WO2020200055A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2020200055A1
WO2020200055A1 PCT/CN2020/081511 CN2020081511W WO2020200055A1 WO 2020200055 A1 WO2020200055 A1 WO 2020200055A1 CN 2020081511 W CN2020081511 W CN 2020081511W WO 2020200055 A1 WO2020200055 A1 WO 2020200055A1
Authority
WO
WIPO (PCT)
Prior art keywords
logical channel
logical channels
logical
use state
radio bearer
Prior art date
Application number
PCT/CN2020/081511
Other languages
English (en)
French (fr)
Inventor
范强
徐小英
娄崇
黄曲芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910268136.3A external-priority patent/CN111757520B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20782601.7A priority Critical patent/EP3937559A4/en
Publication of WO2020200055A1 publication Critical patent/WO2020200055A1/zh
Priority to US17/489,455 priority patent/US20220022239A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and device.
  • the 5th generation (5G) communication system can support various types of services, such as ultra-reliability and low-latency communication (URLLC) services.
  • URLLC ultra-reliability and low-latency communication
  • PDCP packet data convergence protocol
  • the repetition of the PDCP layer usually refers to copying the data packet carried by the radio into two identical packets (that is, repeated packets), and then the two data packets are respectively submitted to two different radio link control (radio link control, RLC)
  • RLC radio link control
  • the entity transmits, and then transmits to the media access control (MAC) layer through different logical channels (logical channels, LCH).
  • MAC media access control
  • the original data packet and the copied data packet transmitted to the MAC layer cannot be transmitted through the same MAC protocol data unit (PDU), because only through different MAC PDU transmission, one of the MAC The loss of PDU will not affect the transmission of another MAC PDU, so as to avoid the loss of one MAC PDU and cause the original data packet and the copied data packet to be discarded at the same time. Therefore, in a dual connectivity (DC) duplication scenario, two data packets can be transmitted to different MAC entities through different logical channels, and finally two MAC PDUs are formed for transmission on different carriers. In the carrier aggregation (CA) duplication scenario, you can configure the mapping relationship from different logical channels to different carriers. The MAC layer multiplexes the two data packets into different MAC PDUs, and finally performs them on different carriers. transmission.
  • DC dual connectivity
  • CA carrier aggregation
  • the repetition of the PDCP layer is limited to one radio bearer that transmits data packets that are copied at the PDCP layer through two RLC entities and two logical channels.
  • the repeat transmission function of a radio bearer PDCP layer when the repeat transmission function of a radio bearer PDCP layer is activated, data from logical channel 1 can only be transmitted on carrier 1 or carrier 2, and data from logical channel 2 can only be transmitted on carrier 3. .
  • the repeated transmission function of the PDCP layer of the radio bearer is deactivated, only logical channel 1 is still working.
  • the data in logical channel 1 can be on all available carriers To transfer.
  • the repetition of the PDCP layer is not limited to two logical channels, how to control the use of logical channels for data transmission by network equipment still needs further research.
  • the present application provides a data transmission method and device, which are used to implement the terminal device to use at least one logical channel associated with the radio bearer based on the instructions of the network device when multiple logical channels are configured for the radio bearer. data transmission.
  • the embodiments of the present application provide a data transmission method, which can be applied to a terminal device, or can also be applied to a chip inside the terminal device. Take this method applied to a terminal device as an example.
  • the terminal device receives indication information from the network device.
  • the indication information includes a bit sequence. The value of the i-th bit in the bit sequence is used to indicate the M logical channels associated with the radio bearer.
  • the status of the use of the i-th logical channel in M logical channels, the M logical channels are sorted based on the identification ID of the cell group associated with the M logical channels and the ID of the M logical channels, and the radio bearer is configured with a repeat transmission function; i 1, 2, ..., M, M is an integer greater than or equal to 2; and the terminal device uses at least one logical channel associated with the radio bearer to perform data transmission according to the instruction information.
  • the M logical channels associated with the radio bearer can be sorted based on the ID of the cell group associated with the M logical channels and the ID of the M logical channels, and the i-th bit sequence in the bit sequence included in the indication information can be sorted. Bits indicate the usage status of the i-th logical channel among the M logical channels, so that the terminal device can use at least one logical channel associated with the radio bearer for data transmission based on the indication information.
  • the number of bits in the bit sequence is N, and N is an integer greater than M; the method further includes: the terminal device ignores the M+1 to Nth bits in the bit sequence.
  • the terminal device can ignore the extra bits.
  • the number in the bit sequence can be a fixed value (ie N), thereby avoiding adjusting the bit sequence.
  • the complexity caused by the number is to say, when the number of bits in the bit sequence is large, the terminal device can ignore the extra bits.
  • the use state of the i-th logical channel is the activated use state or the deactivated use state
  • the i-th logical channel is allowed to be used for repeated data transmission; or, if the use state of the i-th logical channel is the deactivated use state, then the i-th logical channel The channel is prohibited for repeated data transmission.
  • the terminal device uses at least one logical channel associated with the radio bearer to perform data transmission according to the indication information, including: the terminal device uses at least the use state of the M logical channels according to the use state of the M logical channels. Activate the logical channel in use state for data transmission.
  • the terminal device can use the logical channel for data transmission; if the indication information indicates a certain logical channel among the M logical channels To deactivate the use state, the terminal device does not use the logical channel for data transmission. In this way, the terminal device can determine the logical channel used for data transmission based on the indication of the indication information, and the indication method is relatively simple and convenient.
  • the terminal device uses at least the logical channel whose use state is the active use state among the M logical channels to perform data transmission according to the use state of the M logical channels, including: if M bits indicate M logical channels The use state of K1 logical channels is the active use state, 0 ⁇ K1 ⁇ P, then the terminal device uses K1 logical channels for data transmission; among them, when K1 is greater than 1, the data transmitted by K1 logical channels is repeated, and P is wireless The maximum number of logical channels that are in active use state among the associated logical channels.
  • the method also includes:
  • the terminal device uses any one of the M logical channels for data transmission, or the terminal device ignores the indication information or bit sequence; or,
  • the terminal device uses the first logical channel among the M logical channels Channel for data transmission, or the terminal device uses the second logical channel in the first cell group and the third logical channel in the second cell group for non-repetitive data transmission, or the terminal device ignores the indication information or bit sequence.
  • the M bits in the bit sequence are all zero to indicate some operations, thereby increasing the diversity of the content indicated by the bit sequence.
  • the method further includes: if K1>P, the terminal device uses P logical channels among the K1 logical channels for data transmission, and data transmitted by the P logical channels is repeated.
  • the logical channel associated with the radio bearer includes M logical channels and a main logical channel; the terminal device uses at least the logical use state of the M logical channels according to the use state of the M logical channels.
  • Channel data transmission including: if M bits indicate the use state of K2 logical channels in M logical channels is active use state, 0 ⁇ K2 ⁇ P-1, then the terminal equipment uses K2 logical channels and the main logical channel for For data transmission, the data transmitted by the K2 logical channels and the main logical channel are duplicated, and P is the maximum number of logical channels in active use state among the logical channels associated with the radio bearer.
  • the M bits in the bit sequence are all zero to indicate some operations, thereby increasing the diversity of the content indicated by the bit sequence.
  • the method further includes: if K2>P-1, then: the terminal device uses P-1 logical channels and the main logical channel of K2 logical channels for data transmission, and P-1 logical channels The data transmitted by the channel and the main logical channel are duplicated.
  • the M logical channels are sorted based on the identification IDs of the cell groups associated with the M logical channels and the IDs of the M logical channels, including: M logical channels are logically associated with each cell group The IDs of the channels are sorted in ascending or descending order; among them, the logical channels associated with the cell group with a large ID are sorted first or the logical channels associated with a cell group with a small ID are sorted first; or, the M logical channels are sorted according to the M logical channels The values corresponding to the M logical channels are sorted in ascending or descending order; the M logical channels include the first logical channel, and the value corresponding to the first logical channel is based on the ID of the cell group to which the first logical channel belongs and the ID of the first logical channel And the maximum number of logical channels included in the cell group to which the M logical channels belong.
  • the indication information further includes a position index of the radio bearer in the at least one radio bearer configured with the repeated transmission function in ascending or descending order according to the identifier of the at least one radio bearer.
  • the embodiments of the present application provide a data transmission method, which can be applied to a terminal device, or can also be applied to a chip inside the terminal device. Take the application of this method to a terminal device as an example.
  • the terminal device receives indication information from a network device.
  • the indication information includes a bit sequence.
  • the values of multiple bits in the bit sequence are used to indicate the various transmission modes of the radio bearer.
  • Each of the multiple transmission modes includes the use status of M logical channels associated with the radio bearer; the number of bits in the bit sequence is less than M, and M is greater than or An integer equal to 2; the terminal device uses at least one logical channel associated with the radio bearer for data transmission according to the indication information.
  • the value of multiple bits in the bit sequence is used to indicate the transmission mode of the radio bearer. Since the number of bits in the bit sequence can be less than M, fewer bits can be used to indicate the use status of M logical channels, which can effectively save Resource overhead.
  • the logical channels associated with the radio bearer include M logical channels and primary logical channels; the multiple transmission modes include any of the following:
  • the use state of the main logical channel is the active use state, and the use state of other logical channels associated with the radio bearer is the deactivated use state;
  • the use state of the first logical channel and the main logical channel of the M logical channels is the active use state, and the use state of other logical channels associated with the radio bearer is the deactivated use state; the first logical channel and the main logic The data transmitted by the channel is repeated;
  • the use state of the second logical channel and the main logical channel among the M logical channels is the active use state, and the use state of other logical channels associated with the radio bearer is the deactivated use state; the second logical channel and the main logical channel The data transmitted by the channel is repeated;
  • the use state of the third logical channel and the main logical channel of the M logical channels is the active use state, and the use state of other logical channels associated with the radio bearer is the deactivated use state; the third logical channel and the main logic The data transmitted by the channel is repeated;
  • the M logical channels are sorted based on the identification ID of the cell group to which the M logical channels belong and the ID of the M logical channels.
  • the first logical channel and the second logical channel among the M logical channels are associated with the first cell group, and the third logical channel and the fourth logical channel are associated with the second cell group;
  • M logical channels The channels are sorted based on the identification ID of the cell group associated with the M logical channels and the ID of the M logical channels;
  • the multiple transmission modes of the radio bearer include any of the following:
  • Transmission mode 1 the use state of the first logical channel and the second logical channel is the active use state, the use state of other logical channels in the radio bearer association is the deactivated use state; the first logical channel and the second logical channel Duplicate data transmitted;
  • the use state of the third logical channel and the fourth logical channel is the deactivated state, and the use state of other logical channels associated with the radio bearer is the deactivated state; the third logical channel and the fourth logical channel The data transmitted by the channel is the same;
  • the use state of the first logical channel and the third logical channel is the active use state, the use state of other logical channels associated with the radio bearer is the deactivated use state; the first logical channel and the third logical channel Duplicate data transmitted;
  • the use state of the first logical channel and the third logical channel is the active use state, and the use state of other logical channels associated with the radio bearer is the deactivated use state; the first logical channel and the third logical channel The transmitted data is not repeated;
  • the use state of the first logical channel or the second logical channel is the active use state, and the use state of other logical channels associated with the radio bearer is the deactivated use state;
  • the use state of the third logical channel or the fourth logical channel is the active use state, and the use state of other logical channels associated with the radio bearer is the deactivated use state.
  • the M logical channels are sorted based on the identification IDs of the cell groups associated with the M logical channels and the IDs of the M logical channels, including: M logical channels are logically associated with each cell group The IDs of the channels are sorted in ascending or descending order; among them, the logical channels associated with the cell group with a large ID are sorted first or the logical channels associated with a cell group with a small ID are sorted first; or, the M logical channels are sorted according to the M logical channels The values corresponding to the M logical channels are sorted in ascending or descending order; the M logical channels include the first logical channel, and the value corresponding to the first logical channel is based on the ID of the cell group to which the first logical channel belongs and the ID of the first logical channel And the maximum number of logical channels included in the cell group to which the M logical channels belong.
  • the embodiments of the present application provide a data transmission method, which may be applied to a terminal device, or may also be applied to a chip inside the terminal device. Take the application of this method to a terminal device as an example.
  • the terminal device receives indication information from a network device.
  • the indication information includes a bit sequence.
  • the values of multiple bits in the bit sequence are used to indicate the number of M logical channels associated with the radio bearer.
  • Usage status the radio bearer is configured with a replication transmission function, and M is an integer greater than or equal to 2; the terminal device determines the usage status of M logical channels according to the indication information; among them, the logical channels of the radio bearer are respectively associated with multiple cell groups.
  • Each cell group includes a first cell group, and the first cell group is configured by a network device; M logical channels are associated with the first cell group.
  • the network device can control the use state of the logical channel configured by itself through the indication information, without performing cross-network device control, thereby avoiding the complexity of cross-network device control.
  • an embodiment of the present application provides a device.
  • the device may be a terminal device or a chip set in the terminal device.
  • the device has the function of realizing various possible designs of the first aspect to the third aspect. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • an apparatus of an embodiment of the present application includes a processor, and the processor is configured to execute instructions stored on a memory. When the instructions are executed, the apparatus executes any one of the above-mentioned first to third aspects. Possible design methods.
  • an embodiment of the present application further provides a computer-readable storage medium, including instructions, which when executed, implement the above-mentioned aspects or any of the possible design methods of the aspects.
  • the embodiments of the present application also provide a computer program product, including a computer program or instruction, which when executed, implements the foregoing aspects or any of the possible design methods in each aspect.
  • FIG. 1 is an architecture diagram of a wireless communication system applicable to an embodiment of this application
  • Figure 2a shows the network architecture involved in implementing the repeated transmission function of the PDCP layer in the DC scenario
  • Figure 2b shows the network architecture involved in implementing the repeated transmission function of the PDCP layer in the CA scenario
  • Figure 3a is a schematic diagram of CA scenario activation and deactivation repeated transmission functions
  • Figure 3b is a schematic diagram of the radio bearer configuring multiple logical channels
  • Figure 4a is a schematic diagram of the MAC CE payload format
  • Figure 4b is a schematic diagram of the position index and bit sequence of the radio bearer
  • FIG. 5 is a schematic diagram of a process corresponding to a data transmission method provided by an embodiment of the application.
  • Figure 6a is an example diagram provided by an embodiment of the application.
  • Fig. 6b is another example diagram provided by an embodiment of the application.
  • Fig. 7a is another example diagram provided by an embodiment of the application.
  • Fig. 7b is another example diagram provided by an embodiment of the application.
  • FIG. 8 is a schematic flowchart corresponding to the data transmission method provided by an embodiment of the application.
  • Fig. 9a is another example diagram provided by an embodiment of the application.
  • Fig. 9b is another example diagram provided by an embodiment of the application.
  • FIG. 10 is a possible exemplary block diagram of a device involved in an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • Terminal equipment It is a device with wireless transceiver function that can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (For example, airplanes, balloons, satellites, etc.).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control ( Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grids, and transportation safety Wireless terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the embodiment of this application does not limit the application scenario.
  • Terminal equipment may sometimes be called user equipment (UE), mobile station, remote station, etc.
  • the embodiments of the present application do not limit the specific technology, device form, and name used by the terminal equipment.
  • Network equipment for example, including access network (AN) equipment.
  • An access network device such as a base station, may refer to a device that communicates with wireless terminal devices through one or more cells on the air interface in the access network.
  • the network device can be used to convert received air frames and Internet Protocol (IP) packets to each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It may also include the fifth generation (5G) mobile communication technology (the fifth generation, 5G) new radio (new radio, NR) system of the next generation node B (next generation node B, gNB), or it may also include cloud access network (cloud access network).
  • the application examples are not limited.
  • the terminal device is connected to two base stations at the same time.
  • the two base stations connected by the terminal device can be base stations under the same wireless access technology, for example, both are base stations in the LTE communication system or both are base stations in the 5G communication system, or the two base stations connected by the terminal device can also be different Base stations under the wireless access technology, for example, one is a base station in an LTE communication system, and the other is a base station in a 5G communication system.
  • CA technology can aggregate multiple component carriers (CC) together to provide services for one terminal device, achieve greater transmission bandwidth, and effectively increase the uplink and downlink transmission rates.
  • CC component carriers
  • the logical channel is associated with the cell, or the logical channel is associated with the carrier, including but not limited to, if certain cells are allowed to be used in the configuration of the logical channel, it means that the data transmitted in the logical channel can be used in these Transmission on cells, or resources on these cells can be allocated to the logical channel, at this time, it can be called that the logical channel is associated with these cells. Further, the data transmitted in the logical channel is not transmitted in a cell other than the cell associated with the logical channel.
  • the logical channel corresponding to the data packet copied at the PDCP layer may have an association relationship with the cell. In some scenarios, if the cell association relationship is not configured, it means that the data transmitted in the logical channel can be transmitted on any cell.
  • a parameter may be configured for a logical channel, such as parameter A, and the value of parameter A is used to indicate different cells, which means that the data transmitted in the logical channel can only be transmitted on the cell specified by parameter A.
  • parameter A is configured for logical channel 1
  • parameter A indicates cells 1 and 2
  • logical channel 1 and cell 1 and cell 2 can be said to have an association relationship, or a binding relationship or a mapping relationship.
  • Radio bearer The terminal device and the network device establish at least one radio bearer (RB) to transmit data.
  • Radio bearers can be divided into signaling radio bearer (SRB) used to transmit signaling data and data radio bearer (DRB) used to transmit service data.
  • SRB signaling radio bearer
  • DRB data radio bearer
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first logical channel and the second logical channel are only for distinguishing different logical channels, and do not indicate the difference in priority or importance of the two logical channels.
  • Repeated transmission at the PDCP layer usually refers to copying the data packets carried by the radio into multiple identical packets (that is, repeated packets) at the PDCP layer, and then these two data packets are delivered to multiple different RLC entities for transmission, and then It is transmitted to the MAC layer through different logical channels.
  • the logical channel is the channel from the RLC layer to the MAC layer.
  • retransmission refers to retransmission
  • the duplication transmission in the embodiment of the present application is not retransmission.
  • Resending refers to sending the same data packet again after failure, or sending the same data packet multiple times in succession, and repeated transmission is to copy one data packet to two data packets and put them on two logical channels for transmission.
  • "Repetition" here can also be understood as "copy”.
  • each RLC entity corresponds to a logical channel.
  • send data the same PDCP entity on the receiving end corresponds to at least two RLC entities
  • each RLC entity corresponds to a logical channel to receive data. Therefore, the radio bearer between the sending end and the receiving end includes at least two logical channels.
  • the sending end may be a terminal device, and the receiving end may be a network device; or, the receiving end may be a terminal device, and the sending end may be a network device.
  • the sending end and the receiving end shown in FIG. 1 respectively include the same PDCP entity, a first RLC entity corresponding to the same PDCP entity, and a second RLC entity corresponding to the same PDCP entity, where the first RLC entity corresponds to the first logic Channel, the second RLC entity corresponds to the second logical channel.
  • the sender sends the data on the first logical channel to the receiver in cell 1b or cell group 1 corresponding to the first logical channel, and the receiver receives the first logic sent by the sender in cell 1b or cell group 1 corresponding to the first logical channel.
  • Channel data may be used to the same PDCP entity, a first RLC entity corresponding to the same PDCP entity, and a second RLC entity corresponding to the same PDCP entity, where the first RLC entity corresponds to the first logic Channel, the second RLC entity corresponds to the second logical channel.
  • the sender sends the data on the first logical channel to the receiver in cell 1b or cell group 1 corresponding to the first
  • the transmitting end sends the data of the second logical channel to the receiving end in the cell 2b or cell group 2 corresponding to the second logical channel, and the receiving end receives the data on the second logical channel in the cell 2b or cell group 2 corresponding to the second logical channel.
  • data from the same PDCP entity is repeatedly transmitted on the second RLC entity at the sending end and the first RLC entity at the sending end, so that the reliability of sending data at the sending end can be improved.
  • Fig. 1 takes the sending end and the receiving end respectively corresponding to two cell groups as an example. In other possible situations, the sending end and the receiving end may respectively correspond to one cell group, which is not specifically limited.
  • the following describes how to implement the transmission function of the PDCP layer for the DC scenario and the CA scenario.
  • the DC scenario involves the main network equipment and the auxiliary network equipment, the main network equipment for the radio bearer, including a PDCP entity, an RLC entity and a MAC entity, the auxiliary network equipment for the radio bearer, including a RLC entity and a MAC entity.
  • the terminal device includes one PDCP entity, two RLC entities, and two MAC entities for the radio bearer.
  • the PDCP entity and the PDCP layer can be understood as the same concept.
  • the RLC entity and the RLC layer can be understood as the same concept
  • the MAC entity and the MAC layer can be understood as the same concept.
  • the main network device may also have a service data adaptation protocol (SDAP) entity above the PDCP entity
  • the terminal device may also have an SDAP entity above the PDCP entity.
  • SDAP service data adaptation protocol
  • a terminal device is connected to two network devices at the same time, that is, the main network device and the auxiliary network device.
  • the repeat transmission function of the PDCP layer is configured for a radio bearer, then the two data copied in the PDCP layer
  • the packet will be transmitted to two different RLC entities, and transmitted to different MAC entities through different logical channels, and finally form two MAC PDUs for transmission on different carriers.
  • This process is the same for network devices and terminal devices.
  • the PDCP layer in the main network device will transmit the two copied data packets to two different RLC entities. These two RLC entities are located in the primary network device and the secondary network device respectively.
  • the RLC entity in the primary network device transmits the received data packet to the MAC entity in the primary network device, and the RLC entity in the secondary network device will receive the data packet.
  • the data packet is transmitted to the MAC entity in the auxiliary network device, and the two MAC entities will transmit the data packet through their respective carriers.
  • the two RLC entities and the two MAC entities are located in the terminal device, and the other processes are the same.
  • the sender and receiver can respectively correspond to two cell groups.
  • the two corresponding cell groups are respectively master cell group (master cell group, MCG) and Secondary cell group (secondary cell group, SCG), where the primary cell group is configured by the primary network equipment, and the secondary cell group is configured by the secondary network equipment.
  • MCG master cell group
  • SCG Secondary cell group
  • FIG. 2b is the network architecture involved in implementing the repeated transmission function of the PDCP layer in the CA scenario.
  • the terminal device is connected to a network device.
  • the network architecture of the network device and the terminal device for a radio bearer is shown in Figure 2b, that is, the network device and the terminal device for the radio bearer include a PDCP entity , Two RLC entities and one MAC entity.
  • the sending end and the receiving end may respectively correspond to a cell group.
  • a terminal device is connected to a network device, and the same network device has more than one carrier to serve the terminal device.
  • a radio bearer is configured with the repeated transmission function of the PDCP layer
  • the two data packets copied in the PDCP layer will be transmitted to two different RLC entities, and the two RLC entities will be transmitted to them through different logical channels.
  • the same MAC entity At this time, since the two data packets are transmitted to the same MAC entity, the MAC entity will put these two data packets into one MAC PDU for transmission. Therefore, in order to make the two data packets be transmitted separately through two MAC PDUs,
  • a parameter can be configured for the logical channel, for example, called parameter A.
  • the value of parameter A is used to indicate different cells, so as to ensure that the two data packets can eventually form two MAC PDUs for transmission on different cells.
  • the parameter A is configured for a certain logical channel, it indicates that the data in the RLC entity corresponding to the logical channel can only be transmitted on the cell indicated by the parameter A. In this way, if the parameter A configured for the two logical channels that are duplicated each other indicates different cells, the two data packets that are duplicated each other will eventually be transmitted on different cells, which can ensure reliability.
  • the repeated transmission function of the PDCP layer configured for the radio bearer can be activated or deactivated.
  • the terminal device can transmit different data packets to the primary network device and the secondary network device through the two logical channels on the terminal device side.
  • the repeated transmission function of the PDCP layer configured for a radio bearer is activated, the PDCP layer copies the data packet and transmits it through two logical channels; when the repeated transmission function of the PDCP layer configured for a radio bearer is deactivated, then Fall back to DC split bearer operation.
  • the repeated transmission function of the PDCP layer configured for a radio bearer when the repeated transmission function of the PDCP layer configured for a radio bearer is deactivated (or called, the repeated transmission function of the PDCP layer is deactivated, or the repeated transmission function of the radio bearer is deactivated), the The association relationship between logical channels and cells in the radio bearer will no longer be applicable.
  • the repetition of the PDCP layer is limited to one radio bearer transmitting data packets copied in the PDCP layer through two logical channels (also commonly known as repeated transmission of two legs). Further, one of the legs can be configured.
  • the primary leg for example, the leg where the logical channel 1 is located, is the primary leg. In the embodiment of the present application, the logical channel in the primary leg may be referred to as the primary logical channel.
  • a network device configures the repeated transmission function of the PDCP layer for a data radio bearer through radio resource control (radio resource control, RRC) signaling, it can indicate whether the initial state of the repeated transmission function of the PDCP layer of the data radio bearer is active or go activate. Further, the network device can also configure the activation/deactivation of the repeated transmission function of the PDCP layer of a data radio bearer through a MAC control element (CE). As shown in Figure 4a, it is the MAC CE payload format.
  • the MAC CE has a fixed size and contains 8 fields.
  • the Di indicates that the PDCP repeat transmission function is configured and the RLC entity is associated with the current MAC entity in the DRB arranged in ascending order of DRB ID.
  • a radio bearer transmits data packets copied at the PDCP layer through multiple logical channels, such as three or four logical channels.
  • logical channels such as three or four logical channels.
  • FIG 3b (a) illustrates the configuration of three logical channels in a CA scenario, and (b) illustrates the configuration of four logical channels in a DC+CA scenario. In this case, how to use logical channels for data transmission still needs further research.
  • an embodiment of the present application provides a data transmission method, which is used to implement a terminal device to use at least one logical channel associated with the radio bearer for data transmission based on the instructions of the network device when multiple logical channels are configured for the radio bearer .
  • the data transmission method provided by the embodiment of the present application may include two possible solutions, namely, solution one and solution two.
  • the M logical channels associated with the radio bearer can be sorted based on the ID of the cell group associated with the M logical channels and the ID of the M logical channels, and then the i-th bit in the bit sequence included in the indication information To indicate the usage status of the i-th logical channel among the M logical channels, so that the terminal device can use at least one logical channel associated with the radio bearer to perform data transmission based on the indication information.
  • the value of multiple bits in the bit sequence included in the indication information is used to indicate the transmission mode of the radio bearer.
  • Each transmission mode of the radio bearer may include the use status of M logical channels associated with the radio bearer, thereby
  • the terminal device can use at least one logical channel associated with the radio bearer for data transmission based on the indication information, and the number of bits in the bit sequence can be less than M, that is, fewer bits can be used to indicate the use status of M logical channels , Which can effectively save resource overhead.
  • the radio bearer can be DRB, SRB, or DRB and SRB; the radio bearer uses a logical channel for data transmission, which means that the radio bearer or the associated PDCP entity uses the RLC associated with the logical channel
  • the entity and the logical channel perform data processing and transmission, that is, use the legs associated with the logical channel for data transmission.
  • FIG. 5 is a schematic diagram of the process corresponding to the data transmission method provided by the embodiment of the application, as shown in FIG. 5, including:
  • Step 501 The terminal device receives indication information from the network device, the indication information includes a bit sequence, and the value of the i-th bit in the bit sequence is used to indicate the usage status of the i-th logical channel among the M logical channels associated with the radio bearer.
  • the logical channel associated with the radio bearer involved in the embodiments of the present application may also be referred to as the logical channel of the radio bearer or the logical channel in the radio bearer, and both have the same meaning.
  • Step 502 The terminal device uses at least one logical channel associated with the radio bearer to perform data transmission according to the instruction information.
  • the number of bits in the bit sequence is N, and N is greater than or equal to M. If N is greater than M, in one example, the terminal device can ignore the M+1 to Nth bits in the bit sequence, that is, the terminal device ignores the last NM bits of the bit sequence; in another example, the terminal can also The NM bits in front of the bit sequence are ignored.
  • the i-th bit in the above-mentioned bit sequence can be understood as the i-th bit in the bit sequence after the NM bits in front.
  • the use state of the i-th logical channel may be an activated use state or a deactivated use state; wherein, if the use state of the i-th logical channel is an activated use state, the i-th logical channel is allowed to be used For repeated data transmission; or, if the use state of the i-th logical channel is a deactivated use state, the i-th logical channel is prohibited from being used for repeated data transmission.
  • the i-th logical channel is prohibited from being used for repeated data transmission, which can be understood as: the i-th logical channel is prohibited from transmitting data, or the i-th logical channel can be used to transmit non-repetitive data, but cannot be used to transmit repeated data .
  • the value of the i-th bit is used to indicate the usage status of the i-th logical channel among the M logical channels associated with the radio bearer. An example may be: if the value of the i-th bit is 0, then it indicates the i-th logical channel. The channel is in the deactivated state of use. If the value of the i-th bit is 1, it indicates that the i-th logical channel is in the activated state of use.
  • the M logical channels may be sorted based on the identification IDs of the cell groups associated with the M logical channels and the IDs of the M logical channels, and there are multiple specific implementation manners.
  • the M logical channels are sorted in ascending or descending order by the IDs of the logical channels associated with each cell group, where the logical channels associated with the cell group with a larger ID are sorted first, and the cell with a smaller ID
  • the logical channels associated with the group are ranked second; or, the logical channels associated with the cell group with a small ID are ranked first, and the logical channels associated with the cell group with a large ID are ranked second.
  • the logical channels belonging to the same cell group are sorted according to the ascending/descending order of the ID of the logical channel, and then the sorted groups of logical channels are sorted according to the ascending/descending order of the ID of the cell group.
  • the M logical channels are associated with a cell group
  • the M logical channels are sorted in ascending or descending order according to the IDs of the logical channels.
  • M logical channels include LCH1, LCH2, LCH3, and LCH4, where LCH1 and LCH3 are associated with cell group 1, and LCH2 and LCH4 are associated with cell group 2.
  • LCH1 can be understood as a logical channel with ID "1”
  • LCH1 can be understood as a logical channel with ID "2”
  • LCH3 and LCH4 are the same.
  • Cell group 1 can be understood as a cell group with ID "1”
  • cell group 2 can be understood as a cell group with ID "2”.
  • the ID of the cell group 1 may also be "0”
  • the ID of the cell group 2 may also be "1".
  • the available M logical channels are LCH1, LCH3, LCH2, LCH4.
  • the M logical channels are LCH3, LCH1, LCH4, and LCH2.
  • the M logical channels are sorted in ascending or descending order according to the values corresponding to the M logical channels; the value corresponding to the i-th logical channel is associated with the i-th logical channel The ID of the cell group, the ID of the i-th logical channel, and the maximum number of logical channels included in the cell group associated with the i-th logical channel.
  • the value corresponding to the i-th logical channel cell group ID*maxLCH+LCH ID, where cell group ID is the ID of the cell group associated with the i-th logical channel, and LCH ID is the i-th logical channel’s ID ID, maxLCH is the maximum number of logical channels included in the cell group associated with the i-th logical channel.
  • the value corresponding to each logical channel may be the ID of the logical channel.
  • M logical channels include LCH1, LCH2, and LCH3, where LCH1 and LCH3 are associated with cell group 1, and LCH2 is associated with cell group 2.
  • the maximum number of logical channels included in cell group 1 and cell group 2 are both 32.
  • the ID of cell group 1 is "0", and the ID of cell group 2 is "1".
  • the values corresponding to the channels are sorted in ascending order, and the M logical channels are LCH1, LCH3, and LCH2. If the M logical channels are sorted in descending order according to the values corresponding to the M logical channels, the M logical channels are LCH2, LCH3, and LCH1.
  • the number of logical channels associated with a radio bearer may be equal to M, or may be greater than M.
  • the following describes the specific implementation of data transmission by the terminal device using at least one logical channel associated with the radio bearer according to the instruction information, respectively, for these two situations.
  • Case 1 The number of logical channels associated with the radio bearer is equal to M, that is, the logical channels associated with the radio bearer are the foregoing M logical channels.
  • the terminal device may use the logical channel whose use state is the active use state among the M logical channels to perform data transmission according to the use state of the M logical channels. That is to say, if the indication information indicates that a certain logical channel among the M logical channels is in active use state, the terminal device can use the logical channel for data transmission; if the indication information indicates a certain logical channel among the M logical channels To deactivate the use state, the terminal device does not use the logical channel for data transmission.
  • the terminal device can use K1 logical channels for data transmission, where, when K1 >1, the data transmitted by K1 logical channels are repeated, that is, the radio bearer uses these K1 logical channels for repeated data transmission, and P is the maximum number of logical channels in active use state among the logical channels associated with the radio bearer.
  • the value of P can be predefined, or can also be configured for network equipment, for example, network equipment can be configured through RRC signaling or system information block (system information block, SIB), or it can be configured by terminal equipment from the network
  • the device receives the instruction information for an instruction, that is, the terminal device receives the instruction information from the network device in addition to the bit sequence, and may also include a field for indicating the value of P.
  • the network device can configure a P value for each radio bearer between the network device and the terminal device, that is, each radio bearer has a unique P value. At this time, each radio bearer is in active use The maximum number of logical channels in the state may be different; or, the network device can also configure a P value for the terminal device.
  • the number of logical channels in the active use state in each radio bearer between the network device and the terminal device The maximum number is the same; or, if the indication information sent by the network device includes the P value for the radio bearer, the maximum number of logical channels for which the network device indicates that the radio bearer is in active use each time may be the same or different of.
  • the terminal device can use logical channel 1 and logical channel 2 for data transmission.
  • the terminal device when 0 ⁇ K1 ⁇ P, the terminal device can directly use the logical channel in the active use state indicated by the indication information for data transmission; if the value of K1 does not meet the above range, the terminal device can no longer directly Use the logical channel in the active state indicated by the indication information for data transmission.
  • K1 0, indicating that M bits indicate that the use states of M logical channels are all deactivated use states.
  • the terminal device can consider that the repeated transmission function of the radio bearer is deactivated, and then can select a logical channel from the M logical channels For data transmission, for example, the terminal device randomly selects a logical channel or selects a default logical channel for data transmission.
  • the default logical channel may be the logical channel with the smallest or largest ID among the M logical channels, which is not specifically limited. In other possible embodiments, the terminal device may also ignore the indication information or ignore the bit sequence.
  • the terminal device can perform any of the following : 1) Fall back to split bearer operation, that is, select a logical channel from the first cell group (such as logical channel 1), and select a logical channel (such as logical channel 2) from the second cell group, and use the logical channel 1 and logical channel 2 perform data transmission, and the data transmitted by logical channel 1 and logical channel 2 does not overlap.
  • logical channel 1 may be the logical channel with the largest or smallest ID of the logical channel in the first cell group or any logical channel in the first cell group
  • logical channel 2 may be the logical channel of the logical channel in the second cell group. The logical channel with the largest or smallest ID or any logical channel in the second cell group.
  • the network device may pre-configure the logical channels used in the first cell group and the second cell group during fallback to split bearer operation through RRC signaling, that is, which logical channel is configured by the network device through RRC signaling as Logical channel 1 and which logical channel is used as logical channel 2; optionally, when the amount of data to be transmitted by the radio bearer is less than a threshold configured by a network device, the terminal device can use logical channel 1 or logical channel 2 for data transmission, Or the network device instructs the terminal device through RRC signaling which logical channel to use for data transmission; optionally, when the amount of data to be transmitted on the radio bearer is less than a threshold configured by a network device, the terminal device can also use the network device to pass RRC Data transmission is performed on any logical channel in a cell group indicated by the signaling, or the logical channel with the largest or smallest ID of the logical channel.
  • RRC signaling that is, which logical channel is configured by the network device through RRC signaling as Logical channel 1 and
  • the terminal device can consider that the repeated transmission function of the radio bearer is deactivated, and then can select a logical channel from M logical channels for data transmission. For example, the terminal device randomly selects a logical channel, which is not specifically limited. In other possible embodiments, the terminal device may also ignore the indication information or ignore the bit sequence.
  • the terminal device can consider that the repeat transmission function of the radio bearer is activated, and then select P logical channels from K1 logical channels for data transmission, and the data transmitted by the P logical channels are repeated, that is, the radio bearer Use P logical channels for repeated data transmission.
  • the terminal device can randomly select P logical channels from K1 logical channels, or the terminal device can select P logical channels with better channel quality corresponding to physical layer transmission resources from K1 logical channels, and Alternatively, the terminal device may select P logical channels with the largest or smallest corresponding value from the K1 logical channels.
  • the terminal device may also ignore the indication information or ignore the bit sequence.
  • the channel quality of the physical layer transmission resources may be the reference signal receiving power (reference signal receiving power, RSRP)/reference signal receiving quality (RSRQ)/signal measured on the allowed cell corresponding to the logical channel.
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • SINR signal to interference ratio
  • the network device configures 4 logical channels for radio bearer 1.
  • the network device sends instructions including the bit sequence for radio bearer 1, 4 in the bit sequence
  • Each bit from front to back corresponds to the usage status of the 4 logical channels from LCH1 to LCH4.
  • the first and fourth bits are set to 1, it means that LCH1 and LCH4 can be used for repeated data transmission.
  • the network device configures 3 logical channels for radio bearer 2.
  • the instruction information sent by the network device includes a bit sequence for radio bearer 1
  • the bit sequence may include 3 bits, indicating 3 respectively The use status of the logical channel.
  • the network device can also use a bit sequence including 4 bits in a unified manner.
  • the first 3 bits in the bit sequence can respectively indicate the usage status of the 3 logical channels.
  • the terminal may not parse the last bit or ignore the last bit; or, the last 3 bits in the bit sequence may indicate the use status of the three logical channels, and the terminal may not parse the first bit or ignore the first bit.
  • the network device configures 4 logical channels for radio bearer 1.
  • the network device configures 3 logical channels for radio bearer 2.
  • the first and third bits are set to 1, it means that LCH1 and LCH3 can be used for repeated data transmission.
  • the number of logical channels associated with the radio bearer is greater than M.
  • the number of logical channels associated with the radio bearer is equal to M+1, that is, the logical channels associated with the radio bearer include the above M logical channels as well Can include a main logical channel. Further, the main logical channel can always be in an active use state without the network device indicating its use state.
  • the terminal device may use the logical channel and the main logical channel whose use state is the active use state among the M logical channels to perform data transmission according to the use state of the M logical channels.
  • the terminal device can use logical channel 1 and main The logical channel performs data transmission, and the data transmitted by the logical channel 1 and the main logical channel are repeated, that is, the terminal device uses the logical channel 1 and the main logical channel for repeated data transmission.
  • the terminal device can directly use the logical channel and the main logical channel in the active use state indicated by the indication information for data transmission; if the value of K2 does not meet the above range, then The terminal device may no longer directly use the logical channel in the active use state indicated by the indication information for data transmission.
  • K2 0, indicating that M bits indicate that the use states of M logical channels are all deactivated use states.
  • the terminal device can consider that the repeated transmission function of the radio bearer is deactivated, and the terminal device can use the main logical channel for data transmission. In other possible embodiments, the terminal device may also ignore the indication information or ignore the bit sequence.
  • the terminal device can perform any of the following: 1) Fall back to the split bearer operation, that is, select a logical channel from the first cell group (such as logical channel 1), and select a logical channel from the second cell group Channel (such as logical channel 2), and use logical channel 1 and logical channel 2 for data transmission, and the data transmitted by logical channel 1 and logical channel 2 are not duplicated.
  • logical channel 1 may be the main logical channel or the logical channel with the largest or smallest ID of the logical channel in the first cell group, or any logical channel in the first cell group
  • logical channel 2 may be the second cell group The logical channel with the largest or smallest ID of the logical channel or any logical channel in the second cell group.
  • the network device can pre-configure the logical channel used in the first cell group and/or the second cell group when falling back to split bearer operation through RRC signaling. When the network device configures only the second cell group through RRC signaling, The logical channel used by the cell group, that is, the primary logical channel is used in the first cell group by default.
  • the terminal device when the amount of data to be transmitted on the radio bearer is less than a threshold configured by a network device, the terminal device can use logical channel 1 or logical channel 2 for data transmission, or the network device instructs which terminal device to use through RRC signaling A logical channel is used for data transmission; optionally, when the amount of data to be transmitted on the radio bearer is less than a threshold configured by a network device, the terminal device can also use any logic in a cell group indicated by the network device through RRC signaling The channel, or the logical channel with the largest or smallest ID of the logical channel, performs data transmission. 2) The terminal device can consider that the repeat transmission function of the radio bearer is deactivated, and can use the main logical channel for data transmission. In other possible embodiments, the network device may configure the terminal to perform 1) or 2) through RRC signaling.
  • the terminal device can consider that the repeat transmission function of the radio bearer is activated, and then select P-1 logical channels from K2 logical channels, and use P-1 logical channels and the main logical channel for data transmission.
  • the data transmitted by -1 logical channel and the main logical channel are duplicated, that is, the P-1 logical channel and the main logical channel are used for repeated data transmission.
  • the terminal device may randomly select P-1 logical channels from K2 logical channels, or the terminal device may select P-1 logical channels corresponding to physical layer transmission resources from K2 logical channels with better channel quality Logical channels, or alternatively, the terminal device can select P logical channels with the largest or smallest corresponding values from K2 logical channels. In other possible embodiments, the terminal device may also ignore the indication information or ignore the bit sequence.
  • the network device configures 4 logical channels for radio bearer 1, and LCH1 is the main logical channel.
  • the instruction information sent by the network device includes the bit sequence for radio bearer 1
  • the 4 bits in the bit sequence respectively correspond to the usage status of the 4 logical channels LCH1 to LCH4 from front to back.
  • the first and fourth bits are set If 1, it means that LCH1 and LCH4 can be used for repeated data transmission.
  • the network device configures 3 logical channels for radio bearer 2, among which LCH1 is the main logical channel.
  • the bit sequence can include 2 bits, indicating the usage status of the 2 logical channels (LCH2 and LCH3) respectively.
  • the second bit is set to 1, it means LCH1 and LCH3 can be used for repeated data transmission.
  • the network device can also use a bit sequence including 3 bits uniformly.
  • the radio bearer is configured with 3 logical channels and one of the logical channels is the main logical channel
  • the first 2 bits in the bit sequence can be Indicate the usage status of the two logical channels other than the main logical channel.
  • the terminal may not parse the last bit or ignore the last bit; or, the last two bits in the bit sequence may indicate the two logical channels other than the main logical channel.
  • the terminal may not parse the first bit or ignore the first bit.
  • the network device configures 4 logical channels for radio bearer 1, among which LCH1 is the main logical channel.
  • the first and fourth bits are set to 1, it means that LCH1 and LCH4 can be used for repeated data transmission.
  • the network device has configured 3 logical channels for radio bearer 2, among which LCH1 is the main logical channel.
  • the first and third bits are set to 1, it means that LCH1 and LCH3 can be used for repeated data transmission.
  • the indication information may be carried in a message sent by the network device, or the indication information itself may be a message sent by the network device.
  • the indication information may be an RRC configuration message or a MAC CE message.
  • the indication information may be an RRC configuration message.
  • the RRC configuration message is used to configure the repeat transmission function for the radio bearer, and on the other hand, it is used to indicate the M associated with the radio bearer. The usage status of each logical channel.
  • the indication information may be a MAC CE message, which is used to indicate the usage status of the M logical channels associated with the radio bearer; optionally, the network device is sending a MAC CE message to the terminal device Previously, an RRC configuration message may also be sent to the terminal device, and the RRC configuration message is used to configure the repeat transmission function for the radio bearer. It should be noted that the embodiment of the present application does not limit the name and implementation form of the indication information.
  • the indication information may be indication information for the above-mentioned radio bearer, that is, the indication information is dedicated to indicating the use status of the M logical channels associated with the radio bearer, and does not indicate other radio bearer associations. The usage status of the logical channel.
  • the indication information may also be indication information for multiple radio bearers, that is, the indication information may include multiple bit sequences, and each bit sequence corresponds to a radio bearer and is used to indicate the corresponding radio bearer The status of the associated logical channel.
  • the indication information may include the above-mentioned radio bearer in the at least one radio bearer configured with the repeated transmission function in ascending order or according to the identification of the at least one radio bearer.
  • the position index in descending order, or the indication information including the above-mentioned radio bearer in at least one radio bearer configured with the repeated transmission function and the configured logical channel/RLC entity is associated with the MAC entity receiving the indication information according to the at least one radio bearer
  • the position index of the radio bearer identification in ascending or descending order.
  • the network device configures 6 radio bearers for the terminal device, of which 4 radio bearers are configured with repeated transmission functions.
  • the 4 radio bearers are radio bearer 1, radio bearer 2, radio bearer 3, and radio bearer 4 respectively.
  • radio bearer 1 radio bearer 2, radio bearer 3, and radio bearer 4.
  • two bits can be used to indicate the position index of a radio bearer, such as "00" for radio bearer
  • the position index of 1, "01” is the position index of radio bearer 2
  • "10” is the position index of radio bearer 3
  • "11” is the position index of radio bearer 4.
  • 3 bits or 4 bits can also be used to represent the position index of a certain radio bearer, which will not be repeated here.
  • the terminal device can determine, according to the position index included in the indication information, which bit sequence in the indication information indicates the state of the logical channel associated with which radio bearer. In this way, compared to the indication information directly including the ID of the radio bearer (usually including 5 bits), the number of bits included in the indication information can be effectively reduced and resource overhead is saved.
  • the indication information includes the position index of the radio bearer in at least one radio bearer configured with the repeated transmission function in ascending or descending order according to the identification of the at least one radio bearer (hereinafter simply described as: the indication information includes the radio bearer) Bearer position index), this solution can be implemented based on Figure 5, that is to say, the indication information can include the above-mentioned bit sequence, and it can also include the radio bearer in at least one radio bearer configured with a repeated transmission function according to the at least The position index of a radio bearer in ascending or descending order.
  • the position index and bit sequence of the radio bearer may be as shown in FIG. 4b.
  • the indication information may include the position index of the radio bearer, and whether the indication information includes the bit sequence described above is not specifically limited.
  • FIG. 8 is a schematic diagram of the process corresponding to the data transmission method provided by the embodiment of the application, as shown in FIG. 8, including:
  • Step 801 The terminal device receives instruction information from the network device, the instruction information includes a bit sequence, and the values of multiple bits in the bit sequence are used to indicate one of the multiple transmission modes of the radio bearer, and the radio bearer is configured with copy transmission.
  • each of the multiple transmission modes includes the use status of M logical channels associated with the radio bearer; the number of bits in the bit sequence is less than M, and M is an integer greater than or equal to 2;
  • Step 802 The terminal device uses at least one logical channel associated with the radio bearer to perform data transmission according to the instruction information.
  • the number of bits in the bit sequence may be less than M, that is, in the embodiment of the present application, a smaller number of bits are used to indicate the use status of M logical channels, thereby effectively saving resource overhead.
  • the number of logical channels associated with a radio bearer may be equal to M, or may be greater than M.
  • the following describes the specific implementation of data transmission by the terminal device using at least one logical channel associated with the radio bearer according to the instruction information, respectively, for these two situations.
  • Case 1 The number of logical channels associated with the radio bearer is greater than M.
  • the number of logical channels associated with the radio bearer is equal to M+1. That is to say, the logical channels associated with the radio bearer include the M logical channels mentioned above.
  • the number of logical channels in active use state in each transmission mode may be less than or equal to 2.
  • the multiple transmission modes of the radio bearer include any of the following transmission modes 1 to 4.
  • the use state of the primary logical channel is the activated use state
  • the use state of other logical channels associated with the radio bearer is the deactivated use state.
  • the indication information indicates that the transmission mode of the radio bearer is transmission mode 1
  • the terminal device can consider that the repeated transmission function of the radio bearer is deactivated and can use the main logic Channel for data transmission; if the first part of the logical channel among the M logical channels is associated with the first cell group and the second part of the logical channel is associated with the second cell group, and the main logical channel belongs to the first cell group, the terminal device can Perform any of the following: 1) Fall back to split bearer operation, that is, select a logical channel from the first cell group (such as logical channel 1), and select a logical channel from the second cell group (such as logical channel 2) , And use logical channel 1 and logical channel 2 for data transmission, and the data transmitted by logical channel 1
  • logical channel 1 may be the main logical channel or the logical channel with the largest or smallest ID of the logical channel in the first cell group, or any logical channel in the first cell group
  • logical channel 2 may be the second cell group The logical channel with the largest or smallest ID of the logical channel or any logical channel in the second cell group.
  • the network device may pre-configure the logical channel used when falling back to the split bearer operation through RRC signaling. 2) The terminal device can consider that the repeat transmission function of the radio bearer is deactivated, and can use the main logical channel for data transmission. In other possible embodiments, the network device may configure the terminal to perform 1) or 2) through RRC signaling.
  • the use state of the first logical channel and the main logical channel of the M logical channels is the active use state, and the use state of other logical channels associated with the radio bearer is the deactivated use state; the first logical channel and the main logic
  • the data transmitted by the channel is duplicated.
  • the terminal device can use the first logical channel and the main logical channel for repeated data transmission.
  • the use state of the second logical channel and the main logical channel among the M logical channels is the active use state, and the use state of other logical channels associated with the radio bearer is the deactivated use state; the second logical channel and the main logical channel
  • the data transmitted by the channel is duplicated.
  • the terminal device can use the second logical channel and the main logical channel for repeated data transmission.
  • the use state of the third logical channel and the main logical channel of the M logical channels is the active use state, and the use state of other logical channels associated with the radio bearer is the deactivated use state; the third logical channel and the main logic
  • the data transmitted by the channel is repeated; accordingly, when the indication information indicates that the transmission mode of the radio bearer is transmission mode 4, the terminal device can use the third logical channel and the main logical channel for repeated data transmission.
  • the M logical channels are sorted based on the identification ID of the cell group to which the M logical channels belong and the ID of the M logical channels. For specific implementation, refer to the description in the first embodiment.
  • transmission mode 1 to transmission mode 4 are only an example. In specific implementation, other possible transmission modes can also be set, which are not specifically limited.
  • the network device configures 4 logical channels for radio bearer 1, and LCH1 is the main logical channel.
  • the indication information sent by the network device includes a bit sequence for radio bearer 1
  • the value of 2 bits in the bit sequence indicates the transmission mode of radio bearer 1.
  • 00 i.e. transmission mode 1
  • the use state of LCH1 is the activated state of use
  • the use state of other logical channels associated with radio bearer 1 is the deactivated state of use.
  • the terminal device can only use LCH1 for data transmission; 01 (i.e.
  • Transmission mode 2 indicates that the use state of LCH1 and LCH2 is the active use state, and the use state of other logical channels associated with radio bearer 1 is the deactivated use state, and the terminal device can use LCH1 and LCH2 for repeated data transmission; 10 (i.e.
  • Transmission mode 3 indicates that the use state of LCH1 and LCH3 is the active use state, the use state of other logical channels associated with radio bearer 1 is the deactivated use state, and the terminal device can use LCH1 and LCH3 for repeated data transmission;
  • 11 indicates that the use state of LCH1 and LCH4 is an active use state, the use state of other logical channels associated with radio bearer 1 is a deactivated use state, and the terminal device can use LCH1 and LCH4 for repeated data transmission.
  • the network device configures 4 logical channels for radio bearer 1, among which LCH1 is the main logical channel.
  • the indication information sent by the network device includes a bit sequence for radio bearer 1
  • the value of 2 bits in the bit sequence indicates the transmission mode of radio bearer 1.
  • 00 that is, transmission mode 1 indicates that the use state of LCH1 is the active use state, and the use state of other logical channels associated with radio bearer 1 is the deactivated use state.
  • the terminal device can only use LCH1 for data transmission or fall back to split beaer; 01 (i.e.
  • Case 2 The number of logical channels associated with the radio bearer is equal to M, that is, the logical channels associated with the radio bearer are the foregoing M logical channels.
  • the first part of the logical channels among the M logical channels is associated with the first cell group, and the second part of the logical channels is associated with the second cell group, where the number of logical channels associated with the first cell group and the second cell group may be Less than or equal to 2.
  • the first logical channel and the second logical channel are associated with the first cell group (may be the primary cell group), and the third logical channel and the fourth logical channel are associated with the second cell group ( It may be a secondary cell group); where the M logical channels are sorted based on the identification ID of the cell group to which the M logical channels belong and the ID of the M logical channels. For specific implementation, see the description in Embodiment 1.
  • the multiple transmission modes of the radio bearer include any of the following transmission mode 1 to transmission mode 6.
  • the use state of the first logical channel and the second logical channel is the active use state, and the use state of other logical channels in the radio bearer association is the deactivated use state; the first logical channel and the second logical channel are used.
  • the data transmitted by the logical channel is the same.
  • the terminal device may use the first logical channel and the second logical channel for repeated data transmission.
  • the use state of the third logical channel and the fourth logical channel is the deactivated state, and the use state of other logical channels associated with the radio bearer is the deactivated state; the third logical channel and the fourth logical channel
  • the data transmitted by the channel is the same.
  • the terminal device can use the third logical channel and the fourth logical channel for repeated data transmission.
  • the use state of the first logical channel and the third logical channel is the active use state, the use state of other logical channels associated with the radio bearer is the deactivated use state; the first logical channel and the third logical channel
  • the transmitted data is duplicated.
  • the terminal device may use the first logical channel and the third logical channel for repeated data transmission.
  • the use state of the first logical channel and the third logical channel is the active use state, and the use state of other logical channels associated with the radio bearer is the deactivated use state; the first logical channel and the third logical channel
  • the transmitted data is not duplicated.
  • the terminal device can use the first logical channel and the third logical channel for non-repetitive data transmission.
  • the radio bearer uses a logical channel in the first cell group for data transmission, such as randomly selecting the first logical channel or the second logical channel for data transmission, or selecting a logical channel with a smaller or larger logical channel ID
  • the channel is used for data transmission, or the network device indicates which logical channel the radio bearer uses for data transmission through RRC signaling.
  • the use state of other logical channels associated with the radio bearer is the deactivated use state.
  • the terminal device may use the first logical channel or the second logical channel for data transmission.
  • the radio bearer uses a logical channel in the second cell group for data transmission, such as randomly selecting the third logical channel or the fourth logical channel for data transmission, or selecting a logical channel with a smaller or larger logical channel ID
  • the channel is used for data transmission, or the network device indicates which logical channel the radio bearer uses for data transmission through RRC signaling.
  • the use state of other logical channels associated with the radio bearer is the deactivated use state.
  • the terminal device may use the third logical channel or the fourth logical channel for data transmission.
  • transmission mode 1 to transmission mode 4 are only an example. In specific implementation, other possible transmission modes can also be set, which are not specifically limited.
  • the network device has configured 4 logical channels for radio bearer 1.
  • the instruction information sent by the network device includes a bit sequence for radio bearer 1
  • the value of 2 bits in the bit sequence indicates the transmission of radio bearer 1.
  • mode Among them, 00 (that is, transmission mode 1) indicates that the use status of LCH1 and LCH3 is the active use state, the use state of other logical channels associated with radio bearer 1 is the deactivated use state, and the terminal device can only use LCH1 and LCH3 for repeated data Transmission; 01 (i.e.
  • transmission mode 2 indicates that the use status of LCH2 and LCH4 is the active use state, the use state of other logical channels associated with radio bearer 1 is the deactivated use state, and the terminal device can use LCH2 and LCH4 for repeated data transmission ; 10 (that is, transmission mode 3) indicates that the use status of LCH1 and LCH2 (or LCH3 and LCH4) is the active use state, and the use state of other logical channels associated with radio bearer 1 is the deactivated use state.
  • the terminal device can use LCH1 and LCH2 (or LCH3 and LCH4) performs repeated data transmission. In this case, one logical channel is selected from two cell groups (such as cell group 1 and cell group 2). The specific selection method is not limited.
  • the logical channel with the largest ID can be selected from each cell group Or the smallest logical channel, or choose a logical computer, or, choose the logical channel used when falling back to split bearer.
  • 11 i.e. transmission mode 4 indicates that the use status of LCH1 and LCH2 (or LCH3 and LCH4) is the active use state, the use state of other logical channels associated with radio bearer 1 is the deactivated use state, and the terminal device can use LCH1 and LCH4 (Or LCH2 and LCH3) for non-repetitive data transmission.
  • logical channels for radio bearer 1, such as 3 logical channels (for example, only LCH1, LCH3, and LCH2)
  • 3 logical channels for example, only LCH1, LCH3, and LCH2
  • the 2 bits in the bit sequence indicate "01"
  • the terminal equipment The indication information or bit sequence can be ignored.
  • the specific interpretation of the bit sequence may be different from the above example, which is not limited in the embodiment of the present application.
  • it may also be from the primary cell group (such as LCH1, LCH3).
  • Select a logical channel for transmission in the cell group (the specific selection method is not limited), or select a logical channel from the secondary cell group (such as the cell group associated with LCH2 and LCH4) for transmission (the specific selection method is not limited).
  • the logical channels associated with the radio bearer are M logical channels. If the M logical channels are associated with multiple cells, for example, the first part of the logical channels of the M logical channels is associated with the first cell group, and the second part The logical channel is associated with the second cell group, the first cell group is configured by the first network device (main network device), and the second cell group is configured by the second network device; then one possible solution is that the first network device passes through
  • the indication information indicates the usage status of the M logical channels.
  • the MAC entity corresponding to the first cell group is required to sense the usage status of the logical channel of the radio bearer on the MAC entity corresponding to the second cell group, which increases the complexity of interaction between protocol layer entities.
  • a solution provided by an embodiment of the present application is that the first network device indicates the use status of the first part of the logical channel through indication information, and the second network device indicates the use status of the second part of the logical channel through the indication information . That is to say, the first network device or the second network device can control the use state of the logical channel configured by itself through the instruction information, and does not perform cross-network device control, thereby avoiding the complexity of cross-network device control.
  • the first network device controls the usage status of the logical channel configured by itself through the instruction information.
  • the instruction information indicating the logic in the first or second embodiment.
  • the mode of the use state of the channel may alternatively be other possible modes, which are not specifically limited.
  • the network device or the terminal device may include corresponding hardware structures and/or software modules for performing various functions.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 10 shows a possible exemplary block diagram of a device involved in an embodiment of the present application, and the device 1000 may exist in the form of software.
  • the apparatus 1000 may include: a processing unit 1002 and a communication unit 1003.
  • the processing unit 1002 is used to control and manage the actions of the device 1000.
  • the communication unit 1003 is used to support communication between the device 1000 and other network entities.
  • the communication unit 1003 is also referred to as a transceiver unit, and may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 1000 may further include a storage unit 1001 for storing program codes and/or data of the device 1000.
  • the processing unit 1002 may be a processor or a controller, which may implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the embodiments of the present application.
  • the communication unit 1003 may be a communication interface, a transceiver, or a transceiver circuit, etc., where the communication interface is a general term. In a specific implementation, the communication interface may include multiple interfaces.
  • the storage unit 1001 may be a memory.
  • the apparatus 1000 may be the terminal device in any of the above embodiments, or may also be a chip provided in the terminal device.
  • the processing unit 1002 may support the apparatus 1000 to perform the actions of the terminal device in the foregoing method examples.
  • the processing unit 1002 mainly executes the internal actions of the terminal in the method example, and the communication unit 1003 can support communication between the apparatus 1000 and the network device.
  • the communication unit is configured to receive indication information from the network device, the indication information includes a bit sequence, and the value of the i-th bit in the bit sequence is used to indicate M logical channels associated with the radio bearer
  • the number of bits in the bit sequence is N, and N is an integer greater than M;
  • the processing unit is further configured to ignore the M+1 to Nth bits in the bit sequence.
  • the use state of the i-th logical channel is an activated use state or a deactivated use state; if the use state of the i-th logical channel is an activated use state, then the i-th logical channel The logical channel is allowed to be used for repeated data transmission; or, if the use state of the i-th logical channel is a deactivated use state, the i-th logical channel is prohibited from being used for repeated data transmission.
  • the processing unit is specifically configured to: according to the use state of the M logical channels, at least use the logical channel whose use state is the active use state among the M logical channels to pass through the communication unit Perform data transfer.
  • the processing unit is specifically configured to: if the M bits indicate that the use state of K1 logical channels in the M logical channels is an active use state, 0 ⁇ K1 ⁇ P, then The terminal device uses the K1 logical channels to transmit data through the communication unit; wherein, when K1 is greater than 1, the data transmitted by the K1 logical channels is repeated, and the P is the logical channel associated with the radio bearer The maximum number of logical channels in active use state.
  • the method further includes: if K1>P, then: the processing unit is specifically configured to use P logical channels among the K1 logical channels to transmit data through the communication unit , The data transmitted by the P logical channels are repeated.
  • the logical channels associated with the radio bearer include the M logical channels and the primary logical channel; if the M bits indicate that the usage status of K2 logical channels in the M logical channels is Active use state, 0 ⁇ K2 ⁇ P-1, then: the processing unit is specifically configured to use the K2 logical channels and the main logical channel to transmit data through the communication unit, and the K2 logical channels Repeated with the data transmitted by the primary logical channel, and the P is the maximum number of logical channels in an active use state among the logical channels associated with the radio bearer.
  • the processing unit is specifically configured to use the primary logical channel to pass the communication The unit performs data transmission, or ignores the indication information or the bit sequence;
  • the processing unit is specifically configured to use the primary logical channel to transmit data through the communication unit, or to use the primary logical channel and the fourth logical channel in the second cell group to communicate through the The unit performs data transmission, and the data transmitted by the first primary logical channel and the fourth logical channel do not overlap, or the terminal device ignores the indication information or the bit sequence.
  • the processing unit is specifically configured to use P-1 logical channels among the K2 logical channels and the main logical channel to communicate through the The unit performs data transmission, and the data transmitted by the P-1 logical channels and the main logical channel are duplicated.
  • the M logical channels are sorted based on the identification IDs of the cell groups associated with the M logical channels and the IDs of the M logical channels, including:
  • the M logical channels are sorted by the IDs of the logical channels associated with each cell group in ascending or descending order; wherein the logical channels associated with the cell group with a large ID are ordered first or the logical channels associated with the cell group with a small ID are ordered Before; or,
  • the M logical channels are sorted in ascending or descending order according to the values corresponding to the M logical channels; the M logical channels include a first logical channel, and the first logical channel corresponds to The value of is obtained according to the ID of the cell group to which the first logical channel belongs, the ID of the first logical channel, and the maximum number of logical channels included in the cell group to which the M logical channels belong.
  • the indication information further includes a position index of the radio bearer in ascending or descending order according to the identifier of the at least one radio bearer in the at least one radio bearer configured with the repeated transmission function.
  • the communication unit is configured to receive indication information from a network device, the indication information includes a bit sequence, and the values of multiple bits in the bit sequence are used to indicate the multiple transmission modes of the radio bearer
  • the radio bearer is configured with a replication transmission function, and each transmission mode of the multiple transmission modes includes the use status of M logical channels associated with the radio bearer; in the bit sequence
  • the number of bits is less than M, and M is an integer greater than or equal to 2.
  • the processing unit is configured to perform data transmission by using at least one logical channel associated with the radio bearer through the communication unit according to the indication information.
  • the logical channel associated with the radio bearer includes the M logical channels and the primary logical channel;
  • the multiple transmission modes include any of the following:
  • the use state of the primary logical channel is an activated use state, and the use state of other logical channels associated with the radio bearer is a deactivated use state;
  • the use state of the first logical channel and the main logical channel among the M logical channels is an active use state, and the use state of other logical channels associated with the radio bearer is a deactivated use state;
  • the data transmitted by the first logical channel and the main logical channel are duplicated;
  • the use state of the second logical channel and the main logical channel among the M logical channels is an active use state, and the use state of other logical channels associated with the radio bearer is a deactivated use state;
  • the data transmitted by the second channel and the main logical channel are duplicated;
  • the use state of the third logical channel and the main logical channel among the M logical channels is an active use state, and the use state of other logical channels associated with the radio bearer is a deactivated use state;
  • the data transmitted by the third logical channel and the main logical channel are duplicated;
  • the M logical channels are sorted based on the identification ID of the cell group to which the M logical channels belong and the ID of the M logical channels.
  • the first logical channel and the second logical channel are associated with the first cell group, and the third logical channel and the fourth logical channel are associated with the second cell group;
  • the M logical channels are sorted based on the identification IDs of the cell groups associated with the M logical channels and the IDs of the M logical channels;
  • the multiple transmission modes of the radio bearer include any of the following:
  • the use state of the first logical channel and the second logical channel is the active use state, and the use state of other logical channels in the radio bearer association is the deactivated use state; the first The logical channel and the data transmitted by the second logical channel are duplicated;
  • the use state of the third logical channel and the fourth logical channel is the deactivated state of use, and the use state of the other logical channels associated with the radio bearer is the deactivated state of use;
  • the third Data transmitted by a logical channel and the fourth logical channel are the same;
  • the use state of the first logical channel and the third logical channel is an active use state, and the use state of other logical channels associated with the radio bearer is a deactivated use state; the first The logical channel and the data transmitted by the third logical channel are duplicated;
  • the use state of the first logical channel and the third logical channel is an active use state, and the use state of other logical channels associated with the radio bearer is a deactivated use state; the first The data transmitted by the logical channel and the third logical channel do not overlap;
  • the use state of the first logical channel or the second logical channel is an activated use state, and the use state of other logical channels associated with the radio bearer is a deactivated use state;
  • the use state of the third logical channel or the fourth logical channel is an activated use state, and the use state of other logical channels associated with the radio bearer is a deactivated use state.
  • modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the embodiments of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • a computer readable storage medium includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium may be various mediums capable of storing program codes, such as a memory.
  • FIG. 11 shows a schematic structural diagram of a device.
  • the device 1100 includes a processor 1110, a memory 1120, and a transceiver 1130.
  • the device 1100 can implement the functions of the device 1000 illustrated in FIG. 10.
  • the functions of the communication unit 1003 illustrated in FIG. 10 may be implemented by a transceiver, and the functions of the processing unit 1002 may be implemented by a processor.
  • the function of the storage unit 1001 can be implemented by a memory.
  • the device 1100 may be the terminal device in the above method embodiment, and the device 1100 may be used to implement the method corresponding to the terminal device described in the above method embodiment.
  • FIG. 12 is a schematic structural diagram of a terminal device 1200 provided by an embodiment of this application.
  • the terminal device 1200 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the terminal device 1200 can be applied to the system architecture shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to control the terminal device to perform the actions described in the above method embodiment.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 12 only shows a memory and a processor. In actual terminal devices, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the processor in FIG. 12 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the terminal device 1200 shown in FIG. 12 can implement each process involving the terminal device in the method embodiment shown in FIG. 5 or FIG. 8.
  • the operation and/or function of each module in the terminal device 1200 is to implement the corresponding process in the foregoing method embodiment.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose central processing unit (central processing unit, CPU), general-purpose processor, digital signal processing (digital signal processing, DSP), application specific integrated circuits (ASIC), field programmable gate array Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof; it can also be a combination that implements computing functions, such as a combination of one or more microprocessors, DSP and micro-processing The combination of the device and so on.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory or storage unit in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (SSD).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the field.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium may also be arranged in different components in the terminal device.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及装置,其中方法包括:终端设备从网络设备接收指示信息,该指示信息包括比特序列,比特序列中第i个比特的值用于指示无线承载关联的M个逻辑信道中第i个逻辑信道的使用状态,该无线承载配置有重复传输功能,终端设备根据指示信息,使用无线承载关联的至少一个逻辑信道进行数据传输;由于M个逻辑信道基于该M个逻辑信道所关联的小区组的ID和该M个逻辑信道的ID排序,进而可以通过指示信息包括的比特序列中第i个比特来指示M个逻辑信道中第i个逻辑信道的使用状态,使得终端设备可以基于指示信息使用无线承载关联的至少一个逻辑信道进行数据传输。

Description

一种数据传输方法及装置
相关申请的交叉引用
本申请要求在2019年03月29日提交中国专利局、申请号为201910253508.5、申请名称为“一种数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2019年04月03日提交中国专利局、申请号为201910268136.3、申请名称为“一种数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
第五代(5th generation,5G)通信系统可以支持多种类型的业务,比如超高可靠低时延通信(ultra reliability and low latency communication,URLLC)业务。为了支持URLLC业务高可靠性和低时延的业务需求,引入了分组数据聚合协议(packet data convergence protocol,PDCP)层的重复(duplication)功能。PDCP层的重复通常指将无线承载的数据包复制成两个相同的包(也就是重复包),然后这两个数据包分别递交给两个不同的无线链路控制(radio link control,RLC)实体进行传输,进而通过不同的逻辑信道(logical channel,LCH)传输到媒体接入控制(media access control,MAC)层。
为了保证数据传输的可靠性,传输到MAC层的原始数据包和复制的数据包不能通过同一个MAC协议数据单元(protocol data unit,PDU)传输,因为只有通过不同的MAC PDU传输,其中一个MAC PDU丢掉才不会影响另外一个MAC PDU的传输,避免一个MAC PDU丢掉导致原始数据包和复制的数据包同时丢弃。因此,在双连接(Dual Connectivity,DC)duplication场景下,可以通过不同的逻辑信道将两个数据包传输到不同的MAC实体中,最终形成两个MAC PDU在不同的载波上进行传输。在载波聚合(carrier aggregation,CA)duplication场景下,可以通过配置不同的逻辑信道到不同载波的映射关系,MAC层将两个数据包复用到不同的MAC PDU中,最终在不同的载波上进行传输。
目前,PDCP层的重复只限于一个无线承载通过两个RLC实体和两个逻辑信道来传输在PDCP层被复制的数据包。例如在CA duplication场景下,一个无线承载PDCP层的重复传输功能被激活时,来自逻辑信道1的数据只能在载波1或载波2上传输,来自逻辑信道2的数据只能在载波3上传输。在某个时刻,该无线承载的PDCP层的重复传输功能被去激活以后,只剩下逻辑信道1还在工作,此时为了提高传输容量,逻辑信道1中的数据可以在所有可用的载波上进行传输。但是当PDCP层的重复不仅限于两个逻辑信道的时候,网络设备如何控制使用逻辑信道进行数据传输,仍需进一步的研究。
发明内容
有鉴于此,本申请提供了一种数据传输方法及装置,用于在为无线承载配置多个逻辑信道的情形下,实现终端设备基于网络设备的指示来使用无线承载关联的至少一个逻辑信道进行数据传输。
第一方面,本申请实施例提供了一种数据传输方法,该方法可以应用于终端设备,或者也可以应用于终端设备内部的芯片。以该方法应用于终端设备为例,在该方法中,终端设备从网络设备接收指示信息,指示信息包括比特序列,比特序列中第i个比特的值用于指示无线承载关联的M个逻辑信道中第i个逻辑信道的使用状态,M个逻辑信道基于M个逻辑信道所关联的小区组的标识ID和M个逻辑信道的ID排序,无线承载配置有重复传输功能;i=1,2,……,M,M为大于或等于2的整数;以及,终端设备根据指示信息,使用无线承载关联的至少一个逻辑信道进行数据传输。
采用上述方法,由于无线承载关联的M个逻辑信道可以基于该M个逻辑信道所关联的小区组的ID和该M个逻辑信道的ID排序,进而可以通过指示信息包括的比特序列中第i个比特来指示M个逻辑信道中第i个逻辑信道的使用状态,使得终端设备可以基于指示信息使用无线承载关联的至少一个逻辑信道进行数据传输。
在一种可能的设计中,比特序列中的比特数目为N,N为大于M的整数;该方法还包括:终端设备忽略比特序列中的第M+1至第N个比特。
也就是说,当比特序列中的比特数目较多时,终端设备可以忽略多余的比特,采用这种方法,比特序列中的数目可以为一个固定的数值(即N),从而避免调整比特序列中的数目而导致的复杂度。
在一种可能的设计中,第i个逻辑信道的使用状态为激活使用状态或去激活使用状态;
若第i个逻辑信道的使用状态为激活使用状态,则第i个逻辑信道被允许用于重复数据传输;或者,若第i个逻辑信道的使用状态为去激活使用状态,则第i个逻辑信道被禁止用于重复数据传输。
在一种可能的设计中,终端设备根据指示信息,使用无线承载关联的至少一个逻辑信道进行数据传输,包括:终端设备根据M个逻辑信道的使用状态,至少使用M个逻辑信道中使用状态为激活使用状态的逻辑信道进行数据传输。
也就是说,若指示信息指示M个逻辑信道中的某一逻辑信道为激活使用状态,则终端设备即可使用该逻辑信道进行数据传输;若指示信息指示M个逻辑信道中的某一逻辑信道为去激活使用状态,则终端设备不使用该逻辑信道进行数据传输。采用这种方式,终端设备基于指示信息的指示即可确定出进行数据传输所使用的逻辑信道,指示方式较为简单方便。
在一种可能的设计中,终端设备根据M个逻辑信道的使用状态,至少使用M个逻辑信道中使用状态为激活使用状态的逻辑信道进行数据传输,包括:若M个比特指示M个逻辑信道中K1个逻辑信道的使用状态为激活使用状态,0<K1≤P,则终端设备使用K1个逻辑信道进行数据传输;其中,K1大于1时,K1个逻辑信道传输的数据重复,P为无线承载关联的逻辑信道中处于激活使用状态的逻辑信道的最大数量。
在一种可能的设计中,该方法还包括:
当M个逻辑信道均关联第一小区组时,若K1=0,则:终端设备使用M个逻辑信道中的任意一个逻辑信道进行数据传输,或者终端设备忽略指示信息或比特序列;或者,
当M个逻辑信道中的第一部分逻辑信道与第一小区组关联和第二部分逻辑信道与第二小区组关联时,若K1=0,则:终端设备使用M个逻辑信道中的第一逻辑信道进行数据传输,或者终端设备使用第一小区组中的第二逻辑信道和第二小区组中的第三逻辑信道进行非重复数据传输,或者终端设备忽略指示信息或比特序列。
如此,通过比特序列中M个比特均为零来指示一些操作,从而增加了比特序列所指示的内容的多样性。
在一种可能的设计中,该方法还包括:若K1>P,则:终端设备使用K1个逻辑信道中的P个逻辑信道进行数据传输,P个逻辑信道传输的数据重复。
在一种可能的设计中,无线承载关联的逻辑信道包括M个逻辑信道和主逻辑信道;终端设备根据M个逻辑信道的使用状态,至少使用M个逻辑信道中使用状态为激活使用状态的逻辑信道进行数据传输,包括:若M个比特指示M个逻辑信道中K2个逻辑信道的使用状态为激活使用状态,0<K2≤P-1,则终端设备使用K2个逻辑信道和主逻辑信道进行数据传输,K2个逻辑信道和主逻辑信道传输的数据重复,P为无线承载关联的逻辑信道中处于激活使用状态的逻辑信道的最大数量。
在一种可能的设计中,该方法还包括:当无线承载关联的逻辑信道均关联第一小区组时,若K2=0,则:终端设备使用主逻辑信道进行数据传输,或者终端设备忽略指示信息或比特序列;当M个逻辑信道中的第一部分逻辑信道与第一小区组关联和第二部分逻辑信道与第二小区组关联,第一部分逻辑信道包括主逻辑信道时,若K2=0,则:终端设备使用主逻辑信道进行数据传输,或者终端设备使用主逻辑信道和第二小区组中的第四逻辑信道进行数据传输,第主逻辑信道和第四逻辑信道传输的数据不重复,或者终端设备忽略指示信息或比特序列。
如此,通过比特序列中M个比特均为零来指示一些操作,从而增加了比特序列所指示的内容的多样性。
在一种可能的设计中,该方法还包括:若K2>P-1,则:终端设备使用K2个逻辑信道中的P-1个逻辑信道和主逻辑信道进行数据传输,P-1个逻辑信道和主逻辑信道传输的数据重复。
在一种可能的设计中,M个逻辑信道基于M个逻辑信道所关联的小区组的标识ID和M个逻辑信道的ID排序,包括:M个逻辑信道是将每个小区组所关联的逻辑信道的ID升序或降序排序;其中,ID大的小区组所关联的逻辑信道排序在前或者ID小的小区组所关联逻辑信道排序在前;或者,M个逻辑信道是将M个逻辑信道按照M个逻辑信道分别对应的值升序或降序排序;M个逻辑信道中包括第一逻辑信道,第一逻辑信道对应的值是根据第一逻辑信道所属的小区组的ID、第一逻辑信道的ID以及M个逻辑信道所属的小区组所包括的最大逻辑信道数目得到的。
在一种可能的设计中,指示信息还包括无线承载在配置有重复传输功能的至少一个无线承载中按照至少一个无线承载的标识升序或降序后的位置索引。
第二方面,本申请实施例提供一种数据传输方法,该方法可以应用于终端设备,或者也可以应用于终端设备内部的芯片。以该方法应用于终端设备为例,在该方法中,终端设备从网络设备接收指示信息,指示信息包括比特序列,比特序列中多个比特的值用于指示无线承载的多种传输模式中的一种传输模式,无线承载配置有复制传输功能,多种传输模式中的每一种传输模式包括无线承载关联的M个逻辑信道的使用状态;比特序列中的比特数目小于M,M为大于或等于2的整数;终端设备根据指示信息,使用无线承载关联的至少一个逻辑信道进行数据传输。
如此,通过比特序列中多个比特的值来指示无线承载的传输模式,由于比特序列中的比特数目可以小于M,从而可以使用较少的比特来指示M个逻辑信道的使用状态,能够有 效节省资源开销。
在一种可能的设计中,无线承载关联的逻辑信道包括M个逻辑信道和主逻辑信道;多种传输模式包括以下任意多项:
传输模式1,主逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;
传输模式2,M个逻辑信道中第1个逻辑信道和主逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;第1个逻辑信道和主逻辑信道传输的数据重复;
传输模式3,M个逻辑信道中第2个逻辑信道和主逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;第2个辑信道和主逻辑信道传输的数据重复;
传输模式4,M个逻辑信道中第3个逻辑信道和主逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;第3个逻辑信道和主逻辑信道传输的数据重复;
M个逻辑信道基于M个逻辑信道所属的小区组的标识ID和M个逻辑信道的ID排序。
在一种可能的设计中,M个逻辑信道中第1个逻辑信道和第2个逻辑信道关联第一小区组,第3个逻辑信道和第4个逻辑信道关联第二小区组;M个逻辑信道基于M个逻辑信道所关联的小区组的标识ID和M个逻辑信道的ID排序;无线承载的多种传输模式包括以下任意多项:
传输模式1,第1个逻辑信道和第2个逻辑信道的使用状态为激活使用状态,无线承载关联中其它逻辑信道的使用状态为去激活使用状态;第1个逻辑信道和第2个逻辑信道传输的数据重复;
传输模式2,第3个逻辑信道和第4个逻辑信道的使用状态为去激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;第3个逻辑信道和第4个逻辑信道传输的数据相同;
传输模式3,第1个逻辑信道和第3个逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;第1个逻辑信道和第3个逻辑信道传输的数据重复;
传输模式4,第1个逻辑信道和第3个逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;第1个逻辑信道和第3个逻辑信道传输的数据不重复;
传输模式5,第1个逻辑信道或第2个逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;
传输模式6,第3个逻辑信道或第4个逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态。
在一种可能的设计中,M个逻辑信道基于M个逻辑信道所关联的小区组的标识ID和M个逻辑信道的ID排序,包括:M个逻辑信道是将每个小区组所关联的逻辑信道的ID升序或降序排序;其中,ID大的小区组所关联的逻辑信道排序在前或者ID小的小区组所关联逻辑信道排序在前;或者,M个逻辑信道是将M个逻辑信道按照M个逻辑信道分别对应的值升序或降序排序;M个逻辑信道中包括第一逻辑信道,第一逻辑信道对应的值是根据第一逻 辑信道所属的小区组的ID、第一逻辑信道的ID以及M个逻辑信道所属的小区组所包括的最大逻辑信道数目得到的。
第三方面,本申请实施例提供一种数据传输方法,该方法可以应用于终端设备,或者也可以应用于终端设备内部的芯片。以该方法应用于终端设备为例,在该方法中,终端设备从网络设备接收指示信息,指示信息包括比特序列,比特序列中多个比特的值用于指示无线承载关联的M个逻辑信道的使用状态,无线承载配置有复制传输功能,M为大于或等于2的整数;终端设备根据指示信息,确定M个逻辑信道的使用状态;其中,无线承载的逻辑信道分别关联多个小区组,多个小区组中包括第一小区组,第一小区组由网络设备配置的;M个逻辑信道关联第一小区组。
采用上述方法,网络设备可以通过指示信息控制其自身所配置的逻辑信道的使用状态,不进行跨网络设备控制,从而能够避免跨网络设备控制带来的复杂度。
第四方面,本申请实施例提供一种装置,该装置可以是终端设备,或者也可以是设置在终端设备中的芯片。该装置具有实现上述第一方面至第三方面的各种可能的设计的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第五方面,本申请实施例一种装置,包括处理器,处理器用于执行存储在存储器上的指令,当指令被执行时,使得该装置执行如上述第一方面至第三方面的任一种可能的设计中的方法。
第六方面,本申请实施例还提供一种计算机可读存储介质,包括指令,当指令被执行时,实现上述各方面或各方面的任一种可能的设计中的方法。
第七方面,本申请实施例还提供一种计算机程序产品,包括计算机程序或指令,当计算机程序或指令被执行时,实现上述各方面或各方面的任一种可能的设计中的方法。
附图说明
图1为本申请实施例适用的无线通信系统架构图;
图2a为DC场景下实现PDCP层的重复传输功能涉及的网络架构;
图2b为CA场景下实现PDCP层的重复传输功能所涉及的网络架构;
图3a为CA场景激活和去激活重复传输功能示意;
图3b为无线承载配置多个逻辑通道示意;
图4a为MAC CE的载荷的格式示意;
图4b为无线承载的位置索引和比特序列示意;
图5为本申请实施例提供的数据传输方法对应的流程示意图;
图6a为本申请实施例提供的一个示例图;
图6b为本申请实施例提供的又一个示例图;
图7a为本申请实施例提供的又一个示例图;
图7b为本申请实施例提供的又一个示例图;
图8为本申请实施例提供的数据传输方法对应的流程示意图;
图9a为本申请实施例提供的又一个示例图;
图9b为本申请实施例提供的又一个示例图;
图10为本申请实施例中所涉及的装置的可能的示例性框图;
图11为本申请实施例提供的一种装置的结构示意图;
图12为本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端设备:是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、移动台和远方站等,本申请的实施例对终端设备所采用的具体技术、设备形态以及名称不做限定。
(2)网络设备:例如包括接入网(access network,AN)设备。接入网设备例如基站,可以是指接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空中接口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the fifth generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),或者也可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),或者可以是统一接入回传(integrated access backhaul,IAB)系统中的节点,本申请实施例并不限定。
(3)DC:也就是终端设备同时连接两个基站。终端设备连接的两个基站可以是同一无线接入技术下的基站,例如都是LTE通信系统中的基站或都是5G通信系统中的基站,或者终端设备连接的两个基站也可以是不同的无线接入技术下的基站,例如一个是LTE通信系统中的基站,另一个是5G通信系统中的基站。
(4)CA:CA技术可以将多个成员载波(component carrier,CC)聚合在一起为一个终端设备提供服务,实现更大的传输带宽,有效提高了上下行传输速率。
(5)逻辑信道与小区关联,或者说逻辑信道与载波关联,包括而不限定为,如果在逻辑信道的配置中指示了某些小区允许使用,则表示该逻辑信道中传输的数据可以在这些小区上传输,或者这些小区上的资源可以分配给该逻辑信道,此时可以称为逻辑信道与这些小区关联。进一步的,逻辑信道中传输的数据不在与逻辑信道所关联的小区之外的小区上传输。在PDCP层复制的数据包对应的逻辑信道可以与小区具有关联关系。在一些场景 中,如果没有配置小区关联关系,就说明该逻辑信道中传输的数据可以在任意小区上进行传输。
例如,可以为逻辑信道配置一个参数,例如称为参数A,通过参数A的取值来指示不同的小区,表示该逻辑信道中传输的数据只能在参数A指定的小区上进行传输。例如为逻辑信道1配置了参数A,参数A指示小区1和2,那么就表明该逻辑信道,中的数据只能在参数小区1和2上传输。这样,逻辑信道1和小区1以及小区2就可以称为是具有关联关系,也可以说是绑定关系或者映射关系。
(6)无线承载:终端设备和网络设备之间通过建立至少一个无线承载(radio bearer,RB)来传输数据。无线承载可以分为用于传输信令数据的信令无线承载(signalling radio bearer,SRB)和用于传输业务数据的数据无线承载(data radio bearer,DRB),同一无线承载的一组功能实体集合包括一个PDCP实体,该PDCP实体对应的至少两个RLC实体,至少两个RLC实体对应的至少一个MAC实体,至少一个MAC实体对应的至少一个物理层(physical,PHY)实体。
(7)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一逻辑信道和第二逻辑信道,只是为了区分不同的逻辑信道,并不是表示这两种逻辑信道的优先级或者重要程度等的不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例涉及的技术特征。
PDCP层的重复传输,通常指将无线承载的数据包在PDCP层复制成多个相同的包(也就是重复包),然后这两个数据包分别递交给多个不同的RLC实体进行传输,进而通过不同的逻辑信道传输到MAC层。其中,逻辑信道是RLC层到MAC层之间的信道。需要注意的是,通常所说的重传是指重新传输(retransmission),而本申请实施例中的重复传输(duplication transmission)并不是重新传输。重新发送是指同一个数据包发送失败后的再次发送,或者是同一个数据包的连续多次发送,而重复传输是将一个数据包复制两个数据包,分别放到两个逻辑信道上传输,这里的“重复”,也可以理解为“复制”。
在图1所示的无线通信系统架构图中,对于发送端和接收端之间的一个无线承载,发送端上由于同一PDCP实体对应至少两个RLC实体,每个RLC实体分别对应一条逻辑信道来发送数据。相应地,接收端上同一PDCP实体对应至少两个RLC实体,每个RLC实体对应一条逻辑信道来接收数据。因此,发送端和接收端之间这个无线承载上包含至少两个逻辑信道。其中,发送端可以为终端设备,接收端可以为网络设备;或者,接收端可以为终端设备,发送端可以为网络设备。
图1所示的发送端和接收端分别包含同一PDCP实体以及所述同一PDCP实体对应的 第一RLC实体和所述同一PDCP实体对应的第二RLC实体,其中,第一RLC实体对应第一逻辑信道,第二RLC实体对应第二逻辑信道。发送端在第一逻辑信道对应的小区1b或小区组1向接收端发送第一逻辑信道上的数据,接收端在第一逻辑信道对应的小区1b或小区组1接收发送端发送的第一逻辑信道的数据。发送端在第二逻辑信道对应的小区2b或小区组2向接收端发送第二逻辑信道的数据,接收端在第二逻辑信道对应的小区2b或小区组2接收第二逻辑信道上的数据。在重复模式下,在发送端的第二RLC实体和发送端的第一RLC实体上对来自同一PDCP实体的数据进行重复传输,从而可以提高发送端发送数据的可靠性。需要说明的是,图1在是以发送端和接收端分别对应两个小区组为例,在其它可能的情形中,发送端和接收端也可以分别对应一个小区组,具体不做限定。
下面针对DC场景和CA场景,分别介绍PDCP层的传输功能如何实现。
参见图2a,示例性示出了DC场景下实现PDCP层的重复传输功能涉及的网络架构。对于网络设备来讲,DC场景涉及到主网络设备和辅网络设备,则主网络设备针对该无线承载,包括一个PDCP实体、一个RLC实体和一个MAC实体,辅网络设备针对该无线承载,包括一个RLC实体和一个MAC实体。对于终端设备来讲,终端设备针对该无线承载,包括一个PDCP实体、两个RLC实体和两个MAC实体。其中,PDCP实体与PDCP层可理解为同一概念,同理,RLC实体与RLC层可理解为同一概念,MAC实体与MAC层可理解为同一概念。对于一个DRB,主网络设备在PDCP实体之上还可以有业务数据适配协议(service data adaptation protocol,SDAP)实体,终端设备在PDCP实体之上还可以有SDAP实体。
在DC场景下,一个终端设备同时连接两个网络设备,也就是主网络设备和辅网络设备,如果为某个无线承载配置了PDCP层的重复传输功能,那么在PDCP层经过复制的两个数据包将被传输给不同的两个RLC实体,并通过不同的逻辑信道传输给不同的MAC实体,最终形成两个MAC PDU在不同的载波上进行传输。这个过程对于网络设备和终端设备来说都是一样的,不同的是,对于网络设备来说,主网络设备中的PDCP层会将经过复制的两个数据包传输给不同的两个RLC实体,这两个RLC实体分别位于主网络设备和辅网络设备中,之后,主网络设备中的RLC实体将接收的数据包传输给主网络设备中的MAC实体,辅网络设备中的RLC实体将接收的数据包传输给辅网络设备中的MAC实体,这两个MAC实体会通过各自的载波传输数据包。而对于终端设备来说,两个RLC实体和两个MAC实体都位于该终端设备中,其他过程都是一样的。
示例性地,在DC场景下,发送端和接收端可以分别对应两个小区组,当网络设备作为发送端时,其对应的两个小区组分别为主小区组(master cell group,MCG)和辅小区组(secondary cell group,SCG),其中,主小区组由主网络设备配置,辅小区组由辅网络设备配置。
参见图2b,为CA场景下实现PDCP层的重复传输功能所涉及的网络架构。在CA场景下,终端设备连接到一个网络设备,网络设备和终端设备针对一个无线承载的网络架构都如图2b所示,也就是,网络设备和终端设备针对该无线承载,都包括一个PDCP实体、两个RLC实体和一个MAC实体。示例性地,在CA场景下,发送端和接收端可以分别对应一个小区组。
在CA场景中,一个终端设备连接一个网络设备,同一个网络设备有多于一个载波为该终端设备服务。假设某个无线承载配置了PDCP层的重复传输功能,那么在PDCP层经 过复制的两个数据包将被传输给不同的两个RLC实体,并由这两个RLC实体通过不同的逻辑信道传输给同一个MAC实体。这时候,由于两个数据包传输到了同一个MAC实体中,MAC实体会将这两个数据包放到一个MAC PDU中传输,因此,为了使得这两个数据包通过两个MAC PDU分别传输,可以为逻辑信道配置一个参数,例如称为参数A,通过参数A的取值来指示不同的小区,从而保证这两个数据包最终能形成两个MAC PDU在不同的小区上传输。
例如为某个逻辑信道配置了参数A,那么就表明该逻辑信道对应的RLC实体中的数据只能在参数A所指示的小区上传输。这样,如果为互为重复的两个逻辑信道配置的参数A指示的是不同的小区,那么最终互为重复的两个数据包就会在不同的小区上传输,能够保证可靠性。
在通信系统中,为无线承载配置PDCP层的重复传输功能后,可以激活或去激活为无线承载配置的PDCP层的重复传输功能。具体来说,在DC场景下,当为一个无线承载配置DC分流承载(split bearer)时,终端设备可以通过终端设备侧的两个逻辑信道分别向主网络设备和辅网络设备传输不同的数据包。当为一个无线承载配置的PDCP层的重复传输功能被激活以后,PDCP层对数据包复制并通过两个逻辑信道传输;当为一个无线承载配置的PDCP层的重复传输功能被去激活以后,则回退到DC split bearer操作。
在CA场景下,当为一个无线承载配置的PDCP层的重复传输功能被去激活(或者称为,PDCP层的重复被去激活,或者称为无线承载的重复传输功能被去激活)以后,该无线承载中的逻辑信道和小区之间的关联关系也将不再适用。目前,PDCP层的重复只限于一个无线承载通过两个逻辑信道来传输在PDCP层被复制的数据包(也俗称,两条腿(leg)的重复传输),进一步地,还可以配置其中一条腿为主腿(primary leg),比如逻辑信道1所在的腿为主腿,本申请实施例中主腿中的逻辑信道可以称为主逻辑信道。可参考图3a,假设PDCP层的重复传输功能激活(或者称为,PDCP层的重复被激活)时,来自逻辑信道1的数据只能在小区1或者小区2上传输(逻辑信道1关联小区1和小区2),来自逻辑信道2的数据只能在小区3上传输(逻辑信道2关联小区3)。在某个时刻,PDCP层的重复传输功能被去激活,则只剩下主逻辑信道1还在工作,此时为了提高传输容量,逻辑信道1所配置的小区绑定关系不再适用,即允许逻辑信道1使用终端设备的所有可用的小区。这里所述的逻辑信道使用某个小区,可以是指逻辑信道中传输的数据可以在这个小区上传输。
目前,当网络设备通过无线资源控制(radio resource control,RRC)信令为一个数据无线承载配置PDCP层的重复传输功能时,可以指示数据无线承载的PDCP层的重复传输功能的初始状态是激活还是去激活。进一步地,网络设备还可以通过MAC控制元素(control element,CE)配置一个数据无线承载的PDCP层的重复传输功能的激活/去激活。如图4a所示,为MAC CE的载荷的格式,该MAC CE具有固定大小,包含8个字段。当一个MAC实体收到该MAC CE后,其中的Di表示配置了PDCP重复传输功能且有RLC实体关联到当前MAC实体的DRB中按照DRB ID升序排列后的第i个DRB的PDCP层的重复传输功能的激活/去激活,其中,Di=0表示激活该DRB的PDCP层的重复传输功能,Di=1表示去激活该DRB的PDCP层的重复传输功能。
然而,由于通信系统后续可能会引入多个逻辑信道的PDCP层的重复,也就是一个无线承载通过多个逻辑信道来传输在PDCP层被复制的数据包,例如可能通过三个或四个逻 辑信道来传输在PDCP层被复制的数据包。参见图3b,其中(a)示意出了在CA场景下配置三个逻辑信道,(b)示意出了在DC+CA场景下配置四个逻辑信道。此种情形下,如何使用逻辑信道进行数据传输,仍需进一步的研究。
基于此,本申请实施例提供一种数据传输方法,用于在为无线承载配置多个逻辑信道的情形下,实现终端设备基于网络设备的指示来使用无线承载关联的至少一个逻辑信道进行数据传输。
本申请实施例提供的数据传输方法可以包括两种可能的方案,分别为方案一和方案二。
在方案一中,无线承载关联的M个逻辑信道可以基于该M个逻辑信道所关联的小区组的ID和该M个逻辑信道的ID排序,进而通过指示信息包括的比特序列中第i个比特来指示M个逻辑信道中第i个逻辑信道的使用状态,使得终端设备可以基于指示信息使用无线承载关联的至少一个逻辑信道进行数据传输。
在方案二中,通过指示信息包括的比特序列中多个比特的值来指示无线承载的传输模式,无线承载的每一种传输模式中可以包括无线承载关联的M个逻辑信道的使用状态,从而使得终端设备可以基于指示信息使用无线承载关联的至少一个逻辑信道进行数据传输,且比特序列中的比特数目可以小于M,也就是说,可以使用较少的比特来指示M个逻辑信道的使用状态,能够有效节省资源开销。
在本申请实施例中,无线承载可以是DRB,也可以是SRB,或者包括DRB和SRB;无线承载使用逻辑信道进行数据传输,是指该无线承载或关联的PDCP实体使用该逻辑信道关联的RLC实体以及该逻辑信道进行数据处理和传输,即使用该逻辑信道关联的腿进行数据传输。
实施例一
基于方案一,图5为本申请实施例提供的数据传输方法对应的流程示意图,如图5所示,包括:
步骤501,终端设备从网络设备接收指示信息,该指示信息包括比特序列,该比特序列中第i个比特的值用于指示无线承载关联的M个逻辑信道中第i个逻辑信道的使用状态,该无线承载配置有重复传输功能,i=1,2,……,M,M可以为大于或等于2的整数。本申请实施例所涉及的无线承载关联的逻辑信道也可以称为无线承载的逻辑信道或无线承载中的逻辑信道,均表达同一含义。
步骤502,终端设备根据指示信息,使用无线承载关联的至少一个逻辑信道进行数据传输。
本申请实施例中,比特序列中的比特数目为N,N大于等于M。若N大于M,在一个示例中,终端设备可以忽略比特序列中的第M+1至第N个比特,即终端设备忽略比特序列最后面的N-M个比特;在又一个示例中,终端也可以忽略比特序列前面的N-M个比特,此时,上述比特序列中的第i个比特可以理解为比特序列中除前面N-M个比特之后的第i个比特。
本申请实施例中,第i个逻辑信道的使用状态可以为激活使用状态或去激活使用状态;其中,若第i个逻辑信道的使用状态为激活使用状态,则第i个逻辑信道被允许用于重复数据传输;或者,若第i个逻辑信道的使用状态为去激活使用状态,则第i个逻辑信道被禁止用于重复数据传输。其中,第i个逻辑信道被禁止用于重复数据传输,可以理解为: 第i个逻辑信道被禁止传输数据,或者第i个逻辑信道可以用于传输非重复数据,而不能用于传输重复数据。其中,第i个比特的值用于指示无线承载关联的M个逻辑信道中第i个逻辑信道的使用状态,示例性可以为:若第i个比特的值为0,则指示第i个逻辑信道为去激活使用状态,若第i个比特的值为1,则指示第i个逻辑信道为激活使用状态。
本申请实施例中,M个逻辑信道可以基于M个逻辑信道所关联的小区组的标识ID和M个逻辑信道的ID排序,具体实现方式有多种。
一种可能的实现方式为,M个逻辑信道是将每个小区组所关联的逻辑信道的ID升序或降序排序,其中,ID大的小区组所关联的逻辑信道排序在前,ID小的小区组所关联逻辑信道排序在后;或者,ID小的小区组所关联逻辑信道排序在前,ID大的小区组所关联的逻辑信道排序在后。也就是说,先对属于同一小区组的逻辑信道按照逻辑信道的ID的升序/降序排序,再对排序后的多组逻辑信道按照小区组的ID升序/降序进行排序。当所述M个逻辑信道关联到一个小区组时,M个逻辑信道按照逻辑信道的ID升序或降序排序。
下面举个例子进行说明:M个逻辑信道包括LCH1、LCH2、LCH3、LCH4,其中,LCH1和LCH3关联小区组1,LCH2和LCH4关联小区组2。其中,LCH1可以理解为ID为“1”的逻辑信道,LCH1可以理解为ID为“2”的逻辑信道,LCH3和LCH4同理。小区组1可以理解为ID为“1”的小区组,小区组2可以理解为ID为“2”的小区组。当然,小区组1的ID也可以为“0”,小区组2的ID也可以为“1”。
比如,对小区组1关联的逻辑信道进行升序排序,得到:LCH1、LCH3;对小区组2关联的逻辑信道进行升序排序,得到:LCH2、LCH4;再按照小区组的ID的升序排序,此时可得到M个逻辑信道为LCH1,LCH3,LCH2,LCH4。
又比如,对小区组1关联的逻辑信道进行降序排序,得到:LCH3、LCH1;对小区组2关联的逻辑信道进行降序排序,得到:LCH4、LCH2;再按照小区组的ID的升序排序,此时可得到M个逻辑信道为LCH3、LCH1、LCH4、LCH2。
又一种可能的实现方式为,M个逻辑信道是将M个逻辑信道按照M个逻辑信道分别对应的值升序或降序排序;第i个逻辑信道对应的值是根据第i个逻辑信道所关联的小区组的ID、第i个逻辑信道的ID以及第i个逻辑信道所关联的小区组所包括的最大逻辑信道数目得到的。示例性地,第i个逻辑信道对应的值=cell group ID*maxLCH+LCH ID,其中,cell group ID为第i个逻辑信道所关联的小区组的ID,LCH ID为第i个逻辑信道的ID,maxLCH为第i个逻辑信道所关联的小区组所包括的最大逻辑信道数目。当所述M个逻辑信道关联到一个小区组时,每个逻辑信道对应的值可以为该逻辑信道的ID。
下面举个例子进行说明:M个逻辑信道包括LCH1、LCH2、LCH3,其中,LCH1和LCH3关联小区组1,LCH2关联小区组2。小区组1和小区组2包括的最大逻辑信道数目均为32。小区组1的ID为“0”,小区组2的ID为“1”。则计算得到:LCH1对应的值=0*32+1=1,LCH2对应的值=1*32+2=34,LCH3对应的值=0*32+3=3,如此,若按照M个逻辑信道分别对应的值升序排序,可得到M个逻辑信道为LCH1,LCH3,LCH2,若按照M个逻辑信道分别对应的值降序排序,可得到M个逻辑信道为LCH2,LCH3,LCH1。
需要说明的是:(1)上述示例中均是以M个逻辑信道关联的小区组为2个为例进行描述,若M个逻辑信道关联的小区组为1个或2个以上,也可以适用于上述方式,不再赘述。(2)在其它可能的实施例中,也可能存在其它基于M个逻辑信道所关联的小区组的标识ID和M个逻辑信道的ID排序的实现方式,本申请对此不做限定。
本申请实施例中,无线承载关联的逻辑信道的个数可以等于M,或者也可以大于M。下面分别针对这两种情形,描述终端设备根据指示信息,使用无线承载关联的至少一个逻辑信道进行数据传输的具体实现。
情形一:无线承载关联的逻辑信道的个数等于M,也就是说,无线承载关联的逻辑信道即为上述M个逻辑信道。
在一种可能的实现方式中,终端设备可以根据M个逻辑信道的使用状态,使用M个逻辑信道中使用状态为激活使用状态的逻辑信道进行数据传输。也就是说,若指示信息指示M个逻辑信道中的某一逻辑信道为激活使用状态,则终端设备即可使用该逻辑信道进行数据传输;若指示信息指示M个逻辑信道中的某一逻辑信道为去激活使用状态,则终端设备不使用该逻辑信道进行数据传输。
在一个示例中,若M个比特指示M个逻辑信道中K1个逻辑信道的使用状态为激活使用状态,0<K1≤P,则终端设备可以使用K1个逻辑信道进行数据传输,其中,当K1>1时,K1个逻辑信道传输的数据重复,即该无线承载利用这K1个逻辑信道进行重复数据传输,P为无线承载关联的逻辑信道中处于激活使用状态的逻辑信道的最大数量。其中,P的取值可以为预定义的,或者,也可以为网络设备配置的,比如网络设备可以通过RRC信令或系统消息块(system information block,SIB)配置,或者可以由终端设备从网络设备接收指示信息进行指示,即终端设备从网络设备接收指示信息除了包括所述比特序列,还可以包括字段用于指示P的取值。示例性地,网络设备可以针对网络设备与终端设备之间的每个无线承载配置一个P值,也就是说,每个无线承载专有一个P值,此时,每个无线承载中处于激活使用状态的逻辑信道的最大数量可能是不同的;或者,网络设备也可以针对终端设备配置一个P值,此时,网络设备与终端设备之间的每个无线承载中处于激活使用状态的逻辑信道的最大数量是相同的;或者,网络设备发送的指示信息中包括针对所述无线承载的P值,则网络设备每次指示该无线承载处于激活使用状态的逻辑信道的最大数量可以是相同的或不同的。比如,M=3,P=2,则当K1=1时,即处于激活使用状态的逻辑信道为1个,比如逻辑信道1,此时终端设备可以使用逻辑信道1进行数据传输,当K1=2时,即处于激活使用状态的逻辑信道为2个,比如逻辑信道1和逻辑信道2,此时终端设备可以使用逻辑信道1和逻辑信道2进行数据传输。
也就是说,当0<K1≤P时,终端设备可以直接使用指示信息指示的处于激活使用状态的逻辑信道来进行数据传输;若K1的取值不符合上述范围,则终端设备可以不再直接使用指示信息指示的处于激活使用状态的逻辑信道来进行数据传输。
本申请实施例中进一步提供了当K1的取值不符合上述范围时终端设备的实现方式,即为K1=0或K1>P时的实现方式。下面分别展开说明。
(1)K1=0,表明M个比特指示M个逻辑信道的使用状态均为去激活使用状态。
当M个逻辑信道均关联第一小区组(可以理解为前文所描述的CA场景)时,终端设备可以认为无线承载的重复传输功能被去激活,进而可以从M个逻辑信道中选择一个逻辑信道进行数据传输,比如,终端设备随机选择一个逻辑信道或者选择默认逻辑信道进行数据传输,默认逻辑信道可以是这M个逻辑信道中ID最小或最大的逻辑信道,具体不做限定。在其它可能的实施例中,终端设备也可以忽略该指示信息或忽略该比特序列。
当M个逻辑信道中的第一部分逻辑信道与第一小区组关联和第二部分逻辑信道与第二小区组关联(可以理解为前文所描述的DC场景)时,终端设备可以执行以下任一项:1) 回退到split bearer操作,即从第一小区组中选择一个逻辑信道(比如逻辑信道1),以及从第二小区组中选择一个逻辑信道(比如逻辑信道2),并使用逻辑信道1和逻辑信道2进行数据传输,逻辑信道1和逻辑信道2传输的数据不重复。在一个示例中,逻辑信道1可以为第一小区组中逻辑信道的ID最大或者最小的逻辑信道或第一小区组中的任一个逻辑信道,逻辑信道2可以为第二小区组中逻辑信道的ID最大或者最小的逻辑信道或第二小区组中的任一个逻辑信道。在又一个示例中,网络设备可以通过RRC信令预先配置回退到split bearer操作时在第一小区组和第二小区组使用的逻辑信道,即网络设备通过RRC信令配置哪一个逻辑信道作为逻辑信道1以及哪一个逻辑信道作为逻辑信道2;可选的,当该无线承载待传输数据量小于一个网络设备配置的门限时,终端设备可以使用逻辑信道1,或逻辑信道2进行数据传输,或者网络设备通过RRC信令所指示终端设备使用哪一个逻辑信道进行数据传输;可选的,当该无线承载待传输数据量小于一个网络设备配置的门限时,终端设备也可以使用网络设备通过RRC信令所指示的一个小区组中的任一个逻辑信道,或逻辑信道的ID最大或者最小的逻辑信道进行数据传输。2)终端设备可以认为无线承载的重复传输功能被去激活,进而可以从M个逻辑信道中选择一个逻辑信道进行数据传输,比如,终端设备随机选择一个逻辑信道,具体不做限定。在其它可能的实施例中,终端设备也可以忽略该指示信息或忽略比特序列。
(2)K1>P,表明M个比特指示M个逻辑信道中处于激活使用状态的逻辑信道的个数大于P。此种情形下,终端设备可以认为无线承载的重复传输功能被激活,进而从K1个逻辑信道中选择P个逻辑信道进行数据传输,P个逻辑信道传输的数据重复,也就是说,该无线承载使用P个逻辑信道进行重复数据传输。在一个示例中,终端设备可以从K1个逻辑信道中随机选择P个逻辑信道,或者,终端设备可以从K1个逻辑信道中选择对应物理层传输资源的信道质量较好的P个逻辑信道,又或者,终端设备可以从K1个逻辑信道中选择对应的值最大或最小的P个逻辑信道。在其它可能的实施例中,终端设备也可以忽略该指示信息或忽略比特序列。所述物理层传输资源的信道质量可以是逻辑信道对应的允许使用的小区上测量到的参考信号接收强度(reference signal receiving power,RSRP)/参考信号接收质量(reference signal receiving quality,RSRQ)/信干噪比(signal to interference ratio,SINR)的最大值或平均值,具体不做限定。
举个例子,参见图6a,如(a)中所示,网络设备为无线承载1配置了4个逻辑信道,当网络设备发送指示信息包括针对无线承载1的比特序列时,比特序列中的4个比特从前到后分别对应LCH1至LCH4这4个逻辑信道的使用状态,当第1个和第4个比特置为1,表示可以使用LCH1和LCH4进行重复数据传输。如(b)中所示,网络设备为无线承载2配置了3个逻辑信道,当网络设备发送指示信息包括针对无线承载1的比特序列时,比特序列中可以包括3个比特,分别指示3个逻辑信道的使用状态,当第1个和第3个比特置为1,表示可以使用LCH1和LCH3进行重复数据传输。在其它可能的示例中,网络设备也可以统一使用包括4个比特的比特序列,当无线承载配置有3个逻辑信道时,比特序列中的前3个比特可以分别指示3个逻辑信道的使用状态,终端可以不解析最后一个比特或忽略最后一个比特;或者,比特序列中的后3个比特可以分别指示3个逻辑信道的使用状态,终端可以不解析第一个比特或忽略第一个比特。
再举个例子,参见图6b,如(a)所示,网络设备为无线承载1配置了4个逻辑信道,当第1个和第4个比特置为1,表示可以使用LCH1和LCH4进行重复数据传输。如(b) 所示,网络设备为无线承载2配置了3个逻辑信道,当第1个和第3个比特置为1,表示可以使用LCH1和LCH3进行重复数据传输。
需要说明的是,上述示例中所描述的三种情形(即0<K1≤P、K1=0、K1>P)中的方案可以分别单独实施,或者也可以结合实施,本申请实施例对此不做限定。
情形二:无线承载关联的逻辑信道的个数大于M,比如无线承载关联的逻辑信道的个数等于M+1,也就是说,无线承载关联的逻辑信道除包括上述M个逻辑信道外,还可以包括一个主逻辑信道。进一步地,主逻辑信道可以始终处于激活使用状态,而无需网络设备指示其使用状态。
在一种可能的实现方式中,终端设备可以根据M个逻辑信道的使用状态,使用M个逻辑信道中使用状态为激活使用状态的逻辑信道和主逻辑信道进行数据传输。
在一个示例中,若M个比特指示M个逻辑信道中K2个逻辑信道的使用状态为激活使用状态,0<K2≤P-1,则终端设备可以使用K2个逻辑信道进行数据传输,其中,当K2大于1时,K2个逻辑信道传输的数据重复,P为无线承载关联的逻辑信道中处于激活使用状态的逻辑信道的最大数量。比如,M=3,P=2,则当K2=1时,即M个逻辑信道中处于激活使用状态的逻辑信道为1个,比如逻辑信道1,此时终端设备可以使用逻辑信道1和主逻辑信道进行数据传输,逻辑信道1和主逻辑信道传输的数据重复,即终端设备使用逻辑信道1和主逻辑信道进行重复数据传输。
也就是说,当0<K2≤P-1时,终端设备可以直接使用指示信息指示的处于激活使用状态的逻辑信道和主逻辑信道来进行数据传输;若K2的取值不符合上述范围,则终端设备可以不再直接使用指示信息指示的处于激活使用状态的逻辑信道来进行数据传输。
本申请实施例中进一步提供了当K2的取值不符合上述范围时终端设备的实现方式,即为K2=0或K2>P-1时的实现方式。下面分别展开说明。
(1)K2=0,表明M个比特指示M个逻辑信道的使用状态均为去激活使用状态。
当M个逻辑信道均关联第一小区组(可以理解为前文所描述的CA场景)时,终端设备可以认为无线承载的重复传输功能被去激活,终端设备可以使用主逻辑信道进行数据传输。在其它可能的实施例中,终端设备也可以忽略该指示信息或忽略比特序列。
当所述M个逻辑信道中的第一部分逻辑信道与第一小区组关联和第二部分逻辑信道与第二小区组关联(可以理解为前文所描述的DC场景),且主逻辑信道属于第一小区组时,终端设备可以执行以下任一项:1)回退到split bearer操作,即从第一小区组中选择一个逻辑信道(比如逻辑信道1),以及从第二小区组中选择一个逻辑信道(比如逻辑信道2),并使用逻辑信道1和逻辑信道2进行数据传输,逻辑信道1和逻辑信道2传输的数据不重复。在一个示例中,逻辑信道1可以为主逻辑信道或者第一小区组中逻辑信道的ID最大或最小的逻辑信道或者第一小区组中的任一个逻辑信道,逻辑信道2可以为第二小区组中逻辑信道的ID最大或最小的逻辑信道或者第二小区组中的任一个逻辑信道。在又一个示例中,网络设备可以通过RRC信令预先配置回退到split bearer操作时在第一小区组和/或第二小区组使用的逻辑信道,当网络设备通过RRC信令只配置第二小区组使用的逻辑信道,即默认在第一小区组中使用主逻辑信道。可选的,当该无线承载待传输数据量小于一个网络设备配置的门限时,终端设备可以使用逻辑信道1,或逻辑信道2进行数据传输,或者网络设备通过RRC信令所指示终端设备使用哪一个逻辑信道进行数据传输;可选的,当该无线承载待传输数据量小于一个网络设备配置的门限时,终端设备也可以使用网络设 备通过RRC信令所指示的一个小区组中的任一个逻辑信道,或逻辑信道的ID最大或者最小的逻辑信道进行数据传输。2)终端设备可以认为无线承载的重复传输功能被去激活,进而可以使用主逻辑信道进行数据传输。在其它可能的实施例中,可以由网络设备通过RRC信令配置终端执行上述1)或2)。
(2)K2>P,表明M个比特指示M个逻辑信道中处于激活使用状态的逻辑信道的个数大于P-1。此种情形下,终端设备可以认为无线承载的重复传输功能被激活,进而从K2个逻辑信道中选择P-1个逻辑信道,并使用P-1个逻辑信道和主逻辑信道进行数据传输,P-1个逻辑信道和主逻辑信道传输的数据重复,也就是说,使用P-1个逻辑信道和主逻辑信道进行重复数据传输。在一个示例中,终端设备可以从K2个逻辑信道中随机选择P-1个逻辑信道,或者,终端设备可以从K2个逻辑信道中选择对应物理层传输资源的信道质量较好的P-1个逻辑信道,又或者,终端设备可以从K2个逻辑信道中选择对应的值最大或最小的P个逻辑信道。在其它可能的实施例中,终端设备也可以忽略该指示信息或忽略比特序列。
举个例子,参见图7a,如(a)中所示,网络设备为无线承载1配置了4个逻辑信道,其中LCH1为主逻辑信道。当网络设备发送指示信息包括针对无线承载1的比特序列时,比特序列中的4个比特从前到后分别对应LCH1至LCH4这4个逻辑信道的使用状态,当第1个和第4个比特置为1,表示可以使用LCH1和LCH4进行重复数据传输。如(b)中所示,网络设备为无线承载2配置了3个逻辑信道,其中LCH1为主逻辑信道。当网络设备发送指示信息包括针对无线承载1的比特序列时,比特序列中可以包括2个比特,分别指示2个逻辑信道(LCH2和LCH3)的使用状态,当第2个比特置为1,表示可以使用LCH1和LCH3进行重复数据传输。在其它可能的示例中,网络设备也可以统一使用包括3个比特的比特序列,当无线承载配置有3个逻辑信道,其中一个逻辑信道为主逻辑信道时,比特序列中的前2个比特可以分别指示主逻辑信道以外的2个逻辑信道的使用状态,终端可以不解析最后一个比特或忽略最后一个比特;或者,比特序列中的后2个比特可以分别指示主逻辑信道以外的2个逻辑信道的使用状态,终端可以不解析第一个比特或忽略第一个比特。
再举个例子,参见图7b,如(a)所示,网络设备为无线承载1配置了4个逻辑信道,其中LCH1为主逻辑信道。当第1个和第4个比特置为1,表示可以使用LCH1和LCH4进行重复数据传输。如(b)所示,网络设备为无线承载2配置了3个逻辑信道,其中LCH1为主逻辑信道。当第1个和第3个比特置为1,表示可以使用LCH1和LCH3进行重复数据传输。
针对于本申请实施例中的指示信息,下面进行相关说明。
(1)指示信息可以携带在网络设备发送的消息中,或者指示信息本身也可以为网络设备发送的消息,例如,指示信息可以为RRC配置消息或者MAC CE消息。示例性地,若上述无线承载为信令无线承载,则指示信息可以为RRC配置消息,RRC配置消息一方面用于为该无线承载配置重复传输功能,另一方面用于指示无线承载关联的M个逻辑信道的使用状态。若上述无线承载为数据无线承载,则指示信息可以为MAC CE消息,MAC CE消息用于指示无线承载关联的M个逻辑信道的使用状态;可选地,网络设备在向终端设备发送MAC CE消息之前,还可以向终端设备发送RRC配置消息,该RRC配置消息用于为该无线承载配置重复传输功能。需要说明的是,本申请实施例对指示信息的名称以及实现形式并不限定。
(2)在一个示例中,指示信息可以为针对于上述无线承载的指示信息,也就是说,指示信息专用于指示该无线承载关联的M个逻辑信道的使用状态,而不指示其它无线承载关联的逻辑信道的使用状态。在又一个示例中,指示信息也可以为针对多个无线承载的指示信息,也就是说,指示信息中可以包括多个比特序列,每个比特序列对应一个无线承载,用于指示对应的无线承载关联的逻辑信道的状态。
(3)以指示信息可以为针对于上述无线承载的指示信息为例,指示信息中可以包括上述无线承载在配置有重复传输功能的至少一个无线承载中按照所述至少一个无线承载的标识升序或降序后的位置索引,或者指示信息中包括上述无线承载在配置有重复传输功能,且有配置的逻辑信道/RLC实体关联到接收该指示信息的MAC实体的至少一个无线承载中按照所述至少一个无线承载的标识升序或降序后的位置索引。举例来说,网络设备为终端设备配置6个无线承载,其中,有4个无线承载配置有重复传输功能,这4个无线承载分别为无线承载1、无线承载2、无线承载3和无线承载4,如此,按照无线承载的标识升序排序为无线承载1、无线承载2、无线承载3、无线承载4,如此可以使用两个比特来表示某一个无线承载的位置索引,比如“00”为无线承载1的位置索引,“01”为无线承载2的位置索引,“10”为无线承载3的位置索引,“11”为无线承载4的位置索引。当然,也可以用3个比特或4个比特表示某一个无线承载的位置索引,不再赘述。如此,终端设备根据指示信息中所包括的位置索引,可以确定出该指示信息中的比特序列是指示哪一无线承载关联的逻辑信道的状态。采用这种方式,相比于指示信息中直接包括无线承载的ID(通常包括5个比特)来说,可以有效降低指示信息中所包括的比特数量,节省资源开销。
需要说明的是,指示信息中包括无线承载在配置有重复传输功能的至少一个无线承载中按照所述至少一个无线承载的标识升序或降序后的位置索引(下文简单描述为:指示信息中包括无线承载的位置索引),这一方案可以基于图5来实施,也就是说,指示信息中可以包括上述比特序列,还可以包括无线承载在配置有重复传输功能的至少一个无线承载中按照所述至少一个无线承载的标识升序或降序后的位置索引。在一个示例中,无线承载的位置索引和比特序列可以如图4b所示。或者,也可以单独实施,也就是说,指示信息中可以包括无线承载的位置索引,而至于指示信息中是否包括上述所描述的比特序列,具体不做限定。
实施例二
基于方案二,图8为本申请实施例提供的数据传输方法对应的流程示意图,如图8所示,包括:
步骤801,终端设备从网络设备接收指示信息,该指示信息包括比特序列,比特序列中多个比特的值用于指示无线承载的多种传输模式中的一种传输模式,无线承载配置有复制传输功能,多种传输模式中的每一种传输模式包括无线承载关联的M个逻辑信道的使用状态;比特序列中的比特数目小于M,M为大于或等于2的整数;
步骤802,终端设备根据指示信息,使用无线承载关联的至少一个逻辑信道进行数据传输。
其中,比特序列中的比特数目可以小于M,也就是说,在本申请实施例中通过使用较少个数的比特来指示M个逻辑信道的使用状态,从而有效节省资源开销。
本申请实施例中,无线承载关联的逻辑信道的个数可以等于M,或者也可以大于M。 下面分别针对这两种情形,描述终端设备根据指示信息,使用无线承载关联的至少一个逻辑信道进行数据传输的具体实现。
情形一:无线承载关联的逻辑信道的个数大于M,比如无线承载关联的逻辑信道的个数等于M+1,也就是说,无线承载关联的逻辑信道除包括上述M个逻辑信道外,还可以包括一个主逻辑信道。进一步地,主逻辑信道可以始终处于激活使用状态。
在一种可能的实现方式中,每一种传输模式中处于激活使用状态的逻辑信道数目可以小于或等于2。此种情形下,比如无线承载的多种传输模式包括以下传输模式1至传输模式4中的任意多项。
其中,传输模式1,主逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态。相应地,当指示信息指示无线承载的传输模式为传输模式1时,若M个逻辑信道均关联第一小区组,则终端设备可以认为无线承载的重复传输功能被去激活,并可以使用主逻辑信道进行数据传输;若M个逻辑信道中的第一部分逻辑信道与第一小区组关联和第二部分逻辑信道与第二小区组关联,则且主逻辑信道属于第一小区组时,终端设备可以执行以下任一项:1)回退到split bearer操作,即从第一小区组中选择一个逻辑信道(比如逻辑信道1),以及从第二小区组中选择一个逻辑信道(比如逻辑信道2),并使用逻辑信道1和逻辑信道2进行数据传输,逻辑信道1和逻辑信道2传输的数据不重复。在一个示例中,逻辑信道1可以为主逻辑信道或者第一小区组中逻辑信道的ID最大或最小的逻辑信道或者第一小区组中的任一个逻辑信道,逻辑信道2可以为第二小区组中逻辑信道的ID最大或最小的逻辑信道或者第二小区组中的任一个逻辑信道。在又一个示例中,网络设备可以通过RRC信令预先配置回退到split bearer操作时使用的逻辑信道。2)终端设备可以认为无线承载的重复传输功能被去激活,进而可以使用主逻辑信道进行数据传输。在其它可能的实施例中,可以由网络设备通过RRC信令配置终端执行上述1)或2)。
传输模式2,M个逻辑信道中第1个逻辑信道和主逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;第1个逻辑信道和主逻辑信道传输的数据重复。相应地,当指示信息指示无线承载的传输模式为传输模式2时,终端设备可以使用第1个逻辑信道和主逻辑信道进行重复数据传输。
传输模式3,M个逻辑信道中第2个逻辑信道和主逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;第2个辑信道和主逻辑信道传输的数据重复。相应地,当指示信息指示无线承载的传输模式为传输模式3时,终端设备可以使用第2个逻辑信道和主逻辑信道进行重复数据传输。
传输模式4,M个逻辑信道中第3个逻辑信道和主逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;第3个逻辑信道和主逻辑信道传输的数据重复;相应地,当指示信息指示无线承载的传输模式为传输模式4时,终端设备可以使用第3个逻辑信道和主逻辑信道进行重复数据传输。
其中,M个逻辑信道基于M个逻辑信道所属的小区组的标识ID和M个逻辑信道的ID排序,具体实现可以参见实施例一中的描述。
需要说明的是,上述所描述的传输模式1至传输模式4仅为一种示例,具体实施中,还可以设置其他可能的传输模式,具体不做限定。
下面结合一个具体的例子进行说明。
参见图9a所示,如(a)中所示,网络设备为无线承载1配置了4个逻辑信道,其中LCH1 为主逻辑信道。当网络设备发送指示信息包括针对无线承载1的比特序列时,比特序列中的2个比特的值指示无线承载1的传输模式。其中,00(即为传输模式1)表示LCH1的使用状态为激活使用状态,无线承载1关联的其它逻辑信道的使用状态为去激活使用状态,终端设备可以只使用LCH1进行数据传输;01(即为传输模式2)表示LCH1和LCH2的使用状态为激活使用状态,无线承载1关联的其它逻辑信道的使用状态为去激活使用状态,终端设备可以使用LCH1和LCH2进行重复数据传输;10(即为传输模式3)表示LCH1和LCH3的使用状态为激活使用状态,无线承载1关联的其它逻辑信道的使用状态为去激活使用状态,终端设备可以使用LCH1和LCH3进行重复数据传输;11(即为传输模式4)表示LCH1和LCH4的使用状态为激活使用状态,无线承载1关联的其它逻辑信道的使用状态为去激活使用状态,终端设备可以使用LCH1和LCH4进行重复数据传输。
如(b)中所示,网络设备为无线承载1配置了4个逻辑信道,其中LCH1为主逻辑信道。当网络设备发送指示信息包括针对无线承载1的比特序列时,比特序列中的2个比特的值指示无线承载1的传输模式。其中,00(即为传输模式1)表示LCH1的使用状态为激活使用状态,无线承载1关联的其它逻辑信道的使用状态为去激活使用状态,终端设备可以只使用LCH1进行数据传输或者回退到split beaer;01(即为传输模式2)表示LCH1和LCH3的使用状态为激活使用状态,无线承载1关联的其它逻辑信道的使用状态为去激活使用状态,终端设备可以使用LCH1和LCH3进行重复数据传输;10(即为传输模式3)表示LCH1和LCH2的使用状态为激活使用状态,无线承载1关联的其它逻辑信道的使用状态为去激活使用状态,终端设备可以使用LCH1和LCH2进行重复数据传输;11(即为传输模式4)表示LCH1和LCH4的使用状态为激活使用状态,无线承载1关联的其它逻辑信道的使用状态为去激活使用状态,终端设备可以使用LCH1和LCH4进行重复数据传输。
可以理解地,如果为无线承载1或无线承载2配置了小于4个逻辑信道,如配置了3个逻辑信道,则当比特序列中的2比特指示“11”时,终端设备可以忽略该指示信息或比特序列。
情形二:无线承载关联的逻辑信道的个数等于M,也就是说,无线承载关联的逻辑信道即为上述M个逻辑信道。
在一个示例中,M个逻辑信道中的第一部分逻辑信道关联第一小区组,第二部分逻辑信道关联第二小区组,其中,第一小区组和第二小区组关联的逻辑信道数目均可以小于或等于2。
举个例子,M个逻辑信道中第1个逻辑信道和第2个逻辑信道关联第一小区组(可以为主小区组),第3个逻辑信道和第4个逻辑信道关联第二小区组(可以为辅小区组);其中,M个逻辑信道基于M个逻辑信道所属的小区组的标识ID和M个逻辑信道的ID排序,具体实现可以参见实施例一中的描述。
此时,无线承载的多种传输模式包括以下传输模式1至传输模式6中的任意多项。
其中,传输模式1,第1个逻辑信道和第2个逻辑信道的使用状态为激活使用状态,无线承载关联中其它逻辑信道的使用状态为去激活使用状态;第1个逻辑信道和第2个逻辑信道传输的数据相同。相应地,当指示信息指示无线承载的传输模式为传输模式1时,终端设备可以使用第1个逻辑信道和第2个逻辑信道进行重复数据传输。
传输模式2,第3个逻辑信道和第4个逻辑信道的使用状态为去激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;第3个逻辑信道和第4个逻辑信道传输的数据相同。相应地,当指示信息指示无线承载的传输模式为传输模式2时,终端设备 可以使用第3个逻辑信道和第4个逻辑信道进行重复数据传输。
传输模式3,第1个逻辑信道和第3个逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;第1个逻辑信道和第3个逻辑信道传输的数据重复。相应地,当指示信息指示无线承载的传输模式为传输模式3时,终端设备可以使用第1个逻辑信道和第3个逻辑信道进行重复数据传输。
传输模式4,第1个逻辑信道和第3个逻辑信道的使用状态为激活使用状态,无线承载关联的其它逻辑信道的使用状态为去激活使用状态;第1个逻辑信道和第3个逻辑信道传输的数据不重复。相应地,当指示信息指示无线承载的传输模式为传输模式4时,终端设备可以使用第1个逻辑信道和第3个逻辑信道进行非重复数据传输。
传输模式5,无线承载使用第一小区组中的一个逻辑信道进行数据传输,如随机选择第1个逻辑信道或第2个逻辑信道进行数据传输,或者选择逻辑信道ID较小或较大的逻辑信道进行数据传输,或者由网络设备通过RRC信令指示该无线承载使用哪一个逻辑信道进行数据传输。无线承载关联的其它逻辑信道的使用状态为去激活使用状态。相应地,当指示信息指示无线承载的传输模式为传输模式5时,终端设备可以使用第1个逻辑信道或第2个逻辑信道进行数据传输。
传输模式6,无线承载使用第二小区组中的一个逻辑信道进行数据传输,如随机选择第3个逻辑信道或第4个逻辑信道进行数据传输,或者选择逻辑信道ID较小或较大的逻辑信道进行数据传输,或者由网络设备通过RRC信令指示该无线承载使用哪一个逻辑信道进行数据传输。无线承载关联的其它逻辑信道的使用状态为去激活使用状态。相应地,当指示信息指示无线承载的传输模式为传输模式6时,终端设备可以使用第3个逻辑信道或第4个逻辑信道进行数据传输。
需要说明的是,上述所描述的传输模式1至传输模式4仅为一种示例,具体实施中,还可以设置其他可能的传输模式,具体不做限定。
下面结合一个具体的例子进行说明。
参见图9b所示,网络设备为无线承载1配置了4个逻辑信道,当网络设备发送指示信息包括针对无线承载1的比特序列时,比特序列中的2个比特的值指示无线承载1的传输模式。其中,00(即为传输模式1)表示LCH1和LCH3的使用状态为激活使用状态,无线承载1关联的其它逻辑信道的使用状态为去激活使用状态,终端设备可以只使用LCH1和LCH3进行重复数据传输;01(即为传输模式2)表示LCH2和LCH4的使用状态为激活使用状态,无线承载1关联的其它逻辑信道的使用状态为去激活使用状态,终端设备可以使用LCH2和LCH4进行重复数据传输;10(即为传输模式3)表示LCH1和LCH2(或者LCH3和LCH4)的使用状态为激活使用状态,无线承载1关联的其它逻辑信道的使用状态为去激活使用状态,终端设备可以使用LCH1和LCH2(或者LCH3和LCH4)进行重复数据传输。此种情形下,即为从两个小区组(比如小区组1和小区组2)中各选择一个逻辑信道,具体的选择方式不做限定,比如可以从各小区组中选择逻辑信道的ID最大或最小的逻辑信道,或者任选一个逻辑系电脑,又或者,选择回退到split bearer时所使用的逻辑信道。11(即为传输模式4)表示LCH1和LCH2(或者LCH3和LCH4)的使用状态为激活使用状态,无线承载1关联的其它逻辑信道的使用状态为去激活使用状态,终端设备可以使用LCH1和LCH4(或者LCH2和LCH3)进行不重复数据传输。
可以理解地,如果为无线承载1配置了小于4个逻辑信道,如配置了3个逻辑信道(比 如只有LCH1、LCH3和LCH2),则当比特序列中的2比特指示“01”时,终端设备可以忽略该指示信息或比特序列。在其它可能的实施例中,对比特序列中的具体解释可以和上述例子不同,本申请实施例对此不做限定,例如对于“11”,也可以是从主小区组(比如LCH1、LCH3关联的小区组)内选择一个逻辑信道进行传输(具体的选择方式不做限定),或从辅小区组(比如LCH2、LCH4关联的小区组)内选择一个逻辑信道进行传输(具体的选择方式不做限定)。
在又一个示例中,比特序列中可以有3个比特,分别指示不同的传输模式。比如000表示传输模式1,001表示传输模式2,010表示传输模式3,100表示传输模式4,101表示传输模式5,110表示传输模式6。可以理解地,如果为无线承载1配置了小于4个逻辑信道,如配置了3个逻辑信道(比如只有LCH1、LCH3和LCH2),则当比特序列中的3个比特指示‘001’时,终端设备可以忽略该指示信息或比特序列。在其它可能的实施例中,对比特序列中的具体解释可以和上述例子不同,本申请实施例对此不做限定,例如,3个比特中的其中1个比特表示激活或去激活无线承载1的重复传输功能,如果该比特为“1”表示激活无线承载1的重复传输功能,则剩余2个比特可以用于指示图9a中所示意的除去激活重复传输功能以外的其它3种传输模式。
需要说明的是,这对于实施例一和实施例二,除上述所描述的区别之处外,实施例一和实施例二中的其它内容可以相互参照。
实施例三
本申请实施例中,假设无线承载关联的逻辑信道为M个逻辑信道,若M个逻辑信道关联多个小区,比如M个逻辑信道中的第一部分逻辑信道与第一小区组关联,第二部分逻辑信道与第二小区组关联,第一小区组由第一网络设备(主网络设备)配置,第二小区组由第二网络设备配置;则一种可能的方案为,由第一网络设备通过指示信息来指示M个逻辑信道的使用状态。然而,采用这种方式,需要第一小区组对应的MAC实体感知第二小区组对应的MAC实体上该无线承载的逻辑信道的使用状态,增加了协议层实体之间交互带来的复杂度。基于此,本申请实施例提供的一种方案为,由第一网络设备通过指示信息来指示第一部分逻辑信道的使用状态,由第二网络设备通过指示信息来指示第二部分逻辑信道的使用状态。也就是说,第一网络设备或第二网络设备可以通过指示信息控制其自身所配置的逻辑信道的使用状态,不进行跨网络设备控制,从而能够避免跨网络设备控制带来的复杂度。需要说明的是,在方案中,第一网络设备通过指示信息控制其自身所配置的逻辑信道的使用状态的具体实现方式,可以参见实施例一或实施例二中所描述的由指示信息指示逻辑信道的使用状态的方式,或者,也可以是其它可能的方式,具体不做限定。
上述主要从网络设备和终端设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,网络设备或终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在采用集成的单元(模块)的情况下,图10示出了本申请实施例中所涉及的装置的可能的示例性框图,该装置1000可以以软件的形式存在。装置1000可以包括:处理单元1002和通信单元1003。处理单元1002用于对装置1000的动作进行控制管理。通信单元1003用于支持装置1000与其他网络实体的通信。可选地,通信单元1003也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置1000还可以包括存储单元1001,用于存储装置1000的程序代码和/或数据。
其中,处理单元1002可以是处理器或控制器,其可以实现或执行结合本申请的实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。通信单元1003可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口。存储单元1001可以是存储器。
该装置1000可以为上述任一实施例中的终端设备、或者还可以为设置在终端设备中的芯片。处理单元1002可以支持装置1000执行上文中各方法示例中终端设备的动作。或者,处理单元1002主要执行方法示例中的终端内部动作,通信单元1003可以支持装置1000与网络设备之间的通信。
具体地,在一个实施例中,通信单元用于从网络设备接收指示信息,所述指示信息包括比特序列,所述比特序列中第i个比特的值用于指示无线承载关联的M个逻辑信道中第i个逻辑信道的使用状态,所述M个逻辑信道基于所述M个逻辑信道所关联的小区组的标识ID和所述M个逻辑信道的ID排序,所述无线承载配置有重复传输功能;i=1,2,……,M,M为大于或等于2的整数;处理单元,用于根据所述指示信息,使用所述无线承载关联的至少一个逻辑信道通过所述通信单元进行数据传输。
在一种可能的设计中,所述比特序列中的比特数目为N,N为大于M的整数;
所述处理单元还用于:忽略所述比特序列中的第M+1至第N个比特。
在一种可能的设计中,所述第i个逻辑信道的使用状态为激活使用状态或去激活使用状态;若所述第i个逻辑信道的使用状态为激活使用状态,则所述第i个逻辑信道被允许用于重复数据传输;或者,若所述第i个逻辑信道的使用状态为去激活使用状态,则所述第i个逻辑信道被禁止用于重复数据传输。
在一种可能的设计中,所述处理单元具体用于:根据所述M个逻辑信道的使用状态,至少使用所述M个逻辑信道中使用状态为激活使用状态的逻辑信道通过所述通信单元进行数据传输。
在一种可能的设计中,所述处理单元具体用于:若所述M个比特指示所述M个逻辑信道中K1个逻辑信道的使用状态为激活使用状态,0<K1≤P,则所述终端设备使用所述K1个逻辑信道通过所述通信单元进行数据传输;其中,K1大于1时,所述K1个逻辑信道传输的数据重复,所述P为所述无线承载关联的逻辑信道中处于激活使用状态的逻辑信道的最大数量。
在一种可能的设计中,当所述M个逻辑信道均关联第一小区组时,若K1=0,则:所述处理单元具体用于,使用所述M个逻辑信道中的任意一个逻辑信道通过所述通信单元进行数据传输,或者所述终端设备忽略所述指示信息或所述比特序列;或者,当所述M个逻辑信道中的第一部分逻辑信道与第一小区组关联和第二部分逻辑信道与第二小区组关联时,若K1=0,则:所述处理单元具体用于,使用所述M个逻辑信道中的第一逻辑信道通过所述通信单元进行数据传输,或者使用所述第一小区组中的第二逻辑信道和所述第二小区组中 的第三逻辑信道通过所述通信单元进行非重复数据传输,或者所述终端设备忽略所述指示信息或所述比特序列。
在一种可能的设计中,所述方法还包括:若K1>P,则:所述处理单元具体用于,使用所述K1个逻辑信道中的P个逻辑信道通过所述通信单元进行数据传输,所述P个逻辑信道传输的数据重复。
在一种可能的设计中,所述无线承载关联的逻辑信道包括所述M个逻辑信道和主逻辑信道;若所述M个比特指示所述M个逻辑信道中K2个逻辑信道的使用状态为激活使用状态,0<K2≤P-1,则:所述处理单元具体用于,使用所述K2个逻辑信道和所述主逻辑信道通过所述通信单元进行数据传输,所述K2个逻辑信道和所述主逻辑信道传输的数据重复,所述P为所述无线承载关联的逻辑信道中处于激活使用状态的逻辑信道的最大数量。
在一种可能的设计中,当所述无线承载关联的逻辑信道均关联第一小区组时,若K2=0,则:所述处理单元具体用于,使用所述主逻辑信道通过所述通信单元进行数据传输,或者忽略所述指示信息或所述比特序列;
当所述M个逻辑信道中的第一部分逻辑信道与第一小区组关联和第二部分逻辑信道与第二小区组关联,所述第一部分逻辑信道包括所述主逻辑信道时,若K2=0,则:所述处理单元具体用于,使用所述主逻辑信道通过所述通信单元进行数据传输,或者使用所述主逻辑信道和所述第二小区组中的第四逻辑信道通过所述通信单元进行数据传输,所述第主逻辑信道和所述第四逻辑信道传输的数据不重复,或者所述终端设备忽略所述指示信息或所述比特序列。
在一种可能的设计中,若K2>P-1,则:所述处理单元具体用于,使用所述K2个逻辑信道中的P-1个逻辑信道和所述主逻辑信道通过所述通信单元进行数据传输,所述P-1个逻辑信道和所述主逻辑信道传输的数据重复。
在一种可能的设计中,所述M个逻辑信道基于所述M个逻辑信道所关联的小区组的标识ID和所述M个逻辑信道的ID排序,包括:
所述M个逻辑信道是将每个小区组所关联的逻辑信道的ID升序或降序排序;其中,ID大的小区组所关联的逻辑信道排序在前或者ID小的小区组所关联逻辑信道排序在前;或者,
所述M个逻辑信道是将所述M个逻辑信道按照所述M个逻辑信道分别对应的值升序或降序排序;所述M个逻辑信道中包括第一逻辑信道,所述第一逻辑信道对应的值是根据所述第一逻辑信道所属的小区组的ID、所述第一逻辑信道的ID以及所述M个逻辑信道所属的小区组所包括的最大逻辑信道数目得到的。
在一种可能的设计中,所述指示信息还包括所述无线承载在配置有重复传输功能的至少一个无线承载中按照所述至少一个无线承载的标识升序或降序后的位置索引。
具体地,在一个实施例中,通信单元,用于从网络设备接收指示信息,所述指示信息包括比特序列,所述比特序列中多个比特的值用于指示无线承载的多种传输模式中的一种传输模式,所述无线承载配置有复制传输功能,所述多种传输模式中的每一种传输模式包括所述无线承载关联的M个逻辑信道的使用状态;所述比特序列中的比特数目小于M,M为大于或等于2的整数;处理单元,用于根据所述指示信息,通过所述通信单元使用所述无线承载关联的至少一个逻辑信道进行数据传输。
在一种可能的设计中,所述无线承载关联的逻辑信道包括所述M个逻辑信道和主逻辑信道;
所述多种传输模式包括以下任意多项:
传输模式1,所述主逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;
传输模式2,所述M个逻辑信道中第1个逻辑信道和所述主逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第1个逻辑信道和所述主逻辑信道传输的数据重复;
传输模式3,所述M个逻辑信道中第2个逻辑信道和所述主逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第2个辑信道和所述主逻辑信道传输的数据重复;
传输模式4,所述M个逻辑信道中第3个逻辑信道和所述主逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第3个逻辑信道和所述主逻辑信道传输的数据重复;
所述M个逻辑信道基于所述M个逻辑信道所属的小区组的标识ID和所述M个逻辑信道的ID排序。
在一种可能的设计中,所述M个逻辑信道中第1个逻辑信道和第2个逻辑信道关联第一小区组,第3个逻辑信道和第4个逻辑信道关联第二小区组;所述M个逻辑信道基于所述M个逻辑信道所关联的小区组的标识ID和所述M个逻辑信道的ID排序;
所述无线承载的多种传输模式包括以下任意多项:
传输模式1,所述第1个逻辑信道和所述第2个逻辑信道的使用状态为激活使用状态,所述无线承载关联中其它逻辑信道的使用状态为去激活使用状态;所述第1个逻辑信道和所述第2个逻辑信道传输的数据重复;
传输模式2,所述第3个逻辑信道和所述第4个逻辑信道的使用状态为去激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第3个逻辑信道和所述第4个逻辑信道传输的数据相同;
传输模式3,所述第1个逻辑信道和所述第3个逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第1个逻辑信道和所述第3个逻辑信道传输的数据重复;
传输模式4,所述第1个逻辑信道和所述第3个逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第1个逻辑信道和所述第3个逻辑信道传输的数据不重复;
传输模式5,所述第1个逻辑信道或所述第2个逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;
传输模式6,所述第3个逻辑信道或所述第4个逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态。
需要说明的是,本申请实施例中对单元(模块)的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可 以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质可以为存储器等各种可以存储程序代码的介质。
图11给出了一种装置的结构示意图,该装置1100包括处理器1110、存储器1120和收发器1130。在一个示例中,该装置1100可以实现图10所示意出的装置1000的功能,具体来说,图10中所示意的通信单元1003的功能可以由收发器实现,处理单元1002的功能可由处理器实现,存储单元1001的功能可以由存储器实现。在又一个示例中,该装置1100可以是上述方法实施例中的终端设备,该装置1100可用于实现上述方法实施例中描述的对应于终端设备的方法,具体可以参见上述方法实施例中的说明。
图12为本申请实施例提供的一种终端设备1200的结构示意图。为了便于说明,图12仅示出了终端设备的主要部件。如图12所示,终端设备1200包括处理器、存储器、控制电路、天线以及输入输出装置。该终端设备1200可应用于如图1所示的系统架构中,执行上述方法实施例中终端设备的功能。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于控制终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图12仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图12中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由 处理器执行软件程序以实现基带处理功能。
图12所示的终端设备1200能够实现图5或图8所示意的方法实施例中涉及终端设备的各个过程。终端设备1200中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合;也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可以理解,本申请实施例中的存储器或存储单元可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。 通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。

Claims (39)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    从网络设备接收指示信息,所述指示信息包括比特序列,所述比特序列中第i个比特的值用于指示无线承载关联的M个逻辑信道中第i个逻辑信道的使用状态,所述M个逻辑信道基于所述M个逻辑信道所关联的小区组的标识ID和所述M个逻辑信道的ID排序,所述无线承载配置有重复传输功能;i=1,2,……,M,M为大于或等于2的整数;
    根据所述指示信息,使用所述无线承载关联的至少一个逻辑信道进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述比特序列中的比特数目为N,N为大于M的整数;
    所述方法还包括:忽略所述比特序列中的第M+1至第N个比特。
  3. 根据权利要求2所述的方法,其特征在于,所述无线承载关联的逻辑信道包括所述M个逻辑信道,则所述M为所述无线承载关联的逻辑信道的个数;或者,
    所述无线承载关联的逻辑信道包括所述M个逻辑信道和主逻辑信道,则所述M为所述无线承载关联的辅逻辑信道的个数。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第i个逻辑信道的使用状态为激活使用状态或去激活使用状态;
    若所述第i个逻辑信道的使用状态为激活使用状态,则所述第i个逻辑信道被允许用于重复数据传输;或者,
    若所述第i个逻辑信道的使用状态为去激活使用状态,则所述第i个逻辑信道被禁止用于重复数据传输。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,根据所述指示信息,使用所述无线承载关联的至少一个逻辑信道进行数据传输,包括:
    根据所述M个逻辑信道的使用状态,至少使用所述M个逻辑信道中使用状态为激活使用状态的逻辑信道进行数据传输。
  6. 根据权利要求5所述的方法,其特征在于,根据所述M个逻辑信道的使用状态,至少使用所述M个逻辑信道中使用状态为激活使用状态的逻辑信道进行数据传输,包括:
    若所述M个比特指示所述M个逻辑信道中K1个逻辑信道的使用状态为激活使用状态,0<K1≤P,则使用所述K1个逻辑信道进行数据传输;其中,K1大于1时,所述K1个逻辑信道传输的数据重复,所述P为所述无线承载关联的逻辑信道中处于激活使用状态的逻辑信道的最大数量。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    当所述M个逻辑信道均关联第一小区组时,若K1=0,则:使用所述M个逻辑信道中的任意一个逻辑信道进行数据传输,或者忽略所述指示信息或所述比特序列;或者,
    当所述M个逻辑信道中的第一部分逻辑信道与第一小区组关联和第二部分逻辑信道与第二小区组关联时,若K1=0,则:使用所述M个逻辑信道中的第一逻辑信道进行数据传输,或者使用所述第一小区组中的第二逻辑信道和所述第二小区组中的第三逻辑信道进行非重复数据传输,或者忽略所述指示信息或所述比特序列。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    若K1>P,则:使用所述K1个逻辑信道中的P个逻辑信道进行数据传输,所述P个逻辑 信道传输的数据重复。
  9. 根据权利要求5所述的方法,其特征在于,所述无线承载关联的逻辑信道包括所述M个逻辑信道和主逻辑信道;
    根据所述M个逻辑信道的使用状态,至少使用所述M个逻辑信道中使用状态为激活使用状态的逻辑信道进行数据传输,包括:
    若所述M个比特指示所述M个逻辑信道中K2个逻辑信道的使用状态为激活使用状态,0<K2≤P-1,则使用所述K2个逻辑信道和所述主逻辑信道进行数据传输,所述K2个逻辑信道和所述主逻辑信道传输的数据重复,所述P为所述无线承载关联的逻辑信道中处于激活使用状态的逻辑信道的最大数量。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    当所述无线承载关联的逻辑信道均关联第一小区组时,若K2=0,则:使用所述主逻辑信道进行数据传输;
    当所述M个逻辑信道中的第一部分逻辑信道与第一小区组关联和第二部分逻辑信道与第二小区组关联,所述第一部分逻辑信道包括所述主逻辑信道时,若K2=0,则:使用所述主逻辑信道和所述第二小区组中的第四逻辑信道进行数据传输,所述第主逻辑信道和所述第四逻辑信道传输的数据不重复。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的无线资源控制RRC信令,所述RRC信令用于指示所述第四逻辑信道。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述方法还包括:
    若K2>P-1,则:使用所述K2个逻辑信道中的P-1个逻辑信道和所述主逻辑信道进行数据传输,所述P-1个逻辑信道和所述主逻辑信道传输的数据重复。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述M个逻辑信道基于所述M个逻辑信道所关联的小区组的标识ID和所述M个逻辑信道的ID排序,包括:
    所述M个逻辑信道是将每个小区组所关联的逻辑信道的ID升序或降序排序;其中,ID大的小区组所关联的逻辑信道排序在前或者ID小的小区组所关联逻辑信道排序在前;或者,
    所述M个逻辑信道是将所述M个逻辑信道按照所述M个逻辑信道分别对应的值升序或降序排序;所述M个逻辑信道中包括第一逻辑信道,所述第一逻辑信道对应的值是根据所述第一逻辑信道所属的小区组的ID、所述第一逻辑信道的ID以及所述M个逻辑信道所属的小区组所包括的最大逻辑信道数目得到的。
  14. 根据权利要求13所述的方法,其特征在于,主小区组所关联的逻辑信道排序在前,辅小区组所关联的逻辑信道排序在后。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于:
    所述指示信息还包括所述无线承载在配置有重复传输功能的至少一个无线承载中按照所述至少一个无线承载的标识升序或降序后的位置索引。
  16. 一种数据传输方法,其特征在于,所述方法包括:
    从网络设备接收指示信息,所述指示信息包括比特序列,所述比特序列中多个比特的值用于指示无线承载的多种传输模式中的一种传输模式,所述无线承载配置有复制传输功能,所述多种传输模式中的每一种传输模式包括所述无线承载关联的M个逻辑信道的使用状态;所述比特序列中的比特数目小于M,M为大于或等于2的整数;
    根据所述指示信息,使用所述无线承载关联的至少一个逻辑信道进行数据传输。
  17. 根据权利要求16所述的方法,其特征在于,所述无线承载关联的逻辑信道包括所述M个逻辑信道和主逻辑信道;
    所述多种传输模式包括以下任意多项:
    传输模式1,所述主逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;
    传输模式2,所述M个逻辑信道中第1个逻辑信道和所述主逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第1个逻辑信道和所述主逻辑信道传输的数据重复;
    传输模式3,所述M个逻辑信道中第2个逻辑信道和所述主逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第2个辑信道和所述主逻辑信道传输的数据重复;
    传输模式4,所述M个逻辑信道中第3个逻辑信道和所述主逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第3个逻辑信道和所述主逻辑信道传输的数据重复;
    所述M个逻辑信道基于所述M个逻辑信道所属的小区组的标识ID和所述M个逻辑信道的ID排序。
  18. 根据权利要求16所述的方法,其特征在于,所述M个逻辑信道中第1个逻辑信道和第2个逻辑信道关联第一小区组,第3个逻辑信道和第4个逻辑信道关联第二小区组;所述M个逻辑信道基于所述M个逻辑信道所关联的小区组的标识ID和所述M个逻辑信道的ID排序;
    所述无线承载的多种传输模式包括以下任意多项:
    传输模式1,所述第1个逻辑信道和所述第2个逻辑信道的使用状态为激活使用状态,所述无线承载关联中其它逻辑信道的使用状态为去激活使用状态;所述第1个逻辑信道和所述第2个逻辑信道传输的数据重复;
    传输模式2,所述第3个逻辑信道和所述第4个逻辑信道的使用状态为去激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第3个逻辑信道和所述第4个逻辑信道传输的数据相同;
    传输模式3,所述第1个逻辑信道和所述第3个逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第1个逻辑信道和所述第3个逻辑信道传输的数据重复;
    传输模式4,所述第1个逻辑信道和所述第3个逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第1个逻辑信道和所述第3个逻辑信道传输的数据不重复;
    传输模式5,所述第1个逻辑信道或所述第2个逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;
    传输模式6,所述第3个逻辑信道或所述第4个逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态。
  19. 一种通信装置,其特征在于,所述装置包括:
    通信单元,用于从网络设备接收指示信息,所述指示信息包括比特序列,所述比特序列中第i个比特的值用于指示无线承载关联的M个逻辑信道中第i个逻辑信道的使用状态,所 述M个逻辑信道基于所述M个逻辑信道所关联的小区组的标识ID和所述M个逻辑信道的ID排序,所述无线承载配置有重复传输功能;i=1,2,……,M,M为大于或等于2的整数;
    处理单元,用于根据所述指示信息,使用所述无线承载关联的至少一个逻辑信道通过所述通信单元进行数据传输。
  20. 根据权利要求19所述的装置,其特征在于,所述比特序列中的比特数目为N,N为大于M的整数;
    所述处理单元还用于:忽略所述比特序列中的第M+1至第N个比特。
  21. 根据权利要求20所述的装置,其特征在于,所述无线承载关联的逻辑信道包括所述M个逻辑信道,则所述M为所述无线承载关联的逻辑信道的个数;或者,
    所述无线承载关联的逻辑信道包括所述M个逻辑信道和主逻辑信道,则所述M为所述无线承载关联的辅逻辑信道的个数。
  22. 根据权利要求19至21中任一项所述的装置,其特征在于,所述第i个逻辑信道的使用状态为激活使用状态或去激活使用状态;
    若所述第i个逻辑信道的使用状态为激活使用状态,则所述第i个逻辑信道被允许用于重复数据传输;或者,
    若所述第i个逻辑信道的使用状态为去激活使用状态,则所述第i个逻辑信道被禁止用于重复数据传输。
  23. 根据权利要求19至22中任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述M个逻辑信道的使用状态,至少使用所述M个逻辑信道中使用状态为激活使用状态的逻辑信道通过所述通信单元进行数据传输。
  24. 根据权利要求23所述的装置,其特征在于,所述处理单元具体用于:若所述M个比特指示所述M个逻辑信道中K1个逻辑信道的使用状态为激活使用状态,0<K1≤P,则使用所述K1个逻辑信道通过所述通信单元进行数据传输;其中,K1大于1时,所述K1个逻辑信道传输的数据重复,所述P为所述无线承载关联的逻辑信道中处于激活使用状态的逻辑信道的最大数量。
  25. 根据权利要求24所述的装置,其特征在于,当所述M个逻辑信道均关联第一小区组时,若K1=0,则:所述处理单元具体用于,使用所述M个逻辑信道中的任意一个逻辑信道通过所述通信单元进行数据传输,或者忽略所述指示信息或所述比特序列;或者,
    当所述M个逻辑信道中的第一部分逻辑信道与第一小区组关联和第二部分逻辑信道与第二小区组关联时,若K1=0,则:所述处理单元具体用于,使用所述M个逻辑信道中的第一逻辑信道通过所述通信单元进行数据传输,或者使用所述第一小区组中的第二逻辑信道和所述第二小区组中的第三逻辑信道通过所述通信单元进行非重复数据传输,或者忽略所述指示信息或所述比特序列。
  26. 根据权利要求24或25所述的装置,其特征在于,所述方法还包括:
    若K1>P,则:所述处理单元具体用于,使用所述K1个逻辑信道中的P个逻辑信道通过所述通信单元进行数据传输,所述P个逻辑信道传输的数据重复。
  27. 根据权利要求23所述的装置,其特征在于,所述无线承载关联的逻辑信道包括所述M个逻辑信道和主逻辑信道;
    若所述M个比特指示所述M个逻辑信道中K2个逻辑信道的使用状态为激活使用状态,0<K2≤P-1,则:所述处理单元具体用于,使用所述K2个逻辑信道和所述主逻辑信道通过 所述通信单元进行数据传输,所述K2个逻辑信道和所述主逻辑信道传输的数据重复,所述P为所述无线承载关联的逻辑信道中处于激活使用状态的逻辑信道的最大数量。
  28. 根据权利要求27所述的装置,其特征在于,当所述无线承载关联的逻辑信道均关联第一小区组时,若K2=0,则:所述处理单元具体用于,使用所述主逻辑信道通过所述通信单元进行数据传输;
    当所述M个逻辑信道中的第一部分逻辑信道与第一小区组关联和第二部分逻辑信道与第二小区组关联,所述第一部分逻辑信道包括所述主逻辑信道时,若K2=0,则:所述处理单元具体用于,使用所述主逻辑信道和所述第二小区组中的第四逻辑信道通过所述通信单元进行数据传输,所述第主逻辑信道和所述第四逻辑信道传输的数据不重复。
  29. 根据权利要求28所述的装置,其特征在于,所述通信单元还用于:
    接收来自所述网络设备的RRC信令,所述RRC信令用于指示所述第四逻辑信道。
  30. 根据权利要求27至29中任一项所述的装置,其特征在于,若K2>P-1,则:所述处理单元具体用于,使用所述K2个逻辑信道中的P-1个逻辑信道和所述主逻辑信道通过所述通信单元进行数据传输,所述P-1个逻辑信道和所述主逻辑信道传输的数据重复。
  31. 根据权利要求19至30中任一项所述的装置,其特征在于,所述M个逻辑信道基于所述M个逻辑信道所关联的小区组的标识ID和所述M个逻辑信道的ID排序,包括:
    所述M个逻辑信道是将每个小区组所关联的逻辑信道的ID升序或降序排序;其中,ID大的小区组所关联的逻辑信道排序在前或者ID小的小区组所关联逻辑信道排序在前;或者,
    所述M个逻辑信道是将所述M个逻辑信道按照所述M个逻辑信道分别对应的值升序或降序排序;所述M个逻辑信道中包括第一逻辑信道,所述第一逻辑信道对应的值是根据所述第一逻辑信道所属的小区组的ID、所述第一逻辑信道的ID以及所述M个逻辑信道所属的小区组所包括的最大逻辑信道数目得到的。
  32. 根据权利要求31所述的装置,其特征在于,主小区组所关联的逻辑信道排序在前,辅小区组所关联的逻辑信道排序在后。
  33. 根据权利要求19至32中任一项所述的装置,其特征在于:
    所述指示信息还包括所述无线承载在配置有重复传输功能的至少一个无线承载中按照所述至少一个无线承载的标识升序或降序后的位置索引。
  34. 一种通信装置,其特征在于,所述装置包括:
    通信单元,用于从网络设备接收指示信息,所述指示信息包括比特序列,所述比特序列中多个比特的值用于指示无线承载的多种传输模式中的一种传输模式,所述无线承载配置有复制传输功能,所述多种传输模式中的每一种传输模式包括所述无线承载关联的M个逻辑信道的使用状态;所述比特序列中的比特数目小于M,M为大于或等于2的整数;
    处理单元,用于根据所述指示信息,通过所述通信单元使用所述无线承载关联的至少一个逻辑信道进行数据传输。
  35. 根据权利要求34所述的装置,其特征在于,所述无线承载关联的逻辑信道包括所述M个逻辑信道和主逻辑信道;
    所述多种传输模式包括以下任意多项:
    传输模式1,所述主逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;
    传输模式2,所述M个逻辑信道中第1个逻辑信道和所述主逻辑信道的使用状态为激活 使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第1个逻辑信道和所述主逻辑信道传输的数据重复;
    传输模式3,所述M个逻辑信道中第2个逻辑信道和所述主逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第2个辑信道和所述主逻辑信道传输的数据重复;
    传输模式4,所述M个逻辑信道中第3个逻辑信道和所述主逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第3个逻辑信道和所述主逻辑信道传输的数据重复;
    所述M个逻辑信道基于所述M个逻辑信道所属的小区组的标识ID和所述M个逻辑信道的ID排序。
  36. 根据权利要求34所述的装置,其特征在于,所述M个逻辑信道中第1个逻辑信道和第2个逻辑信道关联第一小区组,第3个逻辑信道和第4个逻辑信道关联第二小区组;所述M个逻辑信道基于所述M个逻辑信道所关联的小区组的标识ID和所述M个逻辑信道的ID排序;
    所述无线承载的多种传输模式包括以下任意多项:
    传输模式1,所述第1个逻辑信道和所述第2个逻辑信道的使用状态为激活使用状态,所述无线承载关联中其它逻辑信道的使用状态为去激活使用状态;所述第1个逻辑信道和所述第2个逻辑信道传输的数据重复;
    传输模式2,所述第3个逻辑信道和所述第4个逻辑信道的使用状态为去激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第3个逻辑信道和所述第4个逻辑信道传输的数据相同;
    传输模式3,所述第1个逻辑信道和所述第3个逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第1个逻辑信道和所述第3个逻辑信道传输的数据重复;
    传输模式4,所述第1个逻辑信道和所述第3个逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;所述第1个逻辑信道和所述第3个逻辑信道传输的数据不重复;
    传输模式5,所述第1个逻辑信道或所述第2个逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态;
    传输模式6,所述第3个逻辑信道或所述第4个逻辑信道的使用状态为激活使用状态,所述无线承载关联的其它逻辑信道的使用状态为去激活使用状态。
  37. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述处理器用于执行存储在所述存储器上的指令,当所述指令被运行时,使得所述装置执行如权利要求1至18中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令被执行时,实现如权利要求1至18中任一项所述的方法。
  39. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至18任一项所述的方法。
PCT/CN2020/081511 2019-03-29 2020-03-26 一种数据传输方法及装置 WO2020200055A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20782601.7A EP3937559A4 (en) 2019-03-29 2020-03-26 DATA TRANSMISSION METHOD AND DEVICE
US17/489,455 US20220022239A1 (en) 2019-03-29 2021-09-29 Data transmission method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910253508 2019-03-29
CN201910253508.5 2019-03-29
CN201910268136.3A CN111757520B (zh) 2019-03-29 2019-04-03 一种数据传输方法及装置
CN201910268136.3 2019-04-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/489,455 Continuation US20220022239A1 (en) 2019-03-29 2021-09-29 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2020200055A1 true WO2020200055A1 (zh) 2020-10-08

Family

ID=72664943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081511 WO2020200055A1 (zh) 2019-03-29 2020-03-26 一种数据传输方法及装置

Country Status (4)

Country Link
US (1) US20220022239A1 (zh)
EP (1) EP3937559A4 (zh)
CN (1) CN117715208A (zh)
WO (1) WO2020200055A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029537A1 (en) * 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic link selection
CN108282823A (zh) * 2017-01-06 2018-07-13 株式会社Kt 用于控制冗余数据发送的方法和设备
US20180270699A1 (en) * 2017-03-16 2018-09-20 Ofinno Technologies, Llc Buffer Status Reporting Procedure in a Wireless Device and Wireless Network
CN108632902A (zh) * 2017-03-23 2018-10-09 株式会社Kt 用于处理无线电链路失败的方法及其装置
WO2018204828A1 (en) * 2017-05-05 2018-11-08 Qualcomm Incorporated Packet duplication at a packet data convergence protocol (pdcp) entity
WO2018221926A1 (en) * 2017-06-02 2018-12-06 Lg Electronics Inc. Apparatus and method for performing packet duplication
WO2018231022A1 (en) * 2017-06-16 2018-12-20 Samsung Electronics Co., Ltd. Method for supporting multiple scheduling requests in next-generation mobile communication system
CN109151903A (zh) * 2017-06-16 2019-01-04 三星电子株式会社 用于在下一代移动通信系统中处理分组的方法和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387973B2 (en) * 2016-11-17 2022-07-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving scheduling requests
CN116567716A (zh) * 2017-03-23 2023-08-08 三星电子株式会社 用于处理用于分组复制的数据的方法和设备
KR102357594B1 (ko) * 2017-03-23 2022-02-04 삼성전자 주식회사 패킷 중복을 위한 데이터 처리 방법 및 장치
CN107147479B (zh) * 2017-04-27 2020-04-10 电信科学技术研究院 一种进行重复传输控制的方法和设备
CN109150415B (zh) * 2017-06-15 2022-01-21 夏普株式会社 基站、用户设备和相关方法
JP2020528687A (ja) * 2017-07-28 2020-09-24 富士通株式会社 命令指示方法及び装置、情報交換方法及び装置
CN109391981B (zh) * 2017-08-08 2021-07-06 维沃移动通信有限公司 一种完整性保护方法及装置
CN109547175B (zh) * 2017-08-11 2020-10-30 电信科学技术研究院 一种承载映射方法、装置、基站及终端
CN109547168B (zh) * 2017-09-21 2021-07-20 华为技术有限公司 数据传输方法、终端设备和网络设备
JP2022511265A (ja) * 2018-08-24 2022-01-31 日本電気株式会社 通信する方法、デバイス、及びプログラム
CN111107669B (zh) * 2018-10-29 2021-11-02 展讯通信(上海)有限公司 Pdcp复制功能的激活方法及装置、终端、基站
CN111315027B (zh) * 2018-12-11 2024-03-12 夏普株式会社 用户设备及其方法、基站及其方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029537A1 (en) * 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic link selection
CN108282823A (zh) * 2017-01-06 2018-07-13 株式会社Kt 用于控制冗余数据发送的方法和设备
US20180270699A1 (en) * 2017-03-16 2018-09-20 Ofinno Technologies, Llc Buffer Status Reporting Procedure in a Wireless Device and Wireless Network
CN108632902A (zh) * 2017-03-23 2018-10-09 株式会社Kt 用于处理无线电链路失败的方法及其装置
WO2018204828A1 (en) * 2017-05-05 2018-11-08 Qualcomm Incorporated Packet duplication at a packet data convergence protocol (pdcp) entity
WO2018221926A1 (en) * 2017-06-02 2018-12-06 Lg Electronics Inc. Apparatus and method for performing packet duplication
WO2018231022A1 (en) * 2017-06-16 2018-12-20 Samsung Electronics Co., Ltd. Method for supporting multiple scheduling requests in next-generation mobile communication system
CN109151903A (zh) * 2017-06-16 2019-01-04 三星电子株式会社 用于在下一代移动通信系统中处理分组的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3937559A4 *

Also Published As

Publication number Publication date
US20220022239A1 (en) 2022-01-20
EP3937559A1 (en) 2022-01-12
CN117715208A (zh) 2024-03-15
EP3937559A4 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
US20240129796A1 (en) Method and device for controlling duplicate packet transmission in wireless communication system
CN113316914B (zh) 下一代无线网络中的分组数据聚合协议复制
KR20200013037A (ko) 복제 전송 구성, 복제 전송 방법 및 장치
WO2020200024A1 (zh) 通信方法和通信装置
US11601954B2 (en) Data sending method and apparatus, storage medium, and sending end
WO2020063441A1 (zh) 重复传输方法、终端和网络侧设备
WO2020147056A1 (zh) 用于复制数据传输的方法和设备
WO2021135817A1 (zh) 重复传输激活的指示方法、通信设备、装置及存储介质
WO2021159503A1 (zh) 资源配置方法和装置
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
WO2020215796A1 (zh) 一种通信方法及设备
WO2020199034A1 (zh) 用于中继通信的方法和装置
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2020200055A1 (zh) 一种数据传输方法及装置
WO2021169732A1 (zh) 一种切换方法及通信装置
WO2021109933A1 (zh) 用户设备及其方法、基站及其方法
WO2020199815A1 (zh) 通信方法及装置
CN111418229A (zh) 数据复制传输功能的配置方法及相关产品
WO2021031045A1 (zh) 一种通信方法及装置
WO2017177438A1 (zh) 一种控制信息的传输方法及装置
WO2021087997A1 (zh) 一种数据传输方法以及装置
WO2021127943A1 (zh) 无线通信方法和终端设备
WO2021016776A1 (zh) 基于复制数据传输的方法和设备
WO2020119632A1 (zh) 用户设备及其方法、基站及其方法
CN111757520B (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020782601

Country of ref document: EP

Effective date: 20211007