WO2020199034A1 - 用于中继通信的方法和装置 - Google Patents

用于中继通信的方法和装置 Download PDF

Info

Publication number
WO2020199034A1
WO2020199034A1 PCT/CN2019/080658 CN2019080658W WO2020199034A1 WO 2020199034 A1 WO2020199034 A1 WO 2020199034A1 CN 2019080658 W CN2019080658 W CN 2019080658W WO 2020199034 A1 WO2020199034 A1 WO 2020199034A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
bearer
configuration
configuration information
information
Prior art date
Application number
PCT/CN2019/080658
Other languages
English (en)
French (fr)
Inventor
李晨琬
于海凤
吴毅凌
吴义壮
李永翠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980091976.5A priority Critical patent/CN113455100B/zh
Priority to PCT/CN2019/080658 priority patent/WO2020199034A1/zh
Publication of WO2020199034A1 publication Critical patent/WO2020199034A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • This application relates to the field of communications, and more specifically to a method and device for relay communications.
  • the access network device sends configuration information for each relay node or terminal, and the configuration information is used to instruct the relay node or terminal to establish a bearer with the respective upper node or lower node.
  • Each relay node saves the bearer information of each bearer of each terminal, thereby ensuring the quality of service (QoS) of the data.
  • QoS quality of service
  • the relay node in the traditional solution is usually an access network device.
  • the current relay node may be a terminal, that is, the terminal also has a relay function.
  • the signaling overhead of the bearer configuration method is relatively large.
  • This application provides a method and device for relay communication, which can save signaling overhead.
  • a relay communication method includes: a first node receives first configuration information from a second node, and the first configuration information is used to configure the communication between the first node and the second node.
  • the second node is used to provide a relay communication service between the first node and the access network device; the first node establishes at least one bearer with the second node according to the first configuration information.
  • the second node as the parent node may send the first configuration information to the first node as the child node.
  • the parent node allocates the configuration information used to establish the bearer to the child node, that is, the distributed configuration bearer does not need to be configured through the access network equipment uniformly, avoiding the upper-level node to save the context of each bearer of each lower-level node, thereby saving trust. Order overhead.
  • the method further includes: the first node determines a first bearer of the at least one bearer according to the quality of service QoS information of the first data; the first node sends the first bearer to the The second node sends the first data.
  • the first data received by the first node from the terminal may include QoS information, or the first node may determine the QoS information of the first data according to the first data, so that the first node obtains information from the first node and the second node according to the QoS information.
  • the first bearer is selected from the multiple bearers that have been established between the nodes, and the first data is sent through the selected first bearer, thereby improving communication efficiency.
  • the first data includes time information, and the time information is used to indicate the initial sending moment of the first data or the current length of time the first data has been transmitted, wherein the first node According to the quality of service QoS information of the data, determining the first bearer of the at least one bearer includes: the first node determines the first bearer according to the QoS information of the first data and the time information.
  • the time information may be the sending moment of the initial transmission of the first data, for example, the time when the first data enters the network, so that the first node can learn the time occupied by the current transmission of the first data according to the time information.
  • the first node may also learn the total duration of the first data transmission requirement according to the QoS information of the first data. In this way, the first node can select a more appropriate bearer to transmit the first data according to the total duration of the first data transmission demand and the duration of the first data already occupied, thereby further improving communication efficiency.
  • the time information is carried in a field in the adaptation layer.
  • the time information in the uplink data may be added in the adaptation layer.
  • the relay node adds time information at the adaptation layer. If the time information is the start time, after the directly connected relay node is added, the rest of the nodes can directly forward until it is transmitted to the access network device. If the time information is the used time, each relay that receives the data will be The used time length needs to be updated in the adaptation layer; or the time information of the downlink data can also be added in the adaptation layer.
  • the time information is added to the adaptation layer. Similarly, if it is the initial data transmission time, subsequent nodes directly forward the value, and if it is the duration information, it needs to be updated. That is, the embodiment of the present application provides a way of sending time information.
  • the first node is a terminal, and the time information is carried in a media access control element MAC CE in the first data.
  • the first data can be regarded as a data packet.
  • the data packet includes a control field and a data field.
  • the control field can be MAC CE, and the data field can indicate the specific content of the data. That is, when the first node is a terminal, the embodiment of the present application provides another way of sending time information.
  • the time information may also be carried in the PDCP packet header or the RLC packet header.
  • the embodiments of the present application provide multiple other ways of sending time information.
  • the first data includes one or more time information and corresponding one or more business data.
  • the first data may include multiple types of service data, and each type of service data corresponds to one piece of time information. In this way, a suitable bearer can be configured for the first data more accurately, and the communication efficiency can be further improved.
  • multiple pieces of time information in the first data may be carried in multiple corresponding MAC CEs, and the multiple MAC CEs may be carried after the same MAC frame header, or each may be carried in one MAC frame header. After the MAC frame header. That is to say, the embodiments of the present application provide multiple MAC CE formats, and the time information is carried by the MAC CE, so as to realize more accurate selection of a suitable bearer for communication, and improve communication efficiency.
  • the method further includes: the first node sends second configuration information to the first terminal, where the second configuration information is used to configure a bearer between the first node and the first terminal.
  • the first node may also serve as a parent node to send configuration information to a lower-level node, so as to configure a bearer between the first node and the lower-level node.
  • the distributed configuration bearer does not need to be configured through the access network equipment uniformly, which prevents the upper-level node from saving the context of each bearer of each lower-level node, thereby saving signaling overhead.
  • the first configuration information includes at least one of a bearer identifier, a packet data convergence protocol PDCP configuration, a radio link control RLC configuration, or a logical channel configuration.
  • the method before the first node receives the first configuration information from the second node, the method further includes: the first node sends a configuration request to the second node, and the configuration request is used to request Configure the bearer with the second node.
  • the first node can send a configuration request to the second node when there is a bearer requirement, so as to request the first node to configure a bearer for the second node, which prevents the second node from being used when the first node has no bearer requirement.
  • the first node sends the first configuration information, which saves power consumption.
  • the first node is a terminal or a relay node.
  • the second node if it refuses to receive the third configuration information, it sends indication information indicating configuration failure to the access network device.
  • the indication information may include a bearer identification of the bearer configuration failure, to Indicates which bearer configuration failed.
  • a method for relay communication includes: a second node obtains first configuration information, where the first configuration information is used to configure a bearer between the first node and the second node, The second node is used to provide a relay communication service between the first node and the access network device; the second node sends the first configuration information to the first node.
  • the second node as the parent node may send the first configuration information to the first node as the child node.
  • the parent node allocates the configuration information used to establish the bearer to the child node, that is, the distributed configuration bearer does not need to be configured through the access network equipment uniformly, avoiding the upper-level node to save the context of each bearer of each lower-level node, thereby saving trust. Order overhead.
  • the method further includes: the second node receiving third configuration information, where the third configuration information is used to configure a bearer between the second node and at least one subordinate node of the second node;
  • acquiring the first configuration information by the second node includes: generating the first configuration information by the second node according to the third configuration information.
  • the third configuration information includes at least one of service quality QoS information, bearer identification, PDCP configuration, RLC configuration, or logical channel configuration.
  • the third configuration information includes QoS information
  • the second node determines the corresponding RLC configuration and/or logical channel configuration according to the QoS information, and carries the RLC configuration and/or logical channel configuration in the first configuration information.
  • the second node can configure a bearer corresponding to the QoS information for the first node according to the QoS information, so that the first node can transmit in the corresponding bearer according to the QoS information of the data, thereby improving communication quality.
  • the first configuration information includes at least one of a bearer identifier, a PDCP configuration, an RLC configuration, or a logical channel configuration.
  • the second node if it refuses to receive the third configuration information, it sends indication information indicating configuration failure to the access network device.
  • the indication information may include a bearer identification of the bearer configuration failure, to Indicates which bearer configuration failed.
  • the determining, by the access network device, the third configuration information includes: the access network device determining that there is no bearer between the first node and the second node corresponds to the first node In the case of the second bearer, the first configuration information is determined, and the second bearer is the bearer between the first node and the first terminal.
  • the terminal is a child node of the first node, and one or more second bearers may exist between the terminal and the first node.
  • the first node is a child node of the second node, and one or more first bearers may exist between the first node and the second node.
  • the terminal can use the target second bearer corresponding to the data to send to the first node.
  • the first node has the QoS information corresponding to the target second bearer. Corresponding QoS information is added to it for subsequent nodes to perform bearer mapping after receiving data.
  • the first node can select a suitable target first bearer and send it to the second node according to the QoS information of the data.
  • the bearer between the first node and the terminal, and the bearer between the first node and the second node can correspond to the same QoS information or similar QoS, so that the The data of the QoS information is sent from the terminal to the second node.
  • the access network device can learn the bearer information of each node and the node's corresponding subordinate node, the access network device can learn whether there is a corresponding bearer between adjacent links to determine whether to send the second node to the corresponding node.
  • the access network device may establish a bearer for the first node and the subordinate node (for example, terminal) of the first node. (For example, the target second bearer), detecting whether the bearer between the first node and the second node has a bearer corresponding to the target second bearer, avoiding special configuration of the first configuration information, and saving signaling Overhead.
  • the third configuration information is carried in fourth configuration information, and the fourth configuration information is used to configure the second node to have Following ability.
  • the access network device may, for example, when sending second configuration information for configuring the second node to have a relay capability to the second node, carry the fourth configuration information
  • the first configuration information avoids special configuration of the first configuration information and saves signaling overhead.
  • the second node sends the first configuration information after receiving the configuration request sent by the first node.
  • the first node may send a configuration request to the second node to request the first node to configure a bearer for the second node, thereby saving signaling overhead.
  • the first node is a terminal or a relay node.
  • a method for relay communication includes: an access network device determines third configuration information, the third configuration information is used to configure at least one of the second node and the second node Bearer between lower-level nodes; the access network device sends the third configuration information to the second node.
  • the second node as the parent node may send the first configuration information to the first node as the child node.
  • the parent node allocates the configuration information used to establish the bearer to the child node, that is, the distributed configuration bearer does not need to be configured through the access network equipment uniformly, avoiding the upper-level node to save the context of each bearer of each lower-level node, thereby saving trust. Order overhead.
  • the method further includes: the access network device sends first configuration information to the first node, where the first configuration information is used to configure a bearer between the first node and the second node, The second node is used to provide a relay communication service between the first node and the access network device; the access network device sends the first configuration information to the second node.
  • the access network device may also send the first configuration information to the second node, so that the parent node (the first node) of the first node The second node) can learn the bearer of the child node, that is, the second node can learn the bearer configuration with the lower node, thereby improving the communication efficiency.
  • the first configuration information includes at least one of a bearer identifier, a packet data convergence protocol PDCP configuration, a radio link control RLC configuration, or a logical channel configuration.
  • the third configuration information includes at least one of service quality QoS information, bearer identification, PDCP configuration, RLC configuration, or logical channel configuration.
  • the first node is a terminal or a relay node.
  • an apparatus which may be an access network device or a chip in the access network device.
  • the device has the function of realizing the above-mentioned first aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a receiving module and a sending module.
  • the device further includes a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the receiving module and the transmitting module may include radio frequency circuits or antennas.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or from other instructions, so that the device executes the first aspect described above and various possible implementation methods of communication.
  • the device can be an access network device.
  • the chip when the device is a chip, the chip includes a receiving module and a sending module.
  • the device further includes a processing module.
  • the receiving module and the sending module may be inputs on the chip, for example. /Output interface, pin or circuit, etc.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal executes the above-mentioned first aspect and any possible implemented communication method.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module may also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above All aspects of the communication method program execution integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a device for determining transmission resources may be a terminal or a chip in the terminal.
  • the device has the function of realizing the above-mentioned second aspect and various possible implementation modes. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a receiving module and a sending module.
  • the device further includes a processing module.
  • the receiving module and the sending module may be at least one of a transceiver, a receiver, and a transmitter, for example, and the transceiver module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example.
  • the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other instructions, so that the device executes the second aspect or any one of the methods described above.
  • the chip when the device is a chip, the chip includes a receiving module and a sending module.
  • the chip further includes a processing module.
  • the receiving module and the sending module may be input/output interfaces, pins or circuits on the chip, for example.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions, so that the chip in the terminal executes the second aspect and any possible implementation communication methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module may also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above All aspects of the communication method program execution integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a device for determining transmission resources may be a terminal or a chip in the terminal.
  • the device has the function of realizing the aforementioned third aspect and various possible implementation modes. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a receiving module and a sending module.
  • the device further includes a processing module.
  • the receiving module and the sending module may be at least one of a transceiver, a receiver, and a transmitter, for example, and the transceiver module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example.
  • the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other sources, so that the device executes the third aspect or any one of the methods described above.
  • the chip when the device is a chip, the chip includes a receiving module and a sending module.
  • the chip further includes a processing module.
  • the receiving module and the sending module may be input/output interfaces, pins or circuits on the chip, for example.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal executes the third aspect and any possible implementation communication methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module may also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above All aspects of the communication method program execution integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the first aspect and any possible implementations thereof.
  • a computer storage medium stores program code, and the program code is used to instruct instructions to execute the method in the second aspect and any possible implementation manners.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the third aspect and any possible implementations thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the first aspect or any possible implementation manner thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the second aspect described above, or any possible implementation manner thereof.
  • a computer program product containing instructions which, when running on a computer, causes the computer to execute the method in the third aspect or any possible implementation manner thereof.
  • a communication system in a thirteenth aspect, includes a device capable of implementing the methods of the first aspect and various possible designed functions, the methods of the second aspect, and various possible designed functions.
  • the device and the above-mentioned device having various methods and various possible design functions of the above-mentioned third aspect.
  • a device capable of implementing the methods and various possible design functions of the foregoing first aspect may be an access network device, and a device capable of implementing the foregoing methods of the second and third aspects and various possible design functions may be It is a terminal.
  • a processor is provided, which is configured to be coupled with a memory and configured to execute the method in the first aspect or any possible implementation manner thereof.
  • a processor configured to be coupled with a memory, and configured to execute the method in the first aspect or any possible implementation manner thereof.
  • a processor configured to be coupled with a memory, and configured to execute the method in the first aspect or any possible implementation manner thereof.
  • a chip in a seventeenth aspect, includes a processor and a communication interface.
  • the communication interface is used to communicate with an external device or an internal device.
  • the processor is used to implement any or any of the above-mentioned aspects of the first aspect. The method in the implementation.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute instructions stored in the memory or instructions derived from other sources.
  • the processor is used to implement the first aspect described above, or the method in any possible implementation manner thereof.
  • the chip can be integrated on the access network equipment.
  • a chip in an eighteenth aspect, includes a processor and a communication interface.
  • the communication interface is used to communicate with an external device or an internal device.
  • the processor is used to implement the second aspect or any of its possible implementations. Methods.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute instructions stored in the memory or instructions derived from other sources.
  • the processor is used to implement the second aspect described above, or the method in any possible implementation manner thereof.
  • the chip can be integrated on the terminal.
  • a chip in a nineteenth aspect, includes a processor and a communication interface.
  • the communication interface is used to communicate with an external device or an internal device.
  • the processor is used to implement the third aspect or any of its possible implementations. Methods.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute instructions stored in the memory or instructions derived from other sources.
  • the processor is used to implement the third aspect described above, or the method in any possible implementation manner thereof.
  • the chip can be integrated on the terminal.
  • the second node as the parent node may send the first configuration information to the first node as the child node.
  • the parent node allocates the configuration information used to establish the bearer to the child node, that is, the distributed configuration bearer does not need to be configured through the access network equipment uniformly, avoiding the upper-level node to save the context of each bearer of each lower-level node, thereby saving trust. Order overhead.
  • Figure 1 is a schematic diagram of a communication system of the present application
  • FIG. 2 is a schematic flowchart of a relay communication method according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a MAC frame in an embodiment of the present application.
  • Figure 4 is a schematic diagram of the MAC frame header in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a MAC CE of a MAC frame in an embodiment of the present application.
  • Figure 6 is a schematic diagram of another MAC CE of a MAC frame in an embodiment of the present application
  • FIG. 7 is a schematic block diagram of a relay communication apparatus according to a specific embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a relay communication apparatus according to a specific embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a relay communication apparatus according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a relay communication apparatus according to another embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a relay communication apparatus according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a relay communication apparatus according to another embodiment of the present application.
  • FIG. 13 is a schematic diagram of a relay communication device according to a specific embodiment of the present application.
  • FIG. 14 is a schematic diagram of a relay communication device according to another specific embodiment of the present application.
  • 15 is a schematic diagram of a relay communication device according to another specific embodiment of the present application.
  • FIG. 16 is a schematic diagram of a relay communication device according to another specific embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G 5th Generation
  • 5G device to device (device to device, D2D) communication system or New Radio (NR)
  • V2X vehicle to everything
  • LTE-V vehicle to vehicle (vehicle to everything) vehicle
  • V2V Internet of Vehicles
  • MTC machine-type communications
  • IoT Internet of Things
  • LTE-M machine to communications
  • M2M Internet of Things
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., this embodiment of the present application does not limit this.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the access network device in the embodiment of the application may be a device used to communicate with terminal devices.
  • the access network device may be a Global System of Mobile Communication (GSM) system or Code Division Multiple Access (Code Division Multiple Access).
  • the base station (Base Transceiver Station, BTS) in Access, CDMA can also be the base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) system, or the evolution of the LTE system Type base station (Evolutional NodeB, eNB or eNodeB), can also be a wireless controller in Cloud Radio Access Network (CRAN) scenarios, or the access network device can be a relay station, access point, or vehicle-mounted device , Wearable devices and access network equipment in the future 5G network or access network equipment in the future evolved PLMN network, etc., which are not limited in the embodiment of the present application.
  • CRAN Cloud Radio Access Network
  • the function of the base station is divided into two parts, called centralized unit (CU)-distributed unit (DU) separation.
  • the CU includes the RRC layer and the PDCP layer of the LTE base station
  • the DU includes the radio link control (RLC) layer and the media access control (MAC) layer of the LTE base station.
  • RLC radio link control
  • MAC media access control
  • the physical (physical, PHY) layer In ordinary 5G base station deployment, CU and DU can be physically connected via optical fiber, and logically, there is a specially defined F1 interface for communication between CU and DU.
  • the CU is mainly responsible for radio resource control and configuration, cross-cell mobility management, and bearer management.
  • DU is mainly responsible for scheduling, physical signal generation and transmission.
  • the relay node in the embodiment of the present application may be a relay base station, such as a micro base station.
  • the relay node can also be a terminal device that provides a relay function.
  • the relay node can also be a relay transceiver node, user terminal equipment (customer premise 3quipment, CPE), relay transceiver, relay agent, relay node (relaying node, RN), transmission and reception point (transmission and reception point, TRP), or a network entity such as a relay TRP (rTRP).
  • the relay nodes can be distributed at the edge of the cell, which can expand the coverage of network equipment.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the relay communication system includes access network equipment, relay nodes and terminals.
  • the link between the access network device and the relay device may be called a BH link
  • the link between the relay device and the terminal device may be called an "access (AC) link”.
  • the access link includes an uplink access link and a downlink access link.
  • the uplink access link is also referred to as the uplink transmission of the access link
  • the downlink access link is also referred to as the downlink transmission of the access link.
  • the link between two relay nodes can also be referred to as a "backhaul link".
  • the communication system of the embodiment of the present application does not limit the number of relay nodes.
  • the communication system may include 4 or 5 relay nodes.
  • the present application does not limit the names of the links between the access network device and the relay node, between two relay nodes, and the link between the relay node and the terminal.
  • QoS refers to a network that can use various basic technologies to provide better service capabilities for specified network communications. It is a security mechanism for the network and a technology used to solve problems such as network delay and congestion.
  • QCI QoS class identifier
  • QCI is a scale value used to measure packet forwarding behavior, such as packet loss rate and packet delay budget. It is also applied to the guranteed bit rate (GBR) and Non-GBR bearer, and is used to specify the control bearer-level packet forwarding method defined in the access node (such as scheduling weight, admission threshold, queue management threshold, link layer protocol Configuration, etc.), these are pre-configured into the access network equipment by the operator.
  • GLR guranteed bit rate
  • Non-GBR bearer is used to specify the control bearer-level packet forwarding method defined in the access node (such as scheduling weight, admission threshold, queue management threshold, link layer protocol Configuration, etc.), these are pre-configured into the access network equipment by the operator.
  • GBR means that the bit rate required by the bearer is "permanently" allocated by the network, and the corresponding bit rate can be maintained even when network resources are tight.
  • MBR maximum bit rate
  • the maximum bit rate (MBR) parameter defines the upper limit of the rate that the GBR bearer can reach with sufficient resources.
  • MBR must be greater than or equal to the value of GBR.
  • Non-GBR refers to that under the condition of network congestion, the service (or bearer) needs to bear the requirement of lowering the speed. Since the Non-GBR bearer does not need to occupy fixed network resources, it can be established for a long time. The GBR bearer is generally established only when needed.
  • Figure 1 is a schematic diagram of a communication system of the present application.
  • the relay node 103 can be used to provide a relay service for the at least one terminal 105 and the access network device 101.
  • the number of relay nodes 103 may be one or multiple, that is, multiple relay nodes provide relay services for the first terminal device and the access network device at the same time. In other words, multiple relay nodes provide relay services for the access network device.
  • the access network device 101 needs to communicate with the terminal 105 through the relay node 103 and the relay node 107.
  • the wireless communication system 100 shown in FIG. 1 is only to illustrate the technical solution of the application more clearly, and does not constitute a limitation to the application.
  • Those of ordinary skill in the art will know that with the evolution of the network architecture and new services In the emergence of scenarios, the technical solutions provided in this application are equally applicable to similar technical problems.
  • the relay node may be a terminal type node.
  • communication between the relay node 103 and the relay node 107 and between the relay node 107 and the terminal 105 can be carried out through a sidelink (also referred to as a PC5 port).
  • the access network device sends configuration information for each relay node or terminal, and the configuration information is used to instruct the relay node or terminal to establish a bearer with the respective upper node or lower node.
  • the relay node in the traditional solution is usually an access network device.
  • the current relay node may be a terminal device, that is, the terminal also has a relay function.
  • the signaling overhead of the bearer configuration method is relatively large.
  • Fig. 2 shows a schematic flowchart of a relay communication method according to an embodiment of the present application.
  • the access network device determines third configuration information, where the third configuration information is used to configure a bearer between the second node and at least one lower-level node.
  • the access network device may use the third configuration information to enable the second node to configure the bearer for communication between the second node and the lower-level node.
  • the bearer between the second node and a certain subordinate node may be a channel used for communication between the subordinate node and the second node.
  • step 201 may be that the access network device receives the third configuration information from the core network device.
  • the core network device sends the third configuration information to the access network device. That is, the third configuration information may be triggered by the core network device.
  • the access network device may not parse the third configuration information, that is, transparently transmit the third configuration information.
  • the access network device may generate the third configuration information.
  • the access network device can trigger the generation of the third configuration information by itself.
  • the third configuration information includes QoS information.
  • the QoS information can be used to indicate the communication quality required by the data.
  • the QoS information includes allocation and retention priority (allocation and retention priority, ARP), GBR, maximum bit rate (maximum bit rate, MBR), and maximum aggregation bit rate per access point (access point name, APN) (perAPN aggregation maximum bit rate, AMBR), communication quality identifier (5G QoS Identifier, 5QI), QCI, reflective QoS attribute (reflective QoS attribute, RQA), data bearer (data radio bearer, DRB) in the configuration of the packet data aggregation protocol ( At least one item in the packet data conformance protocol, PDCP) configuration.
  • ARP allocation and retention priority
  • GBR maximum bit rate
  • MBR maximum bit rate
  • APN maximum aggregation bit rate per access point
  • AMBR perAPN aggregation maximum bit rate
  • communication quality identifier 5G QoS Identifier, 5QI
  • QCI reflective QoS attribute
  • RQA reflective QoS attribute
  • DRB data radio bearer
  • the access network device sends the third configuration information to the second node.
  • the second node receives the third configuration information sent by the access network device.
  • the access network device may send the third configuration information to the second node.
  • the second node may be a terminal with a relay function, or a relay node, or an integrated access backhaul (IAB) node.
  • IAB integrated access backhaul
  • the second node if it refuses to receive the third configuration information, it sends indication information indicating a configuration failure to the access network device.
  • the indication information may include the bearer identification of the bearer configuration failure to indicate which bearer is specific Configuration failed.
  • the bearer identification of the bearer configuration failure may be indicated by a list.
  • the third configuration information sent by the access network device to the second node may also be referred to as a "radio bearer setup request-IAB".
  • the access network device may send the first configuration information to the second node when it is determined that there is no bearer corresponding to the second bearer between the first node and the second node, and the second node
  • the second bearer is a bearer between the first node and the terminal, and the terminal is a child node of the first node.
  • the terminal is a child node of the first node, and one or more second bearers may exist between the terminal and the first node.
  • the first node is a child node of the second node, and one or more first bearers may exist between the first node and the second node.
  • the terminal can use the target second bearer corresponding to the data to send to the first node.
  • the first node has the QoS information corresponding to the target second bearer. Corresponding QoS information is added to it for subsequent nodes to perform bearer mapping after receiving data.
  • the first node can select a suitable target first bearer and send it to the second node according to the QoS information of the data.
  • the bearer between the first node and the terminal, and the bearer between the first node and the second node can correspond to the same QoS information or similar QoS, so that the The data of the QoS information is sent from the terminal to the second node. Since the access network device can learn the bearer information of each node and the node's corresponding subordinate node, the access network device can learn whether there is a corresponding bearer between adjacent links to determine whether to send the second node to the corresponding node. Three configuration information. Through the above-mentioned qos and bearer mapping method, there is no need to establish bearer-related configurations for each bearer of each UE at each node.
  • the relationship between the existing bearer and the qos between each two nodes is used to change the difference of the UE.
  • the qos data is mapped to the bearer between different nodes, which greatly reduces the signaling overhead of configuring the bearer, as well as the storage capacity of each relay node, and reduces the complexity.
  • the third configuration information may specifically include QoS information corresponding to the target first bearer, so that the second node establishes the target first bearer between the second node and the first node according to the QoS information .
  • the first node can be the relay node 107
  • the second node can be the relay node 103
  • the terminal can be the node 105
  • the access network device 101 determines the relay node 103 and the relay node
  • the absence of a bearer between 107 corresponds to the target second bearer between the node 105 and the relay node 107
  • the access network device 101 sends configuration information to the relay node 103 for the relay node 103 to be the relay
  • the node 107 configures the target first bearer.
  • the access network device may establish a bearer (for example, a target first node) for the first node and a subordinate node (for example, a terminal) of the first node.
  • a bearer for example, a target first node
  • a subordinate node for example, a terminal
  • the access network device may also detect that the second node is connected to the second node in the process of establishing a bearer (for example, a target second bearer) for the first node and a subordinate node (for example, terminal) of the first node. Whether there is a bearer corresponding to the target second bearer among the bearers between the network access devices.
  • the target second bearer has a corresponding relationship with target QoS information
  • the access network device may determine the second node according to whether there is a bearer corresponding to the target QoS information in the bearer between the second node and the access network device. Whether the bearer between the node and the access network device has a bearer corresponding to the second bearer.
  • the first configuration information may be carried in fourth configuration information, and the fourth configuration information is used to configure the second node to have a relay capability.
  • the access network device configures the second node as a relay node, for example, when sending fourth configuration information for configuring the second node to have a relay capability to the second node, pass the fourth The configuration information carries the first configuration information, avoiding special configuration of the first configuration information, and saving signaling overhead.
  • the second node may be configured with a bearer between the second node and the access network device.
  • a bearer between the second node and the access network device.
  • the access network device can configure the bearer between the second node and its child nodes. In this way, multiple bearers can be established at one time to avoid no bearers that can be mapped when there is data transmission.
  • the access network device is configured for the second node for the second node and In the case of the bearer between the access network devices, the access network device may directly send configuration information for indicating the bearer between the second node and the access network device to the second node.
  • the second node generates the first configuration information according to the third configuration information, where the first configuration information is used to configure a bearer between the first node and the second node, and the second node is used for A relay communication service is provided between the first node and the access network device.
  • the second node may generate first configuration information for configuring a bearer with the first node.
  • the third configuration information includes QoS information
  • step 203 may specifically be that the second node determines the corresponding RLC configuration and/or logical channel configuration according to the QoS information, and carries the RLC configuration and/or logical channel configuration in The first configuration information.
  • the second node can configure a bearer corresponding to the QoS information for the first node according to the QoS information, so that the first node can transmit in the corresponding bearer according to the QoS information of the data, thereby improving communication quality.
  • the third configuration information may also include at least one of a bearer identity (ID), PDCP configuration, radio link control (RLC) configuration, or logical channel configuration, so that the first configuration information It includes at least one of bearer identifier, PDCP configuration, RLC configuration, or logical channel configuration.
  • ID bearer identity
  • RLC radio link control
  • logical channel configuration so that the first configuration information It includes at least one of bearer identifier, PDCP configuration, RLC configuration, or logical channel configuration.
  • the RLC configuration or logical channel configuration can also be configured for the relay according to the received qos.
  • the first configuration information may also include QoS information, which is used to indicate the QoS of the corresponding bearer establishment.
  • QoS information which is used to indicate the QoS of the corresponding bearer establishment.
  • the base station generates the third configuration information, which is used to configure bearers between nodes at all levels, and make each node know the corresponding bearer qos information.
  • the RLC configuration or logical channel configuration in the third configuration information may be the same as or different from the RLC configuration or logical channel configuration in the first configuration information; the bearer identifier and PDCP configuration in the third configuration information may be the same as The bearer identifier in the first configuration information is the same as the PDCP configuration, which is not limited in this application.
  • the bearer in the embodiment of the present application may be an evolved packet system (EPS) bearer (bearer) or a data radio bearer (DRB).
  • EPS evolved packet system
  • DRB data radio bearer
  • the bearer identifier may be EPS bearer ID or DRB bearer ID.
  • the second node sends the first configuration information to the first node.
  • the first node receives the first configuration information sent by the second node.
  • the second node as the parent node may send the first configuration information to the first node as the child node.
  • the parent node allocates the configuration information used to establish the bearer to the child node, that is, the distributed configuration bearer, which does not need to be configured through the access network equipment uniformly, avoiding the upper node to save each lower node (referring to the first node lower level or lower level, etc.) Each bearer context, thereby saving signaling overhead.
  • the first configuration information may also be referred to as “radio resource control (RRC) reconfiguration information (reconfig-IAB)".
  • RRC radio resource control
  • step 204 may be performed by the second node after step 203 is completed.
  • this step 204 may also be performed by the second node after receiving the configuration request sent by the first node.
  • the first node may send a configuration request to the second node when there is a bearer demand, so as to request the first node to configure a bearer for the second node.
  • a bearer for example, the first bearer
  • the second bearer may be between the first node and the second node.
  • the first node can send the configuration information to the second node. That is, when the data received by the first node or the bearer between the first node and the child node is not between the first node and the second node, it will actively request that there is a matching QoS for data transmission.
  • the configuration request may include QoS information
  • the first node may configure a corresponding bearer for the second node according to the QoS information included in the configuration request.
  • the first node may be a terminal with a relay function, or a common terminal, or a relay node, or an integrated access backhaul (IAB) node.
  • IAB integrated access backhaul
  • the node with the relay function may be a terminal with the relay function, that is, the first node may be a terminal.
  • the third configuration information may not include the RLC configuration or the logical channel configuration, that is, the third configuration information includes the bearer identifier and the PDCP configuration.
  • the second node may send feedback information to the access network device to indicate that the first node completes the configuration.
  • This feedback information may be referred to as "radio bearer setup response-IAB". If the bearer is not successfully established, the bearer identifier of the failed establishment is returned.
  • the first configuration information received by the first node may also be sent by the access network device. In this case, this embodiment may not perform the above steps 201-204.
  • the access network device may directly send the first configuration information to the first node, or may be forwarded to the first node by other relay nodes, which is not limited in this application.
  • the second node forwards the first configuration information, but the second node does not parse the first configuration information, that is, the second node transparently transmits the first configuration information.
  • the access network device may also send the first configuration information to the second node, so that the parent node (the first node) of the first node The second node) can learn the bearer of the child node, that is, the second node can learn the bearer configuration with the lower node, thereby improving the communication efficiency.
  • the present application does not limit the order in which the access network device sends the first configuration information to the first node and sends the first configuration information to the second node.
  • the first node establishes at least one bearer with the second node according to the first configuration information.
  • the access network device sends third configuration information to the second node, where the third configuration information is used to indicate the bearer configured for the second node and at least one subordinate node, so that the second node as the parent node can send to the second node as the child node.
  • the first node of the node sends the first configuration information. That is to say, the parent node assigns the configuration information used to establish the bearer to the child node, that is, the distributed configuration bearer does not need to be configured through the access network equipment uniformly, avoiding the upper-level node to save the context of each bearer of each lower-level node, thereby Save the signaling overhead.
  • the first node when the first node is a node with a relay function, the first node may also send second configuration information to the terminal, where the second configuration information is used to configure the communication between the first node and the terminal. Bearer.
  • the first node may also serve as a parent node to send configuration information to a subordinate node, so as to configure a bearer between the first node and the subordinate node.
  • the distributed configuration bearer does not need to be configured through the access network equipment uniformly, which prevents the upper-level node from saving the context of each bearer of each lower-level node, thereby saving signaling overhead.
  • the child node may first send a bearer configuration request.
  • the first node may also serve as a parent node before sending the configuration information to the subordinate node, the first node obtains configuration information from the access network device, and the configuration information is used to configure the bearer of the first node and at least one subordinate node.
  • the first node may send feedback information to the second node, and the feedback information is used to indicate that the bearer configuration is completed.
  • the feedback information may be carried in an RRC configuration complete message (RRC reconfigcomple).
  • the first node may receive data from a lower-level node (for example, a terminal), and select an appropriate bearer for transmission according to the QoS information of the data. Accordingly, the terminal sends the data.
  • a lower-level node for example, a terminal
  • the first data received by the first node from the terminal may include QoS information, or the first node may determine the first data according to the bearer used by the first data.
  • QoS information so that the first node selects the first bearer from the multiple bearers that have been established between the first node and the second node according to the QoS information, and sends the first data through the selected first bearer, thereby improving Communication efficiency.
  • the second node may also determine an appropriate bearer according to the QoS information and time and time information to meet the transmission service quality requirements of the service.
  • the first data includes time information
  • the time information is used to indicate the initial sending moment of the first data or the current length of time the first data has been transmitted, so that the first node according to the QoS information of the first data and The time information can more accurately select a suitable bearer from the multiple bearers between the first node and the second node, thereby further improving communication efficiency and meeting service requirements.
  • the time information may be the sending moment of the initial transmission of the first data, for example, the time when the first data enters the network, so that the first node can learn the time occupied by the current transmission of the first data according to the time information.
  • the first node may also learn the total duration of the first data transmission requirement according to the QoS information of the first data. In this way, the first node can select a more appropriate bearer to transmit the first data according to the total duration of the first data transmission demand and the duration of the first data already occupied, thereby further improving communication efficiency.
  • the time information can directly indicate the current length of time the first data has been transmitted, such as setting a timer, so that the first node can select a more appropriate bearer transmission according to the total time required for the first data transmission and the time length occupied by the first data The first data thereby further improves communication efficiency.
  • the first data may further include at least one of bearer identification, logical channel identification (LCID), QCI, hop count information, ARP, or GBR information.
  • QCI may indicate a packet delay budget (PDB), and the PDB may indicate the total time required for data transmission.
  • PDB packet delay budget
  • This information can be placed in the adaptation layer. This information allows the receiving relay node to more reasonably determine the QoS to which the data needs to be mapped.
  • the QCI form can be as shown in Table 1 below:
  • the wireless channel delay may be the transmission delay of the data packet successfully received from the SGi interface on the packet data network (PDN) side of the core network packet data network (PDN) side and successfully sent by the Zd interface of the communication terminal.
  • the first node receives time information from the terminal, and the time information that determines the current occupied time of the first data transmission can be from the received buffer status report (BSR). Or the calculation starts at the time of the scheduling request (SR), or the uplink scheduling starts from the physical downlink control channel (PDCCH) sent by the access network device until the first node receives the first data.
  • BSR buffer status report
  • SR scheduling request
  • PDCCH physical downlink control channel
  • the first node may receive first data from the access network device or the second node.
  • the first data may carry time information, and the time information may have a one-to-one correspondence with the bearer or with the data
  • One-to-one correspondence may also be one-to-one correspondence with media access control (MAC) service data unit (SDU).
  • MAC media access control
  • the time information may indicate relative time or absolute time.
  • it may specifically be a system frame number (SFN) number or a super frame (H-SFN) number, and may be coordinated universal time (UTC) time.
  • the relative time can be how many frames are transmitted, or how many hours, minutes and seconds
  • the absolute time can be a specific frame number or superframe number, or a specific time, a certain time, a certain minute, and a certain second.
  • the time information may be in a field of the adaptation layer.
  • the time information in the uplink data may be added in the adaptation layer.
  • the relay node adds time information at the adaptation layer. If the time information is the start time, after the directly connected relay node is added, the rest of the nodes can directly forward until it is transmitted to the access network device. If the time information is the used time, each relay that receives the data will be The used time length needs to be updated in the adaptation layer; or the time information of the downlink data can also be added in the adaptation layer.
  • the access network device sends data to the relay node, the time information is added to the adaptation layer. Similarly, if it is the initial data transmission time, subsequent nodes directly forward the value, and if it is the duration information, it needs to be updated.
  • the time information may be carried in a media access control (media access control, MAC)-control element (CE).
  • media access control media access control, MAC
  • CE media access control element
  • the first node is a terminal, or the terminal sends first data to the first node
  • the first data carries time information
  • the first data can be regarded as a data packet
  • the data packet includes a control field and
  • the data field can be MAC CE
  • the data field can indicate the specific content of the data. It can also be that during downlink transmission, the base station adds this information to the MAC CE.
  • time information may also be carried in the PDCP header or the RLC header.
  • the first data includes one or more time information and corresponding one or more business data.
  • the first data may include multiple types of service data, and each type of service data corresponds to one piece of time information.
  • MAC CE and MAC SDU including time information have a one-to-one mapping relationship, that is, MAC CE1 corresponds to MAC SDU1, MAC CE2 corresponds to MAC SDU2, and MAC CE3 corresponds to MAC SDU3.
  • the MAC CE can be identified by the SFN
  • the MAC SDU can be identified by the logical channel number, that is, the SFN identification and the logical channel number identification have a mapping relationship.
  • multiple time information in the first data can be carried in multiple corresponding MAC CEs, and the multiple MAC CEs can be carried after the same MAC frame header, or can be carried after one MAC frame header.
  • a MAC subheader multiple MAC CEs can be carried after the same MAC header, where R indicates reserved bits, and F2 indicates the size of the following data field. If the following data is larger than 32767 bytes and not the last For a subheader, the value is 1, otherwise it is 0. E indicates whether there is a MAC subheader after the subheader, if it is 1, there is, and if it is 0, the following bytes are MACSDU or MAC CE or padding bits. For example, as shown in Figure 5. SFN1, SFN2,..., SFNn are carried after a MAC header.
  • SFN1 represents the SFN number corresponding to the first MACSDU
  • SFN2 represents the SFN number corresponding to the second MACSDU
  • SFNn represents the SFN number corresponding to the nth MAC SDU. That is, each SFN number described above corresponds to a MAC SDU.
  • each SFN number may also correspond to a MAC SDU with the same logical channel number identifier.
  • each MAC CE of the multiple MAC CEs is carried after a MAC header, for example, as shown in FIG. 6, a certain MAC CE is carried after a MAC header.
  • the corresponding MAC SDU mode for each MAC CE value is the same as the above.
  • the second node as the parent node may send the first configuration information to the first node as the child node.
  • the parent node allocates the configuration information used to establish the bearer to the child node, that is, the distributed configuration bearer does not need to be configured through the access network equipment uniformly, avoiding the upper-level node to save the context of each bearer of each lower-level node, thereby saving trust. Order overhead.
  • FIG. 7 shows a schematic block diagram of a relay communication apparatus 700 according to an embodiment of this application.
  • the apparatus 700 may correspond to the first node in the embodiment shown in FIG. 3, and may have any function of the first node in the method.
  • the device 700 includes a transceiver module 710 and a processing module 720.
  • the first node may be a terminal.
  • the transceiver module 710 is configured to receive first configuration information from a second node, the first configuration information is used to configure a bearer between the first node and the second node, and the second node is used to provide Provide relay communication services between access network devices;
  • the processing module 720 is configured to establish at least one bearer with the second node according to the first configuration information.
  • the processing module 720 is further configured to determine the first bearer of the at least one bearer according to the quality of service QoS information of the first data;
  • the transceiver module 710 is configured to send the first data to the second node through the first bearer.
  • the first data includes time information, and the time information is used to indicate the initial sending moment of the first data or the current length of time the first data has been transmitted, where the processing module 720 is specifically configured to:
  • the first bearer is determined according to the QoS information of the first data and the time information.
  • the time information is carried in a field in the adaptation layer.
  • the first node is a terminal, and the time information is carried in a media access control control element MAC CE in the first data.
  • the transceiver module 710 is further configured to send second configuration information to the first terminal, where the second configuration information is used to configure a bearer between the first node and the first terminal.
  • the first configuration information includes at least one of a bearer identifier, a packet data convergence protocol PDCP configuration, a radio link control RLC configuration, or a logical channel configuration.
  • the transceiver module 710 is further configured to send a configuration request to the second node, where the configuration request is used to request configuration and the second node. Bearer between nodes.
  • the access network device sends third configuration information to the second node, and the third configuration information is used to indicate the bearer configured for the second node and at least one lower-level node.
  • the second node as the parent node may send the first configuration information to the first node as the child node. That is to say, the parent node assigns the configuration information used to establish the bearer to the child node, that is, the distributed configuration bearer does not need to be configured through the access network equipment uniformly, avoiding the upper-level node to save the context of each bearer of each lower-level node, thereby Save the signaling overhead.
  • FIG. 8 shows an apparatus 800 for relay communication provided by an embodiment of the present application.
  • the apparatus 800 may be the access network device described in FIG. 7.
  • the device can adopt the hardware architecture shown in Figure 8.
  • the device may include a processor 810 and a transceiver 830.
  • the device may also include a memory 840.
  • the processor 810, the transceiver 830, and the memory 840 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 720 in FIG. 7 may be implemented by the processor 810, and the related functions implemented by the transceiver module 710 may be implemented by the processor 810 controlling the transceiver 830.
  • the processor 810 may be a general-purpose central processing unit (central processing unit, CPU), microprocessor, application-specific integrated circuit (ASIC), dedicated processor, or one or more It is an integrated circuit that implements the technical solutions of the embodiments of this application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control relay communication devices (such as base stations, terminals, or chips), execute software programs, and process software program data .
  • the processor 810 may include one or more processors, such as one or more central processing units (CPU).
  • processors such as one or more central processing units (CPU).
  • CPU central processing units
  • the CPU may be a single processor.
  • the core CPU can also be a multi-core CPU.
  • the transceiver 830 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 840 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable read only memory, EPROM), and read-only memory.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable read only memory
  • read-only memory EPROM
  • a compact disc read-only memory, CD-ROM
  • the memory 840 is used to store related instructions and data.
  • the memory 840 is used to store program codes and data of the access network device, and may be a separate device or integrated in the processor 810.
  • the processor 810 is configured to control the transceiver to perform information transmission with the terminal.
  • the processor 810 is configured to control the transceiver to perform information transmission with the terminal.
  • the apparatus 800 may further include an output device and an input device.
  • the output device communicates with the processor 810 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor 601 and can receive user input in various ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 8 only shows a simplified design of the device for relay communication.
  • the device may also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all the access network equipment that can implement this application are included in this application. Within the scope of protection.
  • the apparatus 800 may be a chip, for example, may be a communication chip that can be used in an access network device to implement related functions of the processor 810 in the access network device.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes, and when the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be an access network device or a circuit.
  • the device can be used to perform the actions performed by the access network equipment in the foregoing method embodiments.
  • FIG. 9 shows a schematic block diagram of an apparatus 900 for relay communication in an embodiment of the present application.
  • the apparatus 900 may correspond to the second node in the embodiment shown in FIG. 2 and may have any function of the second node in the method.
  • the device 900 includes a processing module 910 and a transceiver module 920.
  • the second node may be a terminal.
  • the processing module 910 is configured to obtain first configuration information, the first configuration information is used to configure a bearer between the first node and the second node, and the second node is used to provide a difference between the first node and the access network device. Provide relay communication services between;
  • the transceiver module 920 is configured to send the first configuration information to the first node.
  • the transceiver module 920 is further configured to receive third configuration information, where the third configuration information is used to configure a bearer between the second node and at least one subordinate node of the second node; wherein, the processing module 910 is specifically configured to: generate the first configuration information according to the third configuration information.
  • the third configuration information includes at least one of quality of service QoS information, bearer identifier, PDCP configuration, RLC configuration, or logical channel configuration.
  • the first configuration information includes at least one of a bearer identifier, PDCP configuration, RLC configuration, or logical channel configuration.
  • the second node as the parent node may send the first configuration information to the first node as the child node.
  • the parent node allocates the configuration information used to establish the bearer to the child node, that is, the distributed configuration bearer does not need to be configured through the access network equipment uniformly, avoiding the upper-level node to save the context of each bearer of each lower-level node, thereby saving trust. Order overhead.
  • FIG. 10 shows an apparatus 1000 for relaying communication provided by an embodiment of the present application.
  • the apparatus 1000 may be the terminal described in FIG. 9.
  • the device can adopt the hardware architecture shown in FIG. 10.
  • the device may include a processor 1010 and a transceiver 1020.
  • the device may also include a memory 1030.
  • the processor 1010, the transceiver 1020, and the memory 1030 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 910 in FIG. 10 may be implemented by the processor 1010, and the related functions implemented by the transceiver module 920 may be implemented by the processor 1010 controlling the transceiver 1020.
  • the processor 1010 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), a dedicated processor, or one or more It is an integrated circuit that implements the technical solutions of the embodiments of this application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control relay communication devices (such as base stations, terminals, or chips), execute software programs, and process software program data .
  • the processor 1010 may include one or more processors, such as one or more central processing units (CPU).
  • processors such as one or more central processing units (CPU).
  • CPU central processing units
  • the CPU may be a single processor.
  • the core CPU can also be a multi-core CPU.
  • the transceiver 1020 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 1030 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable programmable memory, EPROM), read-only memory A compact disc (read-only memory, CD-ROM), the memory 1030 is used to store related instructions and data.
  • the memory 1030 is used to store program codes and data of the terminal, and may be a separate device or integrated in the processor 1010.
  • the processor 1010 is used to control the transceiver to perform information transmission with the terminal.
  • the processor 1010 is used to control the transceiver to perform information transmission with the terminal.
  • the apparatus 1000 may further include an output device and an input device.
  • the output device communicates with the processor 1010 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor 901 and can receive user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 10 only shows a simplified design of the device for relay communication.
  • the device may also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all terminals that can implement this application are within the protection scope of this application. within.
  • the device 1000 may be a chip, for example, a communication chip that can be used in a terminal to implement related functions of the processor 1010 in the terminal.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes, and when the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be a terminal or a circuit.
  • the device can be used to perform the actions performed by the terminal in the foregoing method embodiments.
  • FIG. 11 shows a schematic block diagram of an apparatus 1100 for relay communication according to an embodiment of the present application.
  • the apparatus 1100 may correspond to the access network device in the embodiment shown in FIG. 2 and may have any function of the access network device in the method.
  • the device 1100 includes a processing module 1110 and a transceiver module 1120.
  • the processing module 1110 is configured to determine third configuration information, where the third configuration information is used to configure a bearer between the second node and at least one subordinate node of the second node;
  • the transceiver module 1120 is configured to send the third configuration information to the second node.
  • the transceiver module 1120 is further configured to send first configuration information to the first node, where the first configuration information is used to configure a bearer between the first node and the second node, and the second node is used for Providing a relay communication service between the first node and the access network device;
  • the transceiver module 1120 is also used to send the first configuration information to the second node.
  • the first configuration information includes at least one of a bearer identifier, a packet data convergence protocol PDCP configuration, a radio link control RLC configuration, or a logical channel configuration.
  • the third configuration information includes at least one of quality of service QoS information, bearer identifier, PDCP configuration, RLC configuration, or logical channel configuration.
  • FIG. 12 shows an apparatus 1200 for relaying communication provided by an embodiment of the present application.
  • the apparatus 1200 may be the terminal described in FIG. 11.
  • the device can adopt the hardware architecture shown in FIG. 12.
  • the device may include a processor 1210 and a transceiver 1220.
  • the device may also include a memory 1230.
  • the processor 1210, the transceiver 1220, and the memory 1230 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 1110 in FIG. 11 may be implemented by the processor 1210, and the related functions implemented by the transceiver module 1120 may be implemented by the processor 1210 controlling the transceiver 1220.
  • the processor 1210 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), a dedicated processor, or one or more It is an integrated circuit that implements the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control relay communication devices (such as base stations, terminals, or chips), execute software programs, and process software program data .
  • the processor 1210 may include one or more processors, such as one or more central processing units (CPU).
  • processors such as one or more central processing units (CPU).
  • CPU central processing units
  • the CPU may be a single processor.
  • the core CPU can also be a multi-core CPU.
  • the transceiver 1220 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 1230 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable read only memory, EPROM), read-only memory A compact disc (read-only memory, CD-ROM), the memory 1230 is used to store related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable memory
  • CD-ROM compact disc
  • the memory 1230 is used to store program codes and data of the terminal, and may be a separate device or integrated in the processor 1210.
  • the processor 1210 is configured to control the transceiver and the terminal to perform information transmission.
  • the processor 1210 is configured to control the transceiver and the terminal to perform information transmission.
  • the apparatus 1200 may further include an output device and an input device.
  • the output device communicates with the processor 1210 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor 1101 and can receive user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 12 only shows a simplified design of the device for relaying communication.
  • the device may also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all terminals that can implement this application are within the protection scope of this application. within.
  • the device 1200 may be a chip, for example, a communication chip that can be used in a terminal to implement related functions of the processor 1210 in the terminal.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes, and when the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be a terminal or a circuit.
  • the device can be used to perform the actions performed by the terminal in the foregoing method embodiments.
  • FIG. 13 shows a simplified structural diagram of a terminal. It is easy to understand and easy to illustrate.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, control the terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminals may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 13. In actual end products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal, and the processor with the processing function can be regarded as the processing unit of the terminal.
  • the terminal includes a transceiver unit 1310 and a processing unit 1320.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1310 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1310 as the sending unit, that is, the transceiver unit 1310 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1310 is configured to perform sending and receiving operations on the terminal side in the foregoing method embodiment
  • processing unit 1320 is configured to perform other operations on the terminal in addition to the transceiving operation in the foregoing method embodiment.
  • the processing unit 1320 is configured to execute step 203 shown in FIG. 2.
  • the transceiver unit 1310 is configured to perform the transceiver operation in step 202 in FIG. 2, and/or the transceiver unit 1310 is also configured to perform other transceiver steps on the terminal side in the embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the device shown in FIG. 13 can also be referred to.
  • the device can perform functions similar to the processor 1310 in FIG. 13.
  • the device includes a processor 1401, a data sending processor 1403, and a data receiving processor 1405.
  • the processing module in the foregoing embodiment may be the processor 1401 in FIG. 14 and completes corresponding functions.
  • the transceiver modules in the foregoing embodiment may be the receiving data processor 1105 and the sending data processor 1403 in FIG. 14.
  • the channel encoder and the channel decoder are shown in FIG. 14, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the processing device 1500 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1503 and an interface 1504.
  • the processor 1503 performs the function of the processing module, and the interface 1504 performs the function of the above-mentioned transceiver module.
  • the modulation subsystem includes a memory 1506, a processor 1503, and a program stored in the memory and capable of running on the processor. When the processor executes the program, the program described in the first to fifth embodiments is implemented. method.
  • the memory 1506 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1500, as long as the memory 1506 can be connected to the The processor 1503 is fine.
  • the device 1600 includes one or more radio frequency units, such as a remote radio unit (RRU) 1610 and one Or multiple baseband units (BBU) (also referred to as digital units, DU) 1620.
  • RRU remote radio unit
  • BBU baseband units
  • the RRU 1610 may be called a transceiver module, which corresponds to the foregoing transceiver module.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1611 and a radio frequency unit 1612 .
  • the RRU 1610 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 1610 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 1610 and the BBU 1620 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1620 is the control center of the base station, and may also be called a processing module, which may correspond to the processing module 620 in FIG. 6, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the access network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1620 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1620 also includes a memory 1621 and a processor 1622.
  • the memory 1621 is used to store necessary instructions and data.
  • the processor 1622 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the access network device in the foregoing method embodiment.
  • the memory 1621 and the processor 1622 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • a computer-readable storage medium is provided, and an instruction is stored thereon, and the method in the foregoing method embodiment is executed when the instruction is executed.
  • a computer program product containing instructions is provided, and when the instructions are executed, the method in the foregoing method embodiment is executed.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory synchronous link DRAM, SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component may be based on, for example, a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a and/or B can mean: A alone exists, and both A and B exist. , There are three cases of B alone. Among them, the presence of A or B alone does not limit the number of A or B. Taking the existence of A alone as an example, it can be understood as having one or more A.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or an access network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

一种中继通信的方法和装置,方法可以应用于通信系统,例如V2X、LTE-V、V2V、车联网、MTC、IoT、LTE-M,M2M,物联网等。方法包括:接入网设备向第二节点发送第三配置信息,第三配置信息用于指示为第二节点与至少一个下级节点配置的承载,这样作为父节点的第二节点可以向作为子节点的第一节点发送第一配置信息。也就是说,父节点向子节点分配用于建立承载的配置信息,即分布式配置承载,不需要统一通过接入网设备配置,避免上级节点保存每个下级节点的每个承载的上下文,从而节省了信令开销。

Description

用于中继通信的方法和装置 技术领域
本申请涉及通信领域,更具体涉及一种用于中继通信的方法和装置。
背景技术
传统方案中,在多跳网络场景中,接入网设备为每个中继节点或终端发送配置信息,该配置信息用于指示中继节点或终端与各自的上级节点或下级节点建立承载。每个中继节点保存每个终端的每个承载的承载信息,从而保证数据的服务质量(quality of service,QoS)。
其中,传统方案中的中继节点通常为接入网设备,随着业务特性的需求,目前中继节点可以是终端,即终端也具有中继功能。但是在终端具有中继功能,以及结合上述传统方案的场景中,承载配置的方式信令开销比较大。
发明内容
本申请提供一种中继通信的方法和装置,能够节省信令开销。
第一方面,提供了一种中继通信的方法,该方法包括:第一节点从第二节点接收第一配置信息,该第一配置信息用于配置该第一节点和该第二节点之间的承载,该第二节点用于为该第一节点和接入网设备之间提供中继通信服务;该第一节点根据该第一配置信息,建立与该第二节点的至少一个承载。
作为父节点的第二节点可以向作为子节点的第一节点发送该第一配置信息。这样父节点向子节点分配用于建立承载的配置信息,即分布式配置承载,不需要统一通过接入网设备配置,避免上级节点保存每个下级节点的每个承载的上下文,从而节省了信令开销。
在一些可能的实现方式中,该方法还包括:该第一节点根据第一数据的服务质量QoS信息,确定该至少一个承载中的第一承载;该第一节点通过该第一承载,向该第二节点发送该第一数据。
第一节点从终端接收到的第一数据可以包括QoS信息,或者第一节点可以根据第一数据确定出该第一数据的QoS信息,这样第一节点根据该QoS信息从第一节点和第二节点之间已经建立的多个承载中选择第一承载,并通过选中的第一承载发送该第一数据,从而提高了通信效率。
在一些可能的实现方式中,该第一数据包括时间信息,该时间信息用于指示该第一数据的初始发送时刻或该第一数据当前已传输的时长,其中,该第一节点根据第一数据的服务质量QoS信息,确定该至少一个承载中的第一承载包括:该第一节点根据该第一数据的QoS信息和该时间信息,确定该第一承载。
该时间信息可以是第一数据初始发送的发送时刻,例如,第一数据进入网络的时间,这样第一节点可以根据该时间信息获知当前传输第一数据已经占用的时长。第一节点也可以根据第一数据的QoS信息获知该第一数据传输需求的总时长。这样第一节点可以根据 第一数据传输需求的总时长和第一数据已经占用的时长选择更加合适的承载传输该第一数据,从而更进一步提高通信效率。
在一些可能的实现方式中,该时间信息携带在适配层中的字段中。
在第一节点为具有中继能力的节点的情况下,例如,第一节点向第二节点发送上行数据时,上行数据中的时间信息可以是在适配层中添加的。具体的,对于上行传输,对于直连终端的中继节点,中继节点添加时间信息在适配层。若时间信息为起始时刻,则直连的中继节点添加后,其余节点直接转发即可直至传输给接入网设备,若时间信息为已使用时长,则每个接收到数据的中继均需要在适配层更新已经使用的时长;或者下行数据的时间信息也可以是在适配层中添加的。接入网设备将数据发给中继节点时,将时间信息添加在适配层,类似的若为起始发送数据时间则后续节点直接转发该值,若为时长信息,则需要更新。即本申请实施例提供了一种发送时间信息的方式。
在一些可能的实现方式中,该第一节点为终端,该时间信息携带在该第一数据中的媒体访问控制控制元素MAC CE中。
该第一数据可以看作数据包,数据包中包括控制字段和数据字段,控制字段可以是MAC CE,数据字段可以指示数据的具体内容。即在第一节点为终端的情况下,本申请实施例提供了另一种发送时间信息的方式。
在一些可能的实现方式中,该时间信息还可以携带在PDCP包头或者RLC包头中,本申请实施例提供了多种其他发送时间信息的方式。
在一些可能的实现方式中,该第一数据包括一个或多个时间信息,以及对应的一个或多个业务数据。
该第一数据可以包括多种类型的业务数据,每种类型的业务数据对应一个时间信息。这样可以更精确的为第一数据配置合适的承载,更进一步提高通信效率。
在一些可能的实现方式中,该第一数据中的多个时间信息可以携带在对应的多个MAC CE中,该多个MAC CE可以携带在同一个MAC帧头之后,也可以各自携带在一个MAC帧头之后。也就是说,本申请实施例提供了多种MAC CE的格式,通过MAC CE携带该时间信息,从而实现更精确的选择合适的承载进行通信,提高了通信效率。
在一些可能的实现方式中,该方法还包括:该第一节点向第一终端发送第二配置信息,该第二配置信息用于配置该第一节点和该第一终端之间的承载。
在第一节点为具有中继功能的节点的情况下,第一节点还可以作为父节点向下级节点发送配置信息,以配置第一节点和下级节点之间的承载。这样分布式配置承载,不需要统一通过接入网设备配置,避免上级节点保存每个下级节点的每个承载的上下文,从而节省了信令开销。
在一些可能的实现方式中,该第一配置信息包括承载标识、分组数据汇聚协议PDCP配置、无线链路控制RLC配置或逻辑信道配置中的至少一项。
在一些可能的实现方式中,在该第一节点从该第二节点接收该第一配置信息之前,该方法还包括:该第一节点向该第二节点发送配置请求,该配置请求用于请求配置与该第二节点之间的承载。
第一节点可以在有承载需求的情况下,向第二节点发送配置请求,以请求第一节点为该第二节点配置承载,避免了在第一节点没有承载需求的情况下,第二节点为该第一节点 发送第一配置信息,节省了功耗开销。
在一些可能的实现方式中,该第一节点为终端或中继节点。
在一些可能的实现方式中,若该第二节点拒绝接收该第三配置信息,则向接入网设备发送指示配置失败的指示信息,具体地该指示信息可以包括承载配置失败的承载标识,以指示具体哪个承载配置失败。
第二方面,提供了一种用于中继通信的方法,该方法包括:第二节点获取第一配置信息,该第一配置信息用于配置第一节点和该第二节点之间的承载,该第二节点用于为该第一节点和接入网设备之间提供中继通信服务;该第二节点向该第一节点发送该第一配置信息。
作为父节点的第二节点可以向作为子节点的第一节点发送该第一配置信息。这样父节点向子节点分配用于建立承载的配置信息,即分布式配置承载,不需要统一通过接入网设备配置,避免上级节点保存每个下级节点的每个承载的上下文,从而节省了信令开销。
在一些可能的实现方式中,该方法还包括:该第二节点接收第三配置信息,该第三配置信息用于配置该第二节点和该第二节点的至少一个下级节点之间的承载;其中,该第二节点获取第一配置信息包括:该第二节点根据该第三配置信息,生成该第一配置信息。
在一些可能的实现方式中,该第三配置信息包括服务质量QoS信息、承载标识、PDCP配置、RLC配置或逻辑信道配置中的至少一项。
该第三配置信息中包括QoS信息,第二节点根据该QoS信息确定对应的RLC配置和/或逻辑信道配置,并将RLC配置和/或逻辑信道配置携带在第一配置信息中。换句话说,该第二节点可以根据QoS信息为第一节点配置QoS信息对应的承载,以使得第一节点能够根据数据的QoS信息,在对应的承载中进行传输,从而提高通信质量。
在一些可能的实现方式中,该第一配置信息包括承载标识、PDCP配置、RLC配置或逻辑信道配置中的至少一项。
在一些可能的实现方式中,若该第二节点拒绝接收该第三配置信息,则向接入网设备发送指示配置失败的指示信息,具体地该指示信息可以包括承载配置失败的承载标识,以指示具体哪个承载配置失败。
在一些可能的实现方式中,所述接入网设备确定所述第三配置信息包括:所述接入网设备在确定所述第一节点与所述第二节点之间不存在承载对应于第二承载的情况下,确定所述第一配置信息,所述第二承载为所述第一节点与第一终端之间的承载。
终端为第一节点的子节点,该终端和第一节点之间可以存在一个或多个第二承载。第一节点为第二节点的子节点,该第一节点与该第二节点之间可以存在一个或多个第一承载。在数据从终端发送到接入网设备时,终端可以使用该数据对应的目标第二承载发送到第一节点,第一节点有该目标第二承载对应的QoS信息,第一节点可以在该数据中添加对应的QoS信息,用于后续节点接收到数据后做承载映射。同时第一节点可以根据该数据的QoS信息选择合适的目标第一承载发送到第二节点。换句话说,第一节点和终端之间的承载,以及第一节点和第二节点之间的承载(可以称为相邻链路)可以对应于同一个QoS信息或者相似QoS,可以使得具有该QoS信息的数据从终端发送到第二节点。由于接入网设备能够获知每个节点和节点对应的下级节点的承载信息,因此,接入网设备可以获知相邻链路之间是否存在对应的承载,以确定是否向对应的节点发送该第三配置信息。本申 请实施例中接入网设备能够及时的为第一节点配置承载,提高通信效率。
在一些可能的实现方式中,在该第一节点为具有中继能力的节点的情况下,接入网设备可以在为该第一节点与该第一节点的下级节点(例如,终端)建立承载(例如目标第二承载)的过程中,检测该第一节点和该第二节点之间的承载是否存在与该目标第二承载对应的承载,避免专门配置该第一配置信息,节省了信令开销。
在一些可能的实现方式中,在所述第二节点为终端的情况下,所述第三配置信息携带在第四配置信息中,所述第四配置信息用于配置所述第二节点具有中继能力。
接入网设备可以在配置该第二节点作为中继节点时,例如,在向第二节点发送用于配置该第二节点具有中继能力的第二配置信息时,通过该第四配置信息携带该第一配置信息,避免专门配置该第一配置信息,节省了信令开销。
在一些可能的实现方式中,第二节点在接收到第一节点发送的配置请求之后,发送该第一配置信息。
第一节点可以在有承载需求的情况下,向第二节点发送配置请求,以请求第一节点为该第二节点配置承载,从而节省信令开销。
可选地,该第一节点为终端或中继节点。
第三方面,提供了一种用于中继通信的方法,该方法包括:接入网设备确定第三配置信息,该第三配置信息用于配置该第二节点和该第二节点的至少一个下级节点之间的承载;该接入网设备向该第二节点发送该第三配置信息。
作为父节点的第二节点可以向作为子节点的第一节点发送该第一配置信息。这样父节点向子节点分配用于建立承载的配置信息,即分布式配置承载,不需要统一通过接入网设备配置,避免上级节点保存每个下级节点的每个承载的上下文,从而节省了信令开销。
在一些可能的实现方式中,该方法还包括:该接入网设备向该第一节点发送第一配置信息,该第一配置信息用于配置第一节点和该第二节点之间的承载,该第二节点用于为该第一节点和该接入网设备之间提供中继通信服务;该接入网设备向该第二节点发送该第一配置信息。
在该第一节点从接入网设备接收到该第一配置信息的情况下,该接入网设备也可以将该第一配置信息发送给第二节点,以使得第一节点的父节点(第二节点)能够获知子节点的承载,即第二节点能够获知与下级节点之间的承载配置,从而提高通信效率。
在一些可能的实现方式中,该第一配置信息包括承载标识、分组数据汇聚协议PDCP配置、无线链路控制RLC配置或逻辑信道配置中的至少一项。
在一些可能的实现方式中,该第三配置信息包括服务质量QoS信息、承载标识、PDCP配置、RLC配置或逻辑信道配置中的至少一项。
可选地,该第一节点为终端或中继节点。
第四方面,提供了一种装置,该装置可以是接入网设备,也可以是接入网设备内的芯片。该装置具有实现上述第一方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:接收模块和发送模块,可选地,该装置还包括处理模块,所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该接收模块和 发送模块可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第一方面,及各种可能的实现方式的通信方法。在本设计中,该装置可以为接入网设备。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接收模块和发送模块,可选地,该装置还包括处理模块,接收模块和发送模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述第一方面,以及任意可能的实现的通信方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第五方面,提供了一种确定传输资源的装置,该装置可以是终端,也可以是终端内的芯片。该装置具有实现上述第二方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:接收模块和发送模块。可选地,该装置还包括处理模块。所述接收模块和发送模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第二方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接收模块和发送模块,可选地,该芯片还包括处理模块。接收模块和发送模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述第二方面,以及任意可能的实现的通信方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第六方面,提供了一种确定传输资源的装置,该装置可以是终端,也可以是终端内的 芯片。该装置具有实现上述第三方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:接收模块和发送模块。可选地,该装置还包括处理模块。所述接收模块和发送模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第三方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接收模块和发送模块,可选地,该芯片还包括处理模块。接收模块和发送模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述第三方面,以及任意可能的实现的通信方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第七方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面,及其任意可能的实现方式中的方法的指令。
第八方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面,及其任意可能的实现方式中的方法的指令。
第九方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第三方面,及其任意可能的实现方式中的方法的指令。
第十方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面,或其任意可能的实现方式中的方法。
第十一方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二方面,或其任意可能的实现方式中的方法。
第十二方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第三方面,或其任意可能的实现方式中的方法。
第十三方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面的各方法及各种可能设计的功能的装置、上述第二方面的各方法及各种可能设计的功能的装置和上述具有实现上述第三方面的各方法及各种可能设计的功能的装置。其中,具有实现上述第一方面的各方法及各种可能设计的功能的装置可以是接入网设备,具有实现上述第二方面和第三方面的各方法及各种可能设计的功能的装置可以是终端。
第十四方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面或其任 意可能的实现方式中的方法。
第十五方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面或其任意可能的实现方式中的方法。
第十六方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面或其任意可能的实现方式中的方法。
第十七方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第一方面中任一方面或其任意可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第一方面,或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在接入网设备上。
第十八方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第二方面或其任意可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第二方面,或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在终端上。
第十九方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第三方面或其任意可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第三方面,或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在终端上。
基于上述技术方案,作为父节点的第二节点可以向作为子节点的第一节点发送该第一配置信息。这样父节点向子节点分配用于建立承载的配置信息,即分布式配置承载,不需要统一通过接入网设备配置,避免上级节点保存每个下级节点的每个承载的上下文,从而节省了信令开销。
附图说明
图1是本申请一个通信系统的示意图;
图2是本申请一个实施例的中继通信的方法的示意性流程图;
图3是本申请实施例中MAC帧的示意图;
图4是本申请实施例中MAC帧头的示意图;
图5是本申请实施例的MAC帧的一种MAC CE的示意图;
图6是本申请实施例的MAC帧的另一种MAC CE的示意图
图7是本申请一个具体实施例的中继通信的装置的示意性框图;
图8是本申请一个具体实施例的中继通信的装置的示意性结构图;
图9是本申请另一个实施例的中继通信的装置的示意性框图;
图10是本申请另一个实施例的中继通信的装置的示意性结构图;
图11是本申请另一个实施例的中继通信的装置的示意性框图;
图12是本申请另一个实施例的中继通信的装置的示意性结构图;
图13是本申请一个具体实施例的中继通信的装置的示意图;
图14是本申请另一个具体实施例的中继通信的装置的示意图;
图15是本申请另一个具体实施例的中继通信的装置的示意图;
图16是本申请另一个具体实施例的中继通信的装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统、设备到设备(device to device,D2D)通信系统或新无线(New Radio,NR)、车对外界的信息交换(vehicle to everything,V2X)、LTE-V、车与车(vehicle to vehicle,V2V)、车联网、机器类型通信(machine-type communications,MTC)、物联网(internet of things,IoT)、LTE-M,机器与机器(machine to communications,M2M),物联网等等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的接入网设备可以是用于与终端设备通信的设备,该接入网设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的接入 网设备或者未来演进的PLMN网络中的接入网设备等,本申请实施例并不限定。
在NR中,基站的功能被分为两部分,称为集中式单元(centralized unit,CU)-分布式单元(distributed unit,DU)分离。从协议栈的角度来看,CU包括了LTE基站的RRC层和PDCP层,DU包括了LTE基站的无线链路控制(radio link control,RLC)层、媒体访问控制(media access control,MAC)层和物理(physical,PHY)层。在普通的5G基站部署中,CU和DU物理上可以通过光纤连接,逻辑上存在一个专门定义的F1接口,用于CU与DU之间进行通信。从功能的角度来看,CU主要负责无线资源控制与配置,跨小区移动性管理,承载管理等。DU主要负责调度,物理信号生成与发送。
本申请实施例中的中继节点可以是中继基站,例如微基站等。中继节点也可以是一个提供中继功能的终端设备。中继节点还可以是中继收发节点,用户终端设备(customer premise 3quipment,CPE),中继收发器、中继代理,中继节点(relaying node,RN),传输接收点(transmission and reception point,TRP),或者中继传输接收点(relaying TRP,rTRP)等网络实体。具体实现中,中继节点可以分布在小区边缘,可扩大网络设备的覆盖范围。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
下面将本申请涉及的术语进行介绍:
回传(backhaul,BH)链路:
中继通信系统中包括接入接入网设备、中继节点和终端。其中,接入接入网设备和中继设备之间的链路可以称为BH链路,中继设备和终端设备之间的链路可以称为“接入(access,AC)链路”。接入链路包括上行接入链路和下行接入链路。上行接入链路也被称为接入链路的上行传输,下行接入链路也被称为接入链路的下行传输。此外,两个中继节点之间的链路也可以称为“回传链路”。
应理解,本申请实施例的通信系统对中继节点的个数不进行限定,例如,通信系统可以包括4个,或5个中继节点。
还应理解,本申请对接入网设备和中继节点之间、两个中继节点之间的链路、以及中继节点和终端之间的链路名称不进行限定。
QoS:
QoS指一个网络能够利用各种基础技术,为指定的网络通信提供更好的服务能力,是网络的一种安全机制,是用来解决网络延迟和阻塞等问题的一种技术。
QoS分类标识(QoS class identifier,QCI):
QCI是一个标度值,用于衡量包转发行为,例如,丢包率,包延迟预算。它同时应用于保证比特速率(guranteed bit rate,GBR)和Non-GBR承载,用于指定访问节点内定义 的控制承载级分组转发方式(如调度权重、接纳门限、队列管理门限、链路层协议配置等),这些都由运营商预先配置到接入网设备中。
保证比特速率(guranteed bit rate,GBR):
所谓GBR,是指承载要求的比特速率被网络“永久”恒定的分配,即使在网络资源紧张的情况下,相应的比特速率也能够保持。最大比特速率(maximum bit rate,MBR)参数定义了GBR承载在资源充足的条件下,能够达到的速率上限。MBR的值必须大于或等于GBR的值。相反的,Non-GBR指的是在网络拥挤的情况下,业务(或者承载)需要承受降低速率的要求,由于Non-GBR承载不需要占用固定的网络资源,因而可以长时间地建立。而GBR承载一般只是在需要时才建立。
图1是本申请一个通信系统的示意图。在无线通信系统100中,中继节点103可用于为该至少一个终端105与接入网设备101提供中继服务。其中,中继节点103的数目可以是一个,也可以是多个,即多个中继节点同时为第一终端设备和接入网设备提供中继服务。或者说多个中继节点为接入网设备提供中继服务,例如,接入网设备101需要通过中继节点103、中继节点107与终端105进行通信。
需要说明的,图1示出的无线通信系统100仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
可选地,中继节点可以是终端类型的节点。这样,中继节点103和中继节点107之间,以及中继节点107和终端105之间可以通过边链路(sidelink)(也称为PC5口)进行通信。
传统方案中,在多跳网络场景中,接入网设备为每个中继节点或终端发送配置信息,该配置信息用于指示中继节点或终端与各自的上级节点或下级节点建立承载。其中,传统方案中的中继节点通常为接入网设备,随着业务特性的需求,目前中继节点可以是终端设备,即终端也具有中继功能。但是在终端具有中继功能,以及结合上述传统方案的场景中,承载配置的方式信令开销比较大。
图2示出了本申请实施例的中继通信的方法的示意性流程图。
201,接入网设备确定第三配置信息,该第三配置信息用于配置第二节点与至少一个下级节点之间的承载。
具体地,接入网设备可以通过第三配置信息使得第二节点配置该第二节点与下级节点通信的承载。第二节点与某个下级节点之间的承载可以是用于该下级节点和第二节点进行通信的通道。
应理解,第二节点的下级节点可以是一个,也可以是多个。
在一个实施例中,步骤201可以是该接入网设备从核心网设备接收该第三配置信息。相应地,该核心网设备向该接入网设备发送该第三配置信息。也就是说,第三配置信息可以是由核心网设备触发的。
应理解,接入网设备可以不解析该第三配置信息,即透传该第三配置信息。
在另一个实施例中,该接入网设备可以生成该第三配置信息。也就是说,接入网设备可以自己触发生成该第三配置信息。
可选地,该第三配置信息包括QoS信息。
具体地,QoS信息可以用于指示数据需求的通信质量。
可选地,该QoS信息包括分配和保持优先级(allocation and retention priority,ARP),GBR,最大比特速率(maximum bit rate,MBR),每接入点(access point name,APN)最大汇聚比特速率(perAPN aggregation maximum bit rate,AMBR),通信质量标识(5G QoS Identifier,5QI),QCI,反射QoS属性(reflective QoSattribute,RQA),数据承载(data radio bearer,DRB)配置中的分组数据汇聚协议(packet data convergence protocol,PDCP)配置中的至少一项。
202,该接入网设备向该第二节点发送该第三配置信息。相应地,该第二节点接收该接入网设备发送的该第三配置信息。
具体地,接入网设备接收到该第三配置信息后可以向第二节点发送该第三配置信息。
可选地,该第二节点可以是具有中继功能的终端,也可以是中继节点,或者接入回传一体化(integrated access backhaul,IAB)节点。
可选地,若该第二节点拒绝接收该第三配置信息,则向接入网设备发送指示配置失败的指示信息,具体地该指示信息可以包括承载配置失败的承载标识,以指示具体哪个承载配置失败。
应理解,该承载配置失败的承载标识可以通过列表表示。
需要说明的是,该接入网设备向该第二节点发送的第三配置信息也可以称为“无线承载建立请求(radio bearer setup request-IAB)”。
在一个实施例中,接入网设备可以在确定该第一节点与该第二节点之间不存在承载对应于第二承载的情况下,向该第二节点发送该第一配置信息,该第二承载为该第一节点与终端之间的承载,该终端为第一节点的子节点。
具体地,终端为第一节点的子节点,该终端和第一节点之间可以存在一个或多个第二承载。第一节点为第二节点的子节点,该第一节点与该第二节点之间可以存在一个或多个第一承载。在数据从终端发送到接入网设备时,终端可以使用该数据对应的目标第二承载发送到第一节点,第一节点有该目标第二承载对应的QoS信息,第一节点可以在该数据中添加对应的QoS信息,用于后续节点接收到数据后做承载映射。同时第一节点可以根据该数据的QoS信息选择合适的目标第一承载发送到第二节点。换句话说,第一节点和终端之间的承载,以及第一节点和第二节点之间的承载(可以称为相邻链路)可以对应于同一个QoS信息或者相似QoS,可以使得具有该QoS信息的数据从终端发送到第二节点。由于接入网设备能够获知每个节点和节点对应的下级节点的承载信息,因此,接入网设备可以获知相邻链路之间是否存在对应的承载,以确定是否向对应的节点发送该第三配置信息。通过上述qos与承载映射的方式,无需为每个UE的每个承载在各个节点建立承载相关的配置,而是利用每两个节点之间现有的承载与qos对应的关系,将UE的不同qos的数据映射到不同节点之间的承载上,这样大大减少了配置承载的信令开销,以及每个中继节点的存储量,减少了复杂度。
可选地,该第三配置信息可以具体包括对应于该目标第一承载的QoS信息,以使得该第二节点根据该QoS信息在该第二节点和第一节点之间建立该目标第一承载。
例如,如图1所示,第一节点可以是中继节点107,第二节点可以是中继节点103,终端可以是节点105,这样若接入网设备101确定中继节点103和中继节点107之间不存 在承载对应于节点105和中继节点107之间的目标第二承载,则接入网设备101向该中继节点103发送配置信息,用于该中继节点103为该中继节点107配置目标第一承载。
可选地,在该第一节点为具有中继能力的节点的情况下,接入网设备可以在为该第一节点与该第一节点的下级节点(例如,终端)建立承载(例如目标第二承载)的过程中,检测该第一节点和该第二节点之间的承载是否存在与该目标第二承载对应的承载。
需要说明的是,接入网设备还可以在为该第一节点与该第一节点的下级节点(例如,终端)建立承载(例如目标第二承载)的过程中,检测该第二节点与接入网设备之间的承载是否存在对应于该目标第二承载的承载。例如,该目标第二承载与目标QoS信息具有对应关系,接入网设备可以根据在该第二节点与接入网设备之间的承载是否存在对应于该目标QoS信息的承载,确定该第二节点与接入网设备之间的承载是否存在对应于该第二承载的承载。
在另一个实施例中,该第一配置信息可以携带在第四配置信息中,该第四配置信息用于配置该第二节点具有中继能力。
具体地,接入网设备可以在配置该第二节点作为中继节点时,例如,在向第二节点发送用于配置该第二节点具有中继能力的第四配置信息时,通过该第四配置信息携带该第一配置信息,避免专门配置该第一配置信息,节省了信令开销。
可选地,也可以在配置终端开启中继功能后或者作为中继节点后,对第二节点配置第二节点和接入网设备之间的承载。比如若配置之前只存在第一承载,则可以再配置至少一个承载,例如按照QCI,根据不同的QCI取值配置不同的承载,QCI为1对应配置第二承载,QCI为2对应配置第三承载等。当然可以按照ARP,GBR等等来配置,或者这些不同qos参数的组合配置不同承载。当然这个配置方式也适用于接入网设备配置第二节点和其子节点之间的承载。这种方式,可以一次建立多个承载,避免有数据传输时没有可以映射的承载。
可选地,若第二节点与接入网设备为直接连接(即接入网设备为第二节点的父节点),则在接入网设备在为第二节点配置用于该第二节点和该接入网设备之间的承载的情况下,该接入网设备可以直接向该第二节点发送用于指示该第二节点和该接入网设备之间的承载的配置信息。
203,该第二节点根据该第三配置信息,生成该第一配置信息,该第一配置信息用于配置该第一节点和该第二节点之间的承载,该第二节点用于为该第一节点和接入网设备之间提供中继通信服务。
具体地,第二节点根据接入网设备配置的第三配置信息,可以生成用于配置与第一节点之间的承载的第一配置信息。
可选地,该第三配置信息中包括QoS信息,步骤203具体可以是第二节点根据该QoS信息确定对应的RLC配置和/或逻辑信道配置,并将RLC配置和/或逻辑信道配置携带在第一配置信息中。换句话说,该第二节点可以根据QoS信息为第一节点配置QoS信息对应的承载,以使得第一节点能够根据数据的QoS信息,在对应的承载中进行传输,从而提高通信质量。
可选地,该第三配置信息还可以包括承载标识(dientity,ID)、PDCP配置、无线链路控制(radio link control,RLC)配置或逻辑信道配置中的至少一项,这样第一配置信息 包括承载标识、PDCP配置、RLC配置或逻辑信道配置中的至少一项。其中RLC配置或逻辑信道配置也可以为中继根据接收到qos进行配置。
可选地,第一配置信息还可以包括QoS信息,用于指示对应建立承载的QoS。此时,可用于基站生成第三配置信息的场景,用于配置各级节点之间的承载,并使得各节点清楚对应承载的qos信息。
需要说明的是,该第三配置信息中的RLC配置或逻辑信道配置可以与第一配置信息的RLC配置或逻辑信道配置相同,也可以不同;第三配置信息中的承载标识和PDCP配置可以与第一配置信息中的承载标识和PDCP配置相同,本申请对此不进行限定。
还需要说明的是,本申请实施例中的承载可以是演进分组系统(evolved packet system,EPS)承载(bearer),也可以是数据无线承载(data radio bearer,DRB)。相应地,承载标识可以是EPS承载ID,或DRB承载ID。
204,该第二节点向该第一节点发送该第一配置信息。相应地,该第一节点接收该第二节点发送的该第一配置信息。
具体地,作为父节点的第二节点可以向作为子节点的第一节点发送该第一配置信息。这样父节点向子节点分配用于建立承载的配置信息,即分布式配置承载,不需要统一通过接入网设备配置,避免上级节点保存每个下级节点(指第一节点下级或更下级等)的每个承载的上下文,从而节省了信令开销。
应理解,该第一配置信息也可以称为“无线资源控制(radio resource control,RRC)重配置信息(reconfig-IAB)”。
可选地,该步骤204可以是第二节点在完成步骤203之后进行的。
可选地,该步骤204还可以是第二节点在接收到第一节点发送的配置请求之后再进行的。
具体地,第一节点可以在有承载需求的情况下,向第二节点发送配置请求,以请求第一节点为该第二节点配置承载。例如,第一节点在与下级终端建立某一个承载(例如,第一承载)时,第一节点检测到不存在对应的第二承载,该第二承载可以是第一节点与第二节点之间的承载,则第一节点可以向第二节点发送该配置信息。即当第一节点接收到的数据或第一节点与子节点之间的承载在第一节点与第二节点之间没有时,则会主动请求,用于数据传输均有匹配的QoS。
可选地,该配置请求可以包括QoS信息,第一节点可以根据该配置请求包括的QoS信息为该第二节点配置对应的承载。
可选地,第一节点可以是具有中继功能的终端,也可以是普通终端,也可以是中继节点,或者接入回传一体化(integrated access backhaul,IAB)节点。
需要说明的是,具有中继功能的节点可以是具有中继功能的终端,即该第一节点可以是终端。
还需要说明的是,该第三配置信息可以不包括RLC配置或逻辑信道配置,即第三配置信息包括承载标识和PDCP配置。
可选地,第二节点在确定第一节点完成承载配置,可以向接入网设备发送反馈信息指示该第一节点完成配置。该反馈信息可以称为“无线承载建立响应信息(radio bearer setup reponse-IAB)”。若没有成功建立承载,则返回失败建立的承载标识。
可选地,第一节点接收的第一配置信息也可以是接入网设备发送的。这种情况下,本实施例可以不执行上述步骤201-204。
具体地,接入网设备可以直接向该第一节点发送该第一配置信息,也可以由其他中继节点转发给该第一节点,本申请对此不进行限定。或者该第二节点转发该第一配置信息,但是该第二节点并不解析该第一配置信息,即该第二节点透传该第一配置信息。在该第一节点从接入网设备接收到该第一配置信息的情况下,该接入网设备也可以将该第一配置信息发送给第二节点,以使得第一节点的父节点(第二节点)能够获知子节点的承载,即第二节点能够获知与下级节点之间的承载配置,从而提高通信效率。
应理解,本申请对接入网设备向第一节点发送该第一配置信息,与向第二节点发送该第一配置信息的先后顺序不进行限定。
205,该第一节点根据该第一配置信息,建立与该第二节点的至少一个承载。
具体地,接入网设备向第二节点发送第三配置信息,该第三配置信息用于指示为第二节点与至少一个下级节点配置的承载,这样作为父节点的第二节点可以向作为子节点的第一节点发送该第一配置信息。也就是说,父节点向子节点分配用于建立承载的配置信息,即分布式配置承载,不需要统一通过接入网设备配置,避免上级节点保存每个下级节点的每个承载的上下文,从而节省了信令开销。
可选地,该第一节点为具有中继功能的节点的情况下,该第一节点还可以向终端发送第二配置信息,该第二配置信息用于配置该第一节点和终端之间的承载。
具体地,在第一节点为具有中继功能的节点的情况下,第一节点还可以作为父节点向下级节点发送配置信息,以配置第一节点和下级节点之间的承载。这样分布式配置承载,不需要统一通过接入网设备配置,避免上级节点保存每个下级节点的每个承载的上下文,从而节省了信令开销。第一节点在配置子节点之前,子节点可能先发送的承载配置请求。
可选地,第一节点还可以作为父节点向下级节点发送配置信息之前,第一节点从接入网设备获得配置信息,该配置信息用于配置第一节点与至少一个下级节点的承载。
可选地,第一节点在步骤205之后,第一节点可以向该第二节点发送反馈信息,该反馈信息用于指示承载配置完成。
应理解,该反馈信息可以携带在RRC配置完成消息(RRC reconfig comple)中。
可选地,在步骤205之后,该第一节点可以从下级节点(例如,终端)接收数据,并根据数据的QoS信息,选择合适的承载进行传输。相应地,终端发送该数据。
具体地,下述实施例以第一数据为例进行说明,第一节点从终端接收到的第一数据可以包括QoS信息,或者第一节点可以根据第一数据使用的承载确定出该第一数据的QoS信息,这样第一节点根据该QoS信息从第一节点和第二节点之间已经建立的多个承载中选择第一承载,并通过选中的第一承载发送该第一数据,从而提高了通信效率。
需要说明的是,在第一数据传送到第二节点时,第二节点也可以根据QoS信息和时间时间信息确定合适的承载,以满足该业务的传输服务质量需求。
可选地,该第一数据包括时间信息,该时间信息用于指示该第一数据的初始发送时刻或该第一数据当前已传输的时长,这样第一节点根据该第一数据的QoS信息和该时间信息可以从第一节点和第二节点之间的多个承载中更加准确的选择出合适的承载,从而更进一步提高通信效率并满足业务需求。
具体地,该时间信息可以是第一数据初始发送的发送时刻,例如,第一数据进入网络的时间,这样第一节点可以根据该时间信息获知当前传输第一数据已经占用的时长。第一节点也可以根据第一数据的QoS信息获知该第一数据传输需求的总时长。这样第一节点可以根据第一数据传输需求的总时长和第一数据已经占用的时长选择更加合适的承载传输该第一数据,从而更进一步提高通信效率。或者该时间信息可以直接指示该第一数据当前已传输的时长,例如设置定时器,这样第一节点可以根据第一数据传输需求的总时长和第一数据已经占用的时长选择更加合适的承载传输该第一数据,从而更进一步提高通信效率。
需要说明的是,该第一数据还可以包括承载标识、逻辑信道标识(logical channels identification,LCID)、QCI、跳数信息、ARP、或GBR信息中的至少一项。其中,QCI可以指示封包延迟预算(packet delay budget,PDB),该PDB可以指示数据传输需求的总时长。这些信息可放在适配层中。这些信息可以让接收的中继节点更合理的确定数据需要映射的QoS。
其中,QCI表格可以如下表1所示:
表1
Figure PCTCN2019080658-appb-000001
需要说明的是,无线通道时延可以是数据包从核心网分组数据网(packet data network,PDN))侧的SGi接口成功接收到通信终端Zd接口发送成功的传输时延。
应理解,在上行传输过程中,第一节点从终端接收到时间信息,根据该时间信息确定当前第一数据传输已经占用的时长可以是从接收到的缓冲区状态报告(buffer status report,BSR)或调度请求(scheduling request,SR)时起开始计算,或者从接入网设备发送的物理下行控制信道(physical downlink control channel,PDCCH)进行上行调度开始计算直到第一节点接收到该第一数据的时刻之间的时长,即可以确定为第一数据传输当前已经占用的时长。
还理解,在下行传输过程中,第一节点可以从接入网设备或第二节点接收第一数据,该第一数据可以携带时间信息,该时间信息可以与承载一一对应,也可以与数据一一对应,还可以与媒体访问控制(media access control,MAC)业务数据单元(service data unit,SDU)一一对应。
可选地,该时间信息可以指示相对时间,也可以是指示绝对时间。例如,具体可以是 系统帧号(system frame number,SFN)号或超帧(H-SFN)号,可以是协调世界时间(coordinated universal time,UTC)时间。相对时间可以为传输了多少帧,或者多少时分秒,绝对时间可以是具体的帧号或超帧号,或者具体的时间,某时某分某秒。
可选地,该时间信息可以在适配层的字段中。
具体地,在第一节点为具有中继能力的节点的情况下,例如,第一节点向第二节点发送上行数据时,上行数据中的时间信息可以是在适配层中添加的。具体的,对于上行传输,对于直连终端的中继节点,中继节点添加时间信息在适配层。若时间信息为起始时刻,则直连的中继节点添加后,其余节点直接转发即可直至传输给接入网设备,若时间信息为已使用时长,则每个接收到数据的中继均需要在适配层更新已经使用的时长;或者下行数据的时间信息也可以是在适配层中添加的。接入网设备将数据发给中继节点时,将时间信息添加在适配层,类似的若为起始发送数据时间则后续节点直接转发该值,若为时长信息,则需要更新。
可选地,该时间信息可以携带在媒体访问控制(media access control,MAC)-控制元素(control element,CE)。
具体地,若第一节点为终端的情况下,或者是终端向第一节点发送第一数据,该第一数据携带时间信息,该第一数据可以看作数据包,数据包中包括控制字段和数据字段,控制字段可以是MAC CE,数据字段可以指示数据的具体内容。也可以是下行传输时,基站在MAC CE中添加该信息。
需要说明的是,该时间信息还可以携带在PDCP包头或者RLC包头中。
可选地,该第一数据包括一个或多个时间信息,以及对应的一个或多个业务数据。
具体地,该第一数据可以包括多种类型的业务数据,每种类型的业务数据对应一个时间信息。例如,如图3所示,包括时间信息的MAC CE与MAC SDU具有按照顺序一一映射的关系,即MAC CE1对应于MAC SDU1,MAC CE2对应于MAC SDU2,MAC CE3对应于MAC SDU3。其中,MAC CE可以通过SFN标识,MAC SDU可以通过逻辑信道号标识,也就是说,SFN标识和逻辑信道号标识具有映射关系。
可选地,该第一数据中的多个时间信息可以携带在对应的多个MAC CE中,该多个MAC CE可以携带在同一个MAC帧头之后,也可以各自携带在一个MAC帧头之后。
例如,如图4示出了一个MAC子头,多个MAC CE可以携带在同一个MAC头之后,其中R标识预留比特,F2表示后面数据域大小,如果后面数据大于32767字节且不是最后一个子头则该值为1,否则为0,E表示该子头后否还有MAC子头,若为1则有,若为0则后面字节是MACSDU或者MAC CE或者填充比特。例如,如图5所示。SFN1,SFN2,…,SFNn携带在一个MAC头之后。其中SFN1表示对应第一个MACSDU的SFN号,SFN2表示对应第二个MACSDU的SFN号,以此类推,SFNn表示对应第n个MAC SDU的SFN号。即上述每个SFN号都对应一个MAC SDU,此外也可以每个SFN号对应具有相同逻辑信道号标识的MAC SDU。或者该多个MAC CE中的每个MAC CE分别携带在一个MAC头之后,例如,如图6示出了其中某一个MAC CE携带在一个MAC头之后。每个MAC CE取值的对应的MAC SDU方式与上述相同。
因此,本申请实施例的中继通信的方法,作为父节点的第二节点可以向作为子节点的第一节点发送该第一配置信息。这样父节点向子节点分配用于建立承载的配置信息,即分 布式配置承载,不需要统一通过接入网设备配置,避免上级节点保存每个下级节点的每个承载的上下文,从而节省了信令开销。
图7示出了本申请图7示出了本申请实施例的中继通信的装置700的示意性框图。
应理解,该装置700可以对应于图3所示的实施例中的第一节点,可以具有方法中的第一节点的任意功能。该装置700,包括收发模块710和处理模块720。该第一节点可以是终端。
该收发模块710,用于从第二节点接收第一配置信息,该第一配置信息用于配置第一节点和该第二节点之间的承载,该第二节点用于为该第一节点和接入网设备之间提供中继通信服务;
该处理模块720,用于根据该第一配置信息,建立与该第二节点的至少一个承载。
可选地,该处理模块720,还用于根据第一数据的服务质量QoS信息,确定该至少一个承载中的第一承载;
该收发模块710,用于通过该第一承载,向该第二节点发送该第一数据。
可选地,该第一数据包括时间信息,该时间信息用于指示该第一数据的初始发送时刻或该第一数据当前已传输的时长,其中,该处理模块720具体用于:
根据该第一数据的QoS信息和该时间信息,确定该第一承载。
可选地,该时间信息携带在适配层中的字段中。
可选地,该第一节点为终端,该时间信息携带在该第一数据中的媒体访问控制控制元素MAC CE中。
可选地,该收发模块710,还用于向第一终端发送第二配置信息,该第二配置信息用于配置该第一节点和该第一终端之间的承载。
可选地,该第一配置信息包括承载标识、分组数据汇聚协议PDCP配置、无线链路控制RLC配置或逻辑信道配置中的至少一项。
可选地,在该第一节点从该第二节点接收该第一配置信息之前,该收发模块710,还用于向该第二节点发送配置请求,该配置请求用于请求配置与该第二节点之间的承载。
因此,本申请实施例提供的中继通信的装置,接入网设备向第二节点发送第三配置信息,该第三配置信息用于指示为第二节点与至少一个下级节点配置的承载,这样作为父节点的第二节点可以向作为子节点的第一节点发送该第一配置信息。也就是说,父节点向子节点分配用于建立承载的配置信息,即分布式配置承载,不需要统一通过接入网设备配置,避免上级节点保存每个下级节点的每个承载的上下文,从而节省了信令开销。
图8示出了本申请实施例提供的中继通信的装置800,该装置800可以为图7中所述的接入网设备。该装置可以采用如图8所示的硬件架构。该装置可以包括处理器810和收发器830,可选地,该装置还可以包括存储器840,该处理器810、收发器830和存储器840通过内部连接通路互相通信。图7中的处理模块720所实现的相关功能可以由处理器810来实现,收发模块710所实现的相关功能可以由处理器810控制收发器830来实现。
可选地,处理器810可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带 处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对中继通信的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器810可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器830用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器840包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器840用于存储相关指令及数据。
存储器840用于存储接入网设备的程序代码和数据,可以为单独的器件或集成在处理器810中。
具体地,所述处理器810用于控制收发器与终端进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置800还可以包括输出设备和输入设备。输出设备和处理器810通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器601通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图8仅仅示出了中继通信的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的接入网设备都在本申请的保护范围之内。
在一种可能的设计中,该装置800可以是芯片,例如可以为可用于接入网设备中的通信芯片,用于实现接入网设备中处理器810的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选地可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是接入网设备也可以是电路。该装置可以用于执行上述方法实施例中由接入网设备所执行的动作。
图9示出了本申请实施例的中继通信的装置900的示意性框图。
应理解,该装置900可以对应于图2所示的实施例中的第二节点,可以具有方法中的第二节点的任意功能。该装置900,包括处理模块910和收发模块920。
可选地,该第二节点可以是终端。
该处理模块910,用于获取第一配置信息,该第一配置信息用于配置第一节点和第二节点之间的承载,该第二节点用于为该第一节点和接入网设备之间提供中继通信服务;
该收发模块920,用于向该第一节点发送该第一配置信息。
可选地,该收发模块920,还用于接收第三配置信息,该第三配置信息用于配置该第二节点和该第二节点的至少一个下级节点之间的承载;其中,该处理模块910具体用于:根据该第三配置信息,生成该第一配置信息。
可选地,该第三配置信息包括服务质量QoS信息、承载标识、PDCP配置、RLC配置或逻辑信道配置中的至少一项。
可选地,该第一配置信息包括承载标识、PDCP配置、RLC配置或逻辑信道配置中的至少一项。
因此,本申请实施例提供的中继通信的装置,作为父节点的第二节点可以向作为子节点的第一节点发送该第一配置信息。这样父节点向子节点分配用于建立承载的配置信息,即分布式配置承载,不需要统一通过接入网设备配置,避免上级节点保存每个下级节点的每个承载的上下文,从而节省了信令开销。
图10示出了本申请实施例提供的中继通信的装置1000,该装置1000可以为图9中所述的终端。该装置可以采用如图10所示的硬件架构。该装置可以包括处理器1010和收发器1020,可选地,该装置还可以包括存储器1030,该处理器1010、收发器1020和存储器1030通过内部连接通路互相通信。图10中的处理模块910所实现的相关功能可以由处理器1010来实现,收发模块920所实现的相关功能可以由处理器1010控制收发器1020来实现。
可选地,处理器1010可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对中继通信的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器1010可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1020用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器1030包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器1030用于存储相关指令及数据。
存储器1030用于存储终端的程序代码和数据,可以为单独的器件或集成在处理器1010中。
具体地,所述处理器1010用于控制收发器与终端进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置1000还可以包括输出设备和输入设备。输出设备和处理器1010通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示 器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器901通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图10仅仅示出了中继通信的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的终端都在本申请的保护范围之内。
在一种可能的设计中,该装置1000可以是芯片,例如可以为可用于终端中的通信芯片,用于实现终端中处理器1010的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选地可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是终端也可以是电路。该装置可以用于执行上述方法实施例中由终端所执行的动作。
图11示出了本申请实施例的中继通信的装置1100的示意性框图。
应理解,该装置1100可以对应于图2所示的实施例中的接入网设备,可以具有方法中的接入网设备的任意功能。该装置1100,包括处理模块1110和收发模块1120。
该处理模块1110,用于确定第三配置信息,该第三配置信息用于配置第二节点和该第二节点的至少一个下级节点之间的承载;
该收发模块1120,用于向该第二节点发送该第三配置信息。
可选地,该收发模块1120,还用于向第一节点发送第一配置信息,该第一配置信息用于配置第一节点和该第二节点之间的承载,该第二节点用于为该第一节点和该接入网设备之间提供中继通信服务;
该收发模块1120,还用于向该第二节点发送该第一配置信息。
可选地,该第一配置信息包括承载标识、分组数据汇聚协议PDCP配置、无线链路控制RLC配置或逻辑信道配置中的至少一项。
可选地,该第三配置信息包括服务质量QoS信息、承载标识、PDCP配置、RLC配置或逻辑信道配置中的至少一项。
图12示出了本申请实施例提供的中继通信的装置1200,该装置1200可以为图11中所述的终端。该装置可以采用如图12所示的硬件架构。该装置可以包括处理器1210和收发器1220,可选地,该装置还可以包括存储器1230,该处理器1210、收发器1220和存储器1230通过内部连接通路互相通信。图11中的处理模块1110所实现的相关功能可以由处理器1210来实现,收发模块1120所实现的相关功能可以由处理器1210控制收发器1220来实现。
可选地,处理器1210可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处 理器可以用于对中继通信的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器1210可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1220用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器1230包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器1230用于存储相关指令及数据。
存储器1230用于存储终端的程序代码和数据,可以为单独的器件或集成在处理器1210中。
具体地,所述处理器1210用于控制收发器与终端进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置1200还可以包括输出设备和输入设备。输出设备和处理器1210通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器1101通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图12仅仅示出了中继通信的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的终端都在本申请的保护范围之内。
在一种可能的设计中,该装置1200可以是芯片,例如可以为可用于终端中的通信芯片,用于实现终端中处理器1210的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选地可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是终端也可以是电路。该装置可以用于执行上述方法实施例中由终端所执行的动作。
可选地,本实施例中的装置为终端时,图13示出了一种简化的终端的结构示意图。便于理解和图示方便,图13中,终端以手机作为例子。如图13所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图13中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图13所示,终端包括收发单元1310和处理单元1320。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选地,可以将收发单元1310中用于实现接收功能的器件视为接收单元,将收发单元1310中用于实现发送功能的器件视为发送单元,即收发单元1310包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1310用于执行上述方法实施例中终端侧的发送操作和接收操作,处理单元1320用于执行上述方法实施例中终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元1320用于执行图2所示的步骤203。收发单元1310,用于执行图2中的步骤202中的收发操作,和/或收发单元1310还用于执行本申请实施例中终端侧的其他收发步骤。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
可选地,该装置为终端时,还可以参照图13所示的设备。作为一个例子,该设备可以完成类似于图13中处理器1310的功能。在图14中,该设备包括处理器1401,发送数据处理器1403,接收数据处理器1405。上述实施例中的处理模块可以是图14中的该处理器1401,并完成相应的功能。上述实施例中的收发模块可以是图14中的接收数据处理器1105和发送数据处理器1403。虽然图14中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图15示出本实施例的另一种形式。处理装置1500中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信设备可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1503,接口1504。其中处理器1503完成处理模块的功能,接口1504完成上述收发模块的功能。作为另一种变形,该调制子系统包括存储器1506、处理器1503及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现实施例一至五之一所述方法。需要注意的是,所述存储器1506可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1500中,只要该存储器1506可以连接到所述处理器1503即可。
本实施例中的装置为接入网设备时,该接入网设备可以如图16所示,装置1600包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1610和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1620。所述RRU 1610 可以称为收发模块,与上述收发模块对应,可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1611和射频单元1612。所述RRU 1610部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 1610部分主要用于进行基带处理,对基站进行控制等。所述RRU 1610与BBU 1620可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1620为基站的控制中心,也可以称为处理模块,可以与图6中的处理模块620对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于接入网设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1620可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1620还包括存储器1621和处理器1622。所述存储器1621用以存储必要的指令和数据。所述处理器1622用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于接入网设备的操作流程。所述存储器1621和处理器1622可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,处理器可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组 件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,单独存在A或B,并不限定A或B的数量。以单独存在A为例,可以理解为具有一个或多个A。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者接入网设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种用于中继通信的方法,其特征在于,包括:
    第一节点从第二节点接收第一配置信息,所述第一配置信息用于配置所述第一节点和所述第二节点之间的承载,所述第二节点用于为所述第一节点和接入网设备之间提供中继通信服务;
    所述第一节点根据所述第一配置信息,建立与所述第二节点的至少一个承载。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一节点根据第一数据的服务质量QoS信息,确定所述至少一个承载中的第一承载;
    所述第一节点通过所述第一承载,向所述第二节点发送所述第一数据。
  3. 根据权利要求2所述的方法,其特征在于,所述第一数据包括时间信息,所述时间信息用于指示所述第一数据的初始发送时刻或所述第一数据当前已传输的时长,其中,所述第一节点根据第一数据的服务质量QoS信息,确定所述至少一个承载中的第一承载包括:
    所述第一节点根据所述第一数据的QoS信息和所述时间信息,确定所述第一承载。
  4. 根据权利要求3所述的方法,其特征在于,所述时间信息携带在适配层中的字段中。
  5. 根据权利要求3所述的方法,其特征在于,所述第一节点为终端,所述时间信息携带在所述第一数据中的媒体访问控制控制元素MAC CE中。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点向第一终端发送第二配置信息,所述第二配置信息用于配置所述第一节点和所述第一终端之间的承载。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一配置信息包括承载标识、分组数据汇聚协议PDCP配置、无线链路控制RLC配置或逻辑信道配置中的至少一项。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,在所述第一节点从所述第二节点接收所述第一配置信息之前,所述方法还包括:
    所述第一节点向所述第二节点发送配置请求,所述配置请求用于请求配置与所述第二节点之间的承载。
  9. 一种用于中继通信的方法,其特征在于,包括:
    第二节点获取第一配置信息,所述第一配置信息用于配置第一节点和所述第二节点之间的承载,所述第二节点用于为所述第一节点和接入网设备之间提供中继通信服务;
    所述第二节点向所述第一节点发送所述第一配置信息。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第二节点接收第三配置信息,所述第三配置信息用于配置所述第二节点和所述第二节点的至少一个下级节点之间的承载;
    其中,所述第二节点获取第一配置信息包括:
    所述第二节点根据所述第三配置信息,生成所述第一配置信息。
  11. 根据权利要求10所述的方法,其特征在于,所述第三配置信息包括服务质量QoS信息、承载标识、分组数据汇聚协议PDCP配置、无线链路控制RLC配置或逻辑信道配置中的至少一项。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一配置信息包括承载标识、PDCP配置、RLC配置或逻辑信道配置中的至少一项。
  13. 一种用于中继通信的方法,其特征在于,包括:
    接入网设备确定第三配置信息,所述第三配置信息用于配置所述第二节点和所述第二节点的至少一个下级节点之间的承载;
    所述接入网设备向所述第二节点发送所述第三配置信息。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述第一节点发送第一配置信息,所述第一配置信息用于配置第一节点和所述第二节点之间的承载,所述第二节点用于为所述第一节点和所述接入网设备之间提供中继通信服务;
    所述接入网设备向所述第二节点发送所述第一配置信息。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一配置信息包括承载标识、分组数据汇聚协议PDCP配置、无线链路控制RLC配置或逻辑信道配置中的至少一项。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述第三配置信息包括服务质量QoS信息、承载标识、分组数据汇聚协议PDCP配置、无线链路控制RLC配置或逻辑信道配置中的至少一项。
  17. 一种用于中继通信的装置,其特征在于,包括:
    收发模块,用于从第二节点接收第一配置信息,所述第一配置信息用于配置第一节点和所述第二节点之间的承载,所述第二节点用于为所述第一节点和接入网设备之间提供中继通信服务;
    处理模块,用于根据所述第一配置信息,建立与所述第二节点的至少一个承载。
  18. 根据权利要求17所述的装置,其特征在于,所述处理模块,还用于根据第一数据的服务质量QoS信息,确定所述至少一个承载中的第一承载;
    所述收发模块,用于通过所述第一承载,向所述第二节点发送所述第一数据。
  19. 根据权利要求18所述的装置,其特征在于,所述第一数据包括时间信息,所述时间信息用于指示所述第一数据的初始发送时刻或所述第一数据当前已传输的时长,其中,所述处理模块具体用于:
    根据所述第一数据的QoS信息和所述时间信息,确定所述第一承载。
  20. 根据权利要求19所述的装置,其特征在于,所述时间信息携带在适配层中的字段中。
  21. 根据权利要求19所述的装置,其特征在于,所述第一节点为终端,所述时间信息携带在所述第一数据中的媒体访问控制控制元素MAC CE中。
  22. 根据权利要求17至20中任一项所述的装置,其特征在于,所述收发模块,还用于向第一终端发送第二配置信息,所述第二配置信息用于配置所述第一节点和所述第一终 端之间的承载。
  23. 根据权利要求17至22中任一项所述的装置,其特征在于,所述第一配置信息包括承载标识、分组数据汇聚协议PDCP配置、无线链路控制RLC配置或逻辑信道配置中的至少一项。
  24. 根据权利要求17至23中任一项所述的装置,其特征在于,在所述第一节点从所述第二节点接收所述第一配置信息之前,所述收发模块,还用于向所述第二节点发送配置请求,所述配置请求用于请求配置与所述第二节点之间的承载。
  25. 一种用于中继通信的装置,其特征在于,包括:
    处理模块,用于获取第一配置信息,所述第一配置信息用于配置第一节点和所述第二节点之间的承载,所述第二节点用于为所述第一节点和接入网设备之间提供中继通信服务;
    收发模块,用于向所述第一节点发送所述第一配置信息。
  26. 根据权利要求25所述的装置,其特征在于,所述收发模块,还用于接收第三配置信息,所述第三配置信息用于配置所述第二节点和所述第二节点的至少一个下级节点之间的承载;
    其中,所述处理模块具体用于:
    根据所述第三配置信息,生成所述第一配置信息。
  27. 根据权利要求26所述的装置,其特征在于,所述第三配置信息包括服务质量QoS信息、承载标识、分组数据汇聚协议PDCP配置、无线链路控制RLC配置或逻辑信道配置中的至少一项。
  28. 根据权利要求26或27所述的装置,其特征在于,所述第一配置信息包括承载标识、PDCP配置、RLC配置或逻辑信道配置中的至少一项。
  29. 一种用于中继通信的装置,其特征在于,包括:
    处理模块,用于确定第三配置信息,所述第三配置信息用于配置所述第二节点和所述第二节点的至少一个下级节点之间的承载;
    收发模块,用于向所述第二节点发送所述第三配置信息。
  30. 根据权利要求29所述的装置,其特征在于,所述收发模块,还用于向第一节点发送第一配置信息,所述第一配置信息用于配置第一节点和所述第二节点之间的承载,所述第二节点用于为所述第一节点和所述接入网设备之间提供中继通信服务;
    所述收发模块,还用于向所述第二节点发送所述第一配置信息。
  31. 根据权利要求29或30所述的装置,其特征在于,所述第一配置信息包括承载标识、分组数据汇聚协议PDCP配置、无线链路控制RLC配置或逻辑信道配置中的至少一项。
  32. 根据权利要求29至31中任一项所述的装置,其特征在于,所述第三配置信息包括服务质量QoS信息、承载标识、分组数据汇聚协议PDCP配置、无线链路控制RLC配置或逻辑信道配置中的至少一项。
  33. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至16中任一项所述的方法。
  34. 一种计算机程序产品,当其在计算机上运行时,使得计算机执行权利要求1至16中任一项所述的方法。
  35. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至16中任一项所述的方法。
  36. 一种通信系统,其特征在于,包括:用于权利要求17至24中任一项所述的装置、用于执行权利要求25至28中任一项所述的装置和用于执行权利要求29至32中任一项所述的装置。
PCT/CN2019/080658 2019-03-29 2019-03-29 用于中继通信的方法和装置 WO2020199034A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980091976.5A CN113455100B (zh) 2019-03-29 2019-03-29 用于中继通信的方法和装置
PCT/CN2019/080658 WO2020199034A1 (zh) 2019-03-29 2019-03-29 用于中继通信的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080658 WO2020199034A1 (zh) 2019-03-29 2019-03-29 用于中继通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2020199034A1 true WO2020199034A1 (zh) 2020-10-08

Family

ID=72664402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080658 WO2020199034A1 (zh) 2019-03-29 2019-03-29 用于中继通信的方法和装置

Country Status (2)

Country Link
CN (1) CN113455100B (zh)
WO (1) WO2020199034A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060435A1 (zh) * 2021-10-12 2023-04-20 Oppo广东移动通信有限公司 数据传输方法、装置、设备和存储介质
WO2023202534A1 (zh) * 2022-04-21 2023-10-26 华为技术有限公司 多跳传输方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282905B (zh) * 2009-03-17 2016-01-27 华为技术有限公司 一种建立无线承载的方法、装置及系统
CN106162930A (zh) * 2015-04-07 2016-11-23 中兴通讯股份有限公司 在设备直通系统中承载的管理方法和装置
US20180295534A1 (en) * 2015-05-14 2018-10-11 Zte Corporation Method for Processing Information, and Communication Node
CN104429156B (zh) * 2013-06-28 2019-03-26 华为技术有限公司 一种无线网络的建立方法、设备及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102103343B1 (ko) * 2013-08-09 2020-05-04 주식회사 팬택 이종 네트워크 무선 통신 시스템에서 데이터 전송 장치 및 방법
CN108029148B (zh) * 2015-07-23 2022-04-01 苹果公司 移动性中继方法和装置
CN109716820A (zh) * 2016-09-28 2019-05-03 华为技术有限公司 建立承载的方法、无线接入网设备和客户终端设备
CN109150451B (zh) * 2017-06-16 2023-06-20 华为技术有限公司 通信方法、网络节点和无线接入网系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282905B (zh) * 2009-03-17 2016-01-27 华为技术有限公司 一种建立无线承载的方法、装置及系统
CN104429156B (zh) * 2013-06-28 2019-03-26 华为技术有限公司 一种无线网络的建立方法、设备及系统
CN106162930A (zh) * 2015-04-07 2016-11-23 中兴通讯股份有限公司 在设备直通系统中承载的管理方法和装置
US20180295534A1 (en) * 2015-05-14 2018-10-11 Zte Corporation Method for Processing Information, and Communication Node

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060435A1 (zh) * 2021-10-12 2023-04-20 Oppo广东移动通信有限公司 数据传输方法、装置、设备和存储介质
WO2023202534A1 (zh) * 2022-04-21 2023-10-26 华为技术有限公司 多跳传输方法及通信装置

Also Published As

Publication number Publication date
CN113455100B (zh) 2022-06-14
CN113455100A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
KR102224214B1 (ko) 사이드링크 데이터 복제를 위한 방법 및 디바이스
WO2020164613A1 (zh) 中继通信的方法和装置
WO2021180098A1 (zh) 无线通信方法和通信装置
JP2020535684A (ja) 無線通信のための方法及び装置
WO2021218888A1 (zh) 通信方法和装置
US20220124776A1 (en) Communication Method and Apparatus
US11259362B2 (en) Method for repeatedly transmitting data and device
WO2020206582A1 (zh) 一种用于中继通信的方法和装置
WO2020191781A1 (zh) 一种数据传输方法及装置
WO2018228558A1 (zh) 一种传输数据的方法、网络设备和终端设备
WO2020216133A1 (zh) 一种通信方法及设备
US20230007712A1 (en) Communication Method and Communications Apparatus
TW201922021A (zh) 方法、設備、電腦程式產品及電腦程式
WO2021081824A1 (zh) 无线通信方法和终端设备
WO2020199034A1 (zh) 用于中继通信的方法和装置
WO2021031048A1 (zh) 一种通信方法及装置
US10966221B2 (en) Uplink scheduling with WLAN/3GPP aggregation
WO2021036910A1 (zh) 数据传输方法及装置
WO2019192442A1 (zh) 确定传输块大小的方法和通信装置
WO2021087996A1 (zh) 通信方法和通信装置
WO2021249218A1 (zh) 数据传输方法和装置
WO2020221261A1 (zh) 一种通信方法及装置
JP2024502372A (ja) バッファ状態レポートの方法、バッファ状態レポートの構成方法及び装置
WO2021127943A1 (zh) 无线通信方法和终端设备
WO2021022423A1 (zh) 一种传输数据的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922922

Country of ref document: EP

Kind code of ref document: A1