WO2017024569A1 - 一种数据传输方法、用户设备和基站 - Google Patents

一种数据传输方法、用户设备和基站 Download PDF

Info

Publication number
WO2017024569A1
WO2017024569A1 PCT/CN2015/086807 CN2015086807W WO2017024569A1 WO 2017024569 A1 WO2017024569 A1 WO 2017024569A1 CN 2015086807 W CN2015086807 W CN 2015086807W WO 2017024569 A1 WO2017024569 A1 WO 2017024569A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
relay
base station
downlink
data
Prior art date
Application number
PCT/CN2015/086807
Other languages
English (en)
French (fr)
Inventor
周国华
魏冬冬
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22181731.5A priority Critical patent/EP4124168A1/en
Priority to PCT/CN2015/086807 priority patent/WO2017024569A1/zh
Priority to EP15900767.3A priority patent/EP3324679A4/en
Priority to CN202010403872.8A priority patent/CN111741505A/zh
Priority to CN201580072970.5A priority patent/CN107211339B/zh
Publication of WO2017024569A1 publication Critical patent/WO2017024569A1/zh
Priority to US15/892,419 priority patent/US10779284B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method, a user equipment, and a base station.
  • D2D Device-to-Device
  • the D2D communication technology can directly communicate between user equipments (English equipment: UE) within a certain distance, without having to transit through a third-party equipment, such as a base station.
  • UE user equipments
  • FIG. 1 within the coverage of the base station, the base station can communicate with UE1, UE2, and UE3 through the cellular link respectively.
  • the UE1 can directly pass the D2D communication link (also referred to as Slide Link,
  • the abbreviation: SL) communicates with UE2 or UE3, and UE2 can directly communicate with UE1 or UE3 through the SL, and UE3 can directly communicate with UE1 or UE2 through the SL.
  • the embodiments of the present invention provide a data transmission method, a user equipment, and a base station, which are used to improve the reliability of a network using the D2D technology.
  • the embodiment of the present invention provides a data transmission method, including: a user equipment (English: user equipment, abbreviated as: UE) sends uplink data to a base station by using an uplink user equipment relay (English: uplink UE-relay).
  • UE user equipment
  • uplink UE-relay uplink user equipment relay
  • the UE receives downlink data from the base station, or the UE receives downlink data from the base station by using a downlink user equipment relay (English: downlink UE-relay).
  • receiving downlink data from a base station means that downlink data is not directly received from the base station by the user equipment relay.
  • the method further includes: the UE sending the first indication information to the uplink UE-relay, where the first indication information is used to indicate an uplink transmission resource corresponding to the UE, so that The uplink UE-relay sends the uplink data to the base station according to the uplink transmission resource.
  • the uplink UE-relay transmits the uplink data by using the uplink transmission resource corresponding to the UE, so that the base station does not perceive the uplink data to be sent by the uplink UE-relay, and avoids additional processing of the base station, thereby saving the overhead of the base station.
  • the uplink transmission resource includes a physical uplink control channel (PUCCH) resource;
  • the first indication information includes n CCE and
  • the n CCE is used to indicate the first control channel element (English: control channel element, CCE for short) in the physical downlink control channel (English: physical downlink control channel, PDCCH for short). It is used to indicate a UE-specific PUCCH ACK/NACK (English name: acknowledgement/negative acknowledgement) resource offset or to indicate a PUCCH format 1a/1b start offset for the subframe set K2.
  • the uplink UE-relay can send the response of the UE to the downlink data to the base station as the identity of the UE, so that the base station can immediately know that the UE responds to the downlink data, so that the existing hybrid automatic repeat request is (English: hybrid automatic repeat request, referred to as: HARQ)
  • HARQ hybrid automatic repeat request
  • the foregoing first indication information may further include An index indicating a channel quality indicator (CQI) assigned to the UE, according to an index
  • CQI channel quality indicator
  • the uplink UE-relay may feed back the periodic CQI of the UE to the base station on the PUCCH resource.
  • the first indication information includes different parameters for different uplink transmission resources, and the parameters are described in detail in the embodiment.
  • the uplink data is received by the base station according to the PUCCH resource after delaying m transmission time intervals (English: transmission time interval, TTI for short); wherein the m is a positive integer.
  • the m TTIs are greater than or equal to a time taken by the UE to send the first indication information and the uplink data to the uplink UE-relay.
  • the method further includes: receiving, by the UE, the second indication information from the uplink UE-relay, where the second indication information is used to indicate a downlink transmission corresponding to the uplink UE-relay
  • the receiving, by the UE, the downlink data from the base station includes: the UE receiving the downlink data from the base station according to the downlink transmission resource.
  • the downlink transmission resource includes a PHICH resource
  • the second indication information includes an n DMRS and Where n DMRS is used to indicate the offset of the DMRS, An index indicating the smallest PRB for uplink transmission.
  • the UE After the UE learns the downlink transmission resource corresponding to the uplink UE-relay, it can directly receive the response of the base station to the uplink data from the base station, and avoid forwarding the response by the uplink UE-relay, thereby further improving the reliability of the network.
  • the method further includes: the UE receiving, by the uplink UE-relay, the response of the uplink UE-relay to the uplink data.
  • the response can be used to enable the UE to know whether the uplink data is correctly sent to the uplink UE-relay, so that the UE decides whether to retransmit the uplink data, thereby improving the reliability of transmitting the uplink data.
  • the method further includes: sending, by the UE, the response of the UE to the downlink data to the downlink UE-relay.
  • the response can enable the downlink UE-relay to know whether the downlink data is successfully sent to the UE, so as to determine whether to retransmit, and increase the reliability of transmitting the downlink data.
  • an embodiment of the present invention provides a UE that includes a module for performing a behavior of a UE in a method of the first aspect.
  • the module can be software and/or hardware.
  • the UE includes a processor and a memory that is configured to support the UE in performing the corresponding functions in the method of the first aspect.
  • the memory is for coupling with a processor that stores program instructions and data necessary for the UE.
  • an embodiment of the present invention provides a data transmission method, including: receiving, by a base station, uplink data of a UE by using an uplink UE-relay; and transmitting, by the base station, downlink data to the UE, or the base The station sends downlink data to the UE through the downlink UE-relay.
  • the receiving, by the base station, the uplink data of the UE by the uplink UE-relay includes: receiving, by the base station, the uplink of the UE from the uplink UE-relay according to the uplink transmission resource corresponding to the UE data.
  • the base station After receiving the uplink data forwarded by the uplink UE-relay on the uplink transmission resource corresponding to the UE, the base station considers that the uplink data is sent by the UE, and prevents the base station from identifying the source of the uplink data through additional processing.
  • the receiving, by the base station, the uplink data of the UE from the uplink UE-relay according to the uplink transmission resource corresponding to the UE includes: after the base station delays m TTIs, according to the The uplink transmission resource receives the uplink data from the uplink UE-relay; wherein the m is a positive integer. By delaying m TTIs, the success rate of receiving the uplink data by the base station can be improved.
  • an embodiment of the present invention provides a base station, including a module for performing a behavior of a base station in a method of the third aspect.
  • the module can be software and/or hardware.
  • the base station includes a processor and a memory configured to support the base station in performing the corresponding functions of the method of the third aspect.
  • the memory is for coupling with a processor that stores the necessary program instructions and data for the base station.
  • a fifth aspect of the present invention provides a data transmission method, including: a user equipment relays receiving uplink data from a user equipment; the user equipment relays the uplink data to a base station; and the user equipment relays a transmission
  • the second indication information is used to the user equipment, and the second indication information is used to relay the PHICH resource corresponding to the user equipment, so that the user equipment receives the uplink data from the base station according to the PHICH resource. Response.
  • the content of the second indication information may refer to related content in the first aspect.
  • the method further includes: the user equipment relaying, sending, by the user equipment, a response to the uplink data to the user equipment.
  • the user equipment can be informed whether the uplink data is successfully sent to the user equipment relay, so that the user equipment determines whether to retransmit the uplink data, and improves the reliability of the uplink data transmission.
  • an embodiment of the present invention provides a user equipment relay. It contains the fifth party for execution In the facet method, the corresponding UE-relay behavior corresponds to the module.
  • the module can be software and/or hardware.
  • the user equipment relay includes a processor and a memory configured to support the user equipment to relay a corresponding function in performing the method of the fifth aspect.
  • the memory is for coupling with a processor that stores the necessary program instructions and data for relaying the user equipment.
  • the embodiment of the present invention provides a data transmission method, including: receiving, by a user equipment, a first indication information from a user equipment, where the first indication information is used to indicate a PUCCH resource corresponding to the user equipment.
  • the user equipment relay receives uplink data from the user equipment; the user equipment relays the uplink data to the base station according to the PUCCH resource.
  • the content of the first indication information may refer to related content of the first aspect.
  • the method further includes the user equipment relaying a response to the uplink data to the user equipment.
  • the user equipment can be informed whether the uplink data is successfully sent to the user equipment relay, so that the user equipment determines whether to retransmit the uplink data, and improves the reliability of the uplink data transmission.
  • an embodiment of the present invention provides a user equipment relay. It comprises means for performing the behavior of the uplink UE-relay in the method of the seventh aspect.
  • the module can be software and/or hardware.
  • the user equipment relay includes a processor and a memory configured to support the user equipment to relay a corresponding function in the method of the seventh aspect.
  • the memory is for coupling with a processor that stores the necessary program instructions and data for relaying the user equipment.
  • an embodiment of the present invention provides a data transmission system, including the foregoing UE and an uplink UE-relay.
  • the operating mechanism of the system can refer to the relevant content of the above aspects.
  • the system may also include a base station in the above aspects.
  • an embodiment of the present invention provides a computer storage medium, including a program designed to perform the above aspects.
  • the UE needs to transmit uplink data to the uplink UE-relay with a transmission power smaller than The UE directly transmits uplink data to the transmit power required by the base station, so the power consumption of the UE can be reduced.
  • the distance between the UE and the uplink UE-relay is smaller than the distance between the UE and the base station.
  • the communication between the UE and the uplink UE-relay, or between the UE and the downlink UE-relay may be performed by using a unicast or a broadcast, which is not limited in this embodiment of the present invention.
  • the foregoing solution provided by the embodiment of the present invention can separately perform uplink transmission and downlink transmission by using different transmission paths, which can reduce the impact on the network due to UE-relay failure and the like, and improve network reliability.
  • the downlink data is directly received from the base station, and the uplink data is transmitted by the UE-realy.
  • the UE can use the smaller transmit power to transmit data, which reduces the power consumption of the UE and improves the endurance of the UE.
  • close to the coverage of the base station since the downlink transmission quality is better than the uplink transmission quality, the uplink transmission directly performed by the UE and the base station is switched to transit through the UE-relay, and the uplink transmission quality of the UE can be improved.
  • the uplink transmission distance of the UE may be smaller than the coverage of the base station. Therefore, switching the uplink transmission directly performed by the UE and the base station to transit through the UE-relay may increase the distance of the uplink transmission of the UE.
  • FIG. 1 is a schematic diagram of a wireless network using D2D technology according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another data transmission method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of still another data transmission method according to an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • 3GPP Third Generation Partnership Project
  • LTE Long Term Evoluation
  • 3GPP is a project dedicated to the development of wireless communication networks.
  • the LTE network in the embodiments of the present invention complies with the standards of 3GPP, except where specifically described in the embodiments.
  • a person skilled in the art can understand that the solution of the embodiment of the present invention can be applied to other wireless communication networks, such as a Universal Mobile Telecommunications System (UMTS) network, or a 5G network, or a subsequent evolved network.
  • UMTS Universal Mobile Telecommunications System
  • FIG. 1 shows an example of a communication network employing D2D technology.
  • UEs UE1, UE2, UE3 located under the coverage of the base station can communicate with the base station, and each UE can also establish a D2D link for communication.
  • the UE when the UE is located at the cell edge (such as UE1), the communication quality between the UE and the base station is poor, and the communication quality between the UE2 or the UE3 may be better with the base station, so UE2 or UE3 may be utilized as the medium.
  • the node relays the communication between the UE1 and the base station, thereby ensuring the communication quality between the UE1 and the base station.
  • User equipment (English: User Equipment, UE for short) is a terminal device with communication functions, which may include a handheld device with wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to a wireless modem. Wait.
  • User equipment can be called different names in different networks, such as: terminal, mobile station, subscriber unit, platform, cellular phone, personal Digital assistants, wireless modems, wireless communication devices, handheld devices, laptops, cordless phones, wireless local loop stations, etc.
  • the present application is simply referred to as a user equipment or a UE.
  • a user equipment that provides a relay function may also be referred to as a user equipment relay (UE: UE-relay).
  • UE user equipment relay
  • FIG. 2 provides a schematic structural diagram of a user equipment.
  • the user equipment 100 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the entire user equipment, executing software programs, and processing data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • Those skilled in the art can understand that the structure of the user equipment shown in FIG. 2 can be applied to UE1, UE2, and UE3 in FIG.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 2 shows only one memory and processor for ease of illustration. In an actual user device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process communication protocols and communication data, and the central processing unit is mainly used to control and execute the entire user equipment.
  • the processor in Figure 2 integrates the functions of the baseband processor and the central processing unit, as will be understood by those skilled in the art, at the baseband
  • the processor and the central processing unit can also be independent processors, interconnected by technologies such as a bus.
  • the user equipment may include multiple baseband processors to accommodate different network formats.
  • the user equipment may include multiple central processors to enhance its processing capabilities.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • central processing unit can also be described as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • an antenna having a transceiving function and a radio frequency circuit can be regarded as a transceiving unit of a user equipment, and a processor having a processing function is regarded as a processing unit of the user equipment.
  • the user equipment 100 includes a transceiver unit 101 and a processing unit 102.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 101 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 101 is regarded as a sending unit, that is, the transceiver unit 101 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit.
  • a base station (English: base station, referred to as BS), which may also be called a base station device, is a device deployed in a wireless access network to provide wireless communication functions.
  • a base station in an LTE network is called an evolved Node B (English: evolved NodeB, abbreviated as: eNB or eNodeB).
  • FIG. 3 provides a schematic structural diagram of a base station.
  • the base station shown in FIG. 3 may be a split base station.
  • the left side of FIG. 3 includes an antenna (English: antennas), a radio frequency unit (English: remote radio unit, RRU), and a baseband unit (English: baseband unit).
  • the distributed base station of the abbreviation: BBU), the base station shown in FIG. 3 may also be an integrated base station, for example, the small station shown in the right side of FIG. 3 (English name) Weigh: small cell).
  • a base station includes a 201 portion and a 202 portion.
  • Part 201 is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; the 202 part is mainly used for baseband processing and base station control.
  • Section 201 can be generally referred to as a transceiver unit, a transceiver, a transceiver circuit, a transceiver, and the like.
  • Section 202 can generally be referred to as a processing unit.
  • part 202 is the control center of the base station.
  • part 201 may include an antenna and a radio frequency unit, wherein the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 201 may be regarded as a receiving unit, and the device for implementing the transmitting function may be regarded as a transmitting unit, that is, the part 201 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • part 202 may include one or more boards, each board may include a processor and a memory, and the processor is configured to read and execute a program in the memory to implement Baseband processing functions and control of the base station. If multiple boards exist, the boards can be interconnected to increase processing power.
  • the functions of the 202 part and the 201 part can be implemented by the SoC technology, that is, by a base station function.
  • the chip realizes that the base station function chip integrates a processor, a memory, an antenna and the like, and the program of the base station related function is stored in the memory, and the program is executed by the processor to implement the related functions of the base station.
  • the UE2 can communicate with the base station through the UE2 through the D2D technology, that is, the uplink data and the downlink data of the UE1 can both interact with the base station through the UE2.
  • the UE2 may cause the signal quality between the UE2 and the base station or the UE1 to deteriorate due to the movement, or may cause a shutdown or a failure during the relaying process
  • the function of implementing the relay through the user equipment may be This can lead to a decline in the reliability of the network.
  • the embodiment of the present invention provides a data transmission method.
  • the UE sends uplink data to the base station through the UE-relay.
  • the UE relay When the UE relay is used to relay uplink data, it may also be called an uplink UE-relay or an uplink UE-relay. That is to say, the transmission path of the uplink data for the UE is UE ⁇ (uplink UE-relay) ⁇ BS.
  • the UE sends
  • the sending unit may be configured to send uplink data to the base station by using the UE-relay
  • the transceiver unit of the base station (or the receiving unit in the transceiver unit of the base station) may be configured to receive uplink data of the UE by using the UE-relay.
  • the UE receives downlink data sent by the base station.
  • the receiving unit of the UE may be configured to receive downlink data sent by the base station, and the transceiver unit of the base station (or the sending unit of the transceiver unit of the base station) may be configured to send downlink data to the UE.
  • the UE may receive downlink data sent by the base station from the base station, that is, the transmission path of the downlink data is BS ⁇ UE, and the uplink data transmission path is UE ⁇ uplink UE-relay ) ⁇ BS.
  • the uplink UE-relay may be any UE with relay function in the network, such as UE2 or UE3.
  • the uplink data transmission path and the downlink data transmission path between the UE and the base station are different. Only UE-relay is adopted in the uplink data link, which can reduce the impact of UE-relay on network reliability and improve network reliability using D2D technology.
  • the UE may also receive downlink data sent by the base station by using a UE-relay.
  • UE-relay is used to relay downlink data. It can also be called downlink UE-relay or downlink UE-relay. That is to say, in this example, the uplink data transmission path is UE ⁇ (uplink UE-relay) ⁇ BS, and the downlink data transmission path is BS ⁇ (downlink UE-relay) ⁇ UE.
  • the receiving unit of the UE may be configured to receive downlink data sent by the base station by using a UE-relay, and the transceiver unit of the base station (or a sending unit of the transceiver unit of the base station) may be configured to send the downlink.
  • the UE can still use the uplink UE-relay and the downlink UE-relay.
  • the base station performs uplink and downlink transmission, in other words, increases the communication distance between the UE and the base station.
  • the downlink UE-relay and the uplink UE-relay are undertaken by different user equipments.
  • the uplink UE-relay is different from other UEs of UE2, such as UE3.
  • different UE-relays are used as the uplink UE-relay and downlink UE-relay in the uplink and downlink transmissions, which can avoid the UE and the connection caused by the single UE-relay mobile or communication failure.
  • the impact of communication between base stations improves the reliability of networks using D2D technology.
  • the communication quality between the downlink UE-relay and the base station is better than the communication quality between the UE and the base station, for example, the quality of service (QoS) is good, so that the downlink transmission of the UE can be improved.
  • QoS quality of service
  • the invention is not limited thereto.
  • the distance between the UE and the uplink UE-relay may be smaller than the distance between the UE and the base station.
  • the transmission power required by the UE to send uplink data to the uplink UE-relay is smaller than the transmission power required to transmit uplink data to the base station, without considering other impact signal quality, thereby facilitating reduction of the The power consumption of the UE is achieved to save power.
  • the uplink UE-relay may send an uplink UE-relay downlink response, such as ACK/NACK, to the UE.
  • the receiving unit of the UE may be configured to receive the downlink response.
  • the response can also be expressed as a response.
  • the UE may send a response to the downlink data, such as ACK/NACK, to the downlink UE-relay.
  • the sending unit of the UE may be configured to send the response to the downlink UE-relay.
  • the communication between the UE and the user equipment relay may be unicast or broadcast.
  • the UE After receiving the downlink data sent by the base station, the UE sends a response of the downlink data to the base station on the PUCCH resource allocated by the base station to the UE, so that the base station can know that the response is sent by the UE for the downlink data.
  • the response can be understood as one of the uplink data that the UE sends to the base station.
  • the UE may send the first indication information to the uplink UE-relay, where the first indication information is used to indicate a PUCCH resource corresponding to the UE.
  • the sending unit of the UE may be configured to send the foregoing first indication information.
  • the PUCCH resource corresponding to the UE can be expressed as a PUCCH resource allocated to the UE or a resource allocated to the PUCCH of the UE.
  • the uplink UE-relay After receiving the PUCCH resource, the uplink UE-relay transmits the response of the UE to the base station by using the PUCCH resource. After the base station receives the response on the PUCCH resource, the base station It is considered to be the response of the UE to the downlink data.
  • the foregoing first indication information may include: n CCE and The n CCE is used to indicate the first control channel element (English: control channel element, CCE for short) in the physical downlink control channel (English: physical downlink control channel, PDCCH for short). Used to indicate a UE-specific PUCCH ACK/NACK offset or to indicate a PUCCH format 1a/1b start offset for the subframe set K2.
  • the foregoing first indication information may include: n ECCE, q , ⁇ ARO, and The n ECCE,q is used to indicate that the corresponding DCI is transmitted in the EPDCCH-PRB-Set q (Chinese: the PRB set q corresponding to the EPDCCH, where the EPDCCH is the enhanced PDCCH, and the Chinese expression is: the enhanced physical downlink control channel) (Chinese: downlink control information, English: downlink control information)
  • the first ECCE English: enhanced control channel element, English: enhanced control channel element
  • ⁇ ARO is used to indicate the HARQ-ACK resource corresponding to the DCI format
  • the value of the offset field (for the value of ⁇ ARO , refer to Table 1). Used to indicate the PUCCH resource start offset corresponding to the EPDCCH-PRB-Set q
  • Table 1 Mapping of ACK/NACK Resource offset Field in DCI format 1A/1B/1D/1/2A/2/2B/2C/2D to ⁇ ARO values (in downlink control information format 1A/1B/1D/1/2A/ The ACK/NACK resource offset field in 2/2B/2C/2D is mapped to the ⁇ ARO value)
  • the first indication information may include: n ECCE, q , ⁇ ARO , And n', where n ECCE, q , ⁇ ARO and See above for details, so I won't go into details here.
  • n' is used to indicate a value corresponding to an antenna port for centralized EPDCCH transmission (the value of specific n' can be referred to Table 2).
  • Table 2 Antenna port to use for localized EPDCCH transmission (antenna port used for centralized enhanced physical downlink control channel transmission)
  • the first indication information includes the above parameters n CCE , n ECCE,q , ⁇ ARO .
  • n CCE , n ECCE,q , ⁇ ARO For the specific meanings and usages of the 'n', refer to the content of the 10.1.2.1 of the 3GPP TS 36.213 v12.5.0 of the 3GPP, and no further details are provided here.
  • the first indication information includes the above parameter n CCE , n ECCE,q , ⁇ ARO , And n' can be used in the LTE FDD (Chinese: frequency division duplex) network.
  • the following parameters included in the first indication information can be used in the LTE TDD (Chinese: time division duplex) network.
  • the first indication information may include: M, m, n CCE and
  • the first indication information may include: n ECCE, q , m, And ⁇ ARO .
  • the first indication information may include: n ECCE, q , m,n', ⁇ ARO and
  • the first indication information includes parameters M, m, n CCE that can be used in the LTE TDD network.
  • n ECCE,q , m,n', ⁇ ARO parameters M, m, n CCE that can be used in the LTE TDD network.
  • n ECCE,q , m,n', ⁇ ARO parameters M, m, n CCE that can be used in the LTE TDD network.
  • n ECCE,q , m,n', ⁇ ARO For the specific meaning and usage of the content, refer to the content of the 10.1.3.1 chapter of the 3GPP standard 3GPP TS 36.213 v12.5.0, which is not described here.
  • the foregoing first indication information may further include An index indicating the CQI assigned to the UE.
  • the uplink UE-relay may send the response of the UE to the uplink data together with the CQI fed back by the UE to the base station.
  • the base station may delay the transmission time interval of m (transmission time)
  • the interval (TTI) is received on the PUCCH resource (or the response and periodic CQI).
  • the transceiver unit of the base station may be configured to receive the uplink data on the PUCCH resource, and further delay the m TTIs on the PUCCH resource. Receive the uplink data.
  • the m TTIs are greater than or equal to the time required for the user equipment to send the second indication information and the response to the downlink data to the uplink UE-relay. This has less impact on the HARQ process.
  • the base station After the uplink UE-relay forwards the uplink data of the UE to the base station, the base station sends a response to the uplink data.
  • the uplink data UE is sent to the base station, and the base station sends the response on the physical hybrid automatic repeat request indicator channel (PHICH) resource corresponding to the uplink UE-relay.
  • PHICH physical hybrid automatic repeat request indicator channel
  • the PHICH resource corresponding to the uplink UE-relay can be expressed as a PHICH resource allocated to the uplink UE-relay, or can be expressed as a PHICH resource configured for the uplink UE-relay.
  • the uplink UE-relay may inform the UE of its corresponding PHICH resource, and the UE may receive a response to the uplink data from the base station according to the PHICH resource.
  • the receiving unit of the UE may be configured to receive the second indication information from the uplink UE-relay, where the second indication information is used to indicate the PHICH resource corresponding to the uplink UE-relay.
  • the second indication information may include n DMRS and n DMRS is used to indicate the offset of the DMRS, An index indicating the smallest PRB for uplink transmission. It should be understood by those skilled in the art that since the UE directly receives the response from the base station, the response can be understood as one of the downlink data sent by the base station to the UE.
  • Uplink UE-relay is UE2, user equipment UE1 sends uplink data to the base station through UE2, and UE1 receives downlink data directly from the base station.
  • S501 The UE1 sends uplink data to the UE2.
  • the UE1 can send uplink data to the UE2 by means of unicast or broadcast.
  • S502 UE2 sends a response to the uplink data to UE1.
  • the response can be an ACK or a NACK.
  • UE1 may send the uplink data to UE2 again.
  • S503 The UE2 sends the uplink data to the base station.
  • the UE2 can send the uplink data to the base station by using the physical uplink shared channel (PUSCH) resource of the UE2.
  • PUSCH physical uplink shared channel
  • the PUSCH resource may be obtained by the UE2 through a scheduling (English: scheduling request, abbreviated as: SR) request.
  • SR scheduling request
  • S505 The base station sends a response to the uplink data.
  • the base station sends the above response according to the PHICH resource allocated to UE2.
  • the above response sent by the base station on the PHICH resource may be received by UE2 (see S5051) or may be received by UE1 (see S504 and S5052).
  • S5051 UE2 receives a response of the base station to the uplink data on the PHICH resource allocated by the base station to the UE2.
  • S504 UE2 sends second indication information to UE1, where the second indication information is used to indicate The above PHICH resources.
  • the second indication information is used to indicate The above PHICH resources.
  • UE1 can receive a response from the base station to the uplink data on the PHICH resource.
  • the second indication information reference may be made to the second indication information in FIG. 4, and details are not described herein.
  • S5052 UE1 receives a response of the base station to the uplink data on the PHICH resource allocated by the base station to the UE2.
  • S401 A specific embodiment of S401 is exemplarily given in the following S506-S510.
  • the base station sends downlink data to the UE1.
  • the base station sends downlink data to the UE1 through a physical downlink shared channel (PDSCH) resource.
  • PDSCH physical downlink shared channel
  • S507 The UE1 sends the first indication information to the UE2.
  • the first indication information is used to indicate the PUCCH resource corresponding to the UE1, that is, the PUCCH resource configured to the UE1.
  • the first indication information reference may be made to the first indication information in FIG. 4, and details are not described herein.
  • S508 The UE1 sends a response to the downlink data to the UE2.
  • the UE1 may also send the periodic CQI to the UE2.
  • the UE1 may send the second indication information, the response to the downlink data, or the periodic CQI to the UE2 by means of broadcast or unicast.
  • S509 UE2 sends a response to the first indication information, a response to the response to the downlink data, or a response of the periodic CQI to the UE1.
  • S510 The UE2 sends a response of the UE1 to the downlink data to the base station.
  • the UE2 sends a response of the UE1 to the downlink data to the base station according to the PUCCH resource configured to be sent to the UE1.
  • the uplink and downlink data are transmitted through different transmission paths, which can reduce the impact of the relay of the user equipment on the transmission reliability.
  • the base station can also contact the user through the downlink.
  • the device can be used for subsequent remediation and improves the reliability of the network.
  • Scenario B Downlink UE-relay is UE3, uplink UE-realy is UE2, and UE1 passes UE2.
  • the uplink data is sent to the base station, and the downlink data is received by the UE3 from the base station, where the UE1 may be located within the coverage of the base station or outside the coverage of the base station.
  • S601 The UE1 sends uplink data by using the UE2.
  • the UE1 can send the uplink data through the UE2.
  • S501-S505 which is not described here.
  • S602-S605 exemplarily gives one of the specific embodiments of S401.
  • the base station sends downlink data to the UE3.
  • S602 sends downlink data to UE3 through a PDSCH resource.
  • the UE3 sends a response of the UE3 to the downlink data to the base station.
  • the UE3 may send a response to the downlink data to the base station according to the PUCCH resource configured to the UE3.
  • S604 The UE3 sends the downlink data to the UE1.
  • the UE3 may send the downlink data to the UE1 by means of broadcast or unicast.
  • S605 UE1 sends a response of UE1 to the downlink data to UE3.
  • the uplink data and the downlink data of the user equipment are respectively forwarded by different user equipments, which can reduce the impact on the network due to the fault of a single user equipment, and improve the reliability of the network.
  • the embodiment of the present invention further provides a user equipment, and the structure thereof can refer to FIG. 2, and the mechanism for implementing the purpose of the embodiment of the present invention can refer to the UE1 in the foregoing embodiment, and details are not described herein.
  • a person skilled in the art may also provide a user equipment, which is a user equipment relay.
  • the structure of the user equipment may be referred to FIG. 2, and the mechanism for implementing the purpose of the embodiment of the present invention may refer to the UE2 in the foregoing embodiment. I will not repeat them here.
  • a person skilled in the art may also provide a base station, and the structure thereof may be referred to FIG. 3.
  • the mechanism for implementing the purpose of the embodiment of the present invention may refer to the base station in the foregoing embodiment, and details are not described herein.
  • the embodiment of the present invention further provides a system for data transmission, which may be used to implement the purposes of the embodiments of the present invention.
  • the system may include UE1 and UE2, and may further include a base station or UE3.
  • the mechanism for implementing the method provided by the embodiment of the present invention can be referred to the foregoing embodiment, and details are not described herein.
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present invention may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium may be disposed in an ASIC, and the ASIC may be disposed in the UE. Alternatively, the processor and the storage medium may also be located in different components in the UE.
  • the above described functions of the embodiments of the present invention may be hard Implemented in any combination of software, firmware, or all of these. If implemented in software, these functions may be stored on a computer readable medium or transmitted as one or more instructions or code to a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
  • the storage medium can be any available media that any general purpose or special computer can access.
  • Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general purpose or special processor.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote source through a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in the defined computer readable medium.
  • DSL digital subscriber line
  • the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种数据传输方法。该方法包括:用户设备通过上行用户设备中继向基站发送上行数据;该用户设备从该基站接收下行数据,或者该用户设备通过下行用户设备中继从该基站接收下行数据。通过不同的传输路径传输分别进行上行传输和下行传输,可以减少由于用户设备中继故障等原因对网络的影响,提高了网络的可靠性。

Description

一种数据传输方法、用户设备和基站 技术领域
本发明涉及通信技术领域,特别是涉及一种数据传输方法、用户设备和基站。
背景技术
随着无线技术的发展,为了缓解网络的负荷,提出了设备到设备(英文:Device-to-Device,简称:D2D)通信技术。通过D2D通信技术(简称:D2D技术)可以使在一定距离范围内的用户设备(英文:user equipment,简称:UE)之间直接进行通信,而不必通过第三方设备,例如基站,进行中转。如图1所示,在基站覆盖范围内,基站可以通过蜂窝链路分别与UE1,UE2和UE3进行通信,当采用D2D技术后,UE1可以直接通过D2D通信链路(也可以称为Slide Link,简称:SL)与UE2或UE3进行通信,UE2可以通过SL直接与UE1或者UE3进行通信,UE3可以通过SL直接与UE1或者UE2进行通信。
在D2D技术中,为了提高网络的通信能力,提出了用户设备作为中继节点的想法。然而如何在采用D2D技术的网络中提高通信的可靠性丞待解决。
发明内容
本发明实施例提供一种数据传输方法、用户设备和基站,用于提高采用D2D技术的网络的可靠性。
第一方面,本发明实施例提供一种数据传输方法,包括:用户设备(英文:user equipment,简称:UE)通过上行用户设备中继(英文:uplink UE-relay)向基站发送上行数据,所述UE从所述基站接收下行数据,或者所述UE通过下行用户设备中继(英文:downlink UE-relay)从所述基站接收下行数据。
本领域技术人员可以理解,从基站接收下行数据意思是指不通过用户设备中继直接从基站接收下行数据。
在一个可能的设计中,该方法还包括:所述UE发送第一指示信息至所述uplink UE-relay,所述第一指示信息用于指示与所述UE对应的上行传输资源,以使所述uplink UE-relay根据所述上行传输资源发送所述上行数据至所述基站。uplink UE-relay利用UE对应的上行传输资源传输上行数据,可以使基站不感知上行数据是uplink UE-relay发送的,避免了基站的额外处理,节约了基站的开销。
可选的,所述上行传输资源包括物理上行控制信道(英文:physical uplink control channel,简称:PUCCH)资源;所述第一指示信息包括nCCE以及
Figure PCTCN2015086807-appb-000001
其中,nCCE用于指示物理下行控制信道(英文:physical downlink control channel,简称:PDCCH)中用于指示下行传输的第一个控制信道元素(英文:control channel element,简称:CCE)编号,
Figure PCTCN2015086807-appb-000002
用于指示UE专用PUCCH ACK/NACK(英文全称:acknowledgement/negative acknowledgement,中文:应答或者否定应答)资源偏置或者用于指示用于子帧集K2的PUCCH格式1a/1b起始偏置。通过UE的PUCCH资源,uplink UE-relay能够将UE对下行数据的应答以UE的身份发送至基站,使基站能立即获知是UE对该下行数据的应答,这样对现有的混合自动重传请求(英文:hybrid automatic repeat request,简称:HARQ)流程影响较小。
可选的,上述第一指示信息还可以包括
Figure PCTCN2015086807-appb-000003
于指示分配给UE的信道质量指示(英文:channel quality indicator,简称:CQI)的索引,根据
Figure PCTCN2015086807-appb-000004
uplink UE-relay可以在该PUCCH资源上反馈UE的周期性CQI至基站。
可选的,对于不同的上行传输资源,第一指示信息包括的参数也不同,这些参数将在实施例中做详细介绍。
可选的,所述上行数据是所述基站延迟m个传输时间间隔(英文:transmission time interval,简称:TTI)后根据所述PUCCH资源接收的;其中,所述m为正整数。可选地,所述m个TTI大于或等于所述UE发送所述第一指示信息以及所述上行数据至所述uplink UE-relay所花费的时间。通过延迟m个TTI接收,有利于提高 基站从uplink UE-relay正确接收上行数据的概率。
在另一种可能的设计中,该方法还包括:所述UE从所述uplink UE-relay接收第二指示信息,所述第二指示信息用于指示与所述uplink UE-relay对应的下行传输资源;所述UE从所述基站接收所述下行数据包括:所述UE根据所述下行传输资源从所述基站接收所述下行数据。
可选的,所述下行传输资源包括PHICH资源;所述第二指示信息包括nDMRS
Figure PCTCN2015086807-appb-000005
其中,nDMRS用于指示DMRS的偏置,
Figure PCTCN2015086807-appb-000006
用于指示进行上行传输的最小PRB的索引。
UE获知uplink UE-relay对应的下行传输资源后,可以直接从基站接收基站对上行数据的应答,而避免由uplink UE-relay转发该应答,进一步提高了网络的可靠性。
在另一种可能的设计中,该方法还包括:所述UE从所述uplink UE-relay接收所述uplink UE-relay对所述上行数据的应答。通过该应答可以使得UE获知是否正确将上行数据发送至uplink UE-relay,以便UE决定是否重发上行数据,因此提高了传输上行数据的可靠性。
在另一种可能的设计中,该方法还包括:所述UE发送所述UE对所述下行数据的应答至所述downlink UE-relay。通过该应答可以使得downlink UE-relay获知是否成功发送了下行数据至UE,以便决定是否重发,增加了传输下行数据的可靠性。
第二方面,本发明实施例提供了一种UE,其包含用于执行第一方面的方法中UE的行为相对应的模块。所述模块可以是软件和/或是硬件。
在一种可能的设计中,UE包括处理器和存储器,所述处理器其被配置为支持UE执行第一方面的方法中相应的功能。所述存储器用于与处理器耦合,其保存UE必要的程序指令和数据。
第三方面,本发明实施例提供一种数据传输方法,包括:基站通过uplink UE-relay接收UE的上行数据;所述基站发送下行数据至所述UE,或者所述基 站通过downlink UE-relay向所述UE发送下行数据。
在一种可能的设计中,所述基站通过uplink UE-relay接收UE的上行数据包括:所述基站根据所述UE对应的上行传输资源从所述uplink UE-relay接收所述UE的所述上行数据。基站在UE对应的上行传输资源上接收到uplink UE-relay转发的上行数据后会认为该上行数据是UE发送的,避免了基站通过额外的处理来识别上行数据的来源。
在另一种可能的设计中,所述基站根据所述UE对应的上行传输资源从所述uplink UE-relay接收所述UE的所述上行数据包括:所述基站延迟m个TTI后根据所述上行传输资源从所述uplink UE-relay接收所述上行数据;其中,所述m为正整数。通过延迟m个TTI,可以提高基站接收该上行数据的成功率。
在第四方面本发明实施例提供了一种基站,其包含用于执行第三方面的方法中基站的行为相对应的模块。所述模块可以是软件和/或是硬件。
在一种可能的设计中,基站包括处理器和存储器,所述处理器其被配置为支持基站执行第三方面的方法中相应的功能。所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
第五方面,本发明实施例提供一种数据传输方法,包括:用户设备中继从用户设备接收上行数据;所述用户设备中继发送所述上行数据至基站;所述用户设备中继发送第二指示信息至所述用户设备,所述第二指示信息用于与所述用户设备中继对应的PHICH资源,以使所述用户设备根据所述PHICH资源从所述基站接收对所述上行数据的应答。
可选的,第二指示信息的内容可以参见第一方面中的相关内容。
在一种可能的设计中,该方法还包括:所述用户设备中继发送所述用户设备中继对所述上行数据的应答至所述用户设备。通过该步骤可以使得用户设备获知是否成功发送上行数据至用户设备中继,以便于用户设备决定是否重发上行数据,提高了上行数据传输的可靠性。
第六方面,本发明实施例提供一种用户设备中继。其包含用于执行第五方 面的方法中uplink UE-relay的行为相对应的模块。所述模块可以是软件和/或是硬件。
在一种可能的设计中,该用户设备中继包括处理器和存储器,所述处理器其被配置为支持该用户设备中继执行第五方面的方法中相应的功能。所述存储器用于与处理器耦合,其保存该用户设备中继必要的程序指令和数据。
第七方面,本发明实施例提供一种数据传输方法,包括:用户设备中继从用户设备接收第一指示信息;其中,所述第一指示信息用于指示与所述用户设备对应的PUCCH资源;所述用户设备中继从所述用户设备接收上行数据;所述用户设备中继根据所述PUCCH资源发送所述上行数据至所述基站。
可选的,第一指示信息的内容可以参见第一方面的相关内容。
在一种可能的设计中,该方法还包括所述用户设备中继发送对所述上行数据的应答至所述用户设备。通过该步骤可以使得用户设备获知是否成功发送上行数据至用户设备中继,以便于用户设备决定是否重发上行数据,提高了上行数据传输的可靠性。
第八方面,本发明实施例提供一种用户设备中继。其包含用于执行第七方面的方法中uplink UE-relay的行为相对应的模块。所述模块可以是软件和/或是硬件。
在一种可能的设计中,该用户设备中继包括处理器和存储器,所述处理器其被配置为支持该用户设备中继执行第七方面的方法中相应的功能。所述存储器用于与处理器耦合,其保存该用户设备中继必要的程序指令和数据。
第九方面,本发明实施例提供一种数据传输系统,包括上述的UE和uplink UE-relay。该系统的运行机制可以参考上述方面的相关内容。
在一种可能的设计中,该系统还可以包括上述方面中的基站。
第十方面,本发明实施例提供了一种计算机存储介质,其包含用于执行上述方面所设计的程序。
在以上各个方面中,UE发送上行数据至uplink UE-relay所需的发射功率小于 UE直接发送上行数据至基站所需的发射功率,因此可以减少UE的功耗。优选地,UE与uplink UE-relay的距离要小于UE与基站的距离。可选的,UE与uplink UE-relay之间,或者UE与downlink UE-relay之间可以采用单播或者广播的方式进行通信,本发明实施例对此不作限制。
本发明实施例提供的上述方案,通过不同的传输路径传输分别进行上行传输和下行传输,可以减少由于UE-relay故障等原因对网络的影响,提高了网络的可靠性。另外,从基站直接接收下行数据,通过UE-realy传输上行数据,UE可以使用较小的发射功率进行数据发送,减少了UE的功耗,提高了UE的续航能力。另外,在接近基站覆盖范围边缘,由于下行传输质量要优于上行传输质量,将UE与基站直接进行的上行传输切换为通过UE-relay进行中转,可以提高UE的上行传输质量。另外,受限于UE的最大发射功率,可能UE的上行传输距离小于基站覆盖范围,因此将UE与基站直接进行的上行传输切换为通过UE-relay进行中转可以增加UE的上行传输的距离。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种采用D2D技术的无线网络的示意图;
图2为本发明实施例提供的一种用户设备的结构示意图;
图3为本发明实施例提供的一种基站的结构示意图;
图4为本发明实施例提供的一种数据传输方法的示意图;
图5为本发明实施例提供的另一种数据传输方法的示意图;
图6为本发明实施例提供的又一种数据传输方法的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
为了便于理解,本发明实施例以第三代合作伙伴计划(英文:3rd Generation Partnership Project,简称:3GPP)定义的长期演进(英文:Long Term Evoluation,简称:LTE)网络为例进行说明。3GPP是一个致力于发展无线通信网络的项目。除了实施例中特别说明的地方,本发明实施例中的LTE网络遵循3GPP的标准。本领域技术人员可以理解,本发明实施例的方案可以运用到其他无线通信网络,例如:通用移动通讯系统(英文:Universal Mobile Telecommunications System,简称:UMTS)网络,或者5G网络,或者后续演进网络。
图1示出了一个采用D2D技术的通信网络示例。如图1所示,位于基站覆盖下的UE(UE1,UE2,UE3)可以与基站之间进行通信,各个UE之间也可以建立D2D链路进行通信。例如,图1中,当UE位于小区边缘(如UE1),UE与基站之间的通信质量较差,而UE2或者UE3可能与基站之间的通信质量较好,因此可以利用UE2或者UE3作为中继节点来中转UE1与基站之间的通信,从而保证UE1与基站之间的通信质量。
为便于理解下面对本申请中涉及到的一些名词做些说明。
用户设备(英文:User Equipment,简称:UE)是一种具有通信功能的终端设备,可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中用户设备可以叫做不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人 数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。为描述方便,本申请中简称为用户设备或UE。
提供中继功能的用户设备也可以称为用户设备中继(英文:user equipment relay,简称UE-relay)。
图2提供了一种用户设备的结构示意图。为了便于说明,图2仅示出了用户设备的主要部件。如图2所示,用户设备100包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个用户设备进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。本领域技术人员可以理解,图2所示的用户设备的结构可以适用于图1中的UE1、UE2和UE3。
当用户设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图2仅示出了一个存储器和处理器。在实际的用户设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个用户设备进行控制,执行软件程序,处理软件程序的数据。图2中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处 理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,用户设备可以包括多个基带处理器以适应不同的网络制式。本领域技术人员可以理解,用户设备可以包括多个中央处理器以增强其处理能力。
本领域技术人员可以理解,用户设备的各个部件可以通过各种总线连接。
本领域技术人员可以理解,基带处理器也可以表述为基带处理电路或者基带处理芯片。
本领域技术人员可以理解,中央处理器也可以表述为中央处理电路或者中央处理芯片。
本领域技术人员可以理解,对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在发明实施例中,可以将具有收发功能的天线和射频电路视为用户设备的收发单元,将具有处理功能的处理器视为用户设备的处理单元。如图2所示,用户设备100包括收发单元101和处理单元102。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元101包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
基站(英文:base station,简称:BS),也可称为基站设备,是一种部署在无线接入网用以提供无线通信功能的设备。在LTE网络中的基站称为演进的节点B(英文:evolved NodeB,简称:eNB或者eNodeB)。
图3提供一种基站的结构示意图。图3所示的基站可以是分体式基站,例如图3靠左示出了包括天线(英文:antennas)、无线射频单元(英文:remote radio unit,简称:RRU)和基带单元(英文:baseband unit,简称:BBU)的分布式基站,图3所示的基站也可以是一体式基站,例如图3靠右示出的小站(英文名 称:small cell)。一般而言,基站包括201部分以及202部分。201部分主要用于射频信号的收发以及射频信号与基带信号的转换;202部分主要用于进行基带处理,对基站进行控制等。201部分通常可以称为收发单元、收发机、收发电路、收发器等。202部分通常可以称为处理单元。通常202部分是基站的控制中心。
如图3所示,作为一种可选的实施方式,201部分可以包括天线和射频单元,其中射频单元主要用于进行射频处理。可选的,可以将201部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即201部分包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
如图3所示,作为一种可选的实施方式,202部分可以包括一个或多个单板,每个单板可以包括处理器和存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。
作为另一种可选的实施方式,随着片上系统(英文:System-on-chip,简称:SoC)技术的发展,可以202部分和201部分的功能由SoC技术实现,即由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。
在如图1所示的网络中,通过D2D技术,UE1可以通过UE2与基站进行通信,即UE1的上行数据和下行数据可以都通过UE2与基站进行交互。考虑到UE2可能会因为移动导致UE2与基站或者与UE1之间的信号质量变差,也可能在进行中继的过程中出现关机或者故障等情况,因此通过用户设备来实现中继的功能有可能会导致网络的可靠性下降。
本发明实施例提出一种数据传输方法,如图4所示,在S401部分,UE通过UE-relay向基站发送上行数据。当UE relay用于中继上行数据时,也可以叫做上行UE-relay或者uplink UE-relay。也就是说对于UE的上行数据的传输路径是UE→(uplink UE-relay)→BS。作为S401的一种可选的实现方式,UE的发 送单元可以用于通过UE-relay向基站发送上行数据,基站的收发单元(或者是基站的收发单元中的接收单元)可以用于通过UE-relay接收UE的上行数据。
在S402部分,所述UE接收基站发送的下行数据。作为S402的一种可选的实现方式,UE的接收单元可以用于接收基站发送的下行数据,基站的收发单元(或者是基站的收发单元的发送单元)可以用于发送下行数据至UE。
具体的,在一个示例中,所述UE可以从所述基站接收所述基站发送的下行数据,也就是说下行数据的传输路径是BS→UE,上行数据传输路径是UE→(uplink UE-relay)→BS。当本示例应用于图1所示的网络中,假设UE1作为图3中的UE,所述uplink UE-relay可以是网络内任何一个具有中继功能的UE,如UE2或者UE3。在该示例中,所述UE与所述基站之间的上行数据传输路径和下行数据传输路径不相同。仅上行数据链路中采用UE-relay,从而可以减少UE-relay对网络可靠性的影响,提高采用D2D技术的网络可靠性。
在另外一个示例中,所述UE也可以通过UE-relay来接收所述基站发送的下行数据。当UE-relay用于中继下行数据时。也可以叫做下行UE-relay或者downlink UE-relay。也就是说,在该示例中,上行数据传输路径是UE→(uplink UE-relay)→BS,下行数据传输路径是BS→(downlink UE-relay)→UE。作为一种可选的实施方式,UE的接收单元可以用于通过UE-relay来接收所述基站发送的下行数据,基站的收发单元(或者是基站的收发单元的发送单元)可以用来发送下行数据至downlink UE-relay。另外,在该示例中,由于UE的上下行传输分别通过uplink UE-relay和downlink UE-relay来进行,当UE离开基站的覆盖范围时,UE仍然可以通过uplink UE-relay和downlink UE-relay与基站进行上下行传输,换而言之增加了UE与基站之间的通信距离。
其中,所述downlink UE-relay与所述uplink UE-relay是由不同的用户设备所承担。例如,当本示例应用于图1所示的网络中,假设UE1作为UE,downlink UE-relay是UE2,那么uplink UE-relay是不同与UE2的其他UE,如UE3。在该示例中,上下行传输中采用不同的UE-relay分别作为uplink UE-relay和downlink UE-relay,可以避免因单个UE-relay的移动或者通信故障带来对UE与 基站之间通信的影响,从而提高了采用D2D技术的网络的可靠性。
较佳的,所述downlink UE-relay与所述基站之间的通信质量比UE与基站之间的通信质量好,例如服务质量(Quality of Service,QoS)较好,这样可以改善UE的下行传输的质量。当然本发明并不限定于此。
较佳的,所述UE与所述uplink UE-relay之间的距离可以小于所述UE与基站之间的距离。这样,在不考虑其他影响信号质量的情况下,所述UE发送上行数据至所述uplink UE-relay所需的发射功率小于发送上行数据至所述基站所需的发射功率,从而有利于减少所述UE的功耗,达到省电的效果。可选的,uplink UE-relay收到UE发送的上行数据后,可以发送uplink UE-relay对该上行数据的下行应答,例如ACK/NACK,至UE。作为一种可选的实施方式,UE的接收单元可以用于接收该下行应答。本领域技术人员可以理解,应答也可以表述为响应。
可选的,当UE收到downlink UE-relay转发的下行数据后,可以发送对该下行数据的应答,例如ACK/NACK,至downlink UE-relay。示例性的,UE的发送单元可以用于发送该应答至downlink UE-relay。
可选的,UE与用户设备中继(例如:uplink UE-relay,downlink UE-relay)之间的通信可以采用单播或者广播的方式。
当UE接收到基站发送的下行数据后,UE要在基站分配给UE的PUCCH资源上发送该下行数据的应答至基站,以便基站能够获知该应答是该UE针对该下行数据发送的。本领域技术人员应当理解,该应答可以理解为UE发送至基站的上行数据的一种。
优选的,UE可以向uplink UE-relay发送第一指示信息,该第一指示信息用于指示与该UE对应的PUCCH资源。作为一种可选的实施方式,UE的发送单元可以用于发送上述第一指示信息。本领域技术人员可以理解,与该UE对应的PUCCH资源可以表述为分配给该UE的PUCCH资源,或者配置给该UE的PUCCH的资源。uplink UE-relay接收到该PUCCH资源后,利用该PUCCH资源发送该UE的应答至基站。当基站在该PUCCH资源上接收到该应答后,基站 会认为是该UE发送的对该下行数据的应答。
作为一种可选的实施方式,上述第一指示信息可以包括:nCCE
Figure PCTCN2015086807-appb-000007
其中,nCCE用于指示物理下行控制信道(英文:physical downlink control channel,简称:PDCCH)中用于指示下行传输的第一个控制信道元素(英文:control channel element,简称:CCE)编号,
Figure PCTCN2015086807-appb-000008
用于指示UE专用PUCCH ACK/NACK偏置或者用于指示用于子帧集K2的PUCCH格式1a/1b起始偏置。
作为一种可选的实施方式,上述第一指示信息可以包括:nECCE,q,ΔARO
Figure PCTCN2015086807-appb-000009
其中,nECCE,q用于指示在EPDCCH-PRB-Set q(中文:EPDCCH对应的PRB集合q,其中EPDCCH为enhanced PDCCH,中文表述为:增强型物理下行控制信道)中用于传输对应的DCI(中文:下行控制信息,英文:downlink control information)的第一个ECCE(中文:增强控制信道元素,英文:enhanced control channel element)编号,ΔARO用于指示对应于DCI格式中的HARQ-ACK资源偏置域的值(具体ΔARO的值可以参考表1),
Figure PCTCN2015086807-appb-000010
用于指示EPDCCH-PRB-Set q对应的PUCCH资源起始偏置
Figure PCTCN2015086807-appb-000011
表1:Mapping of ACK/NACK Resource offset Field in DCI format 1A/1B/1D/1/2A/2/2B/2C/2D toΔAROvalues(在下行控制信息格式1A/1B/1D/1/2A/2/2B/2C/2D中的ACK/NACK资源偏置域映射到ΔARO值)
作为一种可选的实施方式,第一指示信息可以包括:nECCE,q,ΔARO
Figure PCTCN2015086807-appb-000012
和n',其中nECCE,q,ΔARO
Figure PCTCN2015086807-appb-000013
参见上述内容,此处不做赘述。其中n'用于指示对应于用于集中式EPDCCH传输的天线端口的值(具体n'的值可以参考表2)。
Figure PCTCN2015086807-appb-000014
表2:Antenna port to use for localized EPDCCH transmission(集中式增强物理下行控制信道传输所使用的天线端口)
示例性的,第一指示信息包括的上述这些参数nCCE
Figure PCTCN2015086807-appb-000015
nECCE,q,ΔARO
Figure PCTCN2015086807-appb-000016
和n'的具体含义以及使用方式可以参见3GPP的标准3GPP TS 36.213v12.5.0中第10.1.2.1章节的内容,此处不做赘述。
本领域技术人员可以理解,第一指示信息包括的上述参数nCCE
Figure PCTCN2015086807-appb-000017
nECCE,q,ΔARO
Figure PCTCN2015086807-appb-000018
和n'可以运用在LTE FDD(中文:频分双工,英文:frequency division duplex)网络中。
本领域技术人员可以理解,第一指示信息包括的以下参数可以运用在LTE TDD(中文:时分双工,英文:time division duplex)网络中。
作为一种可选的实施方式,第一指示信息可以包括:M,m,nCCE
Figure PCTCN2015086807-appb-000019
作为一种可选的实施方式,第一指示信息可以包括:nECCE,q
Figure PCTCN2015086807-appb-000020
m,
Figure PCTCN2015086807-appb-000021
和ΔARO
作为一种可选的实施方式,第一指示信息可以包括:nECCE,q
Figure PCTCN2015086807-appb-000022
m,n',ΔARO
Figure PCTCN2015086807-appb-000023
示例性的,第一指示信息包括的可以运用在LTE TDD网络中的参数M,m,nCCE
Figure PCTCN2015086807-appb-000024
nECCE,q
Figure PCTCN2015086807-appb-000025
m,n',ΔARO
Figure PCTCN2015086807-appb-000026
的具体含义以及使用方式可以参见3GPP的标准3GPP TS 36.213v12.5.0中第10.1.3.1章节的内容,此处不做赘述。
可选的,当UE需要在发送应答至基站的同时发送周期性信道质量指示(英 文:channel quality indication,简称CQI)至基站的情况下,上述第一指示信息还可以包括
Figure PCTCN2015086807-appb-000027
用于指示分配给UE的CQI的索引。通过该第一指示信息,uplink UE-relay可以将UE对上行数据的应答和UE反馈的CQI一起发送至基站。
优选的,为了能够使基站能够正确接收uplink UE-relay在PUCCH资源上转发的对下行数据的上述应答(或者是上述应答和周期性CQI),基站可以延迟m个传输时间间隔(英文:transmission time interval,简称:TTI)后在该PUCCH资源上接收该应答(或者是该应答和周期性CQI)。本领域技术人员可以理解,这里的应答(或者是该应答和周期性CQI)可以理解为是一种UE发送至基站的上行数据。
作为一种可选的实施方式,基站的收发单元(或者是基站的收发单元的接收单元)可以用于在该PUCCH资源上接收该上行数据,进一步的可以延迟m个TTI后在该PUCCH资源上接收该上行数据。
优选的,m个TTI大于或等于用户设备将上述第二指示信息和对下行数据的应答发送至uplink UE-relay所需的时间。这样对HARQ流程的影响较小。
当uplink UE-relay转发UE的上行数据至基站后,基站会对该上行数据发送应答。由于上行数据uplink UE-relay发送至基站的,基站会在uplink UE-relay对应的物理混合自动重传请求指示信道(英文:physical hybrid automatic repeat request indicator channel,简称:PHICH)资源上发送该应答,以便uplink UE-relay可以接收到该应答。本领域技术人员可以理解,与uplink UE-relay对应的PHICH资源,可以表述为分配给uplink UE-relay的PHICH资源,或者可以表述为配置给uplink UE-relay的PHICH资源。
优选的,为了能够让UE直接从基站接收基站对上行数据的应答,uplink UE-relay可以将其对应的PHICH资源告知UE,UE可以根据该PHICH资源从基站接收对该上行数据的应答。例如,UE的接收单元可以用于从uplink UE-relay接收第二指示信息,该第二指示信息用于指示uplink UE-relay对应的PHICH资 源。其中,该第二指示信息可以包括nDMRS以及
Figure PCTCN2015086807-appb-000028
nDMRS用于指示DMRS的偏置,
Figure PCTCN2015086807-appb-000029
用于指示进行上行传输的最小PRB的索引。本领域技术人员应当理解,由于UE直接从基站接收了该应答,因此该应答可以理解为是基站发送至UE的下行数据的一种。
以下结合图1所示的网络,对图4所示的方法在场景A和场景B中做进一步说明。
场景A:uplink UE-relay为UE2,用户设备UE1通过UE2发送上行数据至基站,以及UE1直接从基站接收下行数据。
如图5所示:
S501:UE1发送上行数据至UE2。
其中,UE1可以通过单播或者广播的方式发送上行数据至UE2。
可选的,S502:UE2发送对上行数据的应答至UE1。
示例性的,该应答可以是ACK或者NACK。当UE1收到NACK时,UE1可以再次发送上行数据至UE2。
S503:UE2将上行数据发送至基站。
示例性的,UE2可以通过基站配置给UE2的物理上行共享信道(英文:physical uplink shared channel,简称:PUSCH)资源将上行数据发送给基站。
示例性的,该PUSCH资源可以是UE2通过调度(英文:scheduling request,简称:SR)请求获得的。
S505:基站发送对上述上行数据的应答。
示例性的,基站根据分配给UE2的PHICH资源发送上述应答。
基站在PHICH资源上发送的上述应答,可以被UE2接收(参见S5051),也可以被UE1接收(参见S504和S5052)。
可选的,S5051:UE2在基站分配给UE2的PHICH资源上接收基站对上行数据的应答。
可选的,S504:UE2发送第二指示信息至UE1,该第二指示信息用于指示 上述PHICH资源。这样,UE1就可以在该PHICH资源上接收基站对该上行数据的应答。该第二指示信息可以参考图4中的第二指示信息,此处不做赘述。
可选的,S5052:UE1在基站分配给UE2的PHICH资源上接收基站对上行数据的应答。
上述S501-S505示例性的给出了S402的一种具体实施方式。
以下S506-S510示例性的给出了S401的一种具体实施方式。
S506:基站发送下行数据至UE1;
示例性的,基站通过下行共享物理信道(英文:physical downlink shared channel,简称:PDSCH)资源发送下行数据至UE1。
S507:UE1发送第一指示信息至UE2。
其中,该第一指示信息用于指示UE1对应的PUCCH资源,即配置给UE1的PUCCH资源。该第一指示信息可以参考图4中的第一指示信息,此处不做赘述。
S508:UE1发送对下行数据的应答至UE2。
可选的,UE1还可以将周期性CQI发送至UE2。
S507和S508之间没有先后顺序,UE1可以通过广播或者单播的方式将第二指示信息,对下行数据的应答,或者周期性CQI发送至UE2。
可选的,S509:UE2将对第一指示信息的应答,对对下行数据的应答的应答,或者周期性CQI的应答发送至UE1。
S510:UE2发送UE1对下行数据的应答至基站。
示例性的,UE2根据配置给UE1的PUCCH资源发送UE1对下行数据的应答至基站。
通过图5所示方法的说明,可见将上下行数据通过不同的传输路径进行传输,可以减少用户设备中继对传输可靠性的影响,在上行出现故障的时候,基站还能通过下行联系到用户设备,从而可以进行后续的补救,提高了网络的可靠性。
场景B:downlink UE-relay为UE3,uplink UE-realy为UE2,UE1通过UE2 发送上行数据至基站,通过UE3从基站接收下行数据,其中UE1可以位于基站覆盖范围内或者基站覆盖范围外。
如图6所示:
S601:UE1通过UE2发送上行数据。
示例性的,UE1通过UE2发送上行数据的举例可以参见S501-S505,此处不做赘述。
示例性的,S602-S605示例性的给出了S401的具体实施方式之一。
S602:基站发送下行数据至UE3。
示例性的,S602通过PDSCH资源发送下行数据至UE3。
S603:UE3发送UE3对该下行数据的应答至基站。
示例性的,UE3可以根据配置给UE3的PUCCH资源发送对下行数据的应答至基站。
S604:UE3发送给下行数据至UE1。
示例性的,UE3可以通过广播或者单播的方式发送该下行数据至UE1。
可选的,S605:UE1发送UE1对该下行数据的应答至UE3。
本发明实施例通过不同的用户设备中继分别转发用户设备的上行数据和下行数据,可以减少由于单个用户设备中继故障等原因对网络的影响,提高了网络的可靠性。
本领域技术人员可以理解,本发明实施例还提供一种用户设备,其结构可以参考图2,其实现本发明实施例的目的的机制可以参考上述实施例中的UE1,此处不做赘述。
本领域技术人员可以理解,本发明实施例还提供一种用户设备,作为用户设备中继,其结构可以参考图2,其实现本发明实施例的目的的机制可以参考上述实施例中的UE2,此处不做赘述。
本领域技术人员可以理解,本发明实施例还提供一种基站,其结构可以参考图3,其实现本发明实施例的目的的机制可以参考上述实施例中的基站,此处不做赘述。
本领域技术人员可以理解,本发明实施例还提供一种数据传输的系统,以实现本发明实施例的目的,该系统可以包括UE1和UE2,进一步的还可以包括基站或者UE3。该系统实现本发明实施例提供的方法的机制可以参见上述实施例,在此不作赘述。
本领域技术任何还可以了解到本发明实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的范围。
本发明实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本发明实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于UE中。可选地,处理器和存储媒介也可以设置于UE中的不同的部件中。
在一个或多个示例性的设计中,本发明实施例所描述的上述功能可以在硬 件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、DVD、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本发明说明书的上述描述可以使得本领域技术任何可以利用或实现本发明的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本发明所描述的基本原则可以应用到其它变形中而不偏离本发明的发明本质和范围。因此,本发明所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本发明原则和所公开的新特征一致的最大范围。

Claims (20)

  1. 一种数据传输方法,其特征在于,包括:
    用户设备UE通过上行用户设备中继uplink UE-relay向基站发送上行数据;
    所述UE从所述基站接收下行数据,或者所述UE通过下行用户设备中继downlink UE-relay从所述基站接收下行数据。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    所述UE发送第一指示信息至所述uplink UE-relay,所述第一指示信息用于指示与所述UE对应的上行传输资源,以使所述uplink UE-relay根据所述上行传输资源发送所述上行数据至所述基站。
  3. 如权利要求2所述的方法,其特征在于,
    所述上行传输资源包括物理上行控制信道PUCCH资源;
    所述第一指示信息包括nCCE以及
    Figure PCTCN2015086807-appb-100001
    其中,nCCE用于指示物理下行控制信道PDCCH中用于指示下行传输的第一个控制信道元素CCE编号,
    Figure PCTCN2015086807-appb-100002
    用于指示UE专用PUCCH ACK/NACK资源偏置或者用于指示用于子帧集K2的PUCCH格式1a/1b起始偏置。
  4. 如权利要求1所述的方法,其特征在于,
    所述方法还包括:所述UE从所述uplink UE-relay接收第二指示信息,所述第二指示信息用于指示与所述uplink UE-relay对应的下行传输资源;
    所述UE从所述基站接收所述下行数据包括:所述UE根据所述下行传输资源从所述基站接收所述下行数据。
  5. 如权利要求4所述的方法,其特征在于,
    所述下行传输资源包括物理混合自动重传请求指示信道PHICH资源;
    所述第二指示信息包括nDMRS
    Figure PCTCN2015086807-appb-100003
    其中,nDMRS用于指示解调参考信号 DMRS的偏置,
    Figure PCTCN2015086807-appb-100004
    用于指示进行上行传输的最小物理资源块PRB的索引。
  6. 如权利要求1-5任一项所述的方法,其特征在于,还包括:
    所述UE从所述uplink UE-relay接收所述uplink UE-relay对所述上行数据的应答。
  7. 如权利要求1-6任一项所述的方法,其特征在于,当所述UE通过所述downlink UE-relay从所述基站接收所述下行数据时,所述方法还包括:
    所述UE发送所述UE对所述下行数据的应答至所述downlink UE-Relay。
  8. 一种数据传输方法,其特征在于,包括:
    基站通过上行用户设备中继uplink UE-relay接收用户设备UE的上行数据;
    所述基站发送下行数据至所述UE,或者所述基站通过下行用户设备中继downlink UE-relay向所述UE发送下行数据。
  9. 如权利要求8所述的方法,其特征在于,所述基站通过上行用户设备中继uplink UE-relay接收用户设备UE的上行数据包括:
    所述基站根据所述UE对应的上行传输资源从所述uplink UE-relay接收所述UE的所述上行数据。
  10. 如权利要求9所述的方法,其特征在于,所述基站根据所述UE对应的上行传输资源从所述uplink UE-relay接收所述UE的所述上行数据包括:
    所述基站延迟m个传输时间间隔TTI后根据所述上行传输资源从所述uplink UE-relay接收所述上行数据;其中,所述m为正整数。
  11. 一种用户设备,其特征在于,包括:
    处理器以及与所述处理器相关联的存储器;
    所述存储器包括用于被所述处理器执行的指令,所述指令用于运行以下步骤:
    通过上行用户设备中继uplink UE-relay向基站发送上行数据;
    从所述基站接收下行数据,或者所述UE通过下行用户设备中继downlink UE-relay从所述基站接收下行数据。
  12. 如权利要求11所述的用户设备,其特征在于,所述步骤还包括:
    发送第一指示信息至所述uplink UE-relay,所述第一指示信息用于指示与所述UE对应的上行传输资源,以使所述uplink UE-relay根据所述上行传输资源发送所述上行数据至所述基站。
  13. 如权利要求12所述的用户设备,其特征在于,
    所述上行传输资源包括物理上行控制信道PUCCH资源;
    所述第一指示信息包括nCCE以及
    Figure PCTCN2015086807-appb-100005
    其中,nCCE用于指示物理下行控制信道PDCCH中用于指示下行传输的第一个控制信道元素CCE编号,
    Figure PCTCN2015086807-appb-100006
    用于指示UE专用PUCCH ACK/NACK资源偏置或者用于指示用于子帧集K2的PUCCH格式1a/1b起始偏置。
  14. 如权利要求11所述的用户设备,其特征在于,
    所述步骤还包括:从所述uplink UE-relay接收第二指示信息,所述第二指示信息用于指示与所述uplink UE-realy对应的下行传输资源;
    所述从所述基站接收下行数据包括:根据所述下行传输资源从所述基站接收所述下行数据。
  15. 如权利要求14所述的用户设备,其特征在于,
    所述下行传输资源包括物理混合自动重传请求指示信道PHICH资源;
    所述第二指示信息包括nDMRS
    Figure PCTCN2015086807-appb-100007
    其中,nDMRS用于指示解调参考信号 DMRS的偏置,
    Figure PCTCN2015086807-appb-100008
    用于指示进行上行传输的最小物理资源块PRB的索引。
  16. 如权利要求11-15任一项所述的用户设备,其特征在于,
    所述步骤还包括从所述uplink UE-relay接收所述uplink UE-relay对所述上行数据的应答。
  17. 如权利要求11-16任一项所述的用户设备,其特征在于,当通过所述downlink UE-relay从所述基站接收所述下行数据时,所述步骤还包括发送所述用户设备对所述下行数据的应答至所述downlink UE-relay。
  18. 一种基站,其特征在于,包括:
    处理器以及和所述处理器相关联的存储器;
    所述存储器包括用于被所述处理器执行的指令,所述指令用于运行以下步骤:
    通过上行用户设备中继uplink UE-relay接收用户设备UE的上行数据;
    发送下行数据至所述UE,或者通过下行用户设备中继downlink UE-relay向所述UE发送下行数据。
  19. 如权利要求18所述的基站,其特征在于,
    所述通过uplink UE-relay接收UE的上行数据包括:根据所述UE对应的上行传输资源从所述uplink UE-relay接收所述UE的所述上行数据。
  20. 如权利要求19所述的基站,其特征在于,所述根据所述UE对应的上行传输资源从所述uplink UE-relay接收所述UE的所述上行数据包括:延迟m个传输时间间隔TTI后,根据所述上行传输资源从所述uplink UE-relay接收所述上行数据。
PCT/CN2015/086807 2015-08-12 2015-08-12 一种数据传输方法、用户设备和基站 WO2017024569A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22181731.5A EP4124168A1 (en) 2015-08-12 2015-08-12 Data transmission method, user equipment, and base station
PCT/CN2015/086807 WO2017024569A1 (zh) 2015-08-12 2015-08-12 一种数据传输方法、用户设备和基站
EP15900767.3A EP3324679A4 (en) 2015-08-12 2015-08-12 Data transmission method, user equipment and base station
CN202010403872.8A CN111741505A (zh) 2015-08-12 2015-08-12 一种数据传输方法、用户设备和基站
CN201580072970.5A CN107211339B (zh) 2015-08-12 2015-08-12 一种数据传输方法、用户设备和基站
US15/892,419 US10779284B2 (en) 2015-08-12 2018-02-09 Data transmission method, user equipment, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086807 WO2017024569A1 (zh) 2015-08-12 2015-08-12 一种数据传输方法、用户设备和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/892,419 Continuation US10779284B2 (en) 2015-08-12 2018-02-09 Data transmission method, user equipment, and base station

Publications (1)

Publication Number Publication Date
WO2017024569A1 true WO2017024569A1 (zh) 2017-02-16

Family

ID=57983986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086807 WO2017024569A1 (zh) 2015-08-12 2015-08-12 一种数据传输方法、用户设备和基站

Country Status (4)

Country Link
US (1) US10779284B2 (zh)
EP (2) EP3324679A4 (zh)
CN (2) CN107211339B (zh)
WO (1) WO2017024569A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111742611A (zh) * 2018-03-28 2020-10-02 谷歌有限责任公司 经由移动中继的无线通信
WO2022246726A1 (en) * 2021-05-27 2022-12-01 Qualcomm Incorporated Channel information exchange for user equipment cooperation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201520008D0 (en) * 2015-11-12 2015-12-30 Telensa Ltd Methods and apparatus for transmitting data in a network
WO2018061759A1 (ja) * 2016-09-30 2018-04-05 京セラ株式会社 通信制御方法
CN110087340B (zh) * 2018-01-25 2024-04-05 北京三星通信技术研究有限公司 中继传输的方法及设备
CN110519022B (zh) * 2019-08-30 2021-06-18 北京紫光展锐通信技术有限公司 数据传输方法、用户终端及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780993A (zh) * 2012-08-20 2012-11-14 哈尔滨工业大学 Td_lte_a系统中终端d2d协作中继通信实现方法
CN103188706A (zh) * 2011-12-29 2013-07-03 上海贝尔股份有限公司 一种用户终端之间进行协作传输的方法和装置
CN103684715A (zh) * 2013-09-27 2014-03-26 北京邮电大学 一种基于中继的d2d簇合作重传方法及其实现装置
WO2014179294A2 (en) * 2013-05-02 2014-11-06 Qualcomm Incorporated Method and apparatus for device to device relay selection
WO2015093560A1 (ja) * 2013-12-20 2015-06-25 京セラ株式会社 移動通信システム、無線通信装置、ネットワーク装置、及び無線端末
US20150215764A1 (en) * 2012-10-19 2015-07-30 Qualcomm Incorporated Power efficient relay discovery protocol

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1476716A (zh) 2001-10-03 2004-02-18 ��ʽ����Ntt����Ħ 中继终端,基站,计费服务器,通信系统,计费方法,程序,计算机数据信号以及存储媒体
GB0616476D0 (en) * 2006-08-18 2006-09-27 Fujitsu Ltd Communication systems
KR100975732B1 (ko) * 2006-08-31 2010-08-12 삼성전자주식회사 통신 시스템에서 자원 할당 정보 전송 방법 및 시스템
KR101285397B1 (ko) * 2009-01-22 2013-07-10 엘지전자 주식회사 기지국과 중계기의 협력적 하향링크 전송 방법 및 장치
KR101600486B1 (ko) * 2009-05-29 2016-03-07 엘지전자 주식회사 중계기 백홀 상향링크에서 제어 정보의 전송 방법 및 장치
CN101908955A (zh) * 2009-06-05 2010-12-08 大唐移动通信设备有限公司 一种回程链路下行信息传输方法及设备
WO2010150417A1 (ja) * 2009-06-25 2010-12-29 株式会社日立製作所 基地局、無線通信システム、無線リソース割り当て方法、ならびに無線通信方法
JP5310354B2 (ja) * 2009-07-23 2013-10-09 ソニー株式会社 基地局、通信システム、移動端末および中継装置
US20110035294A1 (en) * 2009-08-04 2011-02-10 Authernative, Inc. Multi-tier transaction processing method and payment system in m- and e- commerce
JP2011066874A (ja) * 2009-08-17 2011-03-31 Sony Corp 通信システム、通信装置及び通信方法、並びにコンピューター・プログラム
US9350508B2 (en) * 2010-01-18 2016-05-24 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement in a wireless communication network
KR101761630B1 (ko) * 2010-08-10 2017-08-04 엘지전자 주식회사 중계기 지원 무선 통신 시스템에서 데이터 송수신 방법 및 장치
US20130016649A1 (en) * 2011-07-12 2013-01-17 Qualcomm Incorporated System design for user equipment relays
US9350440B2 (en) * 2012-07-15 2016-05-24 Lg Electronics Inc. Method and apparatus for subset network coding with multiple antennas by relay node in wireless communication system
US9131498B2 (en) * 2012-09-12 2015-09-08 Futurewei Technologies, Inc. System and method for adaptive transmission time interval (TTI) structure
US9019841B2 (en) * 2012-10-19 2015-04-28 Qualcomm Incorporated Architecture for relays in LTE using D2D
US9641237B2 (en) * 2013-01-11 2017-05-02 Centre Of Excellence In Wireless Technology Indoor personal relay
US8873455B2 (en) * 2013-02-15 2014-10-28 General Dynamics C4 Systems, Inc. Communication units and methods for relay-assisted uplink communication
KR102153587B1 (ko) * 2014-04-03 2020-09-09 한국전자통신연구원 이종 네트워크에서의 데이터 전송 방법 및 장치
CN107113629A (zh) * 2014-10-15 2017-08-29 日本电气株式会社 无线中继站、无线基站、通信系统及通信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188706A (zh) * 2011-12-29 2013-07-03 上海贝尔股份有限公司 一种用户终端之间进行协作传输的方法和装置
CN102780993A (zh) * 2012-08-20 2012-11-14 哈尔滨工业大学 Td_lte_a系统中终端d2d协作中继通信实现方法
US20150215764A1 (en) * 2012-10-19 2015-07-30 Qualcomm Incorporated Power efficient relay discovery protocol
WO2014179294A2 (en) * 2013-05-02 2014-11-06 Qualcomm Incorporated Method and apparatus for device to device relay selection
CN103684715A (zh) * 2013-09-27 2014-03-26 北京邮电大学 一种基于中继的d2d簇合作重传方法及其实现装置
WO2015093560A1 (ja) * 2013-12-20 2015-06-25 京セラ株式会社 移動通信システム、無線通信装置、ネットワーク装置、及び無線端末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3324679A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111742611A (zh) * 2018-03-28 2020-10-02 谷歌有限责任公司 经由移动中继的无线通信
WO2022246726A1 (en) * 2021-05-27 2022-12-01 Qualcomm Incorporated Channel information exchange for user equipment cooperation

Also Published As

Publication number Publication date
EP3324679A1 (en) 2018-05-23
US20180167928A1 (en) 2018-06-14
CN107211339A (zh) 2017-09-26
EP4124168A1 (en) 2023-01-25
CN111741505A (zh) 2020-10-02
CN107211339B (zh) 2020-05-08
EP3324679A4 (en) 2018-08-08
US10779284B2 (en) 2020-09-15

Similar Documents

Publication Publication Date Title
US10708889B2 (en) Method and apparatus for indicating subframes associated with a hybrid automatic repeat request feedback
CN111464271B (zh) 用于改进的harq反馈指示的装置、设备及无线通信装置
US10455585B2 (en) Method and apparatus for carrier aggregation
US9521669B2 (en) HARQ for dynamic change of the TDD UL/DL configuration in LTE TDD systems
US10779284B2 (en) Data transmission method, user equipment, and base station
TWI530144B (zh) 處理通訊運作的方法及其通訊裝置
US9775148B2 (en) Method, system and device for determining transmission link type
US10554794B2 (en) Information transmission method and apparatus in TDD system
WO2020098685A1 (zh) 接收数据的方法和通信装置
WO2020199856A1 (zh) 信息传输的方法和通信装置
CN104285400A (zh) 通信中的混合自动重传请求
CN105981317A (zh) 避免开放发现与蜂窝资源之间的冲突的方法
WO2019201249A1 (zh) 通信方法、通信装置及可读存储介质
CN108809541B (zh) 上行数据的传输方法和装置
WO2016131235A1 (zh) 信息传输的方法、用户设备和基站
WO2020088088A1 (zh) 一种数据传输方法及终端设备
TW201517543A (zh) 處理混合自動重送請求回傳的方法及其通訊裝置
JP7451826B2 (ja) アップリンク送信のための方法及び装置
CN111865515A (zh) 通信方法和通信装置
CN114846755A (zh) 一种数据的反馈方法及装置
JP2024510280A (ja) 情報伝送方法、装置、デバイス及び記憶媒体
WO2018192091A1 (zh) 数据传输的方法和装置
WO2014075320A1 (en) Method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015900767

Country of ref document: EP