WO2021134639A1 - 一种数据的反馈方法及装置 - Google Patents

一种数据的反馈方法及装置 Download PDF

Info

Publication number
WO2021134639A1
WO2021134639A1 PCT/CN2019/130855 CN2019130855W WO2021134639A1 WO 2021134639 A1 WO2021134639 A1 WO 2021134639A1 CN 2019130855 W CN2019130855 W CN 2019130855W WO 2021134639 A1 WO2021134639 A1 WO 2021134639A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
data
resource
time
domain position
Prior art date
Application number
PCT/CN2019/130855
Other languages
English (en)
French (fr)
Inventor
张鹏
向铮铮
许华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19958103.4A priority Critical patent/EP4075695A4/en
Priority to CN201980103238.8A priority patent/CN114846755A/zh
Priority to PCT/CN2019/130855 priority patent/WO2021134639A1/zh
Publication of WO2021134639A1 publication Critical patent/WO2021134639A1/zh
Priority to US17/855,205 priority patent/US20220368505A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a data feedback method and device.
  • Target terminal equipment there may be at least one cooperative terminal device.
  • the target terminal equipment may also be referred to as target user equipment (target user equipment, TUE), and the cooperative terminal equipment may also be referred to as cooperation user equipment (CUE).
  • TUE target user equipment
  • CUE cooperation user equipment
  • the base station can send data to the TUE and TUE's cooperative UEs.
  • the TUE and CUE respectively decode (or call decoding) the received data. After that, the TUE and CUE will inform the base station of their respective decoding results on the feedback channel.
  • the decoding result may be hybrid automatic repeat request (HARQ) information. If the decoding is correct, the HARQ information is ACK, otherwise it is NACK.
  • the base station determines whether to retransmit the data (ie, retransmit) according to the received HARQ. If the HARQ information is ACK, the base station does not need to retransmit the data to the TUE. If the HARQ information is NACK, the base station needs to resend the data to the TUE.
  • HARQ hybrid automatic repeat request
  • TUE has a need to save transmit power and cannot feed back the decoding result to the base station.
  • a small wearable device used as a TUE to feed back a decoding result to the base station will consume a lot of power, resulting in the remaining power cannot be used by the user.
  • the base station will repeatedly send data to this type of device regardless of whether the device receives the data correctly or decodes it correctly, until the preset number of retransmissions is reached. This scenario will cause a waste of transmission resources.
  • the present application provides a data feedback method and device, which are used to save transmission resources when retransmitting data to a terminal with a transmission power saving requirement in a user collaboration scenario.
  • an embodiment of the present application provides a data feedback method, which can be applied to a first terminal, and the method includes: the first terminal receives first feedback information from a second terminal, and the first feedback information is used To instruct the second terminal to receive the result of the first data from the network device; wherein, the first data is sent by the network device for the second terminal; the first terminal sends the first data to the network device 2.
  • Feedback information where the second feedback information is determined by the first terminal according to the first feedback information and a result of receiving the first data by the first terminal.
  • the second terminal sends the first feedback information to the first terminal based on the side link.
  • the first terminal determines the reception result of the second terminal according to the first feedback information, and based on its own reception result and the second terminal’s
  • the receiving result determines the second feedback information sent to the network device, so as to realize that while meeting the energy-saving requirements of the second terminal, it is ensured that the network device can also determine the receiving results of the first terminal and the second terminal according to the second feedback information.
  • the network device performs unnecessary operations.
  • the technical solution of the present application can effectively reduce the waste of resources caused by repeatedly sending the first data to the TUE when the network device cannot determine the reception result of the TUE.
  • the reception result includes at least one of the following: successful reception or unsuccessful reception.
  • the second feedback information is a bit including at least two bits; at least one of the bits is used to indicate the result of receiving the first data by the first terminal, The other at least one bit among the bits is used to indicate the result of receiving the first data by the second terminal.
  • the second feedback information is an index corresponding to a combination of a reception result of the first data by the second terminal and a reception result of the first data by the first terminal.
  • the method further includes: the first terminal determining the result of receiving the first data by the first terminal and the receiving result of the first data by the second terminal according to the first correspondence An index corresponding to a combination of results; the first correspondence includes a correspondence between various combinations of possible reception results of the first terminal and possible reception results of the second terminal and respective indexes.
  • the first terminal receiving the first feedback information from the second terminal includes: the first terminal receiving SL (sidelink, side link) resource configuration information from the network device , And determine the SL resource according to the SL resource configuration information; the first terminal receives the first feedback information from the second terminal through the SL resource.
  • SL sidelink, side link
  • the second terminal sends the first feedback information to the first terminal.
  • the transmission power can be reduced, which is a more power-saving data feedback method to satisfy the second Energy-saving needs of the terminal.
  • the SL resource configuration information is used to indicate the first time interval of the SL resource; wherein, the first time interval is the time domain position of the first data and the SL resource Or the first time interval is the interval between the time domain position of the SL resource configuration information and the time domain position of the SL resource, or the first time interval is The interval between the time domain position of the scheduling information of the first data and the time domain position of the SL resource.
  • the SL resource configuration information indicates the first time interval of the SL resource.
  • the first time interval may be the time interval between the first designated position of the SL resource and the second designated position of other channels.
  • the channel may be a channel that carries the first data, or a channel that carries control information for scheduling the first data.
  • the first time interval is the start time domain position of the SL resource and the start time of the channel that carries the first data The time interval between domain locations.
  • the start time domain position of the channel that the first terminal and the second terminal can carry the first data and the first time interval determine the start time domain position of the SL resource used to transmit the first feedback information, which is the first The terminal and the second terminal provide SL resources for transmitting the first feedback information.
  • the sending of the second feedback information by the first terminal to the network device includes: the first terminal receives the uplink time-frequency resource configuration information from the network device, and according to the uplink The time-frequency resource configuration information determines an uplink time-frequency resource; the first terminal sends the second feedback information to the network device through the uplink time-frequency resource.
  • the uplink time-frequency resource configuration information is used to indicate the second time interval of the uplink time-frequency resource; wherein, the second time interval is the time domain position of the first data and The interval between the time domain positions of the uplink time-frequency resource, or the second time interval is the interval between the time domain position of the uplink time-frequency resource configuration information and the time domain position of the uplink time-frequency resource , Or the second time interval is the interval between the time domain position of the scheduling information of the first data and the time domain position of the uplink time-frequency resource, or the second time interval is the first feedback The interval between the time domain position of the information and the time domain position of the uplink time-frequency resource.
  • an embodiment of the present application provides a data feedback method, which can be applied to a second terminal, and the method includes: the second terminal receives first data from a network device; Send first feedback information, where the first feedback information is used to indicate the result of receiving the first data by the second terminal; the first terminal is a cooperative terminal of the second terminal and is used to receive For the first data of the network device, the first data destination is the second terminal.
  • the second terminal sends the first feedback information to the first terminal through the side link, and the first feedback information is used to indicate the result of receiving the first data by the first terminal, so that the first terminal can follow the first
  • the receiving result of the terminal and its own receiving result of the first data determine the second feedback information, and send the second feedback information to the network device to meet the energy-saving requirements of the second terminal, and when the second terminal fails to receive successfully, it can Indirectly notify the network device and re-receive the first data from the network device or the first terminal to ensure the normal operation of the second terminal.
  • the reception result includes at least one of the following: successful reception or unsuccessful reception.
  • the method before the second terminal sends the first feedback information to the first terminal, the method further includes: the second terminal receives SL resource configuration information from the network device, and according to the SL resource The configuration information determines the SL resource;
  • the sending, by the second terminal, the first feedback information to the first terminal includes: the second terminal sending the first feedback information to the first terminal through the SL resource.
  • the SL resource configuration information is used to indicate the first time interval of the SL resource; wherein, the first time interval is the time domain position of the first data and the SL resource Or the first time interval is the interval between the time domain position of the SL resource configuration information and the time domain position of the SL resource, or the first time interval is The interval between the time domain position of the scheduling information of the first data and the time domain position of the SL resource.
  • an embodiment of the present application provides a data feedback method, which can be applied to a network device, and the method includes: the network device sends first data, and the destination of the first data is a second terminal; The network device receives the second feedback information of the first terminal; the second feedback information is based on the first feedback information sent by the second terminal to the first terminal and the communication of the first terminal to the first terminal. If the result of receiving the first data is determined, the first feedback information is used to indicate the result of receiving the first data by the second terminal.
  • the reception result includes at least one of the following: successful reception or unsuccessful reception.
  • the network device sends SL resource configuration information to the first terminal and the second terminal; the SL resource configuration information is used to indicate the first time interval of the SL resource, and the SL The resource is used to carry the first feedback information; wherein, the first time interval is the interval between the time domain position of the first data and the time domain position of the SL resource, or the first time interval Is the interval between the time domain position of the SL resource configuration information and the time domain position of the SL resource, or the first time interval is the time domain position of the scheduling information of the first data and the SL resource The interval between the time domain positions.
  • the method before the network device receives the second feedback information of the first terminal, the method further includes: the network device sends uplink time-frequency resource configuration information to the second terminal; the uplink time-frequency resource The configuration information is used to indicate the second time interval of the uplink time-frequency resource; the uplink time-frequency resource is used to carry the second feedback information; wherein, the second time interval is the time domain of the first data The interval between the position and the time domain position of the uplink time-frequency resource, or the second time interval is between the time domain position of the uplink time-frequency resource configuration information and the time domain position of the uplink time-frequency resource , Or the second time interval is the interval between the time domain position of the scheduling information of the first data and the time domain position of the uplink time-frequency resource, or the second time interval is the first The interval between the time domain position of the feedback information and the time domain position of the uplink time-frequency resource.
  • the network device receiving the second feedback information of the first terminal further includes: the network device judging whether the second terminal needs to receive the first terminal again according to the second feedback information. data.
  • the network device judging whether the second terminal needs to re-receive the first data according to the second feedback information includes:
  • the network device determines that the second terminal does not need to re-receive the first data; if the second feedback information indicates that the second terminal If the reception is unsuccessful and the first terminal receives successfully, the network device determines that the second terminal needs to receive the first data again, and the method further includes: the network device sends to the first terminal First indication information, the first indication information is used to instruct the first terminal to send the first data to the second terminal; if the second feedback information indicates that the second terminal has not successfully received it, and If the first terminal fails to receive the data, the network device determines that the second terminal needs to receive the first data again. The method further includes: the network device sends the first data to the first terminal. data.
  • an embodiment of the present application provides a communication device that has the function of the first terminal in any possible design of the first aspect or the first aspect, or has the function of the second or the first aspect.
  • the function of the second terminal in any possible design of the two aspects.
  • the communication device may be a terminal device, such as a handheld terminal device, a vehicle-mounted terminal device, etc., or a device included in the terminal device, such as a chip, or a device including a terminal device.
  • the functions of the above-mentioned terminal device may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device may also have the function of realizing the above-mentioned third aspect or any one of the possible designs of the network device in the third aspect.
  • the communication device may be a network device, such as a base station, or a device included in the network device, such as a chip.
  • the functions of the above-mentioned network device may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a transceiving unit, wherein the processing unit is configured to support the communication device to perform the corresponding function in the first aspect or any one of the designs in the first aspect. , Or perform the corresponding function in the above-mentioned second aspect or any design of the second aspect, or perform the corresponding function in the above-mentioned third aspect or any design of the third aspect.
  • the transceiver unit is used to support communication between the communication device and other communication devices. For example, when the communication device is a first terminal, it can receive first feedback information from a second terminal and receive first data from a network device.
  • the communication device may also include a storage module, which is coupled with the processing unit, which stores program instructions and data necessary for the communication device.
  • the processing unit may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • the memory may be integrated with the processor or may be provided separately from the processor, which is not limited in this application.
  • the structure of the communication device includes a processor and may also include a memory.
  • the processor is coupled with the memory, and can be used to execute the computer program instructions stored in the memory, so that the communication device executes the method in the first aspect or any one of the possible designs of the first aspect, or executes the second aspect or the second aspect.
  • the method in any possible design of the aspect, or the method in any possible design of the above-mentioned third aspect or the third aspect.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the communication device is a chip included in the terminal device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or an instruction, when the program or an instruction is executed by the processor , Enabling the chip system to implement any possible design method in the first aspect, or any possible design method in the second aspect, or any possible design in the third aspect Method in design.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor can be a general-purpose processor, implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • embodiments of the present application provide a computer-readable storage medium that stores computer-readable instructions.
  • the computer reads and executes the computer-readable instructions, the computer executes the first The method in any possible design of the aspect, or the method in any possible design of the second aspect described above, or the method in any possible design of the third aspect described above.
  • the embodiments of the present application provide a computer program product.
  • the computer reads and executes the computer program product, the computer executes any one of the possible design methods in the first aspect, or executes the above-mentioned method in the first aspect.
  • the method in any possible design of the second aspect, or the method in any possible design of the above-mentioned third aspect.
  • an embodiment of the present application provides a communication system, which includes the network device, the first terminal, and the second terminal.
  • an embodiment of the present application provides a communication system, which includes the first terminal and the second terminal.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system to which an embodiment of this application is applicable;
  • FIG. 2 is a schematic flowchart of a method for feedback of cooperative data provided by an embodiment of this application;
  • 3a and 3b are respectively schematic diagrams of a scenario for determining SL resources provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a periodic resource configuration provided by an embodiment of this application.
  • 5a and 5b are respectively schematic diagrams of a scenario for determining uplink time-frequency resources according to an embodiment of the application;
  • 6a and 6b are respectively schematic diagrams of another scenario for determining uplink time-frequency resources provided by an embodiment of this application;
  • FIG. 7 is a schematic diagram of a complete flow of a method for feedback of cooperative data provided by an embodiment of the application.
  • FIGS. 8a and 8b are schematic diagrams of an application scenario for data feedback provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is another schematic structural diagram of a communication device according to an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of another structure of another communication device provided by an embodiment of this application.
  • Terminal equipment which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device may communicate with a core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal device may be a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • terminal devices are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • the terminal device in the embodiments of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit that is built into a vehicle as one or more components or units, and the vehicle passes through the built-in vehicle-mounted module, vehicle-mounted Modules, vehicle-mounted components, vehicle-mounted chips, or vehicle-mounted units may implement the methods provided in the embodiments of the present application.
  • Network equipment is the equipment used to connect terminal equipment to the wireless network in the network.
  • the network device may be a node in a radio access network, may also be called a base station, or may be called a radio access network (RAN) node (or device).
  • the network device can be used to convert received air frames and Internet Protocol (IP) packets into each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network can include an IP network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It can also include the next generation node B (gNB) in the new radio (NR) system of the fifth generation mobile communication technology (5G), or it can also include the transmission reception point.
  • NodeB or eNB or e-NodeB, evolutional Node B in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It can also include the next generation node B (gNB) in the new radio (NR) system of the fifth generation mobile communication technology (5G), or it can also include the transmission reception point.
  • LTE long term evolution
  • LTE-A evolved LTE system
  • gNB next generation node B
  • NR new radio
  • TRP home base station
  • BBU baseband unit
  • WiFi access point access point, AP
  • CU home evolved NodeB
  • DU distributed unit
  • a network device in a V2X technology is a roadside unit (RSU).
  • the RSU may be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • “Multiple” refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application. "At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C are included. In the same way, the understanding of "at least one" and other descriptions is similar.
  • User cooperative communication is an effective means to improve system capacity and network coverage.
  • a target terminal device there may be at least one cooperative terminal device.
  • the target terminal device may also be called target user equipment (TUE), and the cooperative terminal device may also be called cooperation user equipment (cooperation user equipment). , CUE).
  • TUE target user equipment
  • CUE cooperation user equipment
  • the TUE and the at least one CUE may form a user cooperation group.
  • the user cooperation group can be understood as including at least two terminal devices having a data-assisted transmission relationship, and the at least two terminal devices can be divided into target terminal devices and cooperative terminal devices according to the destination of data transmission.
  • a cooperative terminal device refers to a terminal device that can receive data whose destination is TUE from a network device and forward it to the TUE.
  • the data may be forwarded to the TUE to help the TUE successfully receive the data and improve the TUE's receiving performance.
  • cooperative transmission includes two stages.
  • the network device sends data to the TUE and the CUE of the TUE, for example, in the form of multicast or broadcast.
  • the TUE and CUE decode the data received by each, and send feedback information to the network device on their respective feedback channels to indicate whether they have successfully received the data.
  • the network equipment determines the operation to be performed based on the feedback information sent by the TUE and CUE. For example, if the network device determines that the TUE is decoded correctly, it will not retransmit the data to the TUE; if both CUE and TUE are decoded incorrectly, the network device will resend the data, that is, repeat the operation steps of the first stage; if the network device determines If the TUE is decoded incorrectly and the CUE is decoded correctly, the network device can instruct the CUE and TUC to enter the second stage.
  • the CUE sends the received data to the TUE respectively through the side link.
  • the CUE may also perform processing such as amplifying, decoding, and compressing the data, which is not limited in this application. In this way, the TUE can jointly decode the data received from the network device in the first stage and the data received from the CUE in the second stage, thereby improving the reception performance.
  • TUE has a need to save transmission power and cannot send feedback information to network devices.
  • the TUE is a small wearable device
  • sending feedback information to the network device once will consume a lot of power, resulting in the remaining power cannot be used by the user.
  • the network equipment cannot know whether the TUE is decoded accurately, which affects the network equipment to perform correct operations and may cause a waste of transmission resources.
  • this application provides a data feedback method.
  • the TUE sends first feedback information indicating the result of receiving the first data to the CUE.
  • the CUE is based on the TUE’s receiving result of the first data and its own response to the first data.
  • the result of the reception determines the second feedback information, and sends the second feedback information to the network device.
  • the TUE transmitting the first feedback information through the side link has lower energy consumption than sending the first feedback information to the network device, it can meet the TUE energy saving requirements while ensuring that the network device is informed of the TUE and CUE Regarding the reception result of the first data, if the TUE is not successfully received, the network device can be notified through the CUE, and the network device instructs the TUE to re-receive the first data from the CUE or the network device to ensure the normal operation of the TUE, and at the same time, avoid the network device
  • unnecessary operations are performed. For example, when the network device is not sure whether the TUE successfully receives the first data, it blindly repeats the first data, which causes a waste of resources.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WIMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • the air interface communication process between the network device and the terminal device is taken as an example.
  • the technical solution provided by the embodiment of this application can also be applied to a sidelink (SL).
  • SL sidelink
  • one terminal device can initiate paging to another terminal device.
  • the technical solutions provided by the embodiments of this application can be applied to device-to-device (D2D) scenarios, can be NR D2D scenarios, LTE D2D scenarios, etc., or can be applied to vehicle-to-everything (vehicle to everything) scenarios.
  • D2D device-to-device
  • LTE D2D scenarios Long Term Evolution
  • vehicle-to-everything vehicle to everything
  • V2X Vehicle-to-vehicle
  • V2X Vehicle-to-vehicle
  • the embodiments of the present application can also be applied to the evolved universal mobile telecommunications system terrestrial radio access network (E-UTRAN) system, or the next generation (NG)-RAN
  • E-UTRAN evolved universal mobile telecommunications system terrestrial radio access network
  • NG next generation
  • the system can also be applied to next-generation communication systems or similar communication systems.
  • FIG. 1 provides a schematic diagram of a network architecture of a communication system for this application.
  • the communication system includes a network device 110, a terminal device 120, a terminal device 130, and a terminal device 140.
  • the terminal device 120 is a TUE
  • the terminal device 130 and the terminal device 140 are CUEs of the terminal device 120.
  • the terminal device 120, the terminal device 130, and the terminal device 140 may form a user cooperation group, that is, the terminal device 120 is the TUE in the user cooperation group, and the terminal device 130 and the terminal device 140 are the user cooperation group.
  • CUE in.
  • the network device in FIG. 1 may be an access network device, such as a base station.
  • the access network device corresponding to the different devices in different systems for example, in the fourth generation mobile communication technology (the 4 th generation, 4G) systems may correspond evolved base station (Evolutional Node B, eNB), in a system 5G It can correspond to 5G access network equipment, such as gNB.
  • eNB evolved base station
  • 5G access network equipment such as gNB.
  • the user cooperation group in FIG. 1 may include the terminal device 120, the terminal device 130, and the terminal device 140, or may only include the terminal device 120 and the terminal device 130.
  • a TUE may have one or more CUEs serving it.
  • the TUE and CUE appear in the form of a user cooperation group, there may be multiple different user cooperation groups in a cell.
  • a terminal device it can be a TUE of a user cooperative group centered on itself, or a CUE of one or more other user cooperative groups.
  • the terminal device 120, the terminal device 130, and the terminal device 140 shown in FIG. 1 are only an example.
  • the network device may provide services for multiple terminal devices. This application does not make any distinction on the number of terminal devices in the communication system. Specific restrictions.
  • the terminal device in FIG. 1 is shown as an example of a mobile phone, but the present application is not limited to this, and the terminal device may also be other types of terminal devices, such as a vehicle-mounted terminal device or a vehicle.
  • FIG. 1 is only a simplified schematic diagram of an example for ease of understanding.
  • the communication system may also include other network devices or other terminal devices, which are not shown in FIG. 1.
  • the technical solution of the present application can be applied to a wireless communication system (the communication system shown in Fig. 1).
  • the wireless communication system may include at least one network device, at least one TUE, and at least one CUE of the TUE.
  • the network device and terminal devices may communicate through a wireless air interface, and the TUE and CUE may communicate through a side link.
  • the network device in the wireless communication system may correspond to the network device 110 shown in FIG. 1
  • the TUE may correspond to the terminal device shown in FIG. 1. 120.
  • the CUE of the TUE may correspond to the terminal device 130 and the terminal device 140 shown in FIG. 1.
  • the interaction process between a TUE and a CUE, and a TUE, a CUE and a network device for example, the terminal device 120, the terminal device 130 and the network device 110 in FIG. 1, or the terminal device
  • the interaction process between 120 and the terminal device 130 and the network device 110 is taken as an example to describe the embodiments of the present application in detail.
  • the CUE terminal device 130 or terminal device 140
  • the TUE terminal device 120
  • FIG. 2 is a schematic flowchart of a data feedback method provided by an embodiment of this application.
  • the method can be applied to the communication system as shown in FIG. 1.
  • the method includes the following steps S201 to S208:
  • Step S201 The network device sends the first data to the first terminal and the second terminal;
  • the first data may be carried on a downlink data channel, for example, a physical downlink shared channel (PDSCH).
  • a downlink data channel for example, a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • Step S202 the first terminal and the second terminal respectively receive the first data
  • the first terminal and the second terminal respectively receive the first data and decode the received first data to determine the result of receiving the first data by themselves.
  • the "reception result" in the embodiment of the present application may be successful reception or unsuccessful reception.
  • successful reception means that the terminal device decodes the first data received from the network device correctly; unsuccessful reception means that the terminal device does not receive the first data from the network device, or the terminal device does not receive the first data from the network device.
  • the first data is decoded incorrectly. It should be understood that the premise of correct decoding is that the terminal device receives the first data.
  • Step S203 the second terminal sends the first feedback information to the first terminal through the SL resource;
  • the first terminal and the second terminal have been allocated SL resources, and the way of allocating SL resources may be that the network device allocates the second terminal and the second terminal, or it may be predetermined by the agreement. , Or allocated by other devices for the first terminal and the second terminal, or known by the first terminal and the second terminal before executing the procedure, for example, the SL resource is a periodic SL resource, and the first terminal and the The SL resource used by the second terminal this time is the previously configured periodic SL resource.
  • the first feedback information is used to indicate the reception result of the first data by the second terminal.
  • the reception result includes successful reception and unsuccessful reception. For example, if the second terminal decodes the first data incorrectly, the reception result indicated by the first feedback information is unsuccessful reception. For another example, if the second terminal does not receive the first data, the reception result indicated by the first feedback information is unsuccessful. For successful reception, for example, if the second terminal decodes the first data correctly, the reception result indicated by the first feedback information is successful reception.
  • the first feedback information may be HARQ (hybrid automatic repeat request, hybrid automatic repeat request)-ACK (acknowledge character, positive response) information, for example, if the reception result is successful reception, the first feedback information It is ACK, and if the reception result is unsuccessful reception, the first feedback information is NACK (negative acknowledgement, negative acknowledgement).
  • the first feedback information may be carried on the SL control channel, for example, PSFCH (physical sidelink feedback channel, displayed physical layer channel).
  • the first feedback information may also be a no-load message, and the no-load message is used to indicate to the first terminal whether the reception result of the second terminal is a successful reception or an unsuccessful reception.
  • the second terminal may also send an unloaded message (DTX, discontinuous transmission) through the SL resource allocated by the network device.
  • the unloaded message can be understood as the sending end of the unloading message does not send any information, and the receiving end does not have any information. Any message received.
  • the first terminal determines The reception result of the second terminal is unsuccessful reception. In this example, it is possible to save signaling overhead while the second terminal can determine the reception result of the first terminal.
  • Step S204 The first terminal receives the first feedback information from the second terminal through the SL resource;
  • Step S205 The first terminal determines the second feedback information according to the result of receiving the first data by the second terminal indicated by the first feedback information and the result of receiving the first data by the first terminal itself;
  • Step S206 The first terminal uses the uplink time-frequency resource to send second feedback information to the network device.
  • the second terminal has been allocated uplink time-frequency resources, and the manner of allocating uplink time-frequency resources may be that the network device allocates to the second terminal, or it may be predetermined by the agreement, or it may be The first terminal knows before executing the procedure, for example, the uplink time-frequency resource is a periodic uplink time-frequency resource, and the uplink time-frequency resource used by the first terminal this time is a previously configured periodic uplink time-frequency resource.
  • the first terminal is referred to as CUE and the second terminal is referred to as TUE.
  • step S200-step S206 the technical solution for TUE and CUE data feedback provided by the embodiment of this application can be summarized into three parts.
  • the first part configure SL resources for TUE and CUE, and TUE through the The SL resource (side link) is sent to the CUE to indicate the first feedback information of the TUE's own reception result of the first data.
  • the CUE receives the first feedback information from the TUE; the second part, the network device allocates the uplink time-frequency resources for the CUE to send the second feedback information; the third part: The CUE will determine the second feedback information based on the result of receiving the first data by itself and the result of receiving the first data by the TUE, and send the second feedback information to the network device through the uplink time-frequency resource configured in the second part.
  • the TUE and CUE determine the resource location of the SL resource based on the SL resource configuration information, and transmit the first feedback information according to the determined SL resource.
  • the SL resource configuration information can be used to indicate the time domain location of the SL resource.
  • the SL resource configuration information is used to indicate the first time interval of the SL resource, and the first time interval is used to indicate the first designation of the SL resource.
  • the time interval between the position and the second designated position of other channels (or called the timing deviation).
  • the first designated position and the second designated position may be the same relative position for different resources, or may be different relative positions.
  • the first time interval may be the time interval between the start position of the SL resource and the start position of the PUSCH carrying the first data .
  • the first time interval may also be the time interval between the start position of the SL resource and the end position of the PUSCH carrying the first data, where the end position refers to the time domain of the end time of the resource. position.
  • the first time interval may also be the time interval between the end position of the SL resource and the start position of the PUSCH carrying the first data.
  • the embodiment of the present application does not limit the specific positions of the first designated position and the second designated position.
  • the unit of the first time interval in the embodiment of the present application may be a radio frame, subframe, time slot, mini-slot or symbol, etc.
  • the present application does not limit the time unit of the first time interval.
  • the first time interval is the time interval between the first designated position of the SL resource and the second designated position of the channel carrying the first data.
  • the first data may be carried in a downlink channel, for example, PUSCH.
  • FIGS. 3a and 3b a schematic diagram of the relationship between the first time interval between the SL resource and the PUSCH provided in this embodiment of the application.
  • the time unit of the first time interval is a symbol
  • the time interval is n symbols.
  • the first time interval of the SL resource is the time interval between the start time domain position of the PUSCH carrying the first data and the start time domain position of the SL resource. That is, the time deviation between the start time domain position of the PUSCH carrying the first data and the start time domain position of the SL resource is n symbols.
  • the terminal device determines the starting time domain position of the SL resource according to the first time interval indicated by the SL resource configuration information and the received starting time domain position of the PUSCH carrying the first data.
  • the first time interval of the SL resource may also be the time interval between the end position of the PUSCH carrying the first data and the start position of the SL resource. That is, the time deviation between the end time domain position of the PUSCH carrying the first data and the start time domain position of the SL resource is n symbols.
  • the terminal device determines the starting time domain position of the SL resource according to the first time interval indicated by the SL resource configuration information and the received end time domain position of the PUSCH carrying the first data.
  • the first time interval is the time interval between the SL resource and the channel carrying the control information for scheduling the first data.
  • the first time interval may be the time interval between the first designated position of the SL resource and the second designated position of the channel carrying the control information.
  • the control information used to schedule the first data is the first DCI (downlink control information, downlink control information), the first DCI is carried in a PDCCH (physical downlink control channel, physical downlink control channel).
  • the first time interval may be a time interval between the start time domain position of the SL resource and the start time domain position of the PDCCH carrying the first DCI.
  • the time interval may also be the time interval between the start time domain position of the SL resource and the end time domain position of the PDCCH.
  • the first time interval is the time interval between the SL resource and the channel carrying the SL resource configuration information.
  • the physical layer signaling carries SL resource configuration information
  • the network device configures SL resources for TUE and CUE through the physical layer signaling (see the configuration method below for details) One description).
  • RRC radio resource control, radio resource control
  • RRC radio resource control
  • the network device configures the SL resource through the second DCI, for example, the SL resource configuration information is carried in the second DCI, and the second DCI is carried in the PDCCH, then the first time interval may be the first designated position of the SL resource The time interval from the second designated position of the PDCCH carrying the second DCI.
  • the time interval is the time interval between the start position of the SL resource and the start time domain position of the PDCCH carrying the second DCI.
  • the time interval is the time interval between the start time domain position of the SL resource and the end time domain position of the PDCCH carrying the second DCI.
  • the SL resource configuration information may also include time domain resource information and/or frequency domain resource information of the SL resource.
  • the time domain resource information may also be used to indicate the time domain length information of the SL resource.
  • the time domain length of the SL resource is 10 slots. That is, the terminal device can determine the time domain location and size of the SL resource through the first time interval and time domain length information. For example, the terminal device determines the start time domain position of the SL resource according to the first time interval, and determines the SL resource as 10 slots (time slots) after the determined start time domain position according to the time domain length information.
  • this application may also carry specific SL resource time-domain location information through SL resource configuration information.
  • SL resource configuration information may also include the frame number and time slot number of the radio frame.
  • the terminal device determines the time domain position and size of the SL resource according to the frame number and the slot number of the wireless frame.
  • the frequency domain resource information is used to indicate the frequency domain resources of the SL resource, for example, the number and identification of RB (resource block, resource block) occupied by the SL resource.
  • the SL resources allocated by the network equipment to the TUE and CUE may be the time-frequency resources in the bandwidth where the terminal equipment resides when transmitting data on the Uu port. , Can be referred to as in-band resource for short.
  • the SL resources allocated by the network equipment to the TUE and CUE may also be the time-frequency resources in the bandwidth where the terminal equipment resides during data transmission on the Uu port, which may be referred to as out-of-band resources for short.
  • the out-of-band resource may be a corresponding time-frequency resource in the frequency range outside 3.5 GHz to 3.6 GHz, for example, the out-of-band resource is 5.9 GHz to 6 GHz Time-frequency resources of the frequency band.
  • the terminal device determines the SL resource for one transmission according to the SL resource configuration information
  • the SL resource may be an aperiodic SL resource.
  • periodic SL resources may also be configured through SL resource configuration information.
  • FIG. 4 it is a schematic diagram of the configuration of a periodic SL resource provided by an embodiment of this application.
  • SL resource configuration information may include one or more of the following information:
  • the SL resource period the time unit length of the SL resource, or the number of SL resource periods.
  • the SL resource configuration information may further include one or more of the following information: symbol position, symbol offset, or effective symbol number occupied by the SL resource.
  • SL resource period refers to the number of time units included in a period.
  • the time unit can be a radio frame, subframe, time slot, mini time slot, or symbol.
  • the time unit is a time slot, as shown in Figure 4, each SL resource period includes 10 slots;
  • the first time interval (the first offset in Figure 4) refers to the time domain position at the first time interval from the first designated position of the designated channel, and is also occupied by SL resources in each resource period.
  • the timing deviation of the first time unit relative to the start time unit in the period For example, if the first time interval is 3 time slots, it can indicate that the start position of the time slot occupied by the SL resource is the fourth in the period. Time slots, see Figure 4.
  • the time unit length of the SL resource refers to the number of time units belonging to the SL resource included in one SL resource period. For example, referring to the slot identified by the black grid shown in FIG. 4, the number of time slots of SL resources included in each resource period is 3, that is, the first time slot occupied by the SL resources determined by the above-mentioned first offset and The following 3 consecutive time slots.
  • the symbol offset (the second offset in FIG. 4) is used to indicate the position of the start symbol occupied by the SL resource, and refers to the position of the start symbol occupied by the SL resource within a time unit. For example, in Figure 4, the offset between the symbol occupied by the SL resource and the start symbol of the slot is 2.
  • the number of effective symbols refers to the number of symbols occupied by the SL resource in each slot belonging to the SL resource. For example, a slot contains 14 symbols and the number of effective symbols is 4 as an example. As shown in Figure 4, the SL resource Specifically, it is located on the 3-6th symbol of the time slot where the SL resource is located.
  • the number of SL resource periods refers to the effective number of SL resource periods. For example, if the effective number is 3, then the SL resource period becomes invalid after 3 cycles.
  • SL resource configuration information can be configured in the following ways, several of which are listed below:
  • Configuration method 1 Indicate SL resource configuration information through physical layer signaling
  • the network device configures SL resources through physical layer signaling.
  • the physical layer signaling may be DCI, which is the second DCI in Example 3 above, that is, the network device carries the SL resource configuration through the second DCI
  • the terminal device determines the SL resource according to the SL resource configuration information carried by the second DCI.
  • the second DCI may be the first DCI used to schedule the first data, or may be another DCI, or a DCI configured separately by the network device for carrying SL resource configuration information.
  • the network device sends the first DCI for scheduling the first data to the TUE and CUE before sending the first data to the TUE and CUE, and the TUE and CUE according to the The first data is received at the resource location indicated by the first DCI.
  • the first DCI may also include SL resource configuration information, which is used to indicate the first time interval of the SL resource.
  • the first time interval is the time interval between the first designated position of the SL resource and the second indicated position of other channels, such as the time interval of any one of the examples above, which time is specific
  • the relationship of the interval can be configured through DCI, or pre-defined based on the protocol, or configured by other signaling.
  • the network device configures the first time interval through RRC signaling as the time interval between the start time domain position of the SL resource and the end time domain position of the PUSCH carrying the first data ,
  • the time unit is a symbol.
  • the terminal device can use the value of the first time interval indicated by the second DCI, as well as the end time domain position of the PUSCH carrying the first data and the RRC information. Let the indicated time unit determine the starting time domain position of the SL resource.
  • An implementable manner is that the SL resource configuration information carried by the second DCI is a specific parameter of the SL resource.
  • the SL resource configuration information is used to indicate the first time interval of the SL resource
  • the network device carries the SL resource configuration information through the extension field of the second DCI.
  • the extension field has at least 1 bit.
  • the value on the extension field can be used to indicate the value of the first time interval. For example, taking the extension field having 3 bits as an example, if the bits on the 3 bits are 101 (the value is 5), the corresponding value of the first time interval is 5.
  • the foregoing is the determination of the value of the first time interval through the SL resource configuration information.
  • the time unit of the first time interval may be configured by the network device through high-level signaling, for example, configured by RRC signaling as described above, or may be configured by RRC signaling as described above. It is preset, for example, the time unit of the first time interval is preset to be slot.
  • the terminal device may determine that the first time interval is 5 slots based on the value determined by the SL resource configuration information and the preset time unit. It can also be configured by the second DCI. Exemplarily, at least one bit of the extension field of the second DCI is used to indicate a time unit.
  • a bit at the end of the extension field is used to indicate whether the time unit is a slot or a symbol. If the bit is 1, It can indicate that the time unit is slot. If the bit is 0, it indicates that the time unit is a symbol.
  • the extension field having 4 bits the 4 bits are in the order from left to right, and the value of the first 3 bits is used to indicate the value of the first time interval, and the first 3 bits are used to indicate the value of the first time interval.
  • the 4 bits are used to indicate the time unit. If the 4 bits are 1011, it means that the first time interval is 5 slots.
  • the manner in which the second DCI carries the SL resource configuration information is only an example, and the embodiment of the present application does not limit the manner in which the first time interval, the time unit, and the selectable range of the time unit are indicated.
  • Another practicable way is to preset a second correspondence between different index values and different SL resource configuration information, the second DCI bears the index value of the SL resource configuration information, and the terminal device according to the preset second correspondence Relationship, determine the SL resource configuration information corresponding to the index value carried by the second DCI from the network device.
  • the second corresponding relationship preset in the TUE and the CUE may be defined based on the protocol, or configured by the network device, or may be a device other than the network device, such as notified to the TUE and CUE by other terminal devices.
  • the second correspondence may be as shown in Table 1 below.
  • the first time interval is 1 slot 1
  • the first time interval is 2slot 2
  • the first time interval is 3slot 3
  • the first time interval is 4slot 4
  • the first time interval is 1 symbol 5
  • the first time interval is 2 symbols ... ...
  • the SL resource configuration information in the foregoing corresponding relationship may also include time domain resource information and/or frequency domain resource information of the SL resource, which will not be repeated here. If the SL resource configuration information does not include the time domain resource information and/or frequency domain resource information of the SL resource, the network device can configure the TUE and CUE through other signaling. For example, the SL resource configuration information indicated by the second DCI includes the first A time interval and time domain resource information, the network device can then configure the frequency domain resources of the SL resource for the TUE and CUE through RRC signaling.
  • the SL resource configuration information is carried by the second DCI.
  • it may be carried by the extension field of the second DCI, or may be the existing data of the second DCI.
  • Field bearer It should be understood that DCI with different functions has different formats and fields, for example, DCI used to indicate PUSCH, the DCI has an MCS index value, and the MCS index value is used to indicate the modulation order and code rate of the PUSCH.
  • the network device may indicate the index value of the SL resource configuration information through the MCS index value of the DCI.
  • the SL resource configuration information can also be matched from the preset second correspondence according to the MCS index value.
  • the network device can implement dynamic configuration of SL resources through DCI, and the configuration method is more flexible and can be more adapted to channel changes.
  • Network equipment indicates SL resource configuration information through high-level signaling
  • the high-level signaling may be RRC signaling
  • the network device carries SL resource configuration information through RRC signaling.
  • the terminal device determines the SL resource according to the SL resource configuration information carried by the RRC signaling.
  • the way of configuring SL resources through RRC signaling is similar to that of configuring SL resources through DCI. For details, please refer to the description of the above configuration method 1, which will not be repeated here.
  • the SL resource can be configured as a periodic SL resource, as shown in Table 2 below, a configuration periodic SL provided in this embodiment of the application A specific example of the second correspondence of resources.
  • the network equipment carries the index value of the SL resource configuration information through the RRC signaling.
  • the TUE and CUE determine the SL resource according to the index value of the SL resource configuration information carried in the RRC signaling. Before the RRC signaling is updated, the TUE and CUE can follow the previous The first feedback information is transmitted for the SL resource indicated by the RRC signaling.
  • network equipment can implement semi-static configuration of SL resources through RRC signaling. Before RRC signaling is updated, TUE and CUE can transmit the first feedback information according to the SL resources indicated by the last RRC signaling. In order to save resource overhead and shorten the time delay.
  • Configuration method 3 Predefine SL resource configuration information based on the protocol
  • the CUE and TUE determine the SL resource used to feed back the reception result based on the SL resource configuration information predetermined by the agreement.
  • the SL resource predefined based on the protocol may be a periodic SL resource or a non-periodic SL resource.
  • the static configuration of SL resources can be realized.
  • the TUE and CUE transmit the first feedback information based on the SL resources predefined by the protocol, thereby reducing the signaling overhead on the network device side.
  • the foregoing is a specific introduction of configuring SL resources in the embodiments of this application.
  • the TUE and CUE respectively determine the SL resources through the foregoing configuration methods.
  • the subsequent TUE receives the first data, it sends to the CUE the first feedback information used to indicate the result of the TUE receiving the first data through the determined SL resource.
  • the CUE uses the same SL resource to receive the first feedback information.
  • the CUE needs to send to the network device second feedback information indicating the results of receiving the first data by the TUE and the CUE respectively through the uplink time-frequency resources allocated by the network device.
  • the second part will introduce the process of network equipment allocating uplink time-frequency resources for CUE.
  • the network equipment configures the uplink time-frequency resources for the CUE to transmit the second feedback information.
  • the configuration method can be configured by physical layer signaling (such as DCI), or configured by high-layer signaling (such as RRC signaling), or pre-defined by a protocol.
  • DCI physical layer signaling
  • RRC signaling high-layer signaling
  • pre-defined by a protocol for the definition, please refer to the description of the SL resource configuration method for details, and the description will not be repeated here.
  • the uplink time-frequency resource configured for CUE in this application is similar to the application of SL resources.
  • the uplink resource configuration information indicates the second time interval of the uplink resource.
  • the second The time interval may be the time interval between the third designated position of the uplink time-frequency resource and the fourth designated position of other channels.
  • the third designated position and the fourth designated position may be the same relative to different resources.
  • the relative position can also be a different relative position.
  • the uplink resource may also be a periodic uplink time-frequency resource or a non-periodic uplink time-frequency resource.
  • the unit of the second time interval may be a radio frame, a subframe, a time slot, a mini-slot, or a symbol, etc.
  • the present application does not limit the time unit of the second time interval.
  • the second time interval is the time interval between the third designated position of the uplink resource and the fourth designated position of the channel carrying the first data.
  • Figures 5a and 5b provide a specific example of the second time interval provided by this embodiment of the present application. Assuming that in the scenarios of Figures 5a and 5b, the second time interval is x symbols, and the first data bearer and On PUSCH.
  • the second time interval of the uplink time-frequency resource is the time interval between the start time domain position of the PUSCH carrying the first data and the start time domain position of the uplink time-frequency resource. That is, the time deviation between the start time domain position of the PUSCH carrying the first data and the start time domain position of the uplink time-frequency resource is x symbols.
  • the CUE determines the starting time domain position of the uplink time-frequency resource according to the second time interval indicated by the uplink resource configuration information and the received starting time domain position of the PUSCH carrying the first data .
  • the second time interval of the uplink time-frequency resource is the time interval between the tail time-domain position of the PUSCH carrying the first data and the start time-domain position of the uplink time-frequency resource. That is, the time deviation between the tail time domain position of the PUSCH carrying the first data and the start time domain position of the uplink time-frequency resource is x symbols.
  • the CUE determines the starting time domain position of the uplink time-frequency resource according to the second time interval indicated by the uplink resource configuration information and the received end time domain position of the PUSCH carrying the first data .
  • the second time interval is the time interval between the uplink time-frequency resource and the channel carrying the control information for scheduling the first data.
  • the second time interval may be the time interval between the third designated position of the uplink time-frequency resource and the fourth designated position of the channel carrying the control information.
  • the control information used to schedule the first data is the first designated position.
  • the first DCI is carried in the PDCCH.
  • the second time interval may be a time interval between the start time domain position of the uplink time-frequency resource and the start time domain position of the PDCCH carrying the first DCI.
  • the time interval may also be the time interval between the start time domain position of the uplink time-frequency resource and the tail time domain position of the PDCCH carrying the first DCI.
  • the second time interval is the time interval between the uplink time-frequency resource and the channel carrying the uplink time-frequency resource configuration information.
  • the network device carries the uplink resource configuration information through physical layer signaling.
  • the network device configures the uplink time-frequency resource through the third DCI.
  • the third DCI is carried in the PDCCH, and the second time interval may also be the uplink.
  • the first DCI used to schedule the first data, the second DCI used to configure SL resources, and the third DCI used to configure uplink time-frequency resources may be the same DCI, or may be Different DCI.
  • the third DCI is a DCI different from the second DCI and the first DCI.
  • the second DCI and the third DCI are the same DCI, that is, the network device simultaneously configures the SL resource and the uplink time-frequency resource through the same DCI.
  • the first DCI and the third DCI may be the same DCI, that is, the network device schedules the first data and configures uplink time-frequency resources through the same DCI. This embodiment of the application does not limit this.
  • the second time interval may also be the time interval between the third designated position of the uplink time-frequency resource and the fourth designated position of the SL resource carrying the first feedback information.
  • the second time interval is the starting time domain position of the uplink time-frequency resource and the starting time domain of the SL resource carrying the first feedback information.
  • the second time interval is the time interval between the start time domain position of the uplink time-frequency resource and the end time domain position of the SL resource carrying the first feedback information.
  • the time interval is x symbols. That is, the time deviation between the tail time domain position of the SL resource carrying the first feedback information and the start time domain position of the uplink time-frequency resource is x symbols.
  • the CUE determines the uplink time-frequency resources in the foregoing manner.
  • the subsequent CUE receives the first feedback information of the TUE, it determines the TUE reception result based on the first feedback information, and determines the second feedback information based on the CUE's own reception result and the TUE reception result, and uses the determined uplink time-frequency resource Send the second feedback information to the network device.
  • the third part will introduce the specific method for the CUE to determine the second feedback information based on the CUE's own reception result and the TUE's reception result.
  • the CUE receives the first feedback information from the TUE.
  • the first feedback information is used to indicate the result of the TUE receiving the first data.
  • the CUE determines the second data based on its own receiving result of the first data and the TUE receiving result of the first data.
  • the feedback information that is, the second feedback information is used to indicate to the network device the result of receiving the first data by the TUE and the result of receiving the first data by the CUE.
  • the second feedback information may have at least two bits, and the bit value of the two bits is used to indicate the reception result of the TUE and the reception result of the CUE.
  • bit value of the two bits is used to indicate the reception result of the TUE and the reception result of the CUE.
  • Indication mode 1 Indicate through joint coding mode
  • the second feedback information may include at least 2 bits, of which at least one bit is used to indicate the result of receiving the first data by the TUE, and at least one bit of the remaining bits is used to indicate the CUE pair The reception result of the first data. For example, suppose that the second feedback information has 2 bits, from high to low, and in turn, the first bit of the two bits is used to indicate the TUE reception result, and the second bit is used to indicate the CUE The reception result. And when the defined bit value is 1, it means that the reception result is successful reception, and when the bit value is 0, it means that the reception result is unsuccessful reception.
  • the second feedback information is 11;
  • the second feedback information is 00;
  • the second feedback information may be 01.
  • the second feedback information For example, if it is defined that the first bit of the second feedback information is used to indicate the reception result of the CUE, and the second bit is used to indicate the reception result of the TUE, then if the reception result of the first data by the TUE is unsuccessful reception, When the CUE receives the first data as a successful reception result, the second feedback information may be 10.
  • Indication mode 2 Indicate through the index corresponding to the combination of the reception result of CUE and the reception result of TUE;
  • the first correspondence between various combinations of possible reception results of different CUEs and possible reception results of TUEs and respective indexes is preset, and the second feedback information carries the reception result of CUE and the reception of TUE.
  • the index value corresponding to the result is preset.
  • the second feedback information has at least two bits, and the bit value of the two bits is an index value corresponding to a combination of the CUE reception result and the TUE reception result.
  • the combined state of the reception result of CUE and the reception result of TUE can be divided into three types, which are as follows:
  • the TUE does not need to re-receive the first data regardless of whether the CUE is successfully received, that is, the network device does not need to retransmit the first data to the TUE, and the CUE does not need to The TUE sends the first data.
  • the first corresponding relationship may be as shown in Table 3 below:
  • the combined state of the reception result of TUE and CUE 00 The reception result of TUE is successful reception 01
  • the reception result of TUE is unsuccessful reception, and the reception result of CUE is successful reception 10
  • the reception results of TUE and CUE are both unsuccessful reception
  • Table 3 is only an example, and this application does not limit the index value corresponding to the combined state of the reception result of TUE and CUE.
  • it may also be the third state of the combined state of the reception result of TUE and CUE.
  • the index value of is 00
  • the index value of the second state is 10
  • the index value of the first state is 01. Any index value that can indicate the combined state of the reception results of different TUE and CUE is applicable to the embodiment of the present application.
  • the CUE determines that the second feedback information is 10; if the reception results of both CUE and TUE are successful reception When, the CUE determines that the second feedback information is 00; if the reception result of the TUE is successful reception, and the reception result of the CUE is unsuccessful reception, the CUE determines that the second feedback information is also 00; if the reception result of the TUE is unsuccessful reception, The reception result of the CUE is successful reception, and the CUE determines that the second feedback information is 01.
  • the CUE sends the determined second feedback information to the network device through the uplink time-frequency resource configured above.
  • the network device receives the second feedback information from the CUE, and performs a corresponding operation according to the second feedback information.
  • the network device determines that the TUE does not need to re-receive the first data. As mentioned earlier, the network device does not need to re-send the first data to the TUE, and the CUE does not need to send it to the TUE.
  • the first data specifically, if the TUE is not successfully received in this embodiment of the application, the network device may allocate the SL resource for the CUE to forward the first data to the TUE.
  • the network device has previously configured the CUE for forwarding the first data A data SL resource, if the network equipment determines that the CUE does not need to send the first data to the TUE, since the CUE does not need to forward the first data, the behavior of the CUE is that the CUE releases the first data for forwarding SL resources.
  • the network device sends the first data on the Uu again; similarly, if the network device configures the CUE with SL resources for forwarding the first data in advance, if When the network device determines that the CUE does not need to send the first data to the TUE, the behavior of the CUE is that the CUE releases the SL resource for forwarding the first data.
  • the network device may instruct the CUE to send the first data to the TUE.
  • the process of instructing the CUE to send the first data may be that the network device sends the first indication information to the CUE and the TUE for instructing the CUE to send the first data to the TUE through the SL resource used to forward the first data.
  • the indication information may be carried in physical layer signaling, or the first indication information may be carried in RRC signaling, or the first indication information may be carried in service data.
  • the CUE after receiving the first indication information from the network device, the CUE sends the first data to the TUE through the SL resource configured by the network device for forwarding the first data.
  • the TUE receives the first data from the CUE through the same SL resource configured by the network device for forwarding the first data.
  • the SL resource used to forward the first data may be the periodic SL resource configured above for transmitting the first feedback information, or it may be the network device re-configured for the CUE and TUE to forward the first data.
  • the network device carries the configuration information of the SL resource used to instruct the CUE to send the first data through the first indication information, and the configuration information may indicate that the SL resource used to forward the first data is the same as that carried the first indication information.
  • the starting position of the channel is separated by time-frequency resources at 10 symbols.
  • FIG. 7 is a schematic diagram of a complete flow chart of a data feedback method provided by an embodiment of this application.
  • the method includes the following steps S701 to S708:
  • Step S701 The network device sends SL resource configuration information to the first terminal and the second terminal;
  • the first terminal is a CUE and the second terminal is a TUE.
  • the network device sends the configuration information of the SL resources allocated to the first terminal and the second terminal to the first terminal and the second terminal.
  • step S701 is only an example.
  • the SL resource may also be predefined by the protocol, or other devices may be configured for the first terminal and the second terminal, or the first terminal and the second terminal are performing this time.
  • the process of receiving the first data is known before, and this application does not limit the configuration of SL resources.
  • Step S702 The first terminal and the second terminal respectively receive the SL resource configuration information, and determine the resource location of the SL resource according to the SL resource configuration information;
  • Steps S701 and S702 are optional steps and are not mandatory steps.
  • the first terminal and the second terminal can determine the SL resource based on the definition of the SL resource by the protocol, and there is no need to perform step S701 and step S702.
  • Step S703 The network device sends uplink time-frequency resource configuration information to the first terminal;
  • step S701 is only an example.
  • the uplink time-frequency resources can still be pre-defined by the protocol, or other devices are configured for the first terminal, or the first terminal is performing the process of receiving the first data this time. As previously known, this application does not limit the configuration of uplink time-frequency resources.
  • step 701 and step 703 are only a specific example provided by this application.
  • This application does not limit the order in which the network device sends SL resource configuration information and uplink time-frequency resource configuration information. It can be sent sequentially, or It may be sent at the same time.
  • the network device may first send the uplink time-frequency resource configuration information to the first terminal, and then send the SL resource configuration information.
  • the network device may first send the uplink time-frequency resource configuration information and the SL resource configuration information to the first terminal, and then send the SL resource configuration information to the second terminal.
  • the network device simultaneously sends uplink time-frequency resource configuration information and SL resource configuration information to the second terminal.
  • Step S704 the first terminal receives the uplink time-frequency resource configuration information
  • Steps S703 and S704 are optional steps and are not mandatory steps.
  • the first terminal can determine the uplink time-frequency resources based on the definition of the uplink time-frequency resources by the protocol, and there is no need to perform steps S703 and S704.
  • Step S705 The network device sends the first data to the first terminal and the second terminal.
  • step S701-step S705 is only a specific example. This application does not limit the order in which the network device sends the first data, SL resources, and uplink time-frequency resources, and can be sent sequentially or simultaneously. Transmission, or partial simultaneous transmission and partial sequential transmission.
  • the network device may send the first data first, and then send the configuration information of the SL resource and the uplink time-frequency resource configuration information sequentially, or send the uplink time-frequency resource configuration information sequentially And SL resource configuration information, and then send the first data, or the network device sends the SL resource configuration information and uplink time-frequency resource information at the same time, and then sends the first data, or the network device sends the first data and the SL resource configuration information at the same time And uplink time-frequency resource configuration information.
  • Step S706 The first terminal and the second terminal respectively receive the first data, and respectively receive the first data and decode the received first data to determine the result of receiving the first data by itself.
  • Step S707 The second terminal uses the SL resource allocated by the network device to send the first feedback information to the first terminal;
  • Step S708 the first terminal receives the first feedback information from the second terminal through the SL resource;
  • Step S709 The first terminal determines second feedback information based on its own reception result of the received first data and the received first feedback information;
  • Step S710 The first terminal uses the uplink time-frequency resource to send second feedback information to the network device.
  • the TUE sends the first feedback information to the multiple CUEs respectively, and the multiple CUEs respectively determine the second feedback information based on their own reception results of the first data and the TUE reception results determined by the first feedback information, and respectively Send the second feedback information to the network device.
  • the TUE has 3 CUEs, and the network equipment will receive the second feedback information sent by the 3 CUEs respectively.
  • the communication system may include at least one first CUE, and the remaining CUEs send information about their own reception results of the first data to the first CUE.
  • the first CUE determines the second feedback information based on its own reception result and the reception result of other CUEs and the reception result of the TUE. For example, when the indication mode of the second feedback information is joint coding, each can be represented by at least one bit.
  • the receiving result of the CUE, and the second feedback information carries the device identifier of the CUE, or carries the device identifier of the successfully received CUE, to indicate the terminal device successfully received by the network device.
  • the configuration mode of the second feedback information refer to the specific description of the relevant indication mode above, and the description will not be repeated here.
  • the first CUE sends the determined second feedback information to the network device.
  • the TUE sends the first feedback information to the CUE based on the side link.
  • the CUE determines the TUE reception result based on the first feedback information, and determines the second feedback information based on its own reception result and the TUE reception result, and then Second, the feedback information is sent to the network equipment to achieve this.
  • the network equipment can also determine the TUE reception result according to the second feedback information, and can perform corresponding operations according to the TUE and CUE reception results .
  • the technical solution of the present application can effectively reduce the waste of resources caused when the first data is repeatedly sent when the network device cannot determine the reception result of the TUE.
  • FIG. 9 is a schematic structural diagram of a communication device provided in an embodiment of the application.
  • the communication device 900 includes a transceiver unit 910 and a processing unit 920.
  • the communication device can be used to implement the functions related to the first terminal or the second terminal in any of the foregoing method embodiments.
  • the communication device may be a terminal device, such as a handheld terminal device or a vehicle-mounted terminal device; the communication device may be a chip included in the terminal device, or a device including the terminal device, such as various types of vehicles; the communication device may also It may be other combination devices, components, etc., that have the above-mentioned terminal device functions.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing unit may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing unit may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing unit may be a processor of the chip system.
  • the transceiver unit 910 is configured to receive first data from the network device, receive first feedback information from the second terminal, and send to the network device Second feedback information; the processing unit 920 is configured to determine an operation of second feedback information according to the first feedback information and the result of receiving the first data by the second terminal.
  • the processing unit 920 involved in the communication device may be implemented by a processor or processor-related circuit components, and the transceiver unit 910 may be implemented by a transceiver or transceiver-related circuit components.
  • the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 2 or FIG. 7 respectively. As in FIG.
  • the transceiving unit 910 can be used to perform step S202, step S204, and step S206, and the processing unit 920 can be used to perform step S205.
  • the transceiving unit 910 can be used to perform step S702 and step S704. For the sake of brevity, I will not list them one by one here.
  • the transceiving unit 910 is configured to perform operations of receiving first data from a network device and sending first feedback information to the first terminal; processing unit 920 is configured to determine the SL resource according to the received SL resource configuration information.
  • the processing unit 920 involved in the communication device may be implemented by a processor or processor-related circuit components, and the transceiver unit 910 may be implemented by a transceiver or transceiver-related circuit components.
  • the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 2 or FIG. 7 respectively.
  • the transceiving unit 910 can be used to perform step S202 and step S203.
  • the transceiving unit 910 can be used to perform step S701
  • the processing unit 920 can be used to perform step S702.
  • I will not list them one by one here.
  • FIG. 10 is a schematic diagram of another structure of a communication device provided in an embodiment of this application.
  • the communication device may specifically be a terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, and may also include a memory, and of course, it may also include a radio frequency circuit, an antenna, an input and output device, and so on.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 10 only one memory and processor are shown in FIG. 10. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1010 and a processing unit 1020.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing unit, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1010 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1010 as the sending unit, that is, the transceiver unit 1010 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1010 is used to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 1020 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • FIG. 11 is a schematic structural diagram of another communication device provided in an embodiment of this application.
  • the communication device 1100 includes a transceiver unit 1110 and a processing unit 1120.
  • the communication device can be used to implement the functions related to the network equipment in any of the foregoing method embodiments.
  • the communication device may be a network device or a chip included in the network device, and the communication device may also be other combination devices or components having the functions of the above-mentioned network device.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing unit may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing unit may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing unit may be a processor of the chip system.
  • the transceiver unit 1110 is configured to send first data to the first terminal and the second terminal, and receive the second feedback sent by the first terminal Information operation; processing unit 1120, configured to determine whether the second terminal needs to re-receive the first data according to the second feedback information.
  • the processing unit 1120 involved in the communication device may be implemented by a processor or processor-related circuit components, and the transceiver unit 1110 may be implemented by a transceiver or transceiver-related circuit components.
  • the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 2 and FIG. 7 respectively.
  • the communication device is used as a network device, and the transceiving unit 1110 can be used to perform steps S201 and S206.
  • the transceiving unit 910 can be used to perform steps S701 and S703. For the sake of brevity, I will not list them one by one here.
  • the communication device may be specifically a type of network equipment, such as a base station, for implementing the functions of the network equipment in any of the foregoing method embodiments.
  • the network device 1200 includes: one or more radio frequency units, such as a remote radio unit (RRU) 901 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU)902.
  • the RRU 1201 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1211 and a radio frequency unit 1212.
  • the RRU 1201 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals.
  • the part of the BBU 1202 is mainly used to perform baseband processing, control the base station, and so on.
  • the RRU 1201 and the BBU 1202 may be physically installed together, or may be physically separated, that is, a distributed base station.
  • the BBU 1202 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 1202 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 1202 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) with a single access indication, or may respectively support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1202 may further include a memory 1221 and a processor 1222, and the memory 1221 is used to store necessary instructions and data.
  • the processor 1222 is used to control the base station to perform necessary actions, for example, to control the base station to perform the sending operation in the foregoing method embodiment.
  • the memory 1221 and the processor 1222 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • An embodiment of the present application further provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor, the The chip system implements the method in any of the foregoing method embodiments.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • the chip system may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can also be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller).
  • the controller unit, MCU may also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • each step in the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the embodiments of the present application also provide a computer-readable storage medium, which stores computer-readable instructions, and when the computer reads and executes the computer-readable instructions, the computer is caused to execute any of the above-mentioned method embodiments In the method.
  • the embodiments of the present application also provide a computer program product.
  • the computer reads and executes the computer program product, the computer is caused to execute the method in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a communication system, which includes a network device, a first terminal, and a second terminal.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose central processing unit (central processing unit, CPU), general-purpose processor, digital signal processing (digital signal processing, DSP), application specific integrated circuits (ASIC), field programmable gate array Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof; it can also be a combination that implements computing functions, such as a combination of one or more microprocessors, DSP and micro-processing The combination of the device and so on.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory or storage unit in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; and it may also be a semiconductor medium, such as a solid state disk (SSD).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium may also be provided in different components in the terminal device.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, the appearances of "in one embodiment” or “in an embodiment” in various places throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures or characteristics can be combined in one or more embodiments in any suitable manner. It should be understood that in the various embodiments of the present application, the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application. The implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • computer readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data in the form of structure
  • Any connection can suitably become a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , Fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the media.
  • Disk and disc include compact discs (CD), laser discs, optical discs, digital versatile discs (DVD), floppy discs and Blu-ray discs. Disks usually copy data magnetically, while discs The laser is used to optically copy the data. The above combination should also be included in the protection scope of the computer-readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据的反馈方法及装置,可应用于设备到设备(device-to-device,D2D)或车联网(viehcle-to-everything,V2X)等领域。该方法包括:第二终端基于侧行链路向第一终端发送第一反馈信息,第一终端基于自身对第一数据的接收结果和根据第一反馈信息指示的第二终端的接收结果确定向网络设备发送的第二反馈信息,实现在满足第二终端节能需求的同时,确保网络设备也能够根据第二反馈信息确定第一终端和第二终端的接收结果,减少网络设备执行不必要的操作。以具有节能需求的电子设备的体量而言,能够有效减少网络设备在无法确定TUE的接收结果时重复向TUE发送第一数据造成的资源浪费。

Description

一种数据的反馈方法及装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种数据的反馈方法及装置。
背景技术
用户协作是下一代通信系统主要支持的特性之一,其可以显著提高系统的容量以及网络的覆盖范围,同时可以降低基站端的负载。对于一个目标终端设备来说,可以具有至少一个协作终端设备。其中,目标终端设备又可称为目标用户设备(target user equipment,TUE),协作终端设备也可以称为协作用户设备(cooperation user equipment,CUE)。
基站可以将数据发送给TUE和TUE的协作UE,TUE和CUE分别对各自接收到的数据进行解码(或称为译码),之后,TUE和CUE会在反馈信道上告知基站各自的解码结果,该解码结果可以为混合自动重传请求(hybrid automatic repeat request,HARQ)信息。如果解码正确,则HARQ信息为ACK,否则为NACK。基站根据收到的HARQ确定是否重新发送该数据(即重传)。如果HARQ信息是ACK,则基站不需要向TUE重新发送该数据。如果HARQ信息是NACK,则基站需要向TUE重新发送该数据。
在一些场景中,TUE具有节省发射功率的需求,无法向基站反馈解码结果。例如小型可穿戴设备作为TUE向基站反馈一次解码结果会耗费较大电量,导致剩余电量无法供用户正常使用。对于该类设备,基站不管该类设备是否正确接收数据或解码正确,都会向该类设备重复发送数据,直到达到预设的重传次数,该场景会造成传输资源浪费。
发明内容
本申请提供一种数据的反馈方法及装置,用以在用户协作场景下对具有节省发射功率需求的终端进行重传数据时节省传输资源。
第一方面,本申请实施例提供一种数据的反馈方法,该方法可应用于第一终端,该方法包括:第一终端接收来自第二终端的第一反馈信息,所述第一反馈信息用于指示所述第二终端对来自网络设备的第一数据的接收结果;其中,所述第一数据为所述网络设备针对所述第二终端发送的;所述第一终端向网络设备发送第二反馈信息,所述第二反馈信息为所述第一终端根据所述第一反馈信息和所述第一终端对所述第一数据的接收结果确定的。
通过上述设计,第二终端基于侧行链路向第一终端的发送第一反馈信息,第一终端根据第一反馈信息确定第二终端的接收结果,并基于自身的接收结果和第二终端的接收结果确定向网络设备发送的第二反馈信息,以此实现,在满足第二终端节能需求的同时,确保网络设备也能够根据第二反馈信息确定第一终端和第二终端的接收结果,避免网络设备执行不必要的操作。以具有节能需求的电子设备的体量而言,本申请技术方案能够有效减少,网络设备在无法确定TUE的接收结果时,重复向TUE发送第一数据所造成的资源浪费。
在一种可能的设计中,所述接收结果包含下列中的至少一项:成功接收或未成功接收。
在一种可能的设计中,所述第二反馈信息为包含至少两比特的比特位;所述比特位中的至少一比特用于指示所述第一终端对所述第一数据的接收结果,所述比特位中的另外至少一比特用于指示所述第二终端对所述第一数据的接收结果。
在一种可能的设计中,所述第二反馈信息为所述第二终端对所述第一数据的接收结果以及所述第一终端对所述第一数据的接收结果的组合对应的索引。
在一种可能的设计中,还包括:所述第一终端根据第一对应关系确定所述第一终端对所述第一数据的接收结果和所述第二终端对所述第一数据的接收结果的组合对应的索引;所述第一对应关系包括所述第一终端的可能的接收结果以及所述第二终端的可能的接收结果的各种组合与各个索引的对应关系。
在一种可能的设计中,所述第一终端接收来自第二终端的第一反馈信息,包括:所述第一终端接收来自所述网络设备的SL(sidelink,侧行链路)资源配置信息,并根据所述SL资源配置信息确定SL资源;所述第一终端通过所述SL资源接收来自所述第二终端的所述第一反馈信息。
基于上述设计,第二终端向第一终端发送第一反馈信息,相对于第二终端向网络设发送第一反馈信息能够降低发射功率,是一种更加节省电量的数据反馈方式,以满足第二终端的节能需求。
在一种可能的设计中,所述SL资源配置信息用于指示所述SL资源的第一时间间隔;其中,所述第一时间间隔为所述第一数据的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述SL资源配置信息的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述第一数据的调度信息的时域位置与所述SL资源的时域位置之间的间隔。
基于上述设计,通过SL资源配置信息指示SL资源的第一时间间隔,具体的,该第一时间间隔可以是SL资源的第一指定位置和其他信道的第二指定位置之间的时间间隔,其他信道可以是承载第一数据的信道,或承载用于调度第一数据的控制信息的信道,例如,第一时间间隔为SL资源的起始时域位置和承载第一数据的信道的起始时域位置之间的时间间隔。对应的,第一终端和第二终端能够承载第一数据的信道的起始时域位置和该第一时间间隔确定用于传输第一反馈信息的SL资源的起始时域位置,以为第一终端和第二终端提供传输第一反馈信息的SL资源。
在一种可能的设计中,所述第一终端向网络设备发送第二反馈信息,包括:所述第一终端接收来自所述网络设备的所述上行时频资配置信息,并根据所述上行时频资源配置信息确定上行时频资源;所述第一终端通过所述上行时频资源向所述网络设备发送所述第二反馈信息。
在一种可能的设计中,所述上行时频资源配置信息用于指示所述上行时频资源的第二时间间隔;其中,所述第二时间间隔为所述第一数据的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述上行时频资源配置信息的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述第一数据的调度信息的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述第一反馈信息的时域位置与所述上行时频资源的时域位置之间的间隔。
第二方面,本申请实施例提供一种数据的反馈方法,该方法可应用于第二终端,该方法包括:第二终端接收来自网络设备的第一数据;所述第二终端向第一终端发送第一反馈信息,所述第一反馈信息用于指示所述第二终端对所述第一数据的接收结果;所述第一终端为所述第二终端的协作终端,用于接收来自所述网络设备的第一数据,所述第一数据目的端为所述第二终端。
通过上述设计,第二终端通过侧向链路向第一终端发送第一反馈信息,该第一反馈信息用于指示第一终端对第一数据的接收结果,以使第一终端能够根据第一终端的接收结果和自身对第一数据的接收结果确定第二反馈信息,并将第二反馈信息发送至网络设备,以满足第二终端的节能需求,且在第二终端未成功接收时,能够间接通知网络设备,并从网络设备或第一终端重新接收第一数据,保证第二终端的正常运行。
在一种可能的设计中,所述接收结果包含下列中的至少一项:成功接收或未成功接收。
在一种可能的设计中,所述第二终端向第一终端发送第一反馈信息之前,还包括:所述第二终端接收来自所述网络设备的SL资源配置信息,并根据所述SL资源配置信息确定SL资源;
所述第二终端向第一终端发送第一反馈信息,包括:所述第二终端通过所述SL资源向所述第一终端发送所述第一反馈信息。
在一种可能的设计中,所述SL资源配置信息用于指示所述SL资源的第一时间间隔;其中,所述第一时间间隔为所述第一数据的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述SL资源配置信息的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述第一数据的调度信息的时域位置与所述SL资源的时域位置之间的间隔。
第三方面,本申请实施例提供一种数据的反馈方法,该方法可应用于网络设备,该方法包括:网络设备发送第一数据,所述第一数据的目的端为第二终端;所述网络设备接收第一终端的第二反馈信息;所述第二反馈信息为所述第一终端根据所述第二终端向所述第一终端发送的第一反馈信息和所述第一终端对所述第一数据的接收结果确定的,所述第一反馈信息用于指示所述第二终端对所述第一数据的接收结果。
在一种可能的设计中,所述接收结果包含下列中的至少一项:成功接收或未成功接收。
在一种可能的设计中,所述网络设备向所述第一终端和所述第二终端发送SL资源配置信息;所述SL资源配置信息用于指示SL资源的第一时间间隔,所述SL资源用于承载所述第一反馈信息;其中,所述第一时间间隔为所述第一数据的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述SL资源配置信息的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述第一数据的调度信息的时域位置与所述SL资源的时域位置之间的间隔。
在一种可能的设计中,所述网络设备接收第一终端的第二反馈信息之前,还包括:所述网络设备向所述第二终端发送上行时频资源配置信息;所述上行时频资源配置信息用于指示所述上行时频资源的第二时间间隔;所述上行时频资源用于承载所述第二反馈信息;其中,所述第二时间间隔为所述第一数据的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述上行时频资源配置信息的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述第一数据的调度信息的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述第一反馈信息的时域位置与所述上行时频资源的时域位置之间的间隔。
在一种可能的设计中,所述网络设备接收第一终端的第二反馈信息,还包括:所述网络设备根据所述第二反馈信息判断所述第二终端是否需要重新接收所述第一数据。
在一种可能的设计中,所述网络设备根据所述第二反馈信息判断所述第二终端是否需要重新接收所述第一数据,包括:
若所述第二反馈信息指示所述第二终端成功接收,则所述网络设备确定所述第二终端不需要重新接收所述第一数据;若所述第二反馈信息指示所述第二终端未成功接收,且所述第一终端成功接收,则所述网络设备确定所述第二终端需要重新接收所述第一数据,所述方法还包括:所述网络设备向所述第一终端发送第一指示信息,所述第一指示信息用于指示所述第一终端向所述第二终端发送所述第一数据;若所述第二反馈信息指示所述第二终端未成功接收,且所述第一终端未成功接收,则所述网络设备确定所述第二终端需要重新接收所述第一数据,所述方法还包括:所述网络设备向所述第一终端发送所述第一数据。
第四方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面或第一方面的任一种可能的设计中第一终端的功能,或具有实现上述第二方面或第二方面的任一种可能的设计中第二终端的功能。该通信装置可以为终端设备,例如手持终端设备、车载终端设备等,也可以为终端设备中包含的装置,例如芯片,也可以为包含终端设备的装置。上述终端设备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
该通信装置也可以具有实现上述第三方面或第三方面的任一种可能的设计中网络设备的功能。该通信装置可以为网络设备,例如基站,也可以为网络设备中包含的装置,例如芯片。上述网络设备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块或单元。
在一种可能的设计中,该通信装置的结构中包括处理单元和收发单元,其中,处理单元被配置为支持该通信装置执行上述第一方面或第一方面的任一种设计中相应的功能、或执行上述第二方面或第二方面的任一种设计中相应的功能、或执行上述第三方面或第三方面的任一种设计中相应的功能。收发单元用于支持该通信装置与其他通信设备之间的通信,例如该通信装置为第一终端时,可从第二终端接收第一反馈信息,从网络设备接收第一数据。该通信装置还可以包括存储模块,存储模块与处理单元耦合,其保存有通信装置必要的程序指令和数据。作为一种示例,处理单元可以为处理器,通信模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置,本申请并不限定。
在另一种可能的设计中,该通信装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使通信装置执行上述第一方面或第一方面的任一种可能的设计中的方法,或者执行上述第二方面或第二方面的任一种可能的设计中的方法、或执行上述第三方面或第三方面的任一种可能的设计中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。当通信装置为终端设备时,该通信接口可以是收发器或输入/输出接口;当该通信装置为终端设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第五方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面的任一种可能的设计中的方法、或实现上述第二方面的任一种可能的设计中的方法、或实现上述第三方面的任一种可能的设计中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软 件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面的任一种可能的设计中的方法、或执行上述第二方面的任一种可能的设计中的方法、或执行上述第三方面的任一种可能的设计中的方法。
第七方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面的任一种可能的设计中的方法、或执行上述第二方面的任一种可能的设计中的方法、或执行上述第三方面的任一种可能的设计中的方法。
第八方面,本申请实施例提供一种通信系统,该通信系统包括所述网络设备、所述第一终端和所述第二终端。
第九方面,本申请实施例提供一种通信系统,该通信系统包括所述第一终端和所述第二终端。
附图说明
图1为本申请实施例适用的一种通信系统的网络架构示意图;
图2为本申请实施例提供的一种协数据的反馈方法的流程示意图;
图3a和3b分别为本申请实施例提供的一种确定SL资源的场景示意图;
图4为本申请实施例提供的一种周期性资源的配置示意图;
图5a和5b分别为本申请实施例提供的一种确定上行时频资源的场景示意图;
图6a和6b分别为本申请实施例提供的另一种确定上行时频资源的场景示意图;
图7为本申请实施例提供的一种协数据的反馈方法的完整流程示意图;
图8a和图8b为本申请实施例提供的一种进行数据反馈的应用场景示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的一种通信装置的另一结构示意图;
图11为本申请实施例提供的另一种通信装置的结构示意图;
图12为本申请实施例提供的另一种通信的装置的另一结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于设备实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,又可称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。所述终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信, 与RAN交换语音和/或数据。例如,终端设备可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的示例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例中的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请实施例提供的方法。
2)网络设备,是网络中用于将终端设备接入到无线网络的设备。所述网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(5th generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),或者还可以包括传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或WiFi接入点(access point,AP)等,再或者还可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。再例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU),RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其它实体交换消息。
3)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度,并且“第一”、“第二”的描述也并不限定对象一定不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
用户协作通信是提高系统容量和网络覆盖范围的有效手段。对于一个目标终端设备来说,可以具有至少一个协作终端设备,其中,目标终端设备也可以称为目标用户设备(target user equipment,TUE),协作终端设备也可以称为协作用户设备(cooperation user equipment, CUE)。
可选的,TUE可以与该至少一个CUE组成一个用户协作组。其中,用户协作组可以理解为,包含具有数据协助传输关系的至少两个终端设备,按照传输数据的目的端可以将该至少两个终端设备划分为目标终端设备和协作终端设备。其中,协作终端设备,是指能够从网络设备接收目的端为TUE的数据并转发给TUE的终端设备。可选的,在TUE未成功接收该数据,CUE成功接收该数据时,可将该数据转发至TUE,以帮助TUE成功接收该数据,提高TUE的接收性能。
具体的,协作传输包括两个阶段。在第一阶段中,网络设备发送数据给TUE和该TUE的CUE,例如可以以多播或广播的形式发送。
随后,TUE和CUE针对各自接收到的数据进行解码,并在各自的反馈信道上向网络设备发送反馈信息,以指示自身是否成功接收该数据。
对应的,网络设备根据TUE和CUE发送的反馈信息,判断需要执行的操作。例如,若网络设备确定TUE解码正确,则不再向TUE重新发送该数据;若CUE和TUE都解码错误,则网络设备重新发送该数据,即重复执行第一阶段的操作步骤;若网络设备确定TUE解码错误,CUE解码正确,则网络设备可指示CUE和TUC进入第二阶段。
在第二阶段中,CUE通过侧行链路分别将接收到的数据发送给TUE。CUE在将接收到的数据发送给TUE之前,还可以对数据进行放大、解码、压缩等处理,本申请并不限定。这样,TUE可将在第一阶段中从网络设备接收到的数据和在第二阶段中从CUE接收到的数据进行联合解码,从而提高接收性能。
在一些场景中,TUE具有节省发射功率的需求,无法向网络设备发送反馈信息。例如,当TUE为小型可穿戴设备时,向网络设备发送一次反馈信息会耗费较大电量,导致剩余电量无法供用户正常使用。网络设备无法获知TUE是否解码准确,从而影响网络设备执行正确的操作,可能会造成传输资源浪费。
鉴于此,本申请提供一种数据的反馈方法,TUE将用于指示对第一数据的接收结果的第一反馈信息发送至CUE,CUE基于TUE对第一数据的接收结果和自身对于第一数据的接收结果确定第二反馈信息,并将该第二反馈信息发送至网络设备。由于TUE通过侧向链路传输第一反馈信息的方式相较于向网路设备发送第一反馈信息的能耗较低,因此能够在满足TUE节能需求的同时,确保让网络设备获知TUE和CUE对于第一数据的接收结果,若TUE未成功接收,则能够通过CUE通知网络设备,由网络设备指示TUE重新从CUE或网络设备接收第一数据,以保证TUE的正常运行,同时,避免网络设备在不能确定TUE和CUE的接收结果时,执行不必要的操作,例如,网络设备在不确定TUE是否成功接收第一数据时,盲目的重复发送第一数据,而导致的资源浪费。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WIMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)系统,或者应用于未来的通 信系统,例如,6G系统,或其它类似的通信系统,只要存在一个实体可以对另一个实体发起寻呼即可,具体的不做限制。另外,本申请实施例在介绍过程中是以网络设备和终端设备之间的空口通信过程为例,实际上本申请实施例提供的技术方案也可以应用于侧行链路(sidelink,SL),只要一个终端设备能够对另一个终端设备发起寻呼即可。例如,本申请实施例提供的技术方案可以应用于设备到设备(device-to-device,D2D)场景,可以是NR D2D场景也可以是LTE D2D场景等,或者可以应用于车到一切(vehicle to everything,V2X)场景,可以是NR V2X场景也可以是LTE V2X场景等,例如可应用于车联网,例如V2X、LTE-V、车与车(vehicle-to-vehicle,V2V)等,或可用于智能驾驶,智能网联车等领域。
进一步地,本申请实施例还可应用于演进的通用移动通信系统陆地无线接入网(evolved universal mobile telecommunications system terrestrial radio access network,E-UTRAN)系统,或者下一代(next generation,NG)-RAN系统,或者还可以应用于下一代通信系统或者类似的通信系统。
请参考图1,为本申请提供一种通信系统的网络架构示意图。该通信系统包括网络设备110、终端设备120、终端设备130和终端设备140。其中,终端设备120为TUE,终端设备130和终端设备140为终端设备120的CUE。可选的,终端设备120、终端设备130和终端设备140可组成一个用户协作组,也就是说,终端设备120是该用户协作组中的TUE,终端设备130和终端设备140是该用户协作组中的CUE。
图1中的网络设备可以为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the 4 th generation,4G)系统中可以对应演进型基站(Evolutional Node B,eNB),在5G系统中可以对应5G中的接入网设备,例如gNB。
图1中的用户协作组可以包括终端设备120、终端设备130和终端设备140,也可以仅包括终端设备120和终端设备130。也就是说,一个TUE可具有一个或多个为其服务的CUE。可选的,若TUE和CUE以用户协作组的形式出现时,则在一个小区中,可以存在多个不同的用户协作组。对于一个终端设备来说,它可以是以自己为中心的用户协作组的TUE,还可以是一个或多个其他用户协作组的CUE。
应理解,图1中所示出的终端设备120、终端设备130和终端设备140仅为一种示例,网络设备可以为多个终端设备提供服务,本申请对通信系统中终端设备的数量不做具体限定。而且,图1中的终端设备是以手机为例示出的,但本申请不限于此,终端设备还可以是其他类型的终端设备,如车载终端设备或车辆等。并且,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
下面结合附图介绍本申请实施例技术方案。
本申请的技术方案可以应用于无线通信系统中(如图1中所示的通信系统)。该无线通信系统可以包括至少一个网络设备、至少一个TUE以及该TUE的至少一个CUE,网络设备和终端设备(包括TUE和CUE)可以通过无线空口通信,TUE与CUE可以通过侧行链路通信。当本申请的技术方案应用于图1所示的通信系统时,该无线通信系统中的网络设备可以对应于图1中所示的网络设备110,TUE可以对应于图1中所示的终端设备120,该TUE的CUE可以对应于图1中所示的终端设备130和终端设备140。
以下,不失一般性,以一个TUE与一个CUE之间的交互过程,以及一个TUE、一个CUE与网络设备(例如,图1中的终端设备120、终端设备130与网络设备110,或终端 设备120和终端设备130与网络设备110)之间的交互过程为例详细说明本申请实施例。为了统一描述,下文将CUE(终端设备130或终端设备140)称为第一终端,TUE(终端设备120)称为第二终端。
请参考图2,为本申请实施例提供的一种数据的反馈方法流程示意图,该方法可应用于如图1所示的通信系统中,该方法包括如下的步骤S201至步骤S208:
步骤S201:网络设备向第一终端和第二终端发送第一数据;
具体的,该第一数据可以承载于下行数据信道上,例如,PDSCH(physical downlink shared channel,物理下行共享信道)上。
步骤S202:第一终端和第二终端分别接收该第一数据;
第一终端和第二终端分别接收第一数据,并对接收到的第一数据进行解码,以确定自身对第一数据的接收结果。
具体的,本申请实施例中的“接收结果”可以是成功接收或未成功接收。其中,成功接收是指终端设备对接收到的来自网络设备的第一数据解码正确;未成功接收是指终端设备未从网络设备接收到该第一数据,或终端设备对接收到的来自网络设备的第一数据解码错误。应理解的是,解码正确的前提是终端设备接收到第一数据。
步骤S203:第二终端通过SL资源向第一终端发送第一反馈信息;
应理解的是,在步骤S203之前,第一终端和第二终端已经被分配了SL资源,分配SL资源的方式可以是网络设备为第二终端和第二终端分配的,也可以是协议预定的,或者是其他设备为第一终端和第二终端分配的,也可以是第一终端和第二终端在执行该流程前已知的,例如,该SL资源为周期性SL资源,第一终端和第二终端本次使用的SL资源为之前已配置的周期性SL资源。
其中,第一反馈信息用于指示第二终端对第一数据的接收结果,如前所述,该接收结果包含成功接收和未成功接收。例如,第二终端对第一数据解码错误,则第一反馈信息指示的接收结果为未成功接收,又例如,第二终端未接收到第一数据,则第一反馈信息指示的接收结果为未成功接收,又例如,第二终端对第一数据解码正确,则第一反馈信息指示的接收结果为成功接收。
示例性的,该第一反馈信息可以是HARQ(hybrid automatic repeat request,混合自动重传请求,)-ACK(acknowledge character,肯定应答)信息,例如,若接收结果为成功接收,则第一反馈信息为ACK,若接收结果为未成功接收,则第一反馈信息为NACK(negative acknowledgement,否定应答)。具体的,TUE在发送第一反馈信息时,该第一反馈信息可以承载于SL控制信道上,例如,PSFCH,(physical sidelink feedback channel,显示的物理层信道)上。
作为另一种示例,该第一反馈信息也可以为空载消息,该空载消息用于向第一终端指示第二终端的接收结果为成功接收或未成功接收。例如,第二终端也可以通过网络设备分配的SL资源发送空载消息(DTX,discontinuous transmission),其中,空载消息,可以理解为,空载消息的发送端没有发送任何信息,接收端也没有接收到任何消息。例如,若空载消息指示第二终端未成功接收时,第二终端在网络设备分配的PSFCH上发送空载消息时,也即第一终端在该PSFCH上未接收到消息时,第一终端确定第二终端的接收结果为未成功接收。在该示例中,可以实现在第二终端能够确定第一终端的接收结果的同时,节省信令开销。
步骤S204:第一终端通过SL资源接收来自第二终端的第一反馈信息;
步骤S205:第一终端根据第一反馈信息指示的第二终端对第一数据的接收结果和第一终端自身对第一数据的接收结果确定第二反馈信息;
步骤S206:第一终端使用上行时频资源向网络设备发送第二反馈信息。
应理解的是,在步骤S206之前,第二终端已经被分配了上行时频资源,分配上行时频资源的方式可以是网络设备为第二终端分配的,也可以是协议预定的,也可以是第一终端在执行该流程前已知的,例如,该上行时频资源为周期性上行时频资源,第一终端本次使用的上行时频资源为之前已配置的周期性上行时频资源。
接下来结合附图,对上述图2所示的实现方法进行具体说明,为了便于理解,下文将第一终端称为CUE,第二终端称为TUE。
在上述实施例中,根据步骤S200-步骤S206可知,本申请实施例提供的TUE和CUE进行数据反馈的技术方案可以概括为三个部分,第一部分:为TUE和CUE配置SL资源,TUE通过该SL资源(侧行链路)向CUE发送,用于指示TUE自身对第一数据的接收结果的第一反馈信息。对应的,作为该侧行链路的对端设备,CUE接收来自TUE的第一反馈信息;第二部分,网络设备为CUE分配用于发送第二反馈信息的上行时频资源;第三部分:CUE将基于自身对第一数据的接收结果和TUE对第一数据的接收结果确定第二反馈信息,并通过第二部分配置的上行时频资源将第二反馈信息发送至网络设备。
接下来,分别对上述三个部分进行详细介绍,首先介绍第一部分的内容:
【第一部分】
TUE和CUE基于SL资源配置信息确定SL资源的资源位置,并根据确定的SL资源进行第一反馈信息的传输。
具体的,该SL资源配置信息可用于指示SL资源的时域位置,例如,该SL资源配置信息用于指示SL资源的第一时间间隔,该第一时间间隔用于指示SL资源的第一指定位置与其他信道的第二指定位置之间的时间间隔(或称为定时偏差)。
其中,第一指定位置和第二指定位置可以是对不同资源而言的同一相对位置,也可以是不同的相对位置。示例性的,以承载第一数据的PUSCH(PhysicalUplinkSharedChannel,上行物理共享信道)为例,第一时间间隔可以为SL资源的起始位置与承载第一数据的PUSCH的起始位置之间的时间间隔。作为又一种示例,第一时间间隔还可以是SL资源的起始位置与承载第一数据的PUSCH的尾端位置之间的时间间隔,其中,尾端位置是指该资源结束时刻的时域位置。作为另一种示例,第一时间间隔还可以是SL资源的尾端位置与承载第一数据的PUSCH的起始位置之间的时间间隔。
需要说明的是,本申请实施例对于第一指定位置和第二指定位置的具体位置不作限定。另外,本申请实施例中第一时间间隔的单位可以是无线帧、子帧、时隙、微时隙或符号等,本申请对该第一时间间隔的时间单位不作限定。
下面通过具体示例,对SL资源与第一时间间隔的关系进行详细介绍:
示例1,该第一时间间隔为SL资源的第一指定位置与承载第一数据的信道的第二指定位置之间的时间间隔。其中,第一数据可以承载于下行信道中,例如,PUSCH。
下面以承载第一数据的PUSCH为例,参见图3a和3b所示,为本申请实施例提供的一种SL资源与PUSCH之间的第一时间间隔的关系示意图。假设在图3a和3b所示场景中,该第一时间间隔的时间单位为符号,该时间间隔为n个符号。
在图3a所示的场景中,SL资源的第一时间间隔为承载第一数据的PUSCH的起始时域位置与SL资源的起始时域位置之间的时间间隔。也就是说,承载第一数据的PUSCH的起始时域位置与SL资源的起始时域位置之间的时间偏差为n个符号。对应的,终端设备接收到SL资源配置信息后,根据SL资源配置信息指示的第一时间间隔和接收到的承载第一数据的PUSCH的起始时域位置确定SL资源的起始时域位置。
在图3b所示的场景中,SL资源的第一时间间隔还可以是承载第一数据的PUSCH的尾端位置与SL资源的起始位置之间的时间间隔。也就是说,承载第一数据的PUSCH的尾端时域位置与SL资源的起始时域位置之间的时间偏差为n个符号。对应的,终端设备接收到SL资源配置信息后,根据SL资源配置信息指示的第一时间间隔和接收到的承载第一数据的PUSCH的尾端时域位置确定SL资源的起始时域位置。
示例2,该第一时间间隔为SL资源与承载用于调度第一数据的控制信息的信道之间的时间间隔。
同样的,该第一时间间隔可以是SL资源的第一指定位置与承载该控制信息的信道的第二指定位置之间的时间间隔,例如,用于调度第一数据的控制信息为第一DCI(downlink control information,下行控制信息),该第一DCI承载于PDCCH(physical downlink control channel,物理下行控制信道)中。示例性的,该第一时间间隔可以是SL资源的起始时域位置与承载第一DCI的PDCCH的起始时域位置之间的时间间隔。作为另一种示例,该时间间隔还可以是SL资源的起始时域位置与该PDCCH的尾端时域位置之间的时间间隔。关于SL资源与承载第一DCI的PDCCH之间的时间间隔的关系,可以参见上述示例1、图3a或图3b的具体描述,此处不再重复说明。
示例3,该第一时间间隔为SL资源与承载SL资源配置信息的信道之间的时间间隔。
本申请实施例中,配置SL资源的方式有多种,例如,物理层信令携带SL资源配置信息,网络设备通过该物理层信令为TUE和CUE配置SL资源(具体参见下文中的配置方式一的描述)。又例如,RRC(radio resource control,无线资源控制)信令携带SL资源配置信息,网络设备通过RRC信令为TUE和CUE配置SL资源(具体参见下文中的配置方式二的描述)。关于SL资源的配置方式下文将会进行详细介绍。
示例性的,网络设备通过第二DCI配置SL资源,例如,SL资源配置信息承载于第二DCI,该第二DCI承载于PDCCH中,则该第一时间间隔可以是SL资源的第一指定位置与承载该第二DCI的PDCCH的第二指定位置之间的时间间隔。例如,该时间间隔为SL资源的起始位置与承载该第二DCI的PDCCH的起始时域位置之间的时间间隔。又例如,该时间间隔为SL资源的起始时域位置与承载该第二DCI的PDCCH的尾端时域位置之间的时间间隔。关于SL资源与承载第二DCI的PDCCH之间的时间间隔的关系,可以参见上述示例1、图3a或图3b的具体描述,此处不再重复说明。
上文介绍的为根据SL资源配置信息指示的第一时间间隔确定SL资源的指定时域位置的具体方式。
可选的,本申请实施例中,SL资源配置信息还可以包括SL资源的时域资源信息和/或频域资源信息。示例性的,时域资源信息还可用于指示SL资源的时域长度信息,例如,SL资源的时域长度为10slot。也就是,终端设备可以通过第一时间间隔和时域长度信息确定SL资源的时域位置和大小。举例来说,终端设备根据第一时间间隔确定SL资源的起始时域位置,并根据时域长度信息确定SL资源为包含确定的起始时域位置后的10个slot(时 隙)。
作为另一种可实现的方式,本申请还可以通过SL资源配置信息携带具体的SL资源时域位置信息,例如,SL资源配置信息还可以包括无线帧的帧号和时隙编号。对应的,终端设备根据无线帧的帧号和时隙编号确定SL资源的时域位置和大小。
频域资源信息用于指示SL资源的频域资源,例如,该SL资源所占用的RB(resource block,资源块)的数量和标识。对于SL资源的频域资源而言,在一种可能的设计中,网络设备为TUE和CUE分配的SL资源可以是终端设备在Uu口上进行数据传输时的所驻留的带宽内的时频资源,可简称为带内资源。例如,终端设备侧在Uu口的上行时频资源。在另一种可能的设计中,网络设备为TUE和CUE分配的SL资源还可以是终端设备在Uu口上进行数据传输时所驻留的带宽内的时频资源,可简称为带外资源。示例性的,假设带内资源的频段为3.5GHz~3.6GHz,则带外资源可以是3.5GHz~3.6GHz之外的频段范围内对应的时频资源,例如,带外资源为5.9GHz~6GHz频段的时频资源。
上述为通过SL资源配置信息确定一处SL资源的资源位置的具体介绍,即终端设备根据SL资源配置信息确定进行一次传输的SL资源,该SL资源可以为非周期SL资源。可选的,本申请实施例还可以通过SL资源配置信息配置周期性SL资源。
如图4所示,为本申请实施例提供的一种周期性SL资源的配置示意图。
具体的,对于周期性SL资源,SL资源配置信息可包括下列信息中的一项或多项:
SL资源周期、SL资源的时间单元长度或SL资源周期的数量。
可选的,SL资源配置信息还可以包括下列信息中的一项或多项:SL资源占用的符号位置、符号偏置或有效符号数量。
首先对上述用语进行解释说明,以便于本领域技术人员理解。
1)SL资源周期,是指一个周期内包含的时间单元的数量,如前说述,该时间单元可以是无线帧、子帧、时隙、迷你时隙或符号等。例如,时间单元为时隙,如图4所示,每个SL资源周期包括10slot;
2)第一时间间隔(如图4中的第一偏置),是指与指定信道的第一指定位置相隔第一时间间隔处的时域位置,也是每个资源周期内,SL资源占用的首个时间单元相对于该周期内起始时间单元的定时偏差,例如,第一时间间隔为3个时隙,则可表示SL资源的占用的时隙的起始位置为该周期内的第4个时隙,参见图4所示。
3)SL资源的时间单元长度,是指一个SL资源周期内包含的属于SL资源的时间单元的数量。例如,参见图4所示的黑色网格标识的slot,每个资源周期内包含的SL资源的时隙个数为3,即包含上述第一偏置确定的SL资源占用的首个时隙以及之后的连续3个时隙。
4)符号偏置(如图4中的第二偏置),用于指示SL资源占用的起始符号的位置,指在一个时间单元内SL资源占用的起始符号的位置。例如,图4中SL资源占用的符号和该slot的起始符号的偏置为2。
5)有效符号数量,指每个属于SL资源的slot内,SL资源占用的符号数量,例如,以一个时隙包含14个符号,有效符号数量为4为例,参见图4所示,SL资源具体位于SL资源所在时隙的第3-6个符号上。
6)SL资源周期的数量,是指SL资源周期的有效次数,例如,有效次数为3,则该SL资源周期循环3次后失效。
上述SL资源配置信息可以通过下列方式进行配置,下面列举几种:
配置方式一:通过物理层信令指示SL资源配置信息;
网络设备通过物理层信令配置SL资源,示例性的,该物理层信令可以为DCI,该DCI即为上述示例3中的第二DCI,也就是,网络设备通过第二DCI承载SL资源配置信息,对应的,终端设备接收到该第二DCI后,根据该第二DCI承载的SL资源配置信息确定SL资源。
可选的,第二DCI可以是用于调度第一数据的第一DCI,也可以是其他DCI,或者网络设备为承载SL资源配置信息单独配置的一个DCI。示例性的,以调度第一数据的第一DCI为例,网络设备在向TUE和CUE发送第一数据之前,向TUE和CUE发送用于调度第一数据的第一DCI,TUE和CUE根据该第一DCI指示的资源位置接收第一数据。可选的,该第一DCI还可以包括SL资源的配置信息,用于指示SL资源的第一时间间隔。
如前所述,该第一时间间隔为SL资源的第一指定位置和其他信道的第二指示位置之间的时间间隔,例如上文中的任意一种示例的时间间隔,具体为哪一种时间间隔的关系可以是通过DCI配置,也可以是基于协议预定义,或者是其他信令配置。例如,通过RRC信令配置,示例性的,网络设备通过RRC信令配置第一时间间隔为SL资源的起始时域位置与承载第一数据的PUSCH的尾端时域位置之间的时间间隔,时间单位为符号。随后,网络设备下发携带SL资源配置信息的第二DCI后,终端设备可以根据该第二DCI指示的第一时间间隔的数值,以及承载第一数据的PUSCH的尾端时域位置和RRC信令指示的时间单位确定SL资源的起始时域位置。
接下来介绍通过第二DCI配置SL资源的具体方式。
一种可实施的方式为,该第二DCI承载的SL资源配置信息为SL资源的具体参数。
举例来说,该SL资源配置信息用于指示SL资源的第一时间间隔,网络设备通过第二DCI的扩展字段承载SL资源配置信息,该扩展字段具有至少1个比特位,该第二DCI的扩展字段上的取值可用于指示第一时间间隔的数值。例如,以该扩展字段具有3个比特位为例,若该3个比特位上的比特为101(取值为5)时,对应的,第一时间间隔的数值为5。
上述为通过SL资源配置信息确定第一时间间隔的数值,对于第一时间间隔的时间单位,可以是由网络设备通过高层信令配置的,例如,如上文中介绍的由RRC信令配置,还可以是预设的,例如,预设第一时间间隔的时间单位为slot。对应的,终端设备可以基于SL资源配置信息确定的数值和预设时间单位确定第一时间间隔为5个slot。也可以是由第二DCI配置的。示例性的,该第二DCI的扩展字段的至少一个比特位用于指示时间单位,例如,该扩展字段的末尾一个比特位的比特用于指示时间单位为slot还是符号,若该比特为1,可以指示时间单位为slot,若该比特为0,则指示时间单位为符号。示例性的,以该扩展字段具有4个比特位为例,该4个比特位按照从左至右的顺序,前3个比特位的比特的取值用于指示第一时间间隔的数值,第4个比特位的比特用于指示时间单位,若该4个比特位上的比特为1011,则表示第一时间间隔为5个slot。
需要说明的是,上述第二DCI携带SL资源配置信息的方式仅为举例,本申请实施例对于指示第一时间间隔、时间单位的方式以及时间单位的可选范围不作限定。
另一种可实施的方式为,预设不同的索引值与不同的SL资源配置信息的第二对应关系,该第二DCI承载SL资源配置信息的索引值,终端设备根据预设的第二对应关系,确定来自网络设备的第二DCI携带的索引值对应的SL资源配置信息。其中,TUE和CUE内预设的第二对应关系可以是基于协议定义的,或者是网络设备配置的,也可以是网络设 备之外的设备,例如其他终端设备通知给TUE和CUE的。
在一种具体的示例,该第二对应关系可如下表1所示。
表1
索引值 SL资源配置信息
0 第一时间间隔为1slot
1 第一时间间隔为2slot
2 第一时间间隔为3slot
3 第一时间间隔为4slot
4 第一时间间隔为1个符号
5 第一时间间隔为2个符号
…… ……
可选的,上述对应关系中的SL资源配置信息还可以包含SL资源的时域资源信息和/或频域资源信息,此处不再重复说明。若SL资源配置信息不包含SL资源的时域资源信息和/或频域资源信息,则网络设备可以通过其他信令为TUE和CUE进行配置,例如,第二DCI指示的SL资源配置信息包含第一时间间隔和时域资源信息,则网络设备可再通过RRC信令为TUE和CUE配置该SL资源的频域资源。
需要说明的是,上述仅为举例,本申请实施例并不限定通过第二DCI承载SL资源配置信息的方式,例如,可以是第二DCI的扩展字段承载,也可以是第二DCI的已有字段承载。应理解的是,不同功能的DCI具有不同的格式和字段,例如,用于指示PUSCH的DCI,该DCI具有MCS索引值,该MCS索引值用于指示PUSCH的调制阶数和码率,本申请实施例中,网络设备可以通过该DCI的MCS索引值来指示SL资源配置信息的索引值。当通过第二DCI已有字段指示SL资源配置信息的索引值时,可以通过一个额外的信令触发终端设备对该DCI的已有字段进行新的解读,即根据已有字段,例如,MCS索引值确定PUSCH的调制阶数和码率之外,还可以根据MCS索引值从预设的第二对应关系中匹配SL资源配置信息。
基于上述配置方式一,网络设备通过DCI可以实现对SL资源的动态配置,配置方式更加灵活,可以更加适应信道变化。
配置方式二:网络设备通过高层信令指示SL资源配置信息;
示例性的,该高层信令可以为RRC信令,网络设备通过RRC信令携带SL资源配置信息。对应的,终端设备接收到该RRC信令后,根据该RRC信令承载的SL资源配置信息确定SL资源。其中,通过RRC信令配置SL资源与通过DCI配置SL资源的方式类似,具体可参见上述配置方式一的描述,此处不再赘述。
由于RRC信令更新时间较长,当通过RRC信令配置SL资源时,可以将该SL资源配置为周期性SL资源,如下表2所示,为本申请实施例提供的一种配置周期性SL资源的第二对应关系的具体示例。
表2
Figure PCTCN2019130855-appb-000001
Figure PCTCN2019130855-appb-000002
网络设备通过RRC信令携带SL资源配置信息的索引值,TUE和CUE根据该RRC信令携带的SL资源配置信息的索引值确定SL资源,在RRC信令更新前,TUE和CUE可按照上一次RRC信令指示的SL资源进行第一反馈信息的传输。
基于上述配置方式,网络设备通过RRC信令可以实现对SL资源的半静态配置,在RRC信令更新前,TUE和CUE可按照上一次RRC信令指示的SL资源进行第一反馈信息的传输,以便节省资源开销,缩短时延。
配置方式三:基于协议预定义SL资源配置信息;
CUE和TUE基于协议预定的SL资源配置信息确定用于反馈接收结果的SL资源。
其中,基于协议预定义的SL资源可以是周期性SL资源,也可以是非周期SL资源。
基于上述配置方式可以实现SL资源的静态配置,TUE和CUE基于协议预定义的SL资源进行第一反馈信息的传输,减少网络设备侧的信令开销。
上述为本申请实施例中,配置SL资源的具体介绍,TUE和CUE分别通过上述配置方式确定SL资源。后续TUE在接收到第一数据后,通过确定的SL资源向CUE发送用于指示TUE对第一数据的接收结果的第一反馈信息。对应的,CUE使用相同的SL资源接收第一反馈信息。随后,CUE需要通过网络设备分配的上行时频资源向网络设备发送用于指示TUE和CUE分别对第一数据的接收结果的第二反馈信息。
接下来通过第二部分的内容来介绍网络设备为CUE分配上行时频资源的过程。
【第二部分】
网络设备为CUE配置用于传输第二反馈信息的上行时频资源,配置方式可以是由物理层信令(例如DCI)配置,或由高层信令(例如RRC信令)配置,或由协议预定义,具体的请参见SL资源的配置方式的描述,此处不再重复说明。
同样的,本申请为CUE配置的上行时频资源和SL资源的应用类似,由上行资源配置信息指示上行资源的第二时间间隔,为了与第一时间间隔对应的指定位置进行区分,该第二时间间隔可以是上行时频资源的第三指定位置与其他信道的第四指定位置之间的时间间隔,同样的,该第三指定位置与第四指定位置可以是相对不同资源而言的同一个相对位置,也可以是不同的相对位置。该上行资源也可以是周期性上行时频资源,也可以是非周期上行时频资源,具体的,对于上行资源的配置方式可以参见SL资源的配置方式的描述,此处不再重复说明。与第一时间间隔类似,该第二时间间隔的单位可以是无线帧、子帧、时隙、微时隙或符号等,本申请对该第二时间间隔的时间单位不作限制。
接下来结合具体示例,对上行时频资源与第二时间间隔的关系进行介绍说明:
示例1,该第二时间间隔为上行资源的第三指定位置与承载第一数据的信道的第四指定位置之间的时间间隔。
请参见图5a和5b,为本申请实施例提供的一种体现第二时间间隔的具体示例,假设在图5a和5b的场景中,该第二时间间隔为x个符号,第一数据承载与PUSCH上。
在图5a所示的场景中,上行时频资源的第二时间间隔为承载第一数据的PUSCH的起始时域位置与上行时频资源的起始时域位置之间的时间间隔。也就是说,承载第一数据的 PUSCH的起始时域位置与上行时频资源的起始时域位置之间的时间偏差为x个符号。对应的,CUE接收到上行资源配置信息后,根据上行资源配置信息指示的第二时间间隔和接收到的承载第一数据的PUSCH的起始时域位置确定上行时频资源的起始时域位置。
在图5a所示的场景中,上行时频资源的第二时间间隔为承载第一数据的PUSCH的尾端时域位置与上行时频资源的起始时域位置之间的时间间隔。也就是说,承载第一数据的PUSCH的尾端时域位置与上行时频资源的起始时域位置之间的时间偏差为x个符号。对应的,CUE接收到上行资源配置信息后,根据上行资源配置信息指示的第二时间间隔和接收到的承载第一数据的PUSCH的尾端时域位置确定上行时频资源的起始时域位置。
示例2,该第二时间间隔为上行时频资源与承载用于调度第一数据的控制信息的信道之间的时间间隔。
同样的,该第二时间间隔可以是上行时频资源的第三指定位置与承载该控制信息的信道的第四指定位置之间的时间间隔,例如,用于调度第一数据的控制信息为第一DCI,该第一DCI承载于PDCCH中。示例性的,该第二时间间隔可以是上行时频资源的起始时域位置与承载第一DCI的PDCCH的起始时域位置之间的时间间隔。作为另一种示例,该时间间隔还可以是上行时频资源的起始时域位置与承载第一DCI的PDCCH的尾端时域位置之间的时间间隔。关于上行时频资源与承载第一DCI的PDCCH之间的时间间隔的关系,可以参见上述第二部分的示例1、图5a或图5b的具体描述,此处不再重复说明。
示例3,该第二时间间隔为上行时频资源与承载上行时频资源配置信息的信道之间的时间间隔。
例如,网络设备通过物理层信令携带上行资源配置信息,示例性的,网络设备通过第三DCI配置上行时频资源,该第三DCI承载于PDCCH中,则该第二时间间隔还可以是上行时频资源的第三指定位置与承载该第三DCI的PDCCH的第四指定位置之间的时间间隔。
需要说明的是,用于调度第一数据的第一DCI、用于配置SL资源的第二DCI以及用于配置上行时频资源的第三DCI中的部分或全部可以是同一DCI,也可以是不同DCI。例如,第三DCI为与第二DCI和第一DCI不同的DCI,又例如,第二DCI和第三DCI为同一DCI,即网络设备通过同一DCI同时配置SL资源和上行时频资源。又例如,第一DCI和第三DCI可以为同一DCI,即网络设备通过同一DCI调度第一数据以及配置上行时频资源。本申请实施例对此不再限定。
示例5,第二时间间隔还可以是上行时频资源的第三指定位置与承载第一反馈信息的SL资源的第四指定位置之间的时间间隔。
具体的,请参见图6a和6b所示,在图6a所示的场景中,第二时间间隔为上行时频资源的起始时域位置与承载第一反馈信息的SL资源的起始时域位置之间的时间间隔。假设该时间间隔为x个符号。也就是,承载第一反馈信息的SL资源的起始时域位置与上行时频资源的起始时域位置之间的时间偏差为x个符号。
在图6b所示的场景中,第二时间间隔为上行时频资源的起始时域位置与承载第一反馈信息的SL资源的尾端时域位置之间的时间间隔。假设该时间间隔为x个符号。也就是,承载第一反馈信息的SL资源的尾端时域位置与上行时频资源的起始时域位置之间的时间偏差为x个符号。
上述为本申请实施例中配置上行时频资源的具体介绍,CUE通过上述方式确定上行时频资源。后续CUE在接收到TUE的第一反馈信息后,基于第一反馈信息确定TUE的接收 结果,并基于CUE自身的接收结果和TUE的接收结果确定第二反馈信息,并通过确定的上行时频资源将第二反馈信息发送至网络设备。
接下来,通过第三部分内容来介绍CUE根据CUE自身的接收结果和TUE的接收结果确定第二反馈信息的具体方式。
【第三部分】
CUE接收到来自TUE的第一反馈信息,该第一反馈信息用于指示TUE对第一数据的接收结果,CUE基于自身对第一数据的接收结果和TUE对第一数据的接收结果确定第二反馈信息,也就是,第二反馈信息用于向网络设备指示TUE对第一数据的接收结果以及CUE对第一数据的接收结果。
本申请实施例中,该第二反馈信息可具有至少两个比特位,该两个比特位的比特值用于指示TUE的接收结果和CUE的接收结果。具体的指示方式有多种,下面列举两种:
指示方式一:通过联合编码方式来指示;
该第二反馈信息可以包含至少2个比特位,其中的至少一比特位的比特用于指示TUE对第一数据的接收结果,剩余的比特位中的至少一比特位的比特用于指示CUE对第一数据的接收结果。例如,假设第二反馈信息具有2个比特位,从高到低的顺序,依次是2个比特位中的第一个比特位用于指示TUE的接收结果,第二个比特位用于指示CUE的接收结果。且定义比特值为1时,表示接收结果为成功接收,比特值为0时,表示接收结果为未成功接收。
举例来说,则若TUE和CUE对第一数据的接收结果都为成功接收时,第二反馈信息为11;
若TUE和CUE对第一数据的接收结果都为未成功接收时,第二反馈信息为00;
若TUE对第一数据的接收结果为未成功接收,CUE对第一数据的接收结果为成功接收时,则第二反馈信息可以为01。
应理解,上述仅为举例,本申请对用于指示CUE的接收结果的比特位和用于指示TUE的接收结果的比特位的顺序没有限制,但网络设备会基于与终端设备相同的规则读取第二反馈信息。例如,若定义第二反馈信息的第一个比特位用于指示CUE的接收结果,第二个比特位用于指示TUE的接收结果,则若TUE对第一数据的接收结果为未成功接收,CUE对第一数据的接收结果为成功接收时,则第二反馈信息可以为10。
指示方式二:通过CUE的接收结果和TUE的接收结果的组合对应的索引来指示;
作为一种实现方式,预设不同CUE的可能的接收结果以及TUE的可能的接收结果的各种组合与各个索引的第一对应关系,由该第二反馈信息携带CUE的接收结果和TUE的接收结果对应的索引值。
具体的,该第二反馈信息具有至少两个比特位,该两个比特位的比特值为CUE的接收结果和TUE的接收结果的组合对应的索引值。
示例性的,CUE的接收结果和TUE的接收结果的组合的状态可以分为三种,分别如下:
1)状态1:TUE的接收结果为成功接收;
应理解,TUE的接收结果为成功接收时,不论CUE是否成功接收,TUE均不需要重新接收该第一数据,也就是,网络设备不需要向TUE重新发送该第一数据,CUE也不需要向TUE发送该第一数据。
2)状态2:TUE的接收结果为未成功接收,CUE的接收结果为成功接收;
3)状态3:TUE和CUE的接收结果均为未成功接收。
在一个具体的示例中,该第一对应关系可如下表3所示:
表3
索引值 TUE和CUE的接收结果的组合状态
00 TUE的接收结果为成功接收
01 TUE的接收结果为未成功接收,CUE的接收结果为成功接收
10 TUE和CUE的接收结果均为未成功接收
需要说明的是,上述表3仅为举例,本申请对于TUE和CUE的接收结果的组合状态对应的索引值并没有限定,例如,也可以是TUE和CUE的接收结果的组合状态的第三态的索引值为00,第二态的索引值为10,第一态的索引值为01,任何能够表示不同TUE和CUE的接收结果的组合状态的索引值均适应于本申请实施例。
举例来说,基于上述表3所示的第一对应关系,若CUE和TUE的接收结果都为未成功接收时,CUE确定第二反馈信息为10;若CUE和TUE的接收结果都为成功接收时,CUE确定第二反馈信息为00;若TUE的接收结果为成功接收,CUE的接收结果为未成功接收,则CUE确定第二反馈信息也为00;若TUE的接收结果为未成功接收,CUE的接收结果为成功接收,则CUE确定第二反馈信息为01。
CUE将确定的第二反馈信息通过上述配置的上行时频资源发送向网络设备。对应的,网络设备从该CUE接收该第二反馈信息,并根据第二反馈信息执行对应的操作。
接下来,介绍网络设备根据第二反馈信息所执行的对应操作:
若第二反馈信息指示TUE成功接收,则网络设备确定TUE均不需要重新接收该第一数据,如前所述,网络设备不需要向TUE重新发送该第一数据,CUE也不需要向TUE发送该第一数据;具体的,本申请实施例中若TUE未成功接收,则网络设备可以为CUE分配用于向TUE转发第一数据的SL资源,若网络设备预先为CUE配置了用于转发第一数据的SL资源,则若网络设备确定CUE不需要向TUE发送该第一数据时,由于CUE不需要进行第一数据的转发,体现在CUE的行为是CUE释放该用于转发第一数据的SL资源。
若第二反馈信息指示TUE和CUE均未成功接收时,网络设备重新在Uu上发送该第一数据;同样的,若网络设备预先为CUE配置了用于转发第一数据的SL资源,则若网络设备确定CUE不需要向TUE发送该第一数据时,体现在CUE的行为是CUE释放该用于转发第一数据的SL资源。
若第二反馈信息指示TUE未成功接收,CUE成功接收,则网络设备可指示CUE向TUE发送该第一数据。
具体的,指示CUE发送第一数据的流程可以为,网络设备向CUE和TUE发送第一指示信息,用于指示CUE通过用于转发第一数据的SL资源向TUE发送第一数据,该第一指示信息可以承载于物理层信令中,或者该第一指示信息承载于RRC信令中,或者该第一指示信息承载于业务数据中。对应的,CUE在接收到来自网络设备的第一指示信息后,通过网络设备配置的用于转发第一数据的SL资源向TUE发送该第一数据。对应的,TUE接收到第一指示信息后,通过网络设备配置的同一用于转发第一数据的SL资源从CUE接收第一数据。
可选的,用于转发第一数据的SL资源可以是上文配置的用于传输第一反馈信息的周 期性SL资源,也可以是网络设备重新为CUE和TUE配置的用于转发第一数据的SL资源,例如,网络设备通过第一指示信息承载用于指示CUE发送第一数据的SL资源的配置信息,该配置信息可指示用于转发第一数据的SL资源为与承载第一指示信息的信道的起始位置间隔10个符号处的时频资源。具体的配置方式可以参见上文中配置用于传输第一反馈信息的SL资源的描述,此处不再重复说明。
请参考图7,为本申请实施例提供的一种数据的反馈方法的完整流程示意图,该方法包括如下的步骤S701至步骤S708:
步骤S701:网络设备向第一终端和第二终端发送SL资源配置信息;
如前所述,第一终端为CUE,第二终端为TUE。
具体的,网络设备将为第一终端和第二终端分配的SL资源的配置信息发送给第一终端和第二终端。
需要说明的,步骤S701仅为举例,如前所述,SL资源还可以协议预定义的,或者其他设备为第一终端和第二终端配置的,或者第一终端和第二终端在执行本次接收第一数据的流程之前已知的,本申请并不限定SL资源的配置方式。
步骤S702:第一终端和第二终端分别接收该SL资源配置信息,并根据该SL资源配置信息确定SL资源的资源位置;
步骤S701和步骤S702是可选的步骤,不是必须执行的步骤,例如,第一终端和第二终端可基于协议对SL资源的定义确定SL资源,便不需要执行步骤S701和步骤S702。
步骤S703:网络设备向第一终端发送上行时频资源配置信息;
需要说明的,步骤S701仅为举例,如前所述,上行时频资源还是可以协议预定义的,或者其他设备为第一终端配置的,或者第一终端在执行本次接收第一数据的流程之前已知的,本申请并不限定上行时频资源的配置方式。
需要说明的是,步骤701和步骤703仅为本申请提供的一具体示例,本申请对网络设备发送SL资源配置信息和上行时频资源配置信息的顺序没有限制,可以是按顺序先后发送,也可以是同时发送,例如,网络设备可以先向第一终端发送上行时频资源配置信息,再发送SL资源配置信息。又例如,网络设备可以先向第一终端发送上行时频资源配置信息和SL资源配置信息,再向第二终端发送SL资源配置信息。又例如,网络设备同时向第二终端发送上行时频资源配置信息和SL资源配置信息。
步骤S704,第一终端接收该上行时频资源配置信息;
步骤S703和步骤S704是可选的步骤,不是必须执行的步骤,例如,第一终端可基于协议对上行时频资源的定义确定上行时频资源,便不需要执行步骤S703和步骤S704。
步骤S705:网络设备向第一终端和第二终端发送第一数据;
需要说明的是,步骤S701-步骤S705所构成的方案仅为一种具体示例,本申请对于网络设备发送第一数据、SL资源以及上行时频资源的顺序没有限制,可以是顺序发送或者是同时发送,或者是部分同时发送,部分顺序发送,例如,可以是网络设备首先发送第一数据,之后再顺序发送SL资源的配置信息和上行时频资源配置信息,或者顺序发送上行时频资源配置信息和SL资源的配置信息,之后再发送第一数据,或者网络设备同时发送SL资源配置信息和上行时频资源信息,再发送第一数据,或者网络设备同时发送第一数据、SL资源的配置信息和上行时频资源的配置信息。
步骤S706:第一终端和第二终端分别接收该第一数据,并分别接收第一数据并对接收 到的第一数据进行解码,以确定自身对第一数据的接收结果。
步骤S707:第二终端使用网络设备分配的SL资源向第一终端发送第一反馈信息;
步骤S708:第一终端通过SL资源接收来自第二终端的第一反馈信息;
步骤S709:第一终端基于自身对接收到的第一数据的接收结果和接收到的第一反馈信息确定第二反馈信息;
步骤S710:第一终端使用上行时频资源向网络设备发送第二反馈信息。
上述以一个TUE和TUE的一个CUE的交互流程对本申请技术方案进行的说明,本申请同样适用于TUE具有多个CUE的场景,在该场景中,一种可实施的方式为,如图8a所示,多个CUE执行相同的操作,例如,多个CUE可以分部执行上述图8a中以第二终端为执行主体时所执行的操作。具体的,TUE分别向该多个CUE发送第一反馈信息,该多个CUE分别基于自身对第一数据的接收结果和通过第一反馈信息确定的TUE的接收结果确定第二反馈信息,并分别向网络设备发送第二反馈信息。例如,图8a中,TUE具有3个CUE,则网络设备将接收到3个CUE分别发送的第二反馈信息。
另一种可实施的方式为,如图8b所示的通信系统,该通信系统可包括至少一个第一CUE,其余CUE将自身对第一数据的接收结果的信息发送至该第一CUE,由该第一CUE基于自身的接收结果和其他CUE的接收结果以及TUE的接收结果确定第二反馈信息,例如,第二反馈信息的指示方式为联合编码时,可以分别通过至少一个比特位分别表示各CUE的接收结果,并在该第二反馈信息中携带CUE的设备标识,或携带成功接收的CUE的设备标识,以指示网络设备成功接收的终端设备。具体的,第二反馈信息的配置方式可以参见上文中相关指示方式的具体描述,此处不再重复说明。随后,由该第一CUE将确定的第二反馈信息发送向网络设备。
基于上述设计,TUE基于侧行链路向CUE发送第一反馈信息,CUE根据第一反馈信息确定TUE的接收结果,并基于自身的接收结果和TUE的接收结果确定第二反馈信息,将该第二反馈信息发送至网络设备,以此实现,在满足终端设备的节能需求的同时,网络设备也能够根据第二反馈信息确定TUE的接收结果,并能够根据TUE和CUE的接收结果执行对应的操作。以具有节能需求的电子设备的体量而言,本申请技术方案能够有效减少,在网络设备无法确定TUE的接收结果时重复发送第一数据时造成的资源浪费。
本申请实施例提供一种通信装置,请参考图9,为本申请实施例提供的一种通信装置的结构示意图,该通信装置900包括:收发单元910和处理单元920。该通信装置可用于实现上述任一方法实施例中涉及第一终端或第二终端的功能。例如,该通信装置可以是终端设备,例如手持终端设备或车载终端设备;该通信装置可以是终端设备中包括的芯片,或者包括终端设备的装置,如各种类型的车辆等;该通信装置还可以是其他具有上述终端设备功能的组合器件、部件等。当通信装置是终端设备时,收发单元可以是收发器,可以包括天线和射频电路等,处理单元可以是处理器,例如:中央处理单元(central processing unit,CPU)。当通信装置是具有上述终端设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器。
当该通信装置作为第一终端,执行图2中所示的方法实施例时,收发单元910用于执行从网络设备接收第一数据,从第二终端接收第一反馈信息,以及向网络设备发送第二反馈信息;处理单元920用于根据所述第一反馈信息和所述第二终端对所述第一数据的接收 结果确定第二反馈信息的操作。该通信装置中涉及的处理单元920可以由处理器或处理器相关电路组件实现,收发单元910可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现图2或图7中所示方法的相应流程。如在图2中,若通信装置为第一终端,收发单元910可用于执行步骤S202、步骤S204和步骤S206,处理单元920可用于执行步骤S205。如在图7中,若通信装置为第二终端,收发单元910可用于执行步骤S702、步骤S704。为了简洁,在此不再一一列举。
当该通信装置作为第二终端,执行图2中所示的方法实施例时,收发单元910用于执行从网络设备接收第一数据,以及向第一终端发送第一反馈信息的操作;处理单元920用于执行根据接收到的SL资源配置信息确定SL资源。
该通信装置中涉及的处理单元920可以由处理器或处理器相关电路组件实现,收发单元910可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现图2或图7中所示方法的相应流程。如在图2中,若通信装置为第二终端,收发单元910可用于执行步骤S202和步骤S203。如在图7中,若通信装置为第二终端,收发单元910可用于执行步骤S701,处理单元920可用于执行步骤S702。为了简洁,在此不再一一列举。
请参考图10,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置具体可为一种终端设备。便于理解和图示方便,在图10中,终端设备以手机作为例子。如图10所示,终端设备包括处理器,还可以包括存储器,当然,也还可以包括射频电路、天线以及输入输出装置等。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图10所示,终端设备包括收发单元1010和处理单元1020。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理单元、处理装置等。可选的,可以将收发单元1010中用于实现接收功能的器件视为接收单元,将收发单元1010中用于实现发送功能的器件视为发送单元,即收发单元1010包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。应理解,收发单元1010用于 执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1020用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
本申请实施例还提供另一种通信装置,请参考图11,为本申请实施例提供的另一种通信装置的结构示意图,该通信装置1100包括:收发单元1110和处理单元1120。该通信装置可用于实现上述任一方法实施例中涉及网络设备的功能。例如,该通信装置可以是网络设备或网络设备中包括的芯片,该通信装置还可以是其他具有上述网络设备功能的组合器件、部件等。当通信装置是网络设备时,收发单元可以是收发器,可以包括天线和射频电路等,处理单元可以是处理器,例如:中央处理单元(central processing unit,CPU)。当通信装置是具有上述网络设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器。
当该通信装置作为网络设备,执行图2中所示的方法实施例时,收发单元1110,用于执行向第一终端和第二终端发送第一数据,以及接收第一终端发送的第二反馈信息的操作;处理单元1120,用于根据所述第二反馈信息判断所述第二终端是否需要重新接收所述第一数据。
应理解,该通信装置中涉及的处理单元1120可以由处理器或处理器相关电路组件实现,收发单元1110可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现图2和图7中所示方法的相应流程。如在图2中,通信装置作为网络设备,收发单元1110可用于执行步骤S201和步骤S206,如在图7中,若通信装置为第二终端,收发单元910可用于执行步骤S701和步骤S703。为了简洁,在此不再一一列举。
请参考图12为本申请实施例中提供的另一种通信装置的另一结构示意图。该通信装置可具体为一种网络设备,例如基站,用于实现上述任一方法实施例中涉及网络设备的功能。
该网络设备1200包括:一个或多个射频单元,如远端射频单元(remote radio unit,RRU)901和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)902。所述RRU 1201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线1211和射频单元1212。所述RRU 1201部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU 1202部分主要用于进行基带处理,对基站进行控制等。所述RRU 1201与BBU 1202可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)1202可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 1202可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1202还可以包括存储器1221和处理器1222,所述存储器1221用于存储必要的指令和数据。所述处理器1222用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中发送操作。所述存储器1221和处理器1222可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种通信系统,该通信系统包括网络设备、第一终端和第二终端。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合;也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可以理解,本申请实施例中的存储器或存储单元可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM, DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (38)

  1. 一种数据的反馈方法,其特征在于,包括:
    第一终端接收来自第二终端的第一反馈信息,所述第一反馈信息用于指示所述第二终端对来自网络设备的第一数据的接收结果;其中,所述第一数据为所述网络设备针对所述第二终端发送的;
    所述第一终端向网络设备发送第二反馈信息,所述第二反馈信息为所述第一终端根据所述第一反馈信息和所述第一终端对所述第一数据的接收结果确定的。
  2. 如权利要求1所述的方法,其特征在于,所述接收结果包含下列中的至少一项:
    成功接收或未成功接收。
  3. 如权利要求1或2所述的方法,其特征在于,所述第二反馈信息为包含至少两比特的比特位;所述比特位中的至少一比特用于指示所述第一终端对所述第一数据的接收结果,所述比特位中的另外至少一比特用于指示所述第二终端对所述第一数据的接收结果。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第二反馈信息为所述第二终端对所述第一数据的接收结果以及所述第一终端对所述第一数据的接收结果的组合对应的索引;
    所述方法还包括:
    所述第一终端根据第一对应关系确定所述第一终端对所述第一数据的接收结果和所述第二终端对所述第一数据的接收结果的组合对应的索引;
    所述第一对应关系包括所述第一终端的可能的接收结果以及所述第二终端的可能的接收结果的各种组合与各个索引的对应关系。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一终端接收来自第二终端的第一反馈信息,包括:
    所述第一终端接收来自所述网络设备的SL资源配置信息,并根据所述SL资源配置信息确定SL资源;
    所述第一终端通过所述SL资源接收来自所述第二终端的所述第一反馈信息。
  6. 如权利要求5所述的方法,其特征在于,所述SL资源配置信息用于指示所述SL资源的第一时间间隔;
    其中,所述第一时间间隔为所述第一数据的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述SL资源配置信息的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述第一数据的调度信息的时域位置与所述SL资源的时域位置之间的间隔。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一终端向网络设备发送第二反馈信息,包括:
    所述第一终端接收来自所述网络设备的所述上行时频资配置信息,并根据所述上行时频资源配置信息确定上行时频资源;
    所述第一终端通过所述上行时频资源向所述网络设备发送所述第二反馈信息。
  8. 如权利要求7所述的方法,其特征在于,所述上行时频资源配置信息用于指示所述上行时频资源的第二时间间隔;
    其中,所述第二时间间隔为所述第一数据的时域位置与所述上行时频资源的时域位置 之间的间隔,或所述第二时间间隔为所述上行时频资源配置信息的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述第一数据的调度信息的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述第一反馈信息的时域位置与所述上行时频资源的时域位置之间的间隔。
  9. 一种数据的反馈方法,其特征在于,包括:
    第二终端接收来自网络设备的第一数据;
    所述第二终端向第一终端发送第一反馈信息,所述第一反馈信息用于指示所述第二终端对所述第一数据的接收结果;所述第一终端为所述第二终端的协作终端,所述第一数据目的端为所述第二终端。
  10. 如权利要求9所述的方法,其特征在于,所述接收结果包含下列中的至少一项:
    成功接收或未成功接收。
  11. 如权利要求9或10所述的方法,其特征在于,所述第二终端向第一终端发送第一反馈信息之前,还包括:
    所述第二终端接收来自所述网络设备的SL资源配置信息,并根据所述SL资源配置信息确定SL资源;
    所述第二终端向第一终端发送第一反馈信息,包括:
    所述第二终端通过所述SL资源向所述第一终端发送所述第一反馈信息。
  12. 如权利要求11所述的方法,其特征在于,所述SL资源配置信息用于指示所述SL资源的第一时间间隔;
    其中,所述第一时间间隔为所述第一数据的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述SL资源配置信息的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述第一数据的调度信息的时域位置与所述SL资源的时域位置之间的间隔。
  13. 一种数据的反馈方法,其特征在于,包括:
    网络设备发送第一数据,所述第一数据的目的端为第二终端;
    所述网络设备接收第一终端的第二反馈信息;所述第二反馈信息为所述第一终端根据所述第二终端向所述第一终端发送的第一反馈信息和所述第一终端对所述第一数据的接收结果确定的,所述第一反馈信息用于指示所述第二终端对所述第一数据的接收结果。
  14. 如权利要求13所述的方法,其特征在于,所述接收结果包含下列中的至少一项:
    成功接收或未成功接收。
  15. 如权利要求13或14所述的方法,其特征在于,还包括:
    所述网络设备向所述第一终端和所述第二终端发送SL资源配置信息;所述SL资源配置信息用于指示SL资源的第一时间间隔,所述SL资源用于承载所述第一反馈信息;
    其中,所述第一时间间隔为所述第一数据的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述SL资源配置信息的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述第一数据的调度信息的时域位置与所述SL资源的时域位置之间的间隔。
  16. 如权利要求13-15任一项所述的方法,其特征在于,所述网络设备接收第一终端的第二反馈信息之前,还包括:
    所述网络设备向所述第二终端发送上行时频资源配置信息;所述上行时频资源配置信 息用于指示所述上行时频资源的第二时间间隔;所述上行时频资源用于承载所述第二反馈信息;
    其中,所述第二时间间隔为所述第一数据的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述上行时频资源配置信息的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述第一数据的调度信息的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述第一反馈信息的时域位置与所述上行时频资源的时域位置之间的间隔。
  17. 如权利要求13-16任一项所述的方法,其特征在于,所述网络设备接收第一终端的第二反馈信息,还包括:
    所述网络设备根据所述第二反馈信息判断所述第二终端是否需要重新接收所述第一数据。
  18. 如权利要求17所述的方法,其特征在于,所述网络设备根据所述第二反馈信息判断所述第二终端是否需要重新接收所述第一数据,包括:
    若所述第二反馈信息指示所述第二终端成功接收,则所述网络设备确定所述第二终端不需要重新接收所述第一数据;
    若所述第二反馈信息指示所述第二终端未成功接收,且所述第一终端成功接收,则所述网络设备确定所述第二终端需要重新接收所述第一数据,所述方法还包括:所述网络设备向所述第一终端发送第一指示信息,所述第一指示信息用于指示所述第一终端向所述第二终端发送所述第一数据;
    若所述第二反馈信息指示所述第二终端未成功接收,且所述第一终端未成功接收,则所述网络设备确定所述第二终端需要重新接收所述第一数据,所述方法还包括:所述网络设备向所述第一终端发送所述第一数据。
  19. 一种通信装置,其特征在于,所述装置包括收发单元;
    所述收发单元,用于接收来自第二终端的第一反馈信息,所述第一反馈信息用于指示所述第二终端对来自所述网络设备的第一数据的接收结果;其中,所述第一数据为所述网络设备针对所述第二终端发送的;
    所述收发单元,还用于向所述网络设备发送第二反馈信息,所述第二反馈信息是根据所述第一反馈信息和所述第一终端对所述第一数据的接收结果确定的。
  20. 如权利要求19所述的装置,其特征在于,所述接收结果包含下列中的至少一项:
    成功接收或未成功接收。
  21. 如权利要求19-20任一项所述的装置,其特征在于,所述第二反馈信息为包含至少两比特的比特位;所述比特位中的至少一比特用于指示所述第一终端对所述第一数据的接收结果,所述比特位中的另外至少一比特用于指示所述第二终端对所述第一数据的接收结果。
  22. 如权利要求19-21任一项所述的装置,其特征在于,所述装置还包括处理单元;
    在所述第二反馈信息为所述第二终端对所述第一数据的接收结果以及所述第一终端对所述第一数据的接收结果的组合对应的索引时,所述处理单元还用于:
    根据第一对应关系确定所述第一终端对所述第一数据的接收结果和所述第二终端对所述第一数据的接收结果的组合对应的索引;所述第一对应关系包括所述第一终端的可能的接收结果以及所述第二终端的可能的接收结果的各种组合与各个索引的对应关系。
  23. 如权利要求19-22任一项所述的装置,其特征在于,所述收发单元,具体用于:
    接收来自所述网络设备的SL资源配置信息;
    所述处理单元具体用于:根据所述SL资源配置信息确定SL资源;
    所述收发单元,还用于:通过所述SL资源接收来自所述第二终端的所述第一反馈信息。
  24. 如权利要求23所述的装置,其特征在于,所述SL资源配置信息用于指示所述SL资源的第一时间间隔;
    其中,所述第一时间间隔为所述第一数据的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述SL资源配置信息的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述第一数据的调度信息的时域位置与所述SL资源的时域位置之间的间隔。
  25. 如权利要求19-23任一所述的装置,其特征在于,所述收发单元具体用于:
    接收来自所述网络设备的所述上行时频资配置信息;
    所述处理单元,具体用于:根据所述上行时频资源配置信息确定上行时频资源;
    所述收发单元,还用于控制所述收发单元通过所述上行时频资源向所述网络设备发送所述第二反馈信息。
  26. 如权利要求25所述的装置,其特征在于,所述上行时频资源配置信息用于指示所述上行时频资源的第二时间间隔;其中,所述第二时间间隔为所述第一数据的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述上行时频资源配置信息的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述第一数据的调度信息的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述第一反馈信息的时域位置与所述上行时频资源的时域位置之间的间隔。
  27. 一种通信装置,其特征在于,所述装置包括收发单元;
    收发单元,用于接收来自网络设备的第一数据;
    所述收发单元,还用于控制所述收发单元向第一终端发送第一反馈信息,所述第一反馈信息用于指示所述第二终端对所述第一数据的接收结果;所述第一终端为所述第二终端的协作终端,用于通过所述收发单元接收来自所述网络设备的第一数据,所述第一数据目的端为所述第二终端。
  28. 如权利要求27所述的装置,其特征在于,所述接收结果包含下列中的至少一项:
    成功接收或未成功接收。
  29. 如权利要求27或28所述的装置,其特征在于,所述在向第一终端发送第一反馈信息之前,所述收发单元还用于:
    接收来自所述网络设备的SL资源配置信息;
    所述装置还包括处理单元,所述处理单元具体用于:根据所述SL资源配置信息确定SL资源;
    所述收发单元具体用于:通过所述SL资源向所述第一终端发送所述第一反馈信息。
  30. 如权利要求29所述的装置,其特征在于,所述SL资源配置信息用于指示所述SL资源的第一时间间隔;
    其中,所述第一时间间隔为所述第一数据的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述SL资源配置信息的时域位置与所述SL资源的时域位 置之间的间隔,或所述第一时间间隔为所述第一数据的调度信息的时域位置与所述SL资源的时域位置之间的间隔。
  31. 一种通信装置,其特征在于,所述装置包括收发单元:
    所述收发单元,用于发送第一数据,所述第一数据的目的端为第二终端;
    所述收发单元,还用于接收第一终端的第二反馈信息;所述第二反馈信息为所述第一终端根据所述第二终端向所述第一终端发送的第一反馈信息和所述第一终端对所述第一数据的接收结果确定的,所述第一反馈信息用于指示所述第二终端对所述第一数据的接收结果。
  32. 如权利要求31所述的装置,其特征在于,所述接收结果包含下列中的至少一项:
    成功接收或未成功接收。
  33. 如权利要求31或32所述的装置,其特征在于,所述收发单元还用于:
    向所述第一终端和所述第二终端发送SL资源配置信息;所述SL资源配置信息用于指示SL资源的第一时间间隔,所述SL资源用于承载所述第一反馈信息;其中,所述第一时间间隔为所述第一数据的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述SL资源配置信息的时域位置与所述SL资源的时域位置之间的间隔,或所述第一时间间隔为所述第一数据的调度信息的时域位置与所述SL资源的时域位置之间的间隔。
  34. 如权利要求31或32所述的装置,其特征在于,所述收发单元还用于:
    向所述第二终端发送上行时频资源配置信息;所述上行时频资源配置信息用于指示所述上行时频资源的第二时间间隔;所述上行时频资源用于承载所述第二反馈信息;其中,所述第二时间间隔为所述第一数据的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述上行时频资源配置信息的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述第一数据的调度信息的时域位置与所述上行时频资源的时域位置之间的间隔,或所述第二时间间隔为所述第一反馈信息的时域位置与所述上行时频资源的时域位置之间的间隔。
  35. 如权利要求32-34任一项所述的装置,其特征在于,所述装置还包括处理单元;
    所述处理单元具体用于:
    根据所述第二反馈信息判断所述第二终端是否需要重新接收所述第一数据。
  36. 如权利要求35所述的装置,其特征在于,所述处理单元具体用于:
    若所述第二反馈信息指示所述第二终端成功接收,则所述网络设备确定所述第二终端不需要重新接收所述第一数据;若所述第二反馈信息指示所述第二终端未成功接收,且所述第一终端成功接收,则所述网络设备确定所述第二终端需要重新接收所述第一数据,所述处理单元还用于:向所述第一终端发送第一指示信息,所述第一指示信息用于指示所述第一终端向所述第二终端发送所述第一数据;若所述第二反馈信息指示所述第二终端未成功接收,且所述第一终端未成功接收,则所述网络设备确定所述第二终端需要重新接收所述第一数据,所述处理单元还用于:向所述第一终端发送所述第一数据。
  37. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1-8中任一项所述的方法、或执行如权利要求9-12中任一项 所述的方法、或执行如权利要求13-18中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行如权利要求1-8中任一项所述的方法、或执行如权利要求9-12中任一项所述的方法、或执行如权利要求13-18中任一项所述的方法。
PCT/CN2019/130855 2019-12-31 2019-12-31 一种数据的反馈方法及装置 WO2021134639A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19958103.4A EP4075695A4 (en) 2019-12-31 2019-12-31 DATA FEEDBACK METHOD AND APPARATUS
CN201980103238.8A CN114846755A (zh) 2019-12-31 2019-12-31 一种数据的反馈方法及装置
PCT/CN2019/130855 WO2021134639A1 (zh) 2019-12-31 2019-12-31 一种数据的反馈方法及装置
US17/855,205 US20220368505A1 (en) 2019-12-31 2022-06-30 Data feedback method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130855 WO2021134639A1 (zh) 2019-12-31 2019-12-31 一种数据的反馈方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/855,205 Continuation US20220368505A1 (en) 2019-12-31 2022-06-30 Data feedback method and apparatus

Publications (1)

Publication Number Publication Date
WO2021134639A1 true WO2021134639A1 (zh) 2021-07-08

Family

ID=76686149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130855 WO2021134639A1 (zh) 2019-12-31 2019-12-31 一种数据的反馈方法及装置

Country Status (4)

Country Link
US (1) US20220368505A1 (zh)
EP (1) EP4075695A4 (zh)
CN (1) CN114846755A (zh)
WO (1) WO2021134639A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115987589B (zh) * 2022-12-14 2023-08-29 深圳市富临通实业股份有限公司 一种防止mcu内部程序被复制的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924609A (zh) * 2009-06-12 2010-12-22 中国移动通信集团公司 协作多点传输中上行数据的处理方法及相关装置
CN103826222A (zh) * 2012-11-16 2014-05-28 中国电信股份有限公司 协同执行任务的方法、系统与用户设备
US20160036565A1 (en) * 2012-12-18 2016-02-04 Futurewei Technologies, Inc. System and Method for Terminal-Group Based HARQ for Cellular Integrated D2D Communications
CN105874794A (zh) * 2014-01-28 2016-08-17 华为技术有限公司 用于视频组播的系统和方法
US20190082428A1 (en) * 2012-10-05 2019-03-14 Huawei Technologies Co., Ltd. Terminal Based Grouping Virtual Transmission and Reception in Wireless Networks
CN110100462A (zh) * 2016-12-21 2019-08-06 华为技术有限公司 未授权频谱中网络辅助分布式用户设备协作的系统和方法
CN110519022A (zh) * 2019-08-30 2019-11-29 北京展讯高科通信技术有限公司 数据传输方法、用户终端及计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8842611B2 (en) * 2010-03-03 2014-09-23 Nokia Corporation Compressed hybrid automatic repeat request feedback for device to device cluster communications
WO2012052911A1 (en) * 2010-10-22 2012-04-26 Nokia Corporation Method and apparatus for co-operative reception for network controlled device to device
CN109155921B (zh) * 2016-05-25 2022-05-31 诺基亚技术有限公司 用于设备到设备通信的方法和装置
CN109120314B (zh) * 2017-06-23 2021-09-21 华为技术有限公司 一种数据传输方法、通信设备和数据传输系统
CN109217988B (zh) * 2017-06-29 2021-07-09 华为技术有限公司 数据传输方法、用户设备和网络设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924609A (zh) * 2009-06-12 2010-12-22 中国移动通信集团公司 协作多点传输中上行数据的处理方法及相关装置
US20190082428A1 (en) * 2012-10-05 2019-03-14 Huawei Technologies Co., Ltd. Terminal Based Grouping Virtual Transmission and Reception in Wireless Networks
CN103826222A (zh) * 2012-11-16 2014-05-28 中国电信股份有限公司 协同执行任务的方法、系统与用户设备
US20160036565A1 (en) * 2012-12-18 2016-02-04 Futurewei Technologies, Inc. System and Method for Terminal-Group Based HARQ for Cellular Integrated D2D Communications
CN105874794A (zh) * 2014-01-28 2016-08-17 华为技术有限公司 用于视频组播的系统和方法
CN110100462A (zh) * 2016-12-21 2019-08-06 华为技术有限公司 未授权频谱中网络辅助分布式用户设备协作的系统和方法
CN110519022A (zh) * 2019-08-30 2019-11-29 北京展讯高科通信技术有限公司 数据传输方法、用户终端及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075695A4 *

Also Published As

Publication number Publication date
EP4075695A1 (en) 2022-10-19
US20220368505A1 (en) 2022-11-17
CN114846755A (zh) 2022-08-02
EP4075695A4 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
WO2019192596A1 (zh) 传输数据的方法及其装置和系统
US9083522B2 (en) Providing acknowledgement information by a wireless device
WO2017166141A1 (zh) 数据传输的方法、终端及基站
TWI566628B (zh) 處理傳輸區塊的軟緩衝器尺寸的方法及其通訊裝置
US11902943B2 (en) Communication method and communications apparatus
WO2021043174A1 (zh) 一种通信方法及装置
WO2017024569A1 (zh) 一种数据传输方法、用户设备和基站
WO2019028916A1 (zh) 数据传输方法和装置
JP2023519460A (ja) 情報受信方法、送信方法、装置及び設備
WO2021072689A1 (zh) 一种信息处理方法和终端设备以及网络设备
WO2020220342A1 (zh) 参考信号的发送方法、装置和通信系统
WO2018058561A1 (zh) 指示harq进程号的方法、网络设备和用户设备
CN111277371B (zh) 数据传输方法及设备
US20220368505A1 (en) Data feedback method and apparatus
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
WO2020199032A1 (zh) 一种通信方法及设备
US20220150001A1 (en) Method for transmitting feedback information, and terminal device
WO2018228553A1 (zh) 数据传输的方法、网络设备和终端设备
WO2020156394A1 (zh) 一种反馈方法及装置
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2021000954A1 (zh) 一种数据传输方法及通信装置
WO2021056562A1 (zh) 无线通信方法、装置和系统
WO2021056557A1 (zh) Harq反馈的方法和终端设备
WO2020029558A1 (zh) 反馈信息的方法、终端、芯片和存储介质
WO2018076350A1 (zh) 确定接收状态的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019958103

Country of ref document: EP

Effective date: 20220711

NENP Non-entry into the national phase

Ref country code: DE