WO2019154350A1 - 发送测量报告的方法、通信装置和系统 - Google Patents

发送测量报告的方法、通信装置和系统 Download PDF

Info

Publication number
WO2019154350A1
WO2019154350A1 PCT/CN2019/074543 CN2019074543W WO2019154350A1 WO 2019154350 A1 WO2019154350 A1 WO 2019154350A1 CN 2019074543 W CN2019074543 W CN 2019074543W WO 2019154350 A1 WO2019154350 A1 WO 2019154350A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
measurement report
terminal device
network device
report
Prior art date
Application number
PCT/CN2019/074543
Other languages
English (en)
French (fr)
Inventor
马小骏
张弛
王亚飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19751846.7A priority Critical patent/EP3742788B1/en
Publication of WO2019154350A1 publication Critical patent/WO2019154350A1/zh
Priority to US16/987,946 priority patent/US11470493B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0059Out-of-cell user aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/02Inter-networking arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present application relates to the field of communications, and more particularly to a method, communication device and system for transmitting measurement reports in the field of communications.
  • the 5th Generation (5G) New Radio (NR) technology supports dynamic transmission state configuration, and the base station of the serving cell sends signaling to the terminal equipment in the serving cell, indicating the configuration period time. The transmission status of a slot or symbol. After receiving the message, the terminal device may perform uplink transmission according to the scheduling instruction on the uplink slot or symbol, or perform downlink reception on the downlink slot or symbol.
  • the symbol on the configuration period has an unknown symbol resource in addition to the uplink and/or downlink transmission resources, and the terminal does not perform transceiving processing on the unknown resource.
  • the base station of the serving cell cannot distinguish that the interference corresponding to the interference measurement result is generated by the base station of the non-serving cell. It is still generated by the terminal of the non-serving cell, thereby affecting the decision behavior of the subsequent base station, resulting in a decline in system performance.
  • the present application in conjunction with various embodiments, provides methods, communication devices, and systems for transmitting and/or receiving measurement reports to improve system performance.
  • the present application provides a method for transmitting a measurement report, which can be performed by a terminal device.
  • the terminal device receives the first configuration information and the second configuration information, where the first configuration information is used to indicate a measurement resource, and the second configuration information is used to indicate a slot format of the non-serving cell of the terminal device;
  • the terminal device sends a measurement report to the network device, where the measurement quantity category of the measurement report is related to a slot format of the non-serving cell, and the measurement report corresponds to the measurement resource.
  • the present application provides a method of receiving a measurement report, which can be performed by a network device.
  • the network device sends the first configuration information to the terminal device, where the first configuration information is used to indicate the measurement resource, the network device receives the measurement report sent by the terminal device, and the measurement quantity category of the measurement report is
  • the time slot format of the non-serving cell of the terminal is related, and the measurement report corresponds to the measurement resource.
  • the present application provides a communication device.
  • the communication device can be a terminal device or a chip or system on chip disposed in the terminal device.
  • the communication device includes a processor coupled to the memory and invoking a program stored in the memory, and the transceiver performs the following steps: receiving first configuration information and second configuration information, the first configuration information being used for Instructing a measurement resource, the second configuration information is used to indicate a slot format of the non-serving cell of the terminal device; sending a measurement report to the network device, the measurement quantity category of the measurement report and the time slot of the non-serving cell The format is related to, and the measurement report corresponds to the measurement resource.
  • the application provides a communication device.
  • the communication device can be a network device or a chip or system on chip disposed in the network device.
  • the communication device includes a processor coupled to the memory and invoking a program stored in the memory, and the transceiver performs the following steps: transmitting first configuration information to the terminal device, the first configuration information being used to indicate measurement Receiving a measurement report sent by the terminal device, the measurement quantity category of the measurement report is related to a slot format of a non-serving cell of the terminal, and the measurement report corresponds to the measurement resource.
  • the terminal device obtains the interference hypothesis information on the measurement resource by using the slot format of the non-serving cell, and further obtains the measurement quantity category of the measurement report corresponding to the measurement resource, and reports the report through the measurement report.
  • the feedback is given to the network device, so that the network device can be effectively distinguished, thereby making more effective decision-making behaviors such as interference coordination management and data transmission scheduling, and improving the performance of the entire communication system.
  • the measurement quantity category of the measurement report is related to a slot format of the non-serving cell, and includes: a measurement quantity category of the measurement report and the non-serving cell
  • the slot format is related to the slot format of the time domain location of the measurement resource.
  • the sending of the measurement report to the network device of the serving cell includes: sending the measurement report carrying the identifier to the network device, the identifier being used to indicate the measurement report The measurement category.
  • receiving the measurement report sent by the terminal device includes: receiving the measurement report of the carrying identifier sent by the terminal device, where the identifier is used to indicate a measurement quantity category of the measurement report.
  • sending a measurement report to a network device of a serving cell including: sending the measurement report to the network device, by using a time-frequency resource indication location where the measurement report is located The measurement type of the measurement report.
  • receiving the measurement report sent by the terminal device includes: receiving, by the terminal device, the measurement report indicating a measurement quantity category by a time-frequency resource located by the measurement report.
  • the sending of the measurement report to the network device of the serving cell includes: transmitting the measurement report to the network device, and indicating, by using the measurement report, a value range indication The measurement type of the measurement report.
  • receiving the measurement report sent by the terminal device includes: receiving, by the terminal device, the measurement report indicating a measurement quantity category by a range of the measurement report measurement amount.
  • the value range of the measurement quantity used by the measurement report indicates the measurement quantity category, and the network device (communication device) can effectively distinguish the measurement interference hypothesis, thereby realizing effective decision-making behaviors such as interference coordination management and data transmission scheduling, and improving the overall communication. System performance and saves on signaling overhead.
  • transmitting a measurement report to a network device of a serving cell comprising: transmitting the measurement report to the network device, by using a location indication in a reporting period in which the measurement report is located
  • the measurement quantity category of the measurement report includes: receiving a measurement report sent by the terminal device and indicating a measurement quantity category in a reporting period in which the measurement report is located.
  • the communication device of the fourth aspect, or the network device of the second aspect sends the trigger signaling to the communication device of the third aspect, or the terminal device of the first aspect
  • the trigger signaling is used to trigger the sending of the measurement report.
  • the communication device of the third aspect, or the terminal device of the first aspect sends the measurement report to the network device according to the trigger signaling.
  • the trigger signaling includes measurement quantity category information of the measurement report that is requested to be triggered, and if the trigger quantity information included in the trigger signaling corresponds to a measurement quantity category of a previously obtained measurement report.
  • the communication device of the third aspect, or the terminal device of the first aspect sends the measurement report to the network device. This design is applicable to the scenario where the measurement report is reported in a non-periodic reporting mode.
  • the network device sends second configuration information, where the second configuration information is used to indicate a slot format of the non-serving cell.
  • the communication device of the fourth aspect is further configured to: send second configuration information, where the second configuration information is used to indicate a slot format of the non-serving cell.
  • the present application provides a wireless communication system, including: any one of the third aspect and various alternative designs, and the fourth aspect and various alternative designs Any type of wireless communication device.
  • the present application provides a computer readable storage medium, where the program code is stored, and when the program code is executed by a processor, the first aspect, the second aspect, and Any of a variety of alternative designs.
  • a computer program product is provided, the program code contained in the computer program product being executed by a processor to implement any one of the first aspect, the second aspect, and various alternative designs.
  • Figure 1 is a schematic diagram of a communication system
  • Figure 2 (a) is a schematic diagram of a scenario of interference assumptions
  • Figure 2(b) is a schematic diagram of another interference hypothesis scenario
  • 3 is a flow chart of a method of transmitting a measurement report
  • 4(a) is a schematic diagram of a slot format of a serving cell and a non-serving cell
  • 4(b) is a schematic diagram of another slot format of a serving cell and a non-serving cell
  • Figure 5 is a schematic structural view of a communication device
  • FIG. 6 is a schematic structural diagram of another communication device
  • Fig. 7 is a schematic structural view of still another communication device.
  • the embodiments of the present application may be applied to, but not limited to, a 5G mobile communication NR system, and may also be applied to a long term evolution (LTE) system, such as a long term evolution-advanced (LTE-A) system, enhanced.
  • LTE long term evolution
  • LTE-A long term evolution-advanced
  • eLTE wireless fidelity
  • Wimax worldwide interoperability for microwave access
  • 3GPP 3rd generation partnership project
  • the terminal device in the embodiment of the present application may refer to a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device in this embodiment may be a base station of various forms (such as a macro base station, a micro base station (also referred to as a small station), a relay station, an access point, etc., or may refer to an access interface in an air interface.
  • the base station may be configured to convert the received air frame and an internet protocol (IP) packet into a router between the wireless terminal and the rest of the access network, where the access network The rest can include an IP network.
  • IP internet protocol
  • the base station can also be used to coordinate attribute management of the air interface.
  • the names of devices having a base station function may be different, for example, a global system for mobile communication (GSM) or code division multiple access (code division)
  • GSM global system for mobile communication
  • code division code division multiple access
  • a base station in a multiple access (CDMA) system is called a base transceiver station (BTS)
  • BTS base transceiver station
  • WCDMA wideband code division multiple access
  • node B node B
  • LTE LTE system
  • the base station in the middle is called an evolved base station (eNB)
  • eNB evolved base station
  • gNB general base station
  • a slot is a unit in the time domain of a resource for transmitting data.
  • a slot usually contains a plurality of symbols and/or chips, and each symbol and/or chip may have the same or different transmission directions.
  • the slot format is used to indicate the transmission status of the terminal device on the time domain resource.
  • a time slot includes 14 symbols, and the format of the time slot specifies the content carried by each symbol, such as the first
  • the symbols are used to carry uplink data
  • the second symbol is used to carry downlink data and the like.
  • the transmission status referred to herein may include an uplink, that is, a state in which the terminal device sends information to the network device, and a downlink, that is, a state in which the terminal device receives information sent by the network device, and may also include an unknown state or a flexible state. State, in these two states, the terminal device may not perform transceiving processing, but is used for internal processing of the terminal device.
  • the slot format can be obtained by the terminal device through slot format information (SFI).
  • SFI slot format information
  • the SFI may be sent by a group common physical downlink control channel (GC-PDCCH) and carried in downlink control information (DCI), and the format is format2_0.
  • GC-PDCCH group common physical downlink control channel
  • DCI downlink control information
  • RRC radio resource control
  • the measured quantity may be a received signal strength indicator (RSSI), a reference signal received quality (RSRQ), a CSI-RSRP, or a channel quality information. , CQI), or signal-noise rate (SNR), etc.
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CSI-RSRP channel quality information
  • CQI signal-noise rate
  • SNR signal-noise rate
  • the measurement may include measurement based on channel state information-inference measurement (CSI-IM), measurement based on non-zero power channel state information-reference signal (CSI-RS), based on Measurement of demodulation reference signal (DM-RS), measurement based on sounding reference signal (SRS) or measurement based on synchronization signal (SS), or measurement based on transmitted data signal .
  • CSI-IM channel state information-inference measurement
  • CSI-RS non-zero power channel state information-reference signal
  • DM-RS Measurement of demodulation reference signal
  • SRS sounding reference signal
  • SS synchronization signal
  • the technical solution of the embodiment of the present application can be applied to interference measurement or other measurement.
  • the terminal device evaluates the interference received by the data on the measurement resource (such as the downlink interference of the neighboring cell base station, the uplink interference of the neighboring cell user, and the channel of other systems in this case by measuring the signal on the measurement resource).
  • the interference strength of the frequency band, etc. may include channel quality measurements, reference
  • the configuration related to interference measurement can be divided into the following three aspects: a resource set for interference measurement (also referred to as resource setting), which can correspond to one or more resource configurations.
  • a set of reports for interference measurement (also referred to as reporting setting), corresponding to one or more report configurations.
  • the report in the report set may include an indication of the measured quantity, either explicitly or implicitly, for example, the identification of the measured quantity, the numerical range of the measured quantity, and the like.
  • a link list is used to indicate an association relationship between the resource configuration and the report configuration.
  • the network device instructs the terminal device to perform measurement on the specified resource, and reports the report associated with the specified resource to the network device.
  • the resources in the resource set used for the interference measurement may also be referred to as the measurement resource of the interference measurement, which is referred to as the measurement resource, and the following are all expressed by the measurement resource.
  • the network device can configure a periodic measurement resource for the terminal device, that is, the configuration is repeated for the terminal device according to a certain period.
  • the network device may also configure a semi-permanent measurement resource for the terminal device. For example, after the network device activates the configured measurement resource by media access control (MAC) layer signaling, the configuration starts to repeat according to a certain period. effective. After the network device deactivates the configured measurement resources through MAC layer signaling, the configuration is no longer valid.
  • the network device may also configure a non-periodic measurement resource for the terminal device, and the configuration is valid once at a specified time by the indication of the DCI.
  • MAC media access control
  • the reports in the report set for interference measurement may also be referred to as measurement reports, and the following are all expressed in measurement reports.
  • the terminal performs interference measurement on the configured measurement resources, obtains interference measurement results corresponding to the measurement resources, and reports interference measurement results to the network device through the measurement report.
  • the reporting of the measurement report can be divided into three types: periodic reporting and semi-permanent reporting (that is, the network device needs to report the periodic report after the MAC layer signaling indicates, and the network device stops reporting after the MAC layer signaling indicates. ) or a non-periodic reporting (requires a one-time report after the network device indicates through the DCI.)
  • the reporting method of the measurement report can be configured by the network device.
  • the network device may configure a periodic measurement resource for the terminal device, and the terminal device may report the measurement report by using a periodic reporting manner.
  • the measurement resources can also be semi-permanent or non-periodic, and the reporting method of the measurement report can also be semi-permanent or non-periodic. That is, the embodiment of the present application does not exclude any combination of forms.
  • the communication system 100 may include a terminal device 1 located in a cell A, a terminal device 2 located in a cell B, and a terminal device 3 located in a cell C.
  • the terminal device 1, the terminal device 2, and the terminal device 3 respectively have a network device 1, a network device 2, and a network device 3 to provide communication services.
  • the cell A is a serving cell
  • the cell B and the cell C are non-serving cells.
  • cell B and cell C are neighbor cells of cell A.
  • the number of terminal devices included in the communication system 100 and the number of network devices are integers greater than or equal to 2, and the above is just an example.
  • the transmission state configurations of different cells may be the same or different for a certain period of time. For example, for a certain slot or symbol, the terminal device 1 located in the cell A is in the downlink receiving transmission state, and the terminal device 2 located in the cell B is also in the downlink receiving transmission state. Or, for a certain slot or symbol, the terminal device 1 located in the cell A is in the downlink receiving transmission state, and the terminal device 2 located in the cell B is in the transmission state of the uplink transmission.
  • the above two cases can respectively correspond to two different interference assumptions (that is, interference scenarios or measurement scenarios).
  • the terminal device 1 located in the cell A is in the downlink receiving transmission state, and the terminal device 2 located in the cell B is also in the downlink receiving transmission state, as shown in FIG. 2( a ), the downlink of the network device 2
  • the transmission may cause interference to the downlink reception of the terminal device 1.
  • Such interference may be referred to as co-directional interference, and may also be referred to as non-cross-link interference or simply as interference assumption 1.
  • the terminal device 1 located in the cell A is in the downlink receiving transmission state
  • the terminal device 2 located in the cell B is in the uplink transmitting transmission state, as shown in FIG. 2(b)
  • the terminal device 2 is uplinked.
  • the transmission may cause interference to the downlink reception of the network device 1.
  • Such interference may be referred to as an anisotropic interference, and may also be referred to as a cross-link interference or simply as an interference hypothesis 2.
  • the network device 1 when configuring the interference measurement resource for the terminal device 1, the network device 1 only considers the cell A, that is, the transmission state configuration of the serving cell, and does not consider the cell B as a non-serving cell (and/or The transmission configuration status of cell C). In this way, for a measurement resource, the measurement result obtained by the terminal device 1 may only correspond to an interference hypothesis (for example, co-directional interference), and the base station cannot distinguish that the interference corresponding to the interference measurement result is generated by the network device 2 It is also generated by the terminal device 2.
  • an interference hypothesis for example, co-directional interference
  • the interference generated by the network device is considered to be relatively stable and predictable in size over a period of time
  • the interference generated by the terminal device is considered to be a period of time due to factors such as the communication characteristics of the terminal device and the randomness of the location. Size changes are relatively dramatic and unpredictable. In this way, the subsequent decision behavior of the network device (for example, interference coordination and data transmission) will be affected, resulting in a decline in the performance of the communication system.
  • the terminal device obtains the interference hypothesis information on the measurement resource by using the slot format of the non-serving cell, and further obtains the measurement quantity category of the measurement report corresponding to the measurement resource, and different measurements.
  • Measurement reports of quantity categories can be reported to network devices in different ways, so that network devices can be effectively distinguished, so that decision-making behaviors such as interference coordination management and data transmission scheduling can be performed more effectively, and the performance of the entire communication system can be improved.
  • FIG. 3 it is a method for sending a measurement report according to an embodiment of the present application.
  • the method can be applied to the communication system 100 shown in FIG. 1 described above.
  • the method includes:
  • the terminal device receives the first configuration information and the second configuration information, where the first configuration information is used to indicate a measurement resource of the interference measurement, and the second configuration information is used to indicate a slot format of the non-serving cell of the terminal device.
  • the first configuration information may be measurement resource configuration information, including a resource configuration, for example, a location of a measurement resource, and the like. As an implementation manner, it may further include a report configuration of a measurement report corresponding to the measurement resource, and/or a link list indicating an association relationship between the resource configuration and the report configuration.
  • the first configuration information may be included in the RRC signaling, and the terminal device receives the network device from the serving cell.
  • the terminal device performs interference measurement on the measurement resource to obtain a measurement result.
  • the second configuration information may be SFI.
  • the SFI may be used to indicate a slot format.
  • the second configuration information may be used to indicate a transmission status of each symbol in one or more slots, that is, the second configuration information may indicate a slot.
  • the slot format can also indicate the slot format of multiple slots.
  • the network device may configure a set of slot format combinations, and the second configuration information indicates, by using the second configuration information, which set of slot formats are used by the terminal device in multiple slots in the current period.
  • the second configuration information may be an SFI of a non-serving cell (for example, the cell B and/or the cell C in FIG. 1 ), that is, the second configuration information indicates a slot format of the non-serving cell.
  • the terminal device may receive the second configuration information from a network device (for example, the network device 1 in FIG. 1) of the serving cell (for example, the cell A in FIG. 1), and may also The network device of the serving cell (eg, network device 2 and/or network device 3) receives the second configuration information.
  • the second configuration information may be configured by using RRC signaling, that is, semi-static configuration information, that is, the configuration information remains unchanged during a period in which the configuration is valid.
  • the second configuration information may also be configured by DCI signaling, that is, dynamic configuration information, and the content thereof may be updated by DCI at any time.
  • the terminal device also needs to identify the interference hypothesis corresponding to the measurement result to confirm the measurement quantity category of the measurement report reported to the network device.
  • the terminal device sends a measurement report to the network device, where the measurement quantity category of the measurement report is related to a slot format of the non-serving cell.
  • the corresponding network device receives the measurement report sent by the terminal device.
  • the measurement quantity needs to be classified, and the classification can be based on the aforementioned interference assumption, for example, if the measurement quantity obtained in the same-direction interference scene can be classified into the first type measurement quantity, The amount of measurement obtained in an anisotropic interference scenario can be divided into a second type of measurement. Based on this, the measurement quantity in the terminal device measurement report will have a measurement quantity category, which reflects the interference assumption on which the measurement quantity is obtained, and will help the network device to effectively distinguish the interference scene in the actual measurement.
  • the terminal device can identify the interference hypothesis corresponding to the measurement result according to the second configuration information received in 301, and further confirm the measurement quantity category of the measurement report reported to the network device. In this way, the terminal device can report the measurement report to the network device based on the category of the measurement quantity.
  • the measurement quantity category of the measurement report is related to the time slot format of the non-serving cell, and specifically, the measurement quantity category of the measurement report is related to the time slot format of the time domain location of the measurement resource in the time slot format of the non-serving cell.
  • the measurement resource can be understood as a time-frequency resource, and the time domain location of the measurement resource is, for example, symbol 6.
  • the second configuration information indicates that the non-serving cell has a downlink transmission direction on the symbol 6 .
  • the transmission direction of the serving cell where the terminal device is located on the symbol 6 is also downlink.
  • the terminal device can determine that the measurement quantity category of the measurement report is the first category, for example, category 1.
  • the second configuration information indicates that the transmission direction of the non-serving cell on the symbol 6 is uplink, and the transmission direction of the serving cell where the terminal device is located on the symbol 6 is downlink.
  • the terminal device can determine that the measurement quantity category of the measurement report is the second category, for example, category 2.
  • the time domain location of the measurement resource may also occupy 2 symbols or more, and the terminal device identifies the measurement category of the measurement report in a similar manner.
  • the terminal device obtains the interference hypothesis information on the measurement resource by using the slot format of the non-serving cell, and further obtains the measurement quantity category of the measurement report corresponding to the measurement resource, and reports the report through the measurement report.
  • the network devices can be effectively distinguished, so that decision-making behaviors such as interference coordination management and data transmission scheduling can be performed more effectively, and the performance of the entire communication system can be improved.
  • the second embodiment can be based on the first embodiment, including all the technical solutions in the first embodiment, and provides a specific implementation manner in which the terminal sends a measurement report to the network device in step 302 of the first embodiment.
  • the first configuration information may include multiple report configurations, and the plurality of report configurations may be associated to one resource configuration through a link list, that is, multiple measurement reports may be corresponding to one measurement resource.
  • the first configuration information may carry multiple new identifiers for indicating the measurement quantity category of the measurement report.
  • the first configuration information carries two new identifiers, which are used to indicate the first category (corresponding to the same-directional interference) and to indicate the second category (corresponding to the opposite-direction interference).
  • the first configuration information may carry multiple extended identifiers for indicating the measurement quantity category of the measurement report.
  • An extended identification can be understood as an existing identification in the prior art. For example, two extended identifiers are carried, which are used to indicate the first category (corresponding to the same-directional interference) and to indicate the second category (corresponding to the opposite-direction interference).
  • the terminal device can identify the measurement quantity category of the measurement report, and further can store and/or filter to a corresponding subset of the measurement quantity category, and the measurement quantity category subset can correspond to one identifier.
  • the terminal device sends a measurement report carrying the identifier to the network device, where the identifier is used to indicate the measurement quantity category of the measurement report.
  • the identifier carried in the measurement report is an identifier corresponding to the subset of the measurement quantity category, and can be notified to the terminal device through the second configuration information in advance, so that the terminal device and the network device have a consistent understanding.
  • the network device can distinguish which interference assumption is based on the measurement report.
  • the terminal device sends the identifier to the network device by using the identifier in the measurement report, where the identifier can indicate a measurement quantity category, and the network device can effectively distinguish the measured interference hypothesis, thereby implementing effective interference coordination management and data transmission scheduling. And other decision-making behaviors to improve the performance of the entire communication system.
  • the third embodiment can be based on the first embodiment, including all the technical solutions in the first embodiment, and provides a specific implementation manner in which the terminal device sends a measurement report to the network device in step 302 of the first embodiment.
  • a specific implementation manner for a terminal to send a measurement report to a network device in 302 is:
  • the terminal device sends the measurement report to the network device, and indicates a measurement quantity category of the measurement report by using a time-frequency resource in which the measurement report is located.
  • the terminal device can identify the measurement quantity category of the measurement report, and can also store and/or filter to the corresponding subset of the measurement quantity category.
  • the manner of indicating the measurement quantity category of the measurement report by using the time-frequency resource where the measurement report is located may be, when the measurement report is sent to the network device by using the uplink control channel, the measurement quantity category of the measurement report. It is the first category (corresponding to the same direction interference). When the measurement report is sent to the network device through the uplink data channel, the measurement quantity category of the measurement report is the second category (corresponding to the opposite direction interference).
  • the time-frequency resource in which the measurement report is located can be understood as the channel resource carrying the measurement report.
  • the network device and the terminal device need to have a consistent understanding of the correspondence between the category and the time-frequency resource for sending the measurement report, and may be implemented by a protocol pre-agreed or a signaling interaction.
  • the terminal device sends the measurement report to the network device, and the time-frequency resource used by the measurement report indicates the measurement quantity category, and the network device can effectively distinguish the measured interference hypothesis, thereby implementing effective interference coordination management and data transmission. Decision behaviors such as scheduling improve the performance of the entire communication system and save signaling overhead.
  • the fourth embodiment can be based on the first embodiment, including all the technical solutions in the first embodiment, and provides a specific implementation manner in which the terminal device sends a measurement report to the network device in step 302 of the first embodiment.
  • a specific implementation manner for a terminal to send a measurement report to a network device in 302 is:
  • the terminal device sends the measurement report to the network device, and the measurement quantity category of the measurement report is indicated by a value range of the measurement quantity.
  • the terminal device can identify the measurement quantity category of the measurement report, and can also store and/or filter to the corresponding subset of the measurement quantity category.
  • the manner of indicating the measurement quantity category of the measurement report by the value range of the measurement quantity in the measurement report may be, for example, the measurement quantity value [0, 255] is used to indicate the result of the first type measurement quantity, The measurement category of the measurement report is the first category (corresponding to the same direction interference). The measurement quantity value [256, 511] is used to indicate the result of the second type of measurement quantity, and the measurement quantity category of the measurement report is the second category (corresponding to the anisotropic interference).
  • the network device obtains the value of the measured quantity from the measurement report, the value of the real measured quantity can be obtained by a predefined mapping manner.
  • the network device and the terminal device need to have a consistent understanding of the correspondence between the measurement quantity category and the sent measurement value range, and may be implemented by a protocol pre-agreed or signaling interaction.
  • the terminal device sends the measurement report to the network device, and the value range of the measurement quantity used by the measurement report is sent to indicate the measurement quantity category, and the network device can effectively distinguish the measured interference hypothesis, thereby implementing effective interference coordination management. Decision behaviors such as data transmission scheduling improve the performance of the entire communication system and save signaling overhead.
  • the fifth embodiment can be based on the first embodiment, including all the technical solutions in the first embodiment, and provides a specific implementation manner in which the terminal sends a measurement report to the network device in step 302 of the first embodiment.
  • the network device may configure a periodic measurement resource or a semi-permanent measurement resource for the terminal device, and the terminal device may report the measurement report by using a periodic or semi-permanent reporting manner.
  • a specific implementation manner in which a terminal device sends a measurement report to a network device in 302 is:
  • the terminal device sends the measurement report to the network device, and the measurement quantity category of the measurement report is indicated by a reporting period in which the measurement report is located.
  • the report setting configured by the network device for the terminal device includes a periodic report measurement report.
  • the reported time domain position of the measurement report can be expressed by an expression (N*T+offset). Where N is the period number, T is the period length, and offset is the number of the symbol of the measurement report in each period. When T is equal to the length of a slot, N can be understood as the sequence number of the slot. N and offset are integers greater than or equal to 0, and T is a positive number.
  • the terminal device can identify the measurement quantity category of the measurement report, and can also store and/or filter to the corresponding subset of the measurement quantity category.
  • a measurement quantum set can correspond to a set of periodic numbers. For example, in the first category (corresponding to the same-direction interference), the corresponding period number is an odd number, and the second category (corresponding to the opposite direction interference) corresponds to a period number that is an even number. Or, in the first category (corresponding to the same-directional interference), the corresponding period number is an even number, and the second category (corresponding to the opposite direction interference) corresponds to a period number that is an odd number. When there are more categories, the corresponding period expansion can be further performed.
  • the terminal device sends a measurement report to the network device, when the period number corresponding to the period in which the measurement report is located is an odd number, the measurement quantity category of the measurement report is the first category (corresponding to the same direction interference), when When the period number corresponding to the period in which the measurement report is located is an even number, the measurement quantity category of the measurement report is the second category (corresponding to the anisotropic interference).
  • the terminal device sends a measurement report to the network device, and when the period corresponding to the period in which the measurement report is located is an even number, the measurement quantity category of the measurement report is the first category (corresponding to the same direction interference), when the measurement report is located in the period When the corresponding cycle number is an odd number, the measurement quantity category of the measurement report is the second category (corresponding to the anisotropic interference).
  • the terminal device sends the measurement report to the network device, and the measurement device indicates the measurement type by the period in which the measurement report is located, and the network device can effectively distinguish the measured interference hypothesis, thereby implementing effective interference coordination management, data transmission scheduling, and the like. Decision behavior improves the performance of the entire communication system and saves signaling overhead.
  • the sixth embodiment can be based on the first embodiment, and includes all the technical solutions in the first embodiment.
  • the terminal device can report the measurement report by using an aperiodic reporting manner. That is to say, the network device is required to instruct the terminal device to perform a one-time measurement report reporting through the DCI.
  • the sixth embodiment includes, in addition to all the steps of the embodiment, the following:
  • a network device (e.g., network device 1 in FIG. 1) transmits trigger information to a terminal device (e.g., terminal device 1 in FIG. 1).
  • the terminal device receives the trigger information.
  • the trigger information may be a report trigger, which is included in the DCI, and the DCI may also carry the measurement type information of the measurement report that is requested to trigger the report.
  • the measurement type information of the measurement report may be represented by an identifier.
  • the terminal device further sends the measurement report to the network device according to the trigger information.
  • the terminal device can identify the measurement quantity category of the measurement report, and can also store and/or filter to the corresponding subset of the measurement quantity category. If the measurement quantity category information included in the trigger signaling corresponds to the measurement quantity category of the measurement report, the terminal device sends the measurement report to the base station.
  • the terminal device reports the measurement report aperiodically
  • the terminal device reports the measurement report of the type when the network device needs to report the measurement report of a certain measurement type
  • the network device can implement effective interference. Coordinate management, data transmission scheduling and other decision-making behaviors to improve the performance of the entire communication system.
  • the terminal device when the terminal device needs to confirm the measurement quantity category of the measurement report on the measurement resource based on the slot format of the multiple non-serving cells, as long as the time domain location of the measurement resource is
  • the slot format corresponding to the at least one non-serving cell is different from the slot format of the serving cell, that is, there is a slot format corresponding to the non-serving cell, that is, a transmission direction, and when it is uplink, it is considered to be measured on the measurement resource.
  • the measurement category of the measurement category is the second category (external interference). If the time slot format corresponding to multiple non-serving cells, that is, the transmission direction, is downlink when the measurement resource is in the time domain position, the measurement category of the measurement report can be regarded as the first category (co-directional interference).
  • the method for transmitting a measurement report in the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 4 .
  • the communication device of the embodiment of the present application will be described in detail below with reference to FIG. 5 to FIG. 7 .
  • the communication device embodiment corresponds to the method embodiment, and a similar description can refer to the method embodiment.
  • FIG. 5 is a schematic block diagram of a communication apparatus according to an embodiment of the present application. It should be understood that the communication device 500 shown in FIG. 5 can be used to perform the steps performed by the terminal devices of Embodiments 1 to 6.
  • the communication device 500 includes a receiving unit 501 and a transmitting unit 502.
  • the receiving unit 501 is configured to use the first configuration information and the second configuration information, where the first configuration information is used to indicate a measurement resource, and the second configuration information is used to indicate a slot format of the non-serving cell of the terminal device.
  • the sending unit 502 is configured to send a measurement report to the network device, where the measurement quantity category of the measurement report is related to a slot format of the non-serving cell, and the measurement report corresponds to the measurement resource.
  • the measurement quantity category of the measurement report is related to the time slot format of the non-serving cell, and includes: the measurement quantity category of the measurement report and the time slot format of the non-serving cell, corresponding to the measurement The time slot format of the resource time domain location is related.
  • the sending unit 502 can be specifically configured to:
  • the measurement report carrying an identifier, where the identifier is used to indicate a measurement quantity category of the measurement report;
  • the receiving unit 501 is further configured to receive trigger signaling sent by the network device.
  • the sending unit 502 sends the measurement report to the network device.
  • FIG. 6 is a schematic block diagram of a communication device of another embodiment of the present application. It should be understood that the communication device 600 shown in FIG. 6 can be used to perform the steps performed by the network devices of Embodiments 1 through 6.
  • the communication device 600 includes a transmitting unit 601 and a receiving unit 602.
  • the sending unit 601 is configured to send, to the terminal device, first configuration information, where the first configuration information is used to indicate a measurement resource.
  • the receiving unit 602 is configured to receive a measurement report sent by the terminal device, where a measurement quantity category of the measurement report is related to a slot format of a non-serving cell of the terminal, where the measurement report corresponds to the measurement resource.
  • the sending unit 601 is further configured to send second configuration information to the terminal, where the second configuration information is used to indicate a slot format of the non-serving cell.
  • the measurement quantity category of the measurement report is related to the time slot format of the non-serving cell, and includes: the measurement quantity category of the measurement report and the time slot format of the non-serving cell, corresponding to the measurement The time slot format of the resource time domain location is related.
  • the receiving unit 602 can be specifically configured to:
  • the measurement report indicating the measurement quantity category by the time-frequency resource in which the measurement report is located.
  • the measurement report indicating the measurement quantity category by the range of the measurement report measurement amount.
  • the sending unit 601 is further configured to send, to the terminal device, trigger signaling, where the trigger signaling is used to trigger sending of the measurement report.
  • the trigger signaling may include measurement quantity category information of the measurement report that is requested to be triggered.
  • each unit of the communication device 500 and the communication device 600 is only a division of a logical function. In actual implementation, it may be integrated into one physical entity in whole or in part, or may be physically separated. Moreover, these units may all be implemented in the form of software by means of processing component calls; or may be implemented entirely in hardware; some units may be implemented by software in the form of processing component calls, and some units may be implemented in the form of hardware.
  • the sending unit may be a separately set processing component, or may be integrated in a certain chip of the network device, or may be stored in a memory of the network device in the form of a program, and is called by a processing component of the network device. And perform the function of the sending unit.
  • the implementation of other units is similar.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above transmitting unit 502 or the transmitting unit 601 is a unit that controls transmission, and information can be transmitted through a transmitting device of the communication device 500 or 600, such as an antenna and a radio frequency device.
  • a similar receiving unit 501 or receiving unit 602 is a unit that controls reception, and information can be received by receiving means of the communication device 500 or 600, such as an antenna and a radio frequency device.
  • the above units may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASICs), or one or more microprocessors (digital singnal processors) , DSP), or, one or more field programmable gate arrays (FPGAs), and the like.
  • ASICs application specific integrated circuits
  • DSP digital singnal processors
  • FPGAs field programmable gate arrays
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the terminal device obtains the interference hypothesis information on the measurement resource by using the slot format of the non-serving cell, and further obtains the measurement quantity category of the measurement report corresponding to the measurement resource, and the different measurement quantity categories.
  • the measurement report can be reported to the network device in different ways, so that the network device can be effectively distinguished, thereby making more effective decision-making behaviors such as interference coordination management and data transmission scheduling, and improving the performance of the entire communication system.
  • FIG. 7 is a schematic diagram showing the hardware structure of a communication device 700 according to an embodiment of the present application.
  • the communication device 700 includes at least one processor 701, a communication bus 702, and at least one communication interface 704, and may also include a memory 703.
  • the processor 701 can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 702 can include a path for communicating information between the components described above.
  • Communication interface 704 using any type of transceiver, for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 703 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 703 is used to store application code for executing the solution of the present application, and is controlled by the processor 701 for execution.
  • the processor 701 is configured to execute the application code stored in the memory 703, so as to implement the steps performed by the terminal device or the network device in the embodiment 1-6 of the present application.
  • the processor 701 can include one or more CPUs.
  • communication device 700 can include multiple processors. Each of these processors can be a single-CPU processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the communication device 700 can also include an output device and an input device.
  • the output device is in communication with the processor 701 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector.
  • the input device is in communication with the processor 701 and can accept user input in a variety of ways.
  • the input device can be a mouse, a keyboard, a touch screen device, or a sensing device, and the like.
  • the communication device 70 provided by the embodiment of the present application may be a chip, or a terminal device, or a network device, or a device having a similar structure in FIG.
  • the embodiment of the present application does not limit the type of the communication device 700.
  • memory 703 may also be located outside the communication device 700, such as an off-chip memory.
  • the embodiment of the present application provides a chip system, where the chip system includes a processor for supporting a communication device to implement a method for transmitting a measurement report according to various embodiments, for example, determining a demodulation reference signal for transmitting a shared channel. symbol.
  • the chip system also includes a memory.
  • the memory is used to store program instructions and data necessary for the communication device.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices. This embodiment of the present application does not specifically limit this.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送测量报告的方法,包括:终端设备接收第一配置信息和第二配置信息,所述第一配置信息用于指示测量资源,所述第二配置信息用于指示所述终端设备的非服务小区的时隙格式;所述终端设备向网络设备发送测量报告,所述测量报告的测量量类别与所述非服务小区的时隙格式有关,所述测量报告对应所述测量资源。由此,通过基于非服务小区的时隙格式,终端设备获得测量资源上的干扰假设信息,进一步获得与测量资源对应的测量报告的测量量类别,通过测量报告的上报反馈给网络设备,使得网络设备可以有效区分,从而可以更有效的进行干扰协调管理、数据传输调度等决策行为,提高整个通信系统的性能。

Description

发送测量报告的方法、通信装置和系统 技术领域
本申请涉及通信领域,更为具体的,涉及通信领域中发送测量报告的方法、通信装置和系统。
背景技术
第5代移动通信(the 5th Generation,5G)新空口(New Radio,NR)技术支持动态的传输状态配置,服务小区的基站发送信令至该服务小区内的终端设备,指示配置周期时间内的时隙(slot)或符号(symbol)的传输状态。终端设备收到消息后,可在上行slot或者symbol上根据调度指令进行上行传输,或者在下行slot或者symbol上进行下行接收。配置周期上的符号除了上行和/或下行传输资源,还存在不确定(unknown)的符号资源,终端在unknown资源上不进行收发处理。
基于以上灵活的传输状态配置,终端通过干扰测量获得干扰测量结果,并通过测量报告上报给服务小区的基站时,服务小区的基站不能区分该干扰测量结果对应的干扰是由非服务小区的基站产生的,还是由非服务小区的终端产生的,从而影响后续该基站的决策行为,导致了系统性能的下降。
发明内容
本申请结合多种实施方式,提供了发送和/或接收测量报告的方法、通信装置和系统,以提升系统的性能。
应理解,本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,“A,和/或,B”,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
第一方面,本申请提供了一种发送测量报告的方法,可以由终端设备执行。包括:终端设备接收第一配置信息和第二配置信息,所述第一配置信息用于指示测量资源,所述第二配置信息用于指示所述终端设备的非服务小区的时隙格式;所述终端设备向网络设备发送测量报告,所述测量报告的测量量类别与所述非服务小区的时隙格式有关,所述测量报告对应所述测量资源。
第二方面,本申请提供了一种接收测量报告的方法,可以由网络设备执行。包括:网络设备向终端设备发送第一配置信息,所述第一配置信息用于指示测量资源;所述网络设备接收所述终端设备发送的测量报告,所述测量报告的测量量类别与所述终端的非服务小区的时隙格式有关,所述测量报告对应所述测量资源。
第三方面,本申请提供了一种通信装置。该通信装置可以是终端设备,或是设置于终端设备中的芯片或片上系统。该通信装置包括:处理器,所述处理器与存储器耦合并调用所述存储器存储的程序,通过收发器执行如下步骤:接收第一配置信息和第二配置信息, 所述第一配置信息用于指示测量资源,所述第二配置信息用于指示所述终端设备的非服务小区的时隙格式;向网络设备发送测量报告,所述测量报告的测量量类别与所述非服务小区的时隙格式有关,所述测量报告对应所述测量资源。
第四方面,本申请提供了一种通信装置。该通信装置可以是网络设备,或是设置于网络设备中的芯片或片上系统。该通信装置包括:处理器,所述处理器与存储器耦合并调用所述存储器存储的程序,通过收发器执行如下步骤:向终端设备发送第一配置信息,所述第一配置信息用于指示测量资源;接收所述终端设备发送的测量报告,所述测量报告的测量量类别与所述终端的非服务小区的时隙格式有关,所述测量报告对应所述测量资源。
以上各个方面提供的方法或者通信装置,通过基于非服务小区的时隙格式,终端设备获得测量资源上的干扰假设信息,进一步获得与测量资源对应的测量报告的测量量类别,通过测量报告的上报反馈给网络设备,使得网络设备可以有效区分,从而可以更有效的进行干扰协调管理、数据传输调度等决策行为,提高整个通信系统的性能。
结合上述任一方面,在一种可能的设计中,所述测量报告的测量量类别与所述非服务小区的时隙格式有关,包括:所述测量报告的测量量类别与所述非服务小区的时隙格式中,对应所述测量资源时域位置的时隙格式有关。
结合上述任一方面,在一种可能的设计中,向服务小区的网络设备发送测量报告,包括:向所述网络设备发送携带标识的所述测量报告,所述标识用于指示所述测量报告的测量量类别。对应的,接收所述终端设备发送的测量报告,包括:接收所述终端设备发送的携带标识的所述测量报告,所述标识用于指示所述测量报告的测量量类别。
结合上述任一方面,在一种可能的设计中,向服务小区的网络设备发送测量报告,包括:向所述网络设备发送所述测量报告,通过所述测量报告所位于的时频资源指示所述测量报告的测量量类别。对应的,接收所述终端设备发送的测量报告,包括:接收所述终端设备发送的、通过所述测量报告所位于的时频资源指示测量量类别的所述测量报告。通过发送测量报告使用的时频资源指示测量量类别,网络设备(通信装置)能够有效区分测量的干扰假设,从而实现有效的进行干扰协调管理、数据传输调度等决策行为,提高整个通信系统的性能,并且节约了信令的开销。
结合上述任一方面,在一种可能的设计中,向服务小区的网络设备发送测量报告,包括:向所述网络设备发送所述测量报告,通过所述测量报告测量量的取值范围指示所述测量报告的测量量类别。对应的,接收所述终端设备发送的测量报告,包括:接收所述终端设备发送的、通过所述测量报告测量量的范围指示测量量类别的所述测量报告。通过发送测量报告使用的测量量的取值范围指示测量量类别,网络设备(通信装置)能够有效区分测量的干扰假设,从而实现有效的进行干扰协调管理、数据传输调度等决策行为,提高整个通信系统的性能,并且节约了信令的开销。
结合上述任一方面,在一种可能的设计中,向服务小区的网络设备发送测量报告,包括:向所述网络设备发送所述测量报告,通过所述测量报告位于的上报周期中的位置指示所述测量报告的测量量类别。对应的,接收所述终端设备发送的测量报告,包括:接收所述终端设备发送的、通过所述测量报告位于的上报周期中的位置指示测量量类别的测量报告。通过测量报告所位于的周期指示测量量类别,网络设备(通信装置)能够有效区分测 量的干扰假设,从而实现有效的进行干扰协调管理、数据传输调度等决策行为,提高整个通信系统的性能,并且节约了信令的开销。
在一种可能的设计中,第四方面所述的通信装置,或者第二方面所述的网络设备,向第三方面所述的通信装置,或者第一方面所述的终端设备发送触发信令,所述触发信令用于触发所述测量报告的发送。第三方面所述的通信装置,或者第一方面所述的终端设备根据所述触发信令,向所述网络设备发送所述测量报告。可选的,所述触发信令包括请求触发的所述测量报告的测量量类别信息,且若所述触发信令包含的测量量类别信息与之前获得的测量报告的测量量类别相对应,第三方面所述的通信装置,或者第一方面所述的终端设备向所述网络设备发送所述测量报告。该设计适用于非周期性的上报方式上报测量报告的场景。
结合第二方面,在一种可能的设计中,所述网络设备发送第二配置信息,所述第二配置信息用于指示所述非服务小区的时隙格式。对应的,第四方面的通信装置还能实现如下步骤:发送第二配置信息,所述第二配置信息用于指示所述非服务小区的时隙格式。
第五方面,本申请提供了一种无线通信系统,包括:所述第三方面及各种可选设计中的任意一种无线通信装置,以及所述第四方面及各种可选设计中的任意一种无线通信装置。
第六方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储了程序代码,所述程序代码被处理器执行时,实现所述第一方面、第二方面及各种可选设计中的任意一种方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包含的程序代码被处理器执行时,实现所述第一方面、第二方面及各种可选设计中的任意一种方法。
附图说明
图1是一种通信系统的示意图;
图2(a)是一种干扰假设的场景示意图;
图2(b)是另一种干扰假设的场景示意图;
图3是一种发送测量报告的方法的流程图;
图4(a)是一种服务小区与非服务小区的时隙格式的示意图;
图4(b)是另一种服务小区与非服务小区的时隙格式的示意图;
图5是一种通信装置的结构示意图;
图6是另一种通信装置的结构示意图;
图7是又一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于但不限于5G移动通信NR系统,还可以应用于长期演进(long term evolution,LTE)系统,例如长期演进高级(long term evolution-advanced,LTE-A)系统、增强的长期演进技术(enhanced long term evolution-advanced,eLTE)等通信系统中,也可以扩展到如无线保真(wireless fidelity,WiFi)、全球微波互联接入(worldwide  interoperability for microwave access,wimax)、以及第三代合作伙伴计划(3rd generation partnership project,3GPP)等相关的蜂窝系统中。
本申请实施例中的终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以为各种形式的基站(如宏基站、微基站(也称为小站))、中继站、接入点等,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。当网络设备为基站时,基站可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可用于协调对空中接口的属性管理。其中,在采用不同无线接入技术的通信系统中,具备基站功能的设备的名称可能会有所不同,例如,全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)系统中的基站称之为基站(base transceiver station,BTS)、宽带码分多址(wideband code division multiple access,WCDMA)中的基站称之为节点B(node B)、LTE系统中的基站称之为演进型基站(evolutional node B,eNB)、NR系统中的基站称之为通用型基站(general node B,gNB)等。本申请实施例对此不进行不限定。
下面对本申请实施例中涉及的一些名词做出说明。
时隙(slot),为传输数据的资源在时域上的单位,一个时隙通常包含多个符号和/或码片,每个符号和/或码片可能有相同或不同的传输方向。
时隙格式(slot format),用于指示终端设备在时域资源上的传输状态,示例的,一个时隙包括14个符号,则时隙的格式中规定了各个符号承载的内容,如第一个符号用于承载上行数据,第二个符号用于承载下行数据等。这里所指的传输状态,可以包括上行,即终端设备向网络设备发送信息的状态,下行,即终端设备接收网络设备发送的信息的状态,还可以包括不确定(unknown)状态或者灵活(flexible)状态,在这两种状态下,终端设备可以不进行收发处理,而用于终端设备的内部处理。
时隙格式可以通过时隙格式信息(slot format information,SFI)由终端设备获得。具体来说,SFI可以通过组公共下行物理控制信道(group common physical downlink control channel,GC-PDCCH)发送,承载于下行控制信息(downlink control information,DCI),格式为format2_0。与SFI相关的信息也可以通过无线资源控制(radio resource control,RRC)信令发送给终端设备。
测量量,也就是衡量测量结果的数值,可以是接收信号强度指示(received signal strength indicator,RSSI)、参考信号接收质量(reference signal received quality,RSRQ)、CSI-RSRP或者信道质量信息(channel quality information,CQI),或者信噪比(signal-noise  rate,SNR)等。本申请涉及的测量量类别,将基于下述内容在后文进行说明。
测量可以包括基于信道状态信息-干扰测量(channel state information-inference measurement,CSI-IM)的测量、基于非零功率信道状态信息参考信号(channel state information-reference signal,CSI-RS)的测量、基于解调参考信号(demodulation reference signal,DM-RS)的测量、基于探测参考信号(sounding reference signal,SRS)的测量或者基于同步信号(synchronization signal,SS)的测量,或者基于发射数据信号的测量等。本申请实施例的技术方案可以应用于干扰测量或其他测量。对于干扰测量,终端设备通过对测量资源上的信号进行测量,来评估自身在数据传输时受到的干扰(比如相邻小区基站的下行干扰,相邻小区用户的上行干扰,其他系统的信道在本频段的干扰强度等等)大小。其他测量可以包括信道质量测量,参考信号接收功率测量,信噪比测量,接收信号强度指示测量等。下面的讨论以干扰测量为例,其他的测量可以根据类似的方案进行处理。
与干扰测量相关的配置可以分为如下三个方面:用于干扰测量的资源集合(也可以称为resource setting),可以对应到一个或者多个资源配置(resource configuration)。用于干扰测量的报告集合(也可以称为reporting setting),对应到一个或者多个报告配置(report configuration)。报告集合中的报告可显式地或隐式地包含测量量的指示,例如,测量量的标识,测量量的数值范围等。关联列表(link list),用于指示上述resource configuration和report configuration之间的关联关系。网络设备指示终端设备在指定的资源上进行测量,并通过与指定的资源所关联的报告上报给网络设备。
其中,用于干扰测量的资源集合中的资源也可以称为干扰测量的测量资源,简称测量资源,下述均以测量资源进行表述。网络设备可以为终端设备配置周期性的测量资源,也即,该配置对于该终端设备按照某一周期重复有效。网络设备还可以为终端设备配置半永久的测量资源,例如,网络设备通过媒体接入控制(media access control,MAC)层信令对配置的测量资源进行激活指示后,该配置开始按照某一周期重复有效。当网络设备通过MAC层信令对配置的测量资源进行去激活指示后,该配置不再有效。网络设备还可以为终端设备配置非周期性的测量资源,该配置通过DCI的指示,在指定的时刻一次性的有效。
用于干扰测量的报告集合中的报告也可以称为测量报告,下述均以测量报告进行表述。终端在配置的测量资源上进行干扰测量,获得与测量资源对应的干扰测量结果,通过测量报告上报干扰测量结果给网络设备。测量报告的上报可以分为三种方式:周期性的上报、半永久性的上报(也即需要网络设备通过MAC层信令指示后开始周期性的上报,网络设备通过MAC层信令指示后停止上报)或者非周期性的上报(需要网络设备通过DCI指示后,一次性的上报。)测量报告的上报方式可以由网络设备进行配置。
作为一种实现方式,本申请实施例中,网络设备可以为终端设备配置周期性的测量资源,该终端设备可以使用周期性的上报方式上报测量报告。当然测量资源还可以是半永久性的或者非周期性的,以及测量报告的上报方式还可以使用半永久性的或者非周期性的。也即本申请实施例不排除任何组合的形式。
图1是适用于本申请的技术方案的通信系统的示意图。如图1所示,通信系统100可以包括位于小区A的终端设备1、位于小区B中的终端设备2、以及位于小区C中的终端 设备3。终端设备1、终端设备2以及终端设备3分别有网络设备1、网络设备2以及网络设备3提供通信服务。对于终端设备1,小区A为服务小区,小区B和小区C为非服务小区。可选的,小区B和小区C为小区A的相邻小区。需要说明的是,通信系统100中所包括的终端设备的个数和网络设备的个数为大于等于2的整数,以上只是一种示例。
基于动态的传输状态配置,在某一时间段上,不同小区的传输状态配置可以相同或者不同。比如,对于某一slot或者symbol,位于小区A的终端设备1处于下行接收的传输状态,位于小区B的终端设备2也处于下行接收的传输状态。或者,对于某一slot或者symbol,位于小区A的终端设备1处于下行接收的传输状态,而位于小区B的终端设备2处于上行发送的传输状态。
以上两种情况分别可以对应到两种不同的干扰假设(也即干扰场景或者测量场景)。对于某一slot或者symbol,位于小区A的终端设备1处于下行接收的传输状态,位于小区B的终端设备2也处于下行接收的传输状态,如图2(a)所示,网络设备2的下行发送可能会对终端设备1的下行接收造成干扰。此种干扰可以称为同向干扰,又可以称为非交叉链路干扰或者简称为干扰假设1。对于某一slot或者symbol,位于小区A的终端设备1处于下行接收的传输状态,而位于小区B的终端设备2处于上行发送的传输状态,如图2(b)所示,终端设备2的上行发送可能会对网络设备1的下行接收造成干扰。此种干扰可以称为异向干扰,又可以称为交叉链路干扰或者简称为干扰假设2。
然而现有技术中,网络设备1在为终端设备1配置干扰测量资源时,只考虑了小区A,也即服务小区的传输状态配置情况,不会考虑作为非服务小区的小区B(和/或小区C)的传输配置状态。这样,对于一个测量资源,终端设备1对其进行测量所得的测量结果只可能对应到一种干扰假设(例如,同向干扰),基站不能区分出该干扰测量结果对应的干扰是由网络设备2产生的,还是由终端设备2产生的。由于网络设备产生的干扰在一段时间内被认为是大小改变相对稳定、可以预测的,而由于终端设备的通信特性,以及位置的随机性等因素,终端设备产生的干扰在一段时间内被认为是大小变化相对剧烈、难以预测的。这样,网络设备后续的决策行为(例如,干扰协调和数据传输)会收到影响,导致了通信系统性能的下降。
基于此,本申请实施例提供的技术方案,通过基于非服务小区的时隙格式,终端设备获得测量资源上的干扰假设信息,进一步获得与测量资源对应的测量报告的测量量类别,不同的测量量类别的测量报告可以通过不同的方式报告给网络设备,使得网络设备可以有效区分,从而可以更有效的进行干扰协调管理、数据传输调度等决策行为,提高整个通信系统的性能。
实施例一
如图3所示,为本申请实施例提供的一种发送测量报告的方法。该方法可以应用于前述图1所示的通信系统100。该方法包括:
301、终端设备接收第一配置信息和第二配置信息,该第一配置信息用于指示干扰测量的测量资源,该第二配置信息用于指示所述终端设备的非服务小区的时隙格式。
第一配置信息可以是测量资源配置信息,包含resource configuration,例如,测量资源的位置等。作为一种实现方式,其还可以包含与测量资源对应的测量报告的report  configuration,和/或指示resource configuration和report configuration之间的关联关系的link list。所述第一配置信息可以包含在RRC信令中由该终端设备从服务小区的网络设备接收。
根据所述第一配置信息,该终端设备对该测量资源进行干扰测量,获得测量结果。
第二配置信息可以是SFI。如上所述,SFI可以用于指示时隙格式,具体来说,第二配置信息可以用于指示一个或多个slot中每个symbol的传输状态,也就是说,第二配置信息可以指示一个slot的时隙格式,也可以指示多个时隙的时隙格式。示例的,网络设备可以配置一组时隙格式组合,通过第二配置信息指示终端设备在当前的周期中的多个时隙使用哪一组时隙格式。需要说明的是,该第二配置信息可以是非服务小区(例如图1中的小区B和/或小区C)的SFI,也就是说,第二配置信息指示的是非服务小区的时隙格式。该终端设备(例如图1中的终端设备1)可以从服务小区(例如图1中的小区A)的网络设备(例如图1中的网络设备1)接收该第二配置信息,还可以从非服务小区的网络设备(例如,网络设备2和/或网络设备3)接收该第二配置信息。另外,第二配置信息可以是通过RRC信令配置的,也即为半静态的配置信息,也即在配置有效的时间段内,该配置信息保持不变。第二配置信息还可以是通过DCI信令配置的,也即为动态的配置信息,其内容随时可以通过DCI进行更新。
基于本申请实施例前述提及的技术问题,终端设备还需要识别此次测量结果所对应的干扰假设,以确认向网络设备上报的测量报告的测量量类别。
302、终端设备向网络设备发送测量报告,所述测量报告的测量量类别与非服务小区的时隙格式有关。
对应的网络设备(例如图1中的网络设备1,也即服务小区的网络设备)接收终端设备发送的该测量报告。
基于现有技术中的缺陷,需要对测量量进行分类,这种分类可以基于前述提到的干扰假设,例如,若在同向干扰场景下获得的测量量可被分为第一类测量量,在异向干扰场景下获得的测量量可被分为第二类测量量。基于此,终端设备测量报告中的测量量将具有测量量类别,这个测量量类别反映了获得测量量所基于的干扰假设,将能够帮助网络设备对实际测量时的干扰场景进行有效区分。
终端设备可以根据301中接收到的第二配置信息,识别出此次测量结果对应的干扰假设,进而确认出向网络设备上报的测量报告的测量量类别。这样终端设备就可以基于测量量的类别,向网络设备上报测量报告。
这里,测量报告的测量量类别与非服务小区的时隙格式有关,具体是指测量报告的测量量类别与非服务小区的时隙格式中,对应测量资源时域位置的时隙格式有关。具体的可以参见图4(a)和图4(b)。该测量资源可以理解为一种时频资源,该测量资源的时域位置,例如为符号6,根据图4(a),第二配置信息指示非服务小区在符号6上的传输方向为下行,而终端设备所在的服务小区在符号6上的传输方向也为下行。该种情况对应2(a)所示的同向干扰,终端设备可以确定该测量报告的测量量类别为第一类别,例如类别1。根据图4(b),第二配置信息指示非服务小区在符号6上的传输方向为上行,而终端设备所在的服务小区在符号6上的传输方向为下行。该种情况对应2(b)所示的异向干扰,终端设备可以确定该测量报告的测量量类别为第二类别,例如类别2。当然该测量资源的时域位置还可以占用大于等于2个symbol,终端设备对测量报告的测量量类别的识别方式是类似的。
本申请实施例提供的技术方案,通过基于非服务小区的时隙格式,终端设备获得测量资源上的干扰假设信息,进一步获得与测量资源对应的测量报告的测量量类别,通过测量报告的上报反馈给网络设备,使得网络设备可以有效区分,从而可以更有效的进行干扰协调管理、数据传输调度等决策行为,提高整个通信系统的性能。
实施例二
实施例二可以基于实施例一,包含实施例一中的所有技术方案,并且,提供了实施例一步骤302中终端向网络设备发送测量报告的具体实现方式。
在本申请实施例中,第一配置信息可以包括多个report configuration,并且该多个report configuration可以通过link list关联到一个resource configuration,也就是说,多种测量报告可以对应到一个测量资源上。
作为一种实现方式,第一配置信息中可以携带多个新的标识,用于指示测量报告的测量量类别。例如,第一配置信息携带两个新的标识,分别用于指示第一类别(对应同向干扰)以及用于指示第二类别(对应异向干扰)。
作为另一种实现方式,第一配置信息中可以携带多个扩展标识,用于指示测量报告的测量量类别。扩展标识可以理解为现有技术中已有的标识。例如,携带两个扩展标识,分别用于指示第一类别(对应同向干扰)以及用于指示第二类别(对应异向干扰)。
终端设备基于实施例一的技术方案,可以识别出测量报告的测量量类别,进一步可以存储和/或滤波至对应的测量量类别子集,该测量量类别子集可以与一个标识相对应。
基于上述技术方案,一种302中终端向网络设备发送测量报告的具体实现方式为:
终端设备向网络设备发送携带标识的测量报告,所述标识用于指示所述测量报告的测量量类别。这里测量报告所携带的标识就是与该测量量类别子集对应的标识,它可以预先通过第二配置信息告知给终端设备,使得终端设备和网络设备有一致的认识。网络设备可以通过该测量报告区分测量时是基于何种干扰假设。
本申请实施例,终端设备通过在测量报告中携带标识发送至网络设备,该标识可以指示一种测量量类别,网络设备能够有效区分测量的干扰假设,从而实现有效的干扰协调管理、数据传输调度等决策行为,提高整个通信系统的性能。
实施例三
实施例三可以基于实施例一,包含实施例一中的所有技术方案,并且,提供了实施例一步骤302中终端设备向网络设备发送测量报告的具体实现方式。
一种302中终端向网络设备发送测量报告的具体实现方式为:
所述终端设备向网络设备发送所述测量报告,通过测量报告所位于的时频资源指示所述测量报告的测量量类别。
终端设备基于实施例一的技术方案,可以识别出测量报告的测量量类别,还可以存储和/或滤波至对应的测量量类别子集。
作为一种实现方式,通过测量报告所位于的时频资源指示所述测量报告的测量量类别的方式可以是,当所述测量报告通过上行控制信道发送给网络设备时,测量报告的测量量 类别为第一类别(对应同向干扰)。而当测量报告通过上行数据信道发送给网络设备时,所述测量报告的测量量类别为第二类别(对应异向干扰)。此时,测量报告所位于的时频资源可以理解为承载该测量报告的信道资源。当然,网络设备和终端设备需要有类别与发送测量报告的时频资源的对应关系的一致理解,可以通过协议预先约定或者信令交互等形式实现。
本申请实施例,终端设备将测量报告发送至网络设备,通过发送测量报告使用的时频资源指示测量量类别,网络设备能够有效区分测量的干扰假设,从而实现有效的进行干扰协调管理、数据传输调度等决策行为,提高整个通信系统的性能,并且节约了信令的开销。
实施例四
实施例四可以基于实施例一,包含实施例一中的所有技术方案,并且,提供了实施例一步骤302中终端设备向网络设备发送测量报告的具体实现方式。
一种302中终端向网络设备发送测量报告的具体实现方式为:
所述终端设备向网络设备发送所述测量报告,通过测量量的取值范围指示所述测量报告的测量量类别。
终端设备基于实施例一的技术方案,可以识别出测量报告的测量量类别,还可以存储和/或滤波至对应的测量量类别子集。
作为一种实现方式,通过测量报告中测量量的取值范围指示所述测量报告的测量量类别的方式可以是,比如测量量取值为[0,255]用于指示第一类测量量的结果,测量报告的测量量类别为第一类别(对应同向干扰)。测量量取值为[256,511]用于指示第二类测量量的结果,所述测量报告的测量量类别为第二类别(对应异向干扰)。网络设备在从测量报告中获得测量量的取值后,可以通过预定义的映射方式来获得真实的测量量的数值。当然,网络设备和终端设备需要有测量量类别与发送的测量量取值范围的对应关系的一致理解,可以通过协议预先约定或者信令交互等形式实现。
本申请实施例,终端设备将测量报告发送至网络设备,通过发送测量报告使用的测量量的取值范围指示测量量类别,网络设备能够有效区分测量的干扰假设,从而实现有效的进行干扰协调管理、数据传输调度等决策行为,提高整个通信系统的性能,并且节约了信令的开销。
实施例五
实施例五可以基于实施例一,包含实施例一中的所有技术方案,并且,提供了实施例一步骤302中终端向网络设备发送测量报告的具体实现方式。
实施例五中,网络设备可以为终端设备配置周期性的测量资源,或者半永久的测量资源,该终端设备可以使用周期性,或者半永久性的上报方式上报测量报告。
一种302中终端设备向网络设备发送测量报告的具体实现方式为:
终端设备向网络设备发送所述测量报告,通过所述测量报告位于的上报周期指示所述测量报告的测量量类别。
例如,网络设备为终端设备配置的report setting包括周期性的上报测量报告。作为一种实现方式,该测量报告的上报的时域位置可以通过表达式(N*T+offset)表示。其中N 为周期序号,T为周期长度,offset表示测量报告在每个周期中符号的序号。当T等于一个slot的长度时,N可以理解为slot的序号。N和offset为大于等于0的整数,T为正数。
终端设备基于实施例一的技术方案,可以识别出测量报告的测量量类别,还可以存储和/或滤波至对应的测量量类别子集。一个测量量子集可以对应到一组周期序号。例如,第一类别(对应同向干扰),对应到的周期序号为奇数,而第二类别(对应异向干扰)对应到的周期序号为偶数。或者,第一类别(对应同向干扰),对应到的周期序号为偶数,而第二类别(对应异向干扰)对应到的周期序号为奇数。当存在更多的类别时,可以进一步进行相应的周期扩展。
因此,终端设备向网络设备发送测量报告,当所述测量报告所位于的周期对应的周期号为奇数时,所述测量报告的测量量类别为第一类别(对应同向干扰),当所述测量报告所位于的周期对应的周期号为偶数时,所述测量报告的测量量类别为第二类别(对应异向干扰)。或者,终端设备向网络设备发送测量报告,当测量报告所位于的周期对应的周期号为偶数时,测量报告的测量量类别为第一类别(对应同向干扰),当测量报告所位于的周期对应的周期号为奇数时,测量报告的测量量类别为第二类别(对应异向干扰)。
本申请实施例,终端设备将测量报告发送至网络设备,通过测量报告所位于的周期指示测量量类别,网络设备能够有效区分测量的干扰假设,从而实现有效的进行干扰协调管理、数据传输调度等决策行为,提高整个通信系统的性能,并且节约了信令的开销。
实施例六
实施例六可以基于实施例一,包含实施例一中的所有技术方案。
实施例六中,终端设备可以使用非周期性的上报方式上报测量报告。也就是说,需要网络设备通过DCI指示终端设备进行一次性的测量报告上报。
实施例六除了包括实施例一种的所有步骤,还可以包括:
网络设备(例如图1中的网络设备1)向终端设备(例如图1中的终端设备1)发送触发信息。
相应的,终端设备接收所述触发信息。
该步骤可以早于步骤302执行。其中,所述触发信息可以为报告触发(report trigger),其包含在DCI中,DCI中还可以携带请求触发上报的测量报告的测量量类型信息。可选的,该测量报告的测量量类型信息可以通过标识表现。
步骤302中,终端设备还根据该触发信息,向网络设备发送该测量报告。
终端设备基于实施例一的技术方案,可以识别出测量报告的测量量类别,还可以存储和/或滤波至对应的测量量类别子集。若触发信令包含的测量量类别信息与所述测量报告的测量量类别相对应,则所述终端设备向所述基站发送所述测量报告。
本申请实施例,针对于终端设备非周期性上报测量报告的场景,终端设备在网络设备需要将某一测量量类型的测量报告上报时,上报该类型的测量报告,网络设备可以实现有效的干扰协调管理、数据传输调度等决策行为,提高整个通信系统的性能。
需要说明的是,上述任一实施例中,当终端设备需要基于多个非服务小区的时隙格式来确认测量资源上的测量报告的测量量类别时,只要在测量资源的时域位置上,存在至少 一个非服务小区对应的时隙格式与服务小区的时隙格式不同,即有一个非服务小区对应的时隙格式,即传输方向,为上行时,则认为在该测量资源上进行测量获得的测量报告的测量量类别第二类别(异向干扰)。如果在测量资源的时域位置上,多个非服务小区对应的时隙格式,即传输方向,均为下行时,则可以认为测量报告的测量量类别第一类别(同向干扰)。
还应理解,上述是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文结合图1至图4,详细描述了本申请实施例发送测量报告的方法,下面将结合图5至图7,详细描述本申请实施例的通信装置。通信装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
实施例七
图5是本申请一个实施例的通信装置的示意性框图。应理解,图5所示的通信装置500可以用于执行实施例一至实施例六终端设备执行的步骤。该通信装置500包括:接收单元501和发送单元502。
接收单元501,用于第一配置信息和第二配置信息,所述第一配置信息用于指示测量资源,所述第二配置信息用于指示所述终端设备的非服务小区的时隙格式。
发送单元502,用于向网络设备发送测量报告,所述测量报告的测量量类别与所述非服务小区的时隙格式有关,所述测量报告对应所述测量资源。
可选的,所述测量报告的测量量类别与所述非服务小区的时隙格式有关,包括:所述测量报告的测量量类别与所述非服务小区的时隙格式中,对应所述测量资源时域位置的时隙格式有关。
发送单元502可以具体用于:
向所述网络设备发送携带标识的所述测量报告,所述标识用于指示所述测量报告的测量量类别;或者,
向所述网络设备发送所述测量报告,通过所述测量报告所位于的时频资源指示所述测量报告的测量量类别;或者,
向所述网络设备发送所述测量报告,通过所述测量报告测量量的取值范围指示所述测量报告的测量量类别;或者,
向所述网络设备发送所述测量报告,通过所述测量报告位于的上报周期中的位置指示所述测量报告的测量量类别。
可选的,接收单元501还用于,接收所述网络设备发送的触发信令。在这种场景下,若所述触发信令包含的测量量类别信息与所述测量报告的测量量类别相对应,则发送单元502向所述网络设备发送所述测量报告。
图6是本申请另一个实施例的通信装置的示意性框图。应理解,图6所示的通信装置600可以用于执行实施例一至实施例六网络设备执行的步骤。该通信装置600包括:发送单元601和接收单元602。
发送单元601,用于向终端设备发送第一配置信息,所述第一配置信息用于指示测量资源。
接收单元602,用于接收所述终端设备发送的测量报告,所述测量报告的测量量类别与所述终端的非服务小区的时隙格式有关,所述测量报告对应所述测量资源。
可选的,发送单元601还用于,向所述终端发送第二配置信息,所述第二配置信息用于指示所述非服务小区的时隙格式。
可选的,所述测量报告的测量量类别与所述非服务小区的时隙格式有关,包括:所述测量报告的测量量类别与所述非服务小区的时隙格式中,对应所述测量资源时域位置的时隙格式有关。
所述接收单元602,具体可以用于:
接收所述终端设备发送的携带标识的所述测量报告,所述标识用于指示所述测量报告的测量量类别。或者,
接收所述终端设备发送的、通过所述测量报告所位于的时频资源指示测量量类别的所述测量报告。或者,
接收所述终端设备发送的、通过所述测量报告测量量的范围指示测量量类别的所述测量报告。或者,
接收所述终端设备发送的、通过所述测量报告位于的上报周期中的位置指示测量量类别的测量报告。
可选的,发送单元601还用于,向所述终端设备发送触发信令,所述触发信令用于触发所述测量报告的发送。其中,所述触发信令可以包括请求触发的所述测量报告的测量量类别信息。
需要说明的是,应理解以上通信设备500和通信设备600的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。例如,发送单元可以为单独设立的处理元件,也可以集成在网络设备的某一个芯片中实现,此外,也可以以程序的形式存储于网络设备的存储器中,由网络设备的某一个处理元件调用并执行该发送单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。此外,以上发送单元502或发送单元601是一种控制发送的单元,可以通过通信设备500或者600的发送装置,例如天线和射频装置发送信息。类似的接收单元501或接收单元602是一种控制接收的单元,可以通过通信设备500或者600的接收装置,例如天线和射频装置接收信息。
以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器 (digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本申请实施例提供的技术方案,通过基于非服务小区的时隙格式,终端设备获得测量资源上的干扰假设信息,进一步获得与测量资源对应的测量报告的测量量类别,不同的测量量类别的测量报告可以通过不同的方式报告给网络设备,使得网络设备可以有效区分,从而可以更有效的进行干扰协调管理、数据传输调度等决策行为,提高整个通信系统的性能。
实施例八
如图7所示,为本申请实施例提供的一种通信设备700的硬件结构示意图。该通信设备700包括至少一个处理器701,通信总线702,以及至少一个通信接口704,还可以包括存储器703。
处理器701可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线702可包括一通路,在上述组件之间传送信息。
通信接口704,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器703可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器703用于存储执行本申请方案的应用程序代码,并由处理器701来控制执行。处理器701用于执行存储器703中存储的应用程序代码,从而实现本申请实施例1-6中终端设备或者网络设备所执行的步骤。
作为一种实现方式,处理器701可以包括一个或多个CPU。
作为一种实现方式,通信设备700可以包括多个处理器。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
作为一种实现方式,通信设备700还可以包括输出设备和输入设备。输出设备和处理器701通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器701通信,可以以多种方式接受用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
此外,如上所述,本申请实施例提供的通信设备70可以为芯片,或者终端设备,或者网络设备,或者有图7中类似结构的设备。本申请实施例不限定通信设备700的类型。
还需要说明的是上述存储器703也可以位于该通信装置700之外,例如为片外存储器。
另外,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持通信设备实现上述各个实施例涉及的发送测量报告的方法,例如确定用于传输共享信道的解调参考信号的符号。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存通信设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
需要说明的是,在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种发送测量报告的方法,其特征在于,包括:
    终端设备接收第一配置信息和第二配置信息,所述第一配置信息用于指示测量资源,所述第二配置信息用于指示所述终端设备的非服务小区的时隙格式;
    所述终端设备向网络设备发送测量报告,所述测量报告的测量量类别与所述非服务小区的时隙格式有关,所述测量报告对应所述测量资源。
  2. 如权利要求1所述的方法,其特征在于,所述测量报告的测量量类别与所述非服务小区的时隙格式有关,包括:所述测量报告的测量量类别与所述非服务小区的时隙格式中,对应所述测量资源时域位置的时隙格式有关。
  3. 如权利要求1或者2所述的方法,其特征在于,所述终端设备向服务小区的网络设备发送测量报告,包括:
    所述终端设备向所述网络设备发送携带标识的所述测量报告,所述标识用于指示所述测量报告的测量量类别。
  4. 如权利要求1或者2所述的方法,其特征在于,所述终端设备向服务小区的网络设备发送测量报告,包括:
    所述终端设备向所述网络设备发送所述测量报告,通过所述测量报告所位于的时频资源指示所述测量报告的测量量类别。
  5. 如权利要求1或者2所述的方法,其特征在于,所述终端设备向服务小区的网络设备发送测量报告,包括:
    所述终端设备向所述网络设备发送所述测量报告,通过所述测量报告测量量的取值范围指示所述测量报告的测量量类别。
  6. 如权利要求1或者2所述的方法,其特征在于,所述终端设备向服务小区的网络设备发送测量报告,包括:
    所述终端设备向所述网络设备发送所述测量报告,通过所述测量报告位于的上报周期中的位置指示所述测量报告的测量量类别。
  7. 如权利要求1或者2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的触发信令;
    所述终端设备根据所述触发信令,向所述网络设备发送所述测量报告。
  8. 如权利要求7所述的方法,其特征在于,所述终端设备根据所述触发信令,向所述网络设备发送所述测量报告,包括:
    若所述触发信令包含的测量量类别信息与所述测量报告的测量量类别相对应,则所述终端设备向所述网络设备发送所述测量报告。
  9. 一种接收测量报告的方法,其特征在于,包括:
    网络设备向终端设备发送第一配置信息,所述第一配置信息用于指示测量资源;
    所述网络设备接收所述终端设备发送的测量报告,所述测量报告的测量量类别与所述终端的非服务小区的时隙格式有关,所述测量报告对应所述测量资源。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    所述网络设备向所述终端发送第二配置信息,所述第二配置信息用于指示所述非服务小区的时隙格式。
  11. 如权利要求9或者10所述的方法,其特征在于,所述测量报告的测量量类别与所述非服务小区的时隙格式有关,包括:所述测量报告的测量量类别与所述非服务小区的时隙格式中,对应所述测量资源时域位置的时隙格式有关。
  12. 如权利要求9-11任一所述的方法,其特征在于,所述网络设备接收所述终端设备发送的测量报告,包括:
    所述网络设备接收所述终端设备发送的携带标识的所述测量报告,所述标识用于指示所述测量报告的测量量类别。
  13. 如权利要求9-11任一所述的方法,其特征在于,所述网络设备接收所述终端设备发送的测量报告,包括:
    所述网络设备接收所述终端设备发送的、通过所述测量报告所位于的时频资源指示测量量类别的所述测量报告。
  14. 如权利要求9-11任一所述的方法,其特征在于,所述网络设备接收所述终端设备发送的测量报告,包括:
    所述网络设备接收所述终端设备发送的、通过所述测量报告测量量的范围指示测量量类别的所述测量报告。
  15. 如权利要求9-11任一所述的方法,其特征在于,所述网络设备接收所述终端设备发送的测量报告,包括:
    所述网络设备接收所述终端设备发送的、通过所述测量报告位于的上报周期中的位置指示测量量类别的测量报告。
  16. 如权利要求9-11任一所述的方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送触发信令,所述触发信令用于触发所述测量报告的发送。
  17. 如权利要求16所述的方法,其特征在于,所述触发信令包括请求触发的所述测量报告的测量量类别信息。
  18. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合并调用所述存储器存储的程序,通过收发器执行如权利要求1-8任一项所述的方法。
  19. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合并调用所述存储器存储的程序,通过收发器执行如权利要求9-17任一项所述的方法。
  20. 一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-17任一项所述的方法。
PCT/CN2019/074543 2018-02-09 2019-02-02 发送测量报告的方法、通信装置和系统 WO2019154350A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19751846.7A EP3742788B1 (en) 2018-02-09 2019-02-02 Method for transmitting measurement report, communication device and system
US16/987,946 US11470493B2 (en) 2018-02-09 2020-08-07 Method for sending measurement report, communications apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810134913.0 2018-02-09
CN201810134913.0A CN110139306B (zh) 2018-02-09 2018-02-09 发送测量报告的方法、通信装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/987,946 Continuation US11470493B2 (en) 2018-02-09 2020-08-07 Method for sending measurement report, communications apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019154350A1 true WO2019154350A1 (zh) 2019-08-15

Family

ID=67548186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074543 WO2019154350A1 (zh) 2018-02-09 2019-02-02 发送测量报告的方法、通信装置和系统

Country Status (4)

Country Link
US (1) US11470493B2 (zh)
EP (1) EP3742788B1 (zh)
CN (1) CN110139306B (zh)
WO (1) WO2019154350A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021211333A1 (en) * 2020-04-13 2021-10-21 Qualcomm Incorporated Methods for self-interference and cross-link interference measurements in millimeter wave bands

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11356860B2 (en) * 2017-11-10 2022-06-07 Sony Corporation Communication device, communication method, and program for measuring crosslink interference between devices
CN112672378B (zh) * 2019-10-15 2023-08-08 成都华为技术有限公司 资源测量的方法和装置
WO2021114206A1 (zh) * 2019-12-13 2021-06-17 Oppo广东移动通信有限公司 一种cli测量的方法及装置、终端设备、网络设备
WO2021226753A1 (en) * 2020-05-09 2021-11-18 Qualcomm Incorporated Reference signal for cross-link interference measurement
CN115699852A (zh) * 2021-05-28 2023-02-03 北京小米移动软件有限公司 干扰测量方法、干扰处理方法及其装置
CN114828076B (zh) * 2022-04-19 2023-05-02 极米科技股份有限公司 无线感知测量进程管理方法、装置、设备及存储介质
WO2024020959A1 (en) * 2022-07-28 2024-02-01 Nec Corporation Method, device and computer storage medium of communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120236736A1 (en) * 2011-03-18 2012-09-20 Motorola Mobility, Inc. Method and Apparatus for Multi-Radio Coexistence with a System on an Adjacent Frequency Band Having a Time-Dependent Configuration
CN103650572A (zh) * 2011-06-09 2014-03-19 美国博通公司 时分双工通信中的干扰控制
CN103974283A (zh) * 2013-02-04 2014-08-06 宏碁股份有限公司 用于时分双工系统的测量干扰的方法及相关通信装置
CN105210315A (zh) * 2013-05-07 2015-12-30 Lg电子株式会社 在无线通信系统中执行测量的方法及其设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816198A (zh) * 2005-01-31 2006-08-09 西门子(中国)有限公司 时分-同步码分多址接入系统中降低小区间干扰的方法
CN101729106B (zh) * 2008-10-30 2013-03-13 上海贝尔阿尔卡特股份有限公司 基于干扰管理和传输质量控制的增强的上行链路功率控制
CN101795473B (zh) * 2009-02-03 2012-10-10 电信科学技术研究院 特殊子帧配置方式及时域资源使用方式的确定方法和装置
EP2394462A2 (en) * 2009-02-04 2011-12-14 Telefonaktiebolaget LM Ericsson (publ) Technique for anchor carrier selection in a telecommunication system
EP3131218B1 (en) * 2011-12-16 2019-06-19 LG Electronics Inc. Method for measuring channel state information in a wireless access system and apparatus for same
CN103312394B (zh) * 2012-03-14 2016-02-10 中兴通讯股份有限公司 一种上行干扰处理方法及系统
US10601568B2 (en) * 2015-10-08 2020-03-24 Huawei Technologies Co., Ltd. Interference indication method and apparatus
CN110999481A (zh) * 2017-06-26 2020-04-10 诺基亚技术有限公司 减少无线网络中上行链路信道与相邻信道的tdd传输之间干扰的技术
EP3706347A4 (en) * 2017-11-16 2020-12-16 Lg Electronics Inc. METHOD OF TRANSMISSION AND RECEPTION OF CHANNEL STATUS INFORMATION IN A WIRELESS COMMUNICATION SYSTEM, AND RELATED DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120236736A1 (en) * 2011-03-18 2012-09-20 Motorola Mobility, Inc. Method and Apparatus for Multi-Radio Coexistence with a System on an Adjacent Frequency Band Having a Time-Dependent Configuration
CN103650572A (zh) * 2011-06-09 2014-03-19 美国博通公司 时分双工通信中的干扰控制
CN103974283A (zh) * 2013-02-04 2014-08-06 宏碁股份有限公司 用于时分双工系统的测量干扰的方法及相关通信装置
CN105210315A (zh) * 2013-05-07 2015-12-30 Lg电子株式会社 在无线通信系统中执行测量的方法及其设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021211333A1 (en) * 2020-04-13 2021-10-21 Qualcomm Incorporated Methods for self-interference and cross-link interference measurements in millimeter wave bands
US11818739B2 (en) 2020-04-13 2023-11-14 Qualcomm Incorporated Methods for self-interference and cross-link interference measurements in millimeter wave bands

Also Published As

Publication number Publication date
US20200367120A1 (en) 2020-11-19
EP3742788B1 (en) 2023-09-20
EP3742788A4 (en) 2021-03-31
EP3742788A1 (en) 2020-11-25
US11470493B2 (en) 2022-10-11
CN110139306B (zh) 2021-12-31
CN110139306A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2019154350A1 (zh) 发送测量报告的方法、通信装置和系统
JP6938659B2 (ja) Csi−rs測定方法および指示方法、ネットワークデバイス、ならびに端末
US11909652B2 (en) Method, device and storage medium for quality of service (QoS) flow management of time sensitive data for transmission of ethernet packet filter sets
US11476972B2 (en) Uplink control information transmission method and device
RU2545527C2 (ru) Изменение режимов согласования скорости при наличии опорного сигнала информации о состоянии канала
WO2018228293A1 (zh) 一种信号传输的方法、设备和系统
WO2017075795A1 (zh) 无线资源管理测量的方法和装置
WO2020063974A1 (zh) 功率指示方法及装置
WO2020200084A1 (zh) 用于无线资源管理rrm测量的方法和装置
WO2016019884A1 (zh) 基站、用户设备及相关方法
WO2019085775A1 (zh) 一种波束检测方法及装置
WO2016029851A1 (zh) 用于支持非授权频谱上的通信的方法以及相应的基站和用户设备
WO2019096030A1 (zh) 跳频处理方法及设备
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
WO2021017773A1 (zh) 上报信道状态信息的方法和装置
WO2018137700A1 (zh) 一种通信方法,装置及系统
WO2020129228A1 (ja) 無線ノード、及び、無線通信方法
WO2019096278A1 (zh) 信号测量的方法和设备
WO2020156562A1 (zh) 通信方法和装置
WO2020088545A1 (zh) 测量事件中的SpCell确定方法和装置
WO2019192442A1 (zh) 确定传输块大小的方法和通信装置
WO2016131176A1 (zh) 信道状态测量方法、装置以及通信系统
WO2022028578A1 (zh) 信号传输方法、终端和网络设备
US20230308234A1 (en) Signal transmission method and apparatus, and storage medium
WO2022012396A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019751846

Country of ref document: EP

Effective date: 20200819