WO2019192442A1 - 确定传输块大小的方法和通信装置 - Google Patents

确定传输块大小的方法和通信装置 Download PDF

Info

Publication number
WO2019192442A1
WO2019192442A1 PCT/CN2019/080906 CN2019080906W WO2019192442A1 WO 2019192442 A1 WO2019192442 A1 WO 2019192442A1 CN 2019080906 W CN2019080906 W CN 2019080906W WO 2019192442 A1 WO2019192442 A1 WO 2019192442A1
Authority
WO
WIPO (PCT)
Prior art keywords
tbs
communication device
data
control information
candidate
Prior art date
Application number
PCT/CN2019/080906
Other languages
English (en)
French (fr)
Inventor
王婷
郭英昊
王轶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019192442A1 publication Critical patent/WO2019192442A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present application relates to the field of communications, and more specifically to a method and a communication device for determining a transport block size in the field of communications.
  • Data is transmitted between the network device and the terminal device through the air interface.
  • the physical layer of the terminal device is processed according to a specified format, and the processing may include: scrambling, modulation, layer mapping, precoding, Resource mapping and signal generation, and more.
  • the data can correspond to a transport block (TB) at the physical layer.
  • TBS transmission block size
  • the prior art does not consider some services, such as the enhanced voice service (EVS) of the 5th Generation (5G) New Radio (NR) technology.
  • EVS enhanced voice service
  • 5G 5th Generation
  • NR New Radio
  • the present application in conjunction with various embodiments, provides methods, communication devices, and systems for determining TBS size to improve system transmission efficiency.
  • an embodiment of the present application provides a method for determining a TBS size, including: determining, by a communication device, a used TBS table from N candidate TBS tables, where the TBS table is used to determine corresponding data sent or received.
  • TBS N is an integer greater than or equal to 2; the communication device determines a TBS corresponding to the data according to the used TBS table.
  • the above TBS value search method is designed to design a TBS table for special service considerations, so that the communication device can flexibly determine the TBS table to be used according to service requirements or indications, and improve the transmission efficiency of the communication system.
  • the determining, by the communication device, the used TBS table from the N candidate TBS tables includes: the communication device determining, according to the service type of the data, from the N candidate TBS tables The TBS form used. Selecting the TBS form to be used according to the type of service embodies the flexibility of the technical solution, making the TBS form used more targeted. Improve the efficiency of the communication system.
  • the communication device is a terminal device, or is located in the terminal device; the communication device determines, from the N candidate TBS tables, the used TBS table, including: the communication device according to the base station Instructing to determine the used TBS table from the N candidate TBS tables.
  • the indication of the base station may include signaling sent by the base station to the terminal device.
  • the indication of the base station may include feature information of control information sent by the base station to the terminal device, where the control information is used to schedule the data.
  • the feature information of the control information includes one or more of the following information: a cyclic redundancy code of the control information, a CRC scrambled radio network temporary identifier RNTI, a control information format, and the control information.
  • the indication mode can also be called an implicit indication mode, which can save the signaling overhead of the base station.
  • At least one of the candidate TBS tables includes one or more of the following TBS values: 544, 1344, 216, 400, 560, 312, 1328, 232, 416, 1368, 200, 360, 592, 324, and 1324.
  • the number of TBS forms used is one, or multiple.
  • the embodiment of the present application provides another method for determining a TBS, including: determining, by a communication device, a number of temporary information bits of data to be sent or received; and the communication device is in a TBS table according to the number of temporary information bits. Finding a TBS corresponding to the data; wherein the TBS table includes at least one of the following TBS values:
  • the efficiency of the voice service transmission can be improved.
  • the TBS of the data to be transmitted is the same as the TBS in the table calculated according to the resource allocation, the most efficient resource utilization can be realized, and the waste of the number of bits due to padding bits during data transmission can be avoided.
  • an embodiment of the present application provides a communication device, including a processor, a memory, where the memory is used to store a program, and the processor calls a program stored in the memory, and performs the following steps: from N candidate TBS tables. Determining a used TBS table for determining a TBS corresponding to the transmitted or received data, N being an integer greater than or equal to 2; determining a TBS corresponding to the data according to the used TBS table.
  • the communication device may be a terminal device, and may also be a network device.
  • the determining, by using the N TBS tables, the TBS table to be used including: determining, according to the service type of the data, the used TBS table from the N candidate TBS tables. TBS form.
  • the communication device further includes a communication interface, where the communication device is a terminal device, or is located in the terminal device; and determining, from the N candidate TBS tables, a used TBS table, The method includes: determining, according to an indication of a base station, the used TBS table from the N candidate TBS tables.
  • the indication of the base station may include signaling sent by the base station to the terminal device.
  • the indication of the base station may include feature information of control information sent by the base station to the terminal device, where the control information is used to schedule the data.
  • the feature information of the control information includes one or more of the following information: a cyclic redundancy code of the control information, a CRC scrambled radio network temporary identifier RNTI, a control information format, and the control information.
  • the indication mode can also be called an implicit indication mode, which can save the signaling overhead of the base station.
  • At least one of the candidate TBS tables includes one or more of the following TBS values: 544, 1344, 216, 400, 560, 312, 1328, 232, 416, 1368, 200, 360, 592, 324, and 1324.
  • the number of TBS forms used is one, or multiple.
  • an embodiment of the present application provides a communication device, including a processor, the memory is used to store a program, and the processor calls a program stored in a memory, and performs the following steps: determining temporary information of data sent or received. a number of bits; searching for a TBS corresponding to the data in a TBS table according to the number of temporary information bits; wherein the TBS table includes at least one of the following TBS values: 544, 1344, 216, 400, 560, 312, 1328, 232, 416, 1368, 200, 360, 592, 324, and 1324.
  • the communication device may be a terminal device, and may also be a network device.
  • the efficiency of the voice service transmission can be improved.
  • the TBS of the data to be transmitted is the same as the TBS in the table calculated according to the resource allocation, the most efficient resource utilization can be realized, and the waste of the number of bits due to padding bits during data transmission can be avoided.
  • an embodiment of the present application provides a storage medium, where the computer program is stored, and when the computer program is executed by a processor, the method according to any one of the foregoing first to second aspects is implemented.
  • the embodiment of the present application provides a chip system, including: a processor, configured to support a communication device, to implement the method according to any one of the foregoing first to second aspects.
  • FIG. 1 is a schematic diagram of a general hardware architecture of a mobile phone
  • 2 is a general hardware architecture of a base station
  • FIG. 3 is a flow chart of a method of determining a TBS
  • FIG. 4 is a schematic diagram of a TBS table
  • 5 is a schematic diagram of a protocol stack model of a communication system
  • Figure 6 is a schematic block diagram of a communication device
  • Figure 7 is a schematic block diagram of another communication device
  • FIG. 8 is a schematic diagram showing the hardware structure of a communication device.
  • the embodiments of the present application may be applied to, but not limited to, a 5G mobile communication NR system, and may also be applied to a long term evolution (LTE) system, such as a long term evolution-advanced (LTE-A) system, enhanced.
  • LTE long term evolution
  • LTE-A long term evolution-advanced
  • eLTE wireless fidelity
  • Wimax worldwide interoperability for microwave access
  • 3GPP 3rd generation partnership project
  • future communication system it is not limited.
  • the terminal equipment involved in the embodiment of the present application may refer to user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, A wireless communication device, user agent, or user device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • PLMNs public land mobile networks
  • the mobile phone 11 may include: a radio frequency (RF) circuit 110 , a memory 120 , other input devices 130 , a display screen 140 , a sensor 150 , an audio circuit 160 , an I/O subsystem 170 , and a processor 180 . And power supply 190 and other components.
  • RF radio frequency
  • the structure of the mobile phone shown in the figure does not constitute a limitation to the mobile phone, and may include more or less components than those illustrated, or combine some components, or split some components, or Different parts are arranged.
  • the display screen 140 belongs to a user interface (UI), and the display screen 140 can include a display panel 141 and a touch panel 142.
  • the mobile phone may also include functional modules or devices such as a camera and a Bluetooth module, and details are not described herein.
  • the processor 180 is coupled to the RF circuit 110, the memory 120, the audio circuit 160, the I/O subsystem 170, and the power supply 190, respectively.
  • the I/O subsystem 170 is coupled to other input devices 130, display 140, and sensor 150, respectively.
  • the RF circuit 110 can be used for receiving and transmitting signals during the transmission and reception of information or a call, and in particular, after receiving downlink information from the base station, the RF circuit 110 is sent to the processor 180 for processing.
  • the memory 120 can be used to store software programs as well as modules.
  • the processor 180 executes various functional applications and data processing of the mobile phone by executing software programs and modules stored in the memory 120, for example, performing the methods and functions of the terminal device in the embodiments of the present application.
  • Other input devices 130 can be used to receive input numeric or character information, as well as to generate key signal inputs related to user settings and function controls of the handset.
  • the display screen 140 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone, and can also accept user input.
  • Sensor 150 can be a light sensor, a motion sensor, or other sensor.
  • the audio circuit 160 can provide an audio interface between the user and the handset.
  • the I/O subsystem 170 is used to control external devices for input and output, and the external devices may include other device input controllers, sensor controllers, and display controllers.
  • the processor 180 is the control center of the handset 11, connecting various portions of the entire handset using various interfaces and lines, by running or executing software programs and/or modules stored in the memory 120, and recalling data stored in the memory 120, The various functions and processing data of the mobile phone 11 are executed to perform overall monitoring of the mobile phone.
  • a power source 190 (such as a battery) is used to power the various components described above.
  • the power source can be logically coupled to the processor 180 through a power management system to manage functions such as charging, discharging, and power consumption through the power management system.
  • the network device in this embodiment may be a base station of various forms (such as a macro base station, a micro base station (also referred to as a small station), a relay station, an access point, etc., or may refer to an access interface in an air interface.
  • the base station may be configured to convert the received air frame and an internet protocol (IP) packet into a router between the wireless terminal and the rest of the access network, where the access network The rest can include an IP network.
  • IP internet protocol
  • the base station can also be used to coordinate attribute management of the air interface.
  • the names of devices having a base station function may be different, for example, a global system for mobile communication (GSM) or code division multiple access (code division)
  • GSM global system for mobile communication
  • code division code division multiple access
  • a base station in a multiple access (CDMA) system is called a base transceiver station (BTS)
  • BTS base transceiver station
  • WCDMA wideband code division multiple access
  • node B node B
  • LTE LTE system
  • the base station in the middle is called an evolved base station (eNB)
  • eNB evolved base station
  • gNB general base station
  • the base station 12 may include an indoor baseband processing unit (BBU) 1201 and a remote radio unit (RRU) 1202.
  • the RRU 1202 and the antenna feeder system (ie, antenna) 1203 are connected, and the BBU is connected.
  • the 1201 and the RRU 1202 can be disconnected or used in combination.
  • the BBU 1201 and the RRU 1202 are used for disconnection, the BBU 1201 and the RRU 1202 are connected to each other through an optical fiber, and the RRU 1202 and the antenna 1203 are connected to each other by a coaxial cable.
  • a slot is a unit in the time domain of a resource for transmitting data.
  • a slot usually contains one or more symbols and/or chips, and each symbol and/or chip may have the same or different transmission direction. (status).
  • the transmission direction may be uplink or downlink, and may be an unknown state or a flexible state. In these two states, the terminal device may not perform transceiving processing but is used for internal processing of the terminal device.
  • the time slot may be a time unit for characterizing a granularity in the time domain.
  • the time unit may also refer to a subframe, a radio frame, a symbol, and other time units. Specifically, the present application Not limited.
  • the TBS table can be used to select the TBS corresponding to the data to be sent or the data to be received. Specifically, it may be predefined by a protocol, for example, may be the 5.1.3.2 of the 3rd generation partnership project (3GPP) technical specification (TS) 38.214 version 15.0.0 (v15.0.0). Table 5.1.3.2-2 in the section. In this table, an index number can be marked for each TBS.
  • 3GPP 3rd generation partnership project
  • the communication device may be a network device, may be a terminal device, or may be a chip located in a network device or a terminal device.
  • the number of temporary information bits which may also be referred to as an intermediate number of information bits, refers to an intermediate amount temporarily calculated in the process of determining the TBS corresponding to the data transmission. Further, the TBS corresponding to the data to be transmitted/received can be obtained by searching the TBS table according to the number of temporary information bits.
  • the determining step of the TBS may include:
  • Step 1 Determine the number of resource elements (RE) occupied by the data, N RE .
  • a physical resource block is a unit for characterizing a resource, and may be a granularity in a frequency domain.
  • the granularity, such as a PRB may include M symbols, N2 subcarriers, and the like. Where N1, N2, M can be positive integers.
  • the physical resource block may also be referred to as a resource block (RB), or may be referred to as a virtual resource block (VRB), etc., which is not limited in this application.
  • RB resource block
  • VRB virtual resource block
  • the RE number N' RE of the physical downlink shared channel (PDSCH) allocated in one RB is determined according to the formula (1).
  • DMRS demodulation reference signal
  • DCI downlink control information
  • CDM Code Division Multiplexing
  • N RE min(156,N' RE )*n PRB , formula (2);
  • n PRB is the number of PRBs for which the data is allocated.
  • Min() means taking the minimum of the two.
  • Step 2 Calculate the number of temporary information bits N info according to formula (3).
  • N info N RE *R*Q m * ⁇ , formula (3).
  • R is the code rate, which can be determined by a modulation coding scheme (MCS) indication (the modulation mode and the code rate can be included in the MCS indication).
  • MCS modulation coding scheme
  • Q m indicates the modulation method.
  • indicates the number of layers of the data mapping, which can be determined by the layer number indication information in the DCI, or can be predefined.
  • Step 3 Determine whether N info is less than (or equal to) the first threshold.
  • the first threshold may be one of 3824, 3848, and 8848, or other values, but the embodiment of the present application is not limited.
  • the TBS is determined by branch 1. Otherwise, the TBS is determined by branch 2.
  • the TBS value is obtained by looking up a predefined TBS table in the protocol.
  • the look-up table to find the closest value of not less than A and A as the TBS value.
  • N info by formula (4) before obtaining the quantized temporary information bit number N' info , and then look up the predefined table to obtain the TBS value.
  • the round function means rounding up or rounding up.
  • the TBS value can be calculated by equation (6).
  • N' info is greater than or equal to the third threshold, such as 8424, the TBS value can be calculated by equation (7).
  • the TBS value can be calculated by the formula (8).
  • voice services enhance clarity from narrowband communications to broadband communications to ultra-wideband communications and full broadband communications.
  • voice coding scheme that can be used for the voice service in the NR is EVS.
  • the transport block sent by the EVS in the air interface is much smaller than the transport block sent by the other voice coding scheme in the air interface, thereby improving the transmission efficiency. .
  • the size of a data packet is also calculated, which may be called a media access control (MAC) protocol data unit (PDU).
  • the MAC PDU value is closely related to the TBS determined at the physical layer, that is, the design of the TBS value in the TBS table mentioned above needs to consider the MAC PDU value to improve the transmission efficiency of the communication system.
  • the MAC PDU value may also be referred to as a TBS in a higher layer.
  • the TBS value in the TBS table mentioned above does not include the TBS value applicable to special services such as voice service.
  • the transmission resource is inevitably caused. Waste, reduce the efficiency of transmission and the performance of the communication system.
  • the embodiment of the present application provides a flexible TBS value search mode, and designs a TBS table for special service considerations, so that the communication device can flexibly determine the TBS table to be used according to service requirements or indications, and improve the transmission efficiency of the communication system.
  • a flow chart of a method of determining a TBS is provided in FIG. It can be applied to the processing flow of data transmission, and can also be applied to the processing flow of data reception.
  • the method includes:
  • the communication device determines, from the N candidate TBS tables, a used TBS table, where the TBS table is used to determine a TBS corresponding to the transmitted or received data, where N is an integer greater than or equal to 2;
  • the communication device selects a TBS corresponding to the data according to the used TBS table.
  • the communication device is used as a terminal device, and the terminal device has data to be transmitted as an example for description.
  • the communication device may also be a network device, or the technical solution of the embodiment of the present application may also be applied to a process of data reception.
  • Those skilled in the art can understand how to apply the solution to the solution by reading the solution of the present application. These scenarios are not described in detail in the embodiments of the present application.
  • N TBS tables are defined as candidate tables of the TBS table used by the communication device.
  • the N tables may include a TBS table in the prior art, that is, a table that does not consider special service requirements, and may also include a new TBS table, and the TBS value in the new TBS table includes special service designs such as voice services.
  • the number of sheets of the new TBS form may be one or more. When the number of sheets of the new TBS table is one, the value of N is 2, and when the number of sheets of the new TBS table is plural, the value of N is an integer greater than 2.
  • the terminal device in 301 can determine the used TBS table from the two candidate TBS tables according to the service type of the data to be transmitted. For example, when the service type is a non-voice service such as a mobile bandwidth service, the table 1 is selected as the used TBS table, and, for example, when the service type is voice service, the table 2 is selected, or the table 1 and the table 2 are selected as the used TBS table. .
  • the service type is a non-voice service such as a mobile bandwidth service
  • the table 1 is selected as the used TBS table
  • the table 2 is selected, or the table 1 and the table 2 are selected as the used TBS table.
  • the terminal device in 301 may determine the used TBS table from the two candidate TBS tables according to the indication of the network device.
  • the indication here may be an indication of display or an implicit indication.
  • the so-called displayed indication for example, the network device indicates to the terminal device the TBS table used by signaling.
  • the signaling may be high layer signaling or physical layer signaling, and may be broadcast signaling or dedicated signaling (eg, cell level or UE level signaling).
  • the so-called implicit indication can be indicated according to the characteristics of the DCI of the scheduling data, and different DCI features correspond to different selection results.
  • the DCI may be characterized by a cyclic redundancy check (CRC) scrambled radio network temporary indentation (RNTI), a DCI format, a feature of a search space, a detection period of a control channel, and a data transmission. At least one of the cycles.
  • the RNTI may include a cell radio network temporary indentation (C-RNTI), a temporary cell (TC)-RNTI (TC-RNTI), a configured scheduling (Configured Scheduling)-RNTI (CS-RNTI).
  • SI System information
  • SI-RNTI SI-RNTI
  • RA-RNTI random access
  • P-RNTI paging
  • the DCI format may be DCI format0_0, DCI format0_1, DCI format 1_0, DCI format 1_1, and the like.
  • the feature of the search space may be at least one of an aggregation level, a candidate number, a search space format, and the like, or may be a common search space or a UE-specific search space.
  • the period of data transmission may be that data is transmitted or scheduled once every 1 slot, or data is transmitted or scheduled once every N slots.
  • the format of the DCI sent by the network device is DCI format0_0
  • it is equivalent to implicitly indicating that the TBS table used by the terminal device is Table 1.
  • the format of the DCI sent by the network device is DCI format0_1
  • it is equivalent to implicitly indicating that the TBS table used by the terminal device is Table 2.
  • the format of the DCI sent by the network device is DCI format1_0
  • it is equivalent to implicitly indicating that the TBS table used by the terminal device is Table 1 and Table 2.
  • Other ways of implicit indication can be referred to this example.
  • the correspondence between the format of the DCI and the table may be as shown in the foregoing, or may be other similar correspondences. Specifically, the application does not limit this.
  • the TBS values in Table 1 and Table 2 may not overlap at all, or may overlap partially.
  • the terminal device selects the TBS corresponding to the data according to the used TBS table and the number of temporary information bits of the data. Assume that the TBS values of Table 1 and Table 2 at this time are as shown in FIG.
  • the table selected by the terminal device is Table 1. If the number of temporary information bits of the data calculated according to the embodiment is 180, since the TBS value in the table larger than the number of temporary information bits and closest to the number of temporary information bits is required, the TBS value of the finally selected data is 184. .
  • the table selected by the terminal device is Table 2. If the number of temporary information bits of the data calculated according to the embodiment is 180, since the TBS value in the table larger than the number of temporary information bits and closest to the number of temporary information bits needs to be selected, the TBS value of the finally selected data is 192. .
  • the table selected by the terminal device is Table 1 and Table 2. If the number of temporary information bits of the data calculated according to the embodiment is 180, since the TBS value in the table larger than the number of temporary information bits and closest to the number of temporary information bits needs to be selected, the lookup table 1 is obtained, and the obtained TBS value is obtained. 184; Looking up Table 2, the resulting TBS value is 192. Then, the smaller of the TBS values of the finally selected data is 184. If the number of temporary information bits is 230, look up Table 1, and the obtained TBS value is 240. Looking up Table 2, the obtained TBS value is 232. Then, the smaller of the TBS values of the finally selected data is 232.
  • the embodiment of the present application provides a flexible TBS value search mode, and designs a TBS table for a TBS table for special service considerations, so that the communication device can flexibly determine the TBS table to be used according to service requirements or indications, thereby improving the transmission efficiency of the communication system.
  • the second embodiment provides a way of determining the TBS value associated with a particular service in the form and a TBS form. This embodiment can be based on the foregoing embodiments, and can also be independent of the foregoing embodiments.
  • the following takes a special service as a voice service as an example for detailed discussion.
  • the determination of the TBS value in the TBS table is closely related to the data packet size at the upper layer, that is, the MAC PDU value. Therefore, for all kinds of voice services, the most direct, we can first calculate the data transmission time.
  • the MAC PDU value corresponding to the data, and at least one of these values is taken as a value in the TBS table.
  • the TBS table may be in a new TBS form designed for voice services (for example, the value of Table 2 as an embodiment), or the TBS table may include the TBS value of the voice service based on the existing TBS table. That is, the TBS value of the voice service can be added to the existing TBS table to form a more complete TBS table.
  • the protocol stack model of the communication system can be as shown in FIG. 5, which is a real-time transport protocol (RTP) layer, a user datagram protocol (UDP) layer, and an internet protocol (IP) from top to bottom. Layer, packet data convergence protocol (PDCP) layer, radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer .
  • RTP real-time transport protocol
  • UDP user datagram protocol
  • IP internet protocol
  • Layer packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • a service data adaption protocol (SDAP) layer may be added between the IP layer and the PDCP layer to form an 8-layer model.
  • SDAP service data adaption protocol
  • the core network of the NR accessed by the communication device may include the SDAP layer, and the transmission of data may need to consider the size of the SDAP header.
  • MAC PDU real-time transport protocol (RTP) payload size + robust header compression (RoHC) header size + layer 2 (layer 2, L2) header size, formula (9).
  • RTP real-time transport protocol
  • RoHC robust header compression
  • the RoHC header size is different for the voice frame and the silence insertion descriptor (SID) frame, for example, 2 bytes (16 bits), 3 bytes (24 bits), and 6 bytes (48 bits). Or other values.
  • the L2 header size may include the size of the MAC/RLC/PDCP header, or may include other additional information bits, and other additional information bits may be used to indicate or handle small changes, such as a short buffer status report (short buffer status report, Short BSR), power headroom report (PHR), etc.
  • the EVS may specifically include the following modes corresponding to different coding modes and code rates: primary primary, primary SID, primary 2.8, primary 7.2, primary 8, primary 9.6, primary 13.2, primary 16.4, primary 24. 4, primary32, primary48, primary64, primary96, primary128, adaptive multi-rate (AMR)-wideband (WB) interoperable (IO) SID, AMR-WB IO 6.6, AMR-WB IO 8.85, AMR-WB IO 12.65, AMR-WB IO14.25, AMR-WB IO 15.85, AMR-WB IO 18.25, AMR-WB IO 19.85, AMR-WB IO 23.05, AMR-WB IO 23.85, etc.
  • AMR adaptive multi-rate
  • WB wideband interoperable
  • the AMR service may specifically include the following modes corresponding to different coding modes and code rates: AMR SID, AMR 4.75, AMR 5.15, AMR 5.9, AMR 6.7, AMR 7.4, AMR 7.95, AMR 10.2, AMR 12. 2. AMR-WB SID, AMR-WB6.6, AMR-WB8.85, AMR-WB12.65, AMR-WB14.25, AMR-WB15.85, AMR-WB18.25, AMR-WB19.85, AMR -WB23.05, AMR-WB23.85, etc.
  • the mode of the voice service may refer to a codec, a codec mode, a bitrate, or a codec rate, or simply a mode. (mode), specifically, the application does not limit this.
  • Table 1 below is the MAC PDU value calculated according to formula (9), and Table 2 is Table 5.3.2.2 of 3GPP TS 38.214 v15.0.0.
  • PTP payload RoHC header L2 header MAC PDU Primary 48 twenty four 40 112 AMR-WB IO SID 56 twenty four 40 120 Primary7.2 144 twenty four 40 208 AMR-WB IO 12.65 256 twenty four 40 320
  • TBS table can be designed, and the TBS table can include these values: 328, 392 At least one of 544 and 1344.
  • At least one of the above values may be added to a new TBS table designed for voice services to form Table 3, or directly added as Table 4 in the existing Table 2.
  • Table 3 can be:
  • Table 4 may be (wherein the numerical value using the underline is the new value added according to Table 1, and the method of adding is as follows: after sorting in ascending order together with the values in the existing table, Form 4):
  • the ROHC header size is 24 for example. It should be noted that the ROHC header size may have other values. Similarly, the L2 header size can have other values.
  • the RTP payload size can also have different RTP payload formats. For the same mode of voice service, different RTP payload formats can have different values.
  • Format 1 bandwidth-efficient mode
  • Format 2 (or case2): 8-byte calibration mode (octet-aligned mode)
  • Format 3 (or case3): compact format protected payload sizes
  • Format 4 (or case4): codec mode request (CMR) header-full format without CMR byte
  • Format 5 (or case5): CMR byte header format (header-Full format with CMR byte)
  • Table 1 The values in Table 1 are based on the values obtained in case 1.
  • the size of the RTP payload can also be obtained in other formats.
  • Table 5 and Table 6 show the possible values of the RTP payload size in different voice service modes and different RTP payload formats:
  • each service mode will get the value of different MAC PDUs, that is, the RTP payload size, the ROHC header size, and the L2header size will affect the value of the MAC PDU.
  • each specific service when calculating the MAC PDU size, in addition to considering the RTP payload size, the RoHC header size, and the L2 header, depending on the actual situation of data transmission, it is also possible to consider the value of the additional header. In this way, each specific service also obtains the value of a different MAC PDU, that is, the size of the additional header will affect the value of the MAC PDU.
  • its MAC PDU can be determined by equation (10) before it is transmitted to the physical (PHY) layer at the upper layer.
  • MAC PDU RTP payload size + RoHC header size + L2 header size + additional header size, formula (10).
  • the additional header may also be referred to as an additional bit. It can be given as in equation (10), independent of the L2 header, or as part of the L2 header, equivalent to other extra information bits in the L2 header. In this case, since the additional header is already counted as part of the L2 header, The formula (9) can determine the MAC PDU. Of course, this part of the header can also be named as other bits, which is not limited in this application.
  • each specific service also obtains a value of a different MAC PDU.
  • MAC PDU RTP payload size + SDAP header size + RoHC header size + L2 header size, formula (11).
  • MAC PDU RTP payload size+SDAP header size+RoHC header size+L2 header size +additional header size, formula (12).
  • the TBS table can also be designed in the above manner. For example, at least one of the above values may be taken as the value of Table 3, or added to Table 2 to form a new Table 4.
  • the ROHC header size is 24 and the L2 header size is 48.
  • the L2 header may be a 16-bit PDCP header, an 8-bit MAC header, and 24 additional bits of information bits.
  • the specific MAC PDU for each voice service may be as described in at least one of Table 7. Other service types are similarly available, and are not described here.
  • TBS table can be designed, and the TBS table can include these values: 216,328 At least one of 400 and 560.
  • At least one of the above values may be added to a new TBS table designed for voice services to form a table similar to Table 3, or directly added to form a table similar to Table 4 as in the existing Table 2. .
  • the ROHC header size is 24 and the L2 header size is 24, wherein the L2 header may include a 16-bit PDCP header and an 8-bit MAC header.
  • the specific MAC PDU for each voice service may be as described in at least one of Table 8. Other service types are similarly available, and are not described here.
  • TBS table can be designed, and the TBS table can include these values: 312,376 At least one of 536 and 1328.
  • At least one of the above values may be added to a new TBS table designed for voice services to form a table similar to Table 3, or directly added to form a table similar to Table 4 as in the existing Table 2. .
  • the ROHC header size is 24 and the L2 header size is 64.
  • the L2 header may be a 16-bit PDCP header, an 8-bit RLC header, a 16-bit MAC header, and 24 bits of additional information. Bit.
  • the specific MAC PDU for each voice service may be as described in at least one of Table 9. Other service types are similarly available, and are not described here.
  • Table 9 By comparing Table 9 with Table 2, it can be found that the data using the underline in the data of the last column of Table 9 is not in the TBS value of Table 2, so the TBS table can be designed, and the TBS table can include these values: 232, 344 At least one of 416, 568 and 1368.
  • At least one of the above values may be added to a new TBS table designed for voice services to form a table similar to Table 3, or directly added to form a table similar to Table 4 as in the existing Table 2. .
  • the RTP payload size can be based on different RTP payload formats.
  • different RTP payload formats can have different values.
  • the ROHC header size is 24 and the L2 header size is 64.
  • the L2 header can be a 16-bit PDCP header, an 8-bit RLC header, a 16-bit MAC header, and 24 bits of additional bits. Information bits.
  • the specific MAC PDU for each voice service may be as described in at least one of Tables 10 to 14. Other service types are similarly available, and are not described here.
  • TBS table can be designed, and the TBS table can include These values are at least one of 344, 216, 200, 280, 232, 584, 360, 232, 568 and 592.
  • At least one of the above values may be added to a new TBS table designed for voice services to form a table similar to Table 3, or directly added to form a table similar to Table 4 as in the existing Table 2. .
  • the MAC PDU value may be other more.
  • the RTP payload size for example, at least one of the RTP payload size, the ROHC header size, the L2header size, the additional header size, and the SDAP header size.
  • the value of the ROHC header size may include 24, 48, 32, 16, 40, or other values;
  • the L2header size may include 16, 24, 20, 26, 28, 34, 32, 38, 40, 46. 44, 52, 48, 54, 56, 62, 60, 64, 68, or other values,
  • the MAC header size may include 0, 8, 16, 24 or other values
  • the RLC header size may be 0, 8 , 16, 24, 32, 40, or other values
  • the PDCP header size can be 0, 8, 24, 16, 32, 40, or other values;
  • the additional header size can include 0, 16, 24, 32, or Other values;
  • the SDAP header size can be 0, 8, or 16, or other values.
  • the communication device may obtain the TBS value of the data in the following manner:
  • the communication device determines the number of temporary information bits of the transmitted or received data
  • the communication device searches for a TBS corresponding to the data in a TBS table according to the number of temporary information bits, wherein the TBS table includes at least one of the following TBS values:
  • the existing TBS table is updated according to the special service, for example, the special requirements of the voice service, thereby improving the transmission efficiency and performance of the communication system.
  • the third embodiment provides a way of determining the TBS value associated with a particular service in the form and a TBS form. This embodiment may be based on the foregoing first embodiment, or may be independent of the foregoing first embodiment.
  • the third embodiment is also described in detail by taking a special service as a voice service as an example.
  • the manner of calculating the MAC PDU value of the data of the voice service is obtained in a manner different from the TBS value in the existing 3GPP TS 38.214 v15.0.0 table 5.1.3.2-2, and when TBS The TBS value of the data that is sent or received by the communication device is the same as that of the second embodiment, and is not described here.
  • the embodiment needs to comprehensively consider the possible adjacent values to ensure the adjacent two in the TBS table.
  • the values of TBSs should not be too close, so that the TBS value of the updated table can be avoided to increase the processing complexity of the communication device, and the modification of the existing 3GPP protocol is also avoided.
  • the values obtained in the second embodiment that may be added to the existing table are: 328, 392, 544, 1344, 232, 344, 416, 568, 1368, 312, 376, 1328.
  • the two values can be adjusted to add 1324 to the existing one.
  • the calculation of the TBS value may be performed by taking the average of the two values considered, or may be other operations, which is not limited in this application. If the calculated number is a non-integer, you can further consider rounding up, or rounding down to get an integer value.
  • the TBS values that are finally added to the existing table 5.1.3.2-2 can be: 392, 1344, 232, 344, 416, 568, 1368, 312, 376, 324, 536, 1324.
  • At least one of the above values may be added to a new TBS form designed for voice services to form other forms.
  • the value adjusted with the value that may be added to the existing table for example, at least one of 320, 528, 1320, etc., may still remain in the existing table without deleting, of course It can be removed from an existing form.
  • the TBS value of the data may be obtained in the following manner for the embodiment:
  • the communication device determines the number of temporary information bits of the transmitted or received data
  • the communication device searches for a TBS corresponding to the data in a TBS table according to the number of temporary information bits, wherein the TBS table includes at least one of the following TBS values:
  • whether the TBS value obtained by the second embodiment is adjusted may be determined by the setting of the threshold.
  • the obtained method is used in the third embodiment. After the TBS value is adjusted, it is added to Table 5.1.3.2-2 for updating. That is, the last updated table is to be satisfied, and the difference between the two TBS values adjacent to the index number is less than (or equal to) the threshold.
  • the optional threshold value may be other values such as 0, 8, or 16.
  • the specific value is not limited in this application.
  • the threshold value may be that the base station informs the terminal, or may be a protocol pre-defined. Specifically, the application does not limit this.
  • the method for transmitting a measurement report in the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 5.
  • the communication device of the embodiment of the present application will be described in detail below with reference to FIG. 6 to FIG.
  • the communication device embodiment corresponds to the method embodiment, and a similar description can refer to the method embodiment.
  • Figure 6 is a schematic block diagram of a communication device of one embodiment of the present application. It should be understood that the communication device 600 illustrated in FIG. 6 can be used to perform the relevant steps performed by the communication devices of the first embodiment to the third embodiment.
  • the communication device 600 includes a first determining unit 601 and a second determining unit 602.
  • the first determining unit 601 determines a used TBS table from the N candidate TBS tables, where the TBS table is used to determine a TBS corresponding to the transmitted or received data, and N is an integer greater than or equal to 2.
  • the second determining unit 602 is configured to determine a TBS corresponding to the data according to the used TBS table.
  • the first determining unit 601 can be specifically configured to:
  • the used TBS table is determined from the N candidate TBS tables according to the service type of the data.
  • the first determining unit 601 may be specifically configured to:
  • the used TBS table is determined from the N candidate TBS tables according to an indication from the base station.
  • the indication of the base station is signaling sent by the base station to the terminal device.
  • the indication of the base station is feature information of control information sent by the base station to the terminal device, where the control information is used to schedule the data.
  • the feature information of the control information includes one or more of the following information:
  • the cyclic redundancy code of the control information checks a CRC scrambled radio network temporary identifier RNTI, a control information format, a search space type of the control information, and a detection period of the control information.
  • At least one of the candidate TBS tables includes one or more of the following TBS values:
  • the number of TBS forms used is one, or multiple.
  • the difference between the TBS values included in the at least one candidate TBS table is less than or equal to a preset threshold.
  • the embodiment of the present application provides a flexible TBS value searching method, and newly adds a TBS table specifically for special service considerations without changing the existing predefined TBS table, so that the communication device can flexibly base
  • the business requirements or instructions determine the TBS form to be used to improve the transmission efficiency of the communication system.
  • FIG. 7 is a schematic block diagram of a communication apparatus according to an embodiment of the present application. It should be understood that the communication device 700 shown in FIG. 7 can be used to perform the relevant steps performed by the communication devices of the first embodiment to the third embodiment.
  • the communication device 700 includes a determination unit 701 and a lookup unit 702.
  • a determining unit 701 configured to determine a temporary information bit number of the transmitted or received data
  • the searching unit 702 is configured to search, in the TBS table, the TBS corresponding to the data according to the number of temporary information bits;
  • the TBS table includes at least one of the following TBS values:
  • the existing TBS table is updated according to the special service, for example, the special requirements of the voice service, thereby improving the transmission efficiency and performance of the communication system.
  • each unit of the communication device 600 and the communication device 700 is only a division of a logical function. In actual implementation, it may be integrated into one physical entity in whole or in part, or may be physically separated. Moreover, these units may all be implemented in the form of software by means of processing component calls; or may be implemented entirely in hardware; some units may be implemented by software in the form of processing component calls, and some units may be implemented in the form of hardware.
  • the sending unit may be a separately set processing component, or may be integrated in a certain chip of the network device, or may be stored in a memory of the network device in the form of a program, and is called by a processing component of the network device. And perform the function of the sending unit.
  • the implementation of other units is similar.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above units may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASICs), or one or more microprocessors (digital singnal processors) , DSP), or, one or more field programmable gate arrays (FPGAs), and the like.
  • ASICs application specific integrated circuits
  • DSP digital singnal processors
  • FPGAs field programmable gate arrays
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 8 is a schematic diagram showing the hardware structure of a communication device 800 according to an embodiment of the present application.
  • the communication device 800 includes at least one processor 801, a communication bus 802, and at least one communication interface 804, and may also include a memory 803.
  • the processor 801 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 802 can include a path for communicating information between the components described above.
  • Communication interface 804 using any type of transceiver, for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 803 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other medium accessed, but is not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 803 is used to store application code for executing the solution of the present application, and is controlled by the processor 801 for execution.
  • the processor 801 is configured to execute the application code stored in the memory 803, so as to implement the steps performed by the terminal device or the network device in the embodiment 1-6 of the present application.
  • the processor 801 can include one or more CPUs.
  • communication device 800 can include multiple processors. Each of these processors can be a single-CPU processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the communication device 800 can also include an output device and an input device.
  • the output device is in communication with the processor 801 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector.
  • the input device is in communication with the processor 801 and can accept user input in a variety of ways.
  • the input device can be a mouse, a keyboard, a touch screen device, or a sensing device, and the like.
  • the communication device 800 provided by the embodiment of the present application may be a chip, or a terminal device, or a network device, or a device having a similar structure in FIG.
  • the embodiment of the present application does not limit the type of the communication device 800.
  • the above memory 803 may also be located outside the communication device 800, such as an off-chip memory.
  • the embodiment of the present application provides a chip system, where the chip system includes a processor for supporting a communication device to implement a method for transmitting a measurement report according to various embodiments, for example, determining a demodulation reference signal for transmitting a shared channel. symbol.
  • the chip system also includes a memory.
  • the memory is used to store program instructions and data necessary for the communication device.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices. This embodiment of the present application does not specifically limit this.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种确定TBS的方法,包括:通信装置从N张候选的TBS表格中确定使用的TBS表格,所述TBS表格用于确定发送或者接收的数据对应的TBS,N为大于等于2的整数;所述通信装置根据所述使用的TBS表格确定所述数据对应的TBS。通过这种灵活的TBS值查找方式,使得通信装置可以灵活的根据业务需求或者指示确定使用的TBS表格,提高通信系统的传输效率。

Description

确定传输块大小的方法和通信装置
本申请要求于2018年04月04日提交中国国家知识产权局、申请号为201810299445.2、申请名称为“确定传输块大小的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更为具体的,涉及通信领域中确定传输块大小的方法和通信装置。
背景技术
数据通过空口在网络设备和终端设备之间传输。例如,对于终端设备向网络设备发送数据的场景,在数据通过天线发送之前,终端设备的物理层将按照规定的格式进行处理,所述处理可以包括:加扰、调制、层映射、预编码、资源映射和信号生成等等。
数据在物理层可以对应为传输块(transmit block,TB)。在处理过程中需要确定传输块大小(transmit block size,TBS)。
然而,在TBS的确定过程中,现有技术并未考虑一些业务,例如第5代移动通信(the5th Generation,5G)新空口(New Radio,NR)技术的增强语音业务(enhanced voice service,EVS),的特殊需求,从而导致通信系统传输资源浪费、传输效率下降。
发明内容
本申请结合多种实施方式,提供了确定TBS大小的方法、通信装置和系统,以提升系统传输效率。
应理解,本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,“A,和/或,B”,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
第一方面,本申请实施例提供了一种确定TBS大小的方法,包括:通信装置从N张候选的TBS表格中确定使用的TBS表格,所述TBS表格用于确定发送或者接收的数据对应的TBS,N为大于等于2的整数;所述通信装置根据所述使用的TBS表格确定所述数据对应的TBS。以上TBS值查找方式,设计针对特殊业务考虑的TBS表格,使得通信装置可以灵活的根据业务需求或者指示确定使用的TBS表格,提高通信系统的传输效率。
在一种可能的实现方式中,通信装置从N张候选的TBS表格中确定使用的TBS表格,包括:所述通信装置根据所述数据的业务类型,从所述N张候选的TBS表格中确定所述使用的TBS表格。根据业务类型选取使用的TBS表格,体现了该技术方案的灵活性,使得使得使用的TBS表格更有针对性。提高了通信系统的效率。
在一种可能的实现方式中,所述通信装置为终端设备,或者位于所述终端设备中;通 信装置从N张候选的TBS表格中确定使用的TBS表格,包括:所述通信装置根据基站的指示,从所述N张候选的TBS表格中确定所述使用的TBS表格。
可选的,所述基站的指示可以包括所述基站向所述终端设备发送的信令。
可选的,所述基站的指示可以包括所述基站向所述终端设备发送的控制信息的特征信息,所述控制信息用于调度所述数据。其中,所述控制信息的特征信息,包括如下信息中的一种或者多种:所述控制信息的循环冗余码校验CRC加扰的无线网络临时标识RNTI、控制信息格式、所述控制信息的搜索空间类型和所述控制信息的检测周期。该种指示方式也可以称为隐式的指示方式,可以节约基站的信令开销。
在一种可能的实现方式中,至少一张所述候选的TBS表格中包括如下TBS数值中的一个或者多个:544、1344、216、400、560、312、1328、232、416、1368、200、360、592、324和1324。
这些值都是针对语音业务获得的,因此可以有效提高语音业务的传输效率。
在一种可能的实现方式种,所述使用的TBS表格张数为一张,或者多张。
第二方面,本申请实施例提供了另一种确定TBS的方法,包括:通信装置确定发送或者接收的数据的临时信息比特数;所述通信装置根据所述临时信息比特数,在TBS表格中查找所述数据对应的TBS;其中,所述TBS表格包括如下TBS数值中的至少一个:
544、1344、216、400、560、312、1328、232、416、1368、200、360、592、324和1324。
以上这些数值是针对语音业务获得的,因此,能够提高语音业务传输的效率。例如,当待传输的数据的TBS与根据资源分配计算得到的表格中的TBS相同时,可以实现最高效的资源的利用,避免数据传输时因为填充比特导致的比特数的浪费。
第三方面,本申请实施例提供了一种通信设备,包括处理器、存储器,述存储器用于存储程序,所述处理器调用存储器存储的程序,执行如下步骤:从N张候选的TBS表格中确定使用的TBS表格,所述TBS表格用于确定发送或者接收的数据对应的TBS,N为大于等于2的整数;根据所述使用的TBS表格确定所述数据对应的TBS。
在一种实现方式中,所述通信设备可以是终端设备,还可以是网络设备。
在一种可能的实现方式中,所述从N张候选的TBS表格中确定使用的TBS表格,包括:根据所述数据的业务类型,从所述N张候选的TBS表格中确定所述使用的TBS表格。
在一种可能的实现方式中,所述通信装置还包括通信接口,所述通信装置为终端设备,或者位于所述终端设备中;所述从N张候选的TBS表格中确定使用的TBS表格,包括:根据基站的指示,从所述N张候选的TBS表格中确定所述使用的TBS表格。
可选的,所述基站的指示可以包括所述基站向所述终端设备发送的信令。
可选的,所述基站的指示可以包括所述基站向所述终端设备发送的控制信息的特征信息,所述控制信息用于调度所述数据。其中,所述控制信息的特征信息,包括如下信息中的一种或者多种:所述控制信息的循环冗余码校验CRC加扰的无线网络临时标识RNTI、控制信息格式、所述控制信息的搜索空间类型和所述控制信息的检测周期。该种指示方式也可以称为隐式的指示方式,可以节约基站的信令开销。
在一种可能的实现方式中,至少一张所述候选的TBS表格中包括如下TBS数值中的一个或者多个:544、1344、216、400、560、312、1328、232、416、1368、200、360、592、324和1324。
这些值都是针对语音业务获得的,因此可以有效提高语音业务的传输效率。
在一种可能的实现方式种,所述使用的TBS表格张数为一张,或者多张。
第四方面,本申请实施例提供了一种通信设备,包括处理器、所述存储器用于存储程序,所述处理器调用存储器存储的程序,执行如下步骤:确定发送或者接收的数据的临时信息比特数;根据所述临时信息比特数,在TBS表格中查找所述数据对应的TBS;其中,所述TBS表格包括如下TBS数值中的至少一个:544、1344、216、400、560、312、1328、232、416、1368、200、360、592、324和1324。
在一种实现方式中,所述通信设备可以是终端设备,还可以是网络设备。
以上这些数值是针对语音业务获得的,因此,能够提高语音业务传输的效率。例如,当待传输的数据的TBS与根据资源分配计算得到的表格中的TBS相同时,可以实现最高效的资源的利用,避免数据传输时因为填充比特导致的比特数的浪费。
第五方面,本申请实施例提供一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面至第二方面任一项所述的方法。
第六方面,本申请实施例提供一种芯片系统,包括:处理器,用于支持通信设备实现上述第一方面至第二方面任一项所述的方法。
附图说明
图1是一种手机的通用硬件架构的示意图;
图2是一种基站的通用硬件架构;
图3是一种确定TBS的方法的流程图;
图4是一种TBS表格的示意图;
图5是一种通信系统的协议栈模型示意图;
图6是一种通信装置的示意性框图;
图7是另一种通信装置的示意性框图;
图8是一种通信装置的硬件结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于但不限于5G移动通信NR系统,还可以应用于长期演进(long term evolution,LTE)系统,例如长期演进高级(long term evolution-advanced,LTE-A)系统、增强的长期演进技术(enhanced long term evolution-advanced,eLTE)等通信系统中,也可以扩展到如无线保真(wireless fidelity,WiFi)、全球微波互联接入(worldwide interoperability for microwave access,wimax)、以及第三代合作伙伴计划(3rd generation  partnership project,3GPP)等相关的蜂窝系统中,或者也可以应用于未来的通信系统中,具体的,不作限定。
本申请实施例中涉及的终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
以终端设备为手机为例,对手机的通用硬件架构进行说明。如图1所示,手机11可以包括:射频(Radio Frequency,RF)电路110、存储器120、其它输入设备130、显示屏140、传感器150、音频电路160、I/O子系统170、处理器180、以及电源190等部件。本领域技术人员可以理解,图中所示的手机的结构并不构成对手机的限定,可以包括比图示更多或者更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领域技术人员可以理解显示屏140属于用户界面(User Interface,UI),显示屏140可以包括显示面板141和触摸面板142。尽管未示出,手机还可以包括摄像头、蓝牙模块等功能模块或器件,在此不再赘述。
进一步地,处理器180分别与RF电路110、存储器120、音频电路160、I/O子系统170、以及电源190连接。I/O子系统170分别与其它输入设备130、显示屏140、传感器150连接。其中,RF电路110可用于在收发信息或通话过程中对信号的接收和发送,特别地,接收来自基站的下行信息后,发送给处理器180处理。存储器120可用于存储软件程序以及模块。处理器180通过运行存储在存储器120的软件程序以及模块,从而执行手机的各种功能应用以及数据处理,例如执行本申请实施例中终端设备的方法和功能。其它输入设备130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。显示屏140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单,还可以接受用户输入。传感器150可以为光传感器、运动传感器或者其它传感器。音频电路160可提供用户与手机之间的音频接口。I/O子系统170用来控制输入输出的外部设备,外部设备可以包括其它设备输入控制器、传感器控制器、显示控制器。处理器180是手机11的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器120内的软件程序和/或模块,以及调用存储在存储器120内的数据,执行手机11的各种功能和处理数据,从而对手机进行整体监控。电源190(比如电池)用于给上述各个部件供电,优选的,电源可以通过电源管理系统与处理器180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
本申请实施例中的网络设备可以为各种形式的基站(如宏基站、微基站(也称为小站))、中继站、接入点等,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。当网络设备为基站时,基站可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可用于协调对空中接口的属性管理。 其中,在采用不同无线接入技术的通信系统中,具备基站功能的设备的名称可能会有所不同,例如,全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)系统中的基站称之为基站(base transceiver station,BTS)、宽带码分多址(wideband code division multiple access,WCDMA)中的基站称之为节点B(node B)、LTE系统中的基站称之为演进型基站(evolutional node B,eNB)、NR系统中的基站称之为通用型基站(general node B,gNB)等。本申请实施例对此不进行不限定。
进一步的,对基站的通用硬件架构进行说明。如图2所示,基站12可以包括室内基带处理单元(Building Baseband Unit,BBU)1201和远端射频模块(Remote Radio Unit,RRU)1202,RRU 1202和天馈系统(即天线)1203连接,BBU 1201和RRU 1202可以根据需要拆开或合并使用,当BBU 1201和RRU 1202拆开使用时,BBU 1201与RRU1202之间通过光纤相互连接,RRU1202与天线1203之间通过同轴电缆相互连接。
下面对本申请实施例中涉及的一些名词做出说明。
时隙(slot),为传输数据的资源在时域上的单位,一个时隙通常包含一个或多个符号和/或码片,每个符号和/或码片可能有相同或不同的传输方向(状态)。所述传输方向可以为上行、下行,还可以为不确定(unknown)状态或者灵活(flexible)状态,在这两种状态下,终端设备可以不进行收发处理,而用于终端设备的内部处理。时隙可以是一种时间单位,用于表征时域上的一种粒度,可选的,时间单位也可以是指子帧,无线帧,符号等其它的时间单位,具体的,本申请对此不作限定。
TBS表格,可以用于选取待发送的数据或者待接收的数据所对应的TBS。具体的,可以通过协议预定义,例如可以是第三代合作伙伴项目(the 3rd generation partnership project,3GPP)技术规范(technical specification,TS)38.214版本15.0.0(v15.0.0)中第5.1.3.2节中的表格5.1.3.2-2。在该表格中,可以对于每个TBS标有一个索引号。
通信装置,可以是网络设备,可以是终端设备,还可以是位于网络设备或者终端设备内的芯片。
临时信息比特数,又可以称为信息比特中间数(intermediate number of information bits),是指在确定数据传输对应的TBS的过程中临时计算得到的中间量。进一步地,可以根据临时信息比特数,通过查找TBS表格,获得待发送/接收数据所对应的TBS.
另外需要说明的是,本申请所涉及的数字,若无额外的说明,它们的单位为比特(bit)。可选的,本申请实施例中8bits可以等同于1个字节(byte),或者,8bits可以等同于1个八位位组(octet)。
下面以下行数据TBS的确定为例进行说明,现有技术中,在物理层处理过程中,TBS的确定步骤可以包括:
步骤一:确定数据所占的资源单元(resource element,RE)数N RE
物理资源块(PRB,physical resource block)是用于表征资源的单位,可以是指频域上的粒度,比如一个PRB可以包括N1个子载波,比如N1=12,也可以是指时频域上的粒度,比如一个PRB可以包括M个符号,N2个子载波等等。其中N1,N2,M可以为正整数。
物理资源块也可以称为资源块(RB,resource block),或者也可以称为虚拟资源块(VRB,virtual resource block)等等,本申请对此不作限定。
第一,根据公式(1)确定一个RB中分配的物理下行共享信道(physical downlink shared channel,PDSCH)的RE数N’ RE
Figure PCTCN2019080906-appb-000001
其中,
Figure PCTCN2019080906-appb-000002
表示一个PRB在频域上的子载波个数,
Figure PCTCN2019080906-appb-000003
表示一个slot中调度的符号数,
Figure PCTCN2019080906-appb-000004
表示在该slot内,一个PRB中解调参考信号(demodulation reference signal,DMRS)所占用的RE数,例如,可以包括在下行控制信息(downlink control information,DCI)中指示的DMRS码分复用(Code Division Multiplexing,CDM)组的开销。
Figure PCTCN2019080906-appb-000005
表示通过高层参数Xoh-PDSCH配置的开销,开销值可以是6,12,or 18个RE。如果没有配置该高层参数Xoh-PDSCH,则Xoh-PDSCH的取值为0。
第二,再根据公式(2)计算出N RE
N RE=min(156,N' RE)*n PRB,    公式(2);
其中n PRB是所述数据分配的PRB数。Min()表示取两者中的最小值。
步骤二:根据公式(3)计算临时信息比特数N info
N info=N RE*R*Q m*υ,公式(3)。
其中,R表示码率,可以通过调制编码方案(modulation coding scheme,MCS)指示确定(MCS指示中可以包括调制方式和码率)。Q m表示调制方式。υ表示数据映射的层数,可以通过DCI中的层数指示信息确定,也可以预定义。
步骤三:判断N info是否小于(或者等于)第一门限值。例如,该第一门限值可以为3824、3848、8848中的一个,或其它取值,但本申请实施例不做限制。
如果N info小于(或者等于)第一门限值,则通过分支1确定TBS。否则,通过分支2确定TBS。
分支1:
通过查找协议中预定义的TBS表格获得TBS值。
如果计算得到的N info为A,则通过查表找到大于等于A且最接近A的值作为TBS值。
当然,还可以在查表前通过公式(4)对N info先进行量化获得量化临时信息比特数N’ info,再查找预定义的表格获得TBS值。
Figure PCTCN2019080906-appb-000006
其中
Figure PCTCN2019080906-appb-000007
表示向下取整。
举一个具体的例子,假设计算得到的N’ info为360,根据所述表格5.1.3.2-2查找到得到TBS为368。
分支2:
通过公式(5)计算获得N’ info
Figure PCTCN2019080906-appb-000008
其中,
Figure PCTCN2019080906-appb-000009
round函数表示向上取整或者四舍五入。
如果R小于或等于第二门限值,例如1/4,可以通过公式(6)计算TBS值,
Figure PCTCN2019080906-appb-000010
其中,
Figure PCTCN2019080906-appb-000011
表示向上取整。
否则,如果N’ info大于或等于第三门限值,例如8424,可以通过公式(7)计算TBS值,
Figure PCTCN2019080906-appb-000012
其中,
Figure PCTCN2019080906-appb-000013
如果上述两个条件都不满足,则可以通过公式(8)计算TBS值。
Figure PCTCN2019080906-appb-000014
另一方面,通信技术的发展给包括语音业务在内的各项业务提出了更高的要求。例如,语音业务从窄带通信到宽带通信,再到超宽带通信和全宽带通信,增强了清晰度。例如,在NR中语音业务可以使用的语音编码方案为EVS,对于相同的语音帧,EVS在空口中发送的传输块相远小于其它语音编码方案在空口中发送的传输块,提高了传输的效率。
在高层,数据在流向物理层之前,也会计算出一个数据包的大小,可以称为媒体接入控制(media access control,MAC)协议数据单元(protocol data unit,PDU)。MAC PDU值与在物理层确定的TBS密切相关,也就是说,上述提及的TBS表格中的TBS值的设计需要考虑MAC PDU值,以提高通信系统的传输效率。
可选的,MAC PDU值也可以称为高层中的TBS。
然而,上述提及的TBS表格中的TBS值并未包括适用于语音业务等特殊业务的TBS数值,例如,如果采用当前表格去确定在EVS的TBS取值,则不可避免的造成了传输资源的浪费、降低了传输的效率和通信系统的性能。
本申请实施例提供了一种灵活的TBS值查找方式,设计针对特殊业务考虑的TBS表格,使得通信装置可以灵活的根据业务需求或者指示确定使用的TBS表格,提高通信系统的传输效率。
实施例一
如图3提供了一种确定TBS的方法的流程图。可以应用于数据发送的处理流程,还可以应用于数据接收的处理流程。该方法包括:
301、通信装置从N张候选的TBS表格中确定使用的TBS表格,所述TBS表格用于确定发送或者接收的数据对应的TBS,N为大于等于2的整数;
302、通信装置根据所述使用的TBS表格,选取所述数据对应的TBS。
此处以通信装置为终端设备,所述终端设备存在待发射的数据为例进行说明。当然如前所述,通信装置还可以为网络设备,或者本申请实施例的技术方案还可以应用于数据接收的处理流程中,本领域技术人员通过阅读本申请的方案可以理解如何将其应用到这些场景,本申请实施例不再赘述。
如前所述,现有技术中仅定义了一张TBS表格,且该TBS表格中的TBS值未考虑特殊业务的需求。本申请实施例中,定义了N张TBS表格作为所述通信装置使用的TBS表格的候选表格。所述N张表格中,可以包括现有技术中的TBS表格,也即未考虑特殊业务需求的表格,还可以包括新TBS表格,该新TBS表格中的TBS值包括了语音业务等特殊业务设计的TBS值。该新TBS表格的张数可以为1张,也可以为多张。当新TBS表格的张数为1张时,N值为2,新TBS表格的张数为多张时,N值为大于2的整数。
以下以新TBS表格为一张,即N=2为例,进行说明。并且假设现有技术中的TBS表格为表格1,新TBS表格为表格2。
作为一种实现方式,301中终端设备可以根据待传输数据的业务类型,从2张候选的TBS表格中确定使用的TBS表格。例如当业务类型为移动带宽业务等非语音业务时,选取表格1为使用的TBS表格,又例如,当业务类型为语音业务时,选取表格2,或者选取表格1和表格2为使用的TBS表格。
根据实际的业务类型确定使用的TBS表格,增加了技术方案的灵活性。
作为另一种实现方式,301中终端设备可以根据网络设备的指示,从2张候选的TBS表格中确定使用的TBS表格。这里的指示,可以是显示的指示,亦或隐式的指示。所谓显示的指示,例如,网络设备通过信令向终端设备指示使用的TBS表格。该信令可以是高层信令或者物理层信令,可以是广播信令或者专用信令(例如小区级别或者UE级别的信令)。所谓隐式的指示,可以根据调度数据的DCI的特征进行指示,不同的DCI特征对应不同的选择结果。DCI的特征可以是循环冗余码校验(cyclic redundancy check,CRC)加扰的无线网络临时标识(radio network temporary indentity,RNTI)、DCI格式、搜索空间的特征、控制信道的检测周期、数据传输的周期中的至少一项。其中RNTI可以包括小区无线网络临时标识(cell radio network temporary indentity,C-RNTI)、临时小区(temporary cell,TC)–RNTI(TC-RNTI)、配置调度(Configured Scheduling)–RNTI(CS-RNTI)、系统信息(system information,SI)-RNTI(SI-RNTI),随机接入(random access,RA)-RNTI(RA-RNTI)、或者寻呼(Paging,P)–RNTI(P-RNTI)等。DCI格式可以是DCI format0_0,DCI format0_1,DCI format 1_0,DCI format 1_1等。搜索空间的特征,可以是聚合级别、候选个数、搜索空间格式等等中的至少一项,也可以是指公共搜索空间,或UE专用搜索空间。数据传输的周期,可以是每隔1个slot传输或调度一次数据,或者每个N个slot传输或调度一次数据等等。
此处仅举一例说明。例如,当网络设备发送DCI的格式为DCI format0_0时,相当于隐式指示终端设备确定使用的TBS表格为表格1。当网络设备发送DCI的格式为DCI format0_1时,相当于隐式指示终端设备确定使用的TBS表格为表格2。当网络设备发送DCI的格式为DCI format1_0时,相当于隐式指示终端设备确定使用的TBS表格为表格1和表格2。其它隐式指示的方式可以参照该例。
可选的,DCI的格式与表格的对应关系可以如上所示,也可以是其它类似的对应关系,具体的,本申请对此不作限定。
可选的,表格1和表格2中的TBS取值可以完全不重叠,亦可以部分重叠。
此处,举例说明302中,终端设备如何根据使用的TBS表格和数据的临时信息比特数,选取该数据对应的TBS。假设此时表格1和表格2的TBS取值如图4所示。
实现方式一:
根据301,终端设备所选取的表格为表格1。若根据实施例开始计算得出的数据的临时信息比特数为180,由于需要选取表格中大于临时信息比特数且最接近临时信息比特数的TBS值,则,最终选取的数据的TBS值为184。
实现方式二:
根据301,终端设备所选取的表格为表格2。若根据实施例开始计算得出的数据的临时信息比特数为180,由于需要选取表格中大于临时信息比特数且最接近临时信息比特数的TBS值,则,最终选取的数据的TBS值为192。
实现方式三:
根据301,终端设备所选取的表格为表格1和表格2。若根据实施例开始计算得出的数据的临时信息比特数为180,由于需要选取表格中大于临时信息比特数且最接近临时信息比特数的TBS值,这样,查找表格1,得到的TBS值为184;查找表格2,得到的TBS值为192。则,最终选取的数据的TBS值两者中的较小值为184。又若临时信息比特数为230,查找表格1,得到的TBS值为240;查找表格2,得到的TBS值为232。则,最终选取的数据的TBS值两者中的较小值为232。
本申请实施例提供了一种灵活的TBS值查找方式,针对特殊业务考虑的TBS表格设计TBS表格,使得通信装置可以灵活的根据业务需求或者指示确定使用的TBS表格,提高通信系统的传输效率。
实施例二
实施例二提供了确定表格中和特殊业务相关的TBS值的方式和TBS表格。本实施例可以基于前述实施例,也可以独立于前述实施例。
以下以特殊业务为语音业务为例进行详细论述。
如前所述,TBS表格中TBS值的确定和数据在高层的数据包大小,即MAC PDU值,密切相关,因此,这里针对各种语音业务,最直接的,我们可以先计算出数据传输时,数据对应的MAC PDU值,将这些值中的至少一个作为TBS表格中的值。比如该TBS表格可以是专为语音业务设计的新TBS表格中(例如作为实施例一种表格2的值),或者该TBS表格可以在已有TBS表格的基础上包括语音业务的TBS取值,即可以将语音业务的TBS取值,添加到已有的TBS表格中去,形成一张更完整的TBS表格。
为了计算语音业务的数据的MAC PDU值,需要简单介绍一下通信系统的协议模型。通信系统的协议栈模型可以如图5所示,从上至下分别为实时传输协议(real-time transport protocol,RTP)层、用户数据报(user datagram protocol,UDP)层、(internet protocol,IP)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical, PHY)层。
可选的,对于NR系统,在IP层和PDCP层之间,还可以加入业务数据适应协议(service data adaption protocol,SDAP)层,形成8层模型。例如,通信设备接入的是LTE的核心网,则没有该SDAP层,数据的传输可以无需考虑SDAP包头大小。通信设备接入的NR的核心网,则可以包括该SDAP层,此时数据的传输可能需要考虑SDAP包头大小。
基于此,针对语音业务,在高层,即传输至物理(PHY)层之前,其MAC PDU可以通过公式(9)确定。
MAC PDU=实时传输协议(real-time transport protocol,RTP)负荷(payload)大小+鲁棒性头压缩(robust header compression,RoHC)包头(header)大小+层2(layer2,L2)header大小,公式(9)。
其中RoHC header大小对于语音帧和静默插入指示(silence insertion descriptor,SID)帧取值不同,例如分别可以为2字节(16比特),3字节(24比特),6字节(48比特)或其它取值。L2 header大小可以包括MAC/RLC/PDCP header的大小,或者也可以包括其它额外的信息比特,其它额外的信息比特可以用于指示或处理小的变动,比如短缓存状态报告(short buffer status report,short BSR)、功率余量报告(power headroom report,PHR)等。
关于语音业务,EVS具体可以包括以下分别对应不同编码方式和码率的模式:初级primary、primary SID、primary2.8、primary7.2、primary8、primary9.6、primary13.2、primary16.4、primary24.4、primary32、primary48、primary64、primary96、primary128、适应性多速率(adaptive multi-rate,AMR)-宽带(wideband,WB)互操作(interoperable,IO)SID、AMR-WB IO 6.6、AMR-WB IO 8.85、AMR-WB IO 12.65、AMR-WB IO14.25、AMR-WB IO15.85、AMR-WB IO 18.25、AMR-WB IO 19.85、AMR-WB IO 23.05、AMR-WB IO 23.85等。
AMR业务具体可以包括以下分别对应不同编码方式和码率的模式:AMR SID、AMR4.75、AMR5.15、AMR5.9、AMR6.7、AMR7.4、AMR7.95、AMR10.2、AMR12.2、AMR-WB SID、AMR-WB6.6、AMR-WB8.85、AMR-WB12.65、AMR-WB14.25、AMR-WB15.85、AMR-WB18.25、AMR-WB19.85、AMR-WB23.05、AMR-WB23.85等。
其中,语音业务的模式可以是指编码(codec),也可以是指编码模式(codec mode),还可以称为比特速率(bitrates),或者也可以成为编码速率(codec rate),或简称为模式(mode),具体的,本申请对此不作限定。
下面先从以上选取几个模式作为例子说明:
如下表1是根据公式(9)计算出来的MAC PDU值,表2是3GPP TS38.214v15.0.0表格5.1.3.2-2。
  PTP payload RoHC header L2 header MAC PDU
primary 48 24 40 112
AMR-WB IO SID 56 24 40 120
primary7.2 144 24 40 208
AMR-WB IO 12.65 256 24 40 320
primary 13.2 264 24 40 328
primary16.4 328 24 40 392
AMR-WB IO 23.85 480 24 40 544
primary 24.4 488 24 40 552
primary 64 1280 24 40 1344
表1
Index TBS Index TBS Index TBS Index TBS
1 24 31 336 61 1288 91 3624
2 32 32 352 62 1320 92 3752
3 40 33 368 63 1352 93 3824
4 48 34 384 64 1416    
5 56 35 408 65 1480    
6 64 36 432 66 1544    
7 72 37 456 67 1608    
8 80 38 480 68 1672    
9 88 39 504 69 1736    
10 96 40 528 70 1800    
11 104 41 552 71 1864    
12 112 42 576 72 1928    
13 120 43 608 73 2024    
14 128 44 640 74 2088    
15 136 45 672 75 2152    
16 144 46 704 76 2216    
17 152 47 736 77 2280    
18 160 48 768 78 2408    
19 168 49 808 79 2472    
20 176 50 848 80 2536    
21 184 51 888 81 2600    
22 192 52 928 82 2664    
23 208 53 984 83 2728    
24 224 54 1032 84 2792    
25 240 55 1064 85 2856    
26 256 56 1128 86 2976    
27 272 57 1160 87 3104    
28 288 58 1192 88 3240    
29 304 59 1224 89 3368    
30 320 60 1256 90 3496    
表2
通过将表1和表2进行比较,可以发现表1最后一列的数据中,使用下划线的数据不在表2的TBS取值中,因此可以设计TBS表格,该TBS表格可以包括这些数值:328、392、544和1344中的至少一个。
可选的,可以将上述这些数值中的至少一个加入到专为语音业务设计的新TBS表格中形成表3,或者直接添加如现有的表2中形成表4。
例如,表3可以是:
Index TBS
1 328
2 392
3 544
4 1344
表3
又例如,表4可以是(其中,使用下划线的数值即为根据表1加入的新数值,加入的 方式为,与现有的表格中的数值一起进行升序排序后,形成表4):
Index TBS Index TBS Index TBS Index TBS
1 24 31 328 61 1192 91 3104
2 32 32 336 62 1224 92 3240
3 40 33 352 63 1256 93 3368
4 48 34 368 64 1288 94 3496
5 56 35 384 65 1320 95 3642
6 64 36 392 66 1344 96 3752
7 72 37 408 67 1352 97 3824
8 80 38 432 68 1416    
9 88 39 456 69 1480    
10 96 40 480 70 1544    
11 104 41 504 71 1608    
12 112 42 528 72 1672    
13 120 43 544 73 1736    
14 128 44 552 74 1800    
15 136 45 576 75 1864    
16 144 46 608 76 1928    
17 152 47 640 77 2024    
18 160 48 672 78 2088    
19 168 49 704 79 2152    
20 176 50 736 80 2216    
21 184 51 768 81 2280    
22 192 52 808 82 2408    
23 208 53 848 83 2472    
24 224 54 888 84 2536    
25 240 55 928 85 2600    
26 256 56 984 86 2664    
27 272 57 1032 87 2728    
28 288 58 1064 88 2792    
29 304 59 1128 89 2856    
30 320 60 1160 90 2976    
表4
上述表格1中,ROHC header大小都是以24为例,需要说明的是ROHC header大小还可以有其它取值。同样,L2 header大小还可以有其它取值。RTP payload大小还可以有不同的RTP payload格式,针对同一个模式的语音业务,不同的RTP payload格式可以有不同的取值。
如下为几种可能的RTP payload格式:
格式1(或称为case1):带宽有效模式(bandwidth-efficient mode)
格式2(或称为case2):8字节校准模式(octet-aligned mode)
格式3(或称为case3):压缩格式保护下的负载大小(compact format protected payload sizes)
格式4(或称为case4):无编码模式请求(codec mode request,CMR)字节下头全格式(header-full format without CMR byte)
格式5(或称为case5):CMR字节下头全格式(header-Full format with CMR byte)
表1中的取值为基于case1获得的取值。例如,还可以以其它格式获得RTP payload的大小。
表5和表6是在不同语音业务模式下、不同RTP payload格式下,RTP payload大小的可能取值:
Figure PCTCN2019080906-appb-000015
表5
Figure PCTCN2019080906-appb-000016
Figure PCTCN2019080906-appb-000017
表6
基于上述论述,每种业务模式会获得不同的MAC PDU的值,也即RTP payload大小、ROHC header大小和L2header大小将会影响MAC PDU的值。
可选的,在计算MAC PDU大小时,除了考虑RTP payload大小、RoHC header大小以及L2 header之外,根据数据传输的实际情况,还可能考虑附加(additional)header的值。这样,每种具体的业务还会获得不同的MAC PDU的值,也即additional header的大小将会影响MAC PDU的值。
基于此,针对语音业务,在高层,即传输至物理(PHY)层之前,其MAC PDU可以通过公式(10)确定。
MAC PDU=RTP payload大小+RoHC header大小+L2 header大小+additional header大小,公式(10)。
需要说明的是,additional header也可以称为additional比特。其可以如公式(10)给出的、独立于L2 header,也可以算作L2 header一部分,等同于前述L2 header中的其它额外的信息比特,此时由于additional header已经算作L2 header一部分,采用公式(9)就即可确定MAC PDU。当然这部分包头也可以是命名为其它比特,本申请对此不作限定。
可选的,如前所述,如果考虑SDAP header大小,则每种具体的业务还会获得不同的MAC PDU的值。
基于此,针对语音业务,在高层,即传输至物理(PHY)层之前,其MAC PDU可以通过公式(11)或公式(12)确定。
MAC PDU=RTP payload大小+SDAP header大小+RoHC header大小+L2 header大小,公式(11)。
MAC PDU=RTP payload大小+SDAP header大小+RoHC header大小+L2 header大小 +additional header大小,公式(12)。
若通过以上这些公式计算出的MAC PDU的取值不在表2的TBS值中,同样可以按照上述方式设计TBS表格。例如,可以将上述这些数值中的至少一个作为表3的取值,或着添加入表2中形成新的表格4。
针对上述提及的各种对MAC PDU值影响因素,例如,RTP payload大小、ROHC header大小、L2header大小、additional header大小和SDAP header大小中的至少一个,现进行进一步的举例说明:
可选的,下述各种举例可以作为独立的实施例,也可以与其它举例或者实施例结合,本申请对此不作限定。
作为一种实现方式,以ROHC header大小为24,L2 header大小为48为例,其中L2 header可以是包括16比特PDCP header,8比特MAC header和24比特的其它额外的信息比特。具体的针对各语音业务的MAC PDU,可以如表格7中的至少一项所述。其它业务类型类似可得到,具体不再赘述。
Figure PCTCN2019080906-appb-000018
表7
通过将表7和表2进行比较,可以发现表7最后一列的数据中,使用下划线的数据不在表2的TBS取值中,因此可以设计TBS表格,该TBS表格可以包括这些数值:216,328,400和560中的至少一个。
可选的,可以将上述这些数值中的至少一个加入到专为语音业务设计的新TBS表格中形成与表3类似的表格,或者直接添加如现有的表2中形成与表4类似的表格。
作为另一种实现方式,以ROHC header大小为24,L2 header大小为24为例,其中L2 header可以是包括16比特PDCP header和8比特MAC header。具体的针对各语音业务的MAC PDU,可以如表格8中的至少一项所述。其它业务类型类似可得到,具体不再赘述。
Figure PCTCN2019080906-appb-000019
表8
通过将表8和表2进行比较,可以发现表8最后一列的数据中,使用下划线的数据不在表2的TBS取值中,因此可以设计TBS表格,该TBS表格可以包括这些数值:312,376,536和1328中的至少一个。
可选的,可以将上述这些数值中的至少一个加入到专为语音业务设计的新TBS表格中形成与表3类似的表格,或者直接添加如现有的表2中形成与表4类似的表格。
作为另一种实现方式,以ROHC header大小为24,L2 header大小为64为例,其中L2 header可以是包括16比特PDCP header,8比特RLC header,16比特MAC header和24比特的其它额外的信息比特。具体的针对各语音业务的MAC PDU,可以如表格9中的至少一项所述。其它业务类型类似可得到,具体不再赘述。
Figure PCTCN2019080906-appb-000020
表9
通过将表9和表2进行比较,可以发现表9最后一列的数据中,使用下划线的数据不 在表2的TBS取值中,因此可以设计TBS表格,该TBS表格可以包括这些数值:232,344,416,568和1368中的至少一个。
可选的,可以将上述这些数值中的至少一个加入到专为语音业务设计的新TBS表格中形成与表3类似的表格,或者直接添加如现有的表2中形成与表4类似的表格。
如前所述,RTP payload大小可以基于不同的RTP payload格式,针对同一个模式的语音业务,不同的RTP payload格式可以有不同的取值。
针对前述介绍的5种格式,以ROHC header大小为24,L2 header大小为64为例,其中L2 header可以是包括16比特PDCP header,8比特RLC header,16比特MAC header和24比特的其它额外的信息比特。具体的针对各语音业务的MAC PDU,可以如表格10至表格14中的至少一项所述。其它业务类型类似可得到,具体不再赘述。
Figure PCTCN2019080906-appb-000021
表10
Figure PCTCN2019080906-appb-000022
表11
Figure PCTCN2019080906-appb-000023
表12
Figure PCTCN2019080906-appb-000024
表13
Figure PCTCN2019080906-appb-000025
表14
通过将表10至表14和表2进行比较,可以发现表10至表14最后一列的数据中,使 用下划线的数据不在表2的TBS取值中,因此可以设计TBS表格,该TBS表格可以包括这些数值:344,216,200,280,232,584,360,232,568和592中的至少一个。
可选的,可以将上述这些数值中的至少一个加入到专为语音业务设计的新TBS表格中形成与表3类似的表格,或者直接添加如现有的表2中形成与表4类似的表格。
考虑对MAC PDU值影响因素,比如,RTP payload大小、ROHC header大小、L2header大小、additional header大小和SDAP header大小中的至少一个,还可以有其他的取值,进而MAC PDU值可以是其他更多的数值。
举例来说,ROHC header大小的取值可以包括24,48,32,16,40,或其它取值;L2header大小可以包括16,24,20、26、28、34、32、38、40、46、44、52、48、54、56、62、60、64、68,或其它取值,其中MAC header大小可以包括0,8,16,24或其它取值,RLC header大小可以是0,8,16,24,32,40,或其它取值,PDCP header大小可以是0,8,24,16,32,40,或其它取值;additional header大小可以包括0,16,24,32,或其它取值;SDAP header大小可以是0,8或者16,或者其它取值。通过这些可能的取值,结合公式(9)至公式(12)中的任一一个,本领域的技术人员还可以获得更多的MAC PDU的数值。例如,还可以获得如下数值:1328、44、92、100、108、156、164、172、180、188、196、236、244、264、300、308、316、324、532、540、548、560等。获取这些值的具体计算方式,本申请不再赘述。
结合本实施例中的至少一种实现方式,若TBS值采用一张表格的方式呈现,那么通信装置可以采用如下方式获得数据的TBS值:
通信装置确定发送或者接收的数据的临时信息比特数;
所述通信装置根据所述临时信息比特数,在TBS表格中查找所述数据对应的TBS其中,所述TBS表格包括如下TBS数值中的至少一个:
328、392、544、1344、216、400、560、312、376、536、232、344、416、568、1368、216、200、280、584、360、232、592、1328、44、92、100、108、156、164、172、180、188、196、236、244、264、300、308、316、324、532、540、548和560。
本申请实施例,根据特殊业务,例如语音业务的特殊需求更新现有的TBS表格,提高了通信系统的传输效率和性能。
实施例三
实施例三提供了确定表格中和特殊业务相关的TBS值的方式和TBS表格。本实施例可以基于前述实施例一,也可以独立于前述实施例一。
实施例三同样是以特殊业务为语音业务为例进行详细论述。需要说明的是,本实施例中,计算语音业务的数据的MAC PDU值的方式,获得不同于现有的3GPP TS38.214v15.0.0表格5.1.3.2-2中的TBS值的方式、以及当TBS仅采用一张表格呈现时,通信设备获得所发送或者接收的数据的TBS值,与实施例二一致,此处不再赘述。与实施例二不同的是,在选取加入到现有表格5.1.3.2-2的TBS值时,本实施例需要对可能的相邻的取值做出综合考虑,保证TBS表格中相邻的两个TBS取值不能过于接近,这样可以避免更新的表格 的TBS取值过多而使得通信设备的处理复杂度增加,同时也避免了对现有3GPP协议改动过大。
举例来说,假设根据实施例二中获得的可能加入到现有表格的值为:328、392、544、1344、232、344、416、568、1368、312、376、1328。
其中,328和表格5.1.3.2-2(可参见实施例二中的表2)中索引值30对应的TBS值320较为接近,则可以对这两个值进行调整,将324加入到现有表格5.1.3.2-2的TBS值,对于原先的表格5.1.3.2-2,则删除原来的TBS值328。
类似的,因为544和表格5.1.3.2-2(可参见实施例二中的表2)中索引值40对应的TBS值528较为接近,则可以对这两个值进行调整,将536加入到现有表格5.1.3.2-2的TBS值,对于原先的表格5.1.3.2-2,则删除原来的TBS值528。
同样,因为1328和表格5.1.3.2-2(可参见实施例二中的表2)中索引值62对应的TBS值1320较为接近,则可以对这两个值进行调整,将1324加入到现有表格5.1.3.2-2的TBS值,对于原先的表格5.1.3.2-2,则删除原来的TBS值1328。
其中,调整TBS值的计算方式可以是取被考虑的两个值的平均值,或者也可以是其它运算,本申请对此不作限定。若计算所得的数为非整数,则可以进一步考虑向上取整,或者向下取整,以获得整数值。
这样最后加入到现有表格5.1.3.2-2的TBS值可以是:392、1344、232、344、416、568、1368、312、376、324、536、1324。
可选的,还可以将上述这些数值中的至少一个加入到专为语音业务设计的新TBS表格中形成其它的表格。此时,对于现有表格中,与可能加入到现有表格的值一起做调整的数值,例如320、528、1320等中的至少一个,可以仍然保留在现有的表格中无需删除,当然也可以将其从现有的表格中删除。
作为一种实现方式,不同于实施例一,若TBS值采用一张表格的方式呈现,那么因此针对该实施例可以采用如下方式获得数据的TBS值:
通信装置确定发送或者接收的数据的临时信息比特数;
所述通信装置根据所述临时信息比特数,在TBS表格中查找所述数据对应的TBS其中,所述TBS表格包括如下TBS数值中的至少一个:
392,1344,232,344,416,568,1368,312,376,324,536,1324。
作为一种实现方式,可以通过门限的设置来判断是否要对通过实施例二获得的TBS值做出调整。
也即,如果获得的TBS值与现有的表格5.1.3.2-2中的某个TBS值之间的差值,小于(或等于)一个门限值,则采用实施例三的方式对获得的TBS值进行调整后,加入到表格5.1.3.2-2进行更新。也即最后更新的表格要满足,索引号相邻的两个TBS值的差值小于(或等于)该门限。
可选的该门限值可以为0,8或者16等其它取值。具体取值,本申请对此不作限定。
可选的,门限值可以是基站告知终端的,也可以是协议预定义的,具体的,本申请对此不作限定。
还应理解,上述是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文结合图1至图5,详细描述了本申请实施例发送测量报告的方法,下面将结合图6至图8,详细描述本申请实施例的通信装置。通信装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
实施例四
图6是本申请一个实施例的通信装置的示意性框图。应理解,图6所示的通信装置600可以用于执行实施例一至实施例三通信装置执行的相关步骤。该通信装置600包括:第一确定单元601和第二确定单元602。
第一确定单元601,从N张候选的TBS表格中确定使用的TBS表格,所述TBS表格用于确定发送或者接收的数据对应的TBS,N为大于等于2的整数。
第二确定单元602,用于根据所述使用的TBS表格确定所述数据对应的TBS。
第一确定单元601可以具体用于:
根据所述数据的业务类型,从所述N张候选的TBS表格中确定所述使用的TBS表格。
可选的,所述通信装置为终端设备或者位于所述终端设备中时,第一确定单元601可以具体用于:
根据基站的指示,从所述N张候选的TBS表格中确定所述使用的TBS表格。
可选的,所述基站的指示为所述基站向所述终端设备发送的信令。
可选的,所述基站的指示为基站向所述终端设备发送的控制信息的特征信息,所述控制信息用于调度所述数据。
可选的,所述控制信息的特征信息,包括如下信息中的一种或者多种:
所述控制信息的循环冗余码校验CRC加扰的无线网络临时标识RNTI、控制信息格式、所述控制信息的搜索空间类型和所述控制信息的检测周期。
可选的,至少一张所述候选的TBS表格中包括如下TBS数值中的一个或者多个:
544、1344、216、400、560、312、1328、232、416、1368、200、360、592、324和1324。
可选的,所述使用的TBS表格张数为一张,或者多张。
可选的,至少一张所述候选的TBS表格中所包括的TBS数值间的差值小于等于预设门限。
本申请实施例提供了一种灵活的TBS值查找方式,在对现有的预定义的TBS表格不做改动的前提下,新加入专门针对特殊业务考虑的TBS表格,使得通信装置可以灵活的根据业务需求或者指示确定使用的TBS表格,提高通信系统的传输效率。
图7是本申请一个实施例的通信装置的示意性框图。应理解,图7所示的通信装置 700可以用于执行实施例一至实施例三通信装置执行的相关步骤。该通信装置700包括:确定单元701和查找单元702。
确定单元701,用于确定发送或者接收的数据的临时信息比特数;
查找单元702,用于根据所述临时信息比特数,在TBS表格中查找所述数据对应的TBS;
其中,所述TBS表格包括如下TBS数值中的至少一个:
544、1344、216、400、560、312、1328、232、416、1368、200、360、592、324和1324。
本申请实施例,根据特殊业务,例如语音业务的特殊需求更新现有的TBS表格,提高了通信系统的传输效率和性能。
需要说明的是,应理解以上通信设备600和通信设备700的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。例如,发送单元可以为单独设立的处理元件,也可以集成在网络设备的某一个芯片中实现,此外,也可以以程序的形式存储于网络设备的存储器中,由网络设备的某一个处理元件调用并执行该发送单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
实施例五
如图8所示,为本申请实施例提供的一种通信设备800的硬件结构示意图。该通信设备800包括至少一个处理器801,通信总线802,以及至少一个通信接口804,还可以包括存储器803。
处理器801可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线802可包括一通路,在上述组件之间传送信息。
通信接口804,使用任何收发器一类的装置,用于与其它设备或通信网络通信,如以 太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器803可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器803用于存储执行本申请方案的应用程序代码,并由处理器801来控制执行。处理器801用于执行存储器803中存储的应用程序代码,从而实现本申请实施例1-6中终端设备或者网络设备所执行的步骤。
作为一种实现方式,处理器801可以包括一个或多个CPU。
作为一种实现方式,通信设备800可以包括多个处理器。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
作为一种实现方式,通信设备800还可以包括输出设备和输入设备。输出设备和处理器801通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器801通信,可以以多种方式接受用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
此外,如上所述,本申请实施例提供的通信设备800可以为芯片,或者终端设备,或者网络设备,或者有图8中类似结构的设备。本申请实施例不限定通信设备800的类型。
还需要说明的是上述存储器803也可以位于该通信装置800之外,例如为片外存储器。
另外,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持通信设备实现上述各个实施例涉及的发送测量报告的方法,例如确定用于传输共享信道的解调参考信号的符号。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存通信设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其它分立器件,本申请实施例对此不作具体限定。
需要说明的是,在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输, 例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种确定传输块大小TBS的方法,其特征在于,
    通信装置从N张候选的TBS表格中确定使用的TBS表格,所述TBS表格用于确定发送或者接收的数据对应的TBS,N为大于等于2的整数;
    所述通信装置根据所述使用的TBS表格确定所述数据对应的TBS。
  2. 如权利要求1所述的方法,其特征在于,通信装置从N张候选的TBS表格中确定使用的TBS表格,包括:
    所述通信装置根据所述数据的业务类型,从所述N张候选的TBS表格中确定所述使用的TBS表格。
  3. 如权利要求1所述的方法,其特征在于,所述通信装置为终端设备,或者位于所述终端设备中;
    通信装置从N张候选的TBS表格中确定使用的TBS表格,包括:
    所述通信装置根据基站的指示,从所述N张候选的TBS表格中确定所述使用的TBS表格。
  4. 如权利要求3所述的方法,其特征在于,所述基站的指示,包括:
    所述基站向所述终端设备发送的信令。
  5. 如权利要求3所述的方法,其特征在于,所述基站的指示,包括:
    所述基站向所述终端设备发送的控制信息的特征信息,所述控制信息用于调度所述数据。
  6. 如权利要求5所述的方法,其特征在于,所述控制信息的特征信息,包括如下信息中的一种或者多种:
    所述控制信息的循环冗余码校验CRC加扰的无线网络临时标识RNTI、控制信息格式、所述控制信息的搜索空间类型和所述控制信息的检测周期。
  7. 如权利要求1-6任一所述的方法,其特征在于,至少一张所述候选的TBS表格中包括如下TBS数值中的一个或者多个:
    544、1344、216、400、560、312、1328、232、416、1368、200、360、592、324和1324。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述使用的TBS表格张数为一张,或者多张。
  9. 如权利要求1-6或者8任一所述的方法,其特征在于,至少一张所述候选的TBS表格中所包括的TBS数值间的差值小于等于预设门限。
  10. 一种通信装置,其特征在于,包括:处理器、存储器,所述存储器用于存储程序,所述处理器调用存储器存储的程序,执行如下步骤:
    从N张候选的TBS表格中确定使用的TBS表格,所述TBS表格用于确定发送或者接收的数据对应的TBS,N为大于等于2的整数;
    根据所述使用的TBS表格确定所述数据对应的TBS。
  11. 如权利要求10所述的通信装置,其特征在于,所述从N张候选的TBS表格中确 定使用的TBS表格,包括:
    根据所述数据的业务类型,从所述N张候选的TBS表格中确定所述使用的TBS表格。
  12. 如权利要求10所述的通信装置,其特征在于,所述通信装置还包括通信接口,所述通信装置为终端设备,或者位于所述终端设备中;
    所述从N张候选的TBS表格中确定使用的TBS表格,包括:
    根据基站的指示,从所述N张候选的TBS表格中确定所述使用的TBS表格。
  13. 如权利要求12所述的通信装置,其特征在于,所述基站的指示,包括:
    所述基站向所述终端设备发送的信令。
  14. 如权利要求12所述的通信装置,其特征在于,所述基站的指示,包括:
    所述基站向所述终端设备发送的控制信息的特征信息,所述控制信息用于调度所述数据。
  15. 如权利要求14所述的通信装置,其特征在于,所述控制信息的特征信息,包括如下信息中的一种或者多种:
    所述控制信息的循环冗余码校验CRC加扰的无线网络临时标识RNTI、控制信息格式、所述控制信息的搜索空间类型和所述控制信息的检测周期。
  16. 如权利要求10-15所述的通信装置,其特征在于,至少一张所述候选的TBS表格中包括如下TBS数值中的一个或者多个:
    544、1344、216、400、560、312、1328、232、416、1368、200、360、592、324和1324。
  17. 如权利要求10-16任一所述的通信装置,其特征在于,所述使用的TBS表格张数为一张,或者多张。
  18. 如权利要求10-15或者17任一所述的通信装置,其特征在于,至少一张所述候选的TBS表格中所包括的TBS数值间的差值小于等于预设门限。
  19. 一种确定传输块大小TBS的方法,其特征在于,
    通信装置确定发送或者接收的数据的临时信息比特数;
    所述通信装置根据所述临时信息比特数,在TBS表格中查找所述数据对应的TBS;
    其中,所述TBS表格包括如下TBS数值中的至少一个:
    544、1344、216、400、560、312、1328、232、416、1368、200、360、592、324和1324。
  20. 一种通信装置,其特征在于,包括:处理器、存储器,所述存储器用于存储程序,所述处理器调用存储器存储的程序,执行如下步骤:
    确定发送或者接收的数据的临时信息比特数;
    根据所述临时信息比特数,在TBS表格中查找所述数据对应的TBS;
    其中,所述TBS表格包括如下TBS数值中的至少一个:
    544、1344、216、400、560、312、1328、232、416、1368、200、360、592、324和1324。
PCT/CN2019/080906 2018-04-04 2019-04-02 确定传输块大小的方法和通信装置 WO2019192442A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810299445.2A CN110351003B (zh) 2018-04-04 2018-04-04 确定传输块大小的方法和通信装置
CN201810299445.2 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019192442A1 true WO2019192442A1 (zh) 2019-10-10

Family

ID=68099833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080906 WO2019192442A1 (zh) 2018-04-04 2019-04-02 确定传输块大小的方法和通信装置

Country Status (2)

Country Link
CN (1) CN110351003B (zh)
WO (1) WO2019192442A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112769521B (zh) * 2019-11-05 2023-10-10 维沃移动通信有限公司 传输块大小的确定方法及终端
CN113114443A (zh) * 2021-04-14 2021-07-13 展讯通信(上海)有限公司 下行控制信息的发送和接收方法、装置、基站和用户设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265695A (zh) * 2011-06-17 2011-11-30 华为技术有限公司 一种调度方法及设备、控制信息的处理方法及设备
CN103534969A (zh) * 2013-03-21 2014-01-22 华为终端有限公司 数据传输方法、基站及用户设备
CN104919772A (zh) * 2013-01-11 2015-09-16 交互数字专利控股公司 用于适应性调制的系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088732A (zh) * 2009-12-02 2011-06-08 爱立信(中国)通信有限公司 优化用于低速率业务的tbs表的方法和设备
US9532337B2 (en) * 2012-05-19 2016-12-27 Google Technology Holdings LLC Method and apparatus for transport block signaling in a wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265695A (zh) * 2011-06-17 2011-11-30 华为技术有限公司 一种调度方法及设备、控制信息的处理方法及设备
CN104919772A (zh) * 2013-01-11 2015-09-16 交互数字专利控股公司 用于适应性调制的系统和方法
CN103534969A (zh) * 2013-03-21 2014-01-22 华为终端有限公司 数据传输方法、基站及用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "TBS Determination for LDPC Codes", 3GPP TSG RAN WG1 MEETING AH 1801, R1-1801126, 26 January 2018 (2018-01-26), XP051385369 *
NTT DOCOMO: "DL/UL resource allocation", 3GPP TSG RAN WG1 MEETING AH 1801 R1-1800675, 26 January 2018 (2018-01-26), XP051384997 *

Also Published As

Publication number Publication date
CN110351003A (zh) 2019-10-18
CN110351003B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
US11476972B2 (en) Uplink control information transmission method and device
EP3834569B1 (en) Method and apparatus for generating mac pdu
WO2019154350A1 (zh) 发送测量报告的方法、通信装置和系统
US20200382988A1 (en) Buffer state reporting method, user equipment, method of processing buffer state report and network side device
JP6863485B2 (ja) データ指示方法、装置及び通信システム
WO2019096131A1 (zh) 一种指示和确定时域资源的方法、装置及系统
WO2018210195A1 (zh) 一种发送和接收指示信息的方法、设备和系统
WO2021218888A1 (zh) 通信方法和装置
WO2021026977A1 (zh) Ue能力信息的上报方法及设备
CN109151955B (zh) 一种通信方法及设备
WO2016091185A1 (zh) 数据传输的方法、基站和用户设备
JP2023078303A (ja) V2xトラフィックに対応するための制御チャネル構造設計
WO2017193392A1 (zh) 通信方法、网络设备和终端设备
WO2021081824A1 (zh) 无线通信方法和终端设备
WO2017024565A1 (zh) 数据传输方法、装置及系统
WO2019192442A1 (zh) 确定传输块大小的方法和通信装置
KR20220162850A (ko) 상향링크 데이터 패킷 자원 할당 방법 및 사용자 단말기
WO2017166078A1 (zh) 比特块大小确定方法及设备
WO2018137667A1 (zh) 传输数据的方法和装置以及传输信息的方法和装置
WO2020199034A1 (zh) 用于中继通信的方法和装置
WO2020199552A1 (zh) 一种通信方法及设备
WO2021087996A1 (zh) 通信方法和通信装置
WO2021056595A1 (zh) 一种通信方法及装置
WO2019185065A1 (zh) 一种确定资源的方法及装置
WO2020164114A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781984

Country of ref document: EP

Kind code of ref document: A1