WO2018228553A1 - 数据传输的方法、网络设备和终端设备 - Google Patents

数据传输的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2018228553A1
WO2018228553A1 PCT/CN2018/091595 CN2018091595W WO2018228553A1 WO 2018228553 A1 WO2018228553 A1 WO 2018228553A1 CN 2018091595 W CN2018091595 W CN 2018091595W WO 2018228553 A1 WO2018228553 A1 WO 2018228553A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport block
block
coded block
value
data transmission
Prior art date
Application number
PCT/CN2018/091595
Other languages
English (en)
French (fr)
Inventor
曲秉玉
张瑞齐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18818768.6A priority Critical patent/EP3595210B1/en
Publication of WO2018228553A1 publication Critical patent/WO2018228553A1/zh
Priority to US16/716,409 priority patent/US10979171B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present application relates to the field of communications and, more particularly, to methods, network devices, and terminal devices for data transmission.
  • the data to be transmitted is packaged into a number of transport blocks (TBs), and each transport block can be divided into several coding blocks (CB), and more The Coding Block Group (CBG) composed of CBs performs information interaction.
  • the transmitting device can dynamically indicate to the receiving device the number of CBGs included in one transport block, and which CBGs in the TB are currently transmitted.
  • the transmitting end device indicates the number of the CBG and the index indication information of the CBG by using different information fields in the dynamic signaling, and the signaling resource overhead required by the solution is large.
  • the present application provides a data transmission method, a network device, and a terminal device, which can save signaling resource overhead.
  • a method for data transmission comprising: transmitting indication signaling, the indication signaling is used to indicate data transmission of a transport block, and the indication signaling carries a status value, and the status value is used for Indicates the number of coded block groups included in the transport block, the status value is further used to indicate at least one coded block group included in the data transmission, the state value is represented by at most K+1 bits, where K is the transport block can include A maximum value of the number of coded block groups; the at least one coded block group is transmitted.
  • the network device performs a joint indication by the status value, that is, the status value indicates the number of coding block groups included in the transport block, and is further used to indicate at least one coding block group included in the data transmission, and the status value is at most K+1 bits. It is indicated that K is the maximum value of the number of coded block groups that can be included in the transport block. Therefore, the embodiment of the present application reduces the number of bits used for indicating signaling, thereby reducing signaling overhead.
  • the status value is determined by the number of coded block groups included in the transport block and at least one coded block set included in the data transmission.
  • the network device may predefine the manner of determining the status value with the terminal device, so that the terminal device can determine, according to the status value, the number of coding block groups included in the transport block and at least one coding block group included in the data transmission, and does not need to be configured.
  • the dedicated resource indicates the correspondence between the three, thereby saving signaling overhead.
  • the method further includes: the network device may send semi-static signaling to the terminal device before transmitting the indication signaling, where the semi-static signaling is used to indicate that the transport block can include the number of coded block groups. Maximum value.
  • the network device informs in advance that the transport block can include a maximum value of the number of coded block groups, so that the terminal device can determine, according to the state value, the number of coded block groups included in the transport block and at least one coded block group included in the data transmission, thereby enabling the network device to Accurately decode data.
  • the network device may configure a function relationship between a decimal representation indicating a location index value of the coded block group in the transport block, a decimal representation of the state value, and a decimal representation of the coded block group included in the transport block, such that the terminal
  • the device is able to determine the other two parameters based on the state value so that the data can be decoded accurately.
  • the location of the at least one coded block group included in the transport block, and M represents the number of coded block groups included in the transport block.
  • the network device may configure another functional relationship between the decimal representation of the location index value indicating the coded block group in the transport block, the decimal representation of the state value, and the decimal representation of the coded block group included in the transport block, such that The terminal device can determine the other two parameters according to the state value, so that the data can be decoded accurately.
  • the method further includes: receiving, by the terminal device, feedback information, where the feedback information is used to indicate whether the terminal device correctly receives at least one coded block in the transport block, and the feedback information is The terminal device determines based on the status value.
  • the network device receives feedback information, where the feedback information may include at least one bit, each bit of the at least one bit is used to indicate whether each code block in the transport block is correctly received, thereby determining whether retransmission is needed. To ensure the quality of data transmission.
  • the feedback information includes 1 bit, where the 1 bit is used to indicate whether the terminal device correctly receives at least one coded block group in the transport block.
  • the network device can determine the reception status of at least one coding block in the transport block according to the value of the 1-bit, and improve resource utilization.
  • each of the at least one coding block group is a retransmitted coding block group.
  • the status value carried by the indication signaling sent by the network device before retransmitting the at least one coding block group may indicate the number of coding block groups included in the transmission block, so that the terminal device can understand at least the retransmission even when retransmitting
  • the position of a coding block group in the transport block enables the terminal device to accurately decode the at least one coded block group.
  • the at least one coding block group is all coded block groups included in the transport block.
  • the present application is also applicable to a scenario in which a coding block is initially transmitted, which improves application flexibility.
  • the indication signaling is physical layer signaling.
  • the indication signaling may be physical layer signaling, and the network device may carry the status value through physical layer signaling to save system power consumption.
  • a method for data transmission comprising: receiving indication signaling, the indication signaling is used to indicate data transmission of a transport block, and the indication signaling carries a status value, where the status value is used by And indicating the number of coded block groups included in the transport block, the status value is further used to indicate at least one coded block group included in the data transmission, the status value is represented by at most K+1 bits, where K is the indication signaling indication
  • the transport block can contain a maximum of the number of encoded block groups; the at least one encoded block set is received.
  • the terminal device receives the indication signaling, and the status value carried by the indication signaling can jointly indicate the number of coding block groups included in the transport block, and at least one coded block group included in the data transmission, and the status value is at most K+1
  • the bit indicates that K is the maximum number of times the transport block can contain the number of coded block groups, such that the number of bits occupied by the indication signaling is less, thereby reducing signaling overhead.
  • the method further includes determining, according to the state value, a number of coded block groups included in the transport block.
  • the network device may be associated with the terminal device to define a correspondence between the state value and the number of the coded block groups included in the transport block, so that the terminal device can determine the number of the coded block groups included in the transport block according to the state value, and does not need to configure the dedicated resource to The correspondence is indicated, thereby saving signaling overhead.
  • the terminal device can learn the functional relationship between the decimal representation of the indication state value of the network device configuration and the decimal representation of the coding block group included in the transport block, and can determine the number of coding block groups included in the transport block according to the state value, thereby enabling Accurately decode data.
  • determining, according to the state value, the at least one coded block group included in the transport block includes:
  • Y represents a decimal representation of the location index value
  • the location index value is used to indicate the location of the at least one coding block group included in the data transmission in the transport block
  • M represents the code included in the transport block. The number of block groups.
  • the terminal device can learn the functional relationship between the decimal representation of the indication state value of the network device configuration and the decimal representation of the coding block group included in the transport block, and can determine the number of coding block groups included in the transport block according to the state value, thereby enabling Accurately decode data.
  • the method further includes determining, according to the state value, at least one coded block group included in the transport block.
  • the network device may be configured with the terminal device to define a correspondence between the state value and the at least one coded block group included in the data transmission, so that the terminal device can determine at least one coded block group included in the data transmission according to the state value, and does not need to be configured.
  • the dedicated resource indicates the correspondence, thereby saving signaling overhead.
  • determining, according to the state value, the at least one coded block group included in the transport block includes:
  • the location index value is used to indicate the location of the at least one coded block group included in the data transmission in the transport block, and M represents the number of coded block groups included in the transport block.
  • the terminal device can learn that the network device can configure a decimal representation of the location index value indicating the coded block group in the transport block, a decimal representation of the state value, and a decimal representation of the number of coded block groups included in the transport block.
  • the relationship in turn, can determine the location index value based on the state value, thereby enabling accurate decoding of the data.
  • the method further includes: determining feedback information according to the state value; and transmitting the feedback information to the network device.
  • the terminal device may determine feedback information according to the state value, where the feedback information is used to indicate whether the terminal device correctly receives at least one coded block group in the transport block, and sends the feedback information to enable the network device to determine whether retransmission is needed, and the data is guaranteed. Transmission quality.
  • the feedback information includes 1 bit, where the 1 bit is used to indicate whether the terminal device correctly receives at least one coded block in the transport block.
  • the terminal device can fully utilize the invalid state value, and can improve resource utilization while reducing computational power consumption and saving time delay.
  • each of the at least one coding block group is a retransmitted coding block group.
  • the terminal device Before receiving the retransmission of the at least one coded block group, the terminal device may further receive the indication signaling sent by the network device, where the status value carried by the indication signaling may indicate the number of coded block groups included in the transport block, so that even The terminal device can also understand the position of the retransmitted at least one coding block group in the transport block at the time of retransmission, so that the at least one coded block group can be accurately decoded.
  • the at least one coding block group is all coded block groups included in the transport block.
  • the present application is also applicable to a scenario in which a coding block is initially transmitted, which improves application flexibility.
  • the indication signaling is physical layer signaling.
  • the indication signaling may be physical layer signaling, and the network device may carry the status value by using physical layer signaling to save system power consumption.
  • a network device comprising means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a terminal device comprising means for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • a system comprising:
  • the network device of the above third aspect and the terminal device of the above fourth aspect are identical to the network device of the above third aspect and the terminal device of the above fourth aspect.
  • a network device including a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a terminal device including: a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a computer storage medium storing program code for indicating an instruction to perform the method of the first aspect or any of the possible implementations of the first aspect .
  • a ninth aspect a computer storage medium storing program code for indicating an instruction to execute the method of any of the above-mentioned second aspect or any of the possible implementations of the second aspect is stored in the computer storage medium .
  • a system chip includes an input/output interface, at least one processor, at least one memory, and a bus, the at least one memory is configured to store an instruction, and the at least one processor is configured to invoke the at least one memory
  • the instructions are to perform the operations of the methods of the various aspects described above.
  • the network device indicates, by using the status value, the number of coding block groups included in the transport block, and is further used to indicate at least one coded block group included in the data transmission, that is, the network device performs joint indication by the status value.
  • the number of coded block groups, and the at least one coded block group included in the data transmission such that the number of bits used to indicate signaling is reduced, thereby reducing signaling overhead.
  • FIG. 1 is a schematic diagram of an application scenario of the present application
  • FIG. 3 is a schematic flowchart of data transmission in an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a system of an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal device in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with the terminal device, and the network device may be a Global System of Mobile communication (GSM) system or Code Division Multiple Access (CDMA).
  • Base Transceiver Station which may also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an evolved base station in an LTE system (Evolutional The NodeB, eNB or eNodeB) may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future.
  • the network device in the 5G network or the network device in the PLMN network in the future is not limited in this embodiment.
  • FIG. 1 is a schematic diagram of an application scenario of the present application.
  • the communication system of FIG. 1 may include a plurality of user devices 10 and network devices 20.
  • the network device 20 is configured to provide communication services for each user equipment 10 and access the core network.
  • Each user equipment 10 accesses the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 20, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between user equipment 10 and network device 20.
  • the Media Access Control (MAC) layer of the transmitting device packs the data to be transmitted into a plurality of transport blocks and then delivers the data to the physical layer of the transmitting device.
  • the number of transport blocks that can be processed by the physical layer of the transmitting device in a Transmission Time Interval (TTI) is related to the number of transport layers that the physical channel between the transmitting device and the receiving device can support. Specifically, when the number of transmission layers supported by the physical channel is less than or equal to 4, the physical layer can only process one transmission block in one TTI; when the number of transmission layers supported by the physical channel is greater than 4, physical The layer is capable of handling two transport blocks within one TTI.
  • the transmitting device can actually process one or two TBs for each receiving device.
  • FIG. 2 shows a flow chart of data processing.
  • the physical layer of the transmitting device receives one or two transport blocks sent by the MAC layer
  • a Cyclic Redundancy Check (CRC) is added to each transport block.
  • the parity bit is such that the receiving device can detect whether each transport block is correctly received by the CRC check bit.
  • the physical layer of the transmitting device performs code block partitioning on the data of each transport block, that is, each transport block that is packaged and sent by the MAC layer is divided into several coding blocks (CBs), and the formed coding block is formed.
  • CRC Cyclic Redundancy Check
  • the number of data bits and the number of data bits in each code block and other parameters are related, for example, the size of the transport block, the number of bits allowed by the code block, and the like.
  • the physical layer of the transmitting device adds an encoding level CRC check bit, channel coding, and rate matching to each coding block.
  • the data for each code block is then concatenated.
  • the physical layer of the transmitting device modulates each transport block after the block cascading through a series of operations such as modulation, layer mapping, precoding, resource mapping, and OFDM symbol generation to form a final transmit signal and send it to the receiving device.
  • each CB has a separate CRC, that is, the receiving device can accurately know which CB data is correctly received according to the CRC check.
  • the receiving end device can report the receiving status of each CB to the transmitting end device. For example, the transmitting end device sends N CBs to the receiving end device, and the receiving end device can report to the transmitting end device whether each CB is correct by N bits. Receive, if acknowledged correctly, acknowledge (acknowledgement, ACK), if not received correctly, report Negative Acknowledgement (NACK).
  • NACK Negative Acknowledgement
  • the transmitting device knows the receiving state of each CB, it can retransmit the CB that was not correctly received to the receiving device. This process can be called "CB-level Hybrid Automatic Repeat Request (HARQ)".
  • HARQ Hybrid Automatic Repeat Request
  • multiple CBs will be combined into one CBG, and information interaction will be performed in units of CBG.
  • the transmitting device can dynamically indicate to the receiving device, the number of Coding Block Groups (CBGs) included in a Transport Block (TB), and the current transmission (or retransmission). Which CBGs are in the TB. For example, if a TB can be divided into a maximum of K CBGs, the transmitting device needs to indicate the number of CBGs included in one TB by log 2 K bits. In addition, the transmitting device also needs K bits to indicate the location of the CBG transmitted or retransmitted at the current time in the associated TB. For example, each of the K bits corresponds to each CBG in the TB, and it is determined whether the corresponding CBG is transmitted according to the value of the bit. Specifically, if the bit value is 1, the CBG corresponding to the bit is transmitted; if the bit value is 0, the CBG corresponding to the bit is not transmitted.
  • CBGs Coding Block Groups
  • the transmitting end device indicates that the number of CBGs and the indexing information of the CBGs require a large signaling resource overhead through different information fields in the dynamic signaling.
  • FIG. 3 shows a schematic flow chart of data transmission in the embodiment of the present application.
  • the network device sends indication signaling, where the indication signaling is used to indicate data transmission of a transport block, and the indication signaling carries a status value, where the status value is used to indicate a number of coding block groups included in the transport block, where The status value is also used to indicate at least one coded block group included in the data transmission, the status value being represented by up to K+1 bits, where K is the maximum number of times the transport block can contain the number of coded block groups.
  • the terminal device receives the indication signaling.
  • K is the maximum value of the number of coded block groups that can be divided by the transport block, and K+1 bits can indicate 2 K+1 state values.
  • a status value may indicate the number of encoded block groups included in the transport block, and may also indicate at least one encoded block group included in the data transmission. That is to say, the network device performs a joint indication through the status value, thereby reducing the number of bits occupied by the indication signaling, thereby reducing signaling overhead.
  • the possible case of the currently transmitted CBG is one: If the number of CBGs is 2, the possible case where the number of currently transmitted CBGs is 2 is The possible case where the number of currently transmitted CBGs is one is That is, [1 0] and [0 1]; if the number of CBG is n, the current transmission of CBG may be If the maximum number of CBGs that can be included in a TB is K, the number of state values required is And the number of state values that K+1 bits can represent is 2 K+1 , so K+1 bits are enough to represent The status value is less than the log 2 K+K bits required for signaling in the conventional scheme, which saves signaling overhead.
  • the CBG position index value (Y) can be represented by a bitmap, and M CBGs are represented by M bits, each bit corresponding to one CBG, and when the bit value is 1, the corresponding CBG exists. Or, if the transmission is carried out, the bit value is 0, indicating that the corresponding CBG does not exist or is not transmitted.
  • the status value indicates the number of the coded block groups that the transport block contains, and the at least one coded block group that is included in the data transmission may also be indicated by other means, which is not limited in this application.
  • the method further includes: the network device may send semi-static signaling to the terminal device before sending the indication signaling, where the semi-static signaling is used to indicate that the transport block can include a maximum value of the number of coded block groups.
  • the semi-static signaling may be RRC signaling.
  • the status value may be mapped to the number of CBGs and the CBG location index value, and the location index value of the CBG is used to indicate the location of the CBG in the transport block. That is, the network device or the terminal device may pre-define the mapping relationship, such that the network device may cause the terminal device to determine the number of CBGs and the location of the CBGs in the transport block according to the state values by transmitting the status values to the terminal devices.
  • the network device is capable of knowing the number of coding block groups included in the transport block, and at least one coding block group to be transmitted, so that the network device can be included according to the number of coding block groups included in the transport block and the data transmission
  • At least one coded block group determines a status value. That is, there may be a function correspondence between the state value, the number of coded block groups included in the transport block, and at least one coded block group included in the data transmission.
  • the network device determines, according to the number of the coded block groups included in the transport block, and the at least one coded block group included in the data transmission, the state value, where the state value, the number of coded block groups included in the transport block, And the coding block group included in the data transmission satisfies the following relationship:
  • X Y+(2 M -(M+2)), where 1 ⁇ M ⁇ K, X represents the decimal representation of the state value, Y represents the decimal representation of the position index value, and the position index value is used to indicate the data transmission
  • M represents the number of coded block groups included in the transport block.
  • each state value is a valid value
  • the state value and the CBG location index value may be one-to-one correspondence
  • the plurality of state values may correspond to one CBG number.
  • some invalid values are inserted in Table 1.
  • Table 2 when the number of CBGs is 1, the possible case of the currently transmitted CBG is 1: In addition to an invalid state, the number of state values is 2 1 ; if the number of CBGs is 2, the possible case of the number of CBGs currently transmitted is 2.
  • the possible case where the number of currently transmitted CBGs is one is That is, [1 0] and [0 1], if an invalid state is added, the total number of states is 2 2 ; if the number of CBGs is n, the current transmission of CBG may be If you add an invalid state, the total number of states is 2 n .
  • the number of maximum CBGs is K
  • the total number of states required to notify the number of CBGs and the location information of the CBGs is This simplifies the formula, reduces computational power consumption, and saves latency.
  • the state value, the number of coded block groups included in the transport block, and the coded block group included in the data transmission satisfy the following relationship:
  • X Y+(2 M -2), where 1 ⁇ M ⁇ K, X represents the decimal representation of the state value, Y represents the decimal representation of the location index value, and the location index value is used to indicate the data transmission
  • M represents the number of coded block groups included in the transport block.
  • X takes 2
  • M takes 2
  • the position of the block group in the transport block, M represents the number of coded block groups included in the transport block. Among them, the value of a M depends on the size of M.
  • a M can also be a constant that does not depend on M, such as 0, 1, or 2.
  • state value, the number of coded block groups included in the transport block, and the coded block group included in the data transmission can also satisfy other relationships, which is not limited in this application.
  • the network device and the terminal device may pre-approve to assign other functions to the invalid state value, so that the network device can fully utilize the invalid state value, and can improve the computing power consumption and the delay. Resource utilization.
  • the location index of the CBG corresponding to the invalid state may be used to indicate the transmission type of the CBG. That is to say, if the location index value of the CBG corresponding to the state value is in an invalid state, the network device can set the invalidity state to be the same as the transmission type of the CBG corresponding to the other state values.
  • the network device can indicate that the CBG transmission type is transmitted by both CBGs when the status value is 2. Or any CBG is instructed to transmit, which is not limited in this application.
  • the terminal device may determine the feedback information according to the state value. Specifically, the terminal device determines, according to the state value, that the terminal device can receive the at least one coding block in the transport block, so that the feedback information needs to include at least one bit, the at least one Each bit in the bit is used to indicate whether each of the at least one coded block is correctly received.
  • the terminal device receives the indication signaling, and the status value carried by the indication signaling is 5, as shown in Table 2.
  • the PDSCH that the terminal device can receive includes two CBGs, and the terminal device detects and decodes the PDSCH, obtains information bits of two CBGs, determines whether the two CBGs are correctly received through verification, and feeds back two to the network device.
  • the manner of the HARQ ACK of the bit informs the network device to receive the result. For example, if the HARQ ACK fed back by the terminal device is [1 1], it means that both CBGs are correctly received.
  • the number of the at least one coding block in the transport block indicated by the feedback information may be all the coding blocks in the transport block, or may be a preset number of coding blocks, which is not limited in this application.
  • the feedback information may include only one bit.
  • the bundling mode may be used for feedback. That is, the feedback information occupies only one bit for indicating the reception result of the CBG.
  • the two HARQ ACKs are “multiplied”. If the HARQ ACK is [1 1], the result after bundling is 1; if the HARQ ACK is [0 1], [1 0], or [0 0], Then the result of bundling is 0.
  • the indication signaling may be physical layer signaling.
  • physical downlink control channel (PDCCH) signaling For example, physical downlink control channel (PDCCH) signaling.
  • PDCCH physical downlink control channel
  • the terminal device receives the indication signaling, and the number of the coded block groups included in the transport block may be determined according to the state value carried by the indication signaling.
  • the terminal device determines, according to the state value, the number of the coded block groups included in the transport block, including:
  • the location index value is used to indicate the location of the at least one coded block group included in the data transmission in the transport block, and M represents the number of coded block groups included in the transport block.
  • the terminal device may further determine, according to the state value, at least one coding block group included in the data transmission, that is, the terminal device may determine each coding block group in the at least one coding block group in the transport block. The location in the transport block.
  • determining, according to the state value, the at least one coded block group included in the data transmission includes:
  • the index value is used to indicate the location of the at least one coded block group included in the data transmission in the transport block, and M represents the number of coded block groups included in the transport block.
  • a M may be a value pre-agreed by the network device and the terminal device, or the network device indicates the value of a M by using other signaling or carrying other indication information, and the application does not perform this. limited.
  • the network device sends the at least one coding block group.
  • the terminal device receives the indication of a coded block group.
  • each coding block group in the at least one coding block group is a retransmitted coding block group, that is, after the network device transmits the transmission block for the first time, the terminal device does not correctly decode the at least one coding block group. Therefore, the network device retransmits the at least one coded block group.
  • the status value carried by the indication signaling sent by the network device before retransmitting the at least one coding block group may indicate the number of coding block groups included in the transport block, so that the terminal device can understand the weight even when retransmitting
  • the location of the transmitted at least one coded block group in the transport block enables the terminal device to accurately decode the at least one coded block group.
  • the at least one coding block group may be all coding block groups included in the transport block, that is, the network device transmits the transport block for the first time.
  • the network device indicates, by using the status value, the number of coding block groups included in the transport block, and is further used to indicate at least one coded block group included in the data transmission, that is, the network device passes
  • the status value is jointly indicated to indicate the number of coded block groups included in the transport block, and at least one coded block group included in the data transmission, such that the number of bits used to indicate signaling is reduced, thereby reducing signaling overhead.
  • FIG. 4 shows a schematic block diagram of a network device 400 in accordance with an embodiment of the present application.
  • the network device 400 includes:
  • the sending module 410 is configured to send indication signaling, where the indication signaling is used to indicate data transmission of a transport block, and the indication signaling carries a status value, where the status value is used to indicate the number of coding block groups included in the transport block.
  • the state value is further used to indicate at least one coded block group included in the data transmission, the state value being represented by at most K+1 bits, where K is a maximum value of the number of coded block groups that the transport block can include;
  • the sending module 410 is further configured to send the at least one coding block group.
  • the status value is determined by the number of coded block groups included in the transport block and at least one coded block group included in the data transmission.
  • the position of the block group in the transport block, M represents the number of coded block groups included in the transport block.
  • the network device 400 further includes:
  • the receiving module 420 is configured to receive feedback information sent by the terminal device, where the feedback information is used to indicate whether the terminal device correctly receives at least one coded block group in the transport block, and the feedback information is determined by the terminal device according to the state value. definite.
  • the feedback information includes 1 bit, where the 1 bit is used to indicate whether the terminal device correctly receives at least one coded block group in the transport block.
  • each of the at least one coding block group is a retransmitted coding block group.
  • the at least one coding block group is all coded block groups included in the transport block.
  • the indication signaling is physical layer signaling.
  • the network device in the embodiment of the present application performs a joint indication by using a status value, that is, the status value indicates the number of coding block groups included in the transport block, and is further used to indicate at least one coded block group included in the data transmission, and the status value is At most, it is represented by K+1 bits, and K is a maximum value of the number of coded block groups that can be included in the transport block.
  • the embodiment of the present application reduces the number of bits used for indicating signaling, thereby reducing signaling overhead.
  • the network device 400 may correspond to the network device in the method 300 of resource allocation in the embodiment of the present application, and the foregoing and other management operations and/or functions of the respective modules in the network device 400 are respectively The corresponding steps of the foregoing various methods are implemented, and are not described herein for brevity.
  • the transmitting module 410 and the receiving module 420 in the embodiment of the present application may be implemented by a transceiver.
  • network device 500 can include a transceiver 510, a processor 520, and a memory 530.
  • the memory 530 can be used to store indication information, and can also be used to store code, instructions, and the like executed by the processor 520.
  • FIG. 6 shows a schematic block diagram of a terminal device 600 according to an embodiment of the present application. As shown in FIG. 6, the terminal device 600 includes:
  • the receiving module 610 is configured to receive indication signaling, where the indication signaling is used to indicate data transmission of a transport block, and the indication signaling carries a status value, where the status value is used to indicate a number of coding block groups included in the transport block, The status value is further used to indicate at least one coded block group included in the data transmission, the status value being represented by at most K+1 bits, where K is the indication signaling indicating that the transport block can include the maximum number of coded block groups value;
  • the receiving module 610 is further configured to receive the at least one coding block group.
  • the terminal device 600 further includes:
  • the processing module 620 is configured to determine, according to the state value, a number of coded block groups included in the transport block.
  • processing module 620 is specifically configured to:
  • M max ⁇ n
  • the processing module 620 is further configured to determine, according to the state value, the at least one coded block group included in the transport block.
  • processing module 620 is specifically configured to:
  • Y represents a decimal representation of the location index value used to indicate the location of the at least one coded block group included in the data transmission in the transport block, and M represents the number of coded block groups included in the transport block.
  • processing module 620 is specifically configured to:
  • Y represents a decimal representation of the location index value
  • the location index value is used to indicate the location of the at least one coding block group included in the data transmission in the transport block
  • M represents the code included in the transport block. The number of block groups.
  • the processing module is further configured to: determine, according to the location index value and the state value, feedback information, where the feedback information is used to indicate whether the terminal device correctly receives at least one coding block group in the transport block. ;
  • the terminal device 600 further includes:
  • a sending module configured to send the feedback information to the network device.
  • the feedback information includes 1 bit, where the 1 bit is used to indicate whether the terminal device correctly receives at least one coded block group in the transport block.
  • each of the at least one coding block group is a retransmitted coding block group.
  • the at least one coding block group is all coded block groups included in the transport block.
  • the indication signaling is physical layer signaling.
  • the terminal device in the embodiment of the present application by receiving the indication signaling, the state value carried by the indication signaling can jointly indicate the number of the coded block group included in the transport block, and the at least one coded block group included in the data transmission, and
  • the state value is represented by at most K+1 bits, and K is a maximum value of the number of coded block groups that the transport block can include, so that the number of bits occupied by the indication signaling is less, thereby reducing signaling overhead.
  • terminal device 600 may correspond to the terminal device in the method 300 of resource allocation in the embodiment of the present application, and the foregoing and other management operations and/or functions of the respective modules in the terminal device 600 respectively In order to achieve the corresponding steps of the foregoing various methods, for brevity, no further details are provided herein.
  • the receiving module 610 in the embodiment of the present application may be implemented by a transceiver, and the processing module 620 may be implemented by a processor.
  • the terminal device 700 may include a transceiver 710, a processor 720, and a memory 730.
  • the memory 730 can be used to store indication information, and can also be used to store code, instructions, and the like executed by the processor 720.
  • processor 520 or processor 720 can be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory 530 or the memory 730 in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Link DRAM
  • DR RAM Direct Memory Bus Random Access Memory
  • the system 800 includes:
  • the network device 400 of the foregoing embodiment of the present application and the terminal device 600 of the embodiment of the present application are identical to the network device 400 of the foregoing embodiment of the present application and the terminal device 600 of the embodiment of the present application.
  • the embodiment of the present application further provides a computer storage medium, which can store program instructions for indicating any of the above methods.
  • the storage medium may be specifically a memory 530 or 730.
  • the embodiment of the present application further provides a chip system, where the chip system includes a processor for supporting a distributed unit, a centralized unit, and a terminal device to implement functions involved in the foregoing embodiments, for example, generating or processing the foregoing. Data and/or information involved in the method.
  • the chip system further comprises a memory for storing the distributed program, the centralized unit and the necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices. It should be understood that the data and/or information processed by the chip may be received from a base station and the processed data and/or information may also be transmitted to the base station.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本申请提供了一种数据传输的方法,网络设备和终端设备,该方法包括:发送指示信令,该指示信令用于指示一个传输块的数据传输,且该指示信令携带状态值,该状态值用于指示该传输块包含的编码块组的数目,该状态值还用于指示该数据传输包含的至少一个编码块组,该状态值由至多K+1个比特表示,其中K为该传输块能够包含编码块组的数目的最大值。本申请实施例网络设备通过状态值进行联合指示传输块包含的编码块组的数目以及该数据传输包含的至少一个编码块组,从而减少指示信令占用的比特位数,减少信令开销。

Description

数据传输的方法、网络设备和终端设备
本申请要求于2017年6月16日提交中国专利局、申请号为201710459786.7、申请名称为“数据传输的方法、网络设备和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及数据传输的方法、网络设备和终端设备。
背景技术
在新无线(New Radio,NR)系统中,待传输的数据打包成若干个传输块(Transport Block,TB),每个传输块可以分为若干个编码块(Coding Block,CB),并以多个CB组成的编码块组(Coding Block Group,CBG)为单位进行信息交互。发射端设备可以动态的向接收端设备指示一个传输块中所包含的CBG的个数,以及当前传输的是该TB中的哪些CBG。
具体地,发射端设备通过动态信令中的不同信息域分别指示CBG的个数和CBG的索引指示信息,该方案需要的信令资源开销较大。
发明内容
本申请提供一种数据传输的方法、网络设备和终端设备,能够节省信令资源开销。
第一方面,提供了一种数据传输的方法,该方法包括:发送指示信令,该指示信令用于指示一个传输块的数据传输,且该指示信令携带状态值,该状态值用于指示该传输块包含的编码块组的数目,该状态值还用于指示该数据传输包含的至少一个编码块组,该状态值由至多K+1个比特表示,其中K为该传输块能够包含编码块组的数目的最大值;发送该至少一个编码块组。
网络设备通过状态值进行联合指示,即状态值指示传输块包含的编码块组的数目,还用于指示该数据传输包含的至少一个编码块组,且该状态值至多由K+1个比特位表示,K为该传输块能够包含编码块组的数目的最大值,因此,本申请实施例减少了指示信令占用的比特位数,从而减少信令开销。
在一些可能的实现方式中,该状态值由该传输块包含的编码块组的数目和该数据传输中包含的至少一个编码块组确定。
网络设备可以与终端设备预定义该确定状态值的方式,这样终端设备能够根据该状态值确定出传输块包含的编码块组的数目和该数据传输中包含的至少一个编码块组,不需要配置专用资源指示三者之间的对应关系,从而节省了信令开销。
在一些可能的实现方式中,该方法还包括:网络设备可以在发送指示信令之前向终端设备发送半静态信令,该半静态信令用于指示该传输块能够包含编码块组的数目的最大 值。
网络设备提前告知传输块能够包含编码块组的数目的最大值,使得终端设备能够根据状态值确定出传输块包含的编码块组的数目和该数据传输中包含的至少一个编码块组,从而能够准确的解码数据。
在一些可能的实现方式中,该状态值、该传输块包括的编码块组的数目以及数据传输中包含的编码块组满足以下关系式:X=Y+(2 M-a M),其中,0≤a M≤2+M,1≤M≤K,a M为整数,X表示该状态值的十进制表示,Y表示位置索引值的十进制表示,该位置索引值用于指示该数据传输所包含的该至少一个编码块组在该传输块中的位置,M表示该传输块包括的编码块组的数目。
网络设备可以配置指示编码块组在传输块中的位置索引值的十进制表示,状态值的十进制表示,以及传输块包括的编码块组的十进制表示这三者之间的一种函数关系,使得终端设备能够根据状态值确定出另外两个参数,从而能够准确的解码数据。
在一些可能的实现方式中,所述传输块包括的编码块组的数目以及数据传输中包含的编码块块组满足以下关系式:X=Y+(2 M-a M),其中,0≤a M≤2+M,且a M为常数,1≤M≤K,X表示所述状态值的十进制表示,Y表示位置索引值的十进制表示,所述位置索引值用于指示所述数据传输所包含的所述至少一个编码块组在所述传输块中的位置,M表示所述传输块包括的编码块组的数目。
网络设备可以配置指示编码块组在传输块中的位置索引值的十进制表示,状态值的十进制表示,以及传输块包括的编码块组的十进制表示这三者之间的另一种函数关系,使得终端设备能够根据状态值确定出另外两个参数,从而能够准确的解码数据。
在一些可能的实现方式中,该方法还包括;接收终端设备发送的反馈信息,该反馈信息用于指示该终端设备是否正确接收该传输块中的至少一个编码块,且该反馈信息是由该终端设备根据该状态值确定的。
网络设备接收反馈信息,该反馈信息中可以包括至少一个比特位,该至少一个比特位中的每个比特位用于指示该传输块中的每个编码块是否正确接收,进而确定是否需要重传,保证了数据的传输质量。
在一些可能的实现方式中,该反馈信息包括1个比特位,该1个比特位用于指示该终端设备是否正确接收该传输块中的至少一个编码块组。
网络设备可以根据1比特位的取值确定该传输块中至少一个编码块的接收情况,提高了资源利用率。
在一些可能的实现方式中,该至少一个编码块组中的每个编码块组为重传的编码块组。
网络设备在重传该至少一个编码块组之前发送的指示信令携带的状态值可以指示该传输块包含的编码块组的数目,这样即使在重传的时候终端设备也能理解重传的至少一个编码块组在传输块中的位置,使得终端设备能够准确的解码该至少一个编码块组。
在一些可能的实现方式中,该至少一个编码块组为该传输块包括的所有的编码块组。
本申请是也可以应用于初次传输编码块的场景中,提高了应用灵活性。
在一些可能的实现方式中,该指示信令为物理层信令。
该指示信令可以是物理层信令,网络设备可以通过物理层信令携带该状态值,节省系 统功耗。
第二方面,提供了一种数据传输的方法,该方法还包括:接收指示信令,该指示信令用于指示一个传输块的数据传输,且该指示信令携带状态值,该状态值用于指示传输块包含的编码块组的数目,该状态值还用于指示该数据传输包含的至少一个编码块组,该状态值由至多K+1个比特表示,其中K为该指示信令指示该传输块能够包含编码块组的数目的最大值;接收该至少一个编码块组。
终端设备接收指示信令,该指示信令携带的状态值能够联合指示传输块包含的编码块组的数目,和该数据传输包含的至少一个编码块组,且该状态值至多由K+1个比特位表示,K为该传输块能够包含编码块组的数目的最大值,使得指示信令占用的比特位数较少,从而减少信令开销。
在一些可能的实现方式中,该方法还包括:根据该状态值,确定该传输块包括的编码块组的数目。
网络设备可以与终端设备预定义状态值与传输块包括的编码块组的数目的对应关系,这样终端设备能够根据该状态值确定出传输块包含的编码块组的数目,不需要配置专用资源至指示该对应关系,从而节省了信令开销。
在一些可能的实现方式中,该根据该状态值,确定该传输块包括的编码块组的数目包括:根据X,确定M=max{n|X≥2 n-a M},其中,1≤M≤K,a M为整数,X表示该状态值的十进制表示,M表示该传输块包括的编码块组的数目。
终端设备可以获知网络设备配置的指示状态值的十进制表示和传输块包括的编码块组的十进制表示之间的函数关系,并能够根据状态值确定出传输块包括的编码块组的数目,从而能够准确的解码数据。
在一些可能的实现方式中,所述根据所述状态值,确定所述传输块包含的至少一个编码块组包括:
根据所述X和M,确定Y=X-(2 M-a M),其中,0≤a M≤2+M,a M常数,且a M为整数,X表示所述状态值的十进制表示,Y表示位置索引值的十进制表示,所述位置索引值用于指示所述数据传输所包含的所述至少一个编码块组在所述传输块中的位置,M表示所述传输块包括的编码块组的数目。
终端设备可以获知网络设备配置的指示状态值的十进制表示和传输块包括的编码块组的十进制表示之间的函数关系,并能够根据状态值确定出传输块包括的编码块组的数目,从而能够准确的解码数据。
在一些可能的实现方式中,该方法还包括:根据该状态值,确定该传输块包含的至少一个编码块组。
网络设备可以与终端设备预定义状态值与数据传输中包括的至少一个编码块组的对应关系,这样终端设备能够根据该状态值确定出该数据传输中包含的至少一个编码块组,不需要配置专用资源指示该对应关系,从而节省了信令开销。
在一些可能的实现方式中,该根据该状态值,确定该传输块包含的至少一个编码块组包括:
根据该X和M,确定Y=X-(2 M-a M),其中,0≤a M≤2+M,a M为整数,X表示该状态值的十进制表示,Y表示位置索引值的十进制表示,该位置索引值用于指示该数据传 输所包含的该至少一个编码块组在该传输块中的位置,M表示该传输块包括的编码块组的数目。
终端设备可以获知网络设备可以配置指示编码块组在传输块中的位置索引值的十进制表示,状态值的十进制表示,以及传输块包括的编码块组的数目的十进制表示这三者之间的函数关系,进而能够根据状态值确定出位置索引值,从而能够准确的解码数据。
在一些可能的实现方式中,该方法还包括:根据该状态值,确定反馈信息;向网络设备发送该反馈信息。
终端设备可以根据该状态值,确定反馈信息,该反馈信息用于指示终端设备是否正确接收该传输块中的至少一个编码块组,发送该反馈信息使得网络设备确定是否需要重传,保证了数据的传输质量。
在一些可能的实现方式中,该反馈信息包括1个比特位,该1个比特位用于指示该终端设备是否正确接收该传输块中的至少一个编码块。
终端设备可以充分利用该无效状态值,在减少了计算功耗,以及节省时延的前提下,还能够提高资源利用率。
在一些可能的实现方式中,该至少一个编码块组中的每个编码块组为重传的编码块组。
终端设备在接收到重传该至少一个编码块组之前,还可以接收到网络设备发送的指示信令,该指示信令携带的状态值可以指示该传输块包含的编码块组的数目,这样即使在重传的时候终端设备也能理解重传的至少一个编码块组在传输块中的位置,从而能够准确的解码该至少一个编码块组。
在一些可能的实现方式中,该至少一个编码块组为该传输块包括的所有的编码块组。
本申请是也可以应用于初次传输编码块的场景中,提高了应用灵活性。
在一些可能的实现方式中,该指示信令为物理层信令。
该指示信令可以是物理层信令,网络设备可以通过物理层信令携带该状态值,节省系统功耗。
第三方面,提供了一种网络设备,该网络设备包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的模块。
第四方面,提供了一种终端设备,该终端设备包括执行第二方面或第二方面的任意可能的实现方式中的方法的模块。
第五方面,提供了一种系统,该系统包括:
上述第三方面的网络设备和上述第四方面的终端设备。
第六方面,提供了一种网络设备,包括处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第七方面,提供了一种终端设备,包括:处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第八方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面或第一方面的任一种可能的实现方式中的方法的指令。
第九方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面或第二方面的任一种可能的实现方式中的方法的指令。
第十方面,提供了一种系统芯片,该系统芯片包括输入输出接口、至少一个处理器、至少一个存储器和总线,该至少一个存储器用于存储指令,该至少一个处理器用于调用该至少一个存储器的指令,以进行上述各个方面的方法的操作。
基于上述方案,网络设备通过状态值指示传输块包含的编码块组的数目,还用于指示该数据传输包含的至少一个编码块组,也就是说,网络设备通过状态值进行联合指示传输块包含的编码块组的数目,和该数据传输包含的至少一个编码块组,这样减少指示信令占用的比特位数,从而减少信令开销。
附图说明
图1是本申请一个应用场景的示意图;
图2是数据处理的流程示意图;
图3是本申请实施例的数据传输的示意性流程图;
图4是本申请实施例的网络设备的示意性框图;
图5是本申请实施例的网络设备的示意性结构图;
图6是本申请实施例的终端设备的示意性框图;
图7是本申请实施例的终端设备的示意性结构图;
图8是本申请实施例的系统的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施 例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是本申请一个应用场景的示意图。图1中的通信系统可以包括多个用户设备10和网络设备20。网络设备20用于为每个用户设备10提供通信服务并接入核心网,每个用户设备10通过搜索网络设备20发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过用户设备10与网络设备20之间的蜂窝链路进行的上/下行传输。
在NR系统中,发射端设备的媒体访问控制(Media Access Control,MAC)层通过将待传输的数据打包成若干个传输块,然后下发给发射端设备的物理层。发射端设备的物理层在一个传输时间间隔(Transmission Time Interval,TTI)内所能处理的传输块的个数与发射端设备和接收端设备之间的物理信道所能支持的传输层数相关。具体地,发射端设备在物理信道所能支持的传输层数小于或者等于4时,物理层在一个TTI内只能处理一个传输块;在物理信道所能支持的传输层数大于4时,物理层在一个TTI内能够处理两个传输块。
应理解,若一个小区里有很多个接收端设备,则发射设备其实可以为每个接收端设备都处理一个或者两个TB。
图2示出了数据处理的流程示意图。如图2所示,在发射端设备的物理层接收到MAC层下发的一个或者两个传输块时,首先对每个传输块添加传输块级别的循环冗余校验(Cyclic Redundancy Check,CRC)校验比特,以使接收端设备可以通过CRC校验比特来检测每个传输块是否正确接收。然后,发射端设备的物理层对每个传输块的数据进行码块分割,即将MAC层打包下发的每个传输块分为若干个编码块(Coding Block,CB),其中所形成的编码块的个数以及每个编码块内的数据比特个数以及其他参数相关,例如,传输块的大小、编码块所允许的比特个数等。之后,发射端设备的物理层对每个编码块添加编码级别的CRC校验比特、信道编码以及速率匹配。然后级联每个编码块的数据。最后,发射端设备的物理层将码块级联之后的每个传输块经过调制、层映射、预编码、资源映射以及OFDM符号生成等一系列操作形成最终的发射信号并发送给接收端设备。
如图2所示,每个CB具有单独的CRC,也就是说,接收端设备可以根据CRC的校验准确的获知哪个CB中的数据被正确的接收。接收端设备可以向发射端设备汇报每个CB的接收状态,例如,发射端设备向接收端设备发送了N个CB,接收端设备可以通过N个比特向发射端设备汇报每个CB是否正确的接收,若正确接收则汇报确认(acknowledgement,ACK),若没有正确接收则汇报否定应答(Negative Acknowledgement,NACK)。此外,发射端设备在获知每个CB的接收状态之后,可以向接收端设备重传没 有正确接收的CB。可以将该过程称为“CB级的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)”
由于NR系统可以支持的速率大大提升,从而导致每个TB可以分割成较大数目的CB。因此CB级别HARQ会导致较大的信息交互开销,比如当N=100的时候,接收端需要100个比特向发射装置汇报每个CB的接收状态。
因此,NR中将采用将多个CB组成一个CBG,以CBG为单位进行信息的交互。
具体地,发射端设备可以动态的向接收端设备指示一个传输块(Transport Block,TB)中所包含的编码块组(Coding Block Group,CBG)的个数,以及当前传输(或重传)的是该TB中的哪些CBG。例如,若一个TB最多可以分成K个CBG,则发射端设备需要通过log 2K个比特指示一个TB包含的CBG的个数。此外,发射端设备还需要K个比特来指示当前时刻所传输或者重传的CBG在所属TB中的位置。例如,K个比特中的每个比特与TB中的每个CBG对应,并根据比特的取值确定对应的CBG是否被传输。具体地,若比特值为1,则该比特对应的CBG被传输;若比特值为0,则该比特对应的CBG不被传输。
传统方案中,发射端设备通过动态信令中的不同信息域分别指示CBG的个数和CBG的索引指示信息需要的信令资源开销较大。
图3示出了本申请实施例的数据传输的示意性流程图。
301,网络设备发送指示信令,该指示信令用于指示一个传输块的数据传输,且该指示信令携带状态值,该状态值用于指示该传输块包含的编码块组的数目,该状态值还用于指示该数据传输包含的至少一个编码块组,该状态值由至多K+1个比特表示,其中K为该传输块能够包含编码块组的数目的最大值。相应地,终端设备接收该指示信令。
具体地,该数据传输包含的至少一个编码块组中的每个编码块组在传输块中的位置是确定的。K为该传输块可以划分编码块组的数目的最大值,K+1个比特位可以指示2 K+1个状态值。
一个状态值可以指示传输块包含的编码块组的数目,还可以指示数据传输包含的至少一个编码块组。也就是说,网络设备通过状态值进行联合指示,这样减少指示信令占用的比特位数,从而减少信令开销。
例如,如表1所示,若CBG的个数为1,则当前传输的CBG的可能情况为1种:
Figure PCTCN2018091595-appb-000001
若CBG的个数为2,则当前传输的CBG的个数为2的可能情况为
Figure PCTCN2018091595-appb-000002
当前传输的CBG的个数为1的可能情况为
Figure PCTCN2018091595-appb-000003
即[1 0]和[0 1];若CBG的数为n的时候,当前传输的CBG可能的情况为
Figure PCTCN2018091595-appb-000004
若一个TB中能够包括的CBG的个数最大值为K时,则需要的状态值的个数为
Figure PCTCN2018091595-appb-000005
而K+1个比特能够表示的状态值的个数为2 K+1,因此,K+1个比特足够表示
Figure PCTCN2018091595-appb-000006
个状态值,相比传统方案中指示信令需要占用log 2K+K个比特,节省了信令开销。
表1
Figure PCTCN2018091595-appb-000007
CBG位置索引值(Y)可以通过位图(bitmap)的方式进行表示,M个CBG通过M个比特位进行表示,每个比特位对应一个CBG,比特位值为1时,表示对应的CBG存在,或者进行了传输,比特位值为0时,表示对应的CBG不存在,或者没有进行传输。
应理解,状态值指示传输块包含的编码块组的数目,以及指示数据传输包含的至少一个编码块组还可以通过其他方式指示,本申请对此不进行限定。
可选地,该方法还包括:网络设备可以在发送指示信令之前向终端设备发送半静态信令,该半静态信令用于指示该传输块能够包含编码块组的数目的最大值。
应理解,该半静态信令可以为RRC信令。
可选地,状态值可以与CBG的数目和CBG位置索引值存在映射关系,CBG的位置索引值用于指示CBG在传输块中的位置。也就是说,网络设备或终端设备可以预定义该映射关系,这样网络设备通过向终端设备发送状态值可以使得终端设备根据该状态值确定CBG的数目和CBG在传输块中的位置。
可选地,网络设备能够获知该传输块包含的编码块组的数目,以及即将传输的至少一个编码块组,这样网络设备可以根据该传输块包含的编码块组的数目和该数据传输中包含的至少一个编码块组确定状态值。也就是说,状态值、该传输块包含的编码块组的数目和该数据传输中包含的至少一个编码块组三者之间可以存在函数对应关系。
可选地,网络设备根据该传输块包含的编码块组的数目和该数据传输中包含的至少一个编码块组确定状态值,具体可以是该状态值、该传输块包括的编码块组的数目以及数据传输中包含的编码块组满足以下关系式:
X=Y+(2 M-(M+2)),其中,1≤M≤K,X表示该状态值的十进制表示,Y表示位置索引值的十进制表示,该位置索引值用于指示该数据传输所包含的该至少一个编码块组在该传输块中的位置,M表示该传输块包括的编码块组的数目。
需要说明的是,该实施例中,每个状态值都为有效值,状态值和CBG位置索引值可 以是一一对应,而多个状态值可以对应一个CBG个数。
例如,如表1所示,X取1,M取2,Y取[0 1]=1,即1=1+(2 2-(2+2))。
可选地,本申请实施例中在表1中插入些无效值,例如,如表2,CBG个数为1时,当前传输的CBG的可能情况为1:
Figure PCTCN2018091595-appb-000008
再加上一个无效状态,那么状态值的个数为2 1;若CBG的个数为2的时候,当前传输的CBG的个数为2的可能情况为
Figure PCTCN2018091595-appb-000009
当前传输的CBG的个数为1的可能情况为
Figure PCTCN2018091595-appb-000010
即[1 0]和[0 1],如果再加上一个无效状态,那么总的状态个数为2 2;若CBG的个数为n的时候,当前传输的CBG可能的情况为
Figure PCTCN2018091595-appb-000011
如果再加上一个无效状态,那么总的状态个数为2 n。这样当最大CBG的数为K的时候,通知CBG个数以及CBG的位置信息所需的总的状态个数为
Figure PCTCN2018091595-appb-000012
从而简化了公式,减少了计算功耗,以及节省时延。
表2
Figure PCTCN2018091595-appb-000013
可选地,由表2可知,该状态值、该传输块包括的编码块组的数目以及数据传输中包含的编码块组满足以下关系式:
X=Y+(2 M-2),其中,1≤M≤K,X表示该状态值的十进制表示,Y表示位置索引值的十进制表示,该位置索引值用于指示该数据传输所包含的该至少一个编码块组在该传输块中的位置,M表示该传输块包括的编码块组的数目。
例如,X取2,M取2,Y取[0 0]=0,即2=0+(2 2-2)。
可选地,该状态值、该传输块包括的编码块组的数目以及数据传输中包含的编码块组还可以满足以下关系式:X=Y+(2 M-a M),0≤a M≤2+M,1≤M≤K,a M为整数,X 表示该状态值的十进制表示,Y表示位置索引值的十进制表示,该位置索引值用于指示该数据传输所包含的该至少一个编码块组在该传输块中的位置,M表示该传输块包括的编码块组的数目。其中,a M的取值依赖于M的大小。
需要说明的是,a M可以是与M相关的函数,即a M=f(M)。
a M还可以是不依赖于M的常数,例如0,1,或者2。
具体地,如表3所示,X=Y+(2 M-1);以及表4所示,X=Y+(2 M-2);表5所示,X=Y+2 M
例如,表3中,X取8,M取3,Y取[0 0 1]=1,即8=1+(2 3-1)。
需要说的是,该状态值、该传输块包括的编码块组的数目以及数据传输中包含的编码块组还可以满足其他关系,本申请对此不进行限定。
表3
Figure PCTCN2018091595-appb-000014
表4
Figure PCTCN2018091595-appb-000015
可选地,该状态值、该传输块包括的编码块组的数目以及数据传输中包含的编码块组还可以满足以下关系式:X=Y+(2 M-a M),0≤a M≤2,1≤M≤K,a M为常数,且a M为整数,X表示该状态值的十进制表示,Y表示位置索引值的十进制表示,该位置索引值用于指示该数据传输所包含的该至少一个编码块组在该传输块中的位置,M表示该传输块包括的编码块组的数目。
具体地,其中,a M不依赖于该传输块包括的编码组的数目M的变化而变化。例如,表5所示,X取2,M取1,a M取0,则Y=0。即无效值可以插入到部分CBG个数对应的CBG位置索引值。
表5
Figure PCTCN2018091595-appb-000016
可选地,网络设备和终端设备可以预先约定为该无效状态值赋予其他功能,从而网络设备可以充分利用该无效状态值,在减少了计算功耗,以及节省时延的前提下,还能够提高资源利用率。
可选地,无效状态对应的CBG的位置索引可以用于指示CBG的传输类型。也就是说,若状态值对应的CBG的位置索引值为无效状态,网络设备可以设置该无效状态与其他状态值对应的CBG的传输类型相同。
例如,如表2,状态值为2,CBG个数为2时,CBG的位置索引为无效状态时,网络设备可以在状态值为2时,指示CBG的传输类型为两个CBG都进行传输,或者指示任意一个CBG进行传输,本申请对此不进行限定。
可选地,终端设备可以根据状态值确定反馈信息,具体地终端设备根据状态值确定终端设备可以接收到传输块中的至少一个编码块,这样反馈信息中需要包括至少一个比特位,该至少一个比特位中的每个比特位用于指示该至少一个编码块中的每个编码块是否正确接收。
具体地,终端设备接收指示信令,该指示信令携带的状态值为5,如表2。接下来终端设备可以接收到的PDSCH中包括两个CBG,终端设备检测和解码PDSCH,获得两个CBG的信息比特位,通过校验确定这两个CBG是否正确接收,并向网络设备反馈2个比特位的HARQ ACK的方式通知网络设备接收结果。例如,若终端设备反馈的HARQ ACK为[1 1],则表示两个CBG都正确接收了。
应理解,反馈信息指示的传输块中的至少一个编码块的数目可以是传输块中所有编码 块,也可以是预先设定的几个编码块,本申请对此不进行限定。
可选地,在CBG的位置索引为无效状态时,反馈信息可以只包括一个比特位。
具体地,如表2,若网络设备设置状态值为2指示两个CBG都进行传输,终端设备校验两个CBG是否正确接收后,可以采用捆绑(bundling)方式进行反馈。即反馈信息只占用一个比特位用于指示CBG的接收结果。
具体可以是将两个HARQ ACK进行“乘”操作,若HARQ ACK为[1 1],则bundling之后的结果为1;若HARQ ACK为[0 1]、[1 0]或者[0 0],则bundling的结果为0。
可选地,该指示信令可以是物理层信令。例如,物理下行控制信道(Physical Downlink Control Channel,PDCCH)信令。
可选地,终端设备接收到指示信令,根据该指示信令携带的状态值可以确定传输块包括的编码块组的数目。
可选地,终端设备根据该状态值,确定该传输块包括的编码块组的数目包括:
根据X,确定M=max{n|X≥2 n-a M},其中,0≤a M≤2+M,n为整数,X表示该状态值的十进制表示,Y表示位置索引值的十进制表示,该位置索引值用于指示该数据传输所包含的该至少一个编码块组在该传输块中的位置,M表示该传输块包括的编码块组的数目。
例如,X取2,a M取2,则M=2,对应于表2。
可选地,终端设备根据该状态值,还可以确定该数据传输包含的至少一个编码块组,也就是说,终端设备可以确定该传输块中的至少一个编码块组中的每个编码块组在该传输块中的位置。
可选地,该根据该状态值,确定该数据传输包含的至少一个编码块组包括:
根据该X和M,确定Y=X-(2 M-a M),其中,0≤a M≤2+M,X表示该状态值的十进制表示,Y表示位置索引值的十进制表示,该位置索引值用于指示该数据传输所包含的该至少一个编码块组在该传输块中的位置,M表示该传输块包括的编码块组的数目。
需要说明的是,a M的具体取值,可以是网络设备与终端设备预先约定的值,或者是网络设备通过其他信令或者携带其他指示信息,指示a M的值,本申请对此不进行限定。
例如,X取2,a M取2,M=2,则Y=0,即[0 0],对应于表2。
302,网络设备发送该至少一个编码块组。相应地,终端设备接收该指示一个编码块组。
可选地,该至少一个编码块组中的每个编码块组为重传的编码块组,也就是说,网络设备初次传输该传输块后,终端设备没有正确的解码该至少一个编码块组,因此网络设备重传该至少一个编码块组。
具体地,网络设备在重传该至少一个编码块组之前发送的指示信令携带的状态值可以指示该传输块包含的编码块组的数目,这样即使在重传的时候终端设备也能理解重传的至少一个编码块组在传输块中的位置,使得终端设备能够准确的解码该至少一个编码块组。
可选地,该至少一个编码块组可以是该传输块包括的所有的编码块组,即网络设备初次传输该传输块。
因此,本申请实施例的数据传输的方法,网络设备通过状态值指示传输块包含的编码块组的数目,还用于指示该数据传输包含的至少一个编码块组,也就是说,网络设备通过 状态值进行联合指示传输块包含的编码块组的数目,和该数据传输包含的至少一个编码块组,这样减少指示信令占用的比特位数,从而减少信令开销。
图4示出了本申请实施例网络设备400的示意性框图。如图4所示,该网络设备400包括:
发送模块410,用于发送指示信令,该指示信令用于指示一个传输块的数据传输,且该指示信令携带状态值,该状态值用于指示该传输块包含的编码块组的数目,该状态值还用于指示该数据传输包含的至少一个编码块组,该状态值由至多K+1个比特表示,其中K为该传输块能够包含编码块组的数目的最大值;
该发送模块410,还用于发送该至少一个编码块组。
可选地,该状态值由该传输块包含的编码块组的数目和该数据传输中包含的至少一个编码块组确定。
可选地,该状态值、该传输块包括的编码块组的数目以及数据传输中包含的编码块组满足以下关系式:X=Y+(2 M-a M),其中,0≤a M≤2+M,1≤M≤K,a M为整数,X表示该状态值的十进制表示,Y表示位置索引值的十进制表示,该位置索引值用于指示该数据传输所包含的该至少一个编码块组在该传输块中的位置,M表示该传输块包括的编码块组的数目。
可选地,所述传输块包括的编码块组的数目以及数据传输中包含的编码块块组满足以下关系式:X=Y+(2 M-a M),其中,0≤a M≤2+M,且a M为常数,1≤M≤K,X表示所述状态值的十进制表示,Y表示位置索引值的十进制表示,所述位置索引值用于指示所述数据传输所包含的所述至少一个编码块组在所述传输块中的位置,M表示所述传输块包括的编码块组的数目。
可选地,该网络设备400还包括:
接收模块420,用于接收终端设备发送的反馈信息,该反馈信息用于指示该终端设备是否正确接收该传输块中的至少一个编码块组,且该反馈信息是由该终端设备根据该状态值确定的。
可选地,所述反馈信息包括1个比特位,所述1个比特位用于指示所述终端设备是否正确接收所述传输块中的至少一个编码块组。
可选地,该至少一个编码块组中的每个编码块组为重传的编码块组。
可选地,该至少一个编码块组为该传输块包括的所有的编码块组。
可选地,该指示信令为物理层信令。
因此,本申请实施例的网络设备,通过状态值进行联合指示,即状态值指示传输块包含的编码块组的数目,还用于指示该数据传输包含的至少一个编码块组,且该状态值至多由K+1个比特位表示,K为该传输块能够包含编码块组的数目的最大值,本申请实施例减少了指示信令占用的比特位数,从而减少信令开销。
应理解,根据本申请实施例的网络设备400可对应于本申请实施例的资源分配的方法300中的网络设备,并且网络设备400中的各个模块的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,为了简洁,在此不再赘述。
本申请实施例中的发送模块410和接收模块420可以由收发器实现。如图5所示,网络设备500可以包括收发器510,处理器520和存储器530。其中,存储器530可以用于 存储指示信息,还可以用于存储处理器520执行的代码、指令等。
图6示出了本申请实施例终端设备600的示意性框图。如图6所示,该终端设备600包括:
接收模块610,用于接收指示信令,该指示信令用于指示一个传输块的数据传输,且该指示信令携带状态值,该状态值用于指示传输块包含的编码块组的数目,该状态值还用于指示该数据传输包含的至少一个编码块组,该状态值由至多K+1个比特表示,其中K为该指示信令指示该传输块能够包含编码块组的数目的最大值;
该接收模块610,还用于接收该至少一个编码块组。
可选地,该终端设备600还包括:
处理模块620,用于根据该状态值,确定该传输块包括的编码块组的数目。
可选地,该处理模块620具体用于:
根据X,确定M=max{n|X≥2 n-a M},其中,1≤M≤K,a M为整数,X表示该状态值的十进制表示,M表示该传输块包括的编码块组的数目。
可选地,处理模块620,还用于根据该状态值,确定该传输块包含的至少一个编码块组。
可选地,该处理模块620具体用于:
根据该X和M,确定Y=X-(2 M-a M),其中,0≤a M≤2+M,1≤M≤K,a M为正整数,X表示该状态值的十进制表示,Y表示位置索引值的十进制表示,该位置索引值用于指示该数据传输所包含的该至少一个编码块组在该传输块中的位置,M表示该传输块包括的编码块组的数目。
可选地,所述处理模块620具体用于:
根据所述X和M,确定Y=X-(2 M-a M),其中,0≤a M≤2+M,a M常数,且a M为整数,X表示所述状态值的十进制表示,Y表示位置索引值的十进制表示,所述位置索引值用于指示所述数据传输所包含的所述至少一个编码块组在所述传输块中的位置,M表示所述传输块包括的编码块组的数目。
可选地,该处理模块,还用于根据该位置索引值和该状态值,确定反馈信息,所述反馈信息用于指示所述终端设备是否正确接收所述传输块中的至少一个编码块组;
该终端设备600还包括:
发送模块,用于向网络设备发送该反馈信息。
可选地,所述反馈信息包括1个比特位,所述1个比特位用于指示所述终端设备是否正确接收所述传输块中的至少一个编码块组。
可选地,该至少一个编码块组中的每个编码块组为重传的编码块组。
可选地,该至少一个编码块组为该传输块包括的所有的编码块组。
可选地,该指示信令为物理层信令。
因此,本申请实施例的终端设备,通过接收指示信令,该指示信令携带的状态值能够联合指示传输块包含的编码块组的数目,和该数据传输包含的至少一个编码块组,且该状态值至多由K+1个比特位表示,K为该传输块能够包含编码块组的数目的最大值,使得指示信令占用的比特位数较少,从而减少信令开销。
应理解,根据本申请实施例的终端设备600可对应于本申请实施例的资源分配的方法 300的中的终端设备,并且终端设备600中的各个模块的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,为了简洁,在此不再赘述。
本申请实施例中的接收模块610可以由收发器实现,处理模块620可以由处理器实现。如图7所示,终端设备700可以包括收发器710,处理器720和存储器730。其中,存储器730可以用于存储指示信息,还可以用于存储处理器720执行的代码、指令等。
应理解,处理器520或处理器720可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器530或存储器730可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种系统。如图8所示,该系统800包括:
前述本申请实施例的网络设备400和本申请实施例的终端设备600。
本申请实施例还提供一种计算机存储介质,该计算机存储介质可以存储用于指示上述任一种方法的程序指令。
可选地,该存储介质具体可以为存储器530或730。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持分布式单元、集中式单元以及终端设备以实现上述实施例中所涉及的功能,例如,例如生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存分布式单元、集中式单元以及终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。应当理解的是,该芯片处理 的数据和/或信息可接收自基站,处理后的数据和/或信息也可发送给基站。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种数据传输的方法,其特征在于,包括:
    发送指示信令,所述指示信令用于指示一个传输块的数据传输,且所述指示信令携带状态值,所述状态值用于指示所述传输块包含的编码块组的数目,所述状态值还用于指示所述数据传输包含的至少一个编码块组,所述状态值由至多K+1个比特表示,其中K为所述传输块能够包含编码块组的数目的最大值;
    发送所述至少一个编码块组。
  2. 根据权利要求1所述的方法,其特征在于,所述状态值由所述传输块包含的编码块组的数目和所述数据传输中包含的至少一个编码块组确定。
  3. 根据权利要求1或2所述的方法,其特征在于,所述状态值、所述传输块包括的编码块组的数目以及数据传输中包含的编码块组满足以下关系式:
    X=Y+(2 M-a M),
    其中,0≤a M≤2+M,1≤M≤K,a M为整数,X表示所述状态值的十进制表示,Y表示位置索引值的十进制表示,所述位置索引值用于指示所述数据传输所包含的所述至少一个编码块组在所述传输块中的位置,M表示所述传输块包括的编码块组的数目。
  4. 根据权利要求1或2所述的方法,其特征在于,所述状态值、所述传输块包括的编码块组的数目以及数据传输中包含的编码块块组满足以下关系式:
    X=Y+(2 M-a M),
    其中,0≤a M≤2+M,且a M为常数,且a M为整数,1≤M≤K,X表示所述状态值的十进制表示,Y表示位置索引值的十进制表示,所述位置索引值用于指示所述数据传输所包含的所述至少一个编码块组在所述传输块中的位置,M表示所述传输块包括的编码块组的数目。
  5. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收终端设备发送的反馈信息,所述反馈信息用于指示所述终端设备是否正确接收所述传输块中的至少一个编码块组,且所述反馈信息是由所述终端设备根据所述状态值确定的。
  6. 根据权利要求5所述的方法,其特征在于,所述反馈信息包括1个比特位,所述1个比特位用于指示所述终端设备是否正确接收所述传输块中的至少一个编码块组。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述至少一个编码块组中的每个编码块组为重传的编码块组。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,所述至少一个编码块组为所述传输块包括的所有的编码块组。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述指示信令为物理层信令。
  10. 一种数据传输的方法,其特征在于,包括:
    接收指示信令,所述指示信令用于指示一个传输块的数据传输,且所述指示信令携带状态值,所述状态值用于指示传输块包含的编码块组的数目,所述状态值还用于指示所述 数据传输包含的至少一个编码块组,所述状态值由至多K+1个比特表示,其中K为所述指示信令指示所述传输块能够包含编码块组的数目的最大值;
    接收所述至少一个编码块组。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    根据所述状态值,确定所述传输块包括的编码块组的数目。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述状态值,确定所述传输块包括的编码块组的数目包括:
    根据X,确定M=max{n|X≥2 n-a M},其中,1≤M≤K,a M为整数,X表示所述状态值的十进制表示,M表示所述传输块包括的编码块组的数目。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述状态值,确定所述传输块包含的至少一个编码块组。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述状态值,确定所述传输块包含的至少一个编码块组包括:
    根据所述X和M,确定Y=X-(2 M-a M),其中,0≤a M≤2+M,a M为整数,X表示所述状态值的十进制表示,Y表示位置索引值的十进制表示,所述位置索引值用于指示所述数据传输所包含的所述至少一个编码块组在所述传输块中的位置,M表示所述传输块包括的编码块组的数目。
  15. 根据权利要求13所述的方法,其特征在于,所述根据所述状态值,确定所述传输块包含的至少一个编码块组包括:
    根据所述X和M,确定Y=X-(2 M-a M),其中,0≤a M≤2+M,a M常数,且a M为整数,X表示所述状态值的十进制表示,Y表示位置索引值的十进制表示,所述位置索引值用于指示所述数据传输所包含的所述至少一个编码块组在所述传输块中的位置,M表示所述传输块包括的编码块组的数目。
  16. 根据权利要求10至13中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述状态值,确定反馈信息,所述反馈信息用于指示所述终端设备是否正确接收所述传输块中的至少一个编码块组;
    向网络设备发送所述反馈信息。
  17. 根据权利要求16所述方法,其特征在于,所述反馈信息包括1个比特位,所述1个比特位用于指示所述终端设备是否正确接收所述传输块中的至少一个编码块组。
  18. 根据权利要求10至17中任一项所述的方法,其特征在于,所述至少一个编码块组中的每个编码块组为重传的编码块组。
  19. 根据权利要求10至17中任一项所述的方法,其特征在于,所述至少一个编码块组为所述传输块包括的所有的编码块组。
  20. 根据权利要求10至19中任一项所述的方法,其特征在于,所述指示信令为物理层信令。
  21. 一种网络设备,其特征在于,包括:
    发送模块,用于发送指示信令,所述指示信令用于指示一个传输块的数据传输,且所述指示信令携带状态值,所述状态值用于指示所述传输块包含的编码块组的数目,所述状态值还用于指示所述数据传输包含的至少一个编码块组,所述状态值由至多N+1个比特 表示,其中N为所述传输块能够包含编码块组的数目的最大值;
    所述发送模块,还用于发送所述至少一个编码块组。
  22. 根据权利要求21所述的网络设备,其特征在于,所述状态值由所述传输块包含的编码块组的数目和所述数据传输中包含的至少一个编码块组确定。
  23. 根据权利要求21或22所述的网络设备,其特征在于,所述状态值、所述传输块包括的编码块组的数目以及数据传输中包含的编码块组满足以下关系式:
    X=Y+(2 M-a M),
    其中,0≤a M≤2+M,1≤M≤N,a M为整数,X表示所述状态值的十进制表示,Y表示位置索引值的十进制表示,所述位置索引值用于指示所述数据传输所包含的所述至少一个编码块组在所述传输块中的位置,M表示所述传输块包括的编码块组的数目。
  24. 根据权利要求21或22所述的网络设备,其特征在于,所述状态值、所述传输块包括的编码块组的数目以及数据传输中包含的编码块块组满足以下关系式:
    X=Y+(2 M-a M),
    其中,0≤a M≤2,1≤M≤K,a M为常数,且a M为整数X表示所述状态值的十进制表示,Y表示位置索引值的十进制表示,所述位置索引值用于指示所述数据传输所包含的所述至少一个编码块组在所述传输块中的位置,M表示所述传输块包括的编码块组的数目。
  25. 根据权利要求21或22所述的网络设备,其特征在于,所述网络设备还包括:
    接收模块,用于接收终端设备发送的反馈信息,所述反馈信息用于指示所述终端设备是否正确接收所述传输块中的至少一个编码块组,且所述反馈信息是由所述终端设备根据所述状态值确定的。
  26. 根据权利要求25所述的网络设备,其特征在于,所述反馈信息包括1个比特位,所述1个比特位用于指示所述终端设备是否正确接收所述传输块中的至少一个编码块组。
  27. 根据权利要求21至26中任一项所述的网络设备,其特征在于,所述至少一个编码块组中的每个编码块组为重传的编码块组。
  28. 根据权利要求21至26中任一项所述的网络设备,其特征在于,所述至少一个编码块组为所述传输块包括的所有的编码块组。
  29. 根据权利要求21至28中任一项所述的网络设备,其特征在于,所述指示信令为物理层信令。
  30. 一种终端设备,其特征在于,包括:
    接收模块,用于接收指示信令,所述指示信令用于指示一个传输块的数据传输,且所述指示信令携带状态值,所述状态值用于指示传输块包含的编码块组的数目,所述状态值还用于指示所述数据传输包含的至少一个编码块组,所述状态值由至多N+1个比特表示,其中N为所述指示信令指示所述传输块能够包含编码块组的数目的最大值;
    所述接收模块,还用于接收所述至少一个编码块组。
  31. 根据权利要求30所述的终端设备,其特征在于,所述终端设备还包括:
    处理模块,用于根据所述状态值,确定所述传输块包括的编码块组的数目。
  32. 根据权利要求31所述的终端设备,其特征在于,所述处理模块具体用于:
    根据X,确定M=max{n|X≥2 n-a M},其中,1≤M≤N,a M为整数,X表示所述状 态值的十进制表示,M表示所述传输块包括的编码块组的数目。
  33. 根据权利要求30至32中任一项所述的终端设备,其特征在于,处理模块,还用于根据所述状态值,确定所述传输块包含的至少一个编码块组。
  34. 根据权利要求33所述的终端设备,其特征在于,所述处理模块具体用于:
    根据所述X和M,确定Y=X-(2 M-a M),其中,0≤a M≤2+M,a M为整数,X表示所述状态值的十进制表示,Y表示位置索引值的十进制表示,所述位置索引值用于指示所述数据传输所包含的所述至少一个编码块组在所述传输块中的位置,M表示所述传输块包括的编码块组的数目。
  35. 根据权利要求33所述的终端设备,其特征在于,所述处理模块具体用于:
    根据所述X和M,确定Y=X-(2 M-a M),其中,0≤a M≤2+M,a M常数,且a M为整数,X表示所述状态值的十进制表示,Y表示位置索引值的十进制表示,所述位置索引值用于指示所述数据传输所包含的所述至少一个编码块组在所述传输块中的位置,M表示所述传输块包括的编码块组的数目。
  36. 根据权利要求30至33中任一项所述的终端设备,其特征在于,所述处理模块,还用于根据所述位置索引值和所述状态值,确定反馈信息,所述反馈信息用于指示所述终端设备是否正确接收所述传输块中的至少一个编码块组;
    所述终端设备还包括:
    发送模块,用于向网络设备发送所述反馈信息。
  37. 根据权利要求36所述的终端设备,其特征在于,所述反馈信息包括1个比特位,所述1个比特位用于指示所述终端设备是否正确接收所述传输块中的至少一个编码块组。
  38. 根据权利要求30至37中任一项所述的终端设备,其特征在于,所述至少一个编码块组中的每个编码块组为重传的编码块组。
  39. 根据权利要求30至37中任一项所述的终端设备,其特征在于,所述至少一个编码块组为所述传输块包括的所有的编码块组。
  40. 根据权利要求30至39中任一项所述的终端设备,其特征在于,所述指示信令为物理层信令。
PCT/CN2018/091595 2017-06-16 2018-06-15 数据传输的方法、网络设备和终端设备 WO2018228553A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18818768.6A EP3595210B1 (en) 2017-06-16 2018-06-15 Data transmission method, network device and terminal device
US16/716,409 US10979171B2 (en) 2017-06-16 2019-12-16 Data transmission method, network device, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459786.7A CN109150380B (zh) 2017-06-16 2017-06-16 数据传输的方法、网络设备和终端设备
CN201710459786.7 2017-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/716,409 Continuation US10979171B2 (en) 2017-06-16 2019-12-16 Data transmission method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2018228553A1 true WO2018228553A1 (zh) 2018-12-20

Family

ID=64659987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091595 WO2018228553A1 (zh) 2017-06-16 2018-06-15 数据传输的方法、网络设备和终端设备

Country Status (4)

Country Link
US (1) US10979171B2 (zh)
EP (1) EP3595210B1 (zh)
CN (1) CN109150380B (zh)
WO (1) WO2018228553A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7378612B2 (ja) * 2019-11-04 2023-11-13 北京小米移動軟件有限公司 ダウンリンク制御情報dciの下り送信方法、装置、通信機器及び記憶媒体
CN113949491B (zh) * 2020-07-17 2023-07-04 大唐移动通信设备有限公司 一种harq-ack信息的传输方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188050A (zh) * 2007-07-04 2013-07-03 日本电气株式会社 多载波移动体通信系统
WO2017011946A1 (zh) * 2015-07-17 2017-01-26 华为技术有限公司 基于不等差错保护的数据传输方法、装置和设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283630B (zh) * 2013-07-03 2018-04-27 电信科学技术研究院 数据传输方法和设备
US10033505B2 (en) * 2014-07-31 2018-07-24 Qualcomm Incorporated Transmission of uplink control channels over an unlicensed radio frequency spectrum band
WO2018053854A1 (en) * 2016-09-26 2018-03-29 Nokia Technologies Oy Error detection and channel coding of transport blocks
KR102539912B1 (ko) * 2017-02-03 2023-06-02 아이디에이씨 홀딩스, 인크. Ldpc 베이스 매트릭스 선택에 따른 코드 블록 세그먼트화
EP3588828B1 (en) * 2017-02-24 2022-03-02 LG Electronics Inc. Method for processing data block and method for harq ack/nack feedback
EP4135236B1 (en) * 2017-03-08 2023-10-18 LG Electronics, Inc. Method and apparatus for transmitting and receiving radio signals in a wireless communication system
JP6928091B2 (ja) * 2017-03-23 2021-09-01 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける端末の確認応答情報送信方法及びそれを支援する装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188050A (zh) * 2007-07-04 2013-07-03 日本电气株式会社 多载波移动体通信系统
WO2017011946A1 (zh) * 2015-07-17 2017-01-26 华为技术有限公司 基于不等差错保护的数据传输方法、装置和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Discussion on CB grouping principles for CBG-based transmission with single/multi-bit HARQ-ACK feedback", 3GPP TSG RAN WG1 MEETING #89, no. R1-1707851, 19 May 2017 (2017-05-19), XP051260447 *
SAMSUNG: "UL scheduling for CBG-based Retransmissions", 3GPP TSG RAN WG1 MEETING #89, no. R1-1708035, 19 May 2017 (2017-05-19), XP051262211 *
See also references of EP3595210A4

Also Published As

Publication number Publication date
EP3595210A4 (en) 2020-04-08
EP3595210B1 (en) 2023-08-02
CN109150380A (zh) 2019-01-04
US10979171B2 (en) 2021-04-13
EP3595210A1 (en) 2020-01-15
CN109150380B (zh) 2020-12-08
US20200119837A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
US20210091893A1 (en) Information Transmission Method and Communications Device
WO2019028684A1 (zh) 通信方法与设备
US20220224452A1 (en) Feedback Information Transmission Method and Apparatus
KR20180072592A (ko) 피드백 정보를 전송하는 방법, 단말기 및 기지국
US11902943B2 (en) Communication method and communications apparatus
WO2018201829A1 (zh) 一种传输方法、终端设备及基站
JP2020519174A (ja) 通信方法及び装置
WO2019242527A1 (zh) 混合自动重传请求反馈信息harq-ack处理方法及装置
WO2018152714A1 (zh) 用于信息传输的方法和设备
US20230139754A1 (en) Coding method and apparatus
CN110730513B (zh) 一种通信方法及装置
WO2018228553A1 (zh) 数据传输的方法、网络设备和终端设备
WO2021159857A1 (zh) 码本传输方法及装置
WO2022040964A1 (zh) 生成混合自动重复请求harq码本的方法和装置
WO2020143813A1 (zh) 传输信息的方法和装置
WO2021068140A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019228241A1 (zh) 信号处理的方法和装置
CN113498205B (zh) 一种传输反馈信息的方法及相关装置
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
US20180310325A1 (en) Method for data storage, terminal device and base station
WO2020015617A1 (zh) 一种通信方法及装置
WO2023273754A1 (zh) 一种混合自动重传请求反馈的方法和装置
WO2022237673A1 (zh) 一种处理数据的方法和装置
WO2022236752A1 (zh) 无线通信方法、第一设备和第二设备
WO2022236719A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818768

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018818768

Country of ref document: EP

Effective date: 20191011

NENP Non-entry into the national phase

Ref country code: DE