generator 105, the external load loss Wo may be set to zero.
  • the loss torque conversion unit 1204h is based on the output loss Wloss, which is the total value of the iron loss Wi, the mechanical loss Wm, and the load loss Wl, and the drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 output from the vector control unit 112. Calculates the torque frequency and outputs it.
  • the loss torque Tloss is calculated by, for example, the following equation (15).
  • the gear efficiency calculation unit 1252h calculates and outputs the gear efficiency ⁇ g based on the drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 output from the vector control unit 112.
  • the gear efficiency ⁇ g may be configured by using, for example, a one-dimensional table that outputs the gear efficiency ⁇ g obtained in advance from actual measurement or analysis with the drive frequency ⁇ 1 as an input variable. Further, the gear efficiency ⁇ g may be used as a constant, or may be calculated as a functional expression of the drive frequency ⁇ 1.
  • the gear efficiency ⁇ g is a value determined based on the frictional resistance of the bearings and gears of the permanent magnet synchronous machine 103, the resistance of the lubricating oil, and the like, and any of the design value, the analysis value, and the measured value may be used. .. Further, in the case of a device configuration in which the gear is not provided between the permanent magnet synchronous machine 103 and the load connected to the permanent magnet synchronous machine 103, the output adjustment unit 1205h is excluded from the torque command loss compensation unit 117h, or the gear efficiency.
  • the gear efficiency ⁇ g output from the calculation unit 1252h may always be set to 1.
  • the output loss Wloss is calculated by using any one or more of hysteresis loss Wh, eddy current loss We, bearing loss Wb, wind loss Ww, drifting load loss Ws, and external load loss Wo. Therefore, it is possible to compensate for the decrease in the output torque of the motor due to the loss torque with respect to the torque command, and to improve the accuracy of the torque control.
  • FIG. 28 is a block diagram showing a configuration example of a permanent magnet synchronous machine drive system, which is a modification of the sixth embodiment.
  • the sixth embodiment only the difference in the configuration will be described as compared with the configuration example of the sixth embodiment shown in FIG.
  • FIG. 28 a modification of the configuration of the drive device of the permanent magnet synchronous machine of the sixth embodiment is realized by using the torque command loss compensation unit 117i instead of the torque command loss compensation unit 117h of the sixth embodiment of FIG. 22. it can.
  • FIG. 29 is a block diagram showing a configuration example of the torque command loss compensation unit 117i, which is a modification of the sixth embodiment. As shown in FIG. 29, the torque command loss compensation unit 117i can be realized by using the iron loss calculation unit 1201i instead of the iron loss calculation unit 1201h.
  • the hysteresis loss calculation unit 1211i includes the drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 output from the vector control unit 112, the d-axis current command value Idc *, and the q-axis current command value Iqc * output from the current command calculation unit 111.
  • the hysteresis loss Wh is calculated and output based on.
  • FIG. 31 is a block diagram showing a configuration example of the iron loss calculation unit 1201j, which is a modification of the sixth embodiment.
  • the iron loss calculation unit 1201j includes a hysteresis loss frequency normalization value calculation unit 1211j, an eddy current loss frequency normalization value calculation unit 1212j, an adder 813j, and multipliers 814j, 815j, and 816j. ..
  • the hysteresis loss frequency normalization value calculation unit 1211j calculates the hysteresis loss frequency normalization value Wh'based on the d-axis current command value Idc * and the q-axis current command value Iqc * output from the current command calculation unit 111. ,Output.
  • the hysteresis loss frequency normalization value calculation unit 1211j uses, for example, the d-axis current command value Idc * and the q-axis current command value Iqc * as input variables, and normalizes the hysteresis loss Wh obtained in advance from actual measurement or analysis. This can be achieved by using a two-dimensional table that outputs the frequency normalized value Wh'.
  • the eddy current loss frequency normalization value calculation unit 1212j calculates the eddy current loss frequency normalization value We'based on the d-axis current command value Idc * and the q-axis current command value Iqc * output from the current command calculation unit 111. Calculate and output.
  • the eddy current loss frequency normalization value calculation unit 1212j uses, for example, the d-axis current command value Idc * and the q-axis current command value Iqc * as input variables, and the eddy current loss We obtained in advance from actual measurement or analysis. This can be achieved by using a two-dimensional table that outputs the frequency normalized value We'.
  • the iron loss calculation unit 1201j can improve the calculation accuracy of the iron loss by considering the fluctuation of the hysteresis loss Wh and the eddy current loss We due to the fluctuation of the magnet temperature Tmag of the permanent magnet synchronous machine 103.
  • FIG. 32 a modification of the configuration of the drive device of the permanent magnet synchronous machine of the sixth embodiment is realized by using the torque command loss compensation unit 117k instead of the torque command loss compensation unit 117i of the sixth embodiment of FIG. 28. it can.
  • FIG. 33 is a block diagram showing a configuration example of the torque command loss compensation unit 117k, which is a modification of the sixth embodiment. As shown in FIG. 33, the torque command loss compensation unit 117k can be realized by using the iron loss calculation unit 1201k instead of the iron loss calculation unit 1201i.
  • the iron loss calculation unit 1201k has the drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 output from the vector control unit 112, the d-axis current command value Idc *, and the q-axis current command value Iqc * output from the current command calculation unit 111. Then, the iron loss Wi is calculated and output based on the magnet temperature Tmag output from the temperature detection unit 125.
  • the magnet temperature Tmag a value obtained by detecting or estimating the magnitude of the induced voltage according to the rotation speed of the permanent magnet synchronous machine 103 and estimating the magnet temperature Tmag from the value may be used.
  • FIG. 34 is a block diagram showing a configuration example of the iron loss calculation unit 1201k, which is a modification of the sixth embodiment.
  • the iron loss calculation unit 1201k includes a hysteresis loss frequency normalization value calculation unit 1211k, an eddy current loss frequency normalization value calculation unit 1212k, an adder 813k, and multipliers 814k, 815k, and 816k. ..
  • the hysteresis loss frequency normalization value calculation unit 1211k uses, for example, the d-axis current command value Idc *, the q-axis current command value Iqc *, and the magnet temperature Tmag as input variables, and obtains the hysteresis loss Wh from actual measurement or analysis in advance. This can be achieved by using a three-dimensional table that outputs the normalized hysteresis loss frequency normalized value Wh'.
  • the sixth embodiment has been described above.
  • the first embodiment has been mainly described as the basic configuration, but the second to fifth embodiments can be similarly applied as the basic configuration.
  • the detected value or the estimated value of the magnet magnetic flux ⁇ m of the permanent magnet synchronous machine 103 is replaced with the detected value or the estimated value of the magnet temperature Tmag of the permanent magnet synchronous machine 103.
  • a coefficient corresponding to the magnet magnetic flux ⁇ m is used.
  • FIG. 35 is a block diagram showing a configuration example of the permanent magnet synchronous machine drive system of the seventh embodiment. Only the differences will be described as compared with Example 1 shown in FIG.
  • the drive device of the permanent magnet synchronous machine of the seventh embodiment has a torque correction unit 110m instead of the torque correction unit 110 of the first embodiment of FIG. 1 and a vector control unit 112m instead of the vector control unit 112. Then, it can be realized by additionally using the magnet magnetic flux coefficient calculation unit 118 m.
  • the vector control unit 112m includes three-phase AC currents iu and iw, which are AC current detection values of the permanent magnet synchronous machine 103, and current command values Idc * and Iqc on the dc-qc axis coordinate system output by the current command calculation unit 111. Based on *, the voltage command values Vdc * and Vqc * on the dc-qc axis are calculated and output. Further, the drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 and the estimated control position ⁇ dc of the magnetic pole are calculated and output based on the voltage command values Vdc * and Vqc * and the detected values of the three-phase AC currents iu and iw. Further, based on the detected values of the three-phase AC currents iu and iw and the estimated control position ⁇ dc, the current detected values Idc and Iqc on the dc-qc axis coordinate system are calculated and output.
  • the magnet magnetic flux coefficient calculation unit 118m is a drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 output from the vector control unit 112, voltage command values Vdc *, Vqc * on the dc-qc axis, and a current on the dc-qc axis coordinate system. Based on the detected values Idc and Iqc, the magnet magnetic flux coefficient Kfe of the permanent magnet synchronous machine 103 is calculated and output.
  • the torque correction unit 110m includes a torque command Tm * output from the command generator 105, current command values Idc * and Iqc * on the dc-qc axis coordinate system output from the current command calculation unit 111, and a magnet magnetic flux coefficient.
  • the torque command correction value Trq ** is calculated and output based on the magnet magnetic flux coefficient Kfe output from the calculation unit 118m.
  • the magnet magnetic flux coefficient calculation unit 118 m and the torque correction unit 110 m which are the characteristic parts of the seventh embodiment, will be described in detail.
  • the magnet magnetic flux coefficient calculation unit 118m the drive frequency ⁇ 1 of the permanent magnet synchronous machine 103 output from the vector control unit 112, the voltage command values Vdc * and Vqc * on the dc-qc axis, and the dc-qc axis coordinate system.
  • the magnet magnetic flux coefficient Kfe of the permanent magnet synchronous machine 103 is calculated and output based on the current detection values Idc and Iqc of.
  • the magnet magnetic flux coefficient Kfe is calculated by the following equation (16), for example, based on the voltage equation of the permanent magnet synchronous machine represented by the dq coordinate system.
  • the polynomial of the molecule on the right side calculates the induced voltage (velocity electromotive force) generated according to the rotation speed of the permanent magnet synchronous machine 103. Therefore, the magnet magnetic flux coefficient Kfe may be used as a value associated with the magnet magnetic flux of the permanent magnet synchronous machine 103 based on the value obtained by detecting or estimating the induced voltage of the permanent magnet synchronous machine 103.
  • the d-axis inductance of the permanent magnet synchronous machine is Ld
  • the winding resistance is R1.
  • the current command values Idc * and Iqc * on the dc-qc axis coordinate system output from the current command calculation unit 111 may be used. ..
  • FIG. 36 is a block diagram showing a configuration example of the torque correction unit 110 m according to the seventh embodiment.
  • the torque correction unit 110m includes a torque correction coefficient calculation unit 1301m and a multiplier 1302m.
  • the torque correction unit 110m outputs the calculation result obtained by multiplying the torque command Tm * by the torque correction coefficient Ktemp * output from the torque correction coefficient calculation unit 1301m as the torque command correction value Trq **.
  • FIG. 37 is a block diagram showing a configuration example of the torque correction coefficient calculation unit 1301 m of the seventh embodiment.
  • the torque correction coefficient calculation unit 1301m includes a magnet magnetic flux coefficient Kfe output from the magnet magnetic flux coefficient calculation unit 118m, a d-axis current command value Idc * output from the current command calculation unit 111, and a q-axis current.
  • the torque correction coefficient Ktemp * is calculated and output based on the command value Iqc *.
  • a reference table in which the magnet magnetic flux coefficient Kfe, the d-axis current command value Idc, and the q-axis current command value Iqc * may be input may be used.
  • the reference table of the torque correction coefficient Ktemp * the one obtained from the test or analysis in advance may be used.
  • the magnet of the permanent magnet synchronous machine 103 when the magnet temperature condition is the reference temperature Tmag 0.
  • the torque correction coefficient Ktemp * of the torque correction unit 110m is the d-axis current command calculation unit 202 of the current command calculation unit 111.
  • FIG. 38 is a block diagram showing a configuration example of the torque correction coefficient calculation unit 1301n, which is a modification of the seventh embodiment.
  • the torque correction coefficient calculation unit 1301n does not use the three-dimensional reference table when calculating the torque correction coefficient Ktemp * according to the magnet magnetic flux coefficient, the d-axis current command, and the q-axis current command.
  • the torque correction coefficient calculation unit 1301n is different from the torque correction coefficient calculation unit 301b of the first embodiment only in that the magnet magnetic flux coefficient Kfe is used instead of the magnet temperature Tmag, and the torque correction coefficient is based on the magnet magnetic flux coefficient Kfe. Ktemp1 * and the torque correction coefficient Ktemp2 * may be calculated.
  • the torque correction coefficient calculation unit 1301o includes a magnet magnetic flux compensation coefficient calculation unit 1901o, a d-axis current characteristic compensation coefficient calculation unit 1902o, and an adder 802o, and the torque correction coefficient Ktemp- output from the magnet magnetic flux compensation coefficient calculation unit 1901o.
  • the value obtained by adding the magnet * and the torque correction coefficient Ktemp-id * output from the d-axis current characteristic compensation coefficient calculation unit 1902o is output as the torque correction coefficient Ktemp *.
  • the magnet magnetic flux compensation coefficient calculation unit 1901o refers to the reference magnet magnetic flux coefficient Kfe0, which is a calculation condition of the d-axis current command calculation unit 202 and the q-axis current command calculation unit 203 of the current command calculation unit 111, based on the magnet magnetic flux coefficient Kfe.
  • Kfe0 a coefficient corresponding to a change in the output torque with respect to a change in the magnet temperature or a change in the magnet magnetic flux due to demagnetization is calculated and output as a torque correction coefficient Ktemp-mag *.
  • the d-axis current characteristic compensation coefficient calculation unit 1902o is based on the d-axis current command value Idc * and the magnet magnetic flux coefficient Kfe, and can arbitrarily respond to changes in magnet temperature or changes in magnet magnetic flux due to demagnetization with reference to the reference magnet magnetic flux coefficient Kfe0.
  • a coefficient corresponding to a change in the ratio of magnet torque and reluctance at the current operating points of Idc * and Iqc * is calculated and output as a torque correction coefficient Ktemp-id *.
  • the magnet magnetic flux coefficient Kfe has been described, but the detected value or estimated value of the magnet magnetic flux ⁇ m of the permanent magnet synchronous machine 103 is used as a reference for the input variable of the torque command correction and the current command reference table. It can also be realized by using it. That is, the value that can be used as the input variable of the torque command correction or the reference of the current command reference table may be any value as long as it is a value associated with the magnetic flux of the permanent magnet synchronous machine 103.
  • the seventh embodiment by correcting the torque command value based on the magnet magnetic flux and the current command value of the permanent magnet synchronous machine, the output torque fluctuation amount due to the change in the magnet temperature or the change in the magnet magnetic flux due to the demagnetization is compensated. This makes it possible to improve the accuracy of torque control when the magnet temperature fluctuates, including demagnetization of the permanent magnet synchronous machine, in the drive device of the permanent magnet synchronous machine.
  • Example 7 has been described above.
  • the first embodiment has been mainly described as the basic configuration, but the second to sixth embodiments can be similarly applied as the basic configuration.
  • the railroad vehicle 100 has a bogie equipped with the permanent magnet synchronous machines 103a and 103b, and a bogie equipped with the permanent magnet synchronous machines 103c and 103d. Further, the railroad vehicle is equipped with a drive system (drive device) of a permanent magnet synchronous machine including a controller 101, a power converter 102, a command generator 105, and a phase current detection unit 121.
  • a drive system drive device of a permanent magnet synchronous machine including a controller 101, a power converter 102, a command generator 105, and a phase current detection unit 121.
  • the permanent magnet synchronous machine 103 is connected to the axle of the railway vehicle 100, and the running of the railway vehicle 100 is controlled by the permanent magnet synchronous machine 103.
  • the eighth embodiment by applying the first to seventh embodiments to the railway vehicle 100, it is possible to realize a railway vehicle capable of high response and high accuracy of torque control and highly efficient operation.
  • the present invention relates to a drive device for a permanent magnet synchronous machine and a torque compensation method for the permanent magnet synchronous machine, for example, an electric vehicle such as an electric railway vehicle or an electric vehicle, an inverter system such as an industrial machine, a wind power generation system, or a diesel generator system. It is suitable for application to the above. Further, the present invention can be applied not only to a permanent magnet synchronous motor but also to a permanent magnet synchronous generator.
  • the present invention is not limited to the above-mentioned examples, and includes various modifications.
  • the above-described embodiment describes the present invention in an easy-to-understand manner, and is not necessarily limited to the one having all the configurations described.
  • it is possible to replace a part of the configuration of the embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • each configuration and each process illustrated in the above-described examples and modifications may be integrated, separated, or the processing order may be changed as appropriate according to the mounting form and processing efficiency.
  • the above-described examples and modifications may be combined in part or in whole within a consistent range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inverter Devices (AREA)

Abstract

永久磁石同期機駆動装置は、永久磁石同期機103を駆動する電力変換器102と、電力変換器102を制御する制御器101とを有する。制御器101は、入力されたトルク指令値を補正するトルク補正部110と、トルク補正部110によって補正されたトルク指令値から、永久磁石同期機103を駆動制御するための電流指令値を生成する電流指令演算部111とを備える。トルク補正部110は、永久磁石同期機103の磁石磁束と関連付けられる値と、電流指令演算部111によって生成された電流指令値とに基づいてトルク指令値を補正する。

Description

永久磁石同期機の駆動装置、永久磁石同期機のトルク補償方法、および電気車
 本発明は、永久磁石同期機の駆動装置、永久磁石同期機のトルク補償方法、および電気車に関する。
 永久磁石を有する同期電動機の駆動装置において、例えば永久磁石の温度変化によって永久磁石の磁束量が変化し、トルク指令に応じた同一の電流動作点に制御しても出力トルクが変動してしまうことがわかっている。そのため、永久磁石同期電動機を所望の出力にトルク制御する場合、永久磁石の温度を計測または推定し、その値に応じて永久磁石同期電動機を制御することが必要になる。
 また、従来、永久磁石同期電動機の制御では、永久磁石同期電動機の回転速度および電力変換器に供給される電源電圧の大きさに応じて、永久磁石同期電動機の端子電圧を抑えるための弱め界磁電流を制御する方法が用いられてきた。例えば永久磁石の温度変化によって永久磁石の磁束量が変化した場合、回転速度に応じた永久磁石同期電動機の誘起電圧の大きさが変化するため、回転速度と電源電圧の大きさに加えて永久磁石の温度によっても弱め界磁電流を制御することが必要になる。
 したがって、永久磁石の温度変化などにより永久磁石の磁束量が変化した場合、永久磁石同期電動機の出力トルクの変化や運転効率の悪化が生じてしまうため、トルク、回転速度、電源電圧、磁石温度などの変動に応じて永久磁石同期電動機を好適に制御する必要がある。
 一般に、永久磁石同期電動機の温度変化に伴う出力トルクの補償方法に関しては、トルク、回転速度、電源電圧、磁石温度の変動に対応して電流指令を補償する手法が知られており、例えば、特許文献1や特許文献2に開示されている。
 特許文献1では、バッテリ電圧に基づきモータに印加できる電圧値を算出し、モータ温度に基づいて算出された電圧値を補正した補正電圧値を求め、この補正電圧値と要求トルクに基づき弱め界磁電流値を算出することで、モータの温度上昇に伴うモータの特性の変動を補償し、出力トルク特性の劣化を防止する技術が開示されている。
 特許文献2では、バッテリ電圧に応じた複数のdq軸電流指令マップを用いて、バッテリ電圧の変化とモータ温度の変化に応じてモータ電流を変化させることで、バッテリ電圧変化時の効率向上とモータ温度変化時のトルク変動を抑制する技術が開示されている。
特開2000-184766号公報 特開2006-304441号公報
 しかしながら、特許文献1に開示の技術は、モータ温度に基づいてモータの電圧特性の変動分を永久磁石同期電動機の電圧方程式より算出し、この電圧変動分をインバータ入力電圧より算出した最大モータ印加電圧から差し引くことで電圧補正し、この電圧補正値に基づいてd、q軸電流指令を算出している。そのため、モータ温度に基づいてトルク指令を変更した場合、それに伴う出力電圧の変動を補正する演算ステップにおいて出力電圧の飽和度合いに応じて弱め界磁電流を制御する必要があるため、トルク指令に対して最適なd、q軸電流指令値の算出が複雑になり、トルク制御応答を高く設定できない恐れがある。また、演算式に用いるインダクタンス値にモータ電流依存性を考慮していないため、d、q軸電流指令の配分を最適には制御できず、運転効率の悪化が生じる。
 また、特許文献2に開示の技術は、トルク指令、モータ回転数、バッテリ電圧、モータ温度の変化に応じたd、q軸電流指令の算出に複数の多次元テーブルを用いるため、複雑なテーブル参照演算を実施しており制御装置の演算負荷が大きくなる。また、これらのテーブルデータを予め算出するための試験や解析、調整時間の増加や、テーブルデータを格納するためのメモリ容量の増加といった課題がある。
 本発明の目的は、上記の課題に鑑み、トルク指令、回転速度、電源電圧、磁石温度などの変化に対する永久磁石同期電動機の出力トルク誤差を抑制するとともに高効率運転のための適切な電流指令を算出し、簡単な構成で高精度かつ高応答なトルク制御を可能とする永久磁石同期機の駆動装置、永久磁石同期機のトルク補償方法、および電気車を提供することである。
 かかる課題を解決するため本発明においては、一例において、永久磁石同期機を駆動する電力変換器と、前記電力変換器を制御する制御器とを有する永久磁石同期機の駆動装置であって、前記制御器は、入力されたトルク指令値を補正するトルク補正部と、前記トルク補正部によって補正されたトルク指令値から、前記永久磁石同期機を駆動制御するための電流指令値を生成する電流指令演算部とを備え、前記トルク補正部は、前記永久磁石同期機の磁石磁束と関連付けられる値と、前記電流指令演算部によって生成された電流指令値とに基づいて前記トルク指令値を補正することを特徴とする。
 本発明によれば、永久磁石同期電動機の磁石温度の変化による出力トルクの調整手段と、磁石温度の変化による出力電圧の調整手段とを機能分離し、永久磁石同期機の磁石磁束と関連付けられる値と電流指令値に基づいてトルク指令値を補正することで、磁石温度変動時のトルク精度、運転効率およびトルク制御応答の向上が可能になる。
実施例1の永久磁石同期機駆動システムの構成例を表すブロック図。 実施例1の永久磁石同期機の制御において使用される使用される座標系と記号の定義を示す図。 実施例1の電流指令演算部111の構成例を表すブロック図。 実施例1のトルク補正部110の構成例を表すブロック図。 実施例1のトルク補正係数演算部301の構成例を表すブロック図。 基準温度Tmag0における永久磁石同期機のd、q軸電流と出力トルクの関係を例示したグラフ。 基準温度Tmag0よりも高い磁石温度条件における永久磁石同期機のd、q軸電流と出力トルクの関係を例示したグラフ。 基準温度Tmag0よりも低い磁石温度条件における永久磁石同期機のd、q軸電流と出力トルクの関係を例示したグラフ。 基準温度Tmag0における出力トルクと基準温度Tmag0よりも高い磁石温度条件における永久磁石同期機のd、q軸電流と出力トルク比の関係を例示したグラフ。 実施例1の変形例であるトルク補正係数演算部301bの構成例を表すブロック図。 実施例1の変形例であるリラクタンストルク比率補正係数演算部402bの構成例を表すブロック図。 実施例1の変形例であるトルク補正部110cの構成例を表すブロック図。 実施例2の永久磁石同期機駆動システムの構成例を表すブロック図。 実施例2の電流指令演算部111dの構成例を表すブロック図。 実施例3の永久磁石同期機駆動システムの構成例を表すブロック図。 実施例3の電流指令演算部111eの構成例を表すブロック図。 実施例4の電流指令演算部111fの構成例を表すブロック図。 実施例5の永久磁石同期機駆動システムの構成例を表すブロック図。 実施例5のトルク補正部110gの構成例を表すブロック図。 実施例5のトルク補正係数演算部301gの構成例を表すブロック図。 実施例5のd軸電流特性補償係数演算部902gの構成例を表すブロック図。 実施例6の永久磁石同期機駆動システムの構成例を表すブロック図。 実施例6のトルク指令損失補償部117hの構成例を表すブロック図。 実施例6の鉄損演算部1201hの構成例を表すブロック図。 実施例6の機械損演算部1202hの構成例を表すブロック図。 実施例6の負荷損演算部1203hの構成例を表すブロック図。 実施例6の出力調整部1205hの構成例を表すブロック図。 実施例6の変形例である永久磁石同期機駆動システムの構成例を表すブロック図。 実施例6の変形例であるトルク指令損失補償部117iの構成例を表すブロック図。 実施例6の変形例である鉄損演算部1201iの構成例を表すブロック図。 実施例6の変形例である鉄損演算部1201jの構成例を表すブロック図。 実施例6の変形例である永久磁石同期機駆動システムの構成例を表すブロック図。 実施例6の変形例であるトルク指令損失補償部117kの構成例を表すブロック図。 実施例6の変形例である鉄損演算部1201kの構成例を表すブロック図。 実施例7の永久磁石同期機駆動システムの構成例を表すブロック図。 実施例7のトルク補正部110mの構成例を表すブロック図。 実施例7のトルク補正係数演算部1301mの構成例を表すブロック図。 実施例7の変形例であるトルク補正係数演算部1301nの構成例を表すブロック図。 実施例7の変形例であるトルク補正係数演算部1301oの構成例を表すブロック図。 実施例8として、実施例1~7のいずれかの永久磁石同期機駆動システムを搭載する鉄道車両の一部の概略構成を示した図。
 以下、図面を参照して本発明の実施例1~8について詳細に説明する。なお、同一の要素については、全ての図において、原則として同一の符号を付している。また、同一の機能を有する部分については、説明を省略する。以下の実施例および変形例は、矛盾しない範囲で、その一部または全部を組み合わせてもよい。
 図1は、実施例1の永久磁石同期機駆動システムの構成例を表すブロック図である。実施例1の永久磁石同期機駆動システムは、制御対象である永久磁石同期機103と、永久磁石同期機103を駆動する電力変換器102と、電力変換器102を制御する制御器101と、永久磁石同期機103のトルク指令Tm*を発生する指令発生器105と、永久磁石同期機103に流れる電流を検出する相電流検出部121と、永久磁石同期機103の回転子の磁極位置を検出する回転位置検出部124と、永久磁石同期機103の磁石温度Tmagを検出する温度検出部125を備える。永久磁石同期機103の磁石温度Tmagは、永久磁石同期機103の永久磁石の磁束量と関連付けられる値の一例である。
 電力変換器102は、電力変換器102に電力を供給する入力端子123a、123bと、6個のスイッチング素子Sup~Swnで構成される主回路部132と、主回路部132を直接駆動するゲート・ドライバ133と、電力変換器102の過電流保護用に取り付けた直流抵抗器134と、平滑用コンデンサ131を備える。電力変換器102は、制御器101が生成したゲート指令信号に基づいて、入力端子123a、123bから供給される直流電力を三相交流電力に変換して、三相交流電力を永久磁石同期機103に供給する。
 相電流検出部121は、電力変換器102から永久磁石同期機103に流れる三相交流電流iu、iwを検出する。相電流検出部121は、たとえばホール素子を用いた電流センサにより実現される。なお、図1の相電流検出部121は2相検出により交流電流を検出する構成としているが、3相検出としてもよい。また、相電流センサを用いず、電力変換器102の過電流保護用に取り付けられた直流抵抗器134を流れる電流値から推定される交流電流値を用いてもよい。
 回転位置検出部124は、永久磁石同期機103の回転子位置(回転角度)を検出する。回転位置検出部124は、たとえばレゾルバやエンコーダ、磁気センサなどにより実現される。また、検出された回転位置からベクトル制御部112にて永久磁石同期機103の回転速度ωrを算出する。なお、回転位置センサや速度センサを用いず、電圧指令値や電流検出値などに基づいて永久磁石同期機103の回転速度ωrや磁極位置θdを推定したものを用いて、速度センサレスや位置センサレスの構成としてもよい。
 温度検出部125は、永久磁石同期機103の磁石温度を検出する。温度検出部125は、たとえば温度センサにより実現される。なお、温度検出部125は、磁石温度そのものではなく、永久磁石同期機103のフレーム温度や固定子のコイル温度を検出し、そのフレーム温度検出値やコイル温度検出値から永久磁石同期機103の磁石温度Tmagを推定した値を用いてもよい。また、永久磁石同期機103の回転速度に応じた誘起電圧の大きさを検出または推定し、その値から磁石温度Tmagを推定してもよい。
 指令発生器105は、交流電動機へのトルク指令Tm*を発生する、制御器101の上位に位置する制御器である。制御器101は、指令発生器105のトルク指令Tm*に基づき、永久磁石同期機103の発生トルクを制御する。この上位の制御器としては、例えば、永久磁石同期機103に流れる電流を制御する場合には電流制御器が用いられ、あるいは回転速度や位置を制御する場合には速度制御器や位置制御器が用いられる。本実施例ではトルクの制御を行うことを目的としているためトルク制御器として動作している。
 制御器101は、トルク補正部110と、電流指令演算部111と、ベクトル制御部112と、極座標変換部113と、位相演算部114と、三相座標変換部115と、PWM信号制御器116を備える。制御器101は、永久磁石同期機103を流れる三相交流電流iu、iwの検出値である交流電流検出値Iu、Iwと、指令発生器105からのトルク指令Tm*とに基づいた電流制御系と位相制御系の演算結果から、電力変換器102のスイッチング素子を駆動するためのゲート指令信号を生成し、電力変換器102のゲート・ドライバ133に供給する。
 図2は、本発明による永久磁石同期機103の制御において使用される座標系と記号の定義を示す図である。図2において、a軸とb軸で定義されるab軸座標系は、永久磁石同期機103の固定子巻線の位相を表す固定子座標系であり、a軸は一般的に永久磁石同期機103のu相巻線位相が基準にとられる。d軸とq軸で定義されるdq軸座標系は、永久磁石同期機103の回転子の磁極位置を表す回転子座標系であり、永久磁石同期機103の回転子磁極位置と同期して回転する。永久磁石同期機の場合、d軸は一般的に回転子に取り付けられた永久磁石による磁極のN極方向が基準にとられ、d軸は磁極軸とも呼ばれる。dc軸とqc軸で定義されるdc-qc軸座標系は、永久磁石同期機103の回転子磁極位置の推定位相、すなわち制御器101がd軸、q軸方向と想定している座標系であり、制御軸とも呼ばれる。なお、各座標系において組み合わされる座標軸同士はいずれも互いに直交している。
 上記の各座標系において、図2に示すように、a軸を基準としたd軸、dc軸の各軸の位相をθd、θdcとそれぞれ表す。また、d軸に対するdc軸の偏差をΔθcと表す。なお、回転位置検出部124にて検出した永久磁石同期機103の磁極位置θdを用いてベクトル制御を実施する場合、dq軸座標系とdc-qc軸座標系は一致することになり、d軸に対するdc軸の偏差Δθcは零となる。ただし、回転位置検出部124にて検出した永久磁石同期機103の回転子磁極位置にセンサ取付誤差などの角度誤差があった場合はd軸に対するdc軸の偏差Δθcが生じることになる。
 先ず、図1の制御器101の構成について詳しく説明する。
 トルク補正部110は、指令発生器105から出力されるトルク指令Tm*と、温度検出部125から出力される磁石温度Tmagと、電流指令演算部111から出力されるdc-qc軸座標系上の電流指令値Idc*、Iqc*に基づいて演算されたトルク指令補正値Trq**を出力する。
 電流指令演算部111は、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1と、平滑用コンデンサ131の電圧検出値Ecfと、トルク補正部110から出力されるトルク指令補正値Trq**に基づいて演算されたdc-qc軸座標系上の電流指令値Idc*、Iqc*を出力する。
 ベクトル制御部112は、永久磁石同期機103の交流電流検出値である三相交流電流iu、iwを、トルク電流成分(q軸電流成分)と弱め界磁電流成分(d軸電流成分)に分離して、電流指令演算部111が出力したdc-qc軸座標系上の電流指令値Idc*、Iqc*と一致させるべく、それぞれ電流制御を行う。電流制御の結果、回転座標系であるdc-qc軸上の電圧指令値Vdc*ならびにVqc*が演算され、出力される。また、ベクトル制御部112では、永久磁石同期機103の駆動周波数ω1や制御位相θdcも演算され、出力される。なお、回転位置検出部124で検出した回転速度ωrや磁極位置θdを駆動周波数ω1や制御位相θdcとして用いてもよいし、電圧指令値や電流検出値などに基づいて永久磁石同期機103の回転速度ωrや磁極位置θdを推定したものを用いてもよい。
 極座標変換部113は、ベクトル制御部112が出力した電圧指令値Vdc*、Vqc*を電圧振幅指令値V1*と電圧指令位相δに変換し、出力する。位相演算部114は、電圧指令位相δを制御位相θdcに加算して、電圧位相θvとして出力する。三相座標変換部115は、極座標変換部113が出力した電圧振幅指令値V1を、位相演算部114が出力した電圧位相θvに基づいて三相交流電圧指令Vu*、Vv*、Vw*に変換し、PWM信号制御器116に出力する。
 PWM信号制御器116は、任意のキャリア周波数fcと平滑用コンデンサ131の電圧検出値Ecfに基づいて三角波キャリアを生成し、その三角波キャリアと三相交流電圧指令Vu*、Vv*、Vw*に基づく変調波との大小比較を行い、パルス幅変調を実施する。このパルス幅変調の演算結果にて生成されたゲート指令信号によって、電力変換器102のスイッチング素子をオン/オフ制御する。
 以下、本発明の実施例1の特徴部分であるトルク補正部110と電流指令演算部111について詳しく説明する。
 図3は、実施例1の電流指令演算部111の構成例を表すブロック図である。図3に示すように電流指令演算部111は、磁束量制限値演算部201と、d軸電流指令演算部202と、q軸電流指令演算部203を備える。電流指令演算部111は、トルク指令補正値Trq**と、磁石温度Tmagと、電圧検出値Ecfと、駆動周波数ω1の変動に対して最適なd、q軸電流指令値を算出し、出力する。
 磁束量制限値演算部201は、平滑用コンデンサ131の電圧検出値Ecfと、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1に基づいて、電力変換器102の出力電圧の制限値となる磁束量制限値λlimを演算し、d軸電流指令演算部202およびq軸電流指令演算部203に出力する。磁束量制限値λlimは、電圧検出値Ecfに比例し、かつ、駆動周波数ω1に反比例する関数であればよい。磁束量制限値λlimは、例えば、以下の式(1)にて演算されるものとする。
Figure JPOXMLDOC01-appb-M000001
 d軸電流指令演算部202は、トルク補正部110から出力されるトルク指令補正値Trq**と、磁束量制限値演算部201から出力される磁束量制限値λlimに基づいてd軸電流指令値Idc*を演算し出力する。q軸電流指令演算部203は、トルク補正部110から出力されるトルク指令補正値Trq**と、磁束量制限値演算部201から出力される磁束量制限値λlimに基づいてq軸電流指令値Iqc*を演算し出力する。
 実施例1の電流指令演算部111は、d、q軸電流指令の演算に際して、永久磁石同期機103の駆動周波数ω1と平滑用コンデンサ131の電圧検出値Ecfの比をとり磁束量制限値λlimとして一元化して利用することで、トルク指令補正値Trq**と磁束量制限値λlimを入力とする参照テーブルでd、q軸電流指令演算を構成可能となる。なお、d軸電流指令の参照テーブルおよびq軸電流指令の参照テーブルは、例えば予め試験や解析から求めたものを用いればよい。また、参照テーブルは任意の基準となる磁石温度条件におけるd、q軸電流指令値を設定する。
 さらに、電流指令演算部111は、トルク指令と磁石温度の変化による出力トルクの変動をトルク指令補正値Trq**を調整することで抑制し、回転速度と電源電圧の変化による出力電圧の変動を磁束量制限値λlimを調整することで抑制する。このように電流指令演算部111は、トルク指令、回転速度、電源電圧、磁石温度の変化に対する出力トルクの変動補正と出力電圧の変動補正を分離して制御することが可能となる。
 したがって、実施例1は、磁石温度の変化による永久磁石同期機103の出力トルク補償を、トルク補正部110にて磁石温度Tmagと電流指令値に基づきトルク指令補正値Trq**を調整することで高精度かつ高応答なトルク制御を実現可能となる。
 図4は、実施例1のトルク補正部110の構成例を表すブロック図である。図4に示すようにトルク補正部110は、トルク補正係数演算部301と、乗算器801を備える。トルク補正部110は、トルク指令Tm*にトルク補正係数演算部301から出力されるトルク補正係数Ktemp*を乗算した演算結果をトルク指令補正値Trq**として出力する。
 図5は、実施例1のトルク補正係数演算部301の構成例を表すブロック図である。図5に示すようにトルク補正係数演算部301は、温度検出部125にて検出した永久磁石同期機103の磁石温度Tmagと、電流指令演算部111から出力されるd軸電流指令値Idc*およびq軸電流指令値Iqc*に基づいて、トルク補正係数Ktemp*を演算し、出力する。なお、トルク補正係数Ktemp*の演算には、例えば、磁石温度Tmagと、d軸電流指令値Idcと、q軸電流指令値Iqc*を入力とする参照テーブルを用いればよい。また、トルク補正係数Ktemp*の参照テーブルは予め試験や解析から求めたものを用いればよい。
 次に、実施例1の特徴である永久磁石同期機の磁石温度変化に対するトルク補償手段について詳しく説明する。
 先ず、実施例1の電流指令演算部111は、磁石温度を一定とした場合、トルク指令、回転速度、電源電圧の変化に対して最適なd、q軸電流指令を算出することが可能な構成である。また、もう一つの特徴として、トルク制御と、回転速度と電源電圧の変化による出力電圧の変動を個別に制御することが可能である。したがって、永久磁石同期機の磁石温度の変化による出力トルク変動分の補償は、d軸電流指令演算部202およびq軸電流指令演算部203の入力であるトルク指令値を調整するだけでトルク補償が可能となる。
 次に、トルク補正部110のトルク補正係数Ktemp*について具体的な例を示して説明する。
 図6は、基準温度Tmag0における永久磁石同期機のd、q軸電流と出力トルクの関係を例示したグラフである。横軸を永久磁石同期機に流れるd軸電流id、縦軸を永久磁石同期機に流れるq軸電流iqとし、永久磁石同期機が出力するトルクの大きさを等高線で表している。なお、出力トルクの大きさを表す等高線は、A<B<C<D<Eの順で出力トルクが大きいものとする。図6の任意の磁石温度条件において、例えば、Z点で示したd軸電流およびq軸電流の動作点で永久磁石同期機を電流制御した場合、出力トルクの大きさはCとなる。また、このときの磁石温度条件を基準温度Tmag0とする。
 図7は、基準温度Tmag0よりも高い磁石温度条件における永久磁石同期機のd、q軸電流と出力トルクの関係を例示したグラフである。図7に示すトルクマップによれば、図6と同じd軸電流およびq軸電流のZ点で永久磁石同期機を電流制御した場合、出力トルクの大きさはCよりも下がってしまうことがわかる。
 図8は、基準温度Tmag0よりも低い磁石温度条件における永久磁石同期機のd、q軸電流と出力トルクの関係を例示したグラフである。図6、図7と同じd軸電流およびq軸電流のZ点で永久磁石同期機を電流制御した場合、出力トルクの大きさはCよりも上がってしまうことがわかる。
 このように、永久磁石を有する同期電動機の駆動装置において、永久磁石の温度変化によって永久磁石の磁束量が変化し、トルク指令に応じた同一の電流動作点に制御しても出力トルクが変動してしまう。
 そこで実施例1では、トルク補正部110にて磁石温度Tmagと、d軸電流指令値Idc*と、q軸電流指令値Iqc*に基づいてトルク補正係数Ktemp*を算出し、このトルク補正係数Ktemp*を用いてトルク指令Tm*を補正することで永久磁石同期機の磁石温度の変化による出力トルクの変動分を補償する。
 図9は、基準温度Tmag0における出力トルクと基準温度Tmag0よりも高い磁石温度条件における永久磁石同期機のd、q軸電流と出力トルク比の関係を例示したグラフである。図9は、図6の基準温度Tmag0における出力トルクと図7の基準温度Tmag0よりも高い磁石温度における出力トルクの比を、d軸電流idとq軸電流iqのテーブルマップとして表したものである。
 実施例1では、例えば、電流指令演算部111のd軸電流指令演算部202およびq軸電流指令演算部203の参照テーブルに、磁石温度条件が基準温度Tmag0で算出したd、q軸電流指令値を設定した場合、トルク補正部110のトルク補正係数Ktemp*には、電流指令演算部111のd軸電流指令演算部202およびq軸電流指令演算部203の算出条件と同じ基準温度Tmag0における出力トルクを基準にして、磁石温度の変化に応じた出力トルクの比を参照テーブルとして有しておけば、磁石温度の変化による出力トルク変動分の補償が実施可能となる。
 したがって、本実施例のように、d、q軸電流指令演算の入力であるトルク指令値を磁石温度に応じて調整することで、磁石温度の変化による出力トルク変動分を補償することができる。
 なお、実施例1では、トルク補正部110のトルク補正係数演算部301において、磁石温度Tmag、d軸電流指令値Idc*、q軸電流指令値Iqc*を入力としてトルク補正係数Ktemp*を出力する三次元テーブルデータを用いた構成例を示した。多次元のテーブルデータを利用することは、複数の入力の変化に対する複雑な状態変化を考慮できるため、より高精度なトルク補償制御が可能となる。しかしながら、3次元以上のテーブルデータはd、q軸電流指令値の算出のための試験や解析・調整時間が増大してしまうことや、制御装置のメモリ容量やテーブル参照の演算負荷の増大といった問題が生じてしまう。
 図10は、実施例1の変形例であるトルク補正係数演算部301bの構成例を表すブロック図である。実施例1は、磁石温度、d軸電流指令、q軸電流指令に応じたトルク補正係数Ktemp*の算出に、三次元参照テーブルを用いるトルク補正係数演算部301の代わりに、三次元参照テーブルを用いないトルク補正係数演算部301bを用いることでも実現できる。
 図10において、トルク補正係数演算部301bは、磁石温度依存トルク補正係数演算部401bと、リラクタンストルク比率補正係数演算部402bと、加算器802bを備える。トルク補正係数演算部301bは、磁石温度依存トルク補正係数演算部401bから出力されるトルク補正係数Ktemp1*と、リラクタンストルク比率補正係数演算部402bから出力されるトルク補正係数Ktemp2*を加算した値をトルク補正係数Ktemp*として出力する。
 まず、磁石温度依存トルク補正係数演算部401bは、磁石温度Tmagに基づいて、基準温度Tmag0を基準として磁石温度の変化によるマグネットトルクの変化量に相当する係数を算出し、トルク補正係数Ktemp1*として出力する。マグネットトルクは、永久磁石同期機の磁石磁束の大きさに比例するため、磁石温度Tmagに応じた磁石磁束の変化量を算出し、基準温度Tmag0を基準としてマグネットトルクの変化量に相当するトルク補正係数Ktemp1*を演算すればよい。
 次に、リラクタンストルク比率補正係数演算部402bについて詳しく説明する。
 図11は、実施例1の変形例であるリラクタンストルク比率補正係数演算部402bの構成例を表すブロック図である。図11に示すようにリラクタンストルク比率補正係数演算部402bは、リラクタンストルク比率磁石温度補正部501bと、リラクタンストルク推定演算部502bと、乗算器803bを備える。リラクタンストルク比率補正係数演算部402bは、d軸電流指令値Idc*と、q軸電流指令値Iqc*と、磁石温度Tmagに基づいて、基準温度Tmag0を基準として磁石温度の変化による任意のIdc*、Iqc*の電流動作点でのマグネットトルクとリラクタンスの比率の変化量に相当する係数を算出し、トルク補正係数Ktemp2*として出力する。
 リラクタンストルク比率磁石温度補正部501bは、基準温度Tmag0に基づいて、マグネットトルクに対するリラクタンストルクの比率を補正するための係数を乗算器803bに出力する。
 リラクタンストルク推定演算部502bは、d軸電流指令値Idc*とq軸電流指令値Iqc*に基づいてリラクタンストルクを推定演算し、乗算器803bに出力する。
 したがって、リラクタンストルク比率補正係数演算部402bは、三次元テーブルを用いずに、磁石温度Tmag、d軸電流指令値Idc*、q軸電流指令値Iqc*の変化に応じたトルク補正係数Ktemp2*を算出できる。永久磁石同期機の磁石温度の変化およびトルク指令、回転速度、電源電圧の変化によって変わる最適なd、q軸電流指令値に応じてトルク補正を行うため、これにより磁石温度が変化した場合に高効率かつ高精度なトルク制御が実現可能となる。
 なお、d軸インダクタンスLdとq軸インダクタンスの差がない非突極型の永久磁石同期機の場合、リラクタンストルクは0となるため、リラクタンストルク比率補正係数演算部402bは必要なくなる。また、リラクタンストルク比率補正係数演算部402bにおいて、d軸電流指令値Idc*、q軸電流指令値Iqc*の代わりに、d軸電流検出値Idc、q軸電流検出値Iqcを用いても実現可能である。
 さらに、電流制御において、トルク電流比最大化や効率最大化などd、q軸電流指令に制約をかけた場合は、リラクタンストルク比率補正係数演算部402bの入力であるd軸電流指令値Idc*、q軸電流指令値Iqc*の代わりにトルク指令を用いることが可能である。
 また、実施例1のトルク補正係数演算部301は、電流指令演算部111のd軸電流指令演算部202およびq軸電流指令演算部203の基準温度Tmag0を基準として、同一のid、iq電流動作点における永久磁石同期機の磁石温度の変化による出力トルクの変動比率をトルク補正係数Ktemp*として出力すれば実施可能となる。
 一般に、永久磁石同期機の出力トルクTmの大きさは式(2)で表される。式(2)において、永久磁石同期機の磁石磁束の大きさをΦm、d軸インダクタンスをLd、q軸インダクタンスをLq、極対数をPm、永久磁石同期機に流れるd軸電流をid、q軸電流をiqとする。なお、式(2)の右辺第一項がマグネットトルク、右辺第二項がリラクタンストルクとなる。
Figure JPOXMLDOC01-appb-M000002
 したがって、トルク補正係数演算部301は、基準温度Tmag0における永久磁石同期機の磁石磁束Φm0、磁石温度Tmagにおける永久磁石同期機の磁石磁束Φm’として、d軸電流指令値Idc*、q軸電流指令値Iqc*で電流制御した場合の磁石温度の変化による出力トルクの変動分を推定し、トルク補正係数Ktemp*を演算する。トルク補正係数Ktemp*は、例えば、以下の式(3)にて演算されるものとする。
Figure JPOXMLDOC01-appb-M000003
 なお、式(3)において、磁石温度Tmagにおける永久磁石同期機の磁石磁束Φm’は、Tmagに基づく関数とすればよく、例えば、以下の式(4)で演算されるものとする。また、温度係数は永久磁石同期に使用した永久磁石の種類、特性によって変更する必要がある。
Figure JPOXMLDOC01-appb-M000004
 さらに、式(3)において、d軸インダクタンスLdおよびq軸インダクタンスLqは、d軸電流、q軸電流に対して非線形に変化する特性を有するため、d軸電流指令値Idc*、q軸電流指令値Iqc*またはd軸電流検出値Idc、q軸電流検出値Iqcに基づいてインダクタンスの値を算出することで、本実施例のトルク補正による出力トルク精度が向上可能である。
 なお、本実施例では、トルク補正部110において、トルク補正係数演算部301または301bはトルク補正係数Ktemp*を演算し、指令発生器105からのトルク指令Tm*にトルク補正係数Ktemp*を乗算することでトルク指令補正値Trq**を算出したが、磁石温度Tmagとd軸電流指令値Idc*とq軸電流指令値Iqc*に基づくトルク補償量ΔTrq-mag*を算出し、このトルク補償量ΔTrq-mag*をトルク指令Tm*に加算することでトルク指令補正値Trq**を算出し、用いてもよい。
 図12は、実施例1の変形例であるトルク補正部110cの構成例を表すブロック図である。実施例1は、トルク指令、磁石温度、d軸電流指令、q軸電流指令の変化に応じたトルク指令補正値Trq**の演算において、永久磁石同期機の磁石温度の変化による出力トルクの補正量を算出し、指令発生器105からのトルク指令Tm*に加算することで、トルク補正部110の代わりに、トルク補正部110cを用いることでも実現できる。
 トルク補正部110cは、トルク補償量演算部302cと加算器804cを備える。トルク補正部110cは、トルク補償量演算部302cにおいて磁石温度Tmagとd軸電流指令値Idc*とq軸電流指令値Iqc*に基づいてトルク補償量ΔTrq-mag*を算出し、このトルク補償量ΔTrq-mag*をトルク指令Tm*に加算した演算結果をトルク指令補正値Trq**として出力する。
 トルク補償量演算部302cは、トルク補正係数演算部301や301bにおいて、出力されるトルク補正係数Ktemp*の代わりに、基準温度Tmag0を基準として、同一のid、iq電流動作点における永久磁石同期機の磁石温度の変化による出力トルクの変動量を算出し、トルク補償量ΔTrq-mag*として出力すれば実現可能となる。
 以上説明したように、本実施例によれば、永久磁石同期機の磁石温度と電流指令値に基づいてトルク指令値を補正することで、磁石温度の変化による出力トルク変動分を補償する。これにより、より簡易な構成で、磁石温度変動時のトルク精度およびトルク制御応答の向上が可能になる。
 実施例2では、d軸電流指令値Idc*とq軸電流指令値Iqc*の演算において、平滑用コンデンサ131の電圧検出値Ecfとベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1に加えて、温度検出部125から出力される永久磁石同期機103の磁石温度Tmagに基づいて磁束量制限値λlimを算出する。これにより、実施例1よりも磁石温度の変化による出力電圧の変動分を考慮した最適なd軸電流指令値Idc*とq軸電流指令値Iqc*を演算できるようになり、実施例1よりも高効率な運転が可能な永久磁石同期機の駆動装置が実現できる。
 図13は、実施例2の永久磁石同期機駆動システムの構成例を表すブロック図である。実施例2の説明において、図1に示した実施例1と比較して、相違部分のみを説明する。
 図13において、実施例2の永久磁石同期機の駆動装置は、図1の実施例1の電流指令演算部111の代わりに、電流指令演算部111dを用いることで実現できる。
 図14は、実施例2の電流指令演算部111dの構成例を表すブロック図である。図14に示すように電流指令演算部111dは、磁束量制限値演算部601dと、d軸電流指令演算部202と、q軸電流指令演算部203を備える。
 磁束量制限値演算部601dは、平滑用コンデンサ131の電圧検出値Ecfと、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1と、温度検出部125から出力される永久磁石同期機103の磁石温度Tmagに基づいて磁束量制限値λlimを演算し、d軸電流指令演算部202およびq軸電流指令演算部203に出力する。
 磁束量制限値演算部601dにおいて、d軸電流指令演算部202およびq軸電流指令演算部203の入力変数である磁束量制限値λlimは、電圧検出値Ecfと駆動周波数ω1の比をとったものに磁石温度の変化によって生じる磁石磁束が増減する分に応じた補正値を加算すればよい。例えば、以下の式(5)にて演算されるものとする。
Figure JPOXMLDOC01-appb-M000005
 式(5)において、永久磁石同期機の磁石温度Tmagと、d軸電流指令演算部202およびq軸電流指令演算部203の演算において設定した基準温度Tmag0と、補正係数Kvに基づいて演算した右辺第一項が、磁石温度の変化によって磁石磁束が増減する分に応じた磁束量制限値の補正値相当となる。なお、補正係数Kvは定数でもよいし、磁石温度Tmagの関数式として演算してもよい。
 また、磁束量制限値λlimは、電圧検出値Ecfと駆動周波数ω1の比をとったものに、磁石温度Tmagに応じた補正係数を乗算したものでもよい。例えば、以下の式(6)にて演算されるものとする。
Figure JPOXMLDOC01-appb-M000006
 なお、式(6)において、補正係数Kv’は、定数でもよいし、磁石温度Tmagの関数式として演算してもよい。
 実施例2の電流指令演算部111dは、磁束量制限値演算部601d以外の構成は、実施例1の電流指令演算部111と同じである。
 したがって、実施例2では、磁束量制限値λlimを磁石温度に基づいて調整することで、磁石温度の変化による出力電圧の変動分を考慮したd軸電流指令およびq軸電流指令の演算が実現できるようになり、永久磁石同期機の駆動装置の高効率化を図ることができる。
 実施例3では、d軸電流指令値Idc*とq軸電流指令値Iqc*の演算において、平滑用コンデンサ131の電圧検出値Ecfとベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1に加えて、電力変換器102の出力電圧制限値V1limを制御する目標制限変調率Ymf*に基づいて磁束量制限値λlimを算出する。これにより、電力変換器102の最大出力電圧やPWM制御の最大変調率の仕様や制約条件が変更されたことによる出力電圧最大値の変動分を考慮した最適なd軸電流指令値Idc*とq軸電流指令値Iqc*を演算できるようになり、実施例1よりも高効率な運転が可能な永久磁石同期機の駆動装置が実現できる。
 図15は、実施例3の永久磁石同期機駆動システムの構成例を表すブロック図である。図1に示した実施例1と比較して、相違部分のみを説明する。
 図15において、実施例3の永久磁石同期機の駆動装置は、図1の実施例1の電流指令演算部111およびベクトル制御部112の代わりに、電流指令演算部111eおよびベクトル制御部112eを用いることで実現できる。
 図16は、実施例3の電流指令演算部111eの構成例を表すブロック図である。図16に示すように電流指令演算部111eは、磁束量制限値演算部601eと、d軸電流指令演算部202と、q軸電流指令演算部203を備える。
 磁束量制限値演算部601eは、平滑用コンデンサ131の電圧検出値Ecfと、ベクトル制御部112eから出力される永久磁石同期機103の駆動周波数ω1と、ベクトル制御部112eから出力される電力変換器102の出力電圧制限値V1limを制御する目標制限変調率Ymf*に基づいて磁束量制限値λlimを演算し、d軸電流指令演算部202およびq軸電流指令演算部203に出力する。出力電圧制御値V1limは、例えば、以下の式(7)にて演算されるものとする。
Figure JPOXMLDOC01-appb-M000007
 なお、目標制限変調率Ymf*は1以下の値を設定し、電力変換器102において出力電圧最大値が得られる同期1パルスでPWM制御した場合、目標制限変調率Ymf*は1となる。また、Ecf0は出力電圧制御値V1limを決定するための平滑用コンデンサ131の直流電圧の基準値である。
 目標制限変調率Ymf*は、例えば、出力電圧制限値V1limに制御するために、ベクトル制御部112eにて弱め界磁制御を実施する場合の弱め界磁制御の目標電圧値に基づく目標変調率とすればよい。または、目標制限変調率Ymf*は、PWM制御の運転条件から決まる目標変調率とすればよい。
 したがって、磁束量制限値演算部601dにおいて、d軸電流指令演算部202およびq軸電流指令演算部203の入力変数である磁束量制限値λlimは、電圧検出値Ecfと駆動周波数ω1の比をとったものに電力変換器102の目標制限変調率Ymf*を乗算したものでよい。例えば、以下の式(8)にて演算されるものとする。
Figure JPOXMLDOC01-appb-M000008
 実施例2の電流指令演算部111eは、磁束量制限値演算部601e以外の構成は、実施例1の電流指令演算部111と同じである。
 したがって、実施例3では、磁束量制限値λlimを電力変換器102の出力電圧の制限値に基づいて調整することで、電力変換器の出力電圧やPWM制御演算の制約による出力電圧の変動分を考慮したd軸電流指令およびq軸電流指令の演算が実現できるようになり、電力変換器や制御器の仕様や性能、運転条件に応じて永久磁石同期機の駆動装置の高効率化を図ることができる。
 実施例4では、d軸電流指令値Idc*とq軸電流指令値Iqc*の演算において、平滑用コンデンサ131の電圧検出値Ecfと、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1と、トルク補正部110から出力されるトルク指令補正値Trq**に基づいて、予め試験やシミュレーション解析などによって算出した三次元テーブルを利用する。これにより、実施例1よりもトルク指令、回転速度、電源電圧の変化に対して最適なd軸電流指令値Idc*とq軸電流指令値Iqc*を演算できるようになり、実施例1よりも高効率な運転が可能な永久磁石同期機の駆動装置が実現できる。
 図17は、実施例4の電流指令演算部111fの構成例を表すブロック図である。実施例4の永久磁石同期機の駆動装置は、図1の実施例1の電流指令演算部111の代わりに、電流指令演算部111fを用いることで実現できる。図1に示した実施例1と比較して、構成の相違部分のみを説明する。
 図17において、電流指令演算部111fは、d軸電流指令三次元テーブル参照部701fと、q軸電流指令三次元テーブル参照部702fを備える。
 d軸電流指令三次元テーブル演算部701fは、平滑用コンデンサ131の電圧検出値Ecfと、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1と、トルク補正部110から出力されるトルク指令補正値Trq**に基づいてd軸電流指令値Idc*を演算し、出力する。q軸電流指令三次元テーブル参照部702fは、平滑用コンデンサ131の電圧検出値Ecfと、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1と、トルク補正部110から出力されるトルク指令補正値Trq**に基づいてq軸電流指令値Iqc*を演算し、出力する。
 d軸電流指令三次元テーブル演算部701fおよびq軸電流指令三次元テーブル参照部702fにおいて、d軸電流指令値Idc*およびq軸電流指令値Iqc*の算出に用いる三次元テーブルデータは、永久磁石の基準温度Tmag0を磁石温度条件の設定値としてトルク指令、回転速度、電源電圧の変化に対して最適なd軸電流指令およびq軸電流指令を予め、試験やシミュレーション解析などによって求めておくことで実現できる。
 なお、実施例4では、トルク指令、回転速度、電源電圧の変化に対して、d軸電流指令値Idc*およびq軸電流指令を三次元テーブルデータを用いて算出したが、演算式を用いて求めてもよい。
 したがって、実施例4では、予め試験や解析などで求めた三次元テーブルデータに基づいてd軸電流指令およびq軸電流指令を演算することで、トルク指令、回転速度、電源電圧の変化に対して最適なd軸電流指令値Idc*とq軸電流指令値Iqc*の演算が実現できるようになり、永久磁石同期機の駆動装置の高効率化を図ることができる。
 実施例5では、トルク指令補正値Trq**の演算において、温度検出部125にて検出した永久磁石同期機103の磁石温度Tmagと、電流指令演算部111から出力されるd軸電流指令値Idc*に基づいてトルク補正係数Ktemp*を算出する。これにより、多次元テーブルを用いずに磁石温度の変化に対するトルク指令補正値Trq**を演算できるようになり、実施例1よりも制御装置の演算負荷が少なく、省メモリ容量化が可能な永久磁石同期機の駆動装置が実現できる。
 図18は、実施例5の永久磁石同期機駆動システムの構成例を表すブロック図である。実施例5の説明では、図1に示した実施例1と比較して、相違部分のみを説明する。
 図18において、実施例5の永久磁石同期機の駆動装置は、図1の実施例1のトルク補正部110の代わりに、トルク補正部110gを用いることで実現できる。
 図19は、実施例5のトルク補正部110gの構成例を表すブロック図である。図19に示すようにトルク補正部110gは、トルク補正係数演算部301gと、乗算器801gを備える。トルク補正部110gは、トルク指令Tm*にトルク補正係数演算部301gから出力されるトルク補正係数Ktemp*を乗算した演算結果をトルク指令補正値Trq**として出力する。
 図20は、実施例5のトルク補正係数演算部301gの構成例を表すブロック図である。図20に示すようにトルク補正係数演算部301gは、磁石温度補償係数演算部901gと、d軸電流特性補償係数演算部902gを備える。トルク補正係数演算部301gは、温度検出部125にて検出した永久磁石同期機103の磁石温度Tmagと、電流指令演算部111から出力されるd軸電流指令値Idc*に基づいて、トルク補正係数Ktemp*を演算し、出力する。
 磁石温度補償係数演算部901gは、磁石温度Tmagに基づいて、基準温度Tmag0を基準として磁石温度の変化による出力トルクの変化量に相当する係数を算出し、トルク補正係数Ktemp-mag*として出力する。
 以下、本発明の実施例5の特徴部分であるd軸電流特性補償係数演算部902gについて詳しく説明する。
 実施例1において、図9に基準温度Tmag0における出力トルクと基準温度Tmag0よりも高い磁石温度における出力トルクの比をd軸電流idとq軸電流iqのテーブルマップとして表したものをトルク指令の補正手段として用いたが、図9に示すように、永久磁石の温度変化による出力トルク比の大きさはq軸電流よりもd軸電流の大きさに対して強い相関があることがわかる。
 図21は、実施例5のd軸電流特性補償係数演算部902gの構成例を表すブロック図である。図21に示すようにd軸電流特性補償係数演算部902gは、d軸電流特性磁石温度補正係数演算部1001gと、d軸電流特性係数演算部1002gと、乗算器803gを備える。d軸電流特性補償係数演算部902gは、d軸電流指令値Idc*と磁石温度Tmagに基づいて、基準温度Tmag0を基準として磁石温度の変化による任意のIdc*、Iqc*の電流動作点でのマグネットトルクとリラクタンスの比率の変化量に相当する係数を算出し、トルク補正係数Ktemp-id*として出力する。
 d軸電流特性磁石温度補正係数演算部1001gは、基準温度Tmag0に基づいて、d軸電流に依存する出力トルク比の特性量が磁石温度に応じて変動する分を補正するための係数を乗算器803bに出力する。d軸電流特性係数演算部1002gは、d軸電流指令値Idc*に基づいてd軸電流に依存する出力トルク比の変化量を補正するための係数を演算し、乗算器803bに出力する。
 このように、d軸電流特性補償係数演算部902gは、多次元テーブルを用いずに、トルク補正係数Ktemp-id*を演算できる。
 したがって、実施例5では、永久磁石の温度変化や運転条件の変化によるマグネットトルクとリラクタンストルクの比率の変化に相当する係数をd軸電流指令と磁石温度に基づいて演算することで、多次元テーブルを用いずにトルク指令補正値の演算が実現できるようになり、永久磁石同期機の駆動装置の演算負荷軽減および省メモリ容量化を図ることができる。
 以上、実施例5について説明した。説明上、主として実施例1を基本構成として説明したが、実施例2~4を基本構成としても同様に適用可能である。
 実施例6では、永久磁石の温度変化による出力トルク誤差の補償に加え、永久磁石同期機の機械損や鉄損などの駆動装置の出力損失をロストルク分としてトルク指令を補償することで、実施例1よりも高精度なトルク制御が可能な永久磁石同期機の駆動装置が実現できる。
 図22は、実施例6の永久磁石同期機駆動システムの構成例を表すブロック図である。図1に示した実施例1と比較して、相違部分のみを説明する。
 図22において、実施例6の永久磁石同期機の駆動装置は、図1の実施例1にトルク指令損失補償部117hの追加することで実現できる。
 図23は、実施例6のトルク指令損失補償部117hの構成例を表すブロック図である。図23に示すようにトルク指令損失補償部117hは、鉄損演算部1201hと、機械損演算部1202hと、負荷損演算部1203hと、損失トルク換算部1204hと、出力調整部1205hと、加算器1206h、1207h、1208hを備える。
 鉄損演算部1201hは、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1と、極座標変換部113から出力される電圧振幅指令値V1*に基づいて鉄損Wiを演算し、出力する。
 機械損演算部1202hは、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1に基づいて機械損Wmを演算し、出力する。
 負荷損演算部1203hは、指令発生器105から出力されるトルク指令Tm*と、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1に基づいて負荷損Wlを演算し、出力する。
 加算器1206h、1207hは、鉄損演算部1201hから出力される鉄損Wiと、機械損演算部1202hから出力される機械損Wmと、負荷損演算部1203hから出力される負荷損Wlを加算し、出力損失Wlossを出力する。
 損失トルク換算部1204hは、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1に基づいて出力損失Wlossをトルクに換算し、損失トルクTlossを出力する。
 加算器1208hは、指令発生器105から出力されるトルク指令Tm*に、損失トルク換算部1204hから出力される損失トルクTlossを加算し、モータ出力トルクToutを出力する。
 出力調整部1205hは、加算器1208hから出力されるモータ出力トルクToutと、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1に基づいてトルク指令Tm**を演算し、トルク補正部110に出力する。
 以下、実施例6の特徴部分である鉄損演算部1201hと、機械損演算部1202hと、負荷損演算部1203hと、損失トルク換算部1204hと、出力調整部1205hについて詳しく説明する。
 図24は、実施例6の鉄損演算部1201hの構成例を表すブロック図である。図24に示すように鉄損演算部1201hは、ヒステリシス損演算部1211hと、渦電流損演算部1212hと、加算器813hを備える。
 ヒステリシス損演算部1211hは、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1と、極座標変換部113から出力される電圧振幅指令値V1*に基づいて、ヒステリシス損Whを演算し、出力する。ヒステリシス損Whは、例えば、以下の式(9)にて演算されるものとする。
Figure JPOXMLDOC01-appb-M000009
 なお、ヒステリシス損係数khおよび磁束密度係数kBは、永久磁石同期機103の材料や構造に基づいて決定される値であり、設計値、解析値、実測値のいずれを用いてもよい。また、ヒステリシス損演算部1211hは、駆動周波数ω1と電圧振幅指令値V1*を入力変数として、予め実測または解析から求めたヒステリシス損Whを出力する二次元テーブルを用いる構成としてもよい。
 渦電流損演算部1212hは、極座標変換部113から出力される電圧振幅指令値V1*に基づいて渦電流損Weを演算し、出力する。渦電流損Weは、例えば、以下の式(10)にて演算されるものとする。
Figure JPOXMLDOC01-appb-M000010
 なお、渦電流損係数keおよび磁束密度係数kBは、永久磁石同期機103の材料や構造に基づいて決定される値であり、設計値、解析値、実測値のいずれを用いてもよい。また、渦電流損演算部1212hは、電圧振幅指令値V1*を入力変数として、予め実測または解析から求めた渦電流損Weを出力する一次元テーブルを用いる構成としてもよい。
 加算器813hは、ヒステリシス損演算部1211hから出力されるヒステリシス損Whと、渦電流損演算部1212hから出力される渦電流損Weを加算し、鉄損Wiを出力する。
 図25は、実施例6の機械損演算部1202hの構成例を表すブロック図である。図25に示すように機械損演算部1202hは、軸受損演算部1221hと、風損演算部1222hと、加算器823hを備える。
 軸受損演算部1221hは、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1(電気角周波数)に基づいて軸受損Wbを演算し、出力する。軸受損Wbは、モータ回転数(機械角周波数)の一乗に比例する特性があり、例えば、以下の式(11)にて演算されるものとする。
Figure JPOXMLDOC01-appb-M000011
 なお、軸受損係数kbは、永久磁石同期機103の軸受部分の材料や構造に基づいて決定される値であり、設計値、解析値、実測値のいずれを用いてもよい。また、軸受損演算部1221hは、駆動周波数ω1(電気角周波数)もしくはモータ回転数(機械角周波数)を入力変数として、予め実測または解析から求めた軸受損Wbを出力する一次元テーブルを用いる構成としてもよい。
 風損演算部1222hは、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1(電気角周波数)に基づいて風損Wwを演算し、出力する。風損Wwは、モータ回転数(機械角周波数)の三乗に比例する特性があり、例えば、以下の式(12)にて演算されるものとする。
Figure JPOXMLDOC01-appb-M000012
 なお、風損係数kwは、永久磁石同期機103の回転部分の材料や構造、空気などとの摩擦抵抗などに基づいて決定される値であり、設計値、解析値、実測値のいずれを用いてもよい。また、風損演算部1222hは、駆動周波数ω1(電気角周波数)もしくはモータ回転数(機械角周波数)を入力変数として、予め実測または解析から求めた風損Wwを出力する一次元テーブルを用いる構成としてもよい。
 加算器823hは、軸受損演算部1221hから出力される軸受損Wbと、風損演算部1222hから出力される風損Wwを加算し、機械損Wmを出力する。
 図26は、実施例6の負荷損演算部1203hの構成例を表すブロック図である。図26に示すように負荷損演算部1203hは、漂遊負荷損演算部1231hと、外部負荷損演算部1232hと、加算器833hを備える。
 漂遊負荷損演算部1231hは、指令発生器105から出力されるトルク指令Tm*と、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1に基づいて、漂遊負荷損Wsを演算し、出力する。一般に、漂遊負荷損は、銅損や鉄損、機械損に含まれない損失のことであり、正確に算出することが困難なわずかな損失である。漂遊負荷損Wsは、例えば、以下の式(13)にて演算されるものとする。
Figure JPOXMLDOC01-appb-M000013
 なお、漂遊負荷損係数ksは、任意の値を設定することが可能である。例えば、永久磁石同期機103の定格出力Prを用いて以下の式(14)にて値を決定する。
Figure JPOXMLDOC01-appb-M000014
 また、漂遊負荷損演算部1231hは、トルク指令Tm*と駆動周波数ω1を入力変数として、予め実測または解析から求めた漂遊負荷損Wsを出力する二次元テーブルを用いる構成としてもよい。
 外部負荷損演算部1232hは、指令発生器105から出力されるトルク指令Tm*と、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1に基づいて、外部負荷損Woを演算し、出力する。外部負荷損Woは、永久磁石同期機103につながる負荷特性が出力トルクや回転数に応じて負荷状態が変動する分を補償するためのものであり、コンベアやクレーンなどの定トルク負荷や、ファンやポンプなどの二乗低減負荷、巻取機などの定出力負荷など、駆動装置の負荷の種類や用途に応じて決定される。
 外部負荷損演算部1232hは、トルク指令Tm*と駆動周波数ω1を入力変数として、予め実測または解析から求めた外部負荷損Woを出力する二次元テーブルを用いる構成で実現できる。なお、指令発生器105から出力されるトルク指令Tm*にこれらの負荷特性が考慮されている場合は、外部負荷損Woは零としてよい。
 加算器833hは、漂遊負荷損演算部1231hから出力される漂遊負荷損Wsと、外部負荷損演算部1232hから出力される外部負荷損Woを加算し、負荷損Wlを出力する。
 損失トルク換算部1204hは、鉄損Wiと機械損Wmと負荷損Wlの合計値である出力損失Wlossと、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1に基づいて、損失トルクTlossを演算し、出力する。損失トルクTlossは、例えば、以下の式(15)にて演算されるものとする。
Figure JPOXMLDOC01-appb-M000015
 図27は、実施例6の出力調整部1205hの構成例を表すブロック図である。図27に示すように出力調整部1205hは、ギア効率演算部1252hと、除算器852hを備える。
 ギア効率演算部1252hは、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1に基づいてギア効率ηgを演算し、出力する。ギア効率ηgは、例えば、駆動周波数ω1を入力変数として、予め実測または解析から求めたギア効率ηgを出力する一次元テーブルを用いる構成とすればよい。また、ギア効率ηgは定数として用いてもよく、あるいは駆動周波数ω1の関数式として演算してもよい。
 なお、ギア効率ηgは、永久磁石同期機103の軸受やギアの摩擦抵抗、潤滑油の抵抗などに基づいて決定される値であり、設計値、解析値、実測値のいずれを用いてもよい。また、永久磁石同期機103と、永久磁石同期機103につながる負荷との間にギアを有しない機器構成の場合は、トルク指令損失補償部117hから出力調整部1205hを除外するか、もしくはギア効率演算部1252hから出力されるギア効率ηgを常に1と設定すればよい。
 除算器852hは、トルク指令Tm*と損失トルクTlossの合計値であるモータ出力トルクToutを、ギア効率演算部1252hから出力されるギア効率ηgで除算し、トルク指令Tm**を出力する。
 したがって、実施例6では、永久磁石同期機の駆動装置のロストルク分を考慮したトルク指令補正値の演算が実現できるようになり、永久磁石同期機の駆動装置のトルク制御の高精度化を図ることができる。
 なお、出力損失Wlossの演算は、ヒステリシス損Whと、渦電流損Weと、軸受損Wbと、風損Wwと、漂遊負荷損Wsと、外部負荷損Woのいずれか1つ以上を用いることで、トルク指令に対してロストルクによるモータの出力トルクの低下を補償し、トルク制御の高精度化を図ることができる。
 また、実施例6の鉄損演算部1201hは、極座標変換部113から出力される電圧振幅指令値V1*の代わりに、電流指令演算部111から出力されるd軸電流指令値Idc*、q軸電流指令値Iqc*を用いても実現可能である。
 図28は、実施例6の変形例である永久磁石同期機駆動システムの構成例を表すブロック図である。実施例6では、図22に示した実施例6の構成例と比較して、構成の相違部分のみを説明する。
 図28において、実施例6の永久磁石同期機の駆動装置の構成の変形例は、図22の実施例6のトルク指令損失補償部117hの代わりに、トルク指令損失補償部117iを用いることで実現できる。
 図29は、実施例6の変形例であるトルク指令損失補償部117iの構成例を表すブロック図である。図29に示すようにトルク指令損失補償部117iは、鉄損演算部1201hの代わりに、鉄損演算部1201iを用いることで実現できる。
 鉄損演算部1201iは、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1と、電流指令演算部111から出力されるd軸電流指令値Idc*、q軸電流指令値Iqc*に基づいて鉄損Wiを演算し、出力する。
 次に、鉄損演算部1201iについて詳しく説明する。
 図30は、実施例6の変形例である鉄損演算部1201iの構成例を表すブロック図である。図30に示すように鉄損演算部1201iは、ヒステリシス損演算部1211iと、渦電流損演算部1212iと、加算器813iを備える。
 ヒステリシス損演算部1211iは、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1と、電流指令演算部111から出力されるd軸電流指令値Idc*、q軸電流指令値Iqc*に基づいて、ヒステリシス損Whを演算し、出力する。
 ヒステリシス損演算部1211iは、例えば、駆動周波数ω1と、d軸電流指令値Idc*と、q軸電流指令値Iqc*を入力変数として、予め実測または解析から求めたヒステリシス損Whを出力する三次元テーブルを用いることで実現できる。
 渦電流損演算部1212iは、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1と、電流指令演算部111から出力されるd軸電流指令値Idc*、q軸電流指令値Iqc*に基づいて、渦電流損Weを演算し、出力する。
 渦電流損演算部1212iは、例えば、駆動周波数ω1と、d軸電流指令値Idc*と、q軸電流指令値Iqc*を入力変数として、予め実測または解析から求めた渦電流損Weを出力する三次元テーブルを用いることで実現できる。
 さらに、鉄損演算部1201iにおいて、ヒステリシス損Whおよび渦電流損Weを駆動周波数ω1の二乗で正規化することで、d軸電流指令値Idc*と、q軸電流指令値Iqc*を入力変数とする二次元テーブルを用いた構成でも実現できる。
 図31は、実施例6の変形例である鉄損演算部1201jの構成例を表すブロック図である。図31に示すように鉄損演算部1201jは、ヒステリシス損周波数正規化値演算部1211jと、渦電流損周波数正規化値演算部1212jと、加算器813jと、乗算器814j、815j、816jを備える。
 ヒステリシス損周波数正規化値演算部1211jは、電流指令演算部111から出力されるd軸電流指令値Idc*、q軸電流指令値Iqc*に基づいて、ヒステリシス損周波数正規化値Wh’を演算し、出力する。ヒステリシス損周波数正規化値演算部1211jは、例えば、d軸電流指令値Idc*と、q軸電流指令値Iqc*を入力変数として、予め実測または解析から求めたヒステリシス損Whを正規化したヒステリシス損周波数正規化値Wh’を出力する二次元テーブルを用いることで実現できる。
 渦電流損周波数正規化値演算部1212jは、電流指令演算部111から出力されるd軸電流指令値Idc*、q軸電流指令値Iqc*に基づいて、渦電流損周波数正規化値We’を演算し、出力する。渦電流損周波数正規化値演算部1212jは、例えば、d軸電流指令値Idc*と、q軸電流指令値Iqc*を入力変数として、予め実測または解析から求めた渦電流損Weの渦電流損周波数正規化値We’を出力する二次元テーブルを用いることで実現できる。
 また、鉄損演算部1201jにおいて、永久磁石同期機103の磁石温度Tmagの変動によるヒステリシス損Whおよび渦電流損Weの変動を考慮することで、鉄損の演算精度の向上が図れる。
 図32は、実施例6の変形例である永久磁石同期機駆動システムの構成例を表すブロック図である。図28に示した実施例6の構成例と比較して、相違部分のみを説明する。
 図32において、実施例6の永久磁石同期機の駆動装置の構成の変形例は、図28の実施例6のトルク指令損失補償部117iの代わりに、トルク指令損失補償部117kを用いることで実現できる。
 図33は、実施例6の変形例であるトルク指令損失補償部117kの構成例を表すブロック図である。図33に示すようにトルク指令損失補償部117kは、鉄損演算部1201iの代わりに、鉄損演算部1201kを用いることで実現できる。
 鉄損演算部1201kは、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1と、電流指令演算部111から出力されるd軸電流指令値Idc*、q軸電流指令値Iqc*と、温度検出部125から出力される磁石温度Tmagに基づいて鉄損Wiを演算し、出力する。
 なお、磁石温度Tmagは、永久磁石同期機103の回転速度に応じた誘起電圧の大きさを検出または推定し、その値から磁石温度Tmagを推定した値を用いてもよい。
 次に、鉄損演算部1201kについて詳しく説明する。
 図34は、実施例6の変形例である鉄損演算部1201kの構成例を表すブロック図である。図34に示すように鉄損演算部1201kは、ヒステリシス損周波数正規化値演算部1211kと、渦電流損周波数正規化値演算部1212kと、加算器813kと、乗算器814k、815k、816kを備える。
 ヒステリシス損周波数正規化値演算部1211kは、電流指令演算部111から出力されるd軸電流指令値Idc*、q軸電流指令値Iqc*と、温度検出部125から出力される磁石温度Tmagに基づいて、ヒステリシス損周波数正規化値Wh’を演算し、出力する。
 ヒステリシス損周波数正規化値演算部1211kは、例えば、d軸電流指令値Idc*と、q軸電流指令値Iqc*と、磁石温度Tmagを入力変数として、予め実測または解析から求めたヒステリシス損Whを正規化したヒステリシス損周波数正規化値Wh’を出力する三次元テーブルを用いることで実現できる。
 渦電流損周波数正規化値演算部1212kは、電流指令演算部111から出力されるd軸電流指令値Idc*、q軸電流指令値Iqc*と、温度検出部125から出力される磁石温度Tmagに基づいて、渦電流損周波数正規化値We’を演算し、出力する。渦電流損周波数正規化値演算部1212kは、例えば、d軸電流指令値Idc*と、q軸電流指令値Iqc*と、磁石温度Tmagを入力変数として、予め実測または解析から求めた渦電流損Weを正規化した渦電流損周波数正規化値We’を出力する三次元テーブルを用いることで実現できる。
 以上、実施例6について説明した。説明上、主として実施例1を基本構成として説明したが、実施例2~5を基本構成としても同様に適用可能である。
 実施例7では、トルク指令補正値Trq**の演算において、永久磁石同期機103の磁石温度Tmagの検出値または推定値の代わりに、永久磁石同期機103の磁石磁束Φmの検出値または推定値、もしくは磁石磁束Φmに相当する係数を用いる。これにより、永久磁石同期機103が減磁した場合にも磁石温度の変化に対するトルク指令補正値Trq**を演算できるようになり、実施例1よりも高精度なトルク制御が可能な永久磁石同期機の駆動装置が実現できる。
 図35は、実施例7の永久磁石同期機駆動システムの構成例を表すブロック図である。図1に示した実施例1と比較して、相違部分のみを説明する。
 図35において、実施例7の永久磁石同期機の駆動装置は、図1の実施例1のトルク補正部110の代わりにトルク補正部110mを、ベクトル制御部112の代わりにベクトル制御部112mを、そして磁石磁束係数演算部118mを追加して用いることで実現できる。
 ベクトル制御部112mは、永久磁石同期機103の交流電流検出値である三相交流電流iu、iwと、電流指令演算部111が出力したdc-qc軸座標系上の電流指令値Idc*、Iqc*に基づいて、dc-qc軸上の電圧指令値Vdc*、Vqc*を演算し、出力する。また、電圧指令値Vdc*、Vqc*と、三相交流電流iu、iwの検出値に基づいて永久磁石同期機103の駆動周波数ω1や推定される磁極の制御位置θdcを演算し、出力する。さらに、三相交流電流iu、iwの検出値と、推定した制御位置θdcに基づいて、dc-qc軸座標系上の電流検出値Idc、Iqcを演算し、出力する。
 磁石磁束係数演算部118mは、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1、dc-qc軸上の電圧指令値Vdc*、Vqc*およびdc-qc軸座標系上の電流検出値Idc、Iqcに基づいて、永久磁石同期機103の磁石磁束係数Kfeを演算し、出力する。
 トルク補正部110mは、指令発生器105から出力されるトルク指令Tm*と、電流指令演算部111から出力されるdc-qc軸座標系上の電流指令値Idc*、Iqc*と、磁石磁束係数演算部118mから出力される磁石磁束係数Kfeに基づいて、トルク指令補正値Trq**を演算し、出力する。
 以下、実施例7の特徴部分である磁石磁束係数演算部118mとトルク補正部110mについて詳しく説明する。
 磁石磁束係数演算部118mにおいて、ベクトル制御部112から出力される永久磁石同期機103の駆動周波数ω1と、dc-qc軸上の電圧指令値Vdc*、Vqc*と、dc-qc軸座標系上の電流検出値Idc、Iqcに基づいて、永久磁石同期機103の磁石磁束係数Kfeを演算し、出力する。磁石磁束係数Kfeは、例えば、dq座標系で表した永久磁石同期機の電圧方程式に基づいて、以下の式(16)にて演算されるものとする。
Figure JPOXMLDOC01-appb-M000016
 式(16)において、右辺の分子の多項式は、永久磁石同期機103の回転速度に応じて発生する誘起電圧(速度起電圧)を算出するものである。したがって、磁石磁束係数Kfeは、永久磁石同期機103の誘起電圧を検出または推定した値に基づき、永久磁石同期機103の磁石磁束と関連付けられる値として用いてもよい。
 なお、式(16)において、永久磁石同期機のd軸インダクタンスをLd、巻線抵抗をR1とする。また、dc-qc軸座標系上の電流検出値Idc、Iqcの代わりに、電流指令演算部111から出力されるdc-qc軸座標系上の電流指令値Idc*、Iqc*を用いてもよい。
 ここで、永久磁石同期機のd軸インダクタンスをLdは電流依存性があり、巻線抵抗R1は温度依存性がある。そのため、これらのモータ定数誤差によって磁石磁束係数Kfeの演算結果に誤差が生じる恐れがある。そこで、永久磁石同期機のモータ定数誤差の影響を無視するため、ベクトル制御で電流を零に制御した状態のdc-qc軸上の電圧指令値Vqc*と駆動周波数ω1に基づいて磁石磁束係数Kfeを演算することで、モータ定数誤差の影響を受けない手段を用いることができる。そのほか、磁束センサや電圧センサなどを用いて、それらの検出値と駆動周波数ω1から磁石磁束係数相当を演算し、用いてもよい。
 図36は、実施例7のトルク補正部110mの構成例を表すブロック図である。図36に示すようにトルク補正部110mは、トルク補正係数演算部1301mと、乗算器1302mを備える。トルク補正部110mは、トルク指令Tm*にトルク補正係数演算部1301mから出力されるトルク補正係数Ktemp*を乗算した演算結果をトルク指令補正値Trq**として出力する。
 図37は、実施例7のトルク補正係数演算部1301mの構成例を表すブロック図である。図37に示すようにトルク補正係数演算部1301mは、磁石磁束係数演算部118mから出力される磁石磁束係数Kfeと、電流指令演算部111から出力されるd軸電流指令値Idc*およびq軸電流指令値Iqc*に基づいて、トルク補正係数Ktemp*を演算し、出力する。なお、トルク補正係数Ktemp*の演算には、例えば、磁石磁束係数Kfeと、d軸電流指令値Idcと、q軸電流指令値Iqc*を入力とする参照テーブルを用いればよい。また、トルク補正係数Ktemp*の参照テーブルは予め試験や解析から求めたものを用いればよい。
 実施例7は、例えば、電流指令演算部111のd軸電流指令演算部202およびq軸電流指令演算部203の参照テーブルに、磁石温度条件が基準温度Tmag0のときの永久磁石同期機103の磁石磁束Φm0に基づく基準磁石磁束係数Kfe0で算出したd、q軸電流指令値を設定した場合、トルク補正部110mのトルク補正係数Ktemp*には、電流指令演算部111のd軸電流指令演算部202およびq軸電流指令演算部203の算出条件と同じ基準磁石磁束係数Kfe0における出力トルクを基準にして、磁石磁束係数Kfeの変化に応じた出力トルクの比を参照テーブルとして有しておけば、永久磁石同期機103の磁石温度の変化や減磁の影響による磁石磁束の変化による出力トルク変動分の補償が実施可能となる。
 また、実施例7は、トルク補正係数演算部1301mの代わりに、トルク補正係数演算部1301nを用いることでも実現できる。
 図38は、実施例7の変形例であるトルク補正係数演算部1301nの構成例を表すブロック図である。トルク補正係数演算部1301nは、磁石磁束係数、d軸電流指令、q軸電流指令に応じたトルク補正係数Ktemp*の算出の際、三次元参照テーブルを用いない。
 トルク補正係数演算部1301nは、磁石磁束依存トルク補正係数演算部1401nと、リラクタンストルク比率補正係数演算部1402nと、加算器802nを備え、磁石磁束依存トルク補正係数演算部1401nから出力されるトルク補正係数Ktemp1*と、リラクタンストルク比率補正係数演算部1402nから出力されるトルク補正係数Ktemp2*を加算した値をトルク補正係数Ktemp*として出力する。
 トルク補正係数演算部1301nは、実施例1のトルク補正係数演算部301bと比較して、磁石温度Tmagの代わりに磁石磁束係数Kfeを用いる点のみが異なり、磁石磁束係数Kfeに基づいてトルク補正係数Ktemp1*およびトルク補正係数Ktemp2*を演算すればよい。
 例えば、永久磁石同期機の磁石温度Tmagと磁石磁束係数Kfeは比例関係にあるため、電流指令演算部111のd軸電流指令演算部202およびq軸電流指令演算部203の算出条件と同じ基準磁石磁束係数Kfe0を基準として、磁石温度Tmagの変化に応じた磁石磁束係数を算出すれば容易に置き換え可能である。
 また、実施例7は、トルク補正係数演算部1301mの代わりに、トルク補正係数演算部1301oを用いることでも実現できる。図39は、実施例7の変形例であるトルク補正係数演算部1301oの構成例を表すブロック図である。トルク補正係数演算部1301oは、トルク補正係数Ktemp*の算出に、三次元参照テーブルを用いない。
 トルク補正係数演算部1301oは、磁石磁束係数演算部118mから出力される磁石磁束係数Kfeと、電流指令演算部111から出力されるd軸電流指令値Idc*に基づいてトルク補正係数Ktemp*を算出することで、多次元テーブルを用いずに磁石磁束の変化に対するトルク指令補正値Trq**を演算できる。これにより、制御装置の演算負荷が少なく、省メモリ容量化が可能な永久磁石同期機の駆動装置が実現できる。
 トルク補正係数演算部1301oは、磁石磁束補償係数演算部1901oと、d軸電流特性補償係数演算部1902oと、加算器802oを備え、磁石磁束補償係数演算部1901oから出力されるトルク補正係数Ktemp-mag*と、d軸電流特性補償係数演算部1902oから出力されるトルク補正係数Ktemp-id*を加算した値をトルク補正係数Ktemp*として出力する。
 磁石磁束補償係数演算部1901oは、磁石磁束係数Kfeに基づいて、電流指令演算部111のd軸電流指令演算部202およびq軸電流指令演算部203の算出条件である基準磁石磁束係数Kfe0を基準として磁石温度の変化や減磁による磁石磁束の変化に対する出力トルクの変化量に相当する係数を算出し、トルク補正係数Ktemp-mag*として出力する。
 d軸電流特性補償係数演算部1902oは、d軸電流指令値Idc*と磁石磁束係数Kfeに基づいて、基準磁石磁束係数Kfe0を基準として磁石温度の変化や減磁による磁石磁束の変化に対する任意のIdc*、Iqc*の電流動作点でのマグネットトルクとリラクタンスの比率の変化量に相当する係数を算出し、トルク補正係数Ktemp-id*として出力する。
 トルク補正係数演算部1301oは、実施例5のトルク補正係数演算部301gと比較して、磁石温度Tmagの代わりに磁石磁束係数Kfeを用いる点のみが異なり、磁石磁束係数Kfeに基づいてトルク補正係数Ktemp-mag*およびトルク補正係数Ktemp-id*を演算する構成とすればよい。
 なお、ここまで実施例7では、磁石磁束係数Kfeを用いて説明したが、永久磁石同期機103の磁石磁束Φmの検出値または推定値をトルク指令補正の入力変数や電流指令参照テーブルの基準に用いることでも実現可能である。すなわち、トルク指令補正の入力変数や電流指令参照テーブルの基準に用いることができる値は、永久磁石同期機103の磁石磁束と関連付けられる値であればいずれでもよい。
 したがって、実施例7では、永久磁石同期機の磁石磁束と電流指令値に基づいてトルク指令値を補正することで、磁石温度の変化や減磁による磁石磁束の変化に対する出力トルク変動分を補償演算が実現できるようになり、永久磁石同期機の駆動装置において永久磁石同期機の減磁を含む磁石温度変動時のトルク制御の高精度化を図ることができる。
 以上、実施例7について説明した。説明上、主として実施例1を基本構成として説明したが、実施例2~6を基本構成としても同様に適用可能である。
 次に、本発明の実施例8について説明する。図40は、実施例1~7のいずれかの永久磁石同期機駆動システムを搭載する鉄道車両の一部の概略構成を示した図である。実施例1~7のいずれかの永久磁石同期機駆動システムを鉄道車両100に適用することで、磁石温度変動時のトルク精度、運転効率およびトルク制御応答の向上が可能な鉄道車両を実現できる。
 例えば鉄道車両100は、永久磁石同期機103aおよび103bが搭載された台車、ならびに、永久磁石同期機103cおよび103dが搭載された台車を有する。また鉄道車両は、制御器101、電力変換器102、指令発生器105、および相電流検出部121を含む永久磁石同期機の駆動システム(駆動装置)が搭載されている。
 鉄道車両100は、運転士によりマスター・コントローラを介して入力された運転指令に基づき指令発生器105が発生したトルク指令Tm*に応じて、架線から集電装置を介して供給された電力を電力変換器102で交流電力に変換して永久磁石同期機103に供給されることで永久磁石同期機103を駆動する。
 永久磁石同期機103は、鉄道車両100の車軸と連結されており、永久磁石同期機103により鉄道車両100の走行が制御される。実施例8では、鉄道車両100に、実施例1~7を適用することで、トルク制御の高応答化と高精度化、および高効率な運転が可能な鉄道車両を実現できる。
 本発明は、永久磁石同期機の駆動装置および永久磁石同期機のトルク補償方法に関し、例えば、電気鉄道車両や電気自動車等の電気車、産業機械等のインバータシステム、風力発電システム、ディーゼル発電機システム等に適用して好適なものである。また、本発明は、永久磁石同期電動機のみならず、永久磁石同期発電機にも適用可能である。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば上述した実施例は本発明を分かりやすく説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。さらに実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また上述の実施例および変形例で例示した各構成および各処理は、実装形態や処理効率に応じて適宜統合、分離、または処理順序の入れ替えを行ってもよい。また、例えば上述の実施例および変形例は、矛盾しない範囲で、その一部または全部を組合せてもよい。
100:鉄道車両、101:制御器、102:電力変換器、103:永久磁石同期機、103a,103c:永久磁石同期機、105:指令発生器、110,110c,110g,110m:トルク補正部、111,111d,111e,111f:電流指令演算部、112,112e,112m:ベクトル制御部、113:極座標変換部、114:位相演算部、115:三相座標変換部、116:PWM信号制御器、117h,117i,117k:トルク指令損失補償部、118m:磁石磁束係数演算部、121:相電流検出部、123a,123b:入力端子、124:回転位置検出部、125:温度検出部、131:平滑用コンデンサ、132:主回路部、133:ゲート・ドライバ、134:直流抵抗器、201:磁束量制限値演算部、202:d軸電流指令演算部、203:q軸電流指令演算部、301,301b,301g,302c:トルク補正係数演算部、401b:磁石温度依存トルク補正係数演算部、402b:リラクタンストルク比率補正係数演算部、501b:リラクタンストルク比率磁石温度補正部、502b:リラクタンストルク推定演算部、601d:磁束量制限値演算部、601e:磁束量制限値演算部、701f:d軸電流指令三次元テーブル参照部、702f:q軸電流指令三次元テーブル参照部、901g:磁石温度補償係数演算部、902g:d軸電流特性補償係数演算部、1001g:d軸電流特性磁石温度補正係数演算部、1002g:d軸電流特性係数演算部、1201h,1201i,1201j,1201k:鉄損演算部、1202h:機械損演算部、1203h:負荷損演算部、1204h:損失トルク換算部、1205h:出力調整部、1211h,1211i:ヒステリシス損演算部、1211j:ヒステリシス損周波数正規化値演算部、1211k:ヒステリシス損周波数正規化値演算部、1212h,1212i:渦電流損演算部、1212j,1212k:渦電流損周波数正規化値演算部、1221h:軸受損演算部、1222h:風損演算部、1231h:漂遊負荷損演算部、1232h:外部負荷損演算部、1252h:ギア効率演算部、1301m,1301n,1301o:トルク補正係数演算部、1401n:磁石磁束依存トルク補正係数演算部、1402n:リラクタンストルク比率補正係数演算部、1901o:磁石磁束補償係数演算部、1902o:d軸電流特性補償係数演算部

Claims (15)

  1.  永久磁石同期機を駆動する電力変換器と、前記電力変換器を制御する制御器とを有する永久磁石同期機の駆動装置であって、
     前記制御器は、
     入力されたトルク指令値を補正するトルク補正部と、
     前記トルク補正部によって補正されたトルク指令値から、前記永久磁石同期機を駆動制御するための電流指令値を生成する電流指令演算部と
     を備え、
     前記トルク補正部は、前記永久磁石同期機の磁石磁束と関連付けられる値と、前記電流指令演算部によって生成された電流指令値とに基づいて前記トルク指令値を補正する
     ことを特徴とする永久磁石同期機の駆動装置。
  2.  前記磁石磁束と関連付けられる値は、前記永久磁石同期機の磁石温度であることを特徴とする請求項1に記載の永久磁石同期機の駆動装置。
  3.  前記磁石磁束と関連付けられる値は、前記永久磁石同期機の誘起電圧であることを特徴とする請求項1に記載の永久磁石同期機の駆動装置。
  4.  前記電流指令演算部は、
     前記電力変換器の直流電圧検出値と前記永久磁石同期機の回転速度とから磁束量制限値を演算する磁束量制限値演算部と、
     前記磁束量制限値演算部によって演算された磁束量制限値と、前記トルク補正部によって補正されたトルク指令値とから、前記電流指令値としてd軸電流指令値およびq軸電流指令値を生成するdq軸電流指令演算部と
     を備えることを特徴とする請求項1~3のいずれか1項に記載の永久磁石同期機の駆動装置。
  5.  前記電流指令演算部は、
     磁束量制限値とトルク指令値とd電流指令値とq軸電流指令値とが対応付けられたテーブルを参照して、前記磁束量制限値演算部によって演算された磁束量制限値と、前記トルク補正部によって補正されたトルク指令値とに対応するd軸電流指令値およびq軸電流指令値を生成することを特徴とする請求項4に記載の永久磁石同期機の駆動装置。
  6.  前記磁束量制限値演算部は、
     前記永久磁石同期機の磁石温度に基づいて前記磁束量制限値を補正することを特徴とする請求項4または5に記載の永久磁石同期機の駆動装置。
  7.  前記磁束量制限値演算部は、
     前記電力変換器の出力電圧制限値または前記制御器の弱め界磁制御の目標電圧値に基づいて前記磁束量制限値を補正することを特徴とする請求項4または5に記載の永久磁石同期機の駆動装置。
  8.  前記dq軸電流指令演算部は、
     前記電力変換器の直流電圧検出値と前記永久磁石同期機の回転速度と前記トルク指令値とから、前記d軸電流指令値および前記q軸電流指令値を生成する
     ことを特徴とする請求項4~7のいずれか1項に記載の永久磁石同期機の駆動装置。
  9.  前記トルク補正部は、
     前記磁石磁束と関連付けられる値と、前記dq軸電流指令演算部によって生成された前記d軸電流指令値とに基づいて前記トルク指令値を補正する
     ことを特徴とする請求項4~8のいずれか1項に記載の永久磁石同期機の駆動装置。
  10.  前記制御器は、
     前記トルク指令値、前記電流指令値、前記永久磁石同期機の電流検出値、前記電流指令値に基づいて生成された前記永久磁石同期機を駆動するための電圧指令値、前記永久磁石同期機の回転速度、前記電力変換器の直流電圧検出値、および前記永久磁石同期機の機械パラメータの少なくともいずれかを用いて損失トルク値を演算し、演算した損失トルク値に基づいて前記トルク指令値を補償するトルク指令損失補償部
     を備えたことを特徴とする請求項1に記載の永久磁石同期機の駆動装置。
  11.  永久磁石同期機を駆動する電力変換器と、前記電力変換器を制御する制御器とを有する永久磁石同期機のトルク補償方法であって、
     前記制御器は、
     入力されたトルク指令値を補正するトルク補正部と、
     前記トルク補正部によって補正されたトルク指令値から、前記永久磁石同期機を駆動制御するための電流指令値を生成する電流指令演算部と
     を備え、
     前記トルク補正部が、前記永久磁石同期機の磁石磁束と関連付けられる値と、前記電流指令演算部によって生成された電流指令値とに基づいて前記トルク指令値を補正する
     ことを特徴とする永久磁石同期機のトルク補償方法。
  12.  前記磁石磁束と関連付けられる値は、前記永久磁石同期機の磁石温度であることを特徴とする請求項11に記載の永久磁石同期機のトルク補償方法。
  13.  前記磁石磁束と関連付けられる値は、前記永久磁石同期機の誘起電圧であることを特徴とする請求項11に記載の永久磁石同期機のトルク補償方法。
  14.  前記電流指令演算部が、
     前記電力変換器の直流電圧検出値と前記永久磁石同期機の回転速度とから磁束量制限値を演算し、
     前記演算された磁束量制限値と、前記トルク補正部によって補正されたトルク指令値とから前記電流指令値としてd軸電流指令値およびq軸電流指令値を生成する
     ことを特徴とする請求項11~13のいずれか1項に記載の永久磁石同期機のトルク補償方法。
  15.  請求項1~10のいずれか1項に記載の永久磁石同期機の駆動装置を備えた電気車。
PCT/JP2019/049067 2019-03-29 2019-12-13 永久磁石同期機の駆動装置、永久磁石同期機のトルク補償方法、および電気車 WO2020202655A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980094992.XA CN113646204B (zh) 2019-03-29 2019-12-13 永磁体同步电机的驱动装置、永磁体同步电机的转矩补偿方法和电动车
EP19922242.3A EP3950403A4 (en) 2019-03-29 2019-12-13 DRIVING DEVICE FOR A PERMANENT MAGNET SYNCHRONOUS MACHINE, TORQUE COMPENSATION METHOD FOR A PERMANENT MAGNET SYNCHRONOUS MACHINE AND ELECTRIC VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068193A JP6980716B2 (ja) 2019-03-29 2019-03-29 永久磁石同期機の駆動装置、永久磁石同期機のトルク補償方法、および電気車
JP2019-068193 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202655A1 true WO2020202655A1 (ja) 2020-10-08

Family

ID=72668534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049067 WO2020202655A1 (ja) 2019-03-29 2019-12-13 永久磁石同期機の駆動装置、永久磁石同期機のトルク補償方法、および電気車

Country Status (4)

Country Link
EP (1) EP3950403A4 (ja)
JP (1) JP6980716B2 (ja)
CN (1) CN113646204B (ja)
WO (1) WO2020202655A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872496A (zh) * 2021-09-27 2021-12-31 重庆长安新能源汽车科技有限公司 一种用汽车电驱动系统的电机控制方法、系统及车辆
CN114465547A (zh) * 2022-02-23 2022-05-10 重庆长安新能源汽车科技有限公司 一种车用永磁同步电机母线电流的估算方法及估算系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992102B (zh) * 2021-09-10 2024-06-25 岚图汽车科技有限公司 永磁同步电机扭矩的控制方法、装置、介质、电子设备
WO2024157363A1 (ja) * 2023-01-24 2024-08-02 日立Astemo株式会社 電動機制御装置および電動機制御方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331900A (ja) * 1995-05-31 1996-12-13 Meidensha Corp 回転電機の制御装置
JP2000184766A (ja) 1998-12-14 2000-06-30 Toyota Motor Corp モータ制御装置
JP2006304441A (ja) 2005-04-19 2006-11-02 Hitachi Ltd 同期モータ制御装置
JP2009261182A (ja) * 2008-04-18 2009-11-05 Toyota Motor Corp 回転電機の磁石温度推定装置およびそれを備えた電動車両、ならびに回転電機の磁石温度推定方法
JP4462207B2 (ja) * 2006-02-24 2010-05-12 アイシン・エィ・ダブリュ株式会社 電動駆動制御装置及び電動駆動制御方法
US20160056738A1 (en) * 2014-08-25 2016-02-25 Hyundai Motor Company Apparatus and method for compensating for torque for current order of driving motor
JP2016086634A (ja) * 2014-10-28 2016-05-19 現代自動車株式会社Hyundai Motor Company トルク制御装置及び方法、並びにモーター制御器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881635B2 (ja) * 2006-03-15 2012-02-22 株式会社日立製作所 永久磁石モータのベクトル制御装置
JP4654217B2 (ja) * 2007-04-25 2011-03-16 日立オートモティブシステムズ株式会社 永久磁石モータの弱め界磁制御装置及びそれを用いた電動パワーステアリング
JP4637148B2 (ja) * 2007-08-27 2011-02-23 株式会社日立製作所 電力変換装置
JP2014068443A (ja) * 2012-09-25 2014-04-17 Hitachi Automotive Systems Ltd 回転電機の駆動制御装置および電動車両駆動システム
JP5923437B2 (ja) * 2012-11-09 2016-05-24 株式会社日立産機システム 同期電動機駆動システム
WO2016125567A1 (ja) * 2015-02-02 2016-08-11 三菱電機株式会社 同期機制御装置および同期機の永久磁石温度推定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331900A (ja) * 1995-05-31 1996-12-13 Meidensha Corp 回転電機の制御装置
JP2000184766A (ja) 1998-12-14 2000-06-30 Toyota Motor Corp モータ制御装置
JP2006304441A (ja) 2005-04-19 2006-11-02 Hitachi Ltd 同期モータ制御装置
JP4462207B2 (ja) * 2006-02-24 2010-05-12 アイシン・エィ・ダブリュ株式会社 電動駆動制御装置及び電動駆動制御方法
JP2009261182A (ja) * 2008-04-18 2009-11-05 Toyota Motor Corp 回転電機の磁石温度推定装置およびそれを備えた電動車両、ならびに回転電機の磁石温度推定方法
US20160056738A1 (en) * 2014-08-25 2016-02-25 Hyundai Motor Company Apparatus and method for compensating for torque for current order of driving motor
JP2016086634A (ja) * 2014-10-28 2016-05-19 現代自動車株式会社Hyundai Motor Company トルク制御装置及び方法、並びにモーター制御器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950403A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872496A (zh) * 2021-09-27 2021-12-31 重庆长安新能源汽车科技有限公司 一种用汽车电驱动系统的电机控制方法、系统及车辆
CN113872496B (zh) * 2021-09-27 2023-07-21 深蓝汽车科技有限公司 一种用汽车电驱动系统的电机控制方法、系统及车辆
CN114465547A (zh) * 2022-02-23 2022-05-10 重庆长安新能源汽车科技有限公司 一种车用永磁同步电机母线电流的估算方法及估算系统

Also Published As

Publication number Publication date
JP6980716B2 (ja) 2021-12-15
CN113646204B (zh) 2023-12-19
JP2020167870A (ja) 2020-10-08
EP3950403A4 (en) 2023-01-04
EP3950403A1 (en) 2022-02-09
CN113646204A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
JP6980716B2 (ja) 永久磁石同期機の駆動装置、永久磁石同期機のトルク補償方法、および電気車
CA2660380C (en) Permanent magnet synchronization motor vector control device
JP3411878B2 (ja) 同期モータの回転子位置推定方法、位置センサレス制御方法及び制御装置
US7045988B2 (en) Sensorless controller of AC motor and control method
US8044618B2 (en) Control apparatus for AC motor
EP2582036B1 (en) Parameter estimating apparatus for permanent magnet synchronous motor driving system
US7852039B2 (en) Control apparatus for AC rotary machine
JP3467961B2 (ja) 回転電機の制御装置
US7230398B2 (en) Brushless motor control apparatus and brushless motor control method
JP2003061386A (ja) 同期電動機駆動システム
CN111630769B (zh) 驱动装置、流体利用装置以及空调机
WO2007001007A1 (ja) 電力変換制御装置、電力変換制御方法、および電力変換制御用プログラム
JP2018057077A (ja) 電動機制御装置およびドライブシステム
Jukic et al. Comparison of torque estimation methods for interior permanent magnet wind power generator
JP2006223089A (ja) 同期電動機のベクトル制御装置
JP4053511B2 (ja) 巻線界磁式同期機のベクトル制御装置
TW202318778A (zh) 在弱磁模式下操作同步馬達的方法及其控制器
Qi et al. Precise field oriented torque control of induction machines using thermal model based resistance adaption
Thike et al. Parameter measurements and modeling of a novel hybrid variable flux machine with series rare-earth and AlNiCo magnets
Odhano et al. Unified direct-flux vector control of induction motor self-commissioning drive with analysis of parameter detuning effects
Pellegrino et al. Direct flux control of PM synchronous motor drives for traction applications
CN116134723A (zh) 电动机铁损运算装置及具有该装置的电动机控制装置
JP6848406B2 (ja) インバータ制御装置
Luukko et al. Estimation of rotor and load angle of direct-torque-controlled permanent magnet synchronous machine drive
CN114097173B (zh) 驱动装置、流体利用装置以及空调机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019922242

Country of ref document: EP

Effective date: 20211029