WO2020200024A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2020200024A1
WO2020200024A1 PCT/CN2020/081325 CN2020081325W WO2020200024A1 WO 2020200024 A1 WO2020200024 A1 WO 2020200024A1 CN 2020081325 W CN2020081325 W CN 2020081325W WO 2020200024 A1 WO2020200024 A1 WO 2020200024A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
rlc entity
rlc
established
entity
Prior art date
Application number
PCT/CN2020/081325
Other languages
English (en)
French (fr)
Inventor
徐小英
黄曲芳
范强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20782711.4A priority Critical patent/EP3937590A4/en
Publication of WO2020200024A1 publication Critical patent/WO2020200024A1/zh
Priority to US17/487,219 priority patent/US20220015172A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the present application relates to the field of communication, and more specifically, to a communication method and communication device.
  • the future 5th generation (5G) system mainly supports three types of services:
  • Enhanced mobile broadband communications eMBB
  • massive machine type communications mMTC
  • ultra-reliable and low latency communications URLLC
  • 3GPP Third Generation Partnership Project
  • Duplication transmission mechanism that is, the same packet data convergence protocol (PDCP) layer protocol data unit (protocol data unit, PDU) is transmitted through multiple paths, which improves transmission reliability through multiple transmission gains, And to reduce the transmission delay, hereinafter referred to as PDCP data repeated transmission.
  • PDCP packet data convergence protocol
  • PDU protocol data unit
  • the repeated transmission of PDCP data is divided into repeated transmission of PDCP data under carrier aggregation (CA) and repeated transmission of PDCP data under dual connectivity (DC).
  • the signaling data and/or service data transmitted between the terminal device and the radio access network (RAN) device through the air interface may be carried on one or more radio bearers (RB) for transmission.
  • RB radio bearers
  • the terminal device and the access network device configure a PDCP entity for the RB respectively.
  • the terminal device and the access network device configure multiple radio link controls for the PDCP entity respectively.
  • RLC Radio link control
  • one RLC entity corresponds to one logical channel (logical channel, LCH).
  • multiple LCHs corresponding to repeated transmission of PDCP data are processed by a MAC entity at the media access control (MAC) layer, and data from multiple different RLC logical channels are mapped to Transmission is performed on different carriers, and different carriers may correspond to different baseband parameters (numerology) or transmission time interval (transmission time interval, TTI) duration (duration).
  • TTI transmission time interval
  • For repeated PDCP data transmission under DC multiple LCHs corresponding to repeated PDCP data transmission are mapped to different MAC entities, and data from multiple different RLC logical channels are mapped to different access network devices for transmission.
  • the access network devices can respectively correspond to different numerology or TTI duration. How to make full use of the multi-carrier and dual-connection characteristics that can be used when the terminal equipment communicates with the access network equipment to improve the performance of PDCP data repeated transmission becomes an urgent problem to be solved.
  • the present application provides a communication method and node, which can improve the performance of repeated PDCP data transmission by making full use of the multi-carrier and dual-connection scenarios that can be used when a terminal device communicates with an access network device.
  • a communication method is provided.
  • the network device includes a first node and a second node, and the functional entity of the RB includes a packet data aggregation protocol
  • the functional entity of the RB includes a packet data aggregation protocol
  • the method includes: the first node determines configuration information, the configuration information is used to instruct the second node to establish N tunnels, where the tunnel is used to PDCP data or RLC data is transmitted between a node and a second node, and N is an integer greater than or equal to 2; the first node sends configuration information to the second node.
  • the master node sends configuration information to the secondary node (second node) to instruct the secondary node to establish multiple tunnels for transmitting PDCP data or RLC data with the primary node . So as to improve the reliability of data transmission between the primary node and the secondary node.
  • the above-mentioned first node as the master node refers to the establishment of a data and/or signaling channel between the first node and the authentication management function AMF network element in the core network device.
  • this application does not limit the master node to be called the first node.
  • the specific forms of the above-mentioned first node and the second node may be different in different communication systems.
  • the first node when the above RB is established between the radio access network equipment and the terminal equipment, the first node may be the access network equipment RAN, and the second node may also be the access network equipment RAN; or, when the above RB is established in a distributed
  • the first node when the communication unit DU and the terminal device are connected, the first node may be the centralized unit CU and the second node may be the DU.
  • the first node is a CU, if the CU is divided into CU-UP and CU-CP, it should be understood that the first node in this application has both CU-UP and CU-CP functions.
  • this application can be applied when the above-mentioned RB is established, but it is not limited to that after the above-mentioned RB is established, the first node cannot send the above-mentioned configuration information to the second node, and the RB is established in the network equipment and the terminal equipment. Afterwards, the configuration of the RB can also be changed through the above configuration information. That is to say, the case of establishing a radio bearer RB between the network device and the terminal device mentioned in this application may refer to: when a radio bearer RB needs to be established between the network device and the terminal device, or When a radio bearer RB is established between the device and the terminal device.
  • the foregoing configuration information in the embodiment of the present application includes the foregoing RB information and the foregoing N tunnel information.
  • the configuration information is also used to instruct the second node to establish N RLC entities; or the configuration information also includes channel number indication information, which is used to indicate The second node establishes M RLC entities, where M is a positive integer.
  • the above configuration information can also be used to instruct the second node to establish the RLC entity.
  • Number or, the number of RLC entities established by the secondary node has nothing to do with the number of tunnels established by the secondary node, that is, the primary node sends channel number indication information to the secondary node to instruct the secondary node to establish the number of RLC entities.
  • the communication method provided by the embodiments of the present application can indicate that the number of tunnels established by the secondary node is equal to the number of RLC entities, or the number of tunnels established by the secondary node and the number of RLC entities are decoupled to establish the number of RLC entities for the secondary node.
  • the RLC entity established by the network device corresponds to the channel between the network device and the terminal device in a one-to-one correspondence, so the establishment of the RLC entity by the secondary node above can be understood as the establishment of the secondary node and the terminal device. aisle.
  • each RLC entity established by the second node corresponds to an identifier; the method further includes: the first node receives a response message sent by the second node, and the response message includes The identity corresponding to each RLC entity established by the second node, and the identity corresponding to the RLC entity is at least one of the following: the identity of the RLC entity, the LCH identity of the logical channel LCH of the RLC entity, and the The tunnel identifier of the tunnel corresponding to the RLC entity and the channel identifier of the channel corresponding to the RLC entity.
  • the secondary node may configure a corresponding identifier for each RLC entity in at least one RLC entity established by itself, that is, the identifier corresponding to the RLC entity may indicate the corresponding RLC entity.
  • the secondary node may learn in advance the corresponding RLC entity established on the primary node before configuring the identity for the RLC entity established by itself Therefore, when the secondary node configures the identity for the RLC entity established by itself, it avoids using the identity corresponding to the RLC entity on the primary node.
  • the secondary node can feed back the identity corresponding to the RLC entity established by itself to the primary node through a response message, so that the primary node can learn the identity corresponding to each RLC entity established by the second node, and the identity corresponding to the RLC entity is as follows At least one of multiple items: the identifier of the RLC entity, the LCH identifier of the logical channel LCH of the RLC entity, the tunnel identifier of the tunnel corresponding to the RLC entity, and the channel identifier of the channel corresponding to the RLC entity.
  • the method further includes: the first node sends de-configuration information to the second node, where the de-configuration information is used to instruct the second node to delete at least one RLC entity, where
  • the configuration information includes the identification of each RLC entity in at least one RLC entity; or, the de-configuration information includes a first value, where the first value is the number instructing the second node to delete the RLC entity; or, at least one RLC entity is Part or all of the RLC entities established by the second node except the main RLC entity.
  • the master node may also instruct the secondary node to delete the RLC entity that has been established on the secondary node.
  • the secondary node can be instructed to delete the RLC entity corresponding to the identifier by indicating the identifier corresponding to the deleted RLC entity; Or, only indicate the number of RLC entities that need to be deleted, and the secondary node will delete; or, instruct the secondary node to delete all RLC entities except the primary RLC entity, which increases the flexibility of the solution.
  • the method further includes: the first node sends first indication information to the second node, the first indication information indicating the number of RLC entities allowed to be activated on the second node, Wherein, the first indication information includes a second value, and the second value is the value of the number of RLC entities allowed to be activated on the second node; or, the first indication information includes a third value, and the third value is N tunnels The number of tunnels initially activated in.
  • the master node may also indicate the number of RLC entities that can be activated by the slave node.
  • the number of RLC entities can be activated by the slave node.
  • it can be indicated in a variety of ways, for example, displaying the number of RLC entities that can be activated; or, indicating the tunnel whose initial state is the active state, and the secondary node infers the number of tunnels whose initial state is the active state.
  • the number of RLC entities increases the flexibility of the scheme.
  • the configuration information includes second indication information, and the second indication information is used to indicate the initial state of each RLC entity established by the second node, where the second indication The information indicates that the initial state of each RLC entity established by the second node is the active state; or, the second indication information includes a fourth value, and the fourth value is an RLC entity whose initial state is the active state among the RLC entities established by the second node Or, the second indication information indicates that the repeated transmission mode of the RB is in the active state, and the repeated transmission mode refers to the transmission of PDCP data of the RB through multiple RLC entities.
  • the master node may also indicate the initial state of the RLC entity established by the secondary node.
  • the initial state of the RLC entity established by the secondary node can be displayed in a variety of ways or implicitly to increase the flexibility of the solution.
  • the response message further includes first status indication information, and the first status indication information is used to indicate whether each RLC entity in the RLC entity established by the second node is activated;
  • a node determines second status indication information based on whether each RLC entity on the first node is activated and the first status indication information carried in the response message.
  • the second status indication information indicates that the PDCP entity corresponds to more than two RLC entities Whether each RLC entity is activated; or, the first node does not need to determine the second status indication information based on the first status indication information, and the second status indication information indicates whether the RLC entity established on the first node is activated, and the first node informs the terminal device Send the second status indication information.
  • the master node can learn whether the RLC entity established on the secondary node is activated, and notify the terminal device whether the RLC entity established by itself and the RLC entity established on the secondary node are activated, so that the terminal device It can know which RLC entities are in the active state and whether the RLC entities are in the inactive state, so that when the terminal device performs uplink data transmission, it can accurately know which channel to transmit data from; or the master node just activates its own RLC entity The information is sent to the terminal device so that the terminal device knows whether the RLC entity established on the master node is activated.
  • the master node may also instruct the activated RLC entity to deactivate.
  • the identifier is different from the corresponding identifier of the RLC entity established by the first node.
  • the second node can pass The above response message learns whether the RLC entity established by the second node is activated. For example, the above response message carries first status indication information indicating whether each RLC entity established by the second node is activated.
  • the second status indication information includes: a preset field, one bit in the preset field is used to indicate whether an RLC entity established on the first node is activated, and the first The positions of the bits corresponding to the RLC entities established on a node in the preset field are sorted according to the size of the LCH identifiers of the RLC entities established on the first node; or, the LCH configuration corresponding to each RLC entity established on the first node The status information included in the status information indicates whether the corresponding RLC entity is activated.
  • the second status indication information includes: a preset field, and one bit in the preset field is used to indicate a set established on the first node and the second node. Whether the RLC entity is activated, the positions of the bits corresponding to the RLC entities established on the first node and the second node in the preset field are sorted according to the size of the LCH identifiers of the RLC entities established on the first node and the second node; or, The state information included in the LCH configuration corresponding to each RLC entity established on the first node and the second node, and the state information indicates whether the corresponding RLC entity is activated.
  • the foregoing preset field is a bitmap composed of 3 bits.
  • the master node notifies the terminal equipment of whether each RLC entity is activated. It can be a preset field to indicate whether each RLC entity is activated, or each RLC entity is independent. Yes, by adding a status indication information to the LCH corresponding to each RLC entity to indicate whether the corresponding RLC entity is activated, which increases the flexibility of the solution.
  • the configuration information includes mode indication information, and the mode indication information is used to indicate a mode for the second node to perform PDCP data repeated transmission, and the mode is one of the following three types : Carrier aggregation CA, dual connection DC, CA and DC.
  • the master node can display and inform the secondary node which mode is the current repeated transmission mode, that is, the secondary node does not need to infer the current repeated transmission mode based on the number of RLC entities established by itself. The reliability of the program.
  • the PDCP entity is on the second node, and the method further includes: the first node receives at least one piece of PDCP data; the first node is based on the at least one piece of PDCP data The serial number corresponding to each piece of PDCP data is tested for repeatability.
  • nodes that are not provided with a PDCP entity can also perform repetitive detection.
  • this application does not limit the PDCP entity to be on the second node, but it can also be that the PDCP entity must be on the first node, then the second node of the communication method provided by this application can also perform repetitive detection. .
  • the first node receiving at least one piece of PDCP data includes: the first node receives at least one piece of PDCP data sent by the second node through N tunnels; After the node performs repetitive detection, it sends multiple copies of PDCP data to the terminal device through multiple RLC entities established on the first node; or, the first node receives the data sent by the terminal device through at least one RLC entity established on the first node At least one copy of PDCP or RLC data; after the first node performs repetitive detection, it sends multiple copies of PDCP data to the second node through N tunnels.
  • a node without a PDCP entity can transmit multiple copies of data after performing repetitive detection.
  • a communication method is provided.
  • the network device includes a first node and a second node, and the functional entity of the RB includes a packet data aggregation protocol PDCP Entity, PDCP entity corresponding to more than two radio link control RLC entities
  • the method includes: the second node receives configuration information sent by the first node, the configuration information is used to instruct the second node to establish N tunnels, where the tunnels Used to transmit PDCP data or RLC data between the first node and the second node, N is an integer greater than or equal to 2; the second node establishes N tunnels with the first node according to the configuration information.
  • the configuration information sent by the primary node is received by the secondary node (the second node), and the secondary node establishes a plurality of PDCP data or the primary node based on the configuration information.
  • RLC data tunnel So as to improve the reliability of data transmission between the primary node and the secondary node.
  • the above-mentioned first node as the master node refers to the establishment of a data and/or signaling channel between the first node and the authentication management function AMF network element in the core network device.
  • this application does not limit the master node to be called the first node.
  • the specific forms of the above-mentioned first node and the second node may be different in different communication systems.
  • the first node when the above RB is established between the radio access network equipment and the terminal equipment, the first node may be the access network equipment RAN, and the second node may also be the access network equipment RAN; or, when the above RB is established in a distributed
  • the first node when the communication unit DU and the terminal device are connected, the first node may be the centralized unit CU, and the second node may be the DU.
  • the first node is a CU, if the CU is divided into CU-UP and CU-CP, it should be understood that the first node in this application has both CU-UP and CU-CP functions.
  • the foregoing configuration information in the embodiment of the present application includes the foregoing RB information and the foregoing N tunnel information.
  • the configuration information is also used to instruct the second node to establish N RLC entities; or the configuration information also includes channel number indication information, which is used to indicate The second node establishes M RLC entities, where M is a positive integer.
  • the above configuration information can also be used to instruct the second node to establish the RLC entity.
  • Number or, the number of RLC entities established by the secondary node has nothing to do with the number of tunnels established by the secondary node, that is, the primary node sends channel number indication information to the secondary node to instruct the secondary node to establish the number of RLC entities.
  • the communication method provided by the embodiments of the present application can indicate that the number of tunnels established by the secondary node is equal to the number of RLC entities, or the number of tunnels established by the secondary node and the number of RLC entities are decoupled to establish the number of RLC entities for the secondary node.
  • the RLC entity established by the network device corresponds to the channel between the network device and the terminal device in a one-to-one correspondence, so the establishment of the RLC entity by the secondary node above can be understood as the establishment of the secondary node and the terminal device. aisle.
  • the second node configures an identifier for each RLC entity established by the second node; the second node sends a response message to the first node, and the response message includes the first
  • the identity corresponding to each RLC entity established by the two nodes, the identity corresponding to the RLC entity is at least one of the following: the identity of the RLC entity, the LCH identity of the logical channel LCH of the RLC entity, the The tunnel identifier of the tunnel corresponding to the RLC entity and the channel identifier of the channel corresponding to the RLC entity.
  • the secondary node may configure a corresponding identifier for each RLC entity in at least one RLC entity established by itself, that is, the identifier corresponding to the RLC entity may indicate the corresponding RLC entity.
  • the secondary node may learn in advance the corresponding RLC entity established on the primary node before configuring the identity for the RLC entity established by itself Therefore, when the secondary node configures the identity for the RLC entity established by itself, it avoids using the identity corresponding to the RLC entity on the primary node.
  • the secondary node can feed back the identity corresponding to the RLC entity established by itself to the primary node through a response message, so that the primary node can learn the identity corresponding to each RLC entity established by the second node, and the identity corresponding to the RLC entity is as follows At least one of multiple items: the identifier of the RLC entity, the LCH identifier of the logical channel LCH of the RLC entity, the tunnel identifier of the tunnel corresponding to the RLC entity, and the channel identifier of the channel corresponding to the RLC entity.
  • the method further includes: the second node receives de-configuration information sent by the first node, the de-configuration information is used to instruct the second node to delete at least one RLC entity, wherein, The de-configuration information includes the identification of each RLC entity in at least one RLC entity; or, the de-configuration information includes a first value, where the first value is the number instructing the second node to delete the RLC entity; or, at least one RLC entity Part or all of the RLC entities other than the main RLC entity among all RLC entities established for the second node.
  • the secondary node may also delete the RLC entity that has been established on the secondary node based on the de-configuration information sent by the primary node.
  • the secondary node can be indicated in a variety of ways. For example, under the premise that the primary node knows the identifier corresponding to the RLC entity on the secondary node, the secondary node can be instructed to delete the RLC entity corresponding to the identifier by indicating the identifier corresponding to the deleted RLC entity; Or, only indicate the number of RLC entities that need to be deleted, and the secondary node will delete; or, instruct the secondary node to delete all RLC entities except the primary RLC entity, which increases the flexibility of the solution.
  • the method further includes: the second node receives first indication information sent by the first node, the first indication information indicating the number of RLC entities allowed to be activated on the second node Or, the second node determines the number of RLC entities allowed to be activated on the second node based on the predefined number of RLC entities allowed to be activated, where the first indication information includes the second value, and the second value is allowed on the second node The value of the number of activated RLC entities; or, the first indication information includes a third value, and the third value is the value of the initially activated tunnels in the N tunnels.
  • the secondary node may also determine the number of RLC entities that can be activated by itself based on the first instruction sent by the primary node. Among them, it can be indicated in a variety of ways, for example, displaying the number of RLC entities that can be activated; or, indicating the tunnel whose initial state is the active state, and the secondary node infers the number of tunnels whose initial state is the active state.
  • the number of RLC entities increases the flexibility of the scheme.
  • the configuration information includes second indication information
  • the second indication information is used to indicate the initial state of each RLC entity established by the second node, where the second indication The information indicates that the initial state of each RLC entity established by the second node is the active state; or, the second indication information includes a fourth value, and the fourth value is an RLC entity whose initial state is the active state among the RLC entities established by the second node
  • the second indication information indicates that the repeated transmission mode of the RB is in the active state, and the repeated transmission mode refers to the transmission of PDCP data of the RB through multiple RLC entities.
  • the secondary node may also establish the initial state of the RLC entity based on the second instruction sent by the primary node.
  • the initial state of the RLC entity established by the secondary node can be displayed in a variety of ways or implicitly to increase the flexibility of the solution.
  • the response message further includes first status indication information, and the first status indication information is used to indicate whether each RLC entity in the RLC entity established by the second node is activated,
  • the first status indication information is used by the first node to determine the second status indication information, and the second status indication information indicates whether each RLC entity in more than two RLC entities corresponding to the PDCP entity is activated.
  • the response message sent by the secondary node to the primary node may also include whether the RLC entity established by itself is activated, so that the primary node can learn whether the RLC entity established on the secondary node is activated, and establish the primary node
  • the terminal device is notified whether the RLC entity is activated and the RLC entity established on the secondary node is activated, so that the terminal device can know which RLC entities are active and which RLC entities are activated and inactive, so that when the terminal device performs uplink data transmission , Can accurately know which channel to transmit data from.
  • the master node may also instruct the activated RLC entity to deactivate.
  • the method further includes: the second node determines third status indication information, the third status indication information indicating each of more than two RLC entities corresponding to the PDCP entity Whether the RLC entity is activated, or indicating whether the RLC entity established on the second node is activated; the second node sends third status indication information to the terminal device.
  • the secondary node can learn whether the RLC entity established on the primary node is activated, and notify the terminal device whether the RLC entity established by itself and the RLC entity established on the primary node are activated, so that the terminal device It can know which RLC entities are in the active state and whether the RLC entities are in the inactive state, so that when the terminal device performs uplink data transmission, it can accurately know which channel to transmit data; or, the secondary node just activates its own RLC entity The information is sent to the terminal device so that the terminal device knows whether the RLC entity established on the secondary node is activated.
  • the third status indication information includes: a preset field, and one bit in the preset field is used to indicate a set of information on the first node and the second node. Whether the RLC entity is activated, the positions of the bits corresponding to the RLC entities established on the first node and the second node in the preset field are sorted according to the size of the LCH identifiers of the RLC entities established on the first node and the second node; or, The state information included in the LCH configuration corresponding to each RLC entity established on the first node and the second node, and the state information indicates whether the corresponding RLC entity is activated.
  • the third status indication information includes: a preset field, and one bit in the preset field is used to indicate a set of information on the first node and the second node. Whether the RLC entity is activated, the positions of the bits corresponding to the RLC entities established on the first node and the second node in the preset field are sorted according to the size of the LCH identifiers of the RLC entities established on the first node and the second node; or, The state information included in the LCH configuration corresponding to each RLC entity established on the first node and the second node, and the state information indicates whether the corresponding RLC entity is activated.
  • the foregoing preset field is a bitmap composed of 3 bits.
  • the way that the secondary node informs the terminal device of whether each RLC entity is activated may be a preset field to indicate whether each RLC entity is activated, or each RLC entity may be independent Yes, by adding a status indication information to the LCH corresponding to each RLC entity to indicate whether the corresponding RLC entity is activated, which increases the flexibility of the solution.
  • the configuration information includes mode indication information, and the mode indication information is used to indicate the mode of the second node for repeated PDCP data transmission, and the mode is one of the following three : Carrier aggregation CA, dual connection DC, CA and DC.
  • the master node can display and inform the secondary node which mode is the current repeated transmission mode, that is, the secondary node does not need to infer the current repeated transmission mode based on the number of RLC entities established by itself. Reliability.
  • the PDCP entity is on the second node, and the method further includes: the first node receives at least one piece of PDCP data; the first node based on the at least one piece of PDCP data The serial number corresponding to each piece of PDCP data is tested for repeatability.
  • nodes that are not provided with a PDCP entity can also perform repetitive detection.
  • this application does not limit the PDCP entity to be on the second node, but it can also be that the PDCP entity must be on the first node, then the second node of the communication method provided by this application can also perform repetitive detection. .
  • the first node receiving at least one piece of PDCP data includes: the first node receives at least one piece of PDCP data sent by the second node through N tunnels; After the node performs repetitive detection, it sends multiple copies of PDCP data to the terminal device through multiple RLC entities established on the first node; or, the first node receives the data sent by the terminal device through at least one RLC entity established on the first node At least one copy of PDCP or RLC data; after the first node performs repetitive detection, it sends multiple copies of PDCP data to the second node through N tunnels.
  • a node without a PDCP entity can transmit multiple copies of data after performing repetitive detection.
  • a communication method When a radio bearer RB is established between a network device and a terminal device, the network device includes a first node and a second node, and the functional entity corresponding to the RB includes a packet data aggregation protocol PDCP entity , There are more than two radio link control RLC entities corresponding to the PDCP entity, wherein the method includes: the terminal device receives second status indication information sent by the first node, and the second status indication information indicates that the PDCP entity corresponds to more than two Whether each RLC entity in the RLC entities is activated, or whether the RLC entity established on the first node is activated; or, the terminal device receives the third status indication information sent by the first node, and the third status indication information indicates the corresponding PDCP entity Whether each RLC entity in more than two RLC entities is activated, or indicates whether the RLC entity established on the second node is activated; it is understandable that the RLC entity established on the first node can be replaced by the one established
  • the associated RLC entity, this MAC entity corresponds to the MAC entity established on the first node.
  • the RLC entity established on the second node may be replaced with an associated RLC entity that leads a MAC entity established on the terminal, and this MAC entity corresponds to the MAC entity established on the second node.
  • the terminal device transmits PDCP data on the channel corresponding to the activated RLC entity according to at least one of the second status indication information and the third status indication information.
  • the terminal device may receive status indication information from the master node or the slave node indicating whether the RLC entity established on the master node and the slave node is activated; or, the terminal device may receive from the master node indicating the master State indication information indicating whether the RLC entity established by the node is activated and receiving state indication information indicating whether the RLC entity established by the secondary node is activated from the secondary node. That is to say, in this application, the primary node and the secondary node can perform signaling interaction to learn whether the RLC entity established on the opposite node is activated, and whether the RLC entity established by itself is activated and the RLC entity established by the opposite node is activated.
  • the status indication information is sent to the terminal device through a node; it can also be that the primary node and the secondary node do not need to interact whether the RLC entity established by itself is activated, but only whether the RLC entity established by itself is activated is notified to the terminal equipment through the status indication information.
  • the terminal device itself determines which node sent the status indication information by receiving the status indication information MAC entity, thereby being able to determine whether the RLC entity established on each node is activated.
  • the second status indication information includes: a preset field, one bit in the preset field is used to indicate whether an RLC entity established on the first node is activated, and the first The positions of the bits corresponding to the RLC entities established on a node in the preset field are sorted according to the size of the LCH identifiers of the RLC entities established on the first node; or, the LCH configuration corresponding to each RLC entity established on the first node The status information included in the status information indicates whether the corresponding RLC entity is activated.
  • the second state indication information includes: a preset field, and one bit in the preset field is used to indicate a set of information on the first node and the second node. Whether the RLC entity is activated, the positions of the bits corresponding to the RLC entities established on the first node and the second node in the preset field are sorted according to the size of the LCH identifiers of the RLC entities established on the first node and the second node; or, The state information included in the LCH configuration corresponding to each RLC entity established on the first node and the second node, and the state information indicates whether the corresponding RLC entity is activated.
  • the third state indication information includes: a preset field, one bit in the preset field is used to indicate whether an RLC entity established on the second node is activated, and the first The positions of the bits corresponding to the RLC entities established on the second node in the preset field are sorted according to the size of the LCH identifiers of the RLC entities established on the second node; or, the LCH configuration corresponding to each RLC entity established on the second node The status information included in the status information indicates whether the corresponding RLC entity is activated.
  • the third status indication information includes: a preset field, and one bit in the preset field is used to indicate a set established on the first node and the second node. Whether the RLC entity is activated, the positions of the bits corresponding to the RLC entities established on the first node and the second node in the preset field are sorted according to the size of the LCH identifiers of the RLC entities established on the first node and the second node; or, The state information included in the LCH configuration corresponding to each RLC entity established on the first node and the second node, and the state information indicates whether the corresponding RLC entity is activated.
  • the foregoing preset field is a bitmap composed of 3 bits.
  • the manner in which the secondary node or the master node informs the terminal device of whether each RLC entity is activated can be in the form of a preset field to indicate whether each RLC entity is activated, or it can be each RLC entity.
  • the entities are independent, and a status indication information is added to the LCH corresponding to each RLC entity to indicate whether the corresponding RLC entity is activated, which increases the flexibility of the solution.
  • a communication device which can be used to perform the operation of the first node in the first aspect and any possible implementation manner of the first aspect.
  • the communication device includes means for performing the steps or functions described in the first aspect above, which may be the first node in the first aspect.
  • the steps or functions can be realized by software, or by hardware, or by a combination of hardware and software.
  • a communication device which can be used to perform the operation of the second node in the second aspect and any possible implementation manner of the second aspect.
  • the communication device may include a means for executing the steps or functions described in the second aspect above, which may be the second node of the second aspect.
  • the steps or functions can be realized by software, or by hardware, or by a combination of hardware and software.
  • a communication device which can be used to perform the operation of the terminal device in the third aspect and any possible implementation manner of the third aspect.
  • the communication device may include the corresponding means for performing the steps or functions described in the third aspect above, which may be the terminal device of the third aspect.
  • the steps or functions can be realized by software, or by hardware, or by a combination of hardware and software.
  • a communication device including a processor, a transceiver, and a memory, where the memory is used to store a computer program, and the transceiver is used to execute any one of the possible implementations of the first to third aspects
  • the processor is configured to call and run the computer program from the memory, so that the communication device executes the communication method in any one of the possible implementation manners of the first to third aspects.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the transceiver includes a transmitter (transmitter) and a receiver (receiver).
  • a communication device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the communication device executes the first aspect or any possible implementation manner of the first aspect Method in.
  • a communication device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the communication device executes the second aspect or any possible implementation manner of the second aspect Method in.
  • a communication device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the communication device executes the third aspect or any possible implementation manner of the third aspect Method in.
  • a system in an eighth aspect, includes the communication devices provided in the fourth to sixth aspects.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes the computer to execute any of the first to third aspects.
  • a computer program also called code, or instruction
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the first to third aspects above Any one of the possible implementation methods.
  • a computer program also called code, or instruction
  • a chip system including a memory and a processor, the memory is used to store a computer program, the processor is used to call and run the computer program from the memory, so that the communication device installed with the chip system executes The method in any one of the possible implementation manners of the foregoing first aspect to the third aspect.
  • FIG. 1 is a schematic diagram of a communication system 100 to which the communication method provided in an embodiment of the present application is applicable.
  • FIG. 2 are schematic diagrams of scenarios to which the communication method provided in the embodiment of the present application is applicable.
  • Figure 3 shows a schematic diagram of a user plane L2 protocol stack of a RAN device under dual connectivity.
  • Fig. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the PDCP data or RLC data transmission form between the first node, the second node and the terminal device provided in the embodiment of the present application.
  • Fig. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of yet another communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the communication device 10 proposed in this application.
  • FIG. 9 is a schematic structural diagram of a terminal device 20 suitable for an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the communication device 30 proposed in this application.
  • FIG. 11 is a schematic structural diagram of a first node 40 applicable to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the communication device 50 proposed in this application.
  • FIG. 13 is a schematic structural diagram of a second node 60 applicable to an embodiment of the present application.
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • long-term evolution long-term evolution
  • LTE long-term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interconnected microwave access Into (worldwide interoperability for microwave access, WiMAX) communication systems
  • WiMAX future 5th generation
  • NR new radio
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (PLMN) Terminal equipment, etc., this embodiment of the present application does not limit this.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the network device in the embodiment of the present application may be a device used to communicate with terminal devices.
  • the network device may be a base transceiver station (BTS) in code division multiple access (CDMA), or it may be The base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolved NodeB (eNB or eNodeB) in the LTE system, or cloud wireless access
  • the wireless controller in the cloud radio access network (CRAN) scenario, or the network device can be a relay station, an access point, an in-vehicle device, a wearable device, and a network device in the future 5G network or a future evolution PLMN network.
  • Network equipment, etc. are not limited in the embodiment of the present application.
  • the radio access network equipment includes: radio resource control (RRC) layer, packet data convergence protocol (PDCP) layer, radio link control (RLC) layer, media access A control (media access control, MAC) layer and a physical (physical, PHY) layer may also include a service data adaptation protocol (SDAP) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • SDAP service data adaptation protocol
  • the wireless access network device may be the aforementioned base station, or may also be a wireless local area network access point.
  • the wireless access network equipment is a base station
  • the wireless access network equipment can also be subdivided into two categories: macro base stations and small base stations, and small base stations can be divided into micro base stations and pico base stations, etc.;
  • the wireless access network equipment is The wireless local area network access point
  • the wireless access network device may be a router, a switch, and other devices.
  • the radio access network device may also be divided into at least one distributed unit (DU) and a centralized unit (CU) connected to the at least one DU according to the protocol layer.
  • the CU and the DU can be deployed on different physical devices.
  • the CU is responsible for the operations of the RRC layer, the SDAP layer, and the PDCP layer
  • the DU is responsible for the operations of the RLC layer, the MAC layer, and the PHY layer.
  • the CU can be divided into the central unit of the control plane (CU-CP) and the central unit of the user plane (CU-UP).
  • CU-CP and CU-UP can also be deployed on different physical devices.
  • the CP is responsible for the processing of the control plane of the RRC layer and the PDCP layer
  • the CU-UP is responsible for the processing of the user plane of the SDAP layer and the PDCP layer.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the application does not specifically limit the specific structure of the execution body of the communication method provided by the embodiment of the application, as long as the program that records the code of the communication method provided by the embodiment of the application can be executed according to the application.
  • the communication method provided in the example only needs to perform communication.
  • the execution subject of the communication method provided in the embodiment of this application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the radio access network equipment involved in this application is the aforementioned base station or relay station or access point, or vehicle-mounted equipment, wearable equipment, transmission and reception points, etc., and the terminal equipment is used by the cell managed by the RAN equipment
  • the transmission resources for example, frequency domain resources, time domain resources, code domain resources, etc.
  • FIG. 1 shows a schematic diagram of a communication system 100 to which the communication method provided by the embodiment of the present application is applicable.
  • the terminal device 120 is wirelessly connected with the RAN device 140 through the air interface 160.
  • the communication system further includes the terminal device 120 wirelessly connecting with the RAN device 142 through the air interface 162.
  • the RAN device 140 may be called a master node (master node, MN), and the RAN device 142 may be called a secondary node (secondary node, SN).
  • the RAN device 140 is connected to the 5G core network (5G core, 5GC) 180 through the NG user plane (NG-U) interface to realize the transmission of user plane data through the NG control plane (NG-C) interface Connect with 5GC to realize the transmission of control plane data.
  • 5G core network 5G core, 5GC
  • NG-U NG user plane
  • NG-C NG control plane
  • the RAN device 142 is connected with the 5GC device 180 through the NG-U interface to implement user plane data transmission.
  • the RAN device 140 and the RAN device 142 realize the interaction of control plane data through the Xn control plane (Xn-C) interface, and realize the interaction of user plane data through the Xn user plane (Xn-U) interface .
  • the master node 140 is connected to the access and mobility management function (AMF) node in 5GC 180 through the NG-C interface, and the master node 140 and the auxiliary node 142 are connected to the 5GC through the NG-U interface.
  • the user plane function (UPF) node in 180 is connected.
  • the communication system may also include a terminal device for wireless connection with more RAN devices. It should be understood that when a terminal device is wirelessly connected to multiple RAN devices at the same time, one of the RAN devices is the master node, and the other RAN devices are the auxiliary nodes.
  • primary node and secondary node in this application is mainly based on whether to establish a control plane connection with the core network device.
  • the RAN of the node that establishes a connection with the AMF among multiple RAN devices The device is called the master node.
  • the radio access network device involved in this application may be a device divided into at least one DU and one CU connected to the at least one DU according to the protocol layer. Therefore, the communication method provided by the embodiment of the present application can be applied to the communication system shown in FIG. 2.
  • Figure 2(a) shows an architecture of gNB divided into CU and DU.
  • one gNB may include one CU and one or more DUs, and the one or more DUs are controlled by the one CU.
  • a DU and CU are connected through a control plane interface (such as F1-C) for transmitting control plane data;
  • a DU and CU are connected through a user plane interface (such as F1-U) for transmitting user plane data.
  • the CU can also be divided into a centralized unit of the control plane (that is, a centralized unit control plane CU-CP network element) and a centralized unit of the user plane (that is, a centralized unit user plane CU-UP network element), where CU-CP and CU -UP can also be deployed on different physical devices.
  • CU-CP is responsible for the processing of the RRC layer and the control plane of the PDCP layer
  • CU-UP is responsible for the processing of the user plane of the SDAP layer and the PDCP layer.
  • Figure 2(b) shows an architecture of gNB divided into CU-CP, CU-UP and DU.
  • one gNB may include one CU-CP, one or more CU-UPs, and one or more DUs.
  • a CP-UP is only connected to one CU-CP through a control plane interface (such as E1) for transmission of control plane data;
  • a DU is only connected to one CU-CP through a control plane interface (such as F1-C) for transmission Control plane data;
  • a DU can be connected to one or more CU-UPs, and a CU-UP can also be connected to one or more DUs.
  • CU-UP and DU are connected through a user plane interface (Such as F1-U) connection, used to transmit user plane data.
  • one DU or one CU-UP can also be connected to multiple CU-CPs.
  • multiple CU-CPs serve as backups to each other; in practical applications, only one CU-CP is running at the same time.
  • the protocol stack division method by which the above-mentioned RAN device is divided into CU and DU is only exemplary, and the RAN device may also divide CU and DU according to other division methods.
  • the CU may be responsible for the operations of the RRC layer, SDAP layer, PDCP layer, and RLC layer, and the DU may be responsible for the MAC layer and PHY layer operations; or the CU may be responsible for the RRC layer and SDAP layer operations, and the DU may be responsible for the PDCP layer and RLC layer. , MAC layer and PHY layer operation, etc.
  • the division of the protocol stack between the CU-CP and CU-UP in the CU is also variable. The application does not make specific restrictions on this.
  • FIG. 1 and FIG. 2 are only examples to illustrate the scenarios in which the communication method provided by the embodiments of this application can be applied, but these examples do not constitute any limitation on the protection scope of this application, that is to say, the embodiments of this application provide The communication method can also be applied in other scenarios, so I won’t repeat it here.
  • the link from the terminal device to the wireless access network device is called the uplink
  • the link from the wireless access network device to the terminal device is called the downlink
  • the terminal device and the radio access network device transmit data on the uplink and the downlink in accordance with the protocol layer formulated by the 3GPP organization.
  • the protocol layers formulated by the 3GPP organization may include the PHY layer, MAC layer, RLC layer, PDCP layer, SDAP layer, and RRC layer. No matter which layer the data is transmitted, it is finally carried on the physical layer and transmitted on the wireless air interface.
  • the PDCP entity corresponding to the RB transmits the same PDCP data to multiple RLC entities for repeated transmission.
  • This transmission mode is called a repeated transmission mode.
  • the same data can be repeatedly transmitted on the wireless air interface, which improves the stability of data transmission.
  • a data packet has a sequence number.
  • the terminal device or RAN device
  • the opposite RAN device or terminal device performs repetitive detection after receiving the data packet. Repeatability detection is to detect multiple received data packets to see whether these data packets are the same, that is, whether they are duplicate data packets.
  • the existing protocol only stipulates that the RAN device or CU configured with a PDCP entity and the terminal device perform repetitive detection after receiving the data packet, and does not endow the RAN device or CU without a PDCP entity configured with repeatability.
  • an embodiment of the present application provides a communication method, which will introduce in detail how a RAN device or CU that is not configured with a PDCP entity performs repetitive detection of data packets, which is not described in detail here.
  • the primary node and/or secondary node can activate or deactivate (activate) or deactivate (deactivate) the terminal device by sending MAC layer signaling (such as a MAC control element (CE)).
  • MAC layer signaling such as a MAC control element (CE)
  • CE MAC control element
  • the master node may send a media access control control element (MAC CE) signaling to the terminal device to deactivate the repetition Transmission means that the terminal device does not need to send uplink data packets with the same sequence number on the wireless link connected to the secondary node; similarly, when the quality of the wireless link between the secondary node and the terminal device is good, the secondary node can also Sending MAC CE signaling to the terminal device to deactivate repeated transmission, that is, indicating that the terminal device does not need to send uplink data packets with the same sequence number on the wireless link connected to the master node.
  • MAC CE media access control control element
  • the master node can send MAC CE signaling to the terminal device to activate the repeated transmission, that is, instruct the terminal device to
  • the secondary node sends uplink data packets with the same sequence number on the wireless link connected; similarly, when the quality of the wireless link between the secondary node and the terminal device is poor, the secondary node can also send MAC CE signaling to the terminal device to activate Repeated transmission indicates that the terminal equipment needs to send uplink data packets with the same sequence number on the wireless link connected to the master node. It can be seen that each RAN node decides to activate/deactivate repeated transmission according to the wireless link between itself and the terminal device.
  • the number of communication channels between the terminal device and the wireless access network device in the existing protocol is at most two, and the sending end node uses one bit to indicate whether the receiving end node enables the repeated transmission function. If enabled, the receiving end node can send repeated transmission activation/deactivation commands to the terminal device.
  • the existing protocol does not specify how the sending end node indicates the status of the channel established by the receiving end node.
  • An embodiment of the present application proposes a solution so that the sending end node can indicate the status of the channel established on the receiving end node through indication information.
  • the data involved in this application includes signaling data and service data.
  • the business data includes eMBB data, mMTC data, URLLC data, etc.
  • the length occupied by a transmission time unit in time and the width occupied by a transmission frequency unit in frequency may vary with different wireless communication requirements of different data.
  • the communication system can realize the requirements of the size of the transmission time unit and the size of the transmission frequency unit used for data transmission through wireless parameter configuration.
  • the wireless parameter configuration is called numerology parameter or air interface format in 5G.
  • radio bearers are classified into two types: signaling radio bearers for transmitting signaling data and data radio bearers for transmitting service data.
  • the establishment of a radio bearer can be understood as the configuration of a set of protocol layer entities, that is, a bearer includes a set of protocol layer entities.
  • the existing protocol stipulates that a set of functional entities of the same radio bearer under the foregoing repeated transmission includes: a PDCP entity, two RLC entities corresponding to the PDCP entity, and at least one MAC corresponding to the two RLC entities Entity, at least one PHY entity corresponding to the at least one MAC entity.
  • a data radio bearer used to transmit service data or a signaling radio bearer used to transmit signaling data is established between the terminal device and the radio access network device.
  • the radio access network The device needs to be configured as follows: 2 logical channels, 2 RLC entities corresponding to the 2 logical channels, the initial state of repeated PDCP data transmission carried, and the cell group and logical channel where the primary RLC entity for repeated PDCP data transmission is located.
  • the RRC entity can control whether to enable the state of PDCP data repeated transmission.
  • the PDCP layer sends the same PDCP data through two RLC entities corresponding to two logical channels.
  • the radio access network device activates or deactivates an RB through a bit in the MAC CE to repeatedly transmit PDCP data.
  • the channel involved in this application refers to the data transmission channel between the terminal device and the wireless access network device.
  • each RLC entity corresponds to a channel to send data; accordingly, the same PDCP entity on the receiving end device corresponds to two RLC entities, and each RLC entity corresponds to one Channel to receive data. Therefore, there are two channels corresponding to this radio bearer between the sending end device and the receiving end device.
  • the logical channel identifier of an RLC entity can be used to indicate this channel, and the channel identifier can also be used to indicate the corresponding RLC entity.
  • a channel of a radio bearer can also be called a leg.
  • one radio bearer corresponds to multiple channels, that is, to multiple RLC entities and multiple logical channels, using different logical channel identifiers or using identifiers corresponding to different RLC entities to identify different channels.
  • the multiple logical channels may belong to the same logical channel group or different logical channel groups. If multiple channels in a radio bearer are on different devices, such as one on the primary node and one on the secondary node, then the multiple logical channel identifiers are not limited and can be the same or different.
  • this radio bearer corresponds to one logical channel.
  • the same logical channel identifier and different channel identifiers can be used to identify a channel.
  • the sending end device and the receiving end device corresponding to the aforementioned channel respectively include the same PDCP entity, a first RLC entity corresponding to the same PDCP entity, and a second RLC entity corresponding to the PDCP entity. Assume that the first RLC entity corresponds to the first channel, and the second RLC entity corresponds to the second channel.
  • the sending end device sends data on the first channel to the receiving end device in cell #1b or cell group #1 corresponding to the first channel, and the receiving end device receives the sending end device in cell #1b or cell group #1 corresponding to the first channel
  • the data of the first channel sent; the sending end device sends the second channel data to the receiving end device in the cell #2b or cell group #2 corresponding to the second channel, and the receiving end device is in the cell #2b or cell corresponding to the second channel Group #2 receives the data on the second channel.
  • the PDCP data repetitive transmission mode data from the same PDCP entity is repeated on the second RLC entity of the sending end device and the first RLC entity of the sending end device, thereby improving the stability of data sent by the sending end device.
  • the network device may indicate that the RLC entity corresponding to one logical channel of a carrier group is the first RLC entity, that is, the primary RLC entity, and the second RLC entity is the secondary RLC entity.
  • the aforementioned cell group #1 is a primary cell group, and the primary cell group includes one primary cell and at least one secondary cell.
  • the primary cell group includes one primary cell and at least one secondary cell.
  • it includes cell #1a (primary cell), cell #1b, and cell #1c
  • cell group #2 is a secondary cell group, and the secondary cell group includes at least one secondary cell.
  • it includes cell #2a, cell #2b, and cell #2c.
  • the primary cell group corresponds to the first RLC entity and the first channel.
  • the first RLC entity is also called the primary RLC entity
  • the second RLC entity is also called the secondary RLC entity.
  • the radio access network device belonging to the primary cell group is the primary radio access network device
  • the radio access network device belonging to the secondary cell group is the secondary radio access ⁇ Net equipment.
  • the terminal equipment is served by both the primary wireless access network equipment and the secondary wireless access network equipment.
  • the terminal device can use two MAC layer entities to respectively establish connections with the primary wireless access network device and the secondary wireless access network device.
  • the PDCP entity and the first RLC entity corresponding to the PDCP are located on the primary radio access network device, and the second RLC entity corresponding to the PDCP entity is located on the secondary radio access network device service; or PDCP
  • the entity and the second RLC entity corresponding to the PDCP entity are located on the primary radio access network device, and the first RLC entity corresponding to the PDCP entity is located on the secondary radio access network device.
  • the same PDCP entity corresponds to only one primary RLC entity, and the PDCP entity corresponds to at least one secondary RLC entity.
  • the channel corresponding to the primary RLC entity is called the primary channel
  • the channel corresponding to the secondary RLC entity is called the secondary channel.
  • the terminal device judges that the data volume of the initial transmission data of the PDCP entity and the RLC entity to be sent is lower than the first threshold, and only transmits through the main RLC entity.
  • the terminal device determines that the amount of data to be sent is greater than or equal to the first threshold, different data may be sent through the first RLC and the second RLC entity.
  • the terminal device simultaneously performs wireless communication with two RAN devices (such as the RAN device 140 and the RAN device 142 in FIG. 1).
  • the two RAN devices can use the same radio access technology (RAT), for example, both use NR; they can also use different RATs, for example, one RAN device uses LTE technology, and the other RAN device uses NR technology.
  • RAT radio access technology
  • Each RAN device manages its own cell group, and each cell group has at least one cell.
  • Figure 3 shows a schematic diagram of a user plane L2 protocol stack of a RAN device under dual connectivity.
  • the RAN device corresponding to CG1 is configured with the PDCP entity corresponding to the DRB, and the RAN device is said to be a RAN device hosting a PDCP entity, or a RAN device hosting a PDCP entity; corresponding to CG2
  • the RAN device is not configured with the PDCP entity corresponding to the DRB.
  • the RAN device hosting the PDCP entity is called the hosting PDCP entity node, or the PDCP entity hosting node, and the RAN device that is not configured with the PDCP entity is called the corresponding node.
  • the user plane L2 of the RAN device corresponding to CG1 also includes the RLC layer and the MAC layer; the user plane L2 of the RAN device corresponding to CG2 includes the RLC layer and the MAC layer, but does not include the PDCP layer.
  • the managed PDCP entity node configures an RLC entity and a MAC entity for itself and the corresponding node respectively, and the managed PDCP entity node determines how the downlink data for the DRB is allocated to the managed PDCP entity node and the corresponding node for transmission.
  • the node hosting the PDCP entity can map a copy of the PDCP data of the DRB to its own logical channel, map the repeated copy of the PDCP data of the DRB to the logical channel of the corresponding node, and host the respective MAC entities of the PDCP entity node and the corresponding node respectively
  • the downlink data of each logical channel is scheduled to be transmitted on the wireless link between the respective node and the terminal device.
  • the escrow PDCP entity node sends a copy of the downlink data of the DRB to the terminal device; in addition, the escrow PDCP entity node sends another part of the DRB downlink data through the tunnel between the escrow PDCP entity node and the corresponding node (tunnel ) Sent to the corresponding node, and the corresponding node sends the repeated copy of downlink data to the terminal device; during uplink data transmission, the terminal device sends a copy of the DRB uplink data to the node hosting the PDCP entity; in addition, the terminal device A duplicate piece of uplink data of the DRB is sent to the corresponding node, and the corresponding node sends the duplicate piece of uplink data to the node hosting the PDCP entity. It is worth noting that in the process of establishing a dual connection, a tunnel is established between the managed PDCP entity node and the corresponding node so that the DRB data can be transmitted between the two nodes.
  • the node hosting the PDCP entity sends the uplink tunnel information (that is, the receiving endpoint information of the hosting PDCP entity as the receiving endpoint of the tunnel) to the corresponding node; the corresponding node sends the downlink tunnel information (that is, the corresponding node is the receiving endpoint of the tunnel). Receive endpoint information) and send it to the node hosting the PDCP entity.
  • the hosted PDCP entity node sends downlink data to the corresponding node according to the downlink tunnel information provided by the corresponding node; for uplink data transmission, the corresponding node sends uplink data to the hosted PDCP entity node according to the uplink tunnel information provided by the hosted PDCP entity node.
  • the uplink tunnel information may be at least one of the uplink tunnel transport layer address of the tunnel and the tunnel endpoint identifier (TEID), the index of the tunnel, or the identifier or identity (ID) of the tunnel; accordingly
  • the downlink tunnel information may be at least one of the downlink tunnel transport layer address and TEID of the tunnel, the index of the tunnel, or the identifier of the tunnel.
  • the PDCP entity hosting the PDCP entity node maps the data packets with the same PDCP sequence number to the logical channels of the hosting PDCP entity node and the corresponding node, and then The MAC entities of the respective nodes respectively schedule the downlink data packets to their respective wireless links and transmit them to the terminal equipment; for the PDCP entity that repeatedly transmits the uplink PDCP data to the terminal equipment, the data packets with the same PDCP sequence number are respectively mapped to the terminal equipment and Host the PDCP entity node or the terminal device on the logical channel between the corresponding node, and schedule the uplink data packet to the wireless link corresponding to the logical channel through the MAC entity of the terminal device to transmit to the host PDCP entity node and the corresponding node.
  • the configuration process of repeated transmission is configured separately according to different radio bearers.
  • the repeated transmission configuration under one radio bearer is taken as an example.
  • the radio bearer involved in the embodiment of the present application may be a signaling radio bearer or a data radio bearer.
  • Fig. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application. Including the first node, the second node, the terminal device, and steps S110-S190.
  • the first node and the second node are collectively referred to as network devices, and in the embodiment shown in FIG. 4, an RB is established between the network device and the terminal device.
  • the RB is used to transmit data (signaling data and/or service data) between network equipment and terminal equipment.
  • the establishment of an RB between the RAN device and the terminal device can be understood as a set of protocol layer entities configured on the network device and the terminal device respectively, and the set of protocol layer entities serves the RB.
  • one RB corresponds to
  • the functional entity includes one PDCP entity, and more than two RLC entities corresponding to the PDCP entity.
  • the more than two RLC entities correspond to more than two PDCP data repeated transmission channels configured between the network device and the terminal device. , This channel is used to transmit PDCP data between terminal equipment and network equipment.
  • the first node and the second node may be the above-mentioned RAN device or may be the above-mentioned CU or DU.
  • the first node is the RAN device 140 shown in FIG. 1, and the second node is the RAN device 142 shown in FIG. 1; or, the first node is the RAN device 142 shown in FIG. 1, and the second node is The RAN device 140 shown in Fig. 1; or, the first node is the CU shown in Fig. 2(a), and the second node is the DU shown in Fig. 2(a); or, the first node is Fig. 2 For the CU-UP and CU-CP shown in (b), the second node is the DU shown in Figure 2(b).
  • the above-mentioned PDCP entity is configured on the first node, and the above-mentioned PDCP entity is not configured on the second node.
  • the first node is called a managed PDCP entity node, and the second node is called a corresponding Node;
  • the above-mentioned PDCP entity is not configured on the first node, and the above-mentioned PDCP entity is configured on the second node.
  • the second node is called the managed PDCP entity node
  • the first node is called the corresponding node
  • the first node is configured with the above-mentioned PDCP entity and at least one RLC entity of more than two RLC entities corresponding to the PDCP entity
  • the second node is configured with more than two of the above-mentioned PDCP entities corresponding to Among the RLC entities, other RLC entities except at least one RLC entity configured on the first node; optionally, the above-mentioned PDCP entity and multiple RLC entities corresponding to the PDCP entity are configured on the first node; optional Ground, the first node is configured with the above-mentioned PDCP entity but there is no RLC entity corresponding to the PDCP entity, and the second node is configured with multiple RLC entities corresponding to the PDCP entity;
  • the second node is configured with the above-mentioned PDCP entity and at least one RLC entity among the RLC entities corresponding to the PDCP entity, and the RLC entity corresponding to the above-mentioned PDCP entity is configured on the first node except for the configuration on the first node At least one RLC entity other than the RLC entity; optionally, the above-mentioned PDCP entity and the RLC entity corresponding to the PDCP entity are configured on the second node; optionally, the above-mentioned PDCP entity is configured on the second node but not For the RLC entity corresponding to the PDCP entity, the first node configures the RLC entity corresponding to the PDCP entity.
  • first node and the second node are just examples, and cannot limit the scope of protection of this application. It should be understood that this application is only limited to the need to establish a tunnel for transmitting PDCP data between the first node and the second node. In the case of, specifically, since what needs to be transmitted through the tunnel for PDCP data cannot be fully enumerated, the specific forms of the first node and the second node are not limited in this application, and will not be repeated here. .
  • the functional entity corresponding to the above-mentioned RB also includes at least one MAC entity and the at least one MAC entity corresponding to the more than two RLC entities.
  • At least one PHY entity corresponding to the MAC entity Since this application mainly relates to how to interact with the configuration of tunnels and/or channels between nodes, that is to say, this application mainly considers the configuration of RLC entities corresponding to the channels one-to-one, so the above only introduces the network equipment and terminals in this application.
  • the protocol layer entity corresponding to the RB established between the devices includes a PDCP entity and multiple RLC entities corresponding to the PDCP entity.
  • the RLC entity in the protocol layer entity corresponding to the RB corresponds to the channel established between the network device and the terminal device, so configuring the RLC entity involved in this application can be understood as configuring the The channel corresponding to the RLC entity.
  • configuring whether a certain RLC entity is activated it can be that the RLC entity is in the active state, and then the LCH and channel corresponding to the RLC entity are also in the active state; for example, when a certain RLC entity is deleted, the corresponding RLC entity LCH and channel are also deleted etc.
  • first”, “second”, etc. involved in this application are only used to distinguish similar objects, and not necessarily used to describe a specific sequence or sequence, for example, the above-mentioned first node and second node Just to distinguish between different nodes. It should be understood that the objects distinguished in this way can be interchanged under appropriate circumstances, so that the solutions described in the embodiments of the present application can be implemented in ways other than those illustrated or described in the application documents.
  • S110 The first node determines configuration information.
  • the configuration information is used to instruct the second node to establish N tunnels, where N is an integer greater than or equal to 2.
  • the multiple tunnels are used to transmit PDCP data or RLC data between the first node and the second node.
  • the first node sends PDCP data to the second node through the multiple tunnels, and the second node receives PDCP data through the multiple tunnels, or the second node sends PDCP data to the first node through the multiple tunnels,
  • the first node receives PDCP data through the multiple tunnels.
  • the first node and the second node encapsulate the PDCP data or RLC data to be sent into a GPRS tunnelling protocol (GPRS tunnelling protocol, GTP) data packet. Add the source tunnel port information and destination tunnel port information of the tunnel to the tunnel, and then send data packets through the tunnel.
  • GPRS tunnelling protocol GPRS tunnelling protocol
  • PDCP data when data is sent from a node hosting a PDCP entity to a corresponding node, it is called PDCP data; when data is sent from a corresponding node to a node hosting the PDCP entity, it is called RLC data.
  • the PDCP data involved in this application may also be referred to as PDCP PDU, and RLC data may also be referred to as RLC service data unit (SDU).
  • PDCP PDU PDCP data
  • RLC data may also be referred to as RLC service data unit (SDU).
  • the number of tunnels established between the first node and the second node is one, which means that compared with the repeated transmission in the existing protocol
  • the method shown in Figure 4 can improve the reliability of data transmission between the first node and the second node.
  • the data transmission of multiple tunnels can effectively improve the reliability of the transmission.
  • S120 is executed, and the first node sends the configuration information to the second node.
  • the first node since the first node sends configuration information to the second node, in this scenario, it can be understood that the first node is the main node (main RAN or CU), that is, the first node A connection is established with the AMF of the core network; the second node is a supplementary node (supplement RAN or DU).
  • the configuration information includes the above-mentioned RB information and the above-mentioned N tunnel address information.
  • the second node after receiving the configuration information, the second node needs to establish a tunnel based on the configuration information. That is, the method shown in FIG. 4 further includes S130, the second node establishes a tunnel.
  • the configuration information may be an information list composed of at least two uplink tunnel information. As shown in Table 1.
  • one piece of uplink tunnel information may be the Internet protocol (IP) address (address) of the device (first node) that sends the uplink tunnel information and at least one of the following parameters: the tunnel endpoint identifier ( tunnel endpoint identifier, TEID), the index of the upstream tunnel, and the identifier (identifier or identity, ID) of the upstream tunnel.
  • IP Internet protocol
  • the second node receives the configuration information, and establishing a tunnel based on the configuration information may be based on the multiple uplink tunnel information to allocate multiple downlink tunnel information respectively corresponding to the multiple uplink tunnel information.
  • each downlink tunnel information in the multiple downlink tunnel information may be the second node IP address and at least one of the following parameters: the TEID of the downlink tunnel, the index of the downlink tunnel, or the identifier of the downlink tunnel, etc. , I won’t repeat it here.
  • the configuration information may be an information list composed of at least two downlink tunnel information. As shown in table 2.
  • a piece of downlink tunnel information can be the IP address of the device (the first node) that sends the downlink tunnel information and at least one of the following parameters: the tunnel endpoint identifier TEID of the downlink tunnel, the index of the downlink tunnel, or the downlink tunnel The identifier of the tunnel.
  • establishing a tunnel based on the configuration information may be based on the at least two downlink tunnel information to allocate at least two uplink tunnel information respectively corresponding to the at least two downlink tunnel information.
  • each uplink tunnel information in the at least two uplink tunnel information may be the second node IP address and at least one of the following parameters: the TEID of the uplink tunnel, the index of the uplink tunnel, or the identifier of the uplink tunnel Wait, I won't repeat it here.
  • the tunnel is only used to transmit PDCP data or RLC data between the first node and the second node.
  • the second node needs to transmit PDCP data or RLC data with the terminal device, it is necessary to establish a connection between the second node and the terminal device. Between channels, therefore:
  • the second node also needs to establish a channel for transmitting PDCP data or RLC data with the terminal device. That is, the method shown in FIG. 4 further includes S140, the second node establishes a channel.
  • the establishment of a certain channel by the second node can be understood as the establishment of the RLC entity corresponding to the certain channel by the second node, including the following two situations:
  • the second node establishes an RLC entity according to the foregoing configuration information.
  • the number of RLC entities established by the second node is equal to the number of tunnels established by the second node, which is also N.
  • the configuration information instructs the second node to establish 3 tunnels (tunnel #1 to tunnel #3 as shown in Figure 5 (a)), and the second section can establish 3 RLC entities based on the configuration information (as shown in Figure 5 ( RLC entity #1 to RLC entity #3 shown in a).
  • Figure 5 is the PDCP data or RLC data between the first node, the second node and the terminal device provided in the embodiment of the present application Schematic diagram of the transmission form.
  • the number of channels between the second node and the terminal device established by the second node is independent of the number of tunnels between the second node and the first node established by the second node.
  • the configuration information sent by the first node to the second node also includes channel number indication information.
  • the channel number indication information is used to instruct the second node to establish M RLC entity, M is a positive integer.
  • the reliability of data transmission between the first node and the second node is relatively high, that is to say, there is no need to establish more than two tunnels between the first node and the second node, just two tunnels.
  • the number of tunnels established by the second node is two, but the number of channels established is not necessarily two.
  • the channel number indication information indicates that the second node establishes one RLC entity, that is, the number of tunnels between the first node and the second node is two, and the number of channels between the second node and the terminal device is one, As shown in Figure 5(b).
  • the channel number indication information indicates that the number of RLC entities established by the second node is more than the number of tunnels established by the second node, and the number of RLC entities established by the second node is equal to the number of tunnels established by the second node.
  • the number plus the number indicated by the channel number indicator information indicates that the number of RLC entities established by the second node is one more than the number of tunnels established by the second node, that is, the number of tunnels between the first node and the second node is 2, and the second node and The number of channels between terminal devices is 3, as shown in Figure 5(c).
  • the channel number indication information indicates that the number of RLC entities established by the second node is the maximum number of the number of tunnels established by the second node and the number indicated by the channel number indication information, for example, ,
  • the number of channels indicated by the indication information is 1, that is, the number of tunnels between the first node and the second node is 2, and the number of channels between the second node and the terminal device is 2, as shown in Figure 5(d) Shown.
  • the number of RLC entities established by the second node is equal to the number indicated by the smaller of the number of tunnels established by the second node and the number indicated by the channel number indication information.
  • the above three possible indication forms of the channel number indication information are only examples, and do not constitute any limit to the scope of protection of this application. That is to say, in case 2, the number of RLC entities established by the second node is no longer necessarily dependent on the situation. The number of tunnels established with the second node shown in Figure 1 is equal, but the number of channels established by the second node is displayed or implicitly indicated through the channel number indication information.
  • the above S110-S140 mainly introduces the process of the first node notifying the second node to establish a tunnel and channel.
  • the method process shown in FIG. 4 may further include S150.
  • the second node sends a response message to the first node.
  • the response message contains information about each downlink or uplink tunnel allocated by the second node (when the second node When the uplink tunnel information is received, the response message includes downlink tunnel information; when the second node receives the downlink tunnel information, the response message includes uplink tunnel information).
  • the response message also includes an identifier corresponding to each RLC entity allocated by the second node, and the identifier corresponding to the RLC entity is at least one of the following items: the identifier of the RLC entity, the identifier of the RLC entity The LCH identifier of the LCH, the tunnel identifier of the tunnel corresponding to the RLC entity, and the channel identifier of the channel corresponding to the RLC entity. Further, in order to avoid conflicts between the identifiers corresponding to the RLC entity established on the first node and the second node, the identifier corresponding to the RLC entity established by the second node is different from the identifier corresponding to the RLC entity established by the first node . That is, before the second node executes the foregoing S150, the method flow shown in FIG. 4 further includes S151, where the second node configures the identifier corresponding to the RLC entity established by the second node.
  • the second node will configure a corresponding identifier for each RLC entity established by the second node. For example, the second node establishes three RLC entities based on the above configuration information, and configures identifiers for each of the three RLC entities, which are RLC entity #1, RLC entity #2, and RLC entity #3, respectively.
  • a possible embodiment is: a channel for transmitting PDCP data is set between the first node and the terminal device, that is, the RLC entity corresponding to the channel is configured on the first node; There is a channel for transmitting PDCP data, that is, the RLC entity corresponding to the channel is configured on the second node.
  • the first node and the second node send status indication information to the terminal device to indicate whether the RLC entities established on the first node and the second node are activated, in order for the terminal device to accurately learn whether each RLC entity is activated, the first The identity corresponding to the RLC entity established on the first node and the second node needs to avoid duplication.
  • the method flow shown in FIG. 4 further includes S152.
  • the node sends identification indication information to the second node, where the identification indication information is used to indicate the identification corresponding to the RLC entity established for one RB on the first node.
  • the first node sends the identifier corresponding to the RLC entity established on the first node to the second node, and the identifier corresponding to the RLC entity established on the first node is used to instruct the second node to avoid using the same identifier to identify the second node.
  • the RLC entity established on the node is used to instruct the second node to avoid using the same identifier to identify the second node.
  • the second node can no longer use RLC entity #1 as The identifier corresponding to the RLC entity established by the second node.
  • the identity corresponding to each RLC entity established by the second node may be the identity (identity, ID) of the LCH corresponding to the RLC entity.
  • the identifier corresponding to each RLC entity established by the second node may be the identifier of the RLC entity configured by the second node for the RLC entity.
  • the identifier corresponding to an RLC entity established by the second node may also correspond to a tunnel established by the second node Logo.
  • the second node has established 3 tunnels, and the identifiers of the tunnels are tunnel #1, tunnel #2, and tunnel #3, then when the number of RLC entities established by the second node is equal to the number of tunnels established by the second node When the number is also three, the second node may use tunnel #1, tunnel #2, and tunnel #3 as identifiers corresponding to the three RLC entities, respectively.
  • the first node can determine the identity corresponding to each RLC entity in the second node based on the response message.
  • the first node can determine the identity corresponding to each RLC entity among all the RLC entities established on the first node and the second node.
  • the first node can determine through the above S150, S151, and S152 that the identification corresponding to each RLC entity among all the RLC entities established on the first node and the second node is only a possible realization The method does not constitute any limit to the protection scope of this application.
  • the second node can also determine the first node and the second node.
  • the method flow shown in FIG. 4 further includes S160.
  • the first node sends deconfiguration information to the second node, where the deconfiguration information is used to instruct the second node to delete at least one RLC entity.
  • the first node learns the identity corresponding to each RLC entity established on the second node. Furthermore, the de-configuration information sent by the first node to the second node can include the identifier corresponding to each RLC entity in the at least one RLC entity that the second node needs to delete. Then, after receiving the deconfiguration information, the second node deletes the at least one RLC entity in the RLC entity established on the second node based on the identifier corresponding to each RLC entity in the at least one RLC entity.
  • the second node has established three RLC entities, and the identities configured by the second node for the three RLC entities are RLC entity #1, RLC entity #2, and RLC entity #3.
  • the first node learns the number of RLC entities established by the second node and the identifier corresponding to each RLC entity established by the second node.
  • the second node deletes the established three RLC entities based on the de-configuration information as RLC entity #1 and RLC entity #2 RLC entity.
  • the de-configuration information includes a first value, and the first value is the number of RLC entities instructing the second node to delete. Then, after receiving the deconfiguration information, the second node deletes the first number of RLC entities from the established multiple RLC entities based on the first number.
  • the second node has established 3 RLC entities, and when the first value included in the deconfiguration information sent by the first node to the second node is 2, the second node deletes the 3 RLC entities established based on the deconfiguration information Two RLC entities. Specifically, which two RLC entities the second node deletes may depend on the specific implementation of the second node, which is not specifically limited here.
  • the de-configuration information is only a trigger information, and the de-configuration information does not carry the number of RLC entities or RLC entity identifiers that need to be deleted by the second node.
  • the second node receives the de-configuration information, Delete all RLC entities established by the second node except for the primary RLC entity (if the primary RLC entity is configured on the second node).
  • the main RLC entity is the RLC entity corresponding to a logical channel reserved for data transmission after repeated PDCP data transmission in the CA scenario is configured to the terminal device; or the main RLC entity is configured to the terminal for the network device
  • the RLC entity corresponding to a logical channel used for data transmission.
  • the second node establishes three RLC entities, of which one RLC entity is the master RLC entity.
  • the second node deletes the two RLC entities other than the main RLC entity among the three established RLC entities based on the deconfiguration information.
  • the reason why the first node sends the aforementioned de-configuration information to the second node in this application is not limited. For example, it may be that the first node judges that the quality of the PDCP data transmission channel between itself and the terminal device is better. When there is no need to establish multiple RLC entities on the second node, the first node sends de-configuration information to the second node.
  • S110-S140 only illustrate that the first node can instruct the second node to establish multiple tunnels and at least one RLC entity, but it does not limit that the channel corresponding to each RLC entity established is used for repeated transmission of PDCP data.
  • S160 also describes that even if multiple RLC entities are established, the first node can instruct the second node to delete some or all of the RLC entities; similarly, the first node can also indicate that the RLC entities established by the second node can be active The number of RLC entities in the state.
  • the method flow shown in FIG. 4 further includes S170.
  • the first node sends first indication information to the second node, where the first indication information indicates the number of RLC entities allowed to be activated on the second node.
  • the first indication information includes a second value
  • the second value is a value for the first node to indicate the number of RLC entities allowed to be activated on the second node.
  • the second node has established 3 RLC entities, and when the second value included in the first indication information sent by the first node to the second node is 2, the second node activates the 3 RLC established based on the first indication information Any two RLC entities in the entity.
  • the first indication information includes a third value.
  • the third value is the number of tunnels that are initially activated among the N tunnels. This value is used by the first node to indicate the activation allowed on the second node. The value of the number of RLC entities.
  • the second node determines that the maximum number of activated RLC entities is also 2.
  • the maximum number of RLC entities allowed to be activated on the second node in this application may be indicated by the first node or specified by the protocol; or, the above-mentioned first indication information may be included in the above-mentioned configuration information No need to send to the second node separately.
  • the second node when the second node has three RLC entities established, and the protocol specifies that the maximum number of RLC entities allowed to be activated on the second node is 2, the second node activates two RLC entities among the three RLC entities established. Specifically, which two RLC entities are activated by the second node may depend on the specific implementation of the second node, which is not specifically limited here.
  • the first node can not only indicate the number of RLC entities that can be active in the RLC entities established by the second node, but the first node can also indicate the initial state of each RLC entity in the RLC entities established by the second node. (For example, activated state or deactivated state).
  • the foregoing configuration information includes second indication information, and the second indication information is used to indicate the initial state of each RLC entity established by the second node.
  • the second indication information is only a kind of trigger information, and the second indication information does not carry the number of RLC entities whose initial state is activated in the second node or the RLC entities whose initial state is activated in the second node.
  • Entity identifier after receiving the second indication information, the second node determines that the initial state of each RLC entity established by the second node is an active state.
  • the second node has 3 RLC entities established.
  • the configuration information sent by the first node to the second node includes the second indication information
  • the second node determines that the initial states of the three RLC entities established are all active.
  • the second indication information includes a fourth value
  • the fourth value is the number of RLC entities whose initial state is the active state among the RLC entities established by the second node.
  • the second node has established 3 RLC entities, and when the fourth value included in the second indication information sent by the first node to the second node is 2, the second node activates the established 3 RLC entities based on the second indication information Two RLC entities in the entity. Specifically, which two RLC entities are activated by the second node may depend on the specific implementation of the second node, which is not specifically limited here.
  • the second indication information indicates that the repetitive transmission mode of the RB is in an active state, and the repetitive transmission mode refers to that the same PDCP data of the RB is transmitted through multiple RLC entities.
  • the second node After receiving the second indication information, the second node determines that the second node can use the activation or deactivation command to control the PDCP repeated transmission state of the RB.
  • the second node has 3 RLC entities established.
  • the configuration information sent by the first node to the second node includes the second indication information
  • the second node sends a PDCP repeated transmission activation or deactivation command to control whether the three RLC entities on the node are activated, or the second node sends PDCP repeat
  • the transmission activation or deactivation command controls whether all RLC entities corresponding to the RB are activated, and whether all RLC entities including the first node and the second node are activated.
  • this master RLC entity is activated by default and does not need to participate in the control of the activation deactivation command, and it can always transmit data.
  • the second indication information can displayly indicate that at least one RLC entity among the RLC entities established in the second node is in an active state.
  • the second node has established three RLC entities, and the identities configured by the second node for the three RLC entities are RLC entity #1, RLC entity #2, and RLC entity #3.
  • the first node learns the number of RLC entities established by the second node and the identifier corresponding to each RLC entity established by the second node.
  • the second node determines, based on the second indication information, that the three established RLC entities are identified as RLC entity #1 and The initial state of the RLC entity of RLC entity #2 is the active state.
  • the second node can activate a certain RLC entity.
  • the activation command may be repeatedly transmitted through the MAC layer.
  • the second node may send whether each RLC entity is activated to the first node, so that the first node can learn whether each RLC entity in the second node is activated.
  • the response message sent by the second node to the first node in S150 further includes first status indication information, and the first status indication information is used to indicate whether each RLC entity in the RLC entity established by the second node is Activation, that is, the response message includes the identifier corresponding to the RLC entity established by the second node, and whether the RLC entity corresponding to each identifier is activated.
  • the first node may determine the second state indication information based on whether each RLC entity on the first node is activated and the first state indication information carried in the response message, that is, the method flow shown in FIG. 4 may further include S180, The first node determines the second status indication information.
  • the second status indication information is used to indicate whether each RLC entity in more than two RLC entities corresponding to the PDCP entity is activated.
  • the above-mentioned second status indication information indicates whether the RLC entity established on the first node is activated, that is, the first node does not need to know whether the RLC entity established on the second node is activated, only the RLC entity established by the first node Whether to activate or not is notified to the terminal device through the second status indication information.
  • the terminal device determines whether the second status indication information is to notify which RLC entity(s) are activated based on the RLC entity associated with the MAC entity that received the second status indication information.
  • the first node may send the second status indication information to the terminal device by carrying the second status indication information in RRC signaling or MAC CE signaling.
  • the second node may obtain whether each RLC entity on the second node is activated and whether the RLC entity established on the first node is activated. That is, the method flow shown in FIG. 4 may also include S181.
  • the second node determines Three status indication information. Specifically, the third status indication information is used to indicate whether each RLC entity among more than two RLC entities corresponding to the PDCP entity is activated.
  • the above-mentioned third status indication information indicates whether the RLC entity established on the second node is activated, that is, the second node does not need to know whether the RLC entity established on the first node is activated, only the RLC entity established by the second node Whether to activate or not is notified to the terminal device through the third status indication information.
  • the terminal device determines whether the third status indication information is to notify which RLC entity(s) are activated based on the RLC entity associated with the MAC entity receiving the third status indication information.
  • the second node may send the third status indication information to the terminal device by carrying the third status indication information in RRC signaling or MAC CE signaling.
  • the method flow shown in FIG. 4 may further include S190.
  • the first node sends second status indication information to the terminal device.
  • the method flow shown in FIG. 4 may further include S191.
  • the second node sends third status indication information to the terminal device.
  • the timing for the first node to send the second status indication information to the terminal device and/or the second node to send the third status indication information to the terminal device is not limited, and it can be done after the first radio bearer configuration is completed. After receiving it, the terminal device determines the repeated transmission function of the activated channel according to the indicated activation bit value.
  • both the first node and the second node can set whether all the RLC entities of the RB are activated; the first node and the second node can set the RB except the main RLC entity Whether all RLC entities are activated; the first node only sets whether all RLC entities on the first node of the RB or all RLC entities except the main RLC entity are activated; the second node only sets all RLC entities on the second node of the RB Or whether the RLC entities other than the main RLC entity are activated.
  • the second status indication information indicates whether the RLC entity established on the first node is activated
  • the second status indication information includes: a preset field, and one bit in the preset field is used to indicate the Whether an RLC entity established on the first node is activated, the position of the bit corresponding to the RLC entity established on the first node in the preset field is based on the size of the LCH identifier of the RLC entity established on the first node Sorting; or, the status information included in the LCH configuration corresponding to each RLC entity established on the first node, where the status information indicates whether the corresponding RLC entity is activated.
  • the second status indication information indicates whether each of the more than two RLC entities corresponding to the PDCP entity is activated
  • the second status indication information includes: a preset field, the preset A bit in the field is used to indicate whether an RLC entity established on the first node and the second node is activated, and the bit corresponding to the RLC entity established on the first node and the second node is set in the preset
  • the positions in the field are sorted according to the size of the LCH identifiers of the RLC entities established on the first node and the second node; or, each RLC entity established on the first node and the second node corresponds to
  • the state information included in the LCH configuration of, the state information indicates whether the corresponding RLC entity is activated.
  • the third status indication information indicates whether the RLC entity established on the second node is activated
  • the third status indication information includes: a preset field, and one bit in the preset field is used for Indicates whether an RLC entity established on the second node is activated, and the position of the bit corresponding to the RLC entity established on the second node in the preset field is based on the LCH of the RLC entity established on the second node The sizes of the identities are sorted; or, the status information included in the LCH configuration corresponding to each RLC entity established on the second node, the status information indicates whether the corresponding RLC entity is activated.
  • the third status indication information indicates whether each of the more than two RLC entities corresponding to the PDCP entity is activated
  • the third status indication information includes: a preset field, and the preset A bit in the field is used to indicate whether an RLC entity established on the first node and the second node is activated, and the bit corresponding to the RLC entity established on the first node and the second node is set in the preset
  • the positions in the field are sorted according to the size of the LCH identifiers of the RLC entities established on the first node and the second node; or, each RLC entity established on the first node and the second node corresponds to
  • the state information included in the LCH configuration of, the state information indicates whether the corresponding RLC entity is activated.
  • the foregoing preset field is a bitmap including 3 bits, and one bit in the bitmap is used to indicate whether a corresponding RLC entity is activated.
  • the above bitmap is a bitmap composed of the last 3 bits of the bitmap shown in Table 3.
  • the first 5 bits are used to identify an RB, that is, the RB ID of the RB occupies the highest 5 bits of the field.
  • a 3 is set in the order of the corresponding LCH IDs of all RLC entities. Bitmap of bits. It can indicate at most whether 3 RLC entities are activated. The order can be ascending or descending. 1 means activation, 0 means deactivation.
  • a 3-bit bitmap is set in order according to the corresponding LCH ID of the RLC entity established on the first node. It can indicate at most whether 3 RLC entities are activated. The order can be ascending or descending. 1 means activation, 0 means deactivation.
  • a 3-bit bitmap is set in order according to the corresponding LCH ID of the RLC entity established on the second node. It can indicate at most whether 3 RLC entities are activated. The order can be ascending or descending. 1 means activation, 0 means deactivation.
  • the second state indication information indicates that the PDCP entity corresponds to other RLCs other than the RLC activated by default. Whether each RLC entity in the entity is activated. That is, each bit in the bitmap is used to indicate whether an RLC entity other than the RLC entity activated by default is activated.
  • the RLC entity activated by default is the master RLC entity indicated by the network device. Specifically, it is not excluded that there is a master RLC entity on each RAN or DU involved in a radio bearer, or there can only be one master RLC entity for a radio bearer.
  • the bitmap is shown in Table 3, and a bitmap of up to 3 bits is set in order according to the corresponding LCH IDs of all RLC entities.
  • the X bits of the first node correspond to whether the X RLC entities are activated, and a low (or high) X bit bitmap is set in the order of the corresponding LCH IDs of the X RLC entities.
  • the Y bit of the second node corresponds to whether the Y RLC entities are activated, and a high (or low) Y bit bitmap is set in order according to the corresponding LCH IDs of the Y RLC entities. If one of the X entities is the master RLC entity, then X-1 RLC entities correspond to X-1 bits. If one of the Y entities is the master RLC entity, then Y-1 RLC entities correspond to Y-1 bits.
  • the foregoing preset field is a bitmap including 4 bits, and one bit in the bitmap is used to indicate whether a corresponding RLC entity is activated.
  • the above bitmap is a bitmap composed of the last 4 bits of the bitmap shown in Table 4.
  • the first 4 bits are used to identify an RB, that is, the RB ID of the RB occupies the highest 4 bits of the field.
  • bitmap composed of the last 4 bits of the bitmap shown in Table 4 is similar to the bitmap shown in Table 3 above, except that it can indicate whether 4 RLC entities are activated at most.
  • the following example illustrates that when the second status indication information and the third status indication information indicate whether the RLC entity established on the first node is activated and the RLC entity established on the second node is activated, the second status indication information and the third status indication respectively Possible forms of information:
  • the second state indication information or the third state indication information is that the number of bits in the bitmap has 4 bits, so as to stipulate whether the X RLC entities of the first node activate the position of the indication bit, among the 4 bits X bit positions, whether Y RLC entities of the second node are activated or not, indicate bit positions, in Y bit positions among 4 bits. Assume that there is 1 RLC entity on the first node, and 3 RLC entities on the second node. For example, the highest bit or the lowest bit (or the highest X bit or the lowest X bit). Whether the RLC entity of the second node is activated indicates that the bit position is in the low 3 bits or the high 3 bits of the 4 bits. It can be understood that the X bits are sorted in the order of the X LCH IDs, and the Y bits are sorted in the order of the Y LCH IDs.
  • the second state indication information or the third state indication information is that the number of bits in the bitmap has 4 bits, so as to stipulate whether the X RLC entities of the first node activate the position of the indication bit, among the 4 bits Low (or high) X bit positions, the Y RLC entities of the second node are activated or not indicating bit positions, in the low (or high) Y bit positions among the 4 bits. It can be understood that the X bits are sorted in the order of the X LCH IDs, and the Y bits are sorted in the order of the Y LCH IDs.
  • the second status indication information or the third status indication information is that the number of bits in the bitmap has 4 bits. Assuming that there are 2 RLC entities on the first node and 2 RLC entities on the second node, it can be agreed Whether the RLC entity of the first node is activated indicates the position of the bit, which is in 2 bit positions among the 4 bits. For example, the highest 2 digits or the lowest 2 digits. Whether the RLC entity of the second node activates the position of the indicator bit, which is the lower 2 bits or the upper 2 bits of the 4 bits.
  • the second status indication information or the third status indication information is that the bitmap has 4 bits. Assuming that there are 2 RLC entities on the first node and 1 RLC entity on the second node, it can be agreed Whether the RLC entity of the first node is activated indicates the position of the bit, which is in 2 bit positions among the 4 bits. For example, the highest 2 digits or the lowest 2 digits. Whether the RLC entity of the second node activates the position of the indicator bit, which is the lower 1 bit or the higher 1 bit of the 4 bits.
  • the second status indication information is a set of status information included in the LCH configuration corresponding to each RLC entity, and the status information included in the LCH configuration indicates whether the RLC entity corresponding to the LCH is activated. It can be understood that all RLC entities are equal at this time, and one bit is required to indicate the repeated transmission state.
  • the first node may set a repeated transmission status bit in the logical channel configuration where each logical channel is located through RRC signaling to indicate the repeated transmission status of the associated LCH ID.
  • RLC entities configured for RBs established between different RBs and network devices.
  • some terminal equipment is configured with only 2 RLC entities with repeated transmission of RBs, and some terminal equipment is configured with more than 2 RLC entities with repeated transmission of RBs; or, in the case of a terminal device, it is configured with only 2 RBs.
  • RBs for repeated transmissions of two RLC entities In some cases, more than two RBs for repeated transmissions of RLC entities are configured; or a terminal device is configured for one RB with repeated transmissions of only two RLC entities, and for another RB A bearer for repeated transmission of more than 2 RLC entities is configured.
  • the second state indication information or the third state indication information may also include another field, which indicates the second state or the first state.
  • the control message of the three-state indication message For example, this field contains a preset logical channel identifier. This preset identifier is different from the control message used to identify the activation and deactivation of the PDCP repeated transmission of the RB that restricts the repeated transmission of two RLC entities.
  • the field in this control message indicates whether to activate the repetitive mode through the bit status of the same bit, and indicates the RB corresponding to the repetitive transmission associated with a MAC entity through the bit position of the same bit.
  • the fields in the control message are located by the same bit The bit position indicates the RB corresponding to the repeated transmission that is associated with a MAC entity and is configured by means of an existing standard identification.
  • one bit position of the second state indication information or the third state indication information can be used to correspond to the position of one RLC entity.
  • Logical channel identifier e.g., a wireless data bearer of more than or equal to 2 RLC entities that is repeatedly transmitted is identified in a possible manner. In this way, the activation and deactivation control of all repeatedly transmitted wireless data bearers can be realized through a unified status indication.
  • the terminal device can clearly learn more than two RLC entities based on the second status indication information. Which of the corresponding more than two channels can be used to transmit PDCP data to the network device (uplink transmission).
  • the existing protocol does not provide a solution for the master node to learn the status of each channel established on the slave node through indication information.
  • the existing protocol only provides that the master node can notify the slave node whether to enable the function of repeated transmission. If enabled, the receiving end node can send an activation/deactivation command for repeated transmission to the terminal device.
  • the method embodiment shown in FIG. 4 of the present application can provide accurate channel state information for the terminal device and improve the performance of repeated transmission.
  • the above-mentioned configuration information may also include mode indication information, which is used to inform the second node of the above-mentioned repeated transmission mode of PDCP data, and the mode is one of the following three types: carrier aggregation CA, dual connectivity DC, or CA and DC.
  • the existing protocol stipulates that the repeated transmission mode of PDCP data is CA or DC. That is, when one RLC entity is configured on the first node and the second node, the repeated transmission mode of PDCP data is called DC mode; when two RLC entities are configured on one node, the repeated transmission mode of PDCP data is called CA mode.
  • the difference between one RB corresponding to two RLC entities specified in the existing protocol is that the first node and the second node
  • Two RLC entities can be configured at the same time. It can display the repeated transmission mode of PDCP data.
  • the above-mentioned mode indication information directly indicates the CA mode (CA based duplication configured), or the above-mentioned mode indication information directly indicates the DC mode (DC based duplication configured), or the above-mentioned mode indication information directly indicates DC+ CA mode (DC based duplication configured and CA based duplication configured).
  • one RLC entity is configured on the first node, and three RLC entities (1+3 channels) are configured on the second node, and the mode indication information directly indicates that the mode of repeated PDCP data transmission is the CA+DC mode; or No RLC entity is configured on one node, 4 RLC entities (0+4 channels) are set on the second node, and the mode indication information directly indicates that the mode of repeated PDCP data transmission is CA mode; or, the first node is configured with Two RLC entities, two RLC entities (2+2 channels) are configured on the second node, and the mode indication information directly indicates that the PDCP data repeated transmission mode is CA+DC.
  • the above-mentioned mode indication information is mainly applied in the CU-DU scenario, because for the CA mode in the CU-DU scenario, one DU can only control the channel on the DU. For the DC mode, any DU can control the state of another DU, which will be described in detail below with reference to FIG. 6.
  • this application does not limit that the first node and the second node must exchange the identifier corresponding to the RLC entity.
  • the first node cannot learn the number of RLC entities established by the second node and the number of RLC entities established by the second node.
  • the second node generates a repeated transmission status bit in the logical channel configuration where each logical channel is located, indicating the repeated transmission status of the RLC entity corresponding to the associated LCH ID, and the second node sends each logical channel configuration to the first The node sends to the terminal device through the RRC message of the first node.
  • the first node and the second node do not need to display the corresponding identification of the interactive RLC entity.
  • the first node only controls whether the RLC entity established by the first node is activated, and the second node only controls whether the RLC entity established by the second node is activated.
  • the first node may also send third indication information to the second node, indicating that at least one RLC entity of the RLC entity established in the second node is in a deactivated state.
  • the first node is the CU-UP and CU-CP shown in Figure 2(b)
  • the second node is In the DU shown in Figure 2(b)
  • the CU-UP and CU-CP in the first node have different functions
  • the first node sends configuration information to the second node.
  • the configuration information includes address information of N uplink tunnels.
  • CU-CP informs CU-UP that N tunnels need to be established.
  • CU-UP is based on The N tunnels that need to be established are allocated the address information of the N uplink tunnels, and the address information of the N uplink tunnels are sent to the CU-CP, and the CU-CP sends the address information to the DU;
  • the first node sends configuration information to the second node.
  • the configuration information includes channel number indication information.
  • the CU-CP informs the DU to instruct the DU to establish the number of RLC entities.
  • One node can perform the function of CU-CP.
  • the first node sends configuration information to the second node.
  • the configuration information includes the second indication information.
  • the CU-CP notifies the DU to indicate the initial state of each RLC entity established by the DU, that is, this When the first node executes the CU-CP function.
  • the CU-CP can also indicate the initial state of each RLC entity established by the CU-UP.
  • the first node receives the response message sent by the second node, the response message includes the address information of the N downlink tunnels respectively configured for the address information of the N uplink tunnels, and the CU-CP receives the response message After that, the response message needs to be forwarded to the CU-UP, so that the CU-UP learns the address information of the N downlink tunnels of the N tunnels.
  • the first node receives the response message sent by the second node, and the response message includes the first status indication information.
  • the CU-CP needs to forward the response message to the CU-UP, so that The CU-UP determines the second status indication information according to the first status information.
  • the first node sends the configuration information to the second node, the CU-CP notifies the DU, instructing the DU to delete some or all of the RLC entities that establish the RLC entity, that is to say, the first node executes CU- The function of CP is sufficient.
  • the CU-CP may also instruct the CU-UP to delete a part or all of the RLC entities for establishing the RLC entity.
  • the first node sends the first indication information to the second node, the CU-CP notifies the DU, indicating the number of RLC entities allowed to be activated on the DU, that is to say, the first node executes CU-CP at this time.
  • the function can be.
  • the CU-CP may also indicate the number of RLC entities allowed to be activated on the CU-UP.
  • the first node determines the second status indication information and sends the second status indication information to the terminal device
  • the CU-UP determines the second status indication information according to the first status information
  • the CU-CP sends the second status indication information to the terminal device, that is, the CU-CP determines the second status indication information and sends the second status indication information to the terminal device, that is, the first node executes the CU at this time -CP function is sufficient. It should be understood that this application does not limit the first node to be one device.
  • the first node is the CU-UP and CU-CP shown in Figure 2(b), and the CU-UP and CU-CP are set differently from each other.
  • the first node can be understood as a set of devices with CU-UP and CU-CP respectively.
  • the first node implements the configuration of the tunnel in the second node, and the number and status of the channels. And it does not limit the specific forms of the first node and the second node (it can be a RAN device or a CU or DU).
  • the second node is configured according to the configuration on the second node.
  • the number of channels of PDCP data transmitted between the network device and the terminal device is determined to be CA or DC for repeated transmission of PDCP data, because in the existing communication method, the number of channels established by the network device and the terminal device is 2 in total, that is Say that either the second node is configured with a channel with the terminal device, and the repeated transmission of PDCP data can be understood as DC mode, or the second node is configured with 2 channels with the terminal device, and the repeated transmission of PDCP data can be understood It is CA mode.
  • the number of channels configured between the network device and the terminal device as shown in FIG. 4 for transmitting PDCP data is more than two. Then for the second node, when the number of RLC entities that may be established on the second node is 2, at least one RLC entity is still configured on other DUs connected to the first node, that is, repeated transmission of PDCP data Can be CA+DC mode.
  • Fig. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application. Including the first node and the second node and steps S210 and S220.
  • S210 The first node determines mode indication information.
  • the mode indication information is used to indicate the mode for the second node to perform PDCP data repeated transmission.
  • the number of channels configured for repeated PDCP data transmission between the network device and the terminal device is 3, the first node is CU, the second node is DU, and the first node is connected to a total of two DUs.
  • There are two RLC entities established on the node and the second node can no longer consider the repeated transmission mode of PDCP data to be the CA mode based on the number of established RLC entities being 2.
  • the number of channels configured to transmit PDCP data between the network device and the terminal device is 3, when two RLC entities are established on the second node, an RLC entity is established on another DU connected to the first node. Therefore, at this time, it should be considered that the repeated transmission mode of PDCP data is the CA+DC mode, that is, the first node should determine the mode indication information to instruct the second node to perform the repeated transmission of PDCP data as the CA+DC mode.
  • the number of channels configured between the network device and the terminal device for repeated PDCP data transmission is 3, the first node is CU, the second node is DU, and the first node is connected to a total of two DUs.
  • One RLC entity is established on the two nodes, and the repeated transmission mode of PDCP data can no longer be considered as the DC mode based on the number of established RLC entities being 1.
  • the repeated transmission mode of PDCP data is the CA+DC mode, that is, the first node should determine the mode indication information to instruct the second node to perform the repeated transmission of PDCP data as the CA+DC mode.
  • the number of channels configured to transmit PDCP data between the network device and the terminal device is 3, the first node is a CU, the second node is a DU, and the first node is connected to a total of 3 DUs, when 3 One RLC entity is established on each of the DUs, and the first node should determine the mode indication information to instruct the three DUs to perform PDCP data repeated transmission mode as the DC mode.
  • the number of channels configured to transmit PDCP data between the network device and the terminal device is 3, the first node is a CU, the second node is a DU, and the first node is connected to a total of two DUs. There are three RLC entities established on the node, and the first node should determine the mode indication information, indicating that the mode for the repeated PDCP data transmission of the two DUs is the CA mode.
  • S220 The first node sends mode indication information to the second node.
  • the second node After receiving the mode indication information, the second node can accurately learn which type of repeated transmission mode of the current PDCP data is.
  • the second node does not need to infer the mode of repeated PDCP data transmission based on the number of RLC entities established by itself, but instead indicates the mode of repeated PDCP data transmission through the mode indication information. Therefore, it is avoided that the node infers that the repeated transmission mode may be inaccurate based on the number of established RLC entities, thereby improving the performance of repeated PDCP data transmission.
  • the configuration process in the PDCP data repeated transmission process is mainly introduced above in conjunction with Fig. 4 and Fig. 6, and the data transmission process is briefly introduced in conjunction with Fig. 7 below.
  • FIG. 7 is a schematic flowchart of yet another communication method provided by an embodiment of the present application. Including the first node and the second node and steps S310-S320. Specifically, the communication method shown in FIG. 7 is different from the data packet transmission process in the PDCP data repeated transmission process prescribed by the existing protocol in that nodes that are not configured with a PDCP entity can perform repetitive detection.
  • the first node and the second node may be the aforementioned access network equipment or may be the aforementioned CU or DU.
  • the first node is the RAN device 140 shown in FIG. 1, and the second node is the RAN device 142 shown in FIG. 1; or, the first node is the RAN device 142 shown in FIG.
  • the second node is The RAN device 140 shown in Fig. 1; or, the first node is the CU shown in Fig. 2(a), and the second node is the DU shown in Fig. 2(a); or, the first node is Fig. 2
  • the second node is the DU shown in Figure 2(b).
  • the repetitive detection involved in the method flow shown in FIG. 7 of the present application is similar to the repetitive detection specified in the existing protocol, and it is judged whether multiple data packets are the same data packet based on the sequence number of the data packet.
  • the specific process of repetitive detection is not limited in this application, and it may reuse the repetitive detection process specified in the existing protocol.
  • the method flow shown in FIG. 7 of this application mainly introduces why the secondary node can perform repetitive detection.
  • the first node corresponds to a node, that is to say, no PDCP entity is configured on the first node.
  • S310 The first node receives PDCP data.
  • the first node receives at least one piece of PDCP data or RLC data sent by the second node through N tunnels.
  • the data packet sent by the second node can be regarded as PDCP data or RLC data.
  • N 2, which means that the second node transmits the same PDCP data packet to the first node through two tunnels.
  • the first node receives at least one piece of PDCP data sent by the terminal device through at least one RLC entity established on the first node.
  • three RLC entities are established on the first node, that is, the first node receives the same PDCP data packet sent by the terminal device through three channels corresponding to the three RLC entities.
  • the second node that is, the hosting PDCP node
  • one copy of PDCP data needs to be copied into two copies and sent to the first node through two tunnels respectively.
  • the two copies of data have the same PDCP sequence Number (serial number, SN) or general packet radio service tunneling protocol user plane (GPRS tunnelling protocol-user plane, GTP-U).
  • PDCP sequence Number serial number
  • GTP-U general packet radio service tunneling protocol-user plane
  • S320 The first node performs repeatability detection.
  • the first node receives N pieces of PDCP data sent by the second node through N tunnels.
  • each piece of PDCP data in the N pieces of PDCP data includes PDCP SN; or, each piece of data in the N pieces of PDCP data includes GTP-U SN.
  • the first node parses and obtains the PDCP SN or GTP-U SN of each PDCP data packet, and then performs repetitive detection according to the PDCP SN or GTP-U SN of each PDCP data packet.
  • the first node receives at least one piece of PDCP data sent by the terminal device through at least one RLC entity established on the first node.
  • each piece of PDCP data in the at least one piece of PDCP data includes PDCP SN.
  • the first node parses and obtains the PDCP SN of each PDCP data packet, and then performs repetitive detection according to the PDCP-SN of each PDCP data packet.
  • S330 The first node sends PDCP data.
  • the number of tunnels between the first node and the second node may be two, but the number of channels between the first node and the terminal device may be at least one.
  • the number of channels between the first node and the terminal device is 4, and the first node receives 2 copies of PDCP data packets from the second node through 2 tunnels, and a duplicate data packet can be discarded after repeated detection. Copy the remaining data packets to obtain 4 data packets, and send them to the terminal device through 4 channels; or, the number of channels between the first node and the terminal device is 4, and the first node only receives one copy PDCP data packet (data packet transmission failure on a tunnel due to some reason)
  • the first node can copy a received PDCP data packet to obtain 4 data packets, and send them to the terminal device through 4 channels respectively. It can avoid that even if a tunnel transmission data packet is lost, the same PDCP data packet can be repeatedly transmitted on multiple channels, and the number of tunnels between nodes does not need to be equal to the number of channels, saving resources.
  • the number of tunnels between the first node and the second node can be more than 2, but the number of channels between the first node and the terminal device can be at least one .
  • the number of channels between the first node and the terminal device is 2, and the first node receives 3 copies of PDCP data packets from the second node through 3 tunnels, and one duplicate data packet can be discarded after repeated detection.
  • Two channels are sent to the terminal device; or, the number of channels between the first node and the terminal device is 4, and the first node only receives one copy of the PDCP packet (data packets on the 2 tunnels caused by some reason Transmission failure)
  • the first node can copy a received PDCP data packet to obtain 4 data packets, and send them to the terminal device through 4 channels respectively. It can avoid that the same PDCP data packet can be repeatedly transmitted on multiple channels even if multiple tunnel transmission data packets are lost.
  • the number of channels between the first node and the terminal device may be at least one, and the number of tunnels between the first node and the second node may be multiple.
  • the number of channels between the first node and the terminal device is one, and the number of tunnels between the first node and the second node is two.
  • the first node receives a PDCP data packet from the terminal device through a channel, copies the data packet to obtain two data packets, and sends them to the second node through two tunnels respectively; or, the first node and the terminal device
  • the number of channels between the first node and the second node is 2, and the number of tunnels between the first node and the second node is 2.
  • the first node receives 4 PDCP data packets from the terminal device through one channel. Discard 2 duplicate data packets, and send the remaining data packets to the second node through 2 tunnels respectively.
  • the data packets are sent to the second node through two tunnels respectively; or, the number of channels between the first node and the terminal device is 4, the number of tunnels between the first node and the second node is 2, and the A node receives 4 copies of PDCP data packets from the terminal device through one channel, without performing repetitive detection, and sends the received data packets to the second node through two tunnels respectively.
  • the managed PDCP entity node can determine a suitable downlink repeated transmission transmission channel according to the auxiliary information sent by the corresponding node to perform repeated transmission of downlink data.
  • a corresponding node sends through a downlink user plane transmission channel is a bearer's auxiliary information, which contains at least one of the following information: the downlink wireless quality index represents the downlink wireless quality of the data wireless bearer, and the uplink wireless quality index represents the data The uplink wireless quality of the radio bearer, average continuous quality improvement (CQI), average hybrid automatic retransmission request (HARQ) failure, average HARQ retransmission data, power headroom report (power headroom) report, PHR).
  • CQI continuous quality improvement
  • HARQ average hybrid automatic retransmission request
  • PHR power headroom report
  • the corresponding node should send the corresponding RLC entity or auxiliary information of the repeated transmission channel on each transmission tunnel.
  • each tunnel When there is a one-to-one correspondence between repeated transmission channels and repeated transmission tunnels, each tunnel transmits auxiliary information related to an RLC entity. When there is no one-to-one correspondence between the repeated transmission channel and the repeated transmission tunnel, each tunnel transmits one or more RLC-related auxiliary information. In addition to the above auxiliary information, the repeated transmission channel associated with the auxiliary information is also added. Information to facilitate whether the node hosting the PDCP entity informs the relevant node to send to configure or deactivate the relevant repeated transmission RLC entity.
  • each tunnel transmission is one or more RLC-related auxiliary information, but does not distinguish the repeated transmission channel to which the auxiliary information belongs, and the managed PDCP entity node carries all the information according to this
  • the wireless status determines whether to notify the related node to send to configure or deactivate the related repeated transmission RLC entity.
  • the escrow node can be extended to send the above-mentioned auxiliary information of a bearer to the auxiliary node.
  • FIG. 8 is a schematic diagram of the communication device 10 proposed in the present application.
  • the device 10 includes a receiving unit 110 and a processing unit 121.
  • the receiving unit is configured to receive second status indication information sent by the first node, where the second status indication information indicates whether each of the more than two RLC entities corresponding to the PDCP entity is activated or on the first node Whether the established RLC entity is activated;
  • the processing unit 320 is configured to determine whether each RLC entity among more than two RLC entities corresponding to the PDCP entity or the RLC entity established on the first node is activated according to the second status indication information.
  • the receiving unit is configured to receive third status indication information sent by the second node, where the third status indication information indicates whether each of the more than two RLC entities corresponding to the PDCP entity is activated or on the second node Whether the established RLC entity is activated;
  • the processing unit 320 is configured to determine whether each RLC entity among more than two RLC entities corresponding to the PDCP entity or the RLC entity established on the second node is activated according to the third status indication information.
  • the device 10 is completely corresponding to the terminal device in the method embodiment, and the corresponding unit of the device 10 is used to execute the corresponding steps performed by the terminal device in the method embodiment shown in FIGS. 4-7.
  • the receiving unit 110 in the apparatus 10 executes the steps of the terminal device receiving in the method embodiment. For example, step 190 of receiving the second status indication information sent by the first node in FIG. 4 is performed.
  • the processing unit 121 executes the steps implemented or processed inside the terminal device in the method embodiment.
  • the apparatus 10 may further include a sending unit 130 for sending information to other devices.
  • the receiving unit 110 and the sending unit 130 may constitute a transceiver unit, and have both receiving and sending functions.
  • the processing unit 121 may be a processor.
  • the sending unit 130 may be a transmitter.
  • the receiving unit 110 may be a receiver. The receiver and transmitter can be integrated to form a transceiver.
  • FIG. 9 is a schematic structural diagram of a terminal device 20 applicable to an embodiment of the present application.
  • the terminal device 20 can be applied to the system shown in FIG. 1.
  • FIG. 9 only shows the main components of the terminal device.
  • the terminal device 20 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is used to control the antenna and the input and output device to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory to execute the corresponding process and/or executed by the terminal device in the communication method proposed in this application. Or operation. I won't repeat them here.
  • FIG. 9 only shows a memory and a processor. In actual terminal devices, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • An input and output device configured to receive second status indication information sent by the first node, where the second status indication information indicates whether each RLC entity among more than two RLC entities corresponding to the PDCP entity is activated, or indicates Whether the RLC entity established on the first node is activated; or,
  • An input and output device configured to receive third status indication information sent by the second node, where the third status indication information indicates whether each RLC entity among more than two RLC entities corresponding to the PDCP entity is activated, or indicates Whether the RLC entity established on the second node is activated.
  • the processor is configured to parse the second status indication information or the third status indication information, and determine, according to the third status indication information, the RLC established on the second node among more than two RLC entities corresponding to the PDCP entity Whether each RLC entity of the entity is activated; or, according to the second status indication information, it is determined whether each RLC entity of more than two RLC entities corresponding to the PDCP entity or the RLC entity established on the first node is activated.
  • the second status indication information includes:
  • a preset field one bit in the preset field is used to indicate whether an RLC entity established on the first node is activated, and the bit corresponding to the RLC entity established on the first node is in the preset field
  • the positions of are ordered according to the size of the LCH identifiers of the RLC entities established on the first node; or, the state information included in the LCH configuration corresponding to each RLC entity established on the first node, the state information indicates Whether the corresponding RLC entity is activated.
  • the second status indication information includes:
  • a preset field one bit in the preset field is used to indicate whether an RLC entity established on the first node and the second node is activated, and the RLC entity established on the first node and the second node corresponds to
  • the positions of the bits in the preset field are sorted according to the size of the LCH identifiers of the RLC entities established on the first node and the second node; or, each RLC established on the first node and the second node.
  • the third status indication information includes:
  • a preset field one bit in the preset field is used to indicate whether an RLC entity established on the second node is activated, and the bit corresponding to the RLC entity established on the second node is in the preset field
  • the positions of are ordered according to the size of the LCH identifiers of the RLC entities established on the second node; or, the status information included in the LCH configuration corresponding to each RLC entity established on the second node, the status information indicates Whether the corresponding RLC entity is activated.
  • the third status indication information includes:
  • a preset field one bit in the preset field is used to indicate whether an RLC entity established on the first node and the second node is activated, and the RLC entity established on the first node and the second node corresponds to
  • the positions of the bits in the preset field are sorted according to the size of the LCH identifiers of the RLC entities established on the first node and the second node; or, each RLC established on the first node and the second node.
  • FIG. 10 is a schematic diagram of the communication device 30 proposed in the present application.
  • the device 30 includes a sending unit 310 and a processing unit 320.
  • the processing unit 320 is configured to determine configuration information, where the configuration information is used to instruct the second node to establish N tunnels, where the tunnel is used to transmit between the first node and the second node PDCP data or RLC data, N is an integer greater than or equal to 2;
  • the sending unit 310 sends the configuration information to the second node.
  • the device 30 completely corresponds to the first node in the method embodiment, and the corresponding unit of the device 30 is used to execute the corresponding steps executed by the first node in the method embodiment shown in FIGS. 4-7.
  • the sending unit 310 in the device 30 executes the steps sent by the first node in the method embodiment. For example, step 120 of sending the configuration information to the second node in FIG. 4 is performed.
  • the processing unit 320 executes the steps implemented or processed internally by the first node in the method embodiment. For example, step 110 of determining configuration information in FIG. 4 is performed.
  • the apparatus 30 may further include a receiving unit 330, configured to receive information sent by other devices.
  • a receiving unit 330 configured to receive information sent by other devices.
  • step 150 of receiving a response message sent by the second node in FIG. 4 is performed.
  • the receiving unit 330 and the sending unit 310 may constitute a transceiver unit, and have both receiving and sending functions.
  • the processing unit 320 may be a processor.
  • the transmitting unit 310 may be a transmitter.
  • the receiving unit 330 may be a receiver. The receiver and transmitter can be integrated to form a transceiver.
  • FIG. 11 is a schematic structural diagram of a first node 40 applicable to an embodiment of the present application.
  • the first node 40 can be applied to the system shown in FIG. 1 or FIG. 2.
  • FIG. 11 only shows the main components of the first node.
  • the first node 40 may correspond to (for example, may be configured in or be itself) the managed PDCP node described in the above method embodiment, or the centralized unit described in the above method embodiment, or the interface described in the above method embodiment.
  • the first node 40 may include: a processor 401 and a transceiver 402, and the processor 401 and the transceiver 402 are communicatively coupled.
  • the first node 40 further includes a memory 403, and the memory 403 is communicatively coupled with the processor 401.
  • the processor 401, the memory 403, and the transceiver 402 may be communicatively coupled.
  • the memory 403 may be used to store instructions.
  • the processor 401 is used to execute instructions stored in the memory 403 to control the transceiver 402 to receive and/or Send information or signals.
  • the processor 401 and the transceiver 402 are respectively configured to execute the managed PDCP node described in the above method embodiment, or the centralized unit described in the above method embodiment, or the access network device described in the above method embodiment, or The CU-CP described in the above method embodiment, each action or processing process performed.
  • FIG. 11 only shows a memory and a processor. In the actual first node, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor is configured to determine configuration information, where the configuration information is used to instruct the second node to establish N tunnels, where the tunnel is used to connect between the first node and the second node.
  • PDCP data or RLC data is transmitted between, and N is an integer greater than or equal to 2.
  • the transceiver is configured to send the configuration information to the second node.
  • the configuration information is further used to instruct the second node to establish N RLC entities; or,
  • the configuration information also includes channel number indication information, where the channel number indication information is used to instruct the second node to establish M RLC entities, and M is a positive integer.
  • each RLC entity established by the second node corresponds to an identifier
  • the transceiver is further configured to receive a response message sent by the second node, where the response message includes an identifier corresponding to each RLC entity established by the second node.
  • the transceiver is further configured to send deconfiguration information to the second node, where the deconfiguration information is used to instruct the second node to delete at least one RLC entity, wherein the deconfiguration information includes the at least An identifier corresponding to each RLC entity in an RLC entity; or, the de-configuration information includes a first value, and the first value is the number instructing the second node to delete the RLC entity; or, the at least one The RLC entity is part or all of the RLC entities established by the second node except the main RLC entity.
  • the transceiver is further configured to send first indication information to the second node, where the first indication information indicates the number of RLC entities allowed to be activated on the second node, where the first indication information Includes a second value, where the second value is the value of the number of RLC entities allowed to be activated on the second node; or, the first indication information includes a third value, where the third value is the N The number of tunnels that are initially activated.
  • the configuration information includes second indication information, the second indication information is used to indicate the initial state of each RLC entity established by the second node, and the second indication information indicates the The initial state of each RLC entity established by the second node is the active state; or, the second indication information includes a fourth value, and the fourth value is that the initial state of the RLC entity established by the second node is active The number of state RLC entities; or, the second indication information indicates that the repetitive transmission mode of the RB is an active state, and the repetitive transmission mode refers to the transmission of PDCP data of the RB through multiple RLC entities.
  • the processor is further configured to determine second status indication information, where the second status indication information indicates whether each of the more than two RLC entities corresponding to the PDCP entity is activated, or indicates that the first Whether the RLC entity established on the node is activated;
  • the transceiver is also used for terminal equipment to send the second status indication information.
  • the second status indication information includes:
  • a preset field one bit in the preset field is used to indicate whether an RLC entity established on the first node is activated, and the bit corresponding to the RLC entity established on the first node is in the preset field
  • the positions of are ordered according to the size of the LCH identifiers of the RLC entities established on the first node; or, the state information included in the LCH configuration corresponding to each RLC entity established on the first node, the state information indicates Whether the corresponding RLC entity is activated.
  • the second status indication information includes:
  • a preset field one bit in the preset field is used to indicate whether an RLC entity established on the first node and the second node is activated, and the RLC entity established on the first node and the second node corresponds to
  • the positions of the bits in the preset field are sorted according to the size of the LCH identifiers of the RLC entities established on the first node and the second node; or, each RLC established on the first node and the second node.
  • the configuration information includes mode indication information, and the mode indication information is used to indicate a mode of repeated PDCP data transmission by the second node.
  • the configuration information includes information of the RB and address information of the N tunnels.
  • the transceiver is also used to receive at least one piece of PDCP data
  • the processor is further configured to perform repeatability detection based on the serial number corresponding to each piece of PDCP data in the at least one piece of PDCP data.
  • the transceiver receives at least one piece of PDCP data sent by the second node through the N tunnels;
  • the transceiver After the processor performs repetitive detection, the transceiver sends multiple copies of PDCP data to the terminal device through multiple RLC entities established by the processor; or, the transceiver at least An RLC entity receives at least one piece of PDCP or RLC data sent by the terminal device;
  • the transceiver After the processor performs repetitive detection, the transceiver sends multiple copies of PDCP data to the second node through the N tunnels.
  • FIG. 12 is a schematic diagram of the communication device 50 proposed in the present application.
  • the device 50 includes a receiving unit 410 and a processing unit 420.
  • the receiving unit 410 is configured to receive configuration information sent by the first node, where the configuration information is used to instruct the second node to establish N tunnels, where the tunnel is used to connect between the first node and the first node.
  • PDCP data or RLC data is transmitted between two nodes, and N is an integer greater than or equal to 2;
  • the processing unit 420 is configured to establish the N tunnels with the first node according to the configuration information and analyze configuration information.
  • the device 50 completely corresponds to the second node in the method embodiment, and the corresponding unit of the device 50 is used to execute the corresponding steps performed by the second node in the method embodiment shown in FIGS. 4-7.
  • the receiving unit 410 in the device 50 executes the step of receiving by the second node in the method embodiment. For example, step 120 of receiving configuration information sent by the first node in FIG. 4 is performed.
  • the processing unit 420 executes the steps implemented or processed internally by the second node in the method embodiment.
  • the apparatus 50 may further include a sending unit 430 for sending information to other devices.
  • a sending unit 430 for sending information to other devices.
  • step 150 of the response message sent to the first node in FIG. 4 is executed.
  • the receiving unit 410 and the sending unit 430 may constitute a transceiver unit, and have both receiving and sending functions.
  • the processing unit 420 may be a processor.
  • the sending unit 430 may be a transmitter.
  • the receiving unit 41 may be a receiver. The receiver and transmitter can be integrated to form a transceiver.
  • FIG. 13 is a schematic structural diagram of a second node 60 applicable to an embodiment of the present application.
  • the second node 60 can be applied to the system shown in FIG. 1 or FIG. 2.
  • 13 only shows the main components of the second node.
  • the second node 60 may correspond to (for example, may be configured in or be itself) the corresponding node described in the above method embodiment, or the distributed unit described in the above method embodiment, or the interface described in the above method embodiment.
  • the second node 60 may include: a processor 601 and a transceiver 602, and the processor 601 and the transceiver 602 are communicatively coupled.
  • the second node 60 further includes a memory 603, and the memory 603 is communicatively coupled with the processor 601.
  • the processor 601, the memory 603, and the transceiver 602 may be communicatively coupled, the memory 603 may be used to store instructions, and the processor 601 is used to execute the instructions stored in the memory 603 to control the transceiver 602 to receive and/or Send information or signals.
  • the processor 601 and the transceiver 602 are respectively configured to execute the corresponding node described in the above method embodiment, or the distributed unit described in the above method embodiment, or the access network device described in the above method embodiment, or the above method
  • the CU-UP described in the embodiment each action or process performed.
  • FIG. 13 only shows a memory and a processor. In the actual second node, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • a transceiver configured to receive configuration information sent by the first node, where the configuration information is used to instruct the processor to establish N tunnels, where the tunnels are used to connect between the first node and the second node PDCP data or RLC data is transmitted between, and N is an integer greater than or equal to 2;
  • the processor is configured to establish the N tunnels with the first node according to the configuration information.
  • the configuration information is further used to instruct the processor to establish N RLC entities; or,
  • the configuration information also includes channel number indication information, where the channel number indication information is used to instruct the processor to establish M RLC entities, and M is a positive integer.
  • the processor is further configured to configure an identifier for each RLC entity established by the processor;
  • the transceiver is configured to send a response message to the first node, where the response message includes an identifier corresponding to each RLC entity established by the processor.
  • the transceiver is further configured to receive deconfiguration information sent by the first node, where the deconfiguration information is used to instruct the processor to delete at least one RLC entity, wherein the deconfiguration information includes the at least An identifier corresponding to each RLC entity in an RLC entity; or, the deconfiguration information includes a first value, and the first value is the number of RLC entities deleted by the processor; or, the at least one RLC entity Part or all of the RLC entities except the main RLC entity among all RLC entities established for the processor.
  • the transceiver is further configured to receive first indication information sent by the first node, where the first indication information indicates the number of RLC entities that are allowed to be activated on the second node, or the processor is based on a preset Define the number of RLC entities allowed to be activated. Determine the number of RLC entities allowed to be activated on the second node, where the first indication information includes a second value, and the second value is the number allowed on the second node. The value of the number of activated RLC entities; or, the first indication information includes a third value, and the third value is the value of the initially activated tunnels in the N tunnels.
  • the configuration information includes second indication information, the second indication information is used to indicate the initial state of each RLC entity established by the processor, and the second indication information indicates the processing
  • the initial state of each RLC entity established by the processor is the active state; or, the second indication information includes a fourth value, and the fourth value is the RLC entity of the RLC entity established by the processor whose initial state is the active state.
  • the number of entities; or, the second indication information indicates that the repetitive transmission mode of the RB is in an active state, and the repetitive transmission mode refers to the transmission of PDCP data of the RB through multiple RLC entities.
  • the processor is further configured to determine third status indication information, where the third status indication information indicates whether each RLC entity in more than two RLC entities corresponding to the PDCP entity is activated, or indicates the second Whether the RLC entity established on the node is activated;
  • the transceiver is configured to send the third status indication information to a terminal device.
  • the third status indication information includes:
  • a preset field one bit in the preset field is used to indicate whether an RLC entity established on the second node is activated, and the bit corresponding to the RLC entity established on the second node is in the preset field
  • the positions of are ordered according to the size of the LCH identifiers of the RLC entities established on the second node; or, the status information included in the LCH configuration corresponding to each RLC entity established on the second node, the status information indicates Whether the corresponding RLC entity is activated.
  • the third status indication information includes:
  • the third status indication information includes:
  • a preset field one bit in the preset field is used to indicate whether an RLC entity established on the first node or the second node is activated, and the RLC entity established on the first node and the second node corresponds to
  • the positions of the bits in the preset field are sorted according to the size of the LCH identifiers of the RLC entities established on the first node and the second node; or, each RLC established on the first node and the second node.
  • the configuration information includes mode indication information, and the mode indication information is used to indicate a mode of repeated PDCP data transmission by the second node.
  • An embodiment of the present application also provides a communication system, which includes the aforementioned terminal device, a first node, and a second node.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the first method shown in FIGS. 4-7. The steps performed by the node.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the second method shown in FIGS. 4-7. The steps performed by the node.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the above-mentioned method shown in FIG. 4 to FIG. 7. The various steps performed.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the first node in the method shown in FIGS. 4-7.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the second node in the method shown in FIGS. 4-7.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the terminal device in the method shown in FIGS. 4-7.
  • This application also provides a chip including a processor.
  • the processor is used to read and run a computer program stored in the memory to execute the corresponding operation and/or process executed by the first node in the communication method provided by the present application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • This application also provides a chip including a processor.
  • the processor is used to call and run a computer program stored in the memory to execute the corresponding operation and/or process executed by the second node in the communication method provided by this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • This application also provides a chip including a processor.
  • the processor is used to read and run the computer program stored in the memory to execute the corresponding operation and/or process executed by the terminal device in the communication method provided by this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,该通信方法包括:网络设备和终端设备之间需要建立RB,网络设备包括第一节点和第二节点,RB对应的功能实体包括一个PDCP实体、PDCP实体对应的多于两个的RLC实体,该方法包括:第一节点确定配置信息,配置信息用于指示第二节点建立N个隧道,其中,隧道用于在第一节点和第二节点之间传输PDCP数据或RLC数据,N为大于或者等于2的整数,第一节点向第二节点发送配置信息。本申请提供的技术方案,充分利用终端设备与接入网设备通信时可使用的多载波和双连接特性,提高PDCP数据重复传输的性能。

Description

通信方法和通信装置
本申请要求于2019年03月29日提交中国专利局、申请号为201910252461.0、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
未来的第五代(5th generation,5G)系统主要支持三类业务:
增强型移动宽带通信(enhanced mobile broadband,eMBB)、大量机器类型通信(massive machine type communications,mMTC)、高可靠低时延通信(ultra-reliable and low latency communications,URLLC)。对于URLLC而言,其对时延和可靠性都有比较高的要求,目前第三代合作伙伴项目(the 3rd generation partnership project,3GPP)组织给出的一种满足时延和可靠性要求的方案:重复(duplication)传输机制,即通过多个路径传输相同的分组数据聚合协议(packet data convergence protocol,PDCP)层协议数据单元(protocol data unit,PDU),通过多路传输增益提升传输可靠性,并降低传输时延,以下简称为PDCP数据重复传输。
具体地,PDCP数据重复传输分为载波聚合(carrier aggregation,CA)下PDCP数据重复传输和双连接(dual connectivity,DC)下PDCP数据重复传输。终端设备和接入网(radio access network,RAN)设备之间通过空口传输的信令数据和/或业务数据可以承载在一个或多个无线承载(radio bearer,RB)上传输。其中,对于一个RB,终端设备和接入网设备分别为该RB配置一个PDCP实体,在PDCP数据重复传输的情况下,终端设备和接入网设备分别为该PDCP实体配置多个无线链路控制(radio link control,RLC)实体,并且一个RLC实体对应一个逻辑信道(logical channel,LCH)。对于CA下PDCP数据重复传输,PDCP数据重复传输对应的多个LCH在媒体接入控制(media access control,MAC)层由一个MAC实体进行处理,将来自多个不同RLC逻辑信道的数据分别映射到不同的载波上进行传输,不同的载波分别可以对应有不同的基带参数(numerology)或传输时间间隔(transmission time interval,TTI)持续时长(duration)。对于DC下PDCP数据重复传输,PDCP数据重复传输对应的多个LCH分别映射到不同的MAC实体,将来自多个不同RLC逻辑信道的数据分别映射到不同的接入网设备上进行传输,不同的接入网设备分别可以对应有不同的numerology或TTI持续时长。如何充分利用终端设备与接入网设备通信时可使用的多载波和双连接特性提高PDCP数据重复传输的性能成为亟待解决的问题。
发明内容
本申请提供一种通信方法和节点,通过充分利用终端设备与接入网设备通信时可使用的多载波和双连接场景,提高PDCP数据重复传输的性能。
第一方面,提供了一种种通信方法,在网络设备和终端设备之间建立一个无线承载RB的情况下,网络设备包括第一节点和第二节点,该RB的功能实体包括一个分组数据聚合协议PDCP实体、PDCP实体对应的多于两个的无线链路控制RLC实体,方法包括:第一节点确定配置信息,配置信息用于指示第二节点建立N个的隧道,其中,隧道用于在第一节点和第二节点之间传输PDCP数据或RLC数据,N为大于或者等于2的整数;第一节点向第二节点发送配置信息。
本申请实施例提供的通信方法,通过主节点(第一节点)向辅节点(第二节点)发送配置信息,指示辅节点建立与主节点之间多个用于传输PDCP数据或RLC数据的隧道。从而达到提高主节点与辅节点之间数据传输的可靠性。
应理解,上述的第一节点为主节点指的是第一节点与核心网设备中的认证管理功能AMF网元之间建立有传输数据和/或信令的通道。但是,本申请中并不限制主节点只能称为第一节点。
还应理解,在不同的通信系统中上述的第一节点和第二节点的具体形式可以不同。例如,在上述RB建立在无线接入网设备与终端设备之间时,第一节点可以是接入网设备RAN、第二节点也可以是接入网设备RAN;或者,在上述RB建立在分布式单元DU与终端设备之间时,第一节点可以是集中单元CU、第二节点可以是DU。具体地,第一节点为CU时,如果CU划分为CU-UP和CU-CP,应理解本申请中的第一节点同时具有CU-UP和CU-CP的功能。
还应理解,本申请可应用于在建立上述RB时,但并不限制在建立了上述RB之后,第一节点就无法向第二节点发送上述的配置信息,在网络设备和终端设备建立有RB之后,也可以通过上述的配置信息更改该RB的配置。也就是说,本申请中上述的在网络设备和终端设备之间建立一个无线承载RB的情况下可以指的是:在网络设备和终端设备之间需要建立一个无线承载RB时,或者,在网络设备和终端设备之间建立有一个无线承载RB时。
具体地,本申请实施例中的上述的配置信息包括上述的RB的信息,以及上述的N个隧道的信息。
结合第一方面,在第一方面的某些实现方式中,配置信息还用于指示第二节点建立N个RLC实体;或者,配置信息中还包括通道数指示信息,通道数指示信息用于指示第二节点建立M个RLC实体,M为正整数。
本申请实施例提供的通信方法,当主节点需要指示辅节点建立的隧道与辅节点上建立的RLC实体个数相等,还可以通过上述的配置信息还可以复用于指示第二节点建立RLC实体的个数;或者,辅节点建立的RLC实体的个数与辅节点建立的隧道个数无关,即主节点向辅节点发送通道数指示信息,指示辅节点建立RLC实体的个数。从而本申请实施例提供的通信方法,可以指示辅节点建立的隧道数和RLC实体数相等,也可以是辅节点建立的隧道数和RLC实体数之间解耦,为辅节点建立RLC实体的个数提供灵活的选择方案。
应理解,在重复传输的场景中,网络设备建立的RLC实体与网络设备和终端设备之间的通道一一对应,所以上述的辅节点建立RLC实体可以理解为辅节点建立与终端设备之间的通道。
结合第一方面,在第一方面的某些实现方式中,第二节点建立的每个RLC实体分别对应一个标识;方法还包括:第一节点接收第二节点发送的响应消息,响应消息中包括第二节点建立的每个RLC实体对应的标识,所述RLC实体对应的标识是以下多项中的至少一项:所述RLC实体的标识、所述RLC实体的逻辑信道LCH的LCH标识、所述RLC实体对应的隧道的隧道标识以及所述RLC实体对应的通道的通道标识。
本申请实施例提供的通信方法,辅节点可以为自身建立的至少一个RLC实体中的每个RLC实体配置对应的标识,即RLC实体对应的标识可以指示对应的RLC实体。可选地,为了避免在主节点和辅节点共同建立的通信系统中的RLC实体对应的标识信息发生冲突,辅节点为自身建立的RLC实体配置标识之前可以提前获知主节点上建立的RLC实体对应的标识,从而在辅节点为自身建立的RLC实体配置标识的时候,避免使用主节点上的RLC实体对应的标识。进一步地,辅节点可以将自身建立的RLC实体对应的标识通过响应消息反馈给主节点,从而主节点能够获知第二节点建立的每个RLC实体对应的标识,所述RLC实体对应的标识是以下多项中的至少一项:所述RLC实体的标识、所述RLC实体的逻辑信道LCH的LCH标识、所述RLC实体对应的隧道的隧道标识以及所述RLC实体对应的通道的通道标识。
结合第一方面,在第一方面的某些实现方式中,方法还包括:第一节点向第二节点发送去配置信息,去配置信息用于指示第二节点删除至少一个RLC实体,其中,去配置信息中包括至少一个RLC实体中各个RLC实体分别对应的标识;或者,去配置信息中包括第一数值,第一数值为指示第二节点删除RLC实体的个数;或者,至少一个RLC实体为第二节点建立的所有RLC实体中除主RLC实体之外的部分或全部RLC实体。
本申请实施例提供的通信方法,主节点还可以指示辅节点删除辅节点上已经建立的RLC实体。其中,可以通过多种方式指示,例如,在主节点已知辅节点上的RLC实体对应的标识的前提下,可以通过指示删除的RLC实体对应的标识,指示辅节点删除标识对应的RLC实体;或者,只指示需要删除的RLC实体的个数,辅节点进行删除;或者,指示辅节点删除除了主RLC实体之外的所有的RLC实体,增加方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,方法还包括:第一节点向第二节点发送第一指示信息,第一指示信息指示第二节点上允许激活的RLC实体个数,其中,第一指示信息中包括第二数值,第二数值为第二节点上允许激活的RLC实体个数的值;或者,第一指示信息中包括第三数值,第三数值为N个的隧道中初始激活的隧道的个数值。
本申请实施例提供的通信方法,主节点还可以指示辅节点能够激活的RLC实体的个数。其中,可以通过多种方式指示,例如,显示指示能够激活的RLC实体的个数;或者,指示初始状态为激活状态的隧道,辅节点基于初始状态为激活状态的隧道的个数推断能够激活的RLC实体的个数,增加方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,配置信息中包括第二指示信息,第二指示信息用于指示第二节点建立的每个RLC实体的初始状态,其中,第二指示信息指示第二节点建立的每个RLC实体的初始状态为激活状态;或者,第二指示信息中包括第四 数值,第四数值为第二节点建立的RLC实体中初始状态为激活状态的RLC实体的个数;或者,第二指示信息指示RB的重复传输模式为激活状态,重复传输模式指的是RB的PDCP数据通过多个RLC实体传输。
本申请实施例提供的通信方法,主节点还可以指示辅节点建立的RLC实体的初始状态。其中,可以通过多种方式或隐式显示辅节点建立的RLC实体的初始状态,增加方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,响应消息中还包括第一状态指示信息,第一状态指示信息用于指示第二节点建立的RLC实体中各个RLC实体是否激活;第一节点基于第一节点上的每个RLC实体是否激活以及响应消息中携带的第一状态指示信息确定第二状态指示信息,第二状态指示信息指示PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活;或者,第一节点无需基于第一状态指示信息确定第二状态指示信息,该第二状态指示信息指示第一节点上建立的RLC实体是否激活,第一节点向终端设备发送第二状态指示信息。
本申请实施例提供的通信方法,主节点可以获知辅节点上建立的RLC实体是否激活,并将自身建立的RLC实体是否激活和辅节点上建立的RLC实体是否激活通知给终端设备,使得终端设备能够知道哪些RLC实体为激活状态哪些RLC实体是否激活为非激活的状态,从而终端设备进行上行数据传输时,能够准确获知从哪些通道传输数据;或者,主节点只是将自身的RLC实体是否激活的信息发送给终端设备,使得终端设备获知主节点上建立的RLC实体是否激活。
应理解,在主节点获知辅节点上的RLC实体是否激活时,主节点还可以指示激活的RLC实体去激活。标识与第一节点建立的RLC实体对应标识相异。
还应理解,当第一节点向终端设备发送第二状态指示信息,且第二状态指示信息指示PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活时,第二节点可以通过上述的响应消息获知第二节点建立的RLC实体是否激活。例如,上述的响应消息中携带有指示第二节点建立的每个RLC实体是否激活的第一状态指示信息。
结合第一方面,在第一方面的某些实现方式中,第二状态指示信息包括:预设字段,预设字段中的一个比特用于指示第一节点上建立的一个RLC实体是否激活,第一节点上建立的RLC实体对应的比特在预设字段中的位置按照第一节点上建立的RLC实体的LCH标识的大小进行排序;或者,第一节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,状态信息指示对应的RLC实体是否激活。
结合第一方面,在第一方面的某些实现方式中,第二状态指示信息包括:预设字段,预设字段中的一个比特用于指示第一节点和所述第二节点上建立的一个RLC实体是否激活,第一节点和第二节点上建立的RLC实体对应的比特在预设字段中的位置按照第一节点和第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,第一节点和第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,状态信息指示对应的RLC实体是否激活。
具体地,上述的预设字段为由3个比特组成的比特位图。
本申请实施例提供的通信方法,主节点通知终端设备每个RLC实体是否激活的方式,可以是通过一个预设字段的形式去指示每个RLC实体是否激活,还可以是每个RLC实体 为独立的,通过每个RLC实体对应的LCH中增加一个状态指示信息,指示对应的RLC实体是否激活,增加方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,配置信息中包括模式指示信息,模式指示信息用于指示第二节点进行PDCP数据重复传输的模式,所述模式为以下三种之一:载波聚合CA、双连接DC、CA和DC。
本申请实施例提供的通信方法,主节点可以显示提告知辅节点当前重复传输的模式为哪一种模式,即辅节点无需基于自身建立的额RLC实体的个数推断当前重复传输的模式,增加方案的可靠性。
结合第一方面,在第一方面的某些实现方式中,PDCP实体在第二节点上,方法还包括:第一节点接收到至少一份PDCP数据;第一节点基于至少一份PDCP数据中的每一份PDCP数据分别对应的序列号进行重复性检测。
本申请实施例提供的通信方法,未设置有PDCP实体的节点也能够进行重复性检测。
应理解,本申请中并不限制PDCP实体一定是在第二节点上,也可以是PDCP实体一定是在第一节点上,那此时本申请提供的通信方法第二节点也能够进行重复性检测。
结合第一方面,在第一方面的某些实现方式中,第一节点接收到至少一份PDCP数据包括:第一节点通过N个隧道接收到第二节点发送的至少一份PDCP数据;第一节点进行重复性检测之后,通过第一节点上建立的多个RLC实体向终端设备发送多份PDCP数据;或者,第一节点通过第一节点上建立的至少一个RLC实体,接收到终端设备发送的至少一份PDCP或RLC数据;第一节点进行重复性检测之后,通过N个隧道向第二节点发送多份PDCP数据。
本申请实施例提供的通信方法,未设置有PDCP实体的节点在进行重复性检测之后,能够传输多份数据。
第二方面,提供了一种种通信方法,在网络设备和终端设备之间建立一个无线承载RB的情况下,网络设备包括第一节点和第二节点,RB的功能实体包括一个分组数据聚合协议PDCP实体、PDCP实体对应的多于两个的无线链路控制RLC实体,方法包括:第二节点接收第一节点发送的配置信息,配置信息用于指示第二节点建立N个的隧道,其中,隧道用于在第一节点和第二节点之间传输PDCP数据或RLC数据,N为大于或者等于2的整数;第二节点根据配置信息建立与第一节点之间的N个隧道。
本申请实施例提供的通信方法,通过辅节点(第二节点)接收主节点(第一节点)发送的配置信息,并且辅节点基于配置信息建立与主节点之间多个用于传输PDCP数据或RLC数据的隧道。从而达到提高主节点与辅节点之间数据传输的可靠性。
应理解,上述的第一节点为主节点指的是第一节点与核心网设备中的认证管理功能AMF网元之间建立有传输数据和/或信令的通道。但是,本申请中并不限制主节点只能称为第一节点。
还应理解,在不同的通信系统中上述的第一节点和第二节点的具体形式可以不同。例如,在上述RB建立在无线接入网设备与终端设备之间时,第一节点可以是接入网设备RAN、第二节点也可以是接入网设备RAN;或者,在上述RB建立在分布式单元DU与终端设备之间时,第一节点可以是集中单元CU、第二节点可以是DU。具体地,第一节点为CU时,如果CU划分为CU-UP和CU-CP,应理解本申请中的第一节点同时具有CU-UP 和CU-CP的功能。
具体地,本申请实施例中的上述的配置信息包括上述的RB的信息,以及上述的N个隧道的信息。
结合第二方面,在第二方面的某些实现方式中,配置信息还用于指示第二节点建立N个RLC实体;或者,配置信息中还包括通道数指示信息,通道数指示信息用于指示第二节点建立M个RLC实体,M为正整数。
本申请实施例提供的通信方法,当主节点需要指示辅节点建立的隧道与辅节点上建立的RLC实体个数相等,还可以通过上述的配置信息还可以复用于指示第二节点建立RLC实体的个数;或者,辅节点建立的RLC实体的个数与辅节点建立的隧道个数无关,即主节点向辅节点发送通道数指示信息,指示辅节点建立RLC实体的个数。从而本申请实施例提供的通信方法,可以指示辅节点建立的隧道数和RLC实体数相等,也可以是辅节点建立的隧道数和RLC实体数之间解耦,为辅节点建立RLC实体的个数提供灵活的选择方案。
应理解,在重复传输的场景中,网络设备建立的RLC实体与网络设备和终端设备之间的通道一一对应,所以上述的辅节点建立RLC实体可以理解为辅节点建立与终端设备之间的通道。
结合第二方面,在第二方面的某些实现方式中,第二节点为第二节点建立的每个RLC实体分别配置一个标识;第二节点向第一节点发送响应消息,响应消息中包括第二节点建立的每个RLC实体对应的标识,所述RLC实体对应的标识是以下多项中的至少一项:所述RLC实体的标识、所述RLC实体的逻辑信道LCH的LCH标识、所述RLC实体对应的隧道的隧道标识以及所述RLC实体对应的通道的通道标识。
本申请实施例提供的通信方法,辅节点可以为自身建立的至少一个RLC实体中的每个RLC实体配置对应的标识,即RLC实体对应的标识可以指示对应的RLC实体。可选地,为了避免在主节点和辅节点共同建立的通信系统中的RLC实体对应的标识信息发生冲突,辅节点为自身建立的RLC实体配置标识之前可以提前获知主节点上建立的RLC实体对应的标识,从而在辅节点为自身建立的RLC实体配置标识的时候,避免使用主节点上的RLC实体对应的标识。进一步地,辅节点可以将自身建立的RLC实体对应的标识通过响应消息反馈给主节点,从而主节点能够获知第二节点建立的每个RLC实体对应的标识,所述RLC实体对应的标识是以下多项中的至少一项:所述RLC实体的标识、所述RLC实体的逻辑信道LCH的LCH标识、所述RLC实体对应的隧道的隧道标识以及所述RLC实体对应的通道的通道标识。
结合第二方面,在第二方面的某些实现方式中,方法还包括:第二节点接收第一节点发送的去配置信息,去配置信息用于指示第二节点删除至少一个RLC实体,其中,去配置信息中包括至少一个RLC实体中各个RLC实体分别对应的标识;或者,去配置信息中包括第一数值,第一数值为指示第二节点删除RLC实体的个数;或者,至少一个RLC实体为第二节点建立的所有RLC实体中除主RLC实体之外的部分或全部RLC实体。
本申请实施例提供的通信方法,辅节点还可以基于主节点发送的去配置信息删除辅节点上已经建立的RLC实体。其中,可以通过多种方式指示,例如,在主节点已知辅节点上的RLC实体对应的标识的前提下,可以通过指示删除的RLC实体对应的标识,指示辅 节点删除标识对应的RLC实体;或者,只指示需要删除的RLC实体的个数,辅节点进行删除;或者,指示辅节点删除除了主RLC实体之外的所有的RLC实体,增加方案的灵活性。
结合第二方面,在第二方面的某些实现方式中,方法还包括:第二节点接收第一节点发送的第一指示信息,第一指示信息指示第二节点上允许激活的RLC实体个数,或者,第二节点基于预定义允许激活的RLC实体个数确定第二节点上允许激活的RLC实体个数,其中,第一指示信息中包括第二数值,第二数值为第二节点上允许激活的RLC实体个数的值;或者,第一指示信息中包括第三数值,第三数值为N个的隧道中初始激活的隧道的个数值。
本申请实施例提供的通信方法,辅节点还可以基于主节点发送的第一指示,确定自身能够激活的RLC实体的个数。其中,可以通过多种方式指示,例如,显示指示能够激活的RLC实体的个数;或者,指示初始状态为激活状态的隧道,辅节点基于初始状态为激活状态的隧道的个数推断能够激活的RLC实体的个数,增加方案的灵活性。
结合第二方面,在第二方面的某些实现方式中,配置信息中包括第二指示信息,第二指示信息用于指示第二节点建立的每个RLC实体的初始状态,其中,第二指示信息指示第二节点建立的每个RLC实体的初始状态为激活状态;或者,第二指示信息中包括第四数值,第四数值为第二节点建立的RLC实体中初始状态为激活状态的RLC实体的个数;或者,第二指示信息指示RB的重复传输模式为激活状态,重复传输模式指的是RB的PDCP数据通过多个RLC实体传输。
本申请实施例提供的通信方法,辅节点还可以基于主节点发送的第二指示建立的RLC实体的初始状态。其中,可以通过多种方式或隐式显示辅节点建立的RLC实体的初始状态,增加方案的灵活性。
结合第二方面,在第二方面的某些实现方式中,响应消息中还包括第一状态指示信息,第一状态指示信息用于指示第二节点建立的RLC实体中每个RLC实体是否激活,第一状态指示信息用于第一节点确定第二状态指示信息,第二状态指示信息指示PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活。
本申请实施例提供的通信方法,辅节点向主节点发送的响应消息中还可以包括自身建立的RLC实体是否激活,使得主节点能够获知辅节点上建立的RLC实体是否激活,并将主节点建立的RLC实体是否激活和辅节点上建立的RLC实体是否激活通知给终端设备,使得终端设备能够知道哪些RLC实体为激活状态哪些RLC实体是否激活为非激活的状态,从而终端设备进行上行数据传输时,能够准确获知从哪些通道传输数据。
应理解,在主节点获知辅节点上的RLC实体是否激活时,主节点还可以指示激活的RLC实体去激活。
结合第二方面,在第二方面的某些实现方式中,方法还包括:第二节点确定第三状态指示信息,第三状态指示信息指示PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活,或者指示第二节点上建立的RLC实体是否激活;第二节点向终端设备发送第三状态指示信息。
本申请实施例提供的通信方法,辅节点可以获知主节点上建立的RLC实体是否激活,并将自身建立的RLC实体是否激活和主节点上建立的RLC实体是否激活通知给终端设 备,使得终端设备能够知道哪些RLC实体为激活状态哪些RLC实体是否激活为非激活的状态,从而终端设备进行上行数据传输时,能够准确获知从哪些通道传输数据;或者,辅节点只是将自身的RLC实体是否激活的信息发送给终端设备,使得终端设备获知辅节点上建立的RLC实体是否激活。
结合第二方面,在第二方面的某些实现方式中,第三状态指示信息包括:预设字段,预设字段中的一个比特用于指示第一节点和所述第二节点上建立的一个RLC实体是否激活,第一节点和第二节点上建立的RLC实体对应的比特在预设字段中的位置按照第一节点和第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,第一节点和第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,状态信息指示对应的RLC实体是否激活。
结合第二方面,在第二方面的某些实现方式中,第三状态指示信息包括:预设字段,预设字段中的一个比特用于指示第一节点和所述第二节点上建立的一个RLC实体是否激活,第一节点和第二节点上建立的RLC实体对应的比特在预设字段中的位置按照第一节点和第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,第一节点和第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,状态信息指示对应的RLC实体是否激活。
具体地,上述的预设字段为由3个比特组成的比特位图。
本申请实施例提供的通信方法,辅节点通知终端设备每个RLC实体是否激活的方式,可以是通过一个预设字段的形式去指示每个RLC实体是否激活,还可以是每个RLC实体为独立的,通过每个RLC实体对应的LCH中增加一个状态指示信息,指示对应的RLC实体是否激活,增加方案的灵活性。
结合第二方面,在第二方面的某些实现方式中,配置信息中包括模式指示信息,模式指示信息用于指示第二节点进行PDCP数据重复传输的模式,所述模式为以下三种之一:载波聚合CA、双连接DC、CA和DC。
本申请实施例提供的通信方法,主节点可以显示提告知辅节点当前重复传输的模式为哪一种模式,即辅节点无需基于自身建立的RLC实体的个数推断当前重复传输的模式,增加方案的可靠性。
结合第二方面,在第二方面的某些实现方式中,PDCP实体在第二节点上,方法还包括:第一节点接收到至少一份PDCP数据;第一节点基于至少一份PDCP数据中的每一份PDCP数据分别对应的序列号进行重复性检测。
本申请实施例提供的通信方法,未设置有PDCP实体的节点也能够进行重复性检测。
应理解,本申请中并不限制PDCP实体一定是在第二节点上,也可以是PDCP实体一定是在第一节点上,那此时本申请提供的通信方法第二节点也能够进行重复性检测。
结合第二方面,在第二方面的某些实现方式中,第一节点接收到至少一份PDCP数据包括:第一节点通过N个隧道接收到第二节点发送的至少一份PDCP数据;第一节点进行重复性检测之后,通过第一节点上建立的多个RLC实体向终端设备发送多份PDCP数据;或者,第一节点通过第一节点上建立的至少一个RLC实体,接收到终端设备发送的至少一份PDCP或RLC数据;第一节点进行重复性检测之后,通过N个隧道向第二节点发送多份PDCP数据。
本申请实施例提供的通信方法,未设置有PDCP实体的节点在进行重复性检测之后,能够传输多份数据。
第三方面,一种通信方法,在网络设备和终端设备之间建立一个无线承载RB的情况下,网络设备包括第一节点和第二节点,RB对应的功能实体包括一个分组数据聚合协议PDCP实体、PDCP实体对应的多于两个的无线链路控制RLC实体,其特征在于,方法包括:终端设备接收第一节点发送第二状态指示信息,第二状态指示信息指示PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活,或者指示第一节点上建立的RLC实体是否激活;或者,终端设备接收第一节点发送第三状态指示信息,第三状态指示信息指示PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活,或者指示第二节点上建立的RLC实体是否激活;可以理解,第一节点上建立的RLC实体可以替换为终端上建立的一个MAC实体的所关联的RLC实体,这个MAC实体对应于第一节点上建立的MAC实体。第二节点上建立的RLC实体可以替换为终端上建立的领一个MAC实体的所关联的RLC实体,这个MAC实体对应于第二节点上建立的MAC实体。
终端设备根据第二状态指示信息和第三状态指示信息中的至少一种在激活的RLC实体所对应的通道上传输PDCP数据。
本申请实施例提供的通信方法,终端设备可以从主节点或者辅节点上接收指示主节点上和辅节点上建立的RLC实体是否激活的状态指示信息;或者,终端设备从主节点上接收指示主节点建立的RLC实体是否激活的状态指示信息以及从辅节点上接收指示辅节点建立的RLC实体是否激活的状态指示信息。也就是说,本申请中主节点和辅节点之间可以进行信令交互,获知对方节点上建立的RLC实体是否激活,并将自身建立的RLC实体是否激活和对方节点建立的RLC实体是否激活的状态指示信息通过一个节点发送给终端设备;还可以是,主节点和辅节点之间无需交互自身建立的RLC实体是否激活,只是将自身建立的RLC实体是否激活分别通过状态指示信息通知给终端设备,终端设备自身通过接收到状态指示信息MAC实体,确定是哪个节点发送的状态指示信息,从而能够确定每个节点上建立的RLC实体是否激活。
结合第三方面,在第三方面的某些实现方式中,第二状态指示信息包括:预设字段,预设字段中的一个比特用于指示第一节点上建立的一个RLC实体是否激活,第一节点上建立的RLC实体对应的比特在预设字段中的位置按照第一节点上建立的RLC实体的LCH标识的大小进行排序;或者,第一节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,状态信息指示对应的RLC实体是否激活。
结合第三方面,在第三方面的某些实现方式中,第二状态指示信息包括:预设字段,预设字段中的一个比特用于指示第一节点和所述第二节点上建立的一个RLC实体是否激活,第一节点和第二节点上建立的RLC实体对应的比特在预设字段中的位置按照第一节点和第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,第一节点和第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,状态信息指示对应的RLC实体是否激活。
结合第三方面,在第三方面的某些实现方式中,第三状态指示信息包括:预设字段,预设字段中的一个比特用于指示第二节点上建立的一个RLC实体是否激活,第二节点上建立的RLC实体对应的比特在预设字段中的位置按照第二节点上建立的RLC实体的LCH 标识的大小进行排序;或者,第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,状态信息指示对应的RLC实体是否激活。
结合第三方面,在第三方面的某些实现方式中,第三状态指示信息包括:预设字段,预设字段中的一个比特用于指示第一节点和所述第二节点上建立的一个RLC实体是否激活,第一节点和第二节点上建立的RLC实体对应的比特在预设字段中的位置按照第一节点和第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,第一节点和第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,状态信息指示对应的RLC实体是否激活。
具体地,上述的预设字段为由3个比特组成的比特位图。
本申请实施例提供的通信方法,辅节点或主节点通知终端设备每个RLC实体是否激活的方式,可以是通过一个预设字段的形式去指示每个RLC实体是否激活,还可以是每个RLC实体为独立的,通过每个RLC实体对应的LCH中增加一个状态指示信息,指示对应的RLC实体是否激活,增加方案的灵活性。
第四方面,提供了一种通信装置,该装置可以用来执行第一方面及第一方面的任意可能的实现方式中的第一节点的操作。具体地,通信装置包括用于执行上述第一方面所描述的步骤或功能相对应的部件(means)可以是第一方面的第一节点。步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
第五方面,提供了一种通信装置,该装置可以用来用于执行第二方面及第二方面的任意可能的实现方式中的第二节点的操作。具体地,该通信装置可以包括用于执行上述第二方面所描述的步骤或功能相对应的部件(means)可以是第二方面的第二节点。步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
第六方面,提供了一种通信装置,该装置可以用来用于执行第三方面及第三方面的任意可能的实现方式中的终端设备的操作。具体地,该通信装置可以包括用于执行上述第三方面所描述的步骤或功能相对应的部件(means)可以是第三方面的终端设备。步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
第七方面,提供了一种通信设备,包括,处理器,收发器,存储器,该存储器用于存储计算机程序,该收发器,用于执行第一至第三方面中任一种可能实现方式中的通信方法中的收发步骤,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第一至第三方面中任一种可能实现方式中的通信方法。
可选地,处理器为一个或多个,存储器为一个或多个。
可选地,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
可选的,收发器包括,发射机(发射器)和接收机(接收器)。
一个可能的设计中,提供了一种通信设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第一方面或第一方面任一种可能实现方式中的方法。
另一个可能的设计中,提供了一种通信设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第二方面或第二方面任一种可能实现方式中 的方法。
又一个可能的设计中,提供了一种通信设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第三方面或第三方面任一种可能实现方式中的方法。
第八方面,提供了一种系统,系统包括第四方面至第六方面提供的通信装置。
第九方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述第一方面至第三方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中任一种可能实现方式中的方法。
第十一方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面至第三方面中任一种可能实现方式中的方法。
附图说明
图1是本申请实施例提供的通信方法适用的一种通信系统100示意图。
图2中(a)和(b)是本申请实施例提供的通信方法适用的场景示意图。
图3示出了一种双连接下的RAN设备的用户面L2协议栈示意图。
图4是本申请实施例提供的一种通信方法的示意性流程图。
图5是本申请实施例中提供的第一节点、第二节点与终端设备之间的PDCP数据或RLC数据传输形式的示意图。
图6是本申请实施例提供的另一种通信方法的示意性流程图。
图7是本申请实施例提供的又一种通信方法的示意性流程图。
图8是本申请提出的通信装置10的示意图。
图9是适用于本申请实施例的终端设备20的结构示意图。
图10是本申请提出的通信装置30的示意图。
图11是适用于本申请实施例的第一节点40的结构示意图。
图12是本申请提出的通信装置50的示意图。
图13是适用于本申请实施例的第二节点60的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide  interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
应理解,本申请中涉及的网络设备主要指的是无线接入网设备。该无线接入网设备包括:无线资源控制(radio resource control,RRC)层、分组数据聚合协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层、物理(physical,PHY)层,还可以包括业务数据适配协议(service data adaptation protocol,SDAP)层。其中,无线接入网设备可以为上述的基站,或者还可以是无线局域网接入点等。若无线接入网设备为基站,无线接入网设备还可以细分为宏基站和小基站两大类,而小基站又可以分为微基站和微微基站等等;若无线接入网设备为无线局域网接入点,无线接入网设备可以为路由器、交换机等设备。
进一步地,无线接入网设备还可以按照协议层划分为至少一个分布式单元(distributed unit,DU)和连接到该至少一个DU的一个集中单元(central unit,CU)。其中,CU和DU可以分别部署在不同的物理设备上,CU负责RRC层、SDAP层以及PDCP层的操作,DU负责RLC层、MAC层以及PHY层的操作。进一步地,CU还可划分为控制面的中央单元(CU-CP)和用户面的中央单元(CU-UP),其中CU-CP和CU-UP也可以部署在不同的物理设备上,CU-CP负责RRC层和PDCP层控制面的处理,CU-UP负责SDAP层和PDCP层用户面的处理。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的通信方法的执行主体的具体结构特别限定,只要 能够通过运行记录有本申请实施例的提供的通信方法的代码的程序,以根据本申请实施例提供的通信方法进行通信即可,例如,本申请实施例提供的通信方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
示例性地,本申请中涉及的无线接入网设备为上述的基站或者中继站或接入点,或者车载设备、可穿戴设备以及传输与接收点等,且终端设备通过RAN设备所管理的小区使用的传输资源(例如,频域资源、时域资源、码域资源等)与RAN设备进行通信的情况下,本申请实施例提供的通信方法可以应用于图1所示的场景下。图1示出了本申请实施例提供的通信方法适用的一种通信系统100示意图。
其中,终端设备120通过空口160与RAN设备140进行无线连接。可选地,该通信系统还包括终端设备120通过空口162与RAN设备142进行无线连接。在这种情况下,RAN设备140可以称为主节点(master node,MN),RAN设备142可以称为辅节点(secondary node,SN)。RAN设备140通过NG用户面(NG user plane,NG-U)接口与5G核心网(5G core,5GC)180连接实现用户面数据的传输,通过NG控制面(NG control plane,NG-C)接口与5GC连接实现控制面数据的传输。RAN设备142通过NG-U接口与5GC设备180连接实现用户面数据的传输。RAN设备140与RAN设备142之间通过Xn控制面(Xn control plane,Xn-C)接口实现控制面数据的交互,通过Xn用户面(Xn user plane,Xn-U)接口实现用户面数据的交互。
示例性地,主节点140通过NG-C接口与5GC 180中的接入和移动性管理功能(access and mobility management function,AMF)节点连接,主节点140和辅节点142通过NG-U接口与5GC 180中的用户面功能(user plane function,UPF)节点连接。进一步地,该通信系统还可包括终端设备与更多的RAN设备进行无线连接。应理解,当终端设备同时与多个RAN设备无线连接时,其中一个RAN设备为主节点,其他的RAN设备为辅节点。
应理解,本申请中定义主节点和辅节点主要是基于是否与核心网设备建立控制面连接的节点进行区分的,具体地,本申请中将多个RAN设备中与AMF建立连接的节点的RAN设备称为主节点。
示例性地,本申请中涉及的无线接入网设备可以是按照协议层划分为至少一个DU和连接到该至少一个DU的一个CU的设备。因而,本申请实施例提供的通信方法可以应用于图2所示的通信系统中。图2(a)示出了一种划分为CU和DU的gNB的架构。其中,一个gNB可包含一个CU以及一个或多个DU,该一个或多个DU由该一个CU所控制。一个DU与CU通过控制面接口(如F1-C)连接,用于传输控制面数据;一个DU与CU通过用户面接口(如F1-U)连接,用于传输用户面数据。进一步地,CU还可划分为控制面 的集中单元(即集中单元控制面CU-CP网元)和用户面的集中单元(即集中单元用户面CU-UP网元),其中CU-CP和CU-UP也可以分别部署在不同的物理设备上,CU-CP负责RRC层和PDCP层控制面的处理,CU-UP负责SDAP层和PDCP层用户面的处理。图2(b)示出了一种划分为CU-CP、CU-UP和DU的gNB的架构。其中,一个gNB可包含一个CU-CP、一个或多个CU-UP以及一个或多个DU。一个CP-UP仅与一个CU-CP通过控制面接口(如E1)连接,用于传输控制面数据;一个DU仅与一个CU-CP通过控制面接口(如F1-C)连接,用于传输控制面数据;在CU-CP的控制下,一个DU可以与一个或多个CU-UP连接,一个CU-UP也可以与一个或多个DU连接,CU-UP与DU之间通过用户面接口(如F1-U)连接,用于传输用户面数据。值得说明的是,为了保持网络的弹性,一个DU或一个CU-UP也可以和多个CU-CP连接。此时,多个CU-CP彼此作为备份;在实际应用中,同一时刻只有一个CU-CP在运行。应理解,对于划分为CU和DU的RAN设备架构而言,上述RAN设备划分为CU和DU所根据的协议栈划分方式仅是示例性的,RAN设备也可以根据其他划分方式划分CU和DU,例如可以由CU负责RRC层、SDAP层、PDCP层以及RLC层的操作,由DU负责MAC层以及PHY层的操作;或者由CU负责RRC层以及SDAP层的操作,由DU负责PDCP层、RLC层、MAC层以及PHY层的操作等。类似地,CU中的CU-CP和CU-UP之间的协议栈划分方式也是可变的。申请对此不作具体限定。
应理解,图1和图2只是以举例的形式说明本申请实施例提供的通信方法能够在哪些场景下应用,但是这些举例不对本申请的保护范围构成任何限定,也就是说本申请实施例提供的通信方法还可以在其他的场景中应用,这里不再赘述。
上面结合图1和图2简单介绍了本申请实施例提供的通信方法能够应用的场景,下面为了便于对本申请实施例提供的通信方法的理解,首先介绍本申请实施例中涉及的几个基本的概念:
1、重复传输(duplication)。
在无线通信系统中,从终端设备到无线接入网设备方向的链路称为上行链路,从无线接入网设备到终端设备方向的链路为称下行链路。具体地,终端设备和无线接入网设备之间在上行链路和下行链路上按照3GPP组织制定的协议层传输数据。例如,传输控制信令或业务数据。3GPP组织制定的协议层可包括PHY层、MAC层、RLC层、PDCP层、SDAP层以及RRC层等。无论是在哪一层传输的数据,最终承载在物理层上在无线空口上传输。
对于一个RB,该RB对应的PDCP实体将一个相同的PDCP数据传输到多个RLC实体进行重复传输这种传输方式称为重复传输模式。通过重复传输模式,同一份数据可以在无线空口上被重复传输,提高了数据传输的稳定性。通常地,一个数据包有一个序列号。在重复传输时,终端设备(或RAN设备)在多条无线链路上发送具有相同序列号的数据包,对端RAN设备(或终端设备)接收到数据包后做重复性检测。重复性检测就是对接收到的多个数据包进行检测以查看这些数据包是否是相同的,即是否是重复的数据包。
应理解,对于PDCP数据重复传输现有协议中仅仅规定配置有PDCP实体的RAN设备或CU以及终端设备接收到数据包后做重复性检测,并不赋予未配置PDCP实体的RAN设备或CU重复性检测的功能,本申请实施例中提供一种通信方法,将详细介绍未配置PDCP实体的RAN设备或CU如何进行数据包的重复性检测,这里不详述。
2、重复传输的激活/去激活。
对于上行数据的重复传输,主节点和/或辅节点可以通过发送MAC层信令(如MAC控制元素(control element,CE))来激活(activate)或去激活(deactivate)终端设备使用重复传输向RAN节点发送上行数据。示例性地,当主节点与终端设备之间的无线链路质量较好时,主节点可以向终端设备发送媒体接入控制控制单元(Media access control-control element,MAC CE)信令以去激活重复传输,即指示终端设备不需要在与辅节点连接的无线链路上发送相同序列号的上行数据包;类似地,辅节点与终端设备之间的无线链路质量较好时,辅节点也可以向终端设备发送MAC CE信令以去激活重复传输,即指示终端设备不需要在与主节点连接的无线链路上发送相同序列号的上行数据包。在重复传输未被激活或去激活时,当主节点与终端设备之间的无线链路质量较差时,主节点可以向终端设备发送MAC CE信令以激活重复传输,即指示终端设备需要在与辅节点连接的无线链路上发送相同序列号的上行数据包;类似地,辅节点与终端设备之间的无线链路质量较差时,辅节点也可以向终端设备发送MAC CE信令以激活重复传输,即指示终端设备需要在与主节点连接的无线链路上发送相同序列号的上行数据包。可见,各个RAN节点是根据自身与终端设备之间的无线链路的情况来决定激活/去激活重复传输。
应理解,现有协议中终端设备和无线接入网设备通信的通道数量最多为两个,且发送端节点用一个比特位指示接收端节点是否开启重复传输的功能。如果开启,接收端节点可以向终端设备发送重复传输的激活/去激活命令。现有协议中并未规定发送端节点如何指示接收端节点建立的通道的状态,本申请实施例中提出一种方案,使得发送端节点能够通过指示信息指示接收端节点上建立的通道的状态。
3、数据。
本申请所涉及的数据包括信令数据和业务数据。其中,业务数据包括eMBB数据、mMTC数据以及URLLC数据等。在物理层的时域和频域中,一个传输时间单元在时间上所占用的长度以及一个传输频率单元在频率上所占用的宽度可能会随着不同的数据的不同无线通信需求而变化,无线通信系统可以通过无线参数配置,实现数据传输所使用的传输时间单元大小以及传输频率单元大小的要求。其中,无线参数配置在5G中称为numerology参数或空口格式。
4、无线承载。
终端设备和无线接入网设备之间通过建立至少一个RB来传输上述的数据。对应于上述的数据分类,无线承载分为用于传输信令数据的信令无线承载和用于传输业务数据的数据无线承载两类。建立一个无线承载可以理解为对一组协议层实体集合的配置,也就是说一个承载包括一组协议层实体。例如,现有协议中规定在上述的重复传输情况下同一个无线承载的一组功能实体集合包括:一个PDCP实体、该PDCP实体对应的两个RLC实体、该两个RLC实体对应的至少一个MAC实体、该至少一个MAC实体对应的至少一个PHY实体。
在现有协议中,终端设备和无线接入网设备之间建立一个用于传输业务数据的数据无线承载或用于传输信令数据的信令无线承载的PDCP数据重复传输时,无线接入网设备需要配置如下:2个逻辑信道、该2个逻辑信道分别对应的2个RLC实体、承载的PDCP数据重复传输初始状态以及PDCP数据重复传输的主RLC实体所在的小区组和逻辑通道。
对于用于传输信令数据的信令无线承载,只能由RRC实体控制是否启用PDCP数据重复传输的状态。PDCP数据重复传输激活时,PDCP层将相同的PDCP数据通过2个逻辑信道对应的2个RLC实体进行发送。
对于用于传输业务数据的数据无线承载,无线接入网设备通过MAC CE中的一个比特对一个RB进行激活或去激活PDCP数据重复传输。
5、通道。
本申请中涉及的通道指的是终端设备与无线接入网设备之间的传输数据的通道。例如,发送端设备上由于同一PDCP实体对应两个RLC实体,每个RLC实体分别对应一条通道来发送数据;相应地,接收端设备上同一PDCP实体对应两个RLC实体,每个RLC实体对应一条通道来接收数据。因此,发送端设备和接收端设备之间这个无线承载上对应有两个通道。
在一个无线承载中,由于重复传输下一个RLC实体对应一个通道,可以使用一个RLC实体的逻辑信道标识来指示这个通道,也可以用这个通道的标识来指示对应的RLC实体。一个无线承载的一个通道还可被称为一条腿(leg)。
可选地,一个无线承载对应多个通道,也即对应多个RLC实体和多个逻辑信道,分别使用不同逻辑信道标识或者使用不同RLC实体对应的标识来标识不同的通道。其中,这多个逻辑信道可以属于同一逻辑信道组,也可以属于不同逻辑信道组。若一个无线承载中的多个通道在不同的设备上,比如一个在主节点,一个在辅节点,那么这多个逻辑信道标识并没有限制,可以相同,也可以不同。
可选地,一个无线承载中的多个通道对应同一逻辑信道,具有相同的逻辑信道标识,则这一个无线承载对应一个逻辑信道。这种情况下为了区分不同通道,可使用同一逻辑信道标识以及不同通道标识来标识一个通道。
6、主RLC实体以及辅RLC实体。
上述通道对应的发送端设备和接收端设备分别包含同一PDCP实体以及该同一PDCP实体对应的第一RLC实体和该PDCP实体对应的第二RLC实体。假设,第一RLC实体对应第一通道,第二RLC实体对应第二通道。发送端设备在第一通道对应的小区#1b或小区组#1向接收端设备发送第一通道上的数据,接收端设备在第一通道对应的小区#1b或小区组#1接收发送端设备发送的第一通道的数据;发送端设备在第二通道对应的小区#2b或小区组#2向接收端设备发送第二通道的数据,接收端设备在第二通道对应的小区#2b或小区组#2接收第二通道上的数据。在PDCP数据重复传输模式下,在发送端设备的第二RLC实体和发送端设备的第一RLC实体上对来自同一PDCP实体的数据进行重复,从而可以提高发送端设备发送数据的稳定性。网络设备可指示一个载波组的一个逻辑信道对应的RLC实体为第一RLC实体,即为主RLC实体,那么第二RLC实体为辅RLC实体。
可选地,在载波聚合场景下,上述小区组#1为主小区组,该主小区组包括一个主小区和至少一个辅小区。例如,包括小区#1a(主小区),小区#1b,小区#1c;小区组#2为辅小区组,该辅小区组包括至少一个辅小区。例如,包括小区#2a,小区#2b,小区#2c。主小区组对应第一RLC实体和第一通道。这种情况下,第一RLC实体也称为主RLC实体;第二RLC实体也称为辅RLC实体。当PDCP数据重复去激活时,终端只通过主RLC实体上进行传输。
其中,载波聚合场景为跨无线接入网设备载波聚合场景时,属于主小区组的无线接入网设备为主无线接入网设备、属于辅小区组的无线接入网设备为辅无线接入网设备。终端设备同时由主无线接入网设备和辅无线接入网设备服务。可选地,终端设备可以使用两个MAC层实体,分别建立与主无线接入网设备和辅无线接入网设备的连接。这种场景在具体实现中,PDCP实体和该PDCP对应的第一RLC实体位于主无线接入网设备上,且该PDCP实体对应的第二RLC实体位于辅无线接入网设备服务上;或者PDCP实体和该PDCP实体对应的第二RLC实体位于主无线接入网设备上,且该PDCP实体对应的第一RLC实体位于辅无线接入网设备上。应理解,同一PDCP实体对应仅一个主RLC实体,该PDCP实体对应至少一个辅RLC实体。主RLC实体对应的通道称为主通道,辅RLC实体对应的通道称为辅通道。当PDCP数据重复传输去激活时,终端设备判断待发送的PDCP实体和RLC实体的初传数据的数据量低于第一门限时,只通过主RLC实体上进行传输。终端设备判断待发送数据的数据量大于等于第一门限时,可通过第一RLC和第二RLC实体发送不同的数据。
7、隧道。
终端设备同时与两个RAN设备(如图1中与RAN设备140和RAN设备142)进行无线通信。该两个RAN设备可以使用同一个空口接入技术(radio access technology,RAT),例如,都使用NR;也可以使用不同的RAT,例如,一个RAN设备使用LTE技术,另一个RAN设备使用NR技术。每个RAN设备管理各自的小区组,每个小区组有至少一个小区。图3示出了一种双连接下的RAN设备的用户面L2协议栈示意图。其中,对于一个DRB,CG1对应的RAN设备配置有该DRB对应的PDCP实体,称该RAN设备为托管(host)PDCP实体的RAN设备,或者,PDCP实体托管(hosting)的RAN设备;CG2对应的RAN设备未配置有该DRB对应的PDCP实体。通常地,托管PDCP实体的RAN设备称为托管PDCP实体节点,或PDCP实体托管节点,未配置有PDCP实体的RAN设备称为对应(corresponding)节点。此外,CG1对应的RAN设备的用户面L2还包括RLC层和MAC层;CG2对应的RAN设备的用户面L2包括RLC层和MAC层,但不包括PDCP层。
示例性地,对于一个DRB,托管PDCP实体节点为自身以及对应节点分别配置一个RLC实体以及一个MAC实体,托管PDCP实体节点决定对于该DRB的下行数据如何分配到托管PDCP实体节点和对应节点传输。托管PDCP实体节点可将该DRB的一份PDCP数据映射到自身的逻辑信道,将该DRB的重复的一份PDCP数据映射到对应节点的逻辑信道,托管PDCP实体节点和对应节点各自的MAC实体分别将各自逻辑信道的下行数据调度到各自节点与终端设备的无线链路上传输。在下行数据传输时,托管PDCP实体节点向终端设备发送该DRB的一份下行数据;此外,托管PDCP实体节点将该DRB的另一部分下行数据通过托管PDCP实体节点与对应节点之间的隧道(tunnel)发送给对应节点,并由对应节点向终端设备发送该重复的一份下行数据;在上行数据传输时,终端设备向托管PDCP实体节点发送该DRB的一份上行数据;此外,终端设备将该DRB的重复的一份上行数据发送给对应节点,并由对应节点向托管PDCP实体节点发送该重复的一份上行数据。值得说明的是,在建立双连接的过程中,托管PDCP实体节点和对应节点之间会建立一个隧道以使得该DRB的数据能在两个节点之间传输。
示例性地,托管PDCP实体节点将上行隧道信息(即托管PDCP实体作为该隧道的接收端点的接收端点信息)发送给对应节点;对应节点将下行隧道信息(即对应节点作为该隧道的接收端点的接收端点信息)发送给托管PDCP实体节点。对于下行数据传输,托管PDCP实体节点根据对应节点提供的下行隧道信息发送下行数据给对应节点;对于上行数据传输,对应节点根据托管PDCP实体节点提供的上行隧道信息发送上行数据给托管PDCP实体节点。上行隧道信息可以是该隧道的上行隧道传输层地址和隧道端点标识(tunnel endpoint identifier,TEID)、该隧道的索引、或该隧道的标识(identifier或identity,ID)中的至少一项;相应地,下行隧道信息可以是该隧道的下行隧道传输层地址和TEID、该隧道的索引、或该隧道的标识中的至少一项。
对于双连接场景下的PDCP数据重复传输,对于下行PDCP数据重复传输托管PDCP实体节点的PDCP实体将具有相同PDCP序列号的数据包分别映射到托管PDCP实体节点和对应节点的逻辑信道上,并由各自节点的MAC实体将该下行数据包分别调度到各自的无线链路上传输给终端设备;对于上行PDCP数据重复传输终端设备的PDCP实体将具有相同PDCP序列号的数据包分别映射到终端设备与托管PDCP实体节点或终端设备与对应节点之间逻辑信道上,并通过终端设备的MAC实体将该上行数据包分别调度到逻辑信道对应的无线链路上传输给托管PDCP实体节点和对应节点。
上文中结合图1和图2介绍了本申请实施例能够应用的场景以及介绍了本申请中涉及的一些基本概念,下面将结合图4-图7详细介绍本申请实施例提供的通信方法。
应理解,本申请各个实施例中,重复传输的配置流程是按照不同无线承载分别进行配置的。为了便于描述和理解,本申请各个实施例中,以一个无线承载下的重复传输配置为例,对于其它无线承载的情况可参考本申请提供的无线承载下重复传输的配置。需要说明的是,本申请实施例中涉及的无线承载可以是信令无线承载,也可以是数据无线承载。
图4是本申请实施例提供的一种通信方法的示意性流程图。包括第一节点、第二节点、终端设备以及步骤S110-S190。
图4所示的实施例中,第一节点和第二节点统称为网络设备,并且在图4所示的实施例中,在网络设备与终端设备之间建立一个RB的情况下。该RB用于传输网络设备与终端设备之间的数据(信令数据和/或业务数据)。具体地,RAN设备与终端设备之间建立一个RB可以理解为网络设备和终端设备上分别配置一组协议层实体集合,该一组协议层实体集合服务于该RB,本申请中一个RB对应的功能实体包括一个PDCP实体、该PDCP实体对应的多于两个RLC实体,其中,多于两个RLC实体与网络设备和终端设备之间配置的多于两个PDCP数据重复传输的通道一一对应,该通道用于在终端设备和网络设备之间传输PDCP数据。
其中,第一节点和第二节点可以为上述的RAN设备或者可以为上述的CU或DU。例如,第一节点为图1中所示的RAN设备140,第二节点为图1中所示的RAN设备142;或者,第一节点为图1中所示的RAN设备142,第二节点为图1中所示的RAN设备140;或者,第一节点为图2(a)中所示的CU,第二节点为图2(a)中所示的DU;或者,第一节点为图2(b)中所示的CU-UP和CU-CP,第二节点为图2(b)中所示的DU。
进一步地,可选地,第一节点上配置有上述的PDCP实体,第二节点上未配置有上述的PDCP实体,在此情况下第一节点称为托管PDCP实体节点,第二节点称为对应节点; 可选地,第一节点上未配置有上述的PDCP实体,第二节点上配置有上述的PDCP实体,在此情况下第二节点称为托管PDCP实体节点,第一节点称为对应节点;可选地,第一节点上配置有上述的PDCP实体以及该PDCP实体对应的多于两个的RLC实体中的至少一个RLC实体,第二节点上配置有上述的PDCP实体对应的多于两个的RLC实体中除第一节点上配置的至少一个RLC实体之外的其他RLC实体;可选地,第一节点上配置有上述的PDCP实体以及该PDCP实体对应的多个RLC实体;可选地,第一节点上配置有上述的PDCP实体但没有该PDCP实体对应的RLC实体,第二节点配置了该PDCP实体对应的多个RLC实体;
可选地,第二节点上配置有上述的PDCP实体以及该PDCP实体对应的RLC实体中的至少一个RLC实体,第一节点上配置有上述的PDCP实体对应的RLC实体中除第一节点上配置的至少一个RLC实体之外的RLC实体;可选地,第二节点上配置有上述的PDCP实体以及该PDCP实体对应的RLC实体;可选地,第二节点上配置有上述的PDCP实体但没有该PDCP实体对应的RLC实体,第一节点配置了该PDCP实体对应的RLC实体。
上述的第一节点和第二节点的可能的形式只是举例,不能限制本申请的保护范围,应理解本申请中仅限制在第一节点和第二节点之间有建立传输PDCP数据的隧道的需求的情况下,具体地,由于何种需求需要通过隧道传输PDCP数据并不能通过列举的方式全部列举出来,因此本申请中对于第一节点和第二节点的具体形式并不限制,也不再赘述。
应理解,处理上述RB对应的功能实体除了包括上述的PDCP实体、PDCP实体对应的多于两个RLC实体之外,还包括该多于两个的RLC实体对应的至少一个MAC实体以及该至少一个MAC实体对应的至少一个PHY实体。由于本申请中主要涉及到如何交互节点间隧道和/或通道的配置,也就是说本申请中主要考虑与通道一一对应的RLC实体的配置,因此上述仅仅介绍了本申请中网络设备与终端设备之间建立的RB对应的协议层实体包括PDCP实体和该PDCP实体对应的多个RLC实体。
还应理解,由于针对一个RB来说该RB对应的协议层实体中的RLC实体与网络设备和终端设备之间建立的通道一一对应,所以本申请中涉及的配置RLC实体可以理解为配置该RLC实体对应的通道。例如,配置某个RLC实体是否激活时,可以是该RLC实体为激活状态,那么该RLC实体对应的LCH和通道也为激活状态;还例如,删除某个RLC实体时,那么该RLC实体对应的LCH和通道也被删除等。
还应理解,本申请中涉及的“第一”、“第二”等只是用于区别类似的对象,而不必用于描述特定的顺序或先后次序,例如,上述的第一节点和第二节点只是为了区分不同的节点。应理解,这样区分的对象在适当情况下可以互换,以便本申请的实施例中描述的方案能够以除了申请文件中的图示或描述的这些以外的方式实施。
S110,第一节点确定配置信息。
具体地,该配置信息用于指示第二节点建立N个隧道,N为大于或者等于2的整数。该多个隧道用于传输第一节点和第二节点之间的PDCP数据或RLC数据。例如,第一节点将PDCP数据通过该多个隧道发送给第二节点,第二节点通过该多个隧道接收PDCP数据,或者,第二节点将PDCP数据通过该多个隧道发送给第一节点,第一节点通过该多个隧道接收PDCP数据,具体地,第一节点和所述第二节点将待发送的PDCP数据或RLC数据封装成GPRS隧道协议(GPRS tunnelling protocol,GTP)数据包,数据包中增加隧 道的源隧道端口信息和目的隧道端口信息,再通过隧道发送数据包。
可以理解,数据从托管PDCP实体节点发送到对应节点时,称为PDCP数据;数据从对应节点发送到托管PDCP实体节点时,称为RLC数据。
其中,本申请中涉及的PDCP数据也可以称为PDCP PDU、RLC数据也可以称为RLC服务数据单元(service data unit,SDU)。
应理解,现有协议中对于DC情况下的PDCP数据重复传输,第一节点和第二节点之间建立的隧道个数为1个,也就是说相比于现有协议中的重复传输来说,图4所示的方法能够提高第一节点和第二节点之间数据传输的可靠性。尤其地,在第一节点和第二节点之间是通过无线链路进行传输情况下,多隧道的数据传输能有效提高传输的可靠性。
进一步地,在第一节点确定了配置信息之后,执行S120,第一节点向第二节点发送该配置信息。
应理解,在图4所示的方法流程中,由于是第一节点向第二节点发送配置信息,那么在该场景下可以理解第一节点为主节点(main RAN或CU),即第一节点与核心网的AMF之间建立连接;第二节点为辅节点(supplement RAN或DU)。其中,配置信息包括上述的RB的信息,以及上述的N个隧道的地址信息。
具体地,第二节点接收到配置信息之后,需要基于该配置信息建立隧道。即图4所示的方法还包括S130,第二节点建立隧道。
示例性地,配置信息可以为至少两个的上行隧道信息组成的信息列表。如表1所示。
表1
Figure PCTCN2020081325-appb-000001
其中,一个上行隧道信息可以是发送该上行隧道信息的设备(第一节点)的互联网协议(internet protocol,IP)地址(address)和以下参数中的至少一项:该上行隧道的隧道端点标识(tunnel endpoint identifier,TEID)、该上行隧道的索引、以及该上行隧道的标识(identifier或identity,ID)。第二节点接收到配置信息,基于该配置信息建立隧道可以是基于该多个上行隧道信息分配与该多个上行隧道信息分别对应的多个下行隧道信息。具体地,多个下行隧道信息中的每个下行隧道信息可以是第二节点IP地址和以下参数中的至少一项:该下行隧道的TEID、该下行隧道的索引、或该下行隧道的标识等,这里不再赘述。
示例性地,第一节点为主节点但是第一节点上未配置有上述RB对应的PDCP实体时,配置信息可以为至少两个的下行隧道信息组成的信息列表。如表2所示。
表2
Figure PCTCN2020081325-appb-000002
同理,一个下行隧道信息可以是发送该下行隧道信息的设备(第一节点)的IP地址 和以下参数中的至少一项:下行隧道的隧道端点标识TEID、该下行隧道的索引、或该下行隧道的标识。第二节点接收到该配置信息之后,基于该配置信息建立隧道可以是基于该至少两个下行隧道信息分配与该至少两个下行隧道信息分别对应的至少两个上行隧道信息。具体地,至少两个上行隧道信息中的每个上行隧道信息可以是第二节点IP地址和以下参数中的至少一项:该上行隧道的TEID、该上行隧道的索引、或该上行隧道的标识等,这里不再赘述。
应理解,隧道只是用于传输第一节点和第二节点之间的PDCP数据或RLC数据,第二节点需要与终端设备之间传输PDCP数据或RLC数据时,需要建立第二节点与终端设备之间的通道,因此:
进一步地,第二节点还需要建立与终端设备之间传输PDCP数据或RLC数据的通道。即图4所示的方法还包括S140,第二节点建立通道。本申请实施例提供的通信方法,由于通道与RB的RLC实体一一对应,那么第二节点建立某个通道可以理解为第二节点建立该某个通道对应RLC实体,包括以下两种情况:
情况一:
第二节点根据上述的配置信息建立RLC实体,具体地,第二节点建立的RLC实体的个数与上述的第二节点建立的隧道个数相等也为N个。例如,配置信息指示第二节点建立3个隧道(如图5(a)中所示的隧道#1~隧道#3),第二节能够基于该配置信息建立3个RLC实体(如图5(a)中所示的RLC实体#1~RLC实体#3)。由于RLC实体与通道一一对应,那么可以理解为在此情况下第二节点与第一节点之间的隧道个数等于第二节点与终端设备之间的通道个数(如图5(a)中所示的通道#1~通道#3),如图5(a)所示,图5是本申请实施例中提供的第一节点、第二节点与终端设备之间的PDCP数据或RLC数据传输形式的示意图。
应理解,在情况一下仅仅表示第二节点基于配置信息建立的第一节点和第二节点之间的隧道的个数,与第二节点基于该配置信息建立的第二节点与终端设备之间的通道的个数相等,但是上述的隧道和通道之间并不存在除个数相等之外的其他对应关系。例如,不能理解为图5(a)中的隧道#1与通道#1(或,RLC实体#1)之间存在对应关系。
情况二:
第二节点建立的第二节点与终端设备之间的通道个数与第二节点建立的第二节点与第一节点之间的隧道个数无关。在情况二下,上述的第一节点向第二节点发送的配置信息中还包括通道数指示信息,作为在一种可能的实现方式,通道数指示信息用于指示所述第二节点建立M个RLC实体,M为正整数。
通常情况下,第一节点和第二节点之间传输数据的可靠性比较高,也就是说无需在第一节点和第二节点之间建立多于两个的隧道,建立两个隧道即可。例如,第二节点建立的隧道数为2个,但是建立的通道个数不一定为2个。
示例性地,通道数指示信息指示第二节点建立1个RLC实体,即第一节点和第二节点之间的隧道数为2个,第二节点和终端设备之间的通道数为1个,如图5(b)所示。
作为另一种可能的实现方式,通道数指示信息指示第二节点建立RLC实体的个数多于第二节点建立隧道的个数,第二节点建立的RLC实体个数等于第二节点建立的隧道个数加上通道数指示信息指示的个数。例如,通道数指示信息指示第二节点建立RLC实体 的个数比第二节点建立隧道的个数多1个,即第一节点和第二节点之间的隧道数为2个,第二节点和终端设备之间的通道数为3个,如图5(c)所示。
作为在又一种可能的实现方式,通道数指示信息指示第二节点建立RLC实体的个数为第二节点建立隧道的个数与通道数指示信息指示的个数中最大值的个数,例如,通道数指示信息指示的数值为1个,即第一节点和第二节点之间的隧道数为2个,第二节点和终端设备之间的通道数为2个,如图5(d)所示。可选地,第二节点建立的RLC实体个数等于第二节点建立的隧道个数与通道数指示信息指示的个数中较小值指示的个数。
应理解,上述的三种通道数指示信息可能的指示形式只是举例,并不对本申请的保护范围构成任何限定,也就是说在情况二下第二节点建立RLC实体的个数不再必然与情况一中所示的与第二节点建立的隧道数相等,而是通过通道数指示信息显示或隐式地指示第二节点建立通道的个数。
上述的S110-S140主要介绍了第一节点通知第二节点建立隧道以及通道的流程。在该流程之后,图4所示的方法流程还可以包括S150,第二节点向第一节点发送响应消息,该响应消息中包含第二节点分配的每个下行或上行隧道信息(当第二节点接收到上行隧道信息时,响应消息中包括下行隧道信息;当第二节点接收到下行隧道信息时,响应消息中包括上行隧道信息)。进一步地,响应消息中还包含第二节点分配的每个RLC实体对应的标识,所述RLC实体对应的标识是以下多项中的至少一项:所述RLC实体的标识、所述RLC实体的LCH的LCH标识、所述RLC实体对应的隧道的隧道标识、以及RLC实体对应的通道的通道标识。进一步地,为了避免第一节点和第二节点上建立的RLC实体对应的标识出现冲突的情况,第二节点建立的RLC实体对应的标识与所述第一节点建立的RLC实体对应的标识相异。也就是说,在第二节点执行上述的S150之前,图4所示的方法流程还包括S151,第二节点配置第二节点建立的RLC实体对应的标识。
具体地,在第二节点建立RLC实体之后,第二节点会将第二节点建立的每个RLC实体配置一个对应的标识。例如,第二节点基于上述的配置信息建立了3个RLC实体,并为这3个RLC实体中的每个配置标识,分别为RLC实体#1、RLC实体#2、RLC实体#3。
应理解,一种可能的实施例为:第一节点与终端设备之间设置有传输PDCP数据的通道,即第一节点上配置有该通道对应的RLC实体;第二节点与终端设备之间设置有传输PDCP数据的通道,即第二节点上配置有该通道对应的RLC实体。当第一节点和所述第二节点向终端设备发送状态指示信息,指示第一节点和第二节点上建立的RLC实体是否激活时,为了终端设备能够准确获知每个RLC实体是否激活,则第一节点和第二节点上建立的RLC实体对应的标识需要避免出现重复。
进一步地,为了实现第一节点和第二节点建立的所有的RLC实体对应的标识不存在冲突的情况,在第二节点执行上述的S151之前,图4所示的方法流程还包括S152,第一节点向第二节点发送标识指示信息,该标识指示信息用于指示第一节点上针对一个RB建立的RLC实体对应的标识。
具体地,第一节点将第一节点上建立的RLC实体对应的标识发送给第二节点,第一节点上建立的RLC实体对应的标识用于指示第二节点避免使用同样的标识去标识第二节点上建立的RLC实体。
例如,第一节点上建立有一个RLC实体,并且第一节点为该RLC实体配置的标识为 RLC实体#1,那么第二节点建立的RLC实体中,第二节点不能再将RLC实体#1作为第二节点建立的RLC实体对应的标识。
示例性地,第二节点建立的每个RLC实体对应的标识可以是该RLC实体对应的LCH的标识(identity,ID)。
示例性地,第二节点建立的每个RLC实体对应的标识可以是第二节点为该RLC实体配置的RLC实体的标识。
示例性地,当第二节点建立的隧道的个数与第二节点建立的RLC实体的个数相等时,第二节点建立的一个RLC实体对应的标识还可以对应为第二节点建立的一个隧道的标识。
例如,第二节点建立有3个隧道,该个隧道的标识分别为隧道#1、隧道#2、隧道#3,那么当第二节点建立的RLC实体的个数等于第二节点建立的隧道个数也是3个时,第二节点可以将隧道#1、隧道#2、隧道#3分别作为3个RLC实体对应的标识。
在执行了S150之后,第一节点能够基于该响应消息确定第二节点中的每个RLC实体对应的标识。
从上述的S150、S151以及S152可以看出该三个步骤完成的结果是第一节点能够确定第一节点和第二节点上建立的所有RLC实体中各个RLC实体对应的标识。图4所示的方法流程实际应用过程中,第一节点经由上述的S150、S151以及S152能够确定第一节点和第二节点上建立的所有RLC实体中各个RLC实体对应的标识只是一种可能实现的方式,并不对本申请的保护范围构成任何限定。例如,在执行上述的S151和S152之后,即第二节点获知了第一节点建立的RLC实体对应的标识以及自身建立的RLC实体对应的标识之后,第二节点也能够确定第一节点和第二节点上建立的所有RLC实体中各个RLC实体对应的标识。也就是说在图4所示的实施例中第一节点和第二节点具有的功能类似。
可选地,图4所示的方法流程还包括S160,第一节点向第二节点发送去配置信息,所述去配置信息用于指示第二节点删除至少一个RLC实体。
作为一种可能的实现方式,在执行上述的S150之后,第一节点获知了第二节点上建立的每个RLC实体对应的标识。进而第一节点向第二节点发送的去配置信息中能够包括上述的第二节点需要删除的至少一个RLC实体中各个RLC实体对应的标识。则,第二节点接收到该去配置信息之后,基于至少一个RLC实体中各个RLC实体对应的标识删除第二节点上建立的RLC实体中该至少一个RLC实体。
例如,第二节点建立有3个RLC实体,并且第二节点为该3个RLC实体分别配置的标识为RLC实体#1、RLC实体#2、RLC实体#3。执行上述的S150之后,第一节点获知了第二节点建立的RLC实体的个数和第二节点建立的每个RLC实体对应的标识。第一节点向第二节点发送的去配置信息中包括RLC实体#1和RLC实体#2时,第二节点基于该去配置信息删除建立的3个RLC实体中标识为RLC实体#1和RLC实体#2的RLC实体。
作为另一种可能的实现方式,去配置信息中包括第一数值,第一数值为指示第二节点删除RLC实体的个数。则,第二节点接收到该去配置信息之后,基于该第一数值从建立好的多个RLC实体中删除第一数值个RLC实体。
例如,第二节点建立有3个RLC实体,第一节点向第二节点发送的去配置信息中包括的第一数值为2时,第二节点基于该去配置信息删除建立的3个RLC实体中的两个RLC实体。具体地,第二节点删除哪两个RLC实体可以取决于第二节点的具体实现,在此不 作具体限定。
作为又一种可能的实现方式,去配置信息只是一种触发信息,去配置信息中并不携带需要第二节点删除的RLC实体数目或RLC实体标识,第二节点接收到该去配置信息之后,删除第二节点建立的所有RLC实体中除主RLC实体(若第二节点上配置有主RLC实体的情况)之外的RLC实体。其中,主RLC实体为网络设备配置给终端设备的,在CA场景下的PDCP数据重复传输去激活后保留用于数据传输的一个逻辑信道对应的RLC实体;或者主RLC实体为网络设备配置给终端设备的,在DC场景下的PDCP重复传输去激活后,当待初传的PDCP数据和RLC数据的数据量小于预配置门限时,用于数据传输的一个逻辑信道对应的RLC实体。
例如,第二节点建立有3个RLC实体,其中,有一个RLC实体为主RLC实体。第一节点向第二节点发送的去配置信息时,第二节点基于该去配置信息删除建立的3个RLC实体中的除主RLC实体之外的两个RLC实体。
应理解,本申请中对于第一节点向第二节点发送上述的去配置信息的原因并不限制,例如,可以是第一节点判断自身与终端设备之间的传输PDCP数据的通道质量较好,第二节点上没有必要建立多个RLC实体时,第一节点向第二节点发送去配置信息。
应理解,上述S110-S140只是说明第一节点可以指示第二节点建立多个隧道以及至少一个RLC实体,但是并没有限定建立好的每个RLC实体对应的通道均用于PDCP数据的重复传输,S160中也描述了即使建立了多个RLC实体,第一节点也能够指示第二节点删除部分或全部的RLC实体;类似地,第一节点也可以指示第二节点建立的RLC实体中能够处于激活状态的RLC实体的个数。可选地,图4所示的方法流程还包括S170,第一节点向第二节点发送第一指示信息,第一指示信息指示第二节点上允许激活的RLC实体个数。
作为一种可能的实现方式,第一指示信息中包括第二数值,第二数值为第一节点指示第二节点上允许激活的RLC实体个数的值。
例如,第二节点建立有3个RLC实体,第一节点向第二节点发送的第一指示信息中包括的第二数值为2时,第二节点基于该第一指示信息激活建立的3个RLC实体中的任意两个RLC实体。
作为一种可能的实现方式,第一指示信息中包括第三数值,第三数值为N个隧道中初始激活的隧道的个数值,该个数值用于第一节点指示第二节点上允许激活的RLC实体个数的值。
例如,第一节点指示第二节点建立3个隧道用于重复传输,第一节点指示其中2个隧道的状态是初始激活的,那么第二节点确定最大的RLC实体的激活个数也是2个。
应理解,本申请中第二节点上允许激活的RLC实体的最大数可以是通过第一节点指示的,也可以是协议规定的;或者,上述的第一指示信息可以是包含在上述的配置信息中,无需另外发送给第二节点。
例如,第二节点建立有3个RLC实体,协议规定了第二节点上允许激活的RLC实体的最大数为2时,第二节点激活建立的3个RLC实体中的两个RLC实体。具体地,第二节点激活哪两个RLC实体可以取决于第二节点的具体实现,在此不作具体限定。
进一步地,第一节点不仅仅可以指示第二节点建立的RLC实体中能够处于激活状态 的RLC实体的个数,第一节点还可以指示第二节点建立的RLC实体中每个RLC实体的初始状态(例如,激活状态或者去激活状态)。可选地,上述的配置信息中包括第二指示信息,第二指示信息用于指示第二节点建立的每个RLC实体的初始状态。
作为一种可能的实现方式,第二指示信息只是一种触发信息,第二指示信息中并不携带需要第二节点中初始状态为激活的RLC实体数目或第二节点中初始状态为激活的RLC实体标识,第二节点接收到该第二指示信息之后,确定第二节点建立的每个RLC实体的初始状态均为激活状态。
例如,第二节点建立有3个RLC实体。第一节点向第二节点发送的配置信息中包括第二指示信息时,第二节点确定建立的3个RLC实体的初始状态均为激活状态。
作为另一种可能的实现方式,第二指示信息中包括第四数值,第四数值为第二节点建立的RLC实体中初始状态为激活状态的RLC实体的个数。
例如,第二节点建立有3个RLC实体,第一节点向第二节点发送的第二指示信息中包括的第四数值为2时,第二节点基于该第二指示信息激活建立的3个RLC实体中的两个RLC实体。具体地,第二节点激活哪两个RLC实体可以取决于第二节点的具体实现,在此不作具体限定。
作为又一种可能的实现方式,第二指示信息指示RB的重复传输模式为激活状态,所述重复传输模式指的是所述RB的同一PDCP数据通过多个RLC实体传输。
第二节点接收到该第二指示信息之后,确定第二节点可以使用激活或去激活命令控制该RB的PDCP重复传输状态。
例如,第二节点建立有3个RLC实体。第一节点向第二节点发送的配置信息中包括第二指示信息时,第二节点发送PDCP重复传输激活或去激活命令控制该节点上的3个RLC实体是否激活,或第二节点发送PDCP重复传输激活或去激活命令控制该RB对应的所有RLC实体是否激活,包含第一节点和第二节点的所有RLC实体是否激活。当然,若有的RLC实体是主RLC,这个主RLC实体默认激活,不需要参与激活去激活命令的控制,一直可以传输数据。
作为又一种可能的实现方式,在执行上述的S150之后,第二指示信息能够显示地指示第二节点中建立的RLC实体中的至少一个RLC实体的为激活状态。
例如,第二节点建立有3个RLC实体,并且第二节点为该3个RLC实体分别配置的标识为RLC实体#1、RLC实体#2、RLC实体#3。执行上述的S130之后,第一节点获知了第二节点建立的RLC实体的个数和第二节点建立的每个RLC实体对应的标识。第一节点向第二节点发送的第二指示信息中包括RLC实体#1和RLC实体#2时,第二节点基于该第二指示信息确定建立的3个RLC实体中标识为RLC实体#1和RLC实体#2的RLC实体的初始状态为激活状态。
应理解,本申请中并不限制第二节点如何实现激活某个RLC实体的,例如,可以是通过MAC层的重复传输激活命令。
进一步地,第二节点可以将每个RLC实体是否激活发送给第一节点,使得第一节点能够获知第二节点中的每个RLC实体是否激活。示例性地,上述的S150中的第二节点向第一节点发送的响应消息中还包括第一状态指示信息,第一状态指示信息用于指示第二节点建立的RLC实体中每个RLC实体是否激活,即响应消息中包括有第二节点建立的RLC 实体对应的标识,以及每个标识对应的RLC实体是否激活。可选地,第一节点可以基于第一节点上的每个RLC实体是否激活以及响应消息携带的第一状态指示信息确定第二状态指示信息,即图4所示的方法流程还可包括S180,第一节点确定第二状态指示信息。具体地,第二状态指示信息用于指示PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活。
或者,上述的第二状态指示信息指示所述第一节点上建立的RLC实体是否激活,即第一节点无需获知第二节点上建立的RLC实体是否激活,只需要将第一节点建立的RLC实体是否激活通过第二状态指示信息通知给终端设备。此时,终端设备接收到第二状态指示信息之后,基于接收该第二状态指示信息的MAC实体关联的RLC实体,确定第二状态指示信息是通知哪个/哪些RLC实体是否激活。
具体地,第一节点可以通过在RRC信令或者MAC CE信令中携带该第二状态指示信息,发送给终端设备。
同理,第二节点可以基于第二节点上的每个RLC实体是否激活以及获取第一节点上建立的RLC实体是否激活,即图4所示的方法流程还可包括S181,第二节点确定第三状态指示信息。具体地,第三状态指示信息用于指示PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活。
或者,上述的第三状态指示信息指示所述第二节点上建立的RLC实体是否激活,即第二节点无需获知第一节点上建立的RLC实体是否激活,只需要将第二节点建立的RLC实体是否激活通过第三状态指示信息通知给终端设备。此时,终端设备接收到第三状态指示信息之后,基于接收该第三状态指示信息的MAC实体关联的RLC实体,确定第三状态指示信息是通知哪个/哪些RLC实体是否激活。
具体地,第二节点可以通过在RRC信令或者MAC CE信令中携带该第三状态指示信息,发送给终端设备。
在执行了上述的S180之后,图4所示的方法流程还可包括S190,第一节点向终端设备发送第二状态指示信息。
在执行了上述的S181之后,图4所示的方法流程还可包括S191,第二节点向终端设备发送第三状态指示信息。
可以理解,第一节点在向终端设备发送第二状态指示信息和/或第二节点向终端设备发送第三状态指示信息的时机不限定,可以在完成第一无线承载配置后即可。终端设备在收到后,根据指示的激活比特值确定激活通道的重复传输功能。可以通过以下可能的实现方式中一个或多个:第一节点和第二节点都可设置该RB的所有的RLC实体是否激活;第一节点和第二节点设置该RB的除了主RLC实体外的所有的RLC实体是否激活;第一节点只设置该RB的第一节点上所有RLC实体或除了主RLC实体外的所有RLC实体是否激活;第二节点只设置该RB的第二节点上所有RLC实体或除了主RLC实体外的RLC实体是否激活。
示例性地,当第二状态指示信息指示所述第一节点上建立的RLC实体是否激活时,第二状态指示信息包括:预设字段,所述预设字段中的一个比特用于指示所述第一节点上建立的一个RLC实体是否激活,所述第一节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点上建立的RLC实体的LCH标识的大小进行排序;或者, 所述第一节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
示例性地,当第二状态指示信息指示所述PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活时,所述第二状态指示信息包括:预设字段,所述预设字段中的一个比特用于指示所述第一节点和第二节点上建立的一个RLC实体是否激活,所述第一节点和所述第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点和所述第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,所述第一节点和所述第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
同理,示例性地,当第三状态指示信息指示所述第二节点上建立的RLC实体是否激活时,第三状态指示信息包括:预设字段,所述预设字段中的一个比特用于指示所述第二节点上建立的一个RLC实体是否激活,所述第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,所述第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
示例性地,当第三状态指示信息指示所述PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活时,所述第三状态指示信息包括:预设字段,所述预设字段中的一个比特用于指示所述第一节点和第二节点上建立的一个RLC实体是否激活,所述第一节点和所述第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点和所述第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,所述第一节点和所述第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
示例性地,上述的预设字段为包括3个比特的比特位图,该比特位图中的一个比特用于指示对应的一个RLC实体是否激活。
例如,上述比特位图为如表3所示的比特位图中的后3位组成的比特位图。前5位的比特用以标识一个RB,即该RB的RB ID占有该字段的最高5位比特。
当上述的第二状态指示信息或第三状态指示信息指示所述PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活时,按照所有的RLC实体的对应LCH ID顺序设置一个3个比特的比特位图。最多可以指示3个RLC实体是否激活。顺序可以是升序也可以降序。1表示激活,0表示去激活。
当上述的第二状态指示信息指示第一节点上建立的RLC实体是否激活时,按照第一节点上建立的RLC实体的对应LCH ID顺序设置一个3个比特的比特位图。最多可以指示3个RLC实体是否激活。顺序可以是升序也可以降序。1表示激活,0表示去激活。同理,当上述的第三状态指示信息指示第二节点上建立的RLC实体是否激活时,按照第二节点上建立的RLC实体的对应LCH ID顺序设置一个3个比特的比特位图。最多可以指示3个RLC实体是否激活。顺序可以是升序也可以降序。1表示激活,0表示去激活。
表3
D3~D7 D2 D1 D0
RB ID LCH ID1 LCH ID2 LCH ID3
应理解,当某个RLC实体默认为激活状态(即网络设备和终端设备已知该RLC实体为激活状态)则第二状态指示信息指示PDCP实体对应的除了该默认激活的RLC之外的其他RLC实体中每个RLC实体是否激活。即比特位图中的每个比特用于指示除了该默认激活的RLC实体之外的其他一个RLC实体是否激活。默认激活的RLC实体是网络设备指示的主RLC实体。具体地,不排除对于一个无线承载所涉及的每个RAN上或DU上有均有一个主RLC实体,或者对于一个无线承载只能有一个主RLC实体。
例如,比特位图如表3所示,按照所有的RLC实体的对应LCH ID顺序设置最多3个比特的比特位图。第一节点上有X个RLC实体,第二个节点上有Y个RLC实体。第一节点的X比特对应X个RLC实体是否激活,按照X个RLC实体的对应LCH ID顺序设置一个低(或高)X个比特的比特位图。第二节点的Y比特对应Y个RLC实体是否激活,按照Y个RLC实体的对应LCH ID顺序设置一个高(或低)Y个比特的比特位图。若有X实体中有一个实体是主RLC实体,那么X-1个RLC实体对应对应X-1个比特位。若有Y实体中有一个实体是主RLC实体,那么Y-1个RLC实体对应Y-1个比特位。
示例性地,上述的预设字段为包括4个比特的比特位图,该比特位图中的一个比特用于指示对应的一个RLC实体是否激活。
例如,上述比特位图为如表4所示的比特位图中的后4位组成的比特位图。前4位的比特用以标识一个RB,即该RB的RB ID占有该字段的最高4位比特。
表4
D4~D7 D3 D2 D1 D0
RB ID LCH ID1 LCH ID2 LCH ID3 LCH ID4
其中,表4所示的比特位图后4位组成的比特位图所表达的含义与上述的表3所示的比特位图类似,只是最多能够指示4个RLC实体是否激活。下面举例说明当第二状态指示信息和第三状态指示信息分别指示第一节点上建立的RLC实体是否激活和第二节点上建立的RLC实体是否激活时,第二状态指示信息和第三状态指示信息可能的形式:
示例性地,第二状态指示信息或第三状态指示信息为比特位图的比特数有4位,以约定第一节点的X个RLC实体是否激活指示比特的位置,在4个比特的中的X个比特位置,第二节点的Y个RLC实体是否激活指示比特的位置,在4个比特的中的Y个比特位置。假设第一节点上有1个RLC实体,第二节点上有3个RLC实体。例如,最高位或最低位(或者说最高X位或最低X位)。第二节点的RLC实体是否激活指示比特位置在4个比特的中的低3位比特或高3位。可以理解,X个比特是按照该X个LCH ID的顺序排序,Y个比特是按照该Y个LCH ID的顺序排序。
示例性地,第二状态指示信息或第三状态指示信息为比特位图的比特数有4位,以约定第一节点的X个RLC实体是否激活指示比特的位置,在4个比特的中的低(或高)X个比特位置,第二节点的Y个RLC实体是否激活指示比特的位置,在4个比特的中的低(或高)Y个比特位置。可以理解,X个比特是按照该X个LCH ID的顺序排序,Y个比特是按照该Y个LCH ID的顺序排序。
示例性地,第二状态指示信息或第三状态指示信息为比特位图的比特数有4位,假设第一节点上有2个RLC实体,第二节点上有2个RLC实体,那么可以约定第一节点的RLC实体是否激活指示比特的位置,在4个比特的中的2个比特位置。例如,最高2位或 最低2位。第二节点的RLC实体是否激活指示比特的位置,在4个比特的中的低2位比特或高2位。
示例性地,第二状态指示信息或第三状态指示信息为比特位图的比特数有4位,假设第一节点上有2个RLC实体,第二节点上有1个RLC实体,那么可以约定第一节点的RLC实体是否激活指示比特的位置,在4个比特的中的2个比特位置。例如,最高2位或最低2位。第二节点的RLC实体是否激活指示比特的位置,在4个比特的中的低1位比特或高1位。
示例性地,第二状态指示信息为每个RLC实体对应的LCH配置中包括的状态信息的集合,LCH配置中包括的状态信息指示该LCH对应的RLC实体是否激活。可以理解,此时所有的RLC实体是平等的,都需要一个比特来指示重复传输状态。
例如,第一节点可以通过在RRC信令为每个逻辑信道所在逻辑信道配置中设置一个重复传输状态比特,表示所关联的LCH ID的重复传输状态。
考虑到不同的终端设备,或,同一个终端设备在不同情况下,或,同一个终端设备针对不同的RB与网络设备之间建立的RB所配置的RLC实体个数可能不同。例如,有的终端设备配置了只有2个RLC实体的重复传输的RB,有的终端设备配置了多于2个RLC实体的重复传输的RB;或者,一个终端设备有的情况下配置了只有2个RLC实体的重复传输的RB,有的情况下配置了多于2个RLC实体的重复传输的RB;或者,一个终端设备针对一个RB配置了只有2个RLC实体的重复传输,针对另一个RB配置了多于2个RLC实体的重复传输的承载。为了能够通过统一的方式进行激活去激活控制,减低终端设备对激活命令的混淆,也简化终端设备的行为。为了区分和原有针对只配了2个RLC实体的重复传输的RB,第二状态指示信息或第三状态指示信息中,还可以包括另一字段,该字段指示所述第二状态或或第三状态指示消息的控制消息。例如,该字段包含一个预设的逻辑信道标识。这个预设标识不同于用于标识限制2个RLC实体的重复传输的RB的PDCP重复传输的激活去激活的控制消息。现有技术中,这个控制消息中的字段通过同一比特的比特状态指示是否激活所述重复模式,通过同一比特所在比特位置指示一个MAC实体所关联的所述重复传输对应的RB。为了避免终端设备的混淆,需要限定,对于配置了现只有2个RLC实体的重复传输的RB时,即通过现有标准标识的方式配置的重复传输的RB,控制消息中的字段通过同一比特所在比特位置指示一个MAC实体所关联的通过现有标准标识的方式配置的所述重复传输对应的RB。另一种方式,本申请的所有实施例可扩展到应用到只有2个RLC实体的重复传输的RB的管理。即针对网络配置的多于或等于2个RLC实体的重复传输的RB,结合上述的实施例的实施方式,可通过第二状态指示信息或第三状态指示信息的一个比特位置对应一个RLC实体的逻辑信道标识。可选地,通过一种可能的方式标识多于或等于2个RLC实体的重复传输的无线数据承载。这样,可通过统一的状态指示实现所有的重复传输的无线数据承载的激活去激活控制。
应理解,本申请图4所示的实施例中,由于第二状态指示信息分别指示了每个RLC实体是否激活,即终端设备基于该第二状态指示信息能够明确获知多于两个的RLC实体对应的多于两个的通道中哪个或哪些通道能够用于向网络设备传输PDCP数据(上行链路传输)。现有协议中未提供主节点通过指示信息获知辅节点上的建立的每个通道的状态的方案,现有协议中只是规定主节点可以通知辅节点是否开启重复传输的功能。如果开启, 接收端节点可以向终端设备发送重复传输的激活/去激活命令。本申请图4所示的方法实施例中相对于现有协议中的重复传输方法来说,能够为终端设备提供精确的通道状态信息,提高重复传输的性能。
进一步地,上述的配置信息中还可以包括模式指示信息,该模式指示信息用于通知第二节点上述的PDCP数据重复传输的模式,所述模式为以下三种之一:载波聚合CA、双连接DC、或CA和DC。
现有协议中规定了PDCP数据重复传输的模式为CA或DC。即,第一节点和第二节点上分别配置有一个RLC实体时,称PDCP数据重复传输的模式为DC模式;当一个节点上配置有两个RLC实体时,称PDCP数据重复传输的模式为CA模式。
具体地,图4所示的方法流程中由于RB对应的RLC实体为多个,那么也就是说与现有协议中规定的一个RB对应两个RLC实体不同的是,第一节点和第二节点上可以同时配置有两个RLC实体。可以显示地指示PDCP数据重复传输的模式。例如,上述的模式指示信息直接指示为CA模式(CA based duplication configured),或者,上述的模式指示信息直接指示为DC模式(DC based duplication configured),或者,上述的模式指示信息直接指示为DC+CA模式(DC based duplication configured and CA based duplication configured)。
为了便于理解,下面以上述的RB对应的RLC实体个数为4个为例进行说明:
例如,第一节点上配置有一个RLC实体,第二节点上配置有3个RLC实体(1+3个通道),模式指示信息直接指示PDCP数据重复传输的模式为CA+DC模式;或者,第一节点上未配置有RLC实体,第二节点上设置有4个RLC实体(0+4个通道),模式指示信息直接指示PDCP数据重复传输的模式为CA模式;或者,第一节点上配置有2个RLC实体,第二节点上配置有2个RLC实体(2+2个通道),模式指示信息直接指示PDCP数据重复传输的模式为CA+DC。
具体地,上述的模式指示信息主要应用在CU-DU场景下,因为在CU-DU场景下对于CA模式,一个DU只能控制本DU上的通道。对于DC模式,任一DU都可以控制另一DU的状态,下面将结合图6进行详细说明。
应理解,本申请中并不限定第一节点和第二节点之间一定需要交互RLC实体对应的标识,例如,第一节点不能获知第二节点建立的RLC实体的个数和第二节点建立的每个RLC实体对应的标识。但是第二节点为每个逻辑信道所在逻辑信道配置中生成一个重复传输状态比特,表示所关联的LCH ID对应的RLC实体的重复传输状态,且第二节点将每个逻辑信道配置发送给第一节点,通过第一节点的RRC消息发送给终端设备。这种方式,第一节点和第二节点不用显示的交互RLC实体对应的标识。第一节点只控制第一节点所建立的RLC实体是否激活,第二节点只控制第二节点所建立的RLC实体是否激活。
同理,第一节点还可以向第二节点发送第三指示信息,指示第二节点中建立的RLC实体的至少一个RLC实体的为去激活状态。
具体地,当图4所示的方法流程应用在图2(b)所示的架构下,即第一节点为图2(b)中所示的CU-UP和CU-CP,第二节点为图2(b)中所示的DU时,由于第一节点中的CU-UP和CU-CP所具有的功能不同,简单介绍在图4所示的方法流程中第一节点中的CU-UP和CU-CP分别执行哪些功能:
针对上述的S110,第一节点向第二节点发送配置信息,该配置信息中包括N个上行隧道的地址信息来说,首先是CU-CP通知CU-UP需要建立N个隧道,CU-UP基于需要建立的N个隧道分配N个上行隧道的地址信息,并将该N个上行隧道的地址信息发送给CU-CP,由CU-CP发送给DU;
针对上述的S110,第一节点向第二节点发送配置信息,该配置信息中包括通道个数指示信息来说,CU-CP通知DU,指示DU建立RLC实体的个数,也就是说此时第一节点执行CU-CP的功能即可。
针对上述的S110,第一节点向第二节点发送配置信息,该配置信息中包括第二指示信息来说,CU-CP通知DU,指示DU建立的每个RLC实体的初始状态,也就是说此时第一节点执行CU-CP的功能即可。此时,CU-CP还可以指示CU-UP建立的每个RLC实体的初始状态。
针对上述的S150,第一节点接收第二节点发送的响应消息,该响应消息中包括DU为N个上行隧道的地址信息分别配置的N个下行隧道的地址信息,CU-CP接收到该响应消息之后,需要将该响应消息转发给CU-UP,使得CU-UP获知N个隧道的N个下行隧道的地址信息。
针对上述的S150,第一节点接收第二节点发送的响应消息,该响应消息中包括第一状态指示信息,CU-CP接收到该响应消息之后,需要将该响应消息转发给CU-UP,使得CU-UP根据第一状态信息确定第二状态指示信息。
针对上述的S160,第一节点向第二节点发送去配置信息来说,CU-CP通知DU,指示DU删除建立RLC实体的中部分或全部RLC实体,也就是说此时第一节点执行CU-CP的功能即可。此时,CU-CP还可以指示CU-UP删除建立RLC实体的中部分或全部RLC实体。
针对上述的S170,第一节点向第二节点发送去第一指示信息来说,CU-CP通知DU,指示DU上允许激活的RLC实体个数,也就是说此时第一节点执行CU-CP的功能即可。此时,CU-CP还可以指示CU-UP上允许激活的RLC实体个数。
针对上述的S180和S181,第一节点确定第二状态指示信息以及向终端设备发送该第二状态指示信息来说,CU-UP根据第一状态信息确定第二状态指示信息,发送第二状态信息给CU-CP,CU-CP向终端设备发送第二状态指示信息,即CU-CP确定第二状态指示信息以及向终端设备发送该第二状态指示信息,也就是说此时第一节点执行CU-CP的功能即可。应理解,本申请并不限制第一节点为一个设备,例如,第一节点为图2(b)中所示的CU-UP和CU-CP,且CU-UP和CU-CP分别设置与不同的设备上时,第一节点可以理解为分别设置有CU-UP和CU-CP的设备集合。
图4所示的方法流程中,主要介绍了第一节点如何实现配置第二节点中的隧道以及通道个数和状态。并且并不限制第一节点和第二节点的具体形式(可以是RAN设备也可以是CU、DU)。现有的通信方法中,当上述的第一节点为图2所示的场景中的CU,第二节点为图2所示的场景中的DU的情况下,第二节点根据第二节点上配置的与终端设备之间传输的PDCP数据的通道个数,确定PDCP数据的重复传输为CA或DC,因为现有通信方法中,网络设备与终端设备建立的通道数一共为2个,也就是说要么第二节点配置了一个与终端设备之间的通道,可以理解PDCP数据的重复传输为DC模式、要么第二节点 配置了2个与终端设备之间的通道,可以理解PDCP数据的重复传输为CA模式。
但是,如果如图4所示的网络设备与终端设备之间配置的用于传输PDCP数据的通道数多于2个。那么对于第二节点来说,第二节点上可能建立的RLC实体的个数为2时,与第一节点相连接的其他DU上仍然配置有至少一个RLC实体,也就是说PDCP数据的重复传输可以是CA+DC模式。
下面结合图6详细说明如何确定PDCP数据的重复传输模式。图6是本申请实施例提供的另一种通信方法的示意性流程图。包括第一节点和第二节点以及步骤S210和S220。
S210,第一节点确定模式指示信息。
具体地,模式指示信息用于指示所述第二节点进行PDCP数据重复传输的模式。
例如,网络设备与终端设备之间配置的用于PDCP数据重复传输的通道数为3个,第一节点为CU,第二节点为DU,且第一节点一共连接有两个DU,当第二节点上建立有2个RLC实体,第二节点不能再基于建立的RLC实体个数为2认为PDCP数据的重复传输模式是CA模式。因为网络设备与终端设备之间配置的用于传输PDCP数据的通道数为3个,在第二节点上建立有2个RLC实体时,第一节点连接的另一个DU上建立有一个RLC实体,因此,此时应该认为PDCP数据的重复传输模式是CA+DC模式,即第一节点应该确定模式指示信息,指示第二节点进行PDCP数据重复传输的模式为CA+DC模式。
还例如,网络设备与终端设备之间配置的用于PDCP数据重复传输的通道数为3个,第一节点为CU,第二节点为DU,且第一节点一共连接有两个DU,当第二节点上建立有1个RLC实体,不能再基于建立的RLC实体个数为1认为PDCP数据的重复传输模式是DC模式。因为网络设备与终端设备之间配置的用于传输PDCP数据的通道数为3个,在第二节点上建立有1个RLC实体时,第一节点连接的另一个DU上建立有2个RLC实体,因此,此时应该认为PDCP数据的重复传输模式是CA+DC模式,即第一节点应该确定模式指示信息,指示第二节点进行PDCP数据重复传输的模式为CA+DC模式。
还例如,网络设备与终端设备之间配置的用于传输PDCP数据的通道数为3个,第一节点为CU,第二节点为DU,且第一节点一共连接有3个DU,当3个DU上分别建立有1个RLC实体,第一节点应该确定模式指示信息,指示3个DU进行PDCP数据重复传输的模式为DC模式。
还例如,网络设备与终端设备之间配置的用于传输PDCP数据的通道数为3个,第一节点为CU,第二节点为DU,且第一节点一共连接有两个DU,当第二节点上建立有3个RLC实体,第一节点应该确定模式指示信息,指示两个DU进行PDCP数据重复传输的模式为CA模式。
S220,第一节点向第二节点发送模式指示信息。
第二节点接收到模式指示信息之后,能够准确获知当前PDCP数据的重复传输模式为哪一种。
应理解,本申请中由于存在上述的模式指示信息,第二节点无需基于自身建立的RLC实体的个数推断PDCP数据重复传输的模式,而是通过模式指示信息显示地指示PDCP数据重复传输的模式,因此避免了节点基于建立的RLC实体的个数推断重复传输的模式可能不准确的情况,从而提高PDCP数据重复传输的性能。
上面结合图4和图6主要介绍的是PDCP数据重复传输流程中的配置过程,下面结合 图7简单介绍数据传输过程。
图7是本申请实施例提供的又一种通信方法的示意性流程图。包括第一节点和第二节点以及步骤S310-S320。具体地,图7所示的通信方法与现有协议规定的PDCP数据重复传输流程中数据包传输过程不同的是,未配置有PDCP实体的节点能够进行重复性检测。其中,第一节点和第二节点可以为上述的接入网设备或者可以为上述的CU或DU。例如,第一节点为图1中所示的RAN设备140,第二节点为图1中所示的RAN设备142;或者,第一节点为图1中所示的RAN设备142,第二节点为图1中所示的RAN设备140;或者,第一节点为图2(a)中所示的CU,第二节点为图2(a)中所示的DU;或者,第一节点为图2(b)中所示的CU-UP,第二节点为图2(b)中所示的DU。
应理解,本申请图7所示的方法流程中所涉及的重复性检测与现有协议中规定的重复性检测类似,基于数据包的序列号判断多个数据包是否是相同的数据包。对于重复性检测的具体流程本申请中并不限制,可以是复用现有协议规定的重复性检测流程,本申请图7所示的方法流程中主要介绍辅节点为何能够进行重复性检测。
在图7所示的实施例中,第一节点对应节点,也就是说第一节点上未配置有PDCP实体。
S310,第一节点接收PDCP数据。
情况一:
对于下行数据传输,第一节点通过N个隧道接收到第二节点发送的至少一份PDCP数据或RLC数据。对于第二节点发送的数据包可以认为是PDCP数据或RLC数据。
例如,N=2,也就是说第二节点通过2个隧道传输相同的PDCP数据包给第一节点。
情况二:
对于上行数据传输,第一节点通过第一节点上建立的至少一个RLC实体,接收到所述终端设备发送的至少一份PDCP数据。
例如,第一节点上建立有3个RLC实体,也就是说第一节点通过3个RLC实体对应的3个通道接收终端设备发送的相同的PDCP数据包。
可以理解,在下行数据传输时,对于第二节点,即托管PDCP节点,需要将一份PDCP数据复制成2份,分别通过2个隧道发送给第一节点,这个2份数据有相同的PDCP序列号(serial number,SN)或通用分组无线业务隧道协议用户面(GPRS tunnelling protocol-user plane,GTP-U)。在上行传输时,对于终端设备,需要将一份或多份PDCP数据通过终端设备与第一节点之间的通道发送给第一节点,这一份或多份数据有相同的PDCP序列号SN。
S320,第一节点进行重复性检测。
情况一:
对应S310中的情况一,第一节点通过N个隧道接收到第二节点发送的N份PDCP数据。具体地,该N份PDCP数据中的每一份PDCP数据均包括PDCP SN;或者,该N份PDCP数据中的每一份数据包括GTP-U SN。
第一节点解析并获取每一个PDCP数据包的PDCP SN或者GTP-U SN,进而根据每一个PDCP数据包的PDCP SN或者GTP-U SN进行重复性检测。
情况二:
对应S310中的情况二,第一节点通过第一节点上建立的至少一个RLC实体接收到终端设备发送的至少一份PDCP数据。具体地,该至少一份PDCP数据中的每一份PDCP数据均包括PDCP SN。
第一节点解析并获取每一个PDCP数据包的PDCP SN,进而根据每一个PDCP数据包的PDCP-SN进行重复性检测。
S330,第一节点发送PDCP数据。
情况一:
对应S310和S320中的情况一,在此情况下第一节点和第二节点之间的隧道个数可以是2个,但是第一节点和终端设备之间的通道个数可以是至少一个。
例如,第一节点和终端设备之间的通道个数为4个,第一节点通过2个隧道从第二节点处接收到2份PDCP数据包,经过重复性检测可以丢弃一个重复的数据包,并将剩余的数据包进行复制得到4份数据包,分别通过4个通道发送给终端设备;或者,第一节点和终端设备之间的通道个数为4个,第一节点只接收到一份PDCP数据包(由于某种原因导致的一个隧道上的数据包传输失败)第一节点可以将接收到的一份PDCP数据包进行复制得到4份数据包,分别通过4个通道发送给终端设备。能够避免即使某个隧道传输数据包丢失了,多个通道上能够对同一个PDCP数据包进行重复传输,并且及节点之间的隧道数可以无需和通道数个数相等,节约资源。
对应S310和S320中的情况一,在此情况下第一节点和第二节点之间的隧道个数可以是多于2个,但是第一节点和终端设备之间的通道个数可以是至少一个。
例如,第一节点和终端设备之间的通道个数为2个,第一节点通过3个隧道从第二节点处接收到3份PDCP数据包,经过重复性检测可以丢弃1个重复的数据包,并将剩余的2个数据包分别通过2个通道发送给终端设备,也可以经过重复性检测丢弃2个重复的数据包,并将剩余的1个数据包复制成2份数据包分别通过2个通道发送给终端设备;或者,第一节点和终端设备之间的通道个数为4个,第一节点只接收到一份PDCP数据包(由于某种原因导致的2个隧道上的数据包传输失败)第一节点可以将接收到的一份PDCP数据包进行复制得到4份数据包,分别通过4个通道发送给终端设备。能够避免即使多个隧道传输数据包丢失了,多个通道上能够对同一个PDCP数据包进行重复传输。
情况二:
对应S310和S320中的情况二,在此情况下第一节点和终端设备之间的通道个数可以是至少一个,第一节点和第二节点之间的隧道个数可以是多个。
例如,第一节点和终端设备之间的通道个数为1个,第一节点和第二节点之间的隧道个数为2个。第一节点通过1个通道从终端设备处接收到1份PDCP数据包,对数据包进行复制得到2份数据包,分别通过2个隧道发送给第二节点;或者,第一节点和终端设备之间的通道个数为4个,第一节点和第二节点之间的隧道个数为2个,第一节点通过1个通道从终端设备处接收到4份PDCP数据包,经过重复性检测可以丢弃2个重复的数据包,并将剩余的数据包分别通过2个隧道发送给第二节点,也可以经过重复性检测丢弃3个重复的数据包,并将剩余的1个数据包复制成4份数据包分别通过2个隧道发送给第二节点;或者,第一节点和终端设备之间的通道个数为4个,第一节点和第二节点之间的隧道个数为2个,第一节点通过1个通道从终端设备处接收到4份PDCP数据包,不进行重复性检 测,将收到的数据包分别通过2个隧道发送给第二节点。
基于上述实施例,进一步,为了实现高效率的下行重复传输发送,托管PDCP实体节点可根据对应节点发送的辅助信息确定合适的下行重复传输发送通道,进行下行数据的重复传输。现有技术中,对应节点通过一个下行用户面传输通道发送的是一个承载的辅助信息,至少包含以下信息之一:下行无线质量索引表示数据无线承载的下行的无线质量,上行无线质量索引表示数据无线承载的上行的无线质量,平均持续质量改进(continous quality improvement,CQI),平均混合式自动重传请求(hybrid automatic retransmission request,HARQ)失败,平均HARQ重传数据,功率余量报告(power headroom report,PHR)。考虑到不同的重复传输通道使用的发送载波不同,那么对应节点应该在每个传输隧道上发送对应的一个RLC实体或重复传输通道的辅助信息。当在重复传输通道和重复传输隧道一一对应时,每个隧道传输的是一个RLC实体相关的辅助信息。当在重复传输通道和重复传输隧道不是一一对应时,每个隧道传输的是一个或多个RLC相关的辅助信息,除了上述辅助信息外,还要加上该辅助信息所关联的重复传输通道信息,便于托管PDCP实体节点是否通知相关节点发送去配置或去激活相关的重复传输RLC实体。当在重复传输通道和重复传输隧道不是一一对应时,每个隧道传输是一个或多个RLC相关的辅助信息,但是不区分辅助信息所属的重复传输通道,托管PDCP实体节点根据这个承载所有的无线状况确定是否通知相关节点发送去配置或去激活相关的重复传输RLC实体。另外,为了辅助对应节点控制终端在托管节点关联的RLC实体的上行重复传输状态,可扩展将托管节点向辅助节点发送上述的一个承载的辅助信息。
上面结合图4-图7详细介绍了本申请实施例提供的通信方法,下面结合图8-图13详细介绍本申请实施例提供的通信装置。应理解,通信装置与通信方法相互对应,类似的描述可以参照方法实施例。值得注意的是,通信装置可以与上述通信方法配合使用,也可以单独使用。
参见图8,图8是本申请提出的通信装置10的示意图。如图8所示,装置10包括接收单元110以及处理单元121。
接收单元,用于接收第一节点发送的第二状态指示信息,所述第二状态指示信息指示所述PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活或第一节点上建立的RLC实体是否激活;
处理单元320,用于根据第二状态指示信息确定PDCP实体对应的多于两个的RLC实体中或第一节点上建立的RLC实体每个RLC实体是否激活。
或者,
接收单元,用于接收第二节点发送的第三状态指示信息,所述第三状态指示信息指示所述PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活或第二节点上建立的RLC实体是否激活;
处理单元320,用于根据第三状态指示信息确定PDCP实体对应的多于两个的RLC实体中或第二节点上建立的RLC实体每个RLC实体是否激活。
装置10和方法实施例中的终端设备完全对应,装置10的相应单元用于执行图4-7所示的方法实施例中由终端设备执行的相应步骤。
其中,装置10中的接收单元110执行方法实施例中终端设备接收的步骤。例如,执 行图4中接收第一节点发送的第二状态指示信息的步骤190。处理单元121执行方法实施例中终端设备内部实现或处理的步骤。
可选地,装置10还可以包括发送单元130,用于向其他设备发送信息。接收单元110和发送单元130可以组成收发单元,同时具有接收和发送的功能。其中,处理单元121可以是处理器。发送单元130可以是发射器。接收单元110可以是接收器。接收器和发射器可以集成在一起组成收发器。
参见图9,图9是适用于本申请实施例的终端设备20的结构示意图。该终端设备20可应用于图1所示出的系统中。为了便于说明,图9仅示出了终端设备的主要部件。如图9所示,终端设备20包括处理器、存储器、控制电路、天线以及输入输出装置。处理器用于控制天线以及输入输出装置收发信号,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行本申请提出的通信方法中由终端设备执行的相应流程和/或操作。此处不再赘述。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
输入输出装置,用于接收所述第一节点发送第二状态指示信息,所述第二状态指示信息指示所述PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活,或者指示所述第一节点上建立的RLC实体是否激活;或者,
输入输出装置,用于接收所述第二节点发送第三状态指示信息,所述第三状态指示信息指示所述PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活,或者指示所述第二节点上建立的RLC实体是否激活。
处理器,用于解析所述第二状态指示信息或所述第三状态指示信息,并根据第三状态指示信息确定PDCP实体对应的多于两个的RLC实体中或第二节点上建立的RLC实体每个RLC实体是否激活;或者,根据第二状态指示信息确定PDCP实体对应的多于两个的RLC实体中或第一节点上建立的RLC实体每个RLC实体是否激活。
示例性地,所述第二状态指示信息包括:
预设字段,所述预设字段中的一个比特用于指示所述第一节点上建立的一个RLC实体是否激活,所述第一节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点上建立的RLC实体的LCH标识的大小进行排序;或者,所述第一节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
示例性地,所述第二状态指示信息包括:
预设字段,所述预设字段中的一个比特用于指示所述第一节点和第二节点上建立的一个RLC实体是否激活,所述第一节点和第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点和第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,所述第一节点和第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
示例性地,所述第三状态指示信息包括:
预设字段,所述预设字段中的一个比特用于指示所述第二节点上建立的一个RLC实 体是否激活,所述第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,所述第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
示例性地,所述第三状态指示信息包括:
预设字段,所述预设字段中的一个比特用于指示所述第一节点和第二节点上建立的一个RLC实体是否激活,所述第一节点和第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点和第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,所述第一节点和第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
参见图10,图10是本申请提出的通信装置30的示意图。如图10所示,装置30包括发送单元310以及处理单元320。
处理单元320,用于确定配置信息,所述配置信息用于指示所述第二节点建立N个的隧道,其中,所述隧道用于在所述第一节点和所述第二节点之间传输PDCP数据或RLC数据,N为大于或者等于2的整数;
发送单元310,向所述第二节点发送所述配置信息。
装置30和方法实施例中的第一节点完全对应,装置30的相应单元用于执行图4-7所示的方法实施例中由第一节点执行的相应步骤。
其中,装置30中的发送单元310执行方法实施例中第一节点发送的步骤。例如,执行图4中向第二节点发送所述配置信息的步骤120。处理单元320执行方法实施例中第一节点内部实现或处理的步骤。例如,执行图4中确定配置信息的步骤110。
可选地,装置30还可以包括接收单元330,用于接收其他设备发送信息。例如,执行图4中接收第二节点发送的响应消息的步骤150。接收单元330和发送单元310可以组成收发单元,同时具有接收和发送的功能。其中,处理单元320可以是处理器。发送单元310可以是发射器。接收单元330可以是接收器。接收器和发射器可以集成在一起组成收发器。
参见图11,图11是适用于本申请实施例的第一节点40的结构示意图。该第一节点40可应用于图1或图2所示出的系统中。为了便于说明,图11仅示出了第一节点的主要部件。
该第一节点40可以对应(例如,可以配置于或本身即为)上述方法实施例中描述的托管PDCP节点,或上述方法实施例中描述的集中式单元,或上述方法实施例中描述的接入网设备,或上述方法实施例中描述的CU-CP。该第一节点40可以包括:处理器401和收发器402,处理器401和收发器402通信耦合。可选地,该第一节点40还包括存储器403,存储器403与处理器401通信耦合。可选地,处理器401、存储器403和收发器402可以通信耦合,该存储器403可以用于存储指令,该处理器401用于执行该存储器403存储的指令,以控制收发器402接收和/或发送信息或信号。其中,处理器401和收发器402分别用于执行上述方法实施例中描述的托管PDCP节点,或上述方法实施例中描述的集中式单元,或上述方法实施例中描述的接入网设备,或上述方法实施例中描述的CU-CP,所执行的各动作或处理过程。这里,为了避免赘述,省略其详细说明。本领域技术人员可以 理解,为了便于说明,图11仅示出了一个存储器和处理器。在实际的第一节点中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
具体地,处理器,用于确定配置信息,所述配置信息用于指示所述第二节点建立N个的隧道,其中,所述隧道用于在所述第一节点和所述第二节点之间传输PDCP数据或RLC数据,N为大于或者等于2的整数。
收发器,用于向所述第二节点发送所述配置信息。
示例性地,所述配置信息还用于指示所述第二节点建立N个RLC实体;或者,
所述配置信息中还包括通道数指示信息,所述通道数指示信息用于指示所述第二节点建立M个RLC实体,M为正整数。
示例性地,所述第二节点建立的每个RLC实体分别对应一个标识;
所述收发器,还用于接收所述第二节点发送的响应消息,所述响应消息中包括所述第二节点建立的每个RLC实体对应的标识。
所述收发器,还用于向所述第二节点发送去配置信息,所述去配置信息用于指示所述第二节点删除至少一个RLC实体,其中,所述去配置信息中包括所述至少一个RLC实体中各个RLC实体分别对应的标识;或者,所述去配置信息中包括第一数值,所述第一数值为指示所述第二节点删除RLC实体的个数;或者,所述至少一个RLC实体为所述第二节点建立的所有RLC实体中除主RLC实体之外的部分或全部RLC实体。
所述收发器,还用于向所述第二节点发送第一指示信息,所述第一指示信息指示所述第二节点上允许激活的RLC实体个数,其中,所述第一指示信息中包括第二数值,所述第二数值为所述第二节点上允许激活的RLC实体个数的值;或者,所述第一指示信息中包括第三数值,所述第三数值为所述N个隧道中初始激活的隧道的个数值。
示例性地,所述配置信息中包括第二指示信息,所述第二指示信息用于指示所述第二节点建立的每个RLC实体的初始状态,其中,所述第二指示信息指示所述第二节点建立的每个RLC实体的初始状态为激活状态;或者,所述第二指示信息中包括第四数值,所述第四数值为所述第二节点建立的RLC实体中初始状态为激活状态的RLC实体的个数;或者,所述第二指示信息指示所述RB的重复传输模式为激活状态,所述重复传输模式指的是所述RB的PDCP数据通过多个RLC实体传输。
所述处理器,还用于确定第二状态指示信息,所述第二状态指示信息指示所述PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活,或者指示所述第一节点上建立的RLC实体是否激活;
所述收发器,还用于终端设备发送所述第二状态指示信息。
示例性地,所述第二状态指示信息包括:
预设字段,所述预设字段中的一个比特用于指示所述第一节点上建立的一个RLC实体是否激活,所述第一节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点上建立的RLC实体的LCH标识的大小进行排序;或者,所述第一节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
示例性地,所述第二状态指示信息包括:
预设字段,所述预设字段中的一个比特用于指示所述第一节点和第二节点上建立的一个RLC实体是否激活,所述第一节点和第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点和第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,所述第一节点和第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
示例性地,所述配置信息中包括模式指示信息,所述模式指示信息用于指示所述第二节点进行PDCP数据重复传输的模式。
示例性地,所述配置信息包括所述RB的信息和所述N个隧道的地址信息。
所述收发器,还用于接收到至少一份PDCP数据;
所述处理器,还用于基于所述至少一份PDCP数据中的每一份PDCP数据分别对应的序列号进行重复性检测。
所述收发器通过所述N个隧道接收到所述第二节点发送的至少一份PDCP数据;
所述处理器进行重复性检测之后,所述收发器通过所述处理器建立的多个RLC实体向所述终端设备发送多份PDCP数据;或者,所述收发器通过所述处理单元建立的至少一个RLC实体,接收到所述终端设备发送的至少一份PDCP或RLC数据;
所述处理器进行重复性检测之后,所述收发器通过所述N个隧道向所述第二节点发送多份PDCP数据。
参见图12,图12是本申请提出的通信装置50的示意图。如图12所示,装置50包括接收单元410以及处理单元420。
接收单元410,用于接收第一节点发送的配置信息,所述配置信息用于指示所述第二节点建立N个的隧道,其中,所述隧道用于在所述第一节点和所述第二节点之间传输PDCP数据或RLC数据,N为大于或者等于2的整数;
处理单元420,用于根据所述配置信息建立与所述第一节点之间的所述N个隧道解析配置信息。
装置50和方法实施例中的第二节点完全对应,装置50的相应单元用于执行图4-7所示的方法实施例中由第二节点执行的相应步骤。
其中,装置50中的接收单元410执行方法实施例中第二节点接收的步骤。例如,执行图4中接收第一节点发送的配置信息的步骤120。处理单元420执行方法实施例中第二节点内部实现或处理的步骤。
可选地,装置50还可以包括发送单元430,用于向其他设备发送信息。例如,执行图4中向第一节点发送的响应消息的步骤150。接收单元410和发送单元430可以组成收发单元,同时具有接收和发送的功能。其中,处理单元420可以是处理器。发送单元430可以是发射器。接收单元41可以是接收器。接收器和发射器可以集成在一起组成收发器。
参见图13,图13是适用于本申请实施例的第二节点60的结构示意图。该第二节点60可应用于图1或图2所示出的系统中。为了便于说明,13仅示出了第二节点的主要部件。
该的第二节点60可以对应(例如,可以配置于或本身即为)上述方法实施例中描述的对应节点,或上述方法实施例中描述的分布式单元,或上述方法实施例中描述的接入网设备,或上述方法实施例中描述的CU-UP。该第二节点60可以包括:处理器601和收发 器602,处理器601和收发器602通信耦合。可选地,该第二节点60还包括存储器603,存储器603与处理器601通信耦合。可选地,处理器601、存储器603和收发器602可以通信耦合,该存储器603可以用于存储指令,该处理器601用于执行该存储器603存储的指令,以控制收发器602接收和/或发送信息或信号。其中,处理器601和收发器602分别用于执行上述方法实施例中描对应节点,或上述方法实施例中描述的分布式单元,或上述方法实施例中描述的接入网设备,或上述方法实施例中描述的CU-UP,所执行的各动作或处理过程。这里,为了避免赘述,省略其详细说明。本领域技术人员可以理解,为了便于说明,图13仅示出了一个存储器和处理器。在实际的第二节点中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
收发器,用于接收所述第一节点发送的配置信息,所述配置信息用于指示处理器建立N个的隧道,其中,所述隧道用于在所述第一节点和所述第二节点之间传输PDCP数据或RLC数据,N为大于或者等于2的整数;
所述处理器,用于根据所述配置信息建立与所述第一节点之间的所述N个隧道。
示例性地,所述配置信息还用于指示所述处理器建立N个RLC实体;或者,
所述配置信息中还包括通道数指示信息,所述通道数指示信息用于指示所述处理器建立M个RLC实体,M为正整数。
所述处理器,还用于为所述处理器建立的每个RLC实体分别配置一个标识;
收发器,用于向所述第一节点发送响应消息,所述响应消息中包括所述处理器建立的每个RLC实体对应的标识。
所述收发器,还用于接收所述第一节点发送的去配置信息,所述去配置信息用于指示所述处理器删除至少一个RLC实体,其中,所述去配置信息中包括所述至少一个RLC实体中各个RLC实体分别对应的标识;或者,所述去配置信息中包括第一数值,所述第一数值为所述处理器删除RLC实体的个数;或者,所述至少一个RLC实体为所述处理器建立的所有RLC实体中除主RLC实体之外的部分或全部RLC实体。
所述收发器,还用于接收所述第一节点发送的第一指示信息,所述第一指示信息指示所述第二节点上允许激活的RLC实体个数,或者,所述处理器基于预定义允许激活的RLC实体个数确定所述第二节点上允许激活的RLC实体个数,其中,所述第一指示信息中包括第二数值,所述第二数值为所述第二节点上允许激活的RLC实体个数的值;或者,所述第一指示信息中包括第三数值,所述第三数值为所述N个的隧道中初始激活的隧道的个数值。
示例性地,所述配置信息中包括第二指示信息,所述第二指示信息用于指示所述处理器建立的每个RLC实体的初始状态,其中,所述第二指示信息指示所述处理器建立的每个RLC实体的初始状态为激活状态;或者,所述第二指示信息中包括第四数值,所述第四数值为所述处理器建立的RLC实体中初始状态为激活状态的RLC实体的个数;或者,所述第二指示信息指示所述RB的重复传输模式为激活状态,所述重复传输模式指的是所述RB的PDCP数据通过多个RLC实体传输。
所述处理器,还用于确定第三状态指示信息,所述第三状态指示信息指示所述PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活,或者指示所述第二节点上建立的RLC实体是否激活;
所述收发器,用于向终端设备发送所述第三状态指示信息。
示例性地,所述第三状态指示信息包括:
预设字段,所述预设字段中的一个比特用于指示所述第二节点上建立的一个RLC实体是否激活,所述第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,所述第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
示例性地,所述第三状态指示信息包括:
所述第三状态指示信息包括:
预设字段,所述预设字段中的一个比特用于指示所述第一节点或第二节点上建立的一个RLC实体是否激活,所述第一节点和第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点和第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,所述第一节点和第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
示例性地,所述配置信息中包括模式指示信息,所述模式指示信息用于指示所述第二节点进行PDCP数据重复传输的模式。
本申请实施例还提供一种通信系统,其包括前述的终端设备、第一节点和第二节点。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图4-图7所示的方法中第一节点执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图4-图7所示的方法中第二节点执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图4-图7所示的方法中终端设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图4-图7所示的方法中第一节点执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图4-图7所示的方法中第二节点执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图4-图7所示的方法中终端设备执行的各个步骤。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的通信方法中由第一节点执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请还提供一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算 机程序,以执行本申请提供的通信方法中由第二节点执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的通信方法中由终端设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种通信方法,在网络设备和终端设备之间建立一个无线承载RB的情况下,所述网络设备包括第一节点和第二节点,所述RB对应的功能实体包括一个分组数据聚合协议PDCP实体、所述PDCP实体对应的多于两个的无线链路控制RLC实体,其特征在于,所述方法包括:
    所述第一节点确定配置信息,所述配置信息用于指示所述第二节点建立N个的隧道,其中,所述隧道用于在所述第一节点和所述第二节点之间传输所述RB的PDCP数据或RLC数据,N为大于或者等于2的整数;
    所述第一节点向所述第二节点发送所述配置信息。
  2. 根据权利要求1所述的通信方法,其特征在于,所述配置信息还用于指示所述第二节点建立N个RLC实体;或者,
    所述配置信息中还包括通道数指示信息,所述通道数指示信息用于指示所述第二节点建立M个RLC实体,M为正整数。
  3. 根据权利要求2所述的通信方法,其特征在于,所述第二节点建立的每个RLC实体分别对应一个标识;
    所述方法还包括:
    所述第一节点接收所述第二节点发送的响应消息,所述响应消息中包括所述第二节点建立的每个RLC实体对应的标识,所述RLC实体对应的标识是以下多项中的至少一项:所述RLC实体的标识、所述RLC实体的逻辑信道LCH的LCH标识、所述RLC实体对应的隧道的隧道标识以及所述RLC实体对应的通道的通道标识。
  4. 根据权利要求2或3所述的通信方法,其特征在于,所述方法还包括:
    所述第一节点向所述第二节点发送去配置信息,所述去配置信息用于指示所述第二节点删除至少一个RLC实体,
    其中,所述去配置信息中包括所述至少一个RLC实体中各个RLC实体分别对应的标识;或者,
    所述去配置信息中包括第一数值,所述第一数值为指示所述第二节点删除RLC实体的个数;或者,
    所述至少一个RLC实体为所述第二节点建立的所有RLC实体中除主RLC实体之外的部分或全部RLC实体。
  5. 根据权利要求2-4中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第一节点向所述第二节点发送第一指示信息,所述第一指示信息指示所述第二节点上允许激活的RLC实体个数,
    其中,所述第一指示信息中包括第二数值,所述第二数值为所述第二节点上允许激活的RLC实体个数的值;或者,
    所述第一指示信息中包括第三数值,所述第三数值为所述N个的隧道中初始激活的隧道的个数值。
  6. 根据权利要求1-5中任一项所述的通信方法,其特征在于,所述第一节点确定第 二状态指示信息,所述第二状态指示信息指示所述PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活,或者指示所述第一节点上建立的RLC实体是否激活;
    所述第一节点向所述终端设备发送所述第二状态指示信息。
  7. 根据权利要求6所述的通信方法,其特征在于,所述第二状态指示信息包括:
    3比特预设字段,所述预设字段中的一个比特用于指示所述第一节点上建立的一个RLC实体是否激活,所述第一节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点上建立的RLC实体的LCH标识的大小进行排序;或者,
    所述第一节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
  8. 根据权利要求6所述的通信方法,其特征在于,所述第二状态指示信息包括:
    3比特预设字段,所述预设字段中的一个比特用于指示所述第一节点和所述第二节点上建立的一个RLC实体是否激活,所述第一节点和所述第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点和所述第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,
    所述第一节点和所述第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
  9. 根据权利要求6所述的通信方法,其特征在于,所述第二状态指示信息包括:
    3比特预设字段,所述预设字段中的一个比特用于指示所述第一节点和所述第二节点上建立的一个RLC实体是否激活,所述第一节点建立的RLC实体对应的Q个比特在所述预设字段中的最低Q位比特位图,并按照所述第一节点上建立的RLC实体的对应LCH ID顺序设置所述最低Q位比特位图,所述Q为正整数;或者,
    所述第一节点和所述第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
  10. 根据权利要求2-9中任一项所述的通信方法,其特征在于,所述配置信息中包括模式指示信息,所述模式指示信息用于指示所述第二节点进行PDCP数据重复传输的模式,所述模式为以下三种之一:载波聚合CA、双连接DC、CA和DC。
  11. 根据权利要求1-10中任一项所述的通信方法,其特征在于,所述配置信息包括所述RB的信息和所述N个隧道的地址信息。
  12. 一种通信方法,在网络设备和终端设备之间建立一个无线承载RB的情况下,所述网络设备包括第一节点和第二节点,所述RB对应的功能实体包括一个分组数据聚合协议PDCP实体、所述PDCP实体对应的多于两个的无线链路控制RLC实体,其特征在于,所述方法包括:
    所述第二节点接收所述第一节点发送的配置信息,所述配置信息用于指示所述第二节点建立N个的隧道,其中,所述隧道用于在所述第一节点和所述第二节点之间传输PDCP数据或RLC数据,N为大于或者等于2的整数;
    所述第二节点根据所述配置信息建立与所述第一节点之间的所述N个隧道。
  13. 根据权利要求12所述的通信方法,其特征在于,所述配置信息还用于指示所述第二节点建立N个RLC实体;或者,
    所述配置信息中还包括通道数指示信息,所述通道数指示信息用于指示所述第二节点 建立M个RLC实体,M为正整数。
  14. 根据权利要求13所述的通信方法,其特征在于,所述方法还包括:
    所述第二节点为所述第二节点建立的每个RLC实体分别配置一个对应的标识;
    所述第二节点向所述第一节点发送响应消息,所述响应消息中包括所述第二节点建立的每个RLC实体对应的标识,所述RLC实体对应的标识是以下多项中的至少一项:所述RLC实体的标识、所述RLC实体的逻辑信道LCH的LCH标识、所述RLC实体对应的隧道的隧道标识以及所述RLC实体对应的通道的通道标识。
  15. 根据权利要求13或14所述的通信方法,其特征在于,所述方法还包括:
    所述第二节点接收所述第一节点发送的去配置信息,所述去配置信息用于指示所述第二节点删除至少一个RLC实体,
    其中,所述去配置信息中包括所述至少一个RLC实体中各个RLC实体分别对应的标识;或者,
    所述去配置信息中包括第一数值,所述第一数值为指示所述第二节点删除RLC实体的个数;或者,
    所述至少一个RLC实体为所述第二节点建立的所有RLC实体中除主RLC实体之外的部分或全部RLC实体。
  16. 根据权利要求13-15中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第二节点接收所述第一节点发送的第一指示信息,所述第一指示信息指示所述第二节点上允许激活的RLC实体个数,或者,所述第二节点基于预定义允许激活的RLC实体个数确定所述第二节点上允许激活的RLC实体个数,
    其中,所述第一指示信息中包括第二数值,所述第二数值为所述第二节点上允许激活的RLC实体个数的值;或者,
    所述第一指示信息中包括第三数值,所述第三数值为所述N个的隧道中初始激活的隧道的个数值。
  17. 根据权利要求13-16中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第二节点确定第三状态指示信息,所述第三状态指示信息指示所述PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活,或者指示所述第二节点上建立的RLC实体是否激活;
    所述第二节点向所述终端设备发送所述第三状态指示信息。
  18. 根据权利要求17所述的通信方法,其特征在于,所述第三状态指示信息包括:
    预设字段,所述预设字段中的一个比特用于指示所述第二节点上建立的一个RLC实体是否激活,所述第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,
    所述第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
  19. 根据权利要求17所述的通信方法,其特征在于,所述第三状态指示信息包括:
    预设字段,所述预设字段中的一个比特用于指示所述第一节点和所述第二节点上建立的一个RLC实体是否激活,所述第一节点和所述第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点和所述第二节点上建立的RLC实体的LCH标 识的大小进行排序;或者,
    所述第一节点和所述第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
  20. 根据权利要求12-18中任一项所述的通信方法,其特征在于,所述配置信息中包括模式指示信息,所述模式指示信息用于指示所述第二节点进行PDCP数据重复传输的模式,所述模式为以下三种之一:载波聚合CA、双连接DC、CA和DC。
  21. 根据权利要求12-20中任一项所述的通信方法,其特征在于,所述配置信息包括所述RB的信息和所述N个隧道的地址信息。
  22. 一种通信方法,在网络设备和终端设备之间建立一个无线承载RB的情况下,所述网络设备包括第一节点和第二节点,所述RB对应的功能实体包括一个分组数据聚合协议PDCP实体、所述PDCP实体对应的多于两个的无线链路控制RLC实体,其特征在于,所述方法包括:
    所述终端设备接收所述第一节点发送第二状态指示信息,所述第二状态指示信息指示所述PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活,或者指示所述第一节点上建立的RLC实体是否激活;或者,
    所述终端设备接收所述第二节点发送第三状态指示信息,所述第三状态指示信息指示所述PDCP实体对应的多于两个的RLC实体中每个RLC实体是否激活,或者指示所述第二节点上建立的RLC实体是否激活;
    所述终端设备根据所述第二状态指示信息和所述第三状态指示信息中的至少一种在激活的RLC实体所对应的通道上传输PDCP数据。
  23. 根据权利要求22所述的通信方法,其特征在于,所述第二状态指示信息包括:
    3比特预设字段,所述预设字段中的一个比特用于指示所述第一节点上建立的一个RLC实体是否激活,所述第一节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点上建立的RLC实体的LCH标识的大小进行排序;或者,
    所述第一节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
  24. 根据权利要求22所述的通信方法,其特征在于,所述第二状态指示信息包括:
    3比特预设字段,所述预设字段中的一个比特用于指示所述第一节点和所述第二节点上建立的一个RLC实体是否激活,所述第一节点和所述第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点和所述第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,
    所述第一节点和所述第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
  25. 根据权利要求22所述的通信方法,其特征在于,所述第二状态指示信息包括:
    3比特预设字段,所述预设字段中的一个比特用于指示所述第一节点和所述第二节点上建立的一个RLC实体是否激活,所述第一节点建立的RLC实体对应的Q个比特在所述预设字段中的最低Q位比特位图,并按照所述第一节点上建立的RLC实体的对应LCH ID顺序设置所述最低Q位比特位图,所述Q为正整数;或者,
    所述第一节点和所述第二节点上建立的每个RLC实体对应的LCH配置中包括的状态 信息,所述状态信息指示对应的RLC实体是否激活。
  26. 根据权利要求22所述的通信方法,其特征在于,所述第三状态指示信息包括:
    预设字段,所述预设字段中的一个比特用于指示所述第二节点上建立的一个RLC实体是否激活,所述第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,
    所述第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
  27. 根据权利要求22所述的通信方法,其特征在于,所述第三状态指示信息包括:
    预设字段,所述预设字段中的一个比特用于指示所述第一节点和所述第二节点上建立的一个RLC实体是否激活,所述第一节点和所述第二节点上建立的RLC实体对应的比特在所述预设字段中的位置按照所述第一节点和所述第二节点上建立的RLC实体的LCH标识的大小进行排序;或者,
    所述第一节点和所述第二节点上建立的每个RLC实体对应的LCH配置中包括的状态信息,所述状态信息指示对应的RLC实体是否激活。
  28. 一种通信装置,用于执行权利要求1-11中任一项所述的方法中的第一节点的操作。
  29. 一种通信装置,用于执行权利要求11-21中任一项所述的方法中的第二节点的操作。
  30. 一种通信装置,用于执行权利要求22-27中任一项所述的方法中的终端设备的操作。
  31. 一种通信设备,其特征在于,包括:
    存储器,所述存储器用于存储计算机程序;
    收发器,所述收发器用于执行权利要求1-27中任一项所述的方法中的收发步骤;
    处理器,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述通信设备执行权利要求1-27中任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读介质存储有计算机程序;
    所述计算机程序在计算机上运行时,使得计算机执行权利要求1-25中任一项所述的方法。
  33. 一种通信系统,其特征在于,包括:
    权利要求28所述的通信装置、权利要求29所述的通信装置以及权利要求30所述的通信装置。
PCT/CN2020/081325 2019-03-29 2020-03-26 通信方法和通信装置 WO2020200024A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20782711.4A EP3937590A4 (en) 2019-03-29 2020-03-26 COMMUNICATION METHOD AND COMMUNICATION APPARATUS
US17/487,219 US20220015172A1 (en) 2019-03-29 2021-09-28 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910252461.0 2019-03-29
CN201910252461.0A CN111757548B (zh) 2019-03-29 2019-03-29 通信方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/487,219 Continuation US20220015172A1 (en) 2019-03-29 2021-09-28 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020200024A1 true WO2020200024A1 (zh) 2020-10-08

Family

ID=72664959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081325 WO2020200024A1 (zh) 2019-03-29 2020-03-26 通信方法和通信装置

Country Status (4)

Country Link
US (1) US20220015172A1 (zh)
EP (1) EP3937590A4 (zh)
CN (1) CN111757548B (zh)
WO (1) WO2020200024A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032528A1 (en) * 2021-08-28 2023-03-09 Nec Corporation METHOD OF gNB-DU APPARATUS, METHOD OF gNB-CU-UP APPARATUS, METHOD OF AMF APPARATUS, METHOD OF FIRST gNB-CU-CP APPARATUS, gNB-DU APPARATUS, gNB-CU-UP APPARATUS, AMF APPARATUS AND FIRST gNB-CU-CP APPARATUS

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114271014A (zh) 2019-06-21 2022-04-01 路创技术有限责任公司 用于负载控制系统的网络形成
US20210022162A1 (en) * 2019-07-19 2021-01-21 Qualcomm Incorporated Power efficient monitoring for semi-persistent scheduling occasions on multiple component carriers
US11770324B1 (en) * 2019-12-02 2023-09-26 Lutron Technology Company Llc Processing advertisement messages in a mesh network
CN115023907A (zh) 2019-12-02 2022-09-06 路创技术有限责任公司 百分位基底链路鉴定
WO2024036492A1 (en) * 2022-08-16 2024-02-22 Zte Corporation Assurance of service continuity by facilitating handovers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151891A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 一种通信处理方法和通信装置
CN109150388A (zh) * 2017-06-16 2019-01-04 北京三星通信技术研究有限公司 支持pdcp重复功能的系统、数据传输方法及网络设备
US20190082363A1 (en) * 2017-09-13 2019-03-14 Comcast Cable Communications, Llc Radio Link Failure Information for PDCP Duplication

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1833413A (zh) * 2003-08-08 2006-09-13 三星电子株式会社 用于为多媒体广播/多播服务配置协议的方法和设备
US8379646B2 (en) * 2006-07-31 2013-02-19 Lg Electronics Inc. Method of processing control information in a mobile communication system
CN1913534B (zh) * 2006-08-17 2010-12-01 华为技术有限公司 一种数据处理方法及通信设备
MX2009007710A (es) * 2007-01-19 2009-07-30 Ntt Docomo Inc Aparato de estacion base y metodo de control de comunicaciones.
CN102395156B (zh) * 2011-09-28 2015-05-20 电信科学技术研究院 应用于pdcp实体和rlc实体间的数据传输方法及装置
EP2849501B1 (en) * 2012-05-09 2020-09-30 Samsung Electronics Co., Ltd. Method and apparatus for controlling discontinuous reception in mobile communication system
EP4009703A1 (en) * 2012-08-07 2022-06-08 Huawei Technologies Co., Ltd. Handover processing method and base station
CN103874151B (zh) * 2012-12-17 2018-04-27 电信科学技术研究院 分层组网时的承载转移方法和设备
CN108306708B (zh) * 2014-03-21 2020-07-10 电信科学技术研究院 一种数据包处理方法及装置
CN105100167B (zh) * 2014-05-20 2019-06-07 华为技术有限公司 消息的处理方法及车载终端
CN105323807B (zh) * 2014-08-01 2019-01-25 电信科学技术研究院 一种进行切换的方法和设备
US9942805B2 (en) * 2014-11-12 2018-04-10 Qualcomm Incorporated UE handling of stale or incomplete PDUs after cell reselection or reconfiguration
CN106304242B (zh) * 2015-05-21 2018-12-21 中兴通讯股份有限公司 一种多跳通信系统及其节点
EP3142453B1 (en) * 2015-09-08 2018-05-16 ASUSTek Computer Inc. Method and apparatus for triggering radio bearer release by a relay ue (user equipment) in a wireless communication system
CN107302770A (zh) * 2016-04-15 2017-10-27 中兴通讯股份有限公司 一种数据重传方法及装置
CN107426776B (zh) * 2016-05-24 2024-06-04 华为技术有限公司 QoS控制方法及设备
CN107682894B (zh) * 2016-08-01 2022-11-29 中兴通讯股份有限公司 用户面数据处理方法、装置及系统
US10448386B2 (en) * 2017-01-06 2019-10-15 Kt Corporation Method and apparatus for controlling redundant data transmission
CN108366398B (zh) * 2017-01-26 2021-06-22 华为技术有限公司 一种数据传输方法、网络设备及终端设备
EP3603193B1 (en) * 2017-03-22 2023-08-16 InterDigital Patent Holdings, Inc. Phased reconfiguration in wireless systems
CN109041133B (zh) * 2017-06-09 2021-01-08 维沃移动通信有限公司 去激活命令处理方法、激活命令处理方法和用户终端
JP2020529751A (ja) * 2017-06-16 2020-10-08 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法、端末装置及びネットワーク機器
WO2019023862A1 (zh) * 2017-07-31 2019-02-07 Oppo广东移动通信有限公司 数据处理方法及相关产品
CN109391639B (zh) * 2017-08-02 2021-01-08 维沃移动通信有限公司 一种激活及去激活数据复制的方法及终端
WO2019028764A1 (zh) * 2017-08-10 2019-02-14 Oppo广东移动通信有限公司 双连接中的复制数据传输功能的控制方法和设备
CN110662267B (zh) * 2017-08-11 2020-12-08 华为技术有限公司 一种传输方法和网络设备
KR102340554B1 (ko) * 2017-08-21 2021-12-16 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 데이터 전송 방법 및 장치
US11206105B2 (en) * 2017-09-07 2021-12-21 Shenzhen Heytap Technology Corp., Ltd. Data transmission method and terminal device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151891A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 一种通信处理方法和通信装置
CN109150388A (zh) * 2017-06-16 2019-01-04 北京三星通信技术研究有限公司 支持pdcp重复功能的系统、数据传输方法及网络设备
US20190082363A1 (en) * 2017-09-13 2019-03-14 Comcast Cable Communications, Llc Radio Link Failure Information for PDCP Duplication

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Configuration and Control of Packet Duplication", 3GPP TSG RAN WG2 NR AD HOC R2-1706716, 29 June 2017 (2017-06-29), XP051301216, DOI: 20200616130241X *
HUAWEI ET AL.: "Configuration and Control of Packet Duplication", 3GPP TSG RAN WG2 NR AD HOC R2-1706716, 29 June 2017 (2017-06-29), XP051301216, DOI: 20200616130311Y *
HUAWEI: "PDCP Duplication for CU-DU", 3GPP TSG RAN WG3 MEETING #97 R3-173128, 25 August 2017 (2017-08-25), XP051319959, DOI: 20200616130817A *
SAMSUNG: "Analysis of Duplication with More Than 2 Legs", 3GPP TSG-RAN WG2 MEETING #104 R2-1818466, 16 November 2018 (2018-11-16), XP051557954, DOI: 20200616130709A *
See also references of EP3937590A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032528A1 (en) * 2021-08-28 2023-03-09 Nec Corporation METHOD OF gNB-DU APPARATUS, METHOD OF gNB-CU-UP APPARATUS, METHOD OF AMF APPARATUS, METHOD OF FIRST gNB-CU-CP APPARATUS, gNB-DU APPARATUS, gNB-CU-UP APPARATUS, AMF APPARATUS AND FIRST gNB-CU-CP APPARATUS

Also Published As

Publication number Publication date
US20220015172A1 (en) 2022-01-13
EP3937590A1 (en) 2022-01-12
CN111757548A (zh) 2020-10-09
EP3937590A4 (en) 2022-05-11
CN111757548B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2020200024A1 (zh) 通信方法和通信装置
JP6923655B2 (ja) 情報伝送方法および装置
CN104813725B (zh) 数据传输装置和方法
US11963131B2 (en) Notification method, apparatus, and communications system
WO2019029643A1 (zh) 通信方法、基站、终端设备和系统
CN109257827A (zh) 通信方法、装置、系统、终端和接入网设备
WO2020143690A1 (zh) 一种无线承载的配置方法、终端及通信装置
AU2017406570A1 (en) Relay communication method, apparatus and system
CN104685920A (zh) 传输数据的方法、装置和系统
US20220014971A1 (en) Wireless communication method, terminal device and network device
EP3737145A1 (en) Communication method, device and system
TWI744494B (zh) 傳輸數據的方法和設備
WO2018227555A1 (zh) 用于传输数据的方法、终端设备和网络设备
WO2016183714A1 (zh) 通信方法和通信设备
WO2020147056A1 (zh) 用于复制数据传输的方法和设备
US12010530B2 (en) PDCP duplication function determination and indication methods and devices, base station, and terminal
TW201922021A (zh) 方法、設備、電腦程式產品及電腦程式
US20240073998A1 (en) Method and apparatus for controlling packet duplication transmission in wireless communication system
WO2020030059A1 (zh) 一种信息指示方法及装置
EP3534662B1 (en) Bearer configuration method and related product
WO2020199034A1 (zh) 用于中继通信的方法和装置
CN104137605A (zh) 数据传输的方法、用户设备和基站
WO2021134639A1 (zh) 一种数据的反馈方法及装置
WO2023065965A1 (zh) 通信方法、装置以及存储介质
WO2022120541A1 (zh) 数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020782711

Country of ref document: EP

Effective date: 20211007