WO2020201344A1 - Cuve étanche et thermiquement isolante - Google Patents

Cuve étanche et thermiquement isolante Download PDF

Info

Publication number
WO2020201344A1
WO2020201344A1 PCT/EP2020/059235 EP2020059235W WO2020201344A1 WO 2020201344 A1 WO2020201344 A1 WO 2020201344A1 EP 2020059235 W EP2020059235 W EP 2020059235W WO 2020201344 A1 WO2020201344 A1 WO 2020201344A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
thermally insulating
insulating barrier
wall
communication channel
Prior art date
Application number
PCT/EP2020/059235
Other languages
English (en)
Inventor
Bruno Deletre
Catherine BOUCARD
Camille GOURMELEN
Laurine SENSEBY
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to CN202080026471.3A priority Critical patent/CN113710948B/zh
Priority to US17/442,475 priority patent/US11933456B2/en
Priority to EP20714237.3A priority patent/EP3948056A1/fr
Priority to KR1020217031670A priority patent/KR102630112B1/ko
Priority to SG11202110531PA priority patent/SG11202110531PA/en
Publication of WO2020201344A1 publication Critical patent/WO2020201344A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks with membranes.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and / or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) exhibiting by example a temperature between -50 ° C and 0 ° C, or for the transport of Liquefied Natural Gas (LNG) at approximately -162 ° C at atmospheric pressure, or for the storage of liquid argon at approximately -185 ° C .
  • LPG Liquefied Petroleum Gas
  • LNG Liquefied Natural Gas
  • the tank may be intended for the transport of liquefied gas or to receive liquefied gas serving as fuel for the propulsion of the floating structure.
  • Document FR2265608 describes a sealed and thermally insulating tank integrated into the supporting structure of a ship, comprising a secondary thermally insulating barrier, a secondary waterproofing membrane, a primary thermally insulating barrier and a primary waterproofing membrane. This document more particularly describes a method for placing the secondary thermally insulating barrier on the supporting structure.
  • the secondary thermally insulating barrier of this document comprises a plurality of secondary insulating boxes filled with a heat insulating material and juxtaposed to one another.
  • the secondary insulating boxes are attached directly to the supporting structure of the ship.
  • the ship structure may have irregularities in flatness.
  • strips of sealants are placed on the face of the boxes resting against the supporting structure.
  • the mastic helps absorb flatness defects by collapsing more or less under the insulating box.
  • thermosiphon phenomenon takes place in inclined walls forming an angle with a horizontal direction, for example vertical walls of the vessel, with the circulation of a gas (or gas mixture) cooling, therefore descending with respect to the vertical direction, between the secondary waterproofing membrane and the secondary thermally insulating barrier and the circulation of a gas which heats up, and therefore rises with respect to the vertical direction, between the secondary thermally insulating barrier and the bearing wall.
  • the circulation of the cooling gas and the circulation of the heating gas form a closed circuit at the ends of the vessel wall which promotes convective heat transfer through the vessel wall.
  • thermosiphon effect does not allow the thermally insulating barrier to play its insulating role effectively and can thus damage the external structure of the vessel by propagating extreme temperatures from the contents of the vessel to the vessel.
  • the invention aims to remedy this problem.
  • An idea underlying the invention is to prevent the establishment of a circulation of gas by thermosiphon effect in an inclined wall.
  • the invention provides a sealed and thermally insulating tank integrated into a supporting structure, the tank comprising at least one inclined tank wall forming an angle with a horizontal direction perpendicular to the direction of the earth's gravity field and fixed. to a supporting wall of the supporting structure, the tank wall having a multilayer structure comprising successively, in the direction of the thickness from the outside to the inside of the tank, a thermally insulating barrier retained against the corresponding load-bearing wall and a waterproofing membrane carried by the barrier thermally insulating, the tank comprising sealed or substantially sealed strips in the space formed between the thermally insulating barrier and the load-bearing wall, wherein the sealed or substantially sealed strips segment the space between the thermally insulating barrier and the load-bearing wall into a plurality of successive zones in a direction of greater slope of the wall, the zones extending over a whole transverse dimension of the vessel wall in a transverse direction inclined to the direction of greatest slope.
  • the gas located between the load-bearing structure and the secondary thermally insulating barrier which, by heating up would be caused to rise in the inclined wall, is here blocked in its circulation by the segmentation of this space into a plurality of zones. using waterproof tapes.
  • the thermosiphon effect cannot be established.
  • a gas heats up its density decreases, it thus tends to move in a direction opposite to that of the earth's gravity field and therefore to rise in the inclined wall.
  • a gas cools, its density increases, so it tends to move in the direction of the earth's gravity field and therefore to descend into the inclined wall.
  • a plurality of zones following one another in a direction of greater slope means here that when one follows a line of greater slope of the vessel wall, one successively meets the zones one after the other.
  • such a tank may include one or more of the following characteristics.
  • the transverse direction is orthogonal or oblique to the direction of greatest slope.
  • the bearing wall is planar and the transverse direction and the direction of greatest slope are situated in the plane of the bearing wall.
  • At least one of, some, or all of the waterproof or substantially waterproof strips have a variable thickness in the transverse direction in order to compensate for any defects in the flatness of the supporting structure.
  • At least one of, some or all of the sealed or substantially sealed strips extends over the entire transverse dimension of the vessel wall.
  • At least one of, some or all of the waterproof or substantially waterproof strips is formed from a polymeric material, for example a mastic or a closed cell foam, for example a closed cell polyurethane foam, or the same. combination of an ethylene-propylene-diene monomer rubber band (EPDM) with a polyester foam band.
  • a polymeric material for example a mastic or a closed cell foam, for example a closed cell polyurethane foam, or the same.
  • EPDM ethylene-propylene-diene monomer rubber band
  • At least one of, some or all of the waterproof or substantially waterproof strips comprises a plurality of strip portions connected to each other in a sealed manner by at least one wedge, the wedge being arranged between two portions of strips adjacent.
  • sealingly connecting here is meant that the sealing properties of the strip portions are preserved at the level of the connection between two strip portions, thus ensuring that no circulation space is left free between the wedge and a portion of tape.
  • the waterproof strip extends overall in the transverse direction, portions of the strip of said waterproof strip possibly taking another direction, so as to form, for example, a crenellated line.
  • the wedge which is made of a rigid material, such as for example wood or plywood, makes it possible to avoid excessive crushing of the waterproof strips when placing the thermally insulating barrier against the load-bearing wall.
  • the thickness of a wedge is less than the adjacent strip portions so that the strip portions are slightly compressed within a range of elastic deformation while avoiding compression in their plastic range.
  • the wedge comprises a first end located in a first strip portion and a second end located in a second strip portion, the second strip portion being adjacent to the first strip portion.
  • the thermally insulating barrier comprises a plurality of insulating blocks juxtaposed to each other in the direction of greatest slope and in the transverse direction.
  • At least one of, some or all of the waterproof or substantially waterproof strips are interrupted at an interface or an interstice between two adjacent insulating blocks, the wedge being arranged between two adjacent insulating blocks so in sealingly connecting two portions of adjacent strips.
  • At least one of, some or all of the sealed or substantially sealed bands is crossed by a communication channel, the communication channel preferably having a high pressure drop, so that the areas separated by said at least one substantially sealed strip are in slow fluid communication, allowing the pressure to equilibrate between the two zones without allowing substantial convective circulation.
  • each zone communicates with the adjacent zones so as to allow the pressure balancing in the space between the thermally insulating barrier and the supporting structure.
  • the communication channel in order to prevent this communication from contributing to creating a circulation by the thermosiphon effect, it is preferable to design the communication channel so that it has a high pressure drop for a gas flow flowing in. the direction of greatest slope of the vessel wall. Provision can also be made to place a porous material in the communication channel to contribute to the pressure drop in the communication channel.
  • high pressure drop communication channel means here that the communication channel allows fluid communication which generates a high pressure drop, on a flow passing through this channel.
  • This high pressure drop can be generated by a particular geometry, for example a channel in the form of a baffle, and / or a dimension of the channel sufficiently small compared to the dimension of the tank wall to generate a singular pressure drop by shrinkage. sudden passage section and / or the positioning of a porous material in the communication channel, this material having a suitable coefficient of permeability.
  • this porous material can have a coefficient of permeability of between 5.10 -8 to 10 -10 m2 for dimensions of substantially waterproof strip in the direction of the greatest slope of 10 to 50mm.
  • the thermally insulating barrier comprises a plurality of rows of insulating blocks extending in the transverse direction, the insulating blocks having a longitudinal dimension in the direction of greatest slope, two adjacent waterproof or substantially waterproof strips being spaced apart. one from the other in the direction of greatest slope of a dimension equal to or substantially equal to the longitudinal dimension of the insulating blocks.
  • At least one of, a plurality, or all of the substantially sealed bands is crossed by several communication channels distributed over the substantially sealed band.
  • At least one of, some, or all of the strip portions extending in the transverse direction is interrupted by a communication channel with high pressure drop.
  • At least one of, some or all of the substantially sealed bands are discontinuous only at the level of the communication channel or channels.
  • the substantially waterproof strips are interrupted only occasionally over the entire transverse dimension of the wall.
  • At least one of, some or all of the waterproof strips are continuous over the entire transverse dimension of the vessel wall.
  • the communication channel of a substantially sealed band is offset from at least one communication channel of an adjacent substantially sealed band in the transverse direction, so as to form a network of staggered communication channels.
  • the tank wall comprises two transverse edges extending in the direction of the greatest slope, each substantially sealed strip comprising at least one or a single communication channel located close to one of the transverse edges of the tank wall.
  • each zone is in fluid communication with an adjacent zone via at least one communication channel with a high pressure drop.
  • the pressure drop of a communication channel is greater than or equal to , with ⁇ P the minimum pressure drop of the communication channel, P G the driving pressure of the gas located in the space between the thermally insulating barrier and the supporting structure of the vessel wall under normal conditions of use of the vessel, and n representing the number of zones segmented by the substantially sealed bands.
  • the minimum pressure drop of the communication channel can be calculated based on a maximum allowable speed, itself calculated based on the heat that the flow is likely to convey through the channel, a few cm / sec for example.
  • ⁇ P the minimum pressure drop ⁇ P at the maximum tolerated flow (ie calculated in the channel in such a way as to limit the term Q. ⁇ .Cp. ⁇ T) by .
  • the calculation of the driving pressure of the gas P G can be carried out as follows: where ⁇ is the deviation of the densities ( ⁇ (Tf) - ⁇ (Tc)), with Tf the temperature of the cold source and Tc the temperature of the hot source, dH is the vertical step of the separations.
  • P G / dH 1.86 mbar / m or 186 Pa / m. If the disconnection is every X meters, for example, a pressure drop of X * 186 Pa will be targeted at the maximum speed (or flow rate) tolerated in the communication channel.
  • the high pressure drop communication channel comprises a porous material filling the communication channel, the porous material having a porosity configured to result in a pressure drop greater than or equal to the minimum pressure drop ⁇ P.
  • the porous material of the communication channel is chosen from melamine foam, open-cell polyurethane (PU) foam, polyethylene wadding, braids of fibers, for example of glass, of hemp, of linen or cotton.
  • PU polyurethane
  • the waterproofing membrane consists of a corrugated waterproofing membrane comprising a plurality of corrugated metal sheets welded to each other.
  • the tank comprises a single sealing membrane.
  • the waterproofing membrane is a secondary waterproofing membrane and the thermally insulating barrier is a secondary thermally insulating barrier, the tank comprising a primary thermally insulating barrier carried by the secondary waterproofing membrane, and a membrane. primary seal carried by the primary thermally insulating barrier.
  • Such a tank can be part of an onshore storage installation, for example to store LNG, liquid argon or LPG, or be installed in a floating, coastal or deep water structure, in particular an LNG vessel, a floating storage and regasification unit (FSRU), a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • Such a tank can also serve as a fuel tank in any type of vessel.
  • a ship for transporting a cold liquid product comprises a double hull and a said tank arranged in the double hull.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating storage installation. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipes from or towards the floating or terrestrial storage installation towards or from the vessel of the vessel.
  • the invention also provides a method for loading or unloading such a ship, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage installation to or from the vessel tank.
  • FIG. 1 is a cutaway perspective view of a tank wall according to a first embodiment.
  • Figure 2 is a sectional view in the transverse direction of a vessel wall according to the first embodiment.
  • Figure 3 is a schematic front view from inside the vessel of a vessel wall where the sealing membrane has been omitted, according to a second embodiment.
  • Figure 4 is a schematic front view from inside the vessel of a vessel wall where the sealing membrane has been omitted, according to a third embodiment.
  • FIG. 5 is a schematic front view from outside the vessel of a vessel wall, according to a fourth embodiment.
  • FIG. 6 is a cut-away schematic representation of an LNG vessel tank and of a loading / unloading terminal for this tank.
  • a sealed and thermally insulating tank 71 comprising at least one inclined tank wall 1 forming an angle with a horizontal direction and fixed to a supporting wall of the supporting structure 2.
  • the particular case of a vertical wall will be described later.
  • the invention is not limited to the particular case of a vertical wall.
  • the direction of greatest slope 51 of this wall is therefore the vertical direction.
  • vertical here means extending in the direction of the earth's gravity field.
  • horizontal here means extending in a direction perpendicular to the vertical direction.
  • the tank wall 1 has a multilayer structure comprising successively, in the direction of the thickness 52 from the outside to the inside of the tank 71, a thermally insulating barrier 3 retained against the bearing wall 2 and a waterproofing membrane 4 carried by the thermally insulating barrier 3.
  • the thermally insulating barrier 3 comprises a plurality of insulating blocks 5 which are anchored to the supporting wall 2 by means of retainers or couplers (not shown).
  • the insulating blocks 5 have a general parallelepipedal shape and are arranged in parallel rows.
  • the insulating blocks 5 can be made according to different structures.
  • An insulating block 5 can be made in the form of a box comprising a bottom plate, a cover plate and supporting webs extending, in the thickness direction of the vessel wall, between the bottom plate and the cover plate and delimiting a plurality of compartments filled with an insulating lining, such as perlite, glass wool or rock wool.
  • an insulating lining such as perlite, glass wool or rock wool.
  • An insulating block 5 can also be made of a bottom plate 7, a cover plate 6 and optionally an intermediate plate, for example made of plywood.
  • the insulating block 5 also comprises one or more layers of insulating polymer foam 8 sandwiched between the bottom plate 7, the cover plate 6 and the possible intermediate plate and glued to them.
  • the insulating polymer foam 8 can in particular be a polyurethane-based foam, optionally reinforced with fibers. Such a general structure is for example described in WO2017 / 006044.
  • the waterproofing membrane 4 may consist of a continuous sheet of metal sheets 9 welded in a sealed manner edge to edge and which have two series of mutually perpendicular corrugations 10,11.
  • the two sets of corrugations 10, 11 may have regular spacing or periodic irregular spacing.
  • the corrugations 10, 11 can be continuous and form intersections between the two series of corrugations 10, 11. Alternatively, the corrugations 10, 11 can have discontinuities of certain undulations at the intersections between the two series.
  • the corrugated metal sheets 9 are made of stainless steel.
  • the barrier / supporting space 12 In order to block the thermosiphon effect of gas circulation in the space 12 between the thermally insulating barrier 3 and the supporting structure 2, hereinafter called the barrier / supporting space 12, it is planned to segment this barrier / supporting space 12 so as to form successive zones 14 in the direction of the greatest slope of the tank wall 1.
  • FIGS 1 and 2 show a first embodiment where waterproof strips 15 segment the space between the thermally insulating barrier and the load-bearing wall in the direction of greatest slope 51 into a plurality of zones 14.
  • the waterproof strips 15 are placed at the junction between two rows of insulating blocks 5 extending in a transverse direction 50 inclined with respect to the direction of greatest slope 51.
  • the transverse direction 50 corresponds to the horizontal direction or an angle of 90 ° with the direction of greatest slope 51 of a vertical wall.
  • the sealed strips 15 thus extend over the entire transverse dimension of the vessel wall 1 without discontinuity.
  • the waterproof strips 15 are therefore here formed in a straight line.
  • the waterproof strips 15 can be formed, for example, of mastic or closed cell polymer foams.
  • the transverse direction 50 can form a non-zero angle with the horizontal direction, for example between -20 ° and 20 °.
  • an insulating seal 19 is placed between two adjacent insulating blocks 5 in the thickness direction of the vessel wall 1.
  • the insulating seal 19 makes it possible to fill the spaces between the insulating blocks 5 in the direction of thickness so as to improve the thermal insulation of the thermally insulating barrier 3.
  • the insulating seal 19 can be made, for example, of glass wool or of a sprayed polymer foam.
  • FIG 3 shows a second embodiment of segmentation of the barrier / carrier space 12 in the direction of greatest slope.
  • the thermally insulating barrier 3 with part of the insulating blocks 5 and the supporting structure 2 are shown.
  • the waterproof strips 15 are distributed regularly or irregularly under the thermally insulating barrier 3 in the direction of the greatest slope.
  • the waterproof strip 15 is here composed of a bead of mastic placed on the supporting structure before the positioning of the insulating blocks 5.
  • each waterproof strip 15 is crossed in the direction of greatest slope by a communication channel 17 which therefore weakens the sealing property of the substantially waterproof strip 15 without eliminating it. completely.
  • the communication channel 17 is for example formed by a porous material, for example by one or more fiber braids, inserted in the waterproof strip 15 so that the braids extend substantially in the direction of the greatest slope and cross right through the sealed strip 15.
  • the communication channel 17 is a communication channel with a high pressure drop 17 because the latter represents, for a flow of fluid in the barrier / carrier space 12, a singular pressure drop by the sudden change in flow section and / or by the porous material used.
  • the communication channels 17 of adjacent sealed strips 15 in the direction of greatest slope are staggered so that each zone 14 represents for the flow a pipe extending in the transverse direction and that the communication channel 17 represents for the flow an elbow section between two adjacent zones 14.
  • FIG. 4 shows a third embodiment of the segmentation of the barrier / carrier space 12 in the direction of greatest slope.
  • the segmentation is also carried out using waterproof strips 15.
  • each waterproof strip 15 is formed by a plurality of strip portions 16 connected to each other in the transverse direction by a wedge 18, the wedge 18 therefore being disposed between two adjacent strip portions 16.
  • one of the strip portions 16 is placed on the lower surface of each insulating block 5, thus forming a pattern, so that the strip portions 15 are located after placing the insulating blocks 5 in the barrier space. / carrier 12.
  • This pattern can be achieved in various ways. In the mode shown, this pattern forms a closed contour of the insulating block 5 as well as a plurality of lines spaced from the closed contour, extending in the transverse direction and distributed in the direction of greatest slope.
  • the strip portions 16 are here formed as above by strands of mastic.
  • a wedge 18 is placed at the junction between two adjacent insulating blocks 5. There may also be other wedges 18 arranged regularly at the junction between two adjacent insulating blocks 5.
  • the wedge 18 comprises a first end located in the closed contour of the strip portion 16 of a first insulating block 5 and comprises a second end located in the closed contour of the pattern of the strip portions 16 of an adjacent second insulating block 5. to the first insulating block in the transverse direction.
  • the waterproof strip 15 is formed by the portions of strips 16 located under each of these insulating blocks 5 and connected to each other by the wedges 18 placed between these insulating blocks 5. .
  • the wedges 18 may have variable thicknesses so as to form so-called reference wedges 18.
  • the wedges 18 also have a function of ensuring the flatness of the thermally insulating barrier 3 by compensating for any flatness defects by their thickness. of the supporting structure 2.
  • communication channels 17 are formed in the contour formed of each insulating block 5 so that under an insulating block 5 does not remain trapped a pocket of fluid. These communication channels 17 can be formed in the same way as in the second embodiment or differently. As shown in Figure 4, under a single insulating block 5 are placed two communication channels 17 arranged staggered in the direction of greatest slope.
  • FIG. 5 shows a fourth embodiment of the segmentation of the barrier / carrier space 12 in the direction of greatest slope.
  • the thermally insulating barrier 3 with part of the insulating blocks 5 and the supporting structure 2 are shown.
  • the supporting structure 2 is omitted (or shown in transparency) and the point of view is from outside the tank so that the elements located between the supporting structure 2 and the insulating blocks 5 are at the foreground.
  • each waterproof strip 15 is formed by a plurality of strip portions 16 connected to each other in the transverse direction by a wedge 18, the wedge 18 being therefore disposed between two adjacent strip portions 16.
  • the strip portions 16 are here placed at the junction between two adjacent insulating blocks 5 in the direction of greatest slope and optionally at the junction between two adjacent insulating blocks 5 in the transverse direction. Each strip portion 16 extends as well as at the junction between two insulating blocks 5. The strip portions 16 adjacent in the transverse direction or the direction of greatest slope are connected in a sealed manner to each other by a wedge. 18. The strip portions 16 are here formed by a closed cell polymer foam.
  • communication channels 17 pass through the strip portions 16 so that the spaces located under the insulating blocks 5 of the same row in the direction of the greatest slope are in fluid communication thanks to the communication channels. 17.
  • These communication channels 17 can be formed in the same way as in the second embodiment or differently.
  • under the same insulating block 5 is placed at least two communication channels 17 arranged staggered in the direction of greatest slope.
  • the shims 18 of the fourth embodiment can also be reference shims 18.
  • the tank wall 1 can thus consist of a single sealing membrane 4 and a single thermally insulating barrier 3.
  • the tank wall 1 can also include a so-called double membrane structure.
  • the thermally insulating barrier 3 described is a secondary thermally insulating barrier and the sealing membrane 4 is a secondary sealing membrane.
  • the tank wall 1 thus also comprises a primary thermally insulating barrier carried by the secondary sealing membrane 4 and a primary sealing membrane carried by the primary thermally insulating barrier.
  • a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the vessel 71 comprises a primary waterproof barrier intended to be in contact with the LNG contained in the vessel, a secondary waterproof barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the vessel. primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double shell 72.
  • loading / unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of suitable connectors, to a maritime or port terminal for transferring a cargo of LNG from or to the tank 71.
  • FIG. 6 represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising an arm. mobile 74 and a tower 78 which supports the mobile arm 74.
  • the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73.
  • the mobile swivel arm 74 adapts to all sizes of LNG carriers .
  • a connecting pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77.
  • the latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station 75 are used.

Abstract

L'invention concerne une cuve étanche et thermiquement isolante intégrée dans une structure porteuse (2), la cuve comportant au moins une paroi de cuve (1) inclinée formant un angle avec une direction horizontale et fixée à une paroi porteuse de la structure porteuse (2), la paroi de cuve (1) présentant une structure multicouche comportant successivement, dans le sens de l'épaisseur depuis l'extérieur vers l'intérieur de la cuve, une barrière thermiquement isolante (3) retenue contre la paroi porteuse correspondante et une membrane d'étanchéité (4) portée par la barrière thermiquement isolante (3), la cuve comportant des bandes étanches (15) dans l'espace formé entre la barrière thermiquement isolante (3) et la paroi porteuse, dans laquelle les bandes étanches (15) segmentent l'espace entre la barrière thermiquement isolante (3) et la paroi porteuse en une pluralité de zones (14) se succédant dans une direction de plus grande pente de la paroi, les zones (14) s'étendant sur toute une dimension transversale de la paroi de cuve (1) dans une direction transversale inclinée par rapport à la direction de plus grand pente.

Description

Cuve étanche et thermiquement isolante
L’invention se rapporte au domaine des cuves étanches et thermiquement isolantes, à membranes. En particulier, l’invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de gaz liquéfié à basse température, telles que des cuves pour le transport de Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre -50°C et 0°C, ou pour le transport de Gaz Naturel Liquéfié (GNL) à environ -162°C à pression atmosphérique, ou encore pour le stockage d’Argon liquide à environ -185°C. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.
Arrière-plan technologique
Le document FR2265608 décrit une cuve étanche et thermiquement isolante intégrée à la structure porteuse d’un navire, comprenant une barrière thermiquement isolante secondaire, une membrane d’étanchéité secondaire, une barrière thermiquement isolante primaire et une membrane d’étanchéité primaire. Ce document décrit plus particulièrement un procédé de mise en place de la barrière thermiquement isolante secondaire sur la structure porteuse.
La barrière thermiquement isolante secondaire de ce document comprend une pluralité de caisses isolantes secondaires remplies d’un matériau calorifuge et juxtaposées les unes aux autres. Les caisses isolantes secondaires sont fixées directement à la structure porteuse du navire. La structure de navire peut comporter des irrégularités de planéité. Afin de palier aux défauts de planéité de la structure porteuse, des bandes de mastics sont disposées sur la face des caisses en appui contre la structure porteuse. Ainsi, le mastic permet d’absorber les défauts de planéité en s’écrasant plus ou moins sous la caisse isolante.
Toutefois, dans de telles dispositions, entre deux caisses isolantes juxtaposées, il y a donc un espace entre la barrière thermiquement isolante secondaire et la structure porteuse sur toute la dimension de la paroi de cuve. On retrouve également un tel espace entre la membrane d’étanchéité secondaire et la barrière thermiquement isolante secondaire.
La membrane d’étanchéité secondaire se trouvant à des températures très basses et la structure porteuse à une température ambiante, il a été constaté qu’un phénomène de thermosiphon se mettait en place dans les parois inclinées formant un angle avec une direction horizontale, par exemple des parois verticales de la cuve, avec la circulation d’un gaz (ou mélange de gaz) se refroidissant, donc descendant par rapport à la direction verticale, entre la membrane d’étanchéité secondaire et la barrière thermiquement isolante secondaire et la circulation d’un gaz se réchauffant, donc ascendant par rapport à la direction verticale, entre la barrière thermiquement isolante secondaire et la paroi porteuse. La circulation du gaz se refroidissant et la circulation du gaz se réchauffant forment un circuit fermé aux extrémités de la paroi de cuve qui favorise le transfert de chaleur convectif à travers la paroi de cuve.
Cet effet thermosiphon ne permet pas à la barrière thermiquement isolante de jouer son rôle d’isolation de manière efficace et peut ainsi endommager la structure externe de la cuve en propageant les températures extrêmes du contenu de la cuve vers celle-ci.
L’invention vise à remédier à ce problème.
Résumé
Une idée à la base de l’invention est d’empêcher l’établissement d’une circulation de gaz par effet thermosiphon dans une paroi inclinée.
Selon un mode de réalisation, l’invention fournit une cuve étanche et thermiquement isolante intégrée dans une structure porteuse, la cuve comportant au moins une paroi de cuve inclinée formant un angle avec une direction horizontale perpendiculaire à la direction du champ de gravité terrestre et fixée à une paroi porteuse de la structure porteuse,
la paroi de cuve présentant une structure multicouche comportant successivement, dans le sens de l’épaisseur depuis l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante retenue contre la paroi porteuse correspondante et une membrane d’étanchéité portée par la barrière thermiquement isolante,
la cuve comportant des bandes étanches ou sensiblement étanches dans l'espace formé entre la barrière thermiquement isolante et la paroi porteuse,
dans laquelle les bandes étanches ou sensiblement étanches segmentent l'espace entre la barrière thermiquement isolante et la paroi porteuse en une pluralité de zones se succédant dans une direction de plus grande pente de la paroi, les zones s’étendant sur toute une dimension transversale de la paroi de cuve dans une direction transversale inclinée par rapport à la direction de plus grand pente.
Grâce à ces caractéristiques, le gaz situé entre la structure porteuse et la barrière thermiquement isolante secondaire qui en se réchauffant serait amené à remonter dans la paroi inclinée est ici bloqué dans sa circulation par la segmentation de cet espace en une pluralité de zones à l’aide de bandes étanches. Ainsi, l’effet thermosiphon ne peut pas s’établir. En effet, lorsqu’un gaz se réchauffe sa masse volumique diminue, celui-ci a ainsi tendance à se diriger dans une direction contraire à celle du champ de gravité terrestre et donc à remonter dans la paroi inclinée. De la même manière, lorsqu’un gaz se refroidit, sa masse volumique augmente, celui-ci a ainsi tendance à se diriger dans la direction du champ de gravité terrestre et donc à descendre dans la paroi inclinée.
L’expression « une pluralité de zones se succédant dans une direction de plus grande pente » signifie ici que lorsqu’on suit une ligne de plus grande pente de la paroi de cuve, on rencontre successivement les zones les unes après les autres.
Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, la direction transversale est orthogonale ou oblique à la direction de plus grande pente. Selon un mode de réalisation, la paroi porteuse est plane et la direction transversale et la direction de plus grande pente sont situées dans le plan de la paroi porteuse.
Selon un mode de réalisation, au moins une des, certaines, ou toutes les bandes étanches ou sensiblement étanches ont une épaisseur variable dans la direction transversale afin de compenser les défauts éventuels de planéité de la structure porteuse.
Selon un mode de réalisation, au moins une des, certaines ou toutes les bandes étanches ou sensiblement étanches se prolonge sur toute la dimension transversale de la paroi de cuve.
Selon un mode de réalisation, au moins une des, certaines ou toutes les bandes étanches ou sensiblement étanches est formée d’une matière polymère, par exemple un mastic ou une mousse à cellule fermée, par exemple une mousse polyuréthane à cellule fermée, ou la combinaison d’une bande caoutchouc éthylène-propylène-diène monomère (EPDM) avec une bande mousse polyester.
Selon un mode de réalisation, au moins une des, certaines ou toutes les bandes étanches ou sensiblement étanches comporte une pluralité de portions de bande reliées les unes aux autres de manière étanche par au moins une cale, la cale étant disposée entre deux portions de bandes adjacentes.
On entend ici par relier de manière étanche que les propriétés d’étanchéité des portions de bande sont conservées au niveau de la liaison entre deux portions de bande en s’assurant donc qu’aucun espace de circulation n’est laissé libre entre la cale et une portion de bande.
Ainsi, la bande étanche s’étend globalement dans la direction transversale, des portions de bande de ladite bande étanche pouvant prendre ponctuellement une autre direction, de sorte à former par exemple une ligne crénelée.
De plus, la cale qui est réalisée dans un matériau rigide, tel que par exemple du bois ou du contreplaqué, permet d’éviter un écrasement excessif des bandes étanches lors du placement de la barrière thermiquement isolante contre la paroi porteuse. En effet, de préférence, l’épaisseur d’une cale est inférieure aux portions de bande adjacentes de sorte à ce que les portions de bande soient légèrement comprimées dans une plage de déformation élastique en évitant une compression dans leur plage plastique.
Selon un mode de réalisation, la cale comprend une première extrémité située dans une première portion de bande et une deuxième extrémité située dans une deuxième portion de bande, la deuxième portion de bande étant adjacente à la première portion de bande.
Selon un mode de réalisation, la barrière thermiquement isolante comprend une pluralité de blocs isolants juxtaposés les uns aux autres dans la direction de plus grande pente et dans la direction transversale.
Selon un mode de réalisation, au moins une des, certaines ou toutes les bandes étanches ou sensiblement étanches sont interrompue au niveau d’une interface ou d’un interstice entre deux blocs isolants adjacents, la cale étant disposée entre deux blocs isolants adjacents de sorte à relier de manière étanche deux portions de bandes adjacentes.
Selon un mode de réalisation, au moins une des, certaines, ou toutes les bandes étanches ou sensiblement étanches est traversée par un canal de communication, le canal de communication étant de préférence à forte perte de charge, de sorte que les zones séparées par ladite au moins une bande sensiblement étanche sont en communication fluidique lente, permettant à la pression de s’équilibrer entre les deux zones sans permettre une circulation convective substantielle.
Ainsi, chaque zone communique avec les zones adjacentes de sorte à permettre l’équilibrage des pressions dans l’espace entre la barrière thermiquement isolante et la structure porteuse. Toutefois, afin d’éviter que cette communication ne contribue à créer une circulation par l’effet thermosiphon, il est préférable de concevoir le canal de communication de sorte qu’il soit à forte perte de charge pour un écoulement de gaz s’écoulant dans la direction de plus grande pente de la paroi de cuve. Il peut également être prévu de placer un matériau poreux dans le canal de communication pour contribuer à la perte de charge dans le canal de communication.
L’expression « canal de communication à forte perte de charge » signifie ici que le canal de communication permet une communication fluidique qui engendre une forte perte de charge, sur un flux passant par ce canal. Cette forte perte de charge peut être engendrée par une géométrie particulière, par exemple un canal en forme de chicane, et/ou une dimension du canal suffisamment petite par rapport à la dimension de la paroi de cuve pour engendrer une perte de charge singulière par rétrécissement brutal de section de passage et/ou le positionnement d’un matériau poreux dans le canal de communication, ce matériau ayant un coefficient de perméabilité adapté. Par exemple, ce matériau poreux peut avoir un coefficient de perméabilité compris entre 5.10-8 à 10-10m² pour des dimensions de bande sensiblement étanche dans la direction de plus grande pente de 10 à 50mm.
Selon un mode de réalisation, la barrière thermiquement isolante comprend une pluralité de rangée de blocs isolant s’étendant dans la direction transversale, les blocs isolants ayant une dimension longitudinale dans la direction de plus grande pente, deux bandes étanches ou sensiblement étanches adjacentes étant espacées l’une de l’autre dans la direction de plus grande pente d’une dimension égale ou sensiblement égale à la dimension longitudinale des blocs isolants.
Selon un mode de réalisation, au moins une des, une pluralité, ou toutes les bandes sensiblement étanches est traversée par plusieurs canaux de communication répartis sur la bande sensiblement étanche.
Selon un mode de réalisation, au moins une des, certaines, ou toutes les portions de bande s’étendant dans la direction transversale est interrompue par un canal de communication à forte perte de charge.
Selon un mode de réalisation, au moins une des, certaines ou toutes les bandes sensiblement étanches sont discontinues uniquement au niveau du ou des canaux de communication. Ainsi, les bandes sensiblement étanches ne sont interrompues que ponctuellement sur toute la dimension transversale de la paroi.
Selon un mode de réalisation, au moins une des, certaines ou toutes les bandes étanches sont continues sur toute la dimension transversale de la paroi de cuve.
Selon un mode de réalisation, le canal de communication d’une bande sensiblement étanche est décalé du moins un canal de communication d’une bande sensiblement étanche adjacente dans la direction transversale, de sorte à former un réseau de canaux de communication en quinconce.
Selon un mode de réalisation, la paroi de cuve comprend deux bords transversaux s’étendant dans la direction de plus grande pente, chaque bande sensiblement étanche comprenant au moins un ou un unique canal de communication située proche de l’un des bords transversaux de la paroi de cuve.
Selon un mode de réalisation, chaque zone est en communication fluidique avec une zone adjacente par au moins un canal de communication à forte perte de charge.
Selon un mode de réalisation, la perte de charge d’un canal de communication est supérieure ou égale à
Figure pctxmlib-appb-M000001
, avec ΔP la perte de charge minimum du canal de communication, PG la pression motrice du gaz situé dans l’espace entre la barrière thermiquement isolante et la structure porteuse de la paroi de cuve dans des conditions normales d’utilisation de la cuve, et n représentant le nombre de zones segmentées par les bandes sensiblement étanches.
La perte de charge minimum du canal de communication peut être calculée en fonction d’une vitesse maximale admissible, elle-même calculée en fonction de la chaleur que l’écoulement est susceptible de véhiculer à travers le canal, quelques cm/sec par exemple.
On peut définir la perte de charge minimale ΔP au débit maximal toléré (i.e. calculée dans le canal de telle manière à limiter le terme Q.ρ.Cp.ΔT) par
Figure pctxmlib-appb-M000002
.
Le calcul de la pression motrice du gaz PG peut être réalisé comme suit :
Figure pctxmlib-appb-M000003

où Δρ est l’écart des masses volumiques (ρ(Tf) – ρ(Tc)), avec Tf la température de la source froide et Tc la température de la source chaude,
dH est le pas vertical des séparations.
Exemple : les températures de coque et de membrane secondaire sont de 30°C et -160°C (lors d’un envahissement de la zone primaire par exemple), les masses volumiques correspondantes de l’azote sont de 1.2kg/m^3 et de 3.1kg/m^3.
PG/dH = 1.86 mbar/m ou 186 Pa/m. Si le sectionnement est tous les X mètres, on visera par exemple une perte de charge de X*186 Pa à la vitesse (ou débit) maximal toléré dans le canal de communication.
Selon un mode de réalisation, le canal de communication à forte perte de charge comprend un matériau poreux remplissant le canal de communication, le matériau poreux ayant une porosité configurée pour résulter en une perte de charge supérieure ou égale à la perte de charge minimum ΔP.
Selon un mode de réalisation, le matériau poreux du canal de communication est choisi parmi la mousse de mélamine, la mousse de polyuréthane (PU) à cellules ouvertes, l’ouate de polyéthylène, des tresses de fibres par exemple de verre, de chanvre, de lin ou de coton.
Selon un mode de réalisation, la membrane d’étanchéité est constituée d’une membrane d’étanchéité ondulée comportant une pluralité de tôles métalliques ondulées soudées les unes aux autres.
Selon un mode de réalisation, la cuve comprend une seule membrane d’étanchéité.
Selon un mode de réalisation, la membrane d’étanchéité est une membrane d’étanchéité secondaire et la barrière thermiquement isolante est une barrière thermiquement isolante secondaire, la cuve comportant une barrière thermiquement isolante primaire portée par la membrane d’étanchéité secondaire, et une membrane d’étanchéité primaire portée par la barrière thermiquement isolante primaire.
Une telle cuve peut faire partie d’une installation de stockage terrestre, par exemple pour stocker du GNL, de l’Argon liquide ou du GPL, ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Une telle cuve peut aussi servir de réservoir de carburant dans tout type de navire.
Selon un mode de réalisation, un navire pour le transport d’un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque.
Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Brève description des figures
L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
La figure 1 est une vue en perspective écorchée d’une paroi de cuve selon un premier mode de réalisation.
La figure 2 est une vue en coupe dans la direction transversale d’une paroi de cuve selon le premier mode de réalisation.
La figure 3 est une vue de face schématique depuis l’intérieur de la cuve d’une paroi de cuve où la membrane d’étanchéité a été omise, selon un deuxième mode de réalisation.
La figure 4 est une vue de face schématique depuis l’intérieur de la cuve d’une paroi de cuve où la membrane d’étanchéité a été omise, selon un troisième mode de réalisation.
La figure 5 est une vue de face schématique depuis l’extérieur de la cuve d’une paroi de cuve, selon un quatrième mode de réalisation.
La figure 6 est une représentation schématique écorchée d’une cuve de navire méthanier et d’un terminal de chargement/déchargement de cette cuve.
Dans la description ci-dessous, on va décrire une cuve étanche et thermiquement isolante 71 comprenant au moins une paroi de cuve inclinée 1 formant un angle avec une direction horizontale et fixée à une paroi porteuse de la structure porteuse 2. Le cas particulier d’une paroi verticale va être décrit par la suite. Toutefois, l’invention ne se limite pas au cas particulier d’une paroi verticale.
Dans le cas d’une paroi verticale, la direction de plus grande pente 51 de cette paroi est donc la direction verticale. Le terme « vertical » signifie ici s’étendant dans la direction du champ de gravité terrestre. Le terme « horizontal » signifie ici s’étendant dans une direction perpendiculaire à la direction verticale.
Comme représenté sur la figure 1, la paroi de cuve 1 présente une structure multicouche comportant successivement, dans le sens de l’épaisseur 52 depuis l’extérieur vers l’intérieur de la cuve 71, une barrière thermiquement isolante 3 retenue contre la paroi porteuse 2 et une membrane d’étanchéité 4 portée par la barrière thermiquement isolante 3.
Dans le mode de réalisation représenté, la barrière thermiquement isolante 3 comporte une pluralité de blocs isolants 5 qui sont ancrés à la paroi porteuse 2 au moyen de dispositifs de retenue ou de coupleurs (non représentés). Les blocs isolants 5 présentent une forme générale parallélépipédique et sont disposés selon des rangés parallèles. Les blocs isolants 5 peuvent être réalisés selon différentes structures.
Un bloc isolant 5 peut être réalisé sous la forme d’un caisson comportant une plaque de fond, une plaque de couvercle et des voiles porteurs s’étendant, dans la direction d’épaisseur de la paroi de cuve, entre la plaque de fond et la plaque de couvercle et délimitant une pluralité de compartiments remplis d’une garniture isolante, telle que de la perlite, de la laine de verre ou de roche. Une telle structure générale est par exemple décrite dans WO2012/127141 ou WO2017/103500.
Un bloc isolant 5 peut être également réalisé une plaque de fond 7, une plaque de couvercle 6 et éventuellement une plaque intermédiaire, par exemple réalisées en bois contreplaqué. Le bloc isolant 5 comporte également une ou plusieurs couches de mousse polymère isolante 8 prises en sandwich entre la plaque de fond 7, la plaque de couvercle 6 et l’éventuelle plaque intermédiaire et collées à celles-ci. La mousse polymère isolante 8 peut notamment être une mousse à base de polyuréthanne, optionnellement renforcée par des fibres. Une telle structure générale est par exemple décrite dans WO2017/006044.
La membrane d'étanchéité 4 peut être constituée d’une nappe continue de tôles métalliques 9 soudées de manière étanche bord à bord et qui présentent deux séries d’ondulations 10,11 mutuellement perpendiculaires. Les deux séries d’ondulations 10, 11 peuvent présenter un espacement régulier ou un espacement irrégulier périodique. Les ondulations 10, 11 peuvent être continues et forment des intersections entre les deux séries d’ondulations 10, 11. D’une autre façon, les ondulations 10, 11 peuvent présenter des discontinuités de certaines ondulations au niveau des intersections entre les deux séries. Les tôles métalliques ondulées 9 sont réalisées en acier inoxydable.
Afin de bloquer l’effet thermosiphon de circulation de gaz dans l’espace 12 entre la barrière thermiquement isolante 3 et la structure porteuse 2, appelé par la suite l’espace barrière/porteuse 12, il est prévu de segmenter cet espace barrière/porteuse 12 de sorte à former des zones 14 se succédant dans la direction de plus grande pente de la paroi de cuve 1.
Les figures 1 et 2 présentent un premier mode de réalisation où des bandes étanches 15 segmentent l’espace entre la barrière thermiquement isolante et la paroi porteuse dans la direction de plus grande pente 51 en une pluralité de zones 14. Dans ce mode de réalisation, les bandes étanches 15 sont placées à la jonction entre deux rangées de blocs isolants 5 s’étendant dans une direction transversale 50 inclinée par rapport à la direction de plus grande pente 51. Dans le mode de réalisation représenté, la direction transversale 50 correspond à la direction horizontale soit un angle de 90° avec la direction de plus grande pente 51 d’une paroi verticale. Les bandes étanches 15 se prolongent ainsi sur toute la dimension transversale de la paroi de cuve 1 sans discontinuité. Les bandes étanches 15 sont donc ici formées rectilignement. Les bandes étanches 15 peuvent être formées par exemple de mastic ou de mousses polymères à cellule fermé. Dans un mode de réalisation non représenté, la direction transversale 50 peut former un angle non nul avec la direction horizontale, par exemple compris entre -20° et 20°.
Comme on peut le voir sur la figure 2, un joint isolant 19 est placé entre deux blocs isolants 5 adjacents dans la direction d’épaisseur de la paroi de cuve 1. Le joint isolant 19 permet de combler les espaces entre les blocs isolants 5 dans la direction d’épaisseur de sorte à améliorer l’isolation thermique de la barrière thermiquement isolante 3. Le joint isolant 19 peut être composé par exemple de laine de verre ou d’une mousse polymère projetée.
Dans les figures 3 et 4, les éléments illustrés en pointillés sont dessinés ainsi pour représenter leur placement entre les blocs isolants 5 de la barrière thermiquement isolante 3 et la structure porteuse 2.
La figure 3 représente un deuxième mode de réalisation de segmentation de l’espace barrière/porteuse 12 dans la direction de plus grande pente. Dans cette illustration pour plus de clarté, seule la barrière thermiquement isolante 3 avec une partie des blocs isolants 5 et la structure porteuse 2 sont illustrées. Dans ce mode de réalisation et contrairement au premier mode de réalisation, les bandes étanches 15 sont réparties régulièrement ou irrégulièrement sous la barrière thermiquement isolante 3 dans la direction de plus grande pente. Ainsi dans l’exemple illustré, plusieurs bandes étanches 15 s’étendent sous chaque bloc isolant 5 de la barrière thermiquement isolante 3 dans la direction transversale. La bande étanche 15 est ici composée de boudin de mastic placé sur la structure porteuse avant le positionnement des blocs isolants 5.
De plus, dans ce mode de réalisation illustré sur la figure 3, chaque bande étanche 15 est traversée dans la direction de plus grande pente par un canal de communication 17 qui affaiblit donc la propriété d’étanchéité de la bande sensiblement étanche 15 sans la supprimer complètement. Le canal de communication 17 est par exemple formé par un matériau poreux, par exemple par une ou des tresses de fibres, inséré dans la bande étanche 15 de sorte à ce que les tresses s’étendent sensiblement dans la direction de plus grande pente et traverse de part en part la bande étanche 15. Ainsi, le canal de communication 17 est un canal de communication à forte perte de charge 17 car celui-ci représente pour un écoulement de fluide dans l’espace barrière/porteuse 12 une perte de charge singulière par le changement brusque de section d’écoulement et/ou par le matériau poreux utilisé.
De plus, pour accentuer la perte de charge engendrée par les canaux de communication 17 sur l’écoulement de fluide, les canaux de communication 17 de bandes étanches 15 adjacentes dans la direction de plus grande pente sont positionnés en quinconce de sorte que chaque zone 14 représente pour l’écoulement une canalisation s’étendant dans la direction transversale et que le canal de communication 17 représente pour l’écoulement une section coudée entre deux zones 14 adjacentes.
La figure 4 représente un troisième mode de réalisation de la segmentation de l’espace barrière/porteuse 12 dans la direction de plus grande pente. Dans cette illustration pour plus de clarté, seule la barrière thermiquement isolante 3 avec une partie des blocs isolants 5 et la structure porteuse 2 sont illustrées. Dans ce mode de réalisation, la segmentation est également effectuée à l’aide de bandes étanches 15. Toutefois, chaque bande étanche 15 est formée par une pluralité de portion de bande 16 reliées les unes aux autres dans la direction transversale par une cale 18, la cale 18 étant donc disposée entre deux portions de bande 16 adjacentes.
Comme illustré sur la figure 4, une des portions de bande 16 est placée sur la surface inférieure de chaque bloc isolant 5, formant ainsi un motif, afin que les portions de bande 15 soient situées après pose des blocs isolants 5 dans l’espace barrière/porteuse 12. Ce motif peut être réalisé de divers manières. Dans le mode représenté, ce motif forme un contour fermé du bloc isolant 5 ainsi qu’une pluralité de lignes écartée du contour fermé, s’étendant dans la direction transversale et réparties dans la direction de plus grande pente. Les portions de bande 16 sont ici formées comme précédemment par des boudins de mastic.
Une cale 18 est placée à la jonction entre deux blocs isolants 5 adjacents. Il peut être également disposé d’autres cales 18 disposées régulièrement à la jonction entre deux blocs isolants 5 adjacents. La cale 18 comprend une première extrémité située dans le contour fermé de la portion de bande 16 d’un premier bloc isolant 5 et comprend une deuxième extrémité située dans le contour fermé du motif des portions de bande 16 d’un deuxième bloc isolant 5 adjacent au premier bloc isolant dans la direction transversale. Ainsi, pour une rangée de blocs isolants 5 dans la direction transversale, la bande étanche 15 est formée par les portions de bandes 16 situées sous chacun de ces blocs isolants 5 et reliées les unes aux autres par les cales 18 placées entre ces blocs isolants 5.
Les cales 18 peuvent avoir des épaisseurs variables de sorte à former des cales dites de référence 18. Dans ce cas, les cales 18 ont également une fonction d’assurer la planéité de la barrière thermiquement isolante 3 en compensant par leur épaisseur les défauts de planéité de la structure porteuse 2.
De plus, des canaux de communication 17 sont formés dans le contour formé de chaque bloc isolant 5 de sorte que sous un bloc isolant 5 ne reste pas piégée une poche de fluide. Ces canaux de communication 17 peuvent être formés de la même manière que dans le deuxième mode de réalisation ou différemment. Comme représenté sur la figure 4, sous un même bloc isolant 5 sont placés deux canaux de communication 17 disposés en quinconce dans la direction de plus grande pente.
La figure 5 représente un quatrième mode de réalisation de la segmentation de l’espace barrière/porteuse 12 dans la direction de plus grande pente. Dans cette illustration pour plus de clarté, seule la barrière thermiquement isolante 3 avec une partie des blocs isolants 5 et la structure porteuse 2 sont illustrées. De plus, sur cette illustration, la structure porteuse 2 est omise (ou représentée en transparence) et le point de vue est depuis l’extérieur de la cuve de sorte que les éléments situés entre la structure porteuse 2 et les blocs isolants 5 sont au premier plan. Dans ce mode de réalisation et de la même manière que dans le troisième mode de réalisation, chaque bande étanche 15 est formée par une pluralité de portion de bande 16 reliées les unes aux autres dans la direction transversale par une cale 18, la cale 18 étant donc disposée entre deux portions de bande 16 adjacentes.
Toutefois, contrairement au troisième mode de réalisation, les portions de bande 16 sont ici placées à la jonction entre deux blocs isolants 5 adjacents dans la direction de plus grande pente et optionnellement à la jonction entre deux blocs isolants 5 adjacents dans la direction transversale. Chaque portion de bande 16 se prolonge ainsi qu’au niveau de la jonction entre deux blocs isolants 5. Les portions de bande 16 adjacentes dans la direction transversale ou la direction de plus grande pente sont reliées de manière étanche les unes aux autres par une cale 18. Les portions de bande 16 sont ici formées par une mousse polymère à cellule fermée.
Comme illustré sur la figure 5, des canaux de communication 17 traversent les portions de bande 16 de sorte que les espaces situées sous les blocs isolants 5 d’une même rangée dans la direction de plus grande pente soient en communication fluidique grâce aux canaux de communication 17. Ces canaux de communication 17 peuvent être formées de la même manière que dans le deuxième mode de réalisation ou différemment. De plus, sous un même bloc isolant 5 est placé au moins deux canaux de communication 17 disposées en quinconce dans la direction de plus grande pente. Les cales 18 du quatrième mode de réalisation peuvent également être des cales de référence 18.
Dans les différents modes de réalisation décrits ci-dessus, une membrane d’étanchéité 4 et une barrière thermiquement isolante 3 ont été illustrées et décrits. La paroi de cuve 1 peut ainsi être constituée que d’une seule membrane d’étanchéité 4 et d’une seule barrière thermiquement isolante 3.
Toutefois, la paroi de cuve 1 peut aussi comprendre une structure dite à double membranes. Dans ce cas, la barrière thermiquement isolante 3 décrite est une barrière thermiquement isolante secondaire et la membrane d’étanchéité 4 est une membrane d’étanchéité secondaire. La paroi de cuve 1 comprend ainsi également une barrière thermiquement isolante primaire portée par la membrane d’étanchéité secondaire 4 et une membrane d’étanchéité primaire portée par la barrière thermiquement isolante primaire.
En référence à la figure 6, une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
La figure 6 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims (20)

  1. Cuve étanche et thermiquement isolante (71) intégrée dans une structure porteuse (2), la cuve comportant au moins une paroi de cuve (1) inclinée formant un angle avec une direction horizontale perpendiculaire à la direction du champ de gravité terrestre et fixée à une paroi porteuse de la structure porteuse (2),
    la paroi de cuve (1) présentant une structure multicouche comportant successivement, dans le sens de l’épaisseur (52) depuis l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante (3) retenue contre la paroi porteuse correspondante et une membrane d’étanchéité (4) portée par la barrière thermiquement isolante (3),
    la cuve comportant des bandes étanches ou sensiblement étanches (15) dans l'espace formé entre la barrière thermiquement isolante (3) et la paroi porteuse,
    dans laquelle les bandes étanches ou sensiblement étanches (15) segmentent l'espace entre la barrière thermiquement isolante (3) et la paroi porteuse en une pluralité de zones (14) se succédant dans une direction de plus grande pente (51) de la paroi, les zones (14) s’étendant sur toute une dimension transversale de la paroi de cuve (1) dans une direction transversale (50) inclinée par rapport à la direction de plus grand pente.
  2. Cuve selon la revendication 1, dans laquelle au moins une des bandes étanches (15) se prolonge sur toute la dimension transversale de la paroi de cuve (1).
  3. Cuve selon la revendication 1 ou la revendication 2, dans laquelle au moins une des bandes étanches est formée d’une matière polymère, par exemple un mastic ou une mousse à cellule fermée, par exemple une mousse polyuréthane à cellule fermée, ou la combinaison d’une bande caoutchouc EPDM avec une bande mousse polyester.
  4. Cuve selon l’une des revendications 1 à 3, dans laquelle au moins une des bandes étanches (15) comporte une pluralité de portions de bande (16) reliées les unes aux autres de manière étanche par au moins une cale (18), la cale (18) étant disposée entre deux portions de bandes (16) adjacentes.
  5. Cuve selon la revendication 4, dans laquelle la cale (18) comprend une première extrémité située dans une première portion de bande (16) et une deuxième extrémité située dans une deuxième portion de bande (16), la deuxième portion de bande (16) étant adjacente à la première portion de bande (16).
  6. Cuve selon la revendication 4 ou la revendication 5, dans laquelle la barrière thermiquement isolante (3) comprend une pluralité de blocs isolants (5) juxtaposées les uns aux autres dans la direction de plus grande pente et dans la direction transversale, au moins une des bandes étanches (15) étant interrompue au niveau d’une interface ou d’un interstice entre deux blocs isolants (5) adjacents, la cale (18) étant disposée entre deux blocs isolants (5) adjacents de sorte à relier de manière étanche deux portions de bandes (16) adjacentes.
  7. Cuve selon l’une des revendications 1 à 6, dans laquelle au moins une des bandes sensiblement étanches (15) est traversée par un canal de communication à forte perte de charge (17) de sorte que les zones (14) séparées par ladite au moins une bande sensiblement étanche (15) sont en communication fluidique lente, permettant à la pression de s’équilibrer entre les deux zones sans permettre une circulation convective substantielle.
  8. Cuve selon la revendication 7, dans laquelle chaque zone (14) est en communication fluidique avec une zone (14) adjacente par au moins un canal de communication à forte perte de charge (17).
  9. Cuve selon la revendication 7 ou la revendication 8, dans laquelle la perte de charge d’un canal de communication (17) est supérieure ou égale à
    Figure pctxmlib-appb-M000004
    , avec ΔP la perte de charge minimum du canal de communication, PG la pression motrice du gaz situé dans l’espace entre la barrière thermiquement isolante (3) et la structure porteuse (2) de la paroi de cuve (1) dans des conditions normales d’utilisation de la cuve, et n représentant le nombre de zones (14) segmentées par les bandes sensiblement étanches (15).
  10. Cuve selon la revendication 9, dans laquelle le canal de communication à forte perte de charge (17) comprend un matériau poreux remplissant le canal de communication (17), le matériau poreux ayant une porosité configurée pour résulter en une perte de charge supérieure ou égale à la perte de charge minimum ΔP.
  11. Cuve selon la revendication 10, dans laquelle le matériau poreux du canal de communication est choisi parmi la mousse de mélamine, la mousse de polyuréthane (PU) à cellules ouvertes, et des tresses de fibres.
  12. Cuve selon l’une des revendications 7 à 11, dans laquelle l’au moins une des bandes sensiblement étanches est discontinues uniquement au niveau du ou des canaux de communication.
  13. Cuve selon l’une des revendications 7 à 12, dans laquelle une pluralité de bandes sensiblement étanches sont traversées par un canal de communication, le canal de communication d’une bande sensiblement étanche étant décalé du canal de communication d’une bande sensiblement étanche adjacente dans la direction transversale, de sorte à former un réseau de canaux de communication en quinconce
  14. Cuve selon l’une revendications 1 à 13, dans laquelle la barrière thermiquement isolante comprend une pluralité de rangée de blocs isolant s’étendant dans la direction transversale, les blocs isolants ayant une dimension longitudinale dans la direction de plus grande, deux bandes étanches ou sensiblement étanches adjacentes étant espacées l’une de l’autre dans la direction de plus grande pente d’une dimension égale ou sensiblement égale à la dimension longitudinale des blocs isolants.
  15. Cuve selon l’une des revendications 1 à 14, dans laquelle la membrane d’étanchéité (4) est constituée d’une membrane d’étanchéité (4) ondulée comportant une pluralité de tôles métalliques ondulées (9) soudées les unes aux autres.
  16. Cuve selon l’une des revendications 1 à 15, dans laquelle la cuve comprend une seule membrane d’étanchéité (4) et une seule barrière thermiquement isolante (3).
  17. Cuve selon l’une des revendications 1 à 15, dans laquelle la membrane d’étanchéité (4) est une membrane d’étanchéité secondaire et la barrière thermiquement isolante (3) est une barrière thermiquement isolante secondaire, la cuve comportant une barrière thermiquement isolante primaire portée par la membrane d’étanchéité secondaire, et une membrane d’étanchéité primaire portée par la barrière thermiquement isolante primaire.
  18. Navire (70) pour le transport d’un produit liquide froid, le navire comportant une double coque (72) et une cuve (71) selon l’une des revendications 1 à 17 disposée dans la double coque.
  19. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 18, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve (71) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  20. Procédé de chargement ou déchargement d’un navire (70) selon la revendication 18, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71).
PCT/EP2020/059235 2019-04-01 2020-04-01 Cuve étanche et thermiquement isolante WO2020201344A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080026471.3A CN113710948B (zh) 2019-04-01 2020-04-01 绝热密封贮罐
US17/442,475 US11933456B2 (en) 2019-04-01 2020-04-01 Thermally insulating sealed tank
EP20714237.3A EP3948056A1 (fr) 2019-04-01 2020-04-01 Cuve étanche et thermiquement isolante
KR1020217031670A KR102630112B1 (ko) 2019-04-01 2020-04-01 단열 밀폐 탱크
SG11202110531PA SG11202110531PA (en) 2019-04-01 2020-04-01 Thermally insulating sealed tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1903477 2019-04-01
FR1903477A FR3094450B1 (fr) 2019-04-01 2019-04-01 Cuve étanche et thermiquement isolante

Publications (1)

Publication Number Publication Date
WO2020201344A1 true WO2020201344A1 (fr) 2020-10-08

Family

ID=67262698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/059235 WO2020201344A1 (fr) 2019-04-01 2020-04-01 Cuve étanche et thermiquement isolante

Country Status (7)

Country Link
US (1) US11933456B2 (fr)
EP (1) EP3948056A1 (fr)
KR (1) KR102630112B1 (fr)
CN (1) CN113710948B (fr)
FR (1) FR3094450B1 (fr)
SG (1) SG11202110531PA (fr)
WO (1) WO2020201344A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022089129A1 (fr) * 2020-10-30 2022-05-05 沪东中华造船(集团)有限公司 Navire transportant du gnl et système d'enceinte de type à membrane associé

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3115854B1 (fr) * 2020-10-29 2022-11-04 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
CN116857543B (zh) * 2023-09-04 2023-11-07 中太(苏州)氢能源科技有限公司 一种用于低温储罐的围护系统及其安装工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2259008A1 (en) * 1974-01-28 1975-08-22 Gaz Transport Method of insulating liquified gas tank of ship - uses bars holding panels until mastic under panels is set
FR2265608A2 (en) 1974-03-29 1975-10-24 Gaz Transport Slow cure mastics for installing insulated ships holds - using non linear or discontinuous patterns which vent the structure
FR2343965A1 (fr) * 1976-03-09 1977-10-07 Mc Donnell Douglas Corp Recipient, cuve ou navire de stockage ou de transport de liquide a tres basse temperature
WO2012127141A1 (fr) 2011-03-23 2012-09-27 Gaztransport Et Technigaz Element calorifuge pour paroi de cuve etanche et thermiquement isolante
WO2017006044A1 (fr) 2015-07-06 2017-01-12 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees
WO2017103500A1 (fr) 2014-12-15 2017-06-22 Gaztransport Et Technigaz Bloc isolant convenant pour realiser une paroi isolante dans une cuve etanche
FR3058498A1 (fr) * 2016-11-09 2018-05-11 Gaztransport Et Technigaz Structure d'angle d'une cuve etanche et thermiquement isolante et son procede d'assemblage

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453402C (zh) * 2004-12-08 2009-01-21 韩国Gas公社 液化天然气储罐及其制造方法
US20160160515A1 (en) * 2006-08-26 2016-06-09 Global Building Modules, Inc. System for modular building construction
CN105683644B (zh) * 2013-11-07 2017-07-07 川崎重工业株式会社 液化气体储罐和具备该液化气体储罐的水上结构物
WO2016027460A1 (fr) * 2014-08-21 2016-02-25 パナソニックIpマネジメント株式会社 Récipient d'isolation thermique
FR3026459B1 (fr) * 2014-09-26 2017-06-09 Gaztransport Et Technigaz Cuve etanche et isolante comportant un element de pontage entre les panneaux de la barriere isolante secondaire
US20160128238A1 (en) * 2014-10-27 2016-05-05 Ebullient, Llc Hot-swappable server with cooling line assembly
US20160120071A1 (en) * 2014-10-27 2016-04-28 Ebullient, Llc Server with cooling line assembly
FR3028305A1 (fr) * 2014-11-10 2016-05-13 Gaztransport Et Technigaz Dispositif et procede de refroidissement d'un gaz liquefie
WO2016081944A1 (fr) * 2014-11-23 2016-05-26 Johnson Richard Lee Collecteur d'énergie thermique solaire à semi-conducteurs
US10950912B2 (en) * 2017-06-14 2021-03-16 Milwaukee Electric Tool Corporation Arrangements for inhibiting intrusion into battery pack electrical components
US20190101310A1 (en) * 2017-10-04 2019-04-04 Mark W. Miles Systems for Solar Thermal Heat Transfer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2259008A1 (en) * 1974-01-28 1975-08-22 Gaz Transport Method of insulating liquified gas tank of ship - uses bars holding panels until mastic under panels is set
FR2265608A2 (en) 1974-03-29 1975-10-24 Gaz Transport Slow cure mastics for installing insulated ships holds - using non linear or discontinuous patterns which vent the structure
FR2343965A1 (fr) * 1976-03-09 1977-10-07 Mc Donnell Douglas Corp Recipient, cuve ou navire de stockage ou de transport de liquide a tres basse temperature
WO2012127141A1 (fr) 2011-03-23 2012-09-27 Gaztransport Et Technigaz Element calorifuge pour paroi de cuve etanche et thermiquement isolante
WO2017103500A1 (fr) 2014-12-15 2017-06-22 Gaztransport Et Technigaz Bloc isolant convenant pour realiser une paroi isolante dans une cuve etanche
WO2017006044A1 (fr) 2015-07-06 2017-01-12 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees
FR3058498A1 (fr) * 2016-11-09 2018-05-11 Gaztransport Et Technigaz Structure d'angle d'une cuve etanche et thermiquement isolante et son procede d'assemblage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022089129A1 (fr) * 2020-10-30 2022-05-05 沪东中华造船(集团)有限公司 Navire transportant du gnl et système d'enceinte de type à membrane associé

Also Published As

Publication number Publication date
US20220163167A1 (en) 2022-05-26
KR102630112B1 (ko) 2024-01-30
EP3948056A1 (fr) 2022-02-09
FR3094450A1 (fr) 2020-10-02
CN113710948B (zh) 2023-06-30
FR3094450B1 (fr) 2021-06-25
SG11202110531PA (en) 2021-10-28
CN113710948A (zh) 2021-11-26
US11933456B2 (en) 2024-03-19
KR20210142124A (ko) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2020201344A1 (fr) Cuve étanche et thermiquement isolante
EP3679289B1 (fr) Cuve étanche et thermiquement isolante à élément de remplissage anti-convectif
WO2019077253A1 (fr) Cuve etanche et thermiquement isolante a plusieurs zones
EP3114387B1 (fr) Cuve étanche et isolante comportant un élément de déflexion permettant l'écoulement de gaz au niveau d'un angle
FR3084645A1 (fr) Structure d'angle pour une cuve etanche et thermiquement isolante
FR3074253B1 (fr) Cuve etanche et thermiquement isolante
FR3072760B1 (fr) Cuve etanche et thermiquement isolante a plusieurs zones
FR3070747A1 (fr) Cuve etanche et thermiquement isolante comportant une bande de couverture anti-convective
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
WO2021245091A1 (fr) Cuve étanche et thermiquement isolante intégrée dans une structure porteuse
WO2021094493A1 (fr) Cuve étanche et thermiquement isolante à joints isolants anti-convectifs
WO2004059205A2 (fr) Installation de stockage d'un liquide
WO2019145635A1 (fr) Cuve etanche et thermiquement isolante
WO2021224071A1 (fr) Cuve étanche et thermiquement isolante comprenant des éléments de remplissage anti-convectif
WO2021018844A1 (fr) Cuve étanche et thermiquement isolante pour structure flottante
WO2022090341A1 (fr) Cuve étanche et thermiquement isolante
WO2021013856A9 (fr) Membrane d'etancheite pour cuve etanche de stockage de fluide
WO2019145633A1 (fr) Cuve etanche et thermiquement isolante
FR3112587A1 (fr) Cuve étanche et thermiquement isolante
WO2020089549A1 (fr) Installation de stockage pour gaz liquefie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20714237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217031670

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020714237

Country of ref document: EP

Effective date: 20211102