WO2020088088A1 - 一种数据传输方法及终端设备 - Google Patents

一种数据传输方法及终端设备 Download PDF

Info

Publication number
WO2020088088A1
WO2020088088A1 PCT/CN2019/104056 CN2019104056W WO2020088088A1 WO 2020088088 A1 WO2020088088 A1 WO 2020088088A1 CN 2019104056 W CN2019104056 W CN 2019104056W WO 2020088088 A1 WO2020088088 A1 WO 2020088088A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
data
time domain
terminal device
domain resource
Prior art date
Application number
PCT/CN2019/104056
Other languages
English (en)
French (fr)
Inventor
张兴炜
李晓卡
邓猛
冯淑兰
王俊伟
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020088088A1 publication Critical patent/WO2020088088A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance

Definitions

  • the present application relates to the field of wireless communication technology, and in particular, to a data transmission method and terminal equipment.
  • a time slot in the time domain can be composed of at least one of a downlink symbol, a flexible symbol, and an uplink symbol.
  • Different time slots are composed of different
  • the time slot format of FIG. 1 exemplarily shows the 256 time slot formats defined in the current protocol.
  • a flexible symbol in a time slot can be scheduled by downlink control information (downlink control information, DCI) to transmit a physical downlink shared channel (physical downlink shared channel, PDSCH), or can be scheduled by DCI to transmit a physical uplink Link shared channel (physical uplink shared channel, PUSCH).
  • DCI downlink control information
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • a flexible symbol in a time slot can also be configured as an uplink symbol or a downlink symbol by radio resource control (RRC) signaling. If two RRC signaling symbols overlap, the overlapping symbols will also There is a conflict between the upstream and downstream directions.
  • RRC radio resource control
  • the terminal device usually chooses to neither receive data nor send data on the overlapping symbols. Since the probability of decoding errors in both DCIs is relatively low, this approach will lose a certain performance gain. However, if the terminal device randomly chooses to transmit on the overlapping symbols, and the overlapping symbol is actually a downlink symbol, the transmission behavior of the terminal may interfere with the reception of other terminal devices at this time, or if the terminal device randomly selects on the overlapping symbols Receiving is selected, and the overlapping symbol is actually an uplink symbol. At this time, the receiving behavior of the terminal makes useless work. Therefore, there is an urgent need for a data transmission method for solving the technical problem of symbol collision in the uplink and downlink directions.
  • the embodiments of the present application provide a data transmission method and a terminal device, which are used to solve the technical problem of symbol conflict in the uplink and downlink directions in the prior art.
  • an embodiment of the present application provides a data transmission method.
  • the method includes: a terminal device receives first control information and second control information, where the first control information is used to indicate allocation of uplink resources for the terminal device, and the second The control information is used to indicate the allocation of downlink resources for the terminal device, and both the uplink resource and the downlink resource include the first time domain resource; the transmission resource, the carried information, and the transmission parameter occupied by the terminal device according to the first control information and the second control information At least one of, sending or receiving data on the first time domain resource.
  • the terminal device may determine the first control information according to at least one of transmission resources occupied by the received first control information and second control information, carried information, and transmission parameters.
  • the first time-domain resource that overlaps with the time-frequency resource scheduled by the second control information data is sent or received, thereby effectively solving the technical problem of symbol collision in the uplink and downlink directions.
  • the transmission resources occupied by the first control information may include a time domain unit where the terminal device receives the first control information
  • the transmission resources occupied by the second control information may include the terminal device receiving the second control information
  • Time domain unit the time domain unit described in the embodiment of the present application is a time slot or a symbol; when the time domain unit receiving the first control information is located before the time domain unit receiving the second control information, Sending data on the first time domain resource; receiving data on the first time domain resource when the time domain unit receiving the second control information is located before the time domain unit receiving the first control information;
  • the time domain unit of the first control information and the time domain unit receiving the second control information are the same time domain unit, data is also received on the first time domain resource.
  • the terminal device may The sequence of the first control information and the second control information received, to determine whether to send or receive data on the time domain resources in conflicts in the uplink and downlink directions, if the first control information for scheduling uplink resources is received first, then Data can be sent on conflicting time-domain resources. If the second control information for scheduling downlink resources is received first, data can be received on conflicting time-frequency resources, thereby effectively solving the problem of conflicts between uplink and downlink symbol directions .
  • the information carried in the first control information may include the code rate of the first control information
  • the information carried in the second control information may include the code rate of the second control information
  • the terminal device is in the first control
  • the code rate of the information is less than the code rate of the second control information
  • the data is sent on the first time domain resource
  • the code rate of the second control information is less than or equal to the code rate of the first control information, the first Receive data on time domain resources.
  • Control information with a lower code rate is more likely to decode correct control information, while control information with a higher code rate is more likely to be decoded control information.
  • selecting control information with a lower code rate, and determining whether to send uplink data or receive downlink data on the time domain resource with conflicting uplink and downlink directions according to the scheduling of the control information with a lower code rate can also effectively resolve the uplink and downlink direction symbols The problem of conflict.
  • the transmission parameter of the first control information may include the channel quality of the channel carrying the first control information
  • the transmission parameter of the second control information may include the channel quality of the channel carrying the second control information
  • control information with better channel conditions is more likely to decode correct control information, and control information with poor channel conditions is more likely to be decoded control information.
  • selecting control information with better channel conditions and determining whether to send uplink data or receive downlink data on the time-domain resources that conflict in the uplink and downlink directions according to the channel quality of the channel carrying the control information can also effectively resolve symbol conflicts in the uplink and downlink directions The problem.
  • the information carried in the first control information may include the length of the CRC sequence corresponding to the first control information
  • the information carried in the second control information may include the length of the CRC sequence corresponding to the second control information
  • terminal device When the length of the CRC sequence corresponding to the first control information is greater than the length of the CRC sequence corresponding to the second control information, data is sent on the first time domain resource; the length of the CRC sequence corresponding to the second control information is greater than or equal to the In the case of the length of the CRC sequence corresponding to the control information, the data is received on the first time domain resource.
  • control information with a long CRC sequence length is selected, and according to the length of the received CRC sequence of the first control information and the second control information, it is determined whether data is transmitted or not on the conflicting time domain resource. Receive data, which can effectively solve the problem of symbol conflicts in the upstream and downstream directions.
  • the information carried in the first control information may include indication information that the data scheduled by the first control information is retransmission data or newly transmitted data
  • the information carried in the second control information may include the second The data scheduled by the control information is indication information of retransmitted data or newly transmitted data; when the instruction information carried by the first control information indicates retransmission data and the instruction information carried by the second control information indicates new transmission data , Send data on the first time domain resource; receive on the first time domain resource when the indication information carried in the second control information indicates retransmission of data, and the indication information carried in the first control information indicates newly transmitted data data.
  • control information for scheduling data retransmission can be selected, according to the first control information and the second control information for scheduling data retransmission Control information to determine whether to send data or receive data on the time domain resource where the direction conflict occurs, thereby effectively solving the problem of symbol conflict in the upstream and downstream directions, and avoiding the data receiver from performing multiple data merge decoding, reducing data reception Power consumption.
  • the transmission parameter of the first control information may include the number of data transmission scheduled by the first control information
  • the transmission parameter of the second control information may include the number of data transmission scheduled by the second control information
  • control information for scheduling multiple data transmissions may be preferentially selected, and the number of data transmissions may be scheduled according to the first control information and the second control information. Determine whether to send data or receive data on the conflicting time domain resource, so as to effectively solve the problem of symbol conflict in the upstream and downstream directions, and avoid the data receiver from performing multiple data merge decoding, reducing the power consumption of the data receiver.
  • the method further includes: setting a preset number before the first time-domain resource The symbol of the number is set as a guard interval symbol; if the terminal device receives data on the first time domain resource, before the terminal device receives data on the first time domain resource, the method further includes: the terminal device presets the first time domain resource after The number of symbols is set as the guard interval symbol.
  • the preset number of symbols before the first time domain resource is set as the guard interval symbol, and received on the first time domain resource
  • the preset number of symbols after the first time domain resource is set as the guard interval symbol, so that the number of guard interval symbols between the upstream symbol and the downstream symbol can meet the number of symbols for uplink and downlink conversion And improve communication efficiency.
  • an embodiment of the present application provides a terminal device, the terminal device having a function of implementing the terminal device in the first aspect or any possible design of the first aspect, which may be implemented by hardware or by
  • the corresponding software is implemented by hardware, and the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the terminal device includes a processing module and a transceiver module, and the processing module is configured to support the terminal device to perform the corresponding first aspect or any of the designs in the first aspect Method steps.
  • the transceiver module is used to support communication between the terminal device and other communication devices.
  • the terminal device may further include a storage module, which is coupled to the processing module, and stores necessary program instructions and data of the terminal device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • an embodiment of the present application provides a computer-readable storage medium that stores computer-readable instructions, and when the computer reads and executes the computer-readable instructions, causes the computer to execute the first Any possible method in design.
  • an embodiment of the present application provides a computer program product, which, when a computer reads and executes the computer program product, causes the computer to execute any method in any possible design of the first aspect described above.
  • an embodiment of the present application provides a chip that is connected to a memory and used to read and execute a software program stored in the memory to implement any of the possible designs in the first aspect above method.
  • an embodiment of the present application provides a communication system including a terminal device, wherein the terminal device may be used to perform the method described in the first aspect or any possible design of the first aspect.
  • Figure 1 is a schematic diagram of a slot format in the prior art
  • FIGS. 2a and 2b are schematic diagrams of an application scenario applicable to embodiments of the present application.
  • FIG. 3 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a first time domain resource when the receiving time slots of the first control information and the second control information provided by the embodiment of the present application are different;
  • FIG. 5 is a schematic diagram of a first time-domain resource when the reception slots of the first control information and the second control information provided by the embodiment of the present application are the same;
  • FIG. 6 is a schematic structural diagram of a terminal device provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another terminal device provided in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of yet another terminal device provided in an embodiment of the present application.
  • Terminal devices including devices that provide voice and / or data connectivity to users, for example, may include handheld devices with wireless connection capabilities, or processing devices connected to wireless modems.
  • the terminal device can communicate with the core network via a radio access network (RAN) and exchange voice and / or data with the RAN.
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote Remote station, access point (AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), or user Equipment (user device), etc.
  • a mobile phone or called a “cellular” phone
  • a computer with a mobile terminal device, a portable, pocket-sized, handheld, built-in or on-board mobile device, smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capacity, or devices with limited computing power. Examples include bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. It is a general term for applying wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions that do not depend on smartphones, such as: smart watches or smart glasses, and only focus on a certain type of application functions, and need to cooperate with other devices such as smartphones Use, such as all kinds of smart bracelets, smart helmets, smart jewelry for sign monitoring.
  • a network device for example, including a base station (for example, an access point), may refer to a device that communicates with a wireless terminal device through one or more cells at an air interface in an access network.
  • the network device can be used to convert received air frames and Internet Protocol (IP) packets to each other as a router between the terminal device and the rest of the access network, where the rest of the access network can include an IP network.
  • IP Internet Protocol
  • the network equipment can also coordinate the management of the attributes of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It may also include the fifth generation mobile communication technology (fifth generation, 5G) new radio (NR) system, the next generation node B (next generation node B, gNB) or it may also include a cloud access network (cloud radio access)
  • the centralized unit (CU) and distributed unit (DU) in the network, CloudRAN) system are not limited in the embodiments of the present application.
  • the downlink control channel for example, a physical downlink control channel (physical downlink control channel, PDCCH), or an enhanced physical downlink control channel (enhanced physical downlink control channel, EPDCCH), or may be another downlink control channel.
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • the following control channel is the PDCCH as an example for introduction, that is, the "PDCCH” described later can be replaced by the "downlink control channel”.
  • DCI is used to carry DCI.
  • DCI can be used for uplink resource scheduling, downlink resource scheduling, indicating common information (including system information, random access information, paging information, etc.), carrying power control commands, indicating frame structure, indicating resource encroachment, etc.
  • scheduling DCI can carry specific resource allocation information of terminal equipment
  • other DCI can carry other control information specific to terminal equipment or shared by a group of terminal equipment or shared by cells, for example, the transmission mode indication information of terminal equipment .
  • the resource allocation information includes time-frequency resource location information of the uplink shared channel and / or downlink shared channel scheduled by the DCI for the terminal device.
  • the uplink shared channel may be a PUSCH or other uplink shared channel used to carry uplink transmission data.
  • the downlink shared channel may be a PDSCH or other downlink shared channel, used to carry downlink transmission data.
  • “Multiple” refers to two or more. In view of this, in the embodiments of the present application, “multiple” may also be understood as “at least two". "At least one” can be understood as one or more, such as one, two or more. For example, including at least one means including one, two or more, and does not limit which ones are included, for example, including at least one of A, B, and C, then the included may be A, B, C, A and B, A and C, B and C, or A and B and C.
  • GSM global system of mobile
  • CDMA code division multiple access
  • WCDMA wideband code Wideband code
  • general packet radio service general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • LTE time division duplex TDD
  • universal mobile communication system Universal mobile telecommunication system, UMTS
  • global interconnected microwave access worldwide interoperability for microwave access, WiMAX
  • the embodiments of the present application can also be applied to an evolved universal mobile communication system terrestrial radio access network (evolved universal mobile telecommunications system terrestrial radio access network, E-UTRAN) system, or next generation (NG) -RAN
  • E-UTRAN evolved universal mobile telecommunications system terrestrial radio access network
  • NG next generation
  • the system may also be applied to next-generation communication systems or similar communication systems.
  • FIG. 2a is an application scenario of the embodiment of the present application, or a network architecture applied by the embodiment of the present application.
  • the network architecture may be a network architecture of the E-UTRAN system.
  • E-UTRAN is composed of eNBs and provides protocols for the E-UTRA user plane and control plane of terminal equipment.
  • the eNBs are interconnected through the X2 interface.
  • the eNB is also connected to a mobility management entity (MME) through an S1-MME interface, and is connected to a service gateway (S-GW) through an S1-U interface.
  • MME mobility management entity
  • S-GW service gateway
  • Three eNBs are taken as an example in FIG. 2a, and the eNBs are represented as network devices in FIG.
  • each eNB in FIG. 2a may serve one or more terminal devices.
  • the technical solution provided in this embodiment of the present application can serve the terminal device and the terminal device. eNB implementation.
  • FIG. 2b is another application scenario of the embodiment of the present application, or another network architecture applied by the embodiment of the present application.
  • the network architecture may be a network architecture of the NG-RAN system.
  • gNB provides terminal equipment-oriented NR user plane and control plane protocols, and gNB is connected to the core network of the 5G system
  • ng-eNB provides terminal equipment-oriented E-UTRA user plane and control plane protocols, ng-eNB It is also connected to the core network of the 5G system.
  • the gNB and ng-eNB are interconnected through the Xn interface, and both gNB and ng-eNB are connected to the access and mobility management function (AMF) in the 5G core network (5GC) through the NG interface / User plane function (user plane function, UPF).
  • AMF access and mobility management function
  • the fourth network device and the fifth network device are both gNB
  • the sixth network device and the seventh network device are both ng-gNB.
  • the terminal device is not shown in FIG. 2b.
  • each gNB or ng-gNB in FIG. 2b may serve one or more terminal devices.
  • the technical solutions provided in the embodiments of the present application can be implemented through the terminal device and The gNB serving the terminal device can be executed, or can also be executed through the terminal device and the ng-gNB serving the terminal device.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application. As shown in FIG. 3, the method specifically includes the following steps:
  • Step S301 The terminal device receives the first control information and the second control information sent by the network device.
  • the network device may send the first control information and the second control information to the terminal device through the downlink control channel.
  • the first control information may be uplink DCI scheduling uplink data transmission, which is used to indicate the uplink resource allocated by the network device to the terminal device, and the uplink resource may be the time domain resource occupied by the PUSCH scheduled by the uplink DCI;
  • second control The information may be a downlink DCI scheduling downlink data transmission, which is used to indicate a downlink resource allocated by the network device to the terminal device, and the downlink resource may be a time domain resource occupied by a PDSCH scheduled by the downlink DCI.
  • the first control information and the second control information are both carried on the downlink control channel, their respective time domain positions are different.
  • the first control information may be carried in the PDCCH at the second time domain resource
  • the second control information may be carried in the PDCCH at the third time domain resource. Therefore, in step S300, the terminal device may be in the second time domain The first control information is received at the resource, and the second control information is received at the third time domain resource.
  • first control information and the second control information may also be RRC signaling.
  • the first time domain resource which may include one or more flexible symbols. It can be understood that, since the first control information instructs the terminal device to send uplink data at the first time domain resource, and the second control information instructs the terminal device to receive downlink data at the first time domain resource, there are symbols in the uplink and downlink directions conflict.
  • Step S302 The terminal device sends or receives data on the first time-domain resource according to at least one of transmission resources occupied by the first control information and the second control information, carried information, and transmission parameters.
  • the transmission resource occupied by the first control information may be the time domain resource occupied by the first control information, that is, the time domain resource that the terminal device receives the first control information.
  • the transmission resource occupied by the second control information may be the time domain resource occupied by the second control information, that is, the time domain resource that the terminal device receives the second control information, and the time domain unit may be a time slot or a symbol.
  • the information carried in the first control information may include but is not limited to a variety of information such as the code rate of the first control information, the indication information that the data scheduled by the first control information is retransmission data or newly transmitted data.
  • the information carried in the second control information may include but is not limited to a variety of information such as the code rate of the second control information, the indication information that the data scheduled by the second control information is retransmission data or newly transmitted data.
  • the transmission parameters of the first control information may include, but are not limited to, the channel quality of the channel carrying the first control information, the cyclic redundancy check (CRC) sequence length corresponding to the first control information, and the scheduling of the first control information Parameters such as the number of data transfers.
  • the transmission parameters of the second control information may include but are not limited to parameters such as the channel quality of the channel carrying the second control information, the length of the CRC sequence corresponding to the second control information, and the number of transmissions of data scheduled by the second control information.
  • the data sent by the UE on the first time domain resource is uplink data, including but not limited to physical uplink shared channel PUSCH, physical uplink control channel PUCCH, physical random access channel PRACH, demodulation reference signal DMRS, Listen to the reference signal SRS, etc.
  • the data received by the UE on the first time domain resource is downlink data, including but not limited to a physical downlink shared channel PDSCH, a physical downlink control channel PDCCH, a demodulation reference signal DMRS, a channel state information reference signal CSI-RS, and so on.
  • the terminal device may send or receive data on the first time domain resource according to the time domain unit that receives the first control information and the second control information. Specifically, if the time domain unit receiving the first control information is located before the time domain unit receiving the second control information, the terminal device may send data on the first time domain resource according to the indication of the first control information; if it is received The time domain unit of the second control information is located before the time domain unit of the first control information, and the terminal device may receive data on the first time domain resource according to the instruction of the second control information; if the first control information is received The domain unit and the time domain unit receiving the second control information are the same time domain unit, and the terminal device may also receive data on the first time domain resource according to the instruction of the second control information.
  • the time domain unit in which the terminal device receives the first control information and the second control information can reflect the order in which the terminal device receives the first control information and the second control information. That is to say, the time domain unit receiving the first control information is located before the time domain receiving the second control information, which may indicate that the terminal device receives the first control information first; the time domain unit receiving the second control information is located at the receiving Before the time domain unit of the first control information, it can indicate that the terminal device receives the second control information first; the time domain unit that receives the first control information and the time domain unit that receives the second control information are the same time domain unit, It may indicate that the terminal device receives the first control information and the second control information in the same time slot, or the terminal device receives the first control information and the second control information in the same symbol in the same time slot.
  • the terminal device may determine whether to send or receive data on the time domain resource in the conflict between the uplink and downlink directions according to the order in which the first control information and the second control information are received. After receiving the first control information for scheduling uplink data, the data may be sent on the conflicting time domain resource, and if the second control information for scheduling downlink data is received first, the conflicting time-frequency resource may be sent. Upstream and receive data, so as to effectively solve the problem of conflicting uplink and downlink symbol directions.
  • the time domain unit may be a time slot or a symbol, that is, the granularity for judging the reception order of the first control information and the second control information in the time domain may be a time slot or a time slot. symbol.
  • the terminal device may send data on the first time domain resource; otherwise, if the terminal device receives the second control The time slot of the information is located before the time slot where the first control information is received, and the terminal device can receive data on the first time domain resource.
  • the terminal device receives different time slots for uplink DCI and downlink DCI, and data scheduled by uplink DCI and downlink DCI are located in the same time slot.
  • the time slot where the uplink DCI is located is time slot 3
  • the scheduled PUSCH is time slot 7
  • the time slot where the downlink DCI is located is time slot 5
  • the scheduled PDSCH is time slot 7.
  • time slot 7 is the first time-domain resource in which uplink and downlink collisions occur.
  • the terminal device since the time slot 3 is before the time slot 5, the terminal device first receives the uplink DCI. Therefore, the terminal device uses the flexible symbol with the direction conflict in the time slot 7 as the uplink symbol, and sends the uplink data at the flexible symbol.
  • the time slot at which the terminal device receives the first control information and the time slot at which the second control information is received are the same time slot, in a possible design, considering that there may be certain DCIs where the symbol is in front, but Due to factors such as more candidate positions or more control channel elements (CCE), the decoding time is later than the DCI after the symbol, and the terminal device can directly receive data on the first time domain resource, thereby Prioritize the normal reception of downstream data.
  • CCE control channel elements
  • the terminal device may also receive according to the same time slot
  • the order of the symbols of the first control information and the second control information determines whether to send data or receive data on the first time domain resource.
  • the terminal device may send data on the first time domain resource; if the terminal device receives the second control The symbol of the information is located before the symbol of the first control information is received, the terminal device can receive data on the first time domain resource; if the symbol of the first control information received by the terminal device and the symbol of the second control information received are the same symbol , The terminal device can receive data on the first time-domain resource, thereby giving priority to ensuring the normal reception of downlink data.
  • the uplink transmission of the remaining symbols of the PUSCH scheduled by the second control information may also be cancelled, that is, although only a part of symbols of the PDSCH scheduled by the PUSCH and the first control information overlap, the entire PUSCH transmission may be canceled.
  • the symbol of the received control information may refer to the start symbol or the end symbol of the received control information.
  • the symbol where the downlink DCI is located is symbol 0
  • the scheduled PDSCH includes symbol 5
  • the symbol where the upstream DCI is located is symbol 3
  • the scheduled PUSCH includes symbol 7.
  • symbol 7 and symbol 8 are flexible symbols that conflict (that is, the first time-domain resource described above). Since symbol 0 precedes symbol 1, the terminal device uses symbol 7 and symbol 8 as downstream symbols, and receives downstream data at symbol 7 and symbol 8. At the same time, the transmission of the entire PUSCH is canceled, that is, the terminal device no longer sends uplink data at the non-conflicting symbols 9 and 10.
  • the terminal device may determine, according to the time difference between the downlink control channel used to carry the first control information and the uplink shared channel or the downlink shared channel scheduled by the first control information, the first control information and the received 2.
  • the sequence of control information For example, if the terminal device receives different time slots for uplink DCI and downlink DCI, and the data scheduled by uplink DCI and downlink DCI are in the same time slot, the terminal device can determine the size relationship between K0 and K2.
  • K0 is Refers to the time difference from PDCCH to PDSCH
  • K2 refers to the time difference from PDCCH to PUSCH.
  • PDSCH and PUSCH are in the same time slot and K0 is not equal to K2, it means that the uplink DCI and the downlink DCI are in different time slots.
  • K0 is less than K2
  • the terminal device can send uplink data on the conflicting flexible symbol and discard the downlink DCI; when K0 is greater than K2, the terminal device can receive the downlink data on the conflicting symbol and discard the uplink DCI.
  • the PDSCH and PUSCH are in the same time slot and K0 is equal to K2, it means that the uplink DCI and the downlink DCI are in the same time slot. At this time, the terminal device needs to further determine the order of receiving the symbols of the uplink DCI and the downlink DCI.
  • the symbol to the upstream DCI and the symbol to the downstream DCI are different symbols, that is, there is no symbol overlap, and the terminal device may decide to send the upstream data or the symbol on which the collision occurs based on the DCI (the DCI before the symbol) received first. Receive downstream data. If the DCI before the symbol is the uplink DCI, the terminal device can send data on the conflicting flexible symbol, and if the DCI before the symbol is the downlink DCI, the terminal device can receive the data on the conflicting flexible symbol.
  • the terminal device may send or receive data on the first time-domain resource according to the code rates of the first control information and the second control information. Specifically, if the code rate of the first control information is less than the code rate of the second control information, the terminal device may send data on the first time domain resource according to the indication of the first control information; otherwise, if the code rate of the second control information Less than or equal to the code rate of the first control information, the terminal device may receive data on the first time domain resource according to the indication of the second control information.
  • the DCI with a lower code rate is more likely to be a DCI that is decoded correctly, and the DCI with a higher code rate is more likely to be a DCI with a decoding error.
  • the DCI with a lower code rate is reserved, and it is determined according to the scheduling situation of the DCI with a lower code rate whether to send uplink data or receive downlink data on the symbols that collide in the uplink and downlink directions, which can also effectively solve the problem of symbol conflicts in the uplink and downlink directions .
  • the terminal device may also schedule the data scheduled by the first control information as retransmission data or new transmission data, and whether the data scheduled by the second control information is retransmission data or new transmission data. Send data or receive data on a time domain resource. Specifically, if the indication information carried in the first control information indicates that the scheduled data is retransmission data, and the indication information carried in the second control information indicates that the scheduled data is new transmission data, the terminal device may follow the indication of the first control information Send data on the first time domain resource.
  • the terminal device may be in the first time according to the indication of the second control information Receive data on domain resources.
  • control information for scheduling data retransmission may be preferentially selected, and scheduling data retransmission is used according to the first control information and the second control information DCI to determine whether to send data or receive data on the first time domain resource, so as to effectively solve the problem of symbol conflicts in the upstream and downstream directions, and avoid the data receiver from performing multiple data merge decoding, reducing the power of the data receiver Consume.
  • the terminal device may also send or receive data on the first time-domain resource according to the channel quality of the channel carrying the first control information and the channel quality of the channel carrying the second control information. Specifically, if the channel quality of the channel carrying the first control information is greater than the channel quality of the channel carrying the second control information, the terminal device may send data on the first time domain resource according to the indication of the first control information; otherwise, if The channel quality of the channel carrying the second control information is greater than or equal to the channel quality of the channel carrying the first control information, and the terminal device may receive data on the first time domain resource according to the indication of the second control information.
  • DCI with better channel conditions is more likely to decode the correct DCI, while DCI with poor channel conditions is more likely to be the DCI with incorrect decoding.
  • DCI with better channel conditions is reserved, and it is determined according to the channel quality of the channel carrying the DCI whether uplink data or downlink data is transmitted on the symbols that collide in the uplink and downlink directions.
  • the terminal device may also send or receive data on the first time-domain resource according to the length of the CRC sequence corresponding to the first control information and the second control information. Specifically, if the length of the CRC sequence corresponding to the first control information is greater than the length of the CRC sequence corresponding to the second control information, the terminal device may send data on the first time domain resource according to the indication of the first control information; if the second control The length of the CRC sequence corresponding to the information is greater than or equal to the length of the CRC sequence corresponding to the first control information, and the terminal device may receive data on the first time domain resource according to the indication of the second control information.
  • the CRC sequence length corresponding to DCI is negatively correlated with the DCI false alarm probability, that is, the longer the CRC sequence length, the lower the false alarm probability, and the higher the reliability of DCI. Therefore, in the embodiment of the present application, according to the length of the received CRC sequence of the uplink DCI and the downlink DCI, it is possible to determine whether to send data or receive data on the first time domain resource, and preferentially select the DCI with a longer CRC sequence length, thereby It can effectively solve the problem of symbol conflict in the upstream and downstream directions.
  • the terminal device may also send or receive data on the first time-domain resource according to the number of data transmission times scheduled by the first control information and the number of data transmission times scheduled by the second control information. For example, if the number of data transmissions scheduled by the first control information is multiple and the number of data transmissions scheduled by the second control information is one, the terminal device may send data on the first time domain resource according to the indication of the first control information ; If the number of times of data transmission scheduled by the second control information is multiple, and the number of times of data transmission scheduled by the first control information is one, the terminal device may receive data on the first time domain resource according to the instruction of the second control information.
  • a DCI schedules multiple data transmissions for example, it can be PUSCH or PDSCH
  • the content of the data transmitted each time is different, and the data receiver needs to perform combined decoding based on the data received multiple times in order to get the correct decoding. data. If the merge decoding fails, the network equipment also needs to resend DCI to schedule data retransmission.
  • the DCI used for scheduling multiple data transmissions can be preferentially selected in the embodiments of the present application, and the first time is determined according to the number of uplink DCI and downlink DCI scheduling data transmission Send data or receive data on the domain resource, so as to effectively solve the problem of symbol conflicts in the upstream and downstream directions, and avoid the data receiver from performing multiple data merge decoding, reducing the power consumption of the data receiver.
  • the embodiments of the present application provide multiple ways to determine whether to send data or receive data on the first time domain resource according to the first information, it should be understood that the technical solutions in the embodiments of the present application are not limited to this.
  • the terminal device may adopt a certain implementation manner to determine to send data or receive data on the first time domain resource, or may combine multiple implementation methods among them to determine the first time domain resource Send data or receive data.
  • the technical personnel of the present application can set the business scenario applicable to each implementation mode according to the business requirements, and the combination order or combination rule between the various implementation modes, which is not specifically limited in this application.
  • the terminal device may also convert the preset number of downlink symbols before the first time-domain resource into guard interval symbols; if After the terminal device determines that the data is received on the first time-domain resource, the terminal device may also convert a preset number of uplink symbols after the first time-domain resource into guard interval symbols. In this way, the number of guard interval symbols between the upstream symbol and the downstream symbol can meet the requirement of the number of symbols for upstream and downstream conversion, and the communication efficiency is improved.
  • the preset number may be set by those skilled in the art according to actual needs, and may also be one symbol or multiple symbols, which is not specifically limited in this embodiment of the present application.
  • an embodiment of the present application further provides a terminal device.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device includes: Transceiver module 610 and processing module 620.
  • the transceiver module 610 is used to receive the first control information and the second control information; the processing module 620 is used to receive at least one of the transmission resources, the carried information and the transmission parameters occupied by the received first control information and the second control information Item, send data or receive data on the first time domain resource through the transceiver module 610.
  • the processing module 620 in this embodiment of the present invention may be implemented by a processor or a processor-related circuit component, and the transceiver module 610 may be implemented by a transceiver or a transceiver-related circuit component.
  • FIG. 7 is another schematic structural diagram of the terminal device provided in the embodiment of the present application.
  • the terminal device 700 includes a processor 710, a memory 720, and a transceiver 730, where the memory 720 stores instructions or programs, and the processor 710 is used to execute the instructions or programs stored in the memory 720.
  • the processor 710 is used to perform the operation performed by the processing module 620 in the foregoing embodiment
  • the transceiver 730 is used to perform the operation performed by the transceiver module 610 in the foregoing embodiment.
  • terminal device 600 or the terminal device 700 may correspond to the terminal devices in the communication methods S300 to S301 of the embodiment of the present invention, and the operations of each module in the terminal device 600 or the terminal device 700 and / or Or the functions are respectively for implementing the corresponding flow of the method shown in FIG. 3, and for the sake of brevity, they are not repeated here.
  • An embodiment of the present application further provides a communication device, and the communication device may be a chip, a terminal device, or a circuit.
  • the communication apparatus includes one or more processors, and the one or more processors may implement actions performed by the terminal device side in the method embodiment shown in FIG. 3.
  • FIG. 8 shows a simplified structural diagram of the terminal device. It is easy to understand and convenient to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and input and output devices.
  • the processor is mainly used for processing communication protocols and communication data, as well as controlling terminal devices, executing software programs, and processing software program data.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive user input data and output data to the user. It should be noted that some types of terminal devices may not have input / output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal after radio frequency processing, and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 8 only one memory and processor are shown in FIG. 8. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium, storage device, or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiments of the present application.
  • an antenna and a radio frequency circuit with a transceiver function can be regarded as a transceiver unit of a terminal device, and a processor with a processing function can be regarded as a processing unit of the terminal device.
  • the terminal device includes a transceiver unit 810 and a processing unit 820.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, or the like.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device used to implement the receiving function in the transceiver unit 810 may be regarded as a receiving unit, and the device used to implement the sending function in the transceiver unit 810 may be regarded as a sending unit, that is, the transceiver unit 810 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 810 is used to perform the sending operation and the receiving operation on the terminal device side in the above method embodiment
  • processing unit 820 is used to perform other operations on the terminal device other than the transceiving operation in the above method embodiment.
  • the transceiver unit 810 is used to perform the sending operation on the terminal device side in FIG. 3, and / or the transceiver unit 810 is also used to perform other transceiver steps on the terminal device side in the embodiments of the present application.
  • the processing unit 820 is configured to execute step S301 in FIG. 3, and / or the processing unit 820 is further configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit and a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • Embodiments of the present application also provide a computer-readable storage medium, in which computer-readable instructions are stored.
  • the computer reads and executes the computer-readable instructions, the computer is allowed to execute any of the foregoing method embodiments Method on the terminal device side.
  • An embodiment of the present application provides a computer program product, which, when a computer reads and executes the computer program product, causes the computer to execute the method on the terminal device side in any of the foregoing method embodiments.
  • An embodiment of the present application provides a chip that is connected to a memory and used to read and execute a software program stored in the memory to implement the method on the terminal device side in any of the foregoing method embodiments.
  • An embodiment of the present application provides a communication system.
  • the system includes a terminal device, where the terminal device may be used to execute the method on the terminal device side in the foregoing method embodiments.
  • processors mentioned in the embodiments of the present application may be a central processing unit (CPU), and may also be other general-purpose processors, digital signal processors (DSPs), and special-purpose integrated circuits (DSPs) application, specific integrated circuit (ASIC), ready-to-program programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (random access memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous RAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data SDRAM double data SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence numbers of the above processes does not mean that the execution order is sequential, and the execution order of each process should be determined by its function and inherent logic, and should not correspond to the embodiments of the present invention.
  • the implementation process constitutes no limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及终端设备,包括:终端设备接收第一控制信息和第二控制信息,第一控制信息用于指示为终端设备分配上行资源,第二控制信息用于指示为终端设备分配下行资源,该上行资源和下行资源中均包括第一时域资源;终端设备根据第一控制信息和第二控制信息占用的传输资源、携带的信息和传输参数中的至少一项,在第一时域资源上发送或接收数据,从而解决上下行方向上的符号冲突的技术问题。

Description

一种数据传输方法及终端设备
本申请要求在2018年10月31日提交中国国家知识产权局、申请号为201811291608.9、申请名称为“一种数据传输方法及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种数据传输方法及终端设备。
背景技术
在5G新无线接入技术(5th generation new radio access technology,5G NR)中,时域上的一个时隙可由下行符号、灵活符号、上行符号中的至少一种组成,不同的时隙构成为不同的时隙格式,图1示例性示出了目前协议中定义的256种时隙格式。
一个时隙中的灵活符号可以被下行链路控制信息(downlink control information,DCI)调度用于传输物理下行链路共享信道(physical downlink shared channel,PDSCH),也可以被DCI调度用于传输物理上行链路共享信道(physical uplink shared channel,PUSCH)。如果下行DCI和上行DCI的调度有重叠,此时重叠的符号上就会存在上下行方向的冲突。虽然下行DCI和上行DCI都是校验通过的有效DCI,但是实际上,网络设备不会调度一个符号同时用于接收和发送,因此,上行DCI和下行DCI中可能存在解码错误的DCI。
一个时隙中的灵活符号也可以被无线资源控制(radio resource control,RRC)信令配置成上行符号或下行符号,如果两个RRC信令配置的符号有重叠,此时重叠的符号上也会存在上下行方向的冲突。
此种情形下,现有技术中,终端设备通常选择在重叠的符号上既不接收数据,也不发送数据。由于两个DCI都解码错误的概率比较低,因此,这种做法会损失一定的性能增益。但如果终端设备在重叠的符号上随机选择发送,而该重叠的符号实际上为下行符号,此时终端的发送行为可能会干扰到其它终端设备的接收,或者如果终端设备在重叠的符号上随机选择接收,而该重叠的符号实际上为上行符号,此时终端的接收行为就做了无用功。因此,目前亟需要一种数据传输方法,用于解决上下行方向上符号冲突的技术问题。
发明内容
本申请实施例提供一种数据传输方法及终端设备,用以解决现有技术中上下行方向上符号冲突的技术问题。
第一方面,本申请实施例提供一种数据传输方法,该方法包括:终端设备接收第一控制信息和第二控制信息,其中,第一控制信息用于指示为终端设备分配上行资源,第二控制信息用于指示为终端设备分配下行资源,该上行资源和下行资源中均包括第一时域资源;终端设备根据第一控制信息和第二控制信息占用的传输资源、携带的信息和传输参数中的至少一项,在第一时域资源上发送或接收数据。
由此可知,本申请实施例中,终端设备可根据接收到的第一控制信息和第二控制信息占用的传输资源、携带的信息和传输参数中的至少一项,来确定在第一控制信息和第二控 制信息调度的时频资源中发生重叠的第一时域资源上发送数据还是接收数据,从而有效解决上下行方向上的符号冲突的技术问题。
在一种可能的设计中,第一控制信息占用的传输资源可以包括终端设备接收到第一控制信息的时域单元,第二控制信息占用的传输资源可以包括终端设备接收到第二控制信息的时域单元,本申请实施例中所述的时域单元为时隙或符号;终端设备在接收到第一控制信息的时域单元位于接收到第二控制信息的时域单元之前的情况下,在第一时域资源上发送数据;在接收到第二控制信息的时域单元位于接收到第一控制信息的时域单元之前的情况下,在第一时域资源上接收数据;在接收到第一控制信息的时域单元与接收到第二控制信息的时域单元为同一时域单元的情况下,也在第一时域资源上接收数据。
由于终端设备接收到第一控制信息和接收到第二控制信息的时域单元可反映出终端设备对于第一控制信息和第二控制信息的接收顺序,本申请实施例中,终端设备可按照接收到的第一控制信息和第二控制信息的先后顺序,来决定在上下行方向冲突的时域资源上是发送数据还是接收数据,如果先接收到用于调度上行资源的第一控制信息,则可在发生冲突的时域资源上发送数据,如果先接收到用于调度下行资源的第二控制信息,则可在发生冲突的时频资源上接收数据,从而有效解决上下行符号方向冲突的问题。
在一种可能的设计中,第一控制信息中携带的信息可以包括第一控制信息的码率,第二控制信息中携带的信息可以包括第二控制信息的码率;终端设备在第一控制信息的码率小于第二控制信息的码率的情况下,在第一时域资源上发送数据;在第二控制信息的码率小于等于第一控制信息的码率的情况下,在第一时域资源上接收数据。
考虑到码率越低时,控制信息解码错误的可能性越小,虚警概率越低,码率越高时,控制信息解码错误的可能性越大,虚警概率越高的特性,可以认为码率较低的控制信息更可能是解码正确的控制信息,而码率较高的控制信息更可能是解码错误的控制信息。如此,选择码率较低的控制信息,根据码率较低的控制信息的调度情况来确定在上下行方向冲突的时域资源上发送上行数据还是接收下行数据,也可以有效解决上下行方向符号冲突的问题。
在一种可能的设计中,第一控制信息的传输参数可以包括承载第一控制信息的信道的信道质量,第二控制信息的传输参数可以包括承载第二控制信息的信道的信道质量;终端设备在承载第一控制信息的信道的信道质量大于承载第二控制信息的信道的信道质量的情况下,在第一时域资源上发送数据;在承载所述第二控制信息的信道的信道质量大于等于承载所述第一控制信息的信道的信道质量的情况下,在第一时域资源上接收数据。
考虑到信道条件越好时,控制信息解码错误的可能性越小,虚警概率越低;而信道条件不好时,控制信息解码错误的可能性越大,虚警概率越高的特性。因而,可以认为信道条件较好的控制信息更可能是解码正确的控制信息,而信道条件不好的控制信息更可能是解码错误的控制信息。如此,选择信道条件较好的控制信息,根据承载控制信息的信道的信道质量来确定在上下行方向冲突的时域资源上是发送上行数据还是接收下行数据,也可以有效解决上下行方向符号冲突的问题。
在一种可能的设计中,第一控制信息中携带的信息可以包括第一控制信息对应的CRC序列长度,第二控制信息中携带的信息可以包括第二控制信息对应的CRC序列长度;终端设备在第一控制信息对应的CRC序列的长度大于第二控制信息对应的CRC序列的长度的情况下,在第一时域资源上发送数据;在第二控制信息对应的CRC序列的长度大于等 于第一控制信息对应的CRC序列的长度的情况下,在第一时域资源上接收数据。
考虑到控制信息对应的CRC序列长度与控制信息的虚警概率负相关,即CRC序列长度越长,虚警概率越低,控制信息的可靠性也就越高。因而,本申请实施例中,选择CRC序列长度较长的控制信息,根据接收到的第一控制信息和第二控制信息的CRC序列的长度,判断在发生冲突的时域资源上是发送数据还是接收数据,从而可有效解决上下行方向符号冲突的问题。
在一种可能的设计中,第一控制信息中携带的信息可以包括第一控制信息所调度的数据为重传数据或新传数据的指示信息,第二控制信息中携带的信息可以包括第二控制信息所调度的数据为重传数据或新传数据的指示信息;终端设备在第一控制信息携带的指示信息指示重传数据,且第二控制信息携带的指示信息指示新传数据的情况下,在第一时域资源上发送数据;在第二控制信息携带的指示信息指示重传数据,且第一控制信息携带的指示信息指示新传数据的情况下,在第一时域资源上接收数据。
考虑到当控制信息调度数据重传时,数据接收方需根据在该次数据重传中接收到的数据和之前在数据初传中接收到数据进行合并译码,才能得到解码正确的数据。因此,为了降低数据接收方合并译码的复杂度,本申请实施例中,可选择用于调度数据重传的控制信息,根据第一控制信息和第二控制信息中用于调度数据重传的控制信息,来确定在发生方向冲突的时域资源上是发送数据或还是接收数据,从而有效解决上下行方向符号冲突的问题,并且避免数据接收方进行多次数据的合并译码,降低数据接收方的功耗。
在一种可能的设计中,第一控制信息的传输参数可以包括第一控制信息所调度的数据的传输次数,第二控制信息的传输参数可以包括第二控制信息所调度的数据的传输次数;这样终端设备可以在第一控制信息所调度数据的传输次数为多次,且第二控制信息所调度数据的传输次数为一次的情况下,在第一时域资源上发送数据;在第二控制信息所调度数据的传输次数为多次,且第一控制信息所调度数据的传输次数为一次的情况下,在第一时域资源上接收数据。
考虑到当一个控制信息调度多次数据传输时,每次传输的数据的内容不同,数据接收方需根据多次接收到的数据进行合并译码,才能得到解码正确的数据。若合并译码失败,网络设备还需重新发送控制信息,调度数据重传。因此,为了降低数据接收方合并译码的复杂度,本申请实施例中可优先选择用于调度多次数据传输的控制信息,根据第一控制信息和第二控制信息调度数据的传输次数,来确定在发生冲突的时域资源上是发送数据还是接收数据,从而有效解决上下行方向符号冲突的问题,并且避免数据接收方进行多次数据的合并译码,降低数据接收方的功耗。
在一种可能的设计中,若终端设备在第一时域资源上发送数据,终端设备在第一时域资源上发送数据之前,还包括:将所述第一时域资源之前的预设个数的符号设置为保护间隔符号;若终端设备在第一时域资源上接收数据,终端设备在第一时域资源上接收数据之前,还包括:终端设备将第一时域资源之后的预设个数的符号设置为保护间隔符号。
本申请实施例中,终端设备在第一时域资源上发送数据的情况下,进而将第一时域资源之前的预设个数的符号设置为保护间隔符号,在第一时域资源上接收数据的情况下,将第一时域资源之后的预设个数的符号设置为保护间隔符号,从而可使上行符号和下行符号之间的保护间隔符号个数满足上下行转换的符号个数需求,并提高通信效率。
第二方面,本申请实施例提供一种终端设备,所述终端设备具有实现上述第一方面或 第一方面的任一种可能的设计中终端设备的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述终端设备的结构中包括处理模块和收发模块,所述处理模块被配置为支持该终端设备执行上述第一方面或第一方面的任一种设计中相应的方法步骤。所述收发模块用于支持该终端设备与其他通信设备之间的通信。所述终端设备还可以包括存储模块,所述存储模块与处理模块耦合,其保存有终端设备必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器。
第三方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面中任一种可能的设计中的方法。
第四方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面中任一种可能的设计中的方法。
第五方面,本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面中任一种可能的设计中的方法。
第六方面,本申请实施例提供一种通信系统,该系统包括终端设备,其中,该终端设备可用于执行上述第一方面或第一方面的任一种可能的设计中所述的方法。
附图说明
图1为现有技术中的时隙格式示意图;
图2a和图2b为本申请实施例适用的一种应用场景示意图;
图3为本申请实施例提供的一种数据传输方法对应的流程示意图;
图4为本申请实施例提供的第一控制信息与第二控制信息的接收时隙不同时的第一时域资源示意图;
图5为本申请实施例提供的第一控制信息与第二控制信息的接收时隙相同时的第一时域资源示意图;
图6为本申请实施例中提供的一种终端设备的结构示意图;
图7为本申请实施例中提供的另一种终端设备的结构示意图;
图8为本申请实施例中提供的又一种终端设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面结合说明书附图对本申请实施例进行具体描述。需要说明的是,本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、 远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(fifth generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
3)下行控制信道,例如为物理下行链路控制信道(physical downlink control channel,PDCCH),或者为增强的物理下行控制信道(enhanced physical downlink control channel,EPDCCH),或者可以是其他的下行控制信道。在本文中,以下行控制信道是PDCCH为例进行介绍,也就是,后文中所述的“PDCCH”均可替换为“下行控制信道”。
PDCCH用于承载DCI,DCI可以用于上行资源调度、下行资源调度、指示公共信息(包括系统信息、随机接入信息、寻呼信息等)、携带功率控制命令、指示帧结构、指示资源侵占等,其中,调度DCI中可携带终端设备的特定的资源分配信息,其他DCI中可携带终端设备特定的或者一组终端设备共享的或者小区共享的其他控制信息,例如,终端设备的传输方式指示信息。其中,资源分配信息包括DCI为终端设备调度的上行共享信道和\或下行共享信道的时频资源位置信息,这里,上行共享信道,可以为PUSCH或者其他上行共享信道,用于承载上行发送数据,下行共享信道,可以为PDSCH或者其他下行共享信道,用于承载下行发送数据。
4)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A和B和C。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
另外,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。再者,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。还有,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、以及未来的5G通信系统等。
进一步地,本申请实施例还可应用于演进的通用移动通信系统陆地无线接入网(evolved universal mobile telecommunications system terrestrial radio access network,E-UTRAN)系统,或者下一代(next generation,NG)-RAN系统,或者还可以应用于下一代通信系统或者类似的通信系统。
请参见图2a,为本申请实施例的一种应用场景,或者说是本申请实施例应用的一种网络架构,该网络架构可以为E-UTRAN系统的一种网络架构。在图2a中,E-UTRAN由eNB组成,提供面向终端设备的E-UTRA用户面和控制面的协议。eNB之间通过X2接口互连。eNB也通过S1-MME接口连接到移动管理实体(mobility management entity,MME),以及通过S1-U接口连接到服务网关(service gateway,S-GW)。图2a中以3个eNB为例,且eNB在图2a中表示为网络设备,分别为第一网络设备、第二网络设备和第三网络设备。在图2a中未画出终端设备,实际上图2a中的每个eNB都可能服务于一个或多个终端设备,本申请实施例所提供的技术方案就可以通过终端设备和服务于终端设备的eNB执行。
请参见图2b,为本申请实施例的另一种应用场景,或者说是本申请实施例应用的另一种网络架构,该网络架构可以为NG-RAN系统的一种网络架构。在图2b中,gNB提供面向终端设备的NR用户平面和控制平面协议,且gNB连接到5G系统的核心网,ng-eNB提供面向终端设备的E-UTRA用户平面和控制平面协议,ng-eNB也连接到5G系统的核心网。gNB与ng-eNB之间通过Xn接口互连,且gNB与ng-eNB均通过NG接口连接到5G核心网(5GC)中的接入和移动性管理功能(access and mobility management function,AMF)/用户面功能(user plane function,UPF)。在图2b中,第四网络设备和第五网络设备均为 gNB,第六网络设备和第七网络设备均为ng-gNB。在图2b中也未画出终端设备,实际上图2b中的每个gNB或者ng-gNB都可能服务于一个或多个终端设备,本申请实施例所提供的技术方案就可以通过终端设备和服务于终端设备的gNB执行,或者也可以通过终端设备和服务于终端设备的ng-gNB执行。
基于上述网络架构,图3为本申请实施例提供的一种通信方法的流程示意图,如图3所示,该方法具体包括如下步骤:
步骤S301:终端设备接收网络设备发送的第一控制信息和第二控制信息。
本申请实施例中,网络设备可通过下行控制信道向终端设备发送第一控制信息和第二控制信息。其中,第一控制信息可以为调度上行数据传输的上行DCI,用于指示网络设备为终端设备分配的上行资源,该上行资源可为该上行DCI所调度的PUSCH占据的时域资源;第二控制信息可以为调度下行数据传输的下行DCI,用于指示网络设备为终端设备分配的下行资源,该下行资源可为该下行DCI所调度的PDSCH占据的时域资源。
需要说明的是,第一控制信息和第二控制信息虽然都承载在下行控制信道中,但是各自所处的时域位置不同。例如,第一控制信息可承载在第二时域资源处的PDCCH中,第二控制信息承载在第三时域资源处的PDCCH中,因此,在步骤S300中,终端设备可在第二时域资源处接收第一控制信息,在第三时域资源处接收第二控制信息。
需要说明的是,第一控制信息和第二控制信息还可以是RRC信令。
由于终端设备的解码错误或是其它原因,第一控制信息中所指示的上行资源与第二控制信息中所指示的下行资源存在部分时域资源重叠,这里将这部分重叠的时域资源称为第一时域资源,该第一时域资源可包括一个或多个灵活符号(flexible symbol)。可以理解,由于第一控制信息指示终端设备在第一时域资源处发送上行数据,而第二控制信息指示终端设备在第一时域资源处接收下行数据,因此,存在着上下行方向上的符号冲突。
步骤S302:终端设备根据第一控制信息和所述第二控制信息占用的传输资源、携带的信息和传输参数中的至少一项,在所述第一时域资源上发送或接收数据。
本申请实施例中,第一控制信息占用的传输资源可以为第一控制信息占用的时域资源,也就是终端设备接收到第一控制信息的时域资源。第二控制信息占用的传输资源可以为第二控制信息占用的时域资源,也就是终端设备接收到第二控制信息的时域资源,该时域单元可以为时隙或符号。
第一控制信息中携带的信息可以包括但不限于第一控制信息的码率、第一控制信息所调度的数据为重传数据或新传数据的指示信息等多种信息。第二控制信息中携带的信息可以包括但不限于第二控制信息的码率、第二控制信息所调度的数据为重传数据或新传数据的指示信息等多种信息。
第一控制信息的传输参数可以包括但不限于承载第一控制信息的信道的信道质量、第一控制信息对应的循环冗余校验(cyclic redundancy check,CRC)序列长度、第一控制信息所调度数据的传输次数等参数。第二控制信息的传输参数可以包括但不限于承载第二控制信息的信道的信道质量、第二控制信息对应的CRC序列长度、第二控制信息所调度数据的传输次数等参数。
本申请实施例中,UE在第一时域资源上发送的数据为上行数据,包括但不限于物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH、解调参考信号DMRS、侦听参考信号SRS等。UE在第一时域资源上接收的数据为下行数据,包 括但不限于物理下行共享信道PDSCH、物理下行控制信道PDCCH、解调参考信号DMRS、信道状态信息参考信号CSI-RS等。
在一种可能的实现方式中,终端设备可根据接收到第一控制信息和接收到第二控制信息的时域单元,在第一时域资源上发送数据或接收数据。具体地,若接收到第一控制信息的时域单元位于接收到第二控制信息的时域单元之前,终端设备可根据第一控制信息的指示在第一时域资源上发送数据;若接收到第二控制信息的时域单元位于接收到第一控制信息的时域单元之前,终端设备可根据第二控制信息的指示在第一时域资源上接收数据;若接收到第一控制信息的时域单元与接收到第二控制信息的时域单元为同一时域单元,终端设备也可根据第二控制信息的指示在第一时域资源上接收数据。
由于终端设备接收到第一控制信息和接收到第二控制信息的时域单元可反映出终端设备对于第一控制信息和第二控制信息的接收顺序。也就是说,接收到第一控制信息的时域单元位于接收到第二控制信息的时域之前,可表示终端设备先接收到第一控制信息;接收到第二控制信息的时域单元位于接收到第一控制信息的时域单元之前,可表示终端设备先接收到第二控制信息;接收到第一控制信息的时域单元与接收到第二控制信息的时域单元为同一时域单元,可表示终端设备在同一时隙接收到第一控制信息和第二控制信息,或者终端设备在同一时隙中的同一符号接收到第一控制信息和第二控制信息。
由此可知,本申请实施例中,终端设备可按照接收到第一控制信息和第二控制信息的先后顺序,来决定在上下行方向冲突的时域资源上是发送数据还是接收数据,如果先接收到用于调度上行数据的第一控制信息,则可在发生冲突的时域资源上发送数据,如果先接收到用于调度下行数据的第二控制信息,则可在发生冲突的时频资源上接收数据,从而有效解决上下行符号方向冲突的问题。
可以理解,本申请实施例中,时域单元可以为时隙或符号,即判断第一控制信息和第二控制信息在时域上的接收顺序的颗粒度可以是一个时隙,也可以是一个符号。具体的,若终端设备接收到第一控制信息的时隙位于接收到第二控制信息的时隙之前,终端设备可在第一时域资源上发送数据;反之,若终端设备接收到第二控制信息的时隙位于接收到第一控制信息的时隙之前,终端设备可在第一时域资源上接收数据。
举例来说,如图4所示,终端设备接收到上行DCI和下行DCI的时隙不同,而上行DCI和下行DCI调度的数据位于相同的时隙。上行DCI所在的时隙为时隙3,调度的PUSCH为时隙7,下行DCI所在的时隙为时隙5,调度的PDSCH为时隙7。如此,时隙7为发生上下行方向冲突的第一时域资源。但由于时隙3在时隙5之前,终端设备先接收到上行DCI,因此,终端设备将时隙7中的发生方向冲突的灵活符号作为上行符号使用,在该灵活符号处发送上行数据。
若终端设备接收到第一控制信息的时隙与接收到第二控制信息的时隙为同一时隙,在一种可能的设计中,考虑到可能存在某些DCI虽然所在的符号在前,但是由于候选位置较多或控制信道单元(control channel element,CCE)较多等因素,译码出来的时间反而晚于符号在后的DCI,终端设备可直接在第一时域资源上接收数据,从而优先保证下行数据的正常接收。
或者,在另一种可能的设计中,若终端设备接收到第一控制信息的时隙与接收到第二控制信息的时隙为同一时隙,终端设备还可根据在该同一时隙中接收到第一控制信息、第二控制信息的符号的先后顺序,来决定在第一时域资源上发送数据或是接收数据。在该同 一时隙中,若终端设备接收到第一控制信息的符号位于接收到第二控制信息的符号之前,终端设备可在第一时域资源上发送数据;若终端设备接收到第二控制信息的符号位于接收到第一控制信息的符号之前,终端设备可在第一时域资源上接收数据;若终端设备接收到第一控制信息的符号与接收到第二控制信息的符号为同一符号,终端设备可在第一时域资源上接收数据,从而优先保证下行数据的正常接收。需要说明的是,此时,第二控制信息调度的PUSCH剩余符号的上行发送也可以取消,即虽然PUSCH和第一控制信息调度的PDSCH只有部分符号重叠,但可以取消整个PUSCH的发送。此处,接收到控制信息的符号可以是指接收到控制信息的起始符号或终止符号。
举例来说,如图5所示,下行DCI所在的符号是符号0,调度的PDSCH包括符号5、符号6、符号7、符号8,上行DCI所在的符号是符号3,调度的PUSCH包括符号7、符号8、符号9、符号10。其中,符号7和符号8是发生冲突的灵活符号(即上文中所述的第一时域资源)。由于符号0在符号1之前,所以终端设备将符号7和符号8作为下行符号使用,在符号7和符号8处接收下行数据。同时取消整个PUSCH的发送,即终端设备在不冲突的符号9和符号10处,也不再发送上行数据。
在一个具体示例中,终端设备可根据用于承载第一控制信息的下行控制信道到第一控制信息调度的上行共享信道或下行共享信道之间的时间差,来判断接收到第一控制信息和第二控制信息的先后顺序。举例来说,若终端设备接收到上行DCI和下行DCI的时隙不同,而上行DCI和下行DCI调度的数据位于相同的时隙,终端设备可确定K0与K2的大小关系,此处,K0是指PDCCH到PDSCH的时间差,K2是指PDCCH到PUSCH的时间差。若PDSCH和PUSCH位于同一个时隙且K0不等于K2,则表示上行DCI和下行DCI位于不同的时隙。当K0小于K2时,终端设备可在发生冲突的灵活符号上发送上行数据,并丢弃下行DCI;当K0大于K2时,终端设备可在发生冲突的符号上接收下行数据,并丢弃上行DCI。若PDSCH和PUSCH位于同一个时隙且K0等于K2,则表示上行DCI和下行DCI位于相同的时隙,此时,终端设备需进一步判断接收到上行DCI和下行DCI的符号的先后顺序,若接收到上行DCI的符号和接收到下行DCI的符号为不同的符号,即没有符号重叠,终端设备可根据先接收到的DCI(符号在前的DCI),决定在发生冲突的符号上发送上行数据或接收下行数据。若符号在前的DCI为上行DCI,终端设备可在发生冲突的灵活符号上发送数据,若符号在前的DCI为下行DCI,终端设备可在发生冲突的灵活符号上接收数据。
在另一种可能的实现方式中,终端设备可根据第一控制信息和第二控制信息的码率,在第一时域资源上发送数据或接收数据。具体地,若第一控制信息的码率小于第二控制信息的码率,终端设备可根据第一控制信息的指示在第一时域资源上发送数据;反之,若第二控制信息的码率小于等于第一控制信息的码率,终端设备可根据第二控制信息的指示在第一时域资源上接收数据。
考虑到码率越低时,DCI解码错误的可能性越小,虚警概率越低;相反地,码率越高时DCI解码错误的可能性较大,虚警概率较高。因而,可以认为码率较低的DCI更可能是解码正确的DCI,而码率较高的DCI更可能是解码错误的DCI。如此,保留码率较低的DCI,根据码率较低的DCI的调度情况来确定在上下行方向冲突的符号上是发送上行数据或接收下行数据,也可以有效解决上下行方向符号冲突的问题。
在又一种可能的实现方式中,终端设备还可根据第一控制信息调度的数据为重传数据还是新传数据,以及第二控制信息调度的数据为重传数据还是新传数据,在第一时域资源 上发送数据或接收数据。具体而言,若第一控制信息携带的指示信息指示调度的数据为重传数据,且第二控制信息携带的指示信息指示调度的数据为新传数据,终端设备可根据第一控制信息的指示在第一时域资源上发送数据。若第二控制信息携带的指示信息指示调度的数据为重传数据,且第一控制信息携带的指示信息指示调度的数据为新传数据,终端设备可根据第二控制信息的指示在第一时域资源上接收数据。
考虑到当DCI调度数据重传时,数据接收方需根据在该次数据重传中接收到的数据和之前在数据初传中接收到数据进行合并译码,才能得到解码正确的数据。因此,为了降低数据接收方合并译码的复杂度,本申请实施例中,可优先选择用于调度数据重传的控制信息,根据第一控制信息和第二控制信息中用于调度数据重传的DCI,来确定在第一时域资源上发送数据或是接收数据,从而有效解决上下行方向符号冲突的问题,并且避免数据接收方进行多次数据的合并译码,降低数据接收方的功耗。
再一种可能的实现方式中,终端设备还可根据承载第一控制信息的信道的信道质量,以及承载第二控制信息的信道的信道质量,在第一时域资源上发送数据或接收数据。具体而言,若承载第一控制信息的信道的信道质量大于承载第二控制信息的信道的信道质量,终端设备可根据第一控制信息的指示在第一时域资源上发送数据;反之,若承载第二控制信息的信道的信道质量大于等于承载第一控制信息的信道的信道质量,终端设备可根据第二控制信息的指示在第一时域资源上接收数据。
考虑到信道条件较好时,DCI解码错误的可能性较小,虚警概率较低;相反地,信道条件不好时,DCI解码错误的可能性较大,虚警概率较高。因而,可以认为信道条件较好的DCI更可能是解码正确的DCI,而信道条件不好的DCI更可能是解码错误的DCI。如此,保留信道条件较好的DCI,根据承载DCI的信道的信道质量来确定在上下行方向冲突的符号上是发送上行数据或接收下行数据,也可以有效解决上下行方向符号冲突的问题。
再一种可能的实现方式中,终端设备也可根据第一控制信息和第二控制信息各自对应的CRC序列长度,在第一时域资源上发送数据或接收数据。具体的,若第一控制信息对应的CRC序列的长度大于第二控制信息对应的CRC序列的长度,终端设备可根据第一控制信息的指示在第一时域资源上发送数据;若第二控制信息对应的CRC序列的长度大于等于第一控制信息对应的CRC序列的长度,终端设备可根据第二控制信息的指示在第一时域资源上接收数据。
考虑到DCI对应的CRC序列长度与DCI的虚警概率负相关,即CRC序列长度越长,虚警概率越低,DCI的可靠性也就越高。因而,本申请实施例中,可根据接收到的上行DCI和下行DCI的CRC序列的长度,判断在第一时域资源上发送数据或是接收数据,优先选择CRC序列长度较长的DCI,从而可有效解决上下行方向符号冲突的问题。
再一种可能的实现方式中,终端设备还可根据第一控制信息所调度数据的传输次数,以及第二控制信息所调度数据的传输次数,在第一时域资源上发送数据或接收数据。比如,若第一控制信息所调度数据的传输次数为多次,且第二控制信息所调度数据的传输次数为一次,终端设备可根据第一控制信息的指示在第一时域资源上发送数据;若第二控制信息所调度数据的传输次数为多次,且第一控制信息所调度数据的传输次数为一次,终端设备可根据第二控制信息的指示在第一时域资源上接收数据。
考虑到当一个DCI调度多次数据传输(例如可以是PUSCH或PDSCH)时,每次传输的数据的内容不同,数据接收方需根据多次接收到的数据进行合并译码,才能得到解码正 确的数据。若合并译码失败,网络设备还需重新发送DCI,调度数据重传。因此,为了降低数据接收方合并译码的复杂度,本申请实施例中可优先选择用于调度多次数据传输的DCI,根据上行DCI和下行DCI调度数据的传输次数,来确定在第一时域资源上发送数据或是接收数据,从而有效解决上下行方向符号冲突的问题,并且避免数据接收方进行多次数据的合并译码,降低数据接收方的功耗。
需要说明的是,尽管本申请实施例中提供了多种根据第一信息确定在第一时域资源上发送数据或者接收数据的方式,但应理解,本申请实施例中的技术方案并不限于此。在实际应用场景中,终端设备可采用某一种实现方式来确定在第一时域资源上发送数据或者接收数据,也可以将其中的多种实现方式相结合来实现确定在第一时域资源上发送数据或接收数据。本申请技术人员可按照业务需求设定每种实现方式适用的业务场景,以及各种实现方式之间的结合顺序或结合规则,本申请对此不作具体限定。
基于上述多种可能的实现方式,若终端设备确定在第一时域资源上发送数据后,终端设备还可将第一时域资源之前的预设个数的下行符号转换为保护间隔符号;若终端设备确定在第一时域资源上接收数据后,终端设备还可将第一时域资源之后的预设个数的上行符号转换为保护间隔符号。如此,可使上行符号和下行符号之间的保护间隔符号个数满足上下行转换的符号个数需求,并提高通信效率。所述预设个数可由本领域技术人员根据实际需求设定,也可以为一个符号,也可以为多个符号,本申请实施例对此不做具体限定。
基于相同的发明构思,本申请实施例还提供一种终端设备,请参见图6所示,为本申请实施例提供的一种终端设备的结构示意图,如图6所示,该终端设备包括:收发模块610和处理模块620。
收发模块610,用于接收第一控制信息和第二控制信息;处理模块620,用于根据接收到第一控制信息和第二控制信息占用的传输资源、携带的信息和传输参数中的至少一项,通过收发模块610在第一时域资源上发送数据或接收数据。应理解,本发明实施例中的处理模块620可以由处理器或处理器相关电路组件实现,收发模块610可以由收发器或收发器相关电路组件实现。
请参见图7所示,为本申请实施例中提供的终端设备的另一种结构示意图。如图7所示,该终端设备700包括处理器710,存储器720、与收发器730,其中,存储器720中存储指令或程序,处理器710用于执行存储器720中存储的指令或程序。存储器720中存储的指令或程序被执行时,该处理器710用于执行上述实施例中处理模块620执行的操作,收发器730用于执行上述实施例中收发模块610执行的操作。
应理解,根据本发明实施例的终端设备600或终端设备700可对应于本发明实施例的通信方法S300至S301中的终端设备,并且终端设备600或终端设备700中的各个模块的操作和/或功能分别为了实现图3所示方法的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信装置,该通信装置可以是芯片、终端设备或者电路等。所述通信装置包括一个或多个处理器,所述一个或多个处理器可实现图3所示的方法实施例中终端设备侧所执行的动作。
当该通信装置为终端设备时,图8示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图8中,终端设备以手机作为例子。如图8所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要 用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图8中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图8所示,终端设备包括收发单元810和处理单元820。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元810中用于实现接收功能的器件视为接收单元,将收发单元810中用于实现发送功能的器件视为发送单元,即收发单元810包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元810用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元820用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元810用于执行图3中终端设备侧的发送操作,和/或收发单元810还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元820,用于执行图3中的步骤S301,和/或处理单元820还用于执行本申请实施例中终端设备侧的其他处理步骤。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中终端设备侧的方法。
本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中终端设备侧的方法。
本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一方法实施例中终端设备侧的方法。
本申请实施例提供一种通信系统,该系统包括终端设备,其中,该终端设备可用于执行上述方法实施例中终端设备侧的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field  programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机 软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (20)

  1. 一种数据传输方法,其特征在于,包括:
    终端设备接收第一控制信息和第二控制信息,所述第一控制信息用于指示为所述终端设备分配上行资源,所述第二控制信息用于指示为所述终端设备分配下行资源,所述上行资源和所述下行资源中均包括第一时域资源;
    所述终端设备根据所述第一控制信息和所述第二控制信息占用的传输资源、携带的信息和传输参数中的至少一项,在所述第一时域资源上发送或接收数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一控制信息和所述第二控制信息占用的传输资源包括所述终端设备接收到所述第一控制信息的时域单元和接收到所述第二控制信息的时域单元,所述时域单元为时隙或符号;
    所述终端设备根据所述第一控制信息和所述第二控制信息占用的传输资源,在所述第一时域资源上发送或接收数据,包括:
    若接收到所述第一控制信息的时域单元位于接收到所述第二控制信息的时域单元之前,所述终端设备在所述第一时域资源上发送数据;或,
    若接收到所述第二控制信息的时域单元位于接收到所述第一控制信息的时域单元之前,所述终端设备在所述第一时域资源上接收数据;或,
    若接收到所述第一控制信息的时域单元与接收到所述第二控制信息的时域单元为同一时域单元,所述终端设备在所述第一时域资源上接收数据。
  3. 根据权利要求1所述的方法,其特征在于,所述第一控制信息和所述第二控制信息中携带的信息包括所述第一控制信息的码率和所述第二控制信息的码率;
    所述终端设备根据所述第一控制信息和所述第二控制信息携带的信息,在所述第一时域资源上发送或接收数据,包括:
    若所述第一控制信息的码率小于所述第二控制信息的码率,所述终端设备在所述第一时域资源上发送数据;或,
    若所述第二控制信息的码率小于等于所述第一控制信息的码率,所述终端设备在所述第一时域资源上接收数据。
  4. 根据权利要求1所述的方法,其特征在于,所述第一控制信息和所述第二控制信息的传输参数包括承载所述第一控制信息的信道的信道质量和承载所述第二控制信息的信道的信道质量;
    所述终端设备根据所述第一控制信息和所述第二控制信息的传输参数,在所述第一时域资源上发送或接收数据,包括:
    若承载所述第一控制信息的信道的信道质量大于承载所述第二控制信息的信道的信道质量,所述终端设备在所述第一时域资源上发送数据;或,
    若承载所述第二控制信息的信道的信道质量大于等于承载所述第一控制信息的信道的信道质量,所述终端设备在所述第一时域资源上接收数据。
  5. 根据权利要求1所述的方法,其特征在于,所述第一控制信息和所述第二控制信息的传输参数包括所述第一控制信息对应的CRC序列长度和所述第二控制信息对应的CRC序列长度;
    所述终端设备根据所述第一控制信息和所述第二控制信息的传输参数,在所述第一时 域资源上发送或接收数据,包括:
    若所述第一控制信息对应的CRC序列的长度大于所述第二控制信息对应的CRC序列的长度,所述终端设备在所述第一时域资源上发送数据;或,
    若所述第二控制信息对应的CRC序列的长度大于等于所述第一控制信息对应的CRC序列的长度,所述终端设备在所述第一时域资源上接收数据。
  6. 根据权利要求1所述的方法,其特征在于,所述第一控制信息和所述第二控制信息中携带的信息包括所述第一控制信息所调度的数据为重传数据或新传数据的指示信息和所述第二控制信息所调度的数据为重传数据或新传数据的指示信息;
    所述终端设备根据所述第一控制信息和所述第二控制信息中携带的信息,在所述第一时域资源上发送或接收数据,包括:
    若所述第一控制信息携带的指示信息指示重传数据,且所述第二控制信息携带的指示信息指示新传数据,所述终端设备在所述第一时域资源上发送数据;或,
    若所述第二控制信息携带的指示信息指示重传数据,且所述第一控制信息携带的指示信息指示新传数据,所述终端设备在所述第一时域资源上接收数据。
  7. 根据权利要求1所述的方法,其特征在于,所述第一控制信息和所述第二控制信息中携带的信息包括所述第一控制信息所调度的数据的传输次数和所述第二控制信息所调度的数据的传输次数;
    所述终端设备根据所述第一控制信息和所述第二控制信息中携带的信息,在所述第一时域资源上发送或接收数据,包括:
    若所述第一控制信息所调度数据的传输次数为多次,且所述第二控制信息所调度数据的传输次数为一次,所述终端设备在所述第一时域资源上发送数据;或,
    若所述第二控制信息所调度数据的传输次数为多次,且所述第一控制信息所调度数据的传输次数为一次,所述终端设备在所述第一时域资源上接收数据。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,若所述终端设备在所述第一时域资源上发送数据,所述终端设备在所述第一时域资源上发送数据之前,还包括:
    所述终端设备将所述第一时域资源之前的预设个数的符号设置为保护间隔符号;
    若所述终端设备在所述第一时域资源上接收数据,所述终端设备在所述第一时域资源上接收数据之前,还包括:
    所述终端设备将所述第一时域资源之后的预设个数的符号设置为保护间隔符号。
  9. 一种终端设备,其特征在于,所述终端设备包括:
    收发模块,用于接收第一控制信息和第二控制信息,所述第一控制信息用于指示为所述终端设备分配的上行资源,所述第二控制信息用于指示为所述终端设备分配的下行资源,所述上行资源和所述下行资源中均包括第一时域资源;
    处理模块,用于根据所述第一控制信息和所述第二控制信息占用的传输资源、携带的信息和传输参数中的至少一项,通过所述收发模块在所述第一时域资源上发送或接收数据。
  10. 根据权利要求9所述的终端设备,其特征在于,所述第一控制信息和所述第二控制信息占用的传输资源包括所述终端设备接收到所述第一控制信息的时域单元和接收到所述第二控制信息的时域单元,所述时域单元为时隙或符号;
    所述处理模块具体用于:
    若所述收发模块接收到所述第一控制信息的时域单元位于接收到所述第二控制信息 的时域单元之前,通过所述收发模块在所述第一时域资源上发送数据;或,
    若所述收发模块接收到所述第二控制信息的时域单元位于接收到所述第一控制信息的时域单元之前,通过所述收发模块在所述第一时域资源上接收数据;或,
    若所述收发模块接收到所述第一控制信息的时域单元与接收到所述第二控制信息的时域单元为同一时域单元,通过所述收发模块在所述第一时域资源上接收数据。
  11. 根据权利要求9所述的终端设备,其特征在于,所述第一控制信息和所述第二控制信息中携带的信息包括所述第一控制信息的码率和所述第二控制信息的码率;
    所述处理模块具体用于:
    若所述第一控制信息的码率小于所述第二控制信息的码率,通过所述收发模块在所述第一时域资源上发送数据;或,
    若所述第二控制信息的码率小于等于所述第一控制信息的码率,通过所述收发模块在所述第一时域资源上接收数据。
  12. 根据权利要求9所述的终端设备,其特征在于,所述第一控制信息和所述第二控制信息的传输参数包括承载所述第一控制信息的信道质量和承载所述第二控制信息的信道的信道质量;
    所述处理模块具体用于:
    若承载所述第一控制信息的信道的信道质量大于承载所述第二控制信息的信道的信道质量,通过所述收发模块在所述第一时域资源上发送数据;或,
    若承载所述第二控制信息的信道的信道质量大于等于承载所述第一控制信息的信道的信道质量,通过所述收发模块在所述第一时域资源上接收数据。
  13. 根据权利要求9所述的终端设备,其特征在于,所述第一控制信息和所述第二控制信息中携带的信息包括所述第一控制信息对应的CRC序列长度和所述第二控制信息对应的CRC序列长度;
    所述处理模块具体用于:
    若所述第一控制信息对应的CRC序列的长度大于所述第二控制信息对应的CRC序列的长度,通过所述收发模块在所述第一时域资源上发送数据;或,
    若所述第二控制信息对应的CRC序列的长度大于等于所述第一控制信息对应的CRC序列的长度,通过所述收发模块在所述第一时域资源上接收数据。
  14. 根据权利要求9所述的终端设备,其特征在于,所述第一控制信息和所述第二控制信息中携带的信息包括所述第一控制信息所调度的数据为重传数据或新传数据的指示信息和所述第二控制信息所调度的数据为重传数据或新传数据的指示信息;
    所述处理模块具体用于:
    若所述第一控制信息携带的指示信息指示重传数据,且所述第二控制信息携带的指示信息指示新传数据,通过所述收发模块在所述第一时域资源上发送数据;或,
    若所述第二控制信息携带的指示信息指示重传数据,且所述第一控制信息携带的指示信息指示新传数据,通过所述收发模块在所述第一时域资源上接收数据。
  15. 根据权利要求9所述的终端设备,其特征在于,所述第一控制信息和所述第二控制信息的传输参数包括所述第一控制信息所调度的数据的传输次数和所述第二控制信息所调度的数据的传输次数;
    所述处理模块具体用于:
    若所述第一控制信息所调度数据的传输次数为多次,且所述第二控制信息所调度数据的传输次数为一次,通过所述收发模块在所述第一时域资源上发送数据;或,
    若所述第二控制信息所调度数据的传输次数为多次,且所述第一控制信息所调度数据的传输次数为一次,通过所述收发模块在所述第一时域资源上接收数据。
  16. 根据权利要求9至15中任一项所述的终端设备,其特征在于,若所述处理模块通过所述收发模块在所述第一时域资源上发送数据,在所述收发模块在所述第一时域资源上发送数据之前,所述处理模块还用于:
    将所述第一时域资源之前的预设个数的符号设置为保护间隔符号;
    若所述处理模块通过所述收发模块在所述第一时域资源上接收数据,在所述收发模块在所述第一时域资源上接收数据之前,所述处理模块还用于:
    将所述第一时域资源之后的预设个数的符号设置为保护间隔符号。
  17. 一种终端设备,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以执行如权利要求1至8中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行如权利要求1至8中任意一项所述的方法。
  19. 一种计算机程序产品,其特征在于,当计算机读取并执行计算机程序产品时,使得计算机执行如权利要求1至8中任意一项所述的方法。
  20. 一种通信系统,其特征在于,包括:终端设备,其中,所述终端设备用于执行如权利要求1至8中任意一项所述的方法。
PCT/CN2019/104056 2018-10-31 2019-09-02 一种数据传输方法及终端设备 WO2020088088A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811291608.9A CN111130727B (zh) 2018-10-31 2018-10-31 一种数据传输方法及终端设备
CN201811291608.9 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020088088A1 true WO2020088088A1 (zh) 2020-05-07

Family

ID=70464544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104056 WO2020088088A1 (zh) 2018-10-31 2019-09-02 一种数据传输方法及终端设备

Country Status (2)

Country Link
CN (1) CN111130727B (zh)
WO (1) WO2020088088A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218372B (zh) * 2019-07-12 2022-04-05 华为技术有限公司 通信方法与通信装置
CN111934836A (zh) * 2020-08-06 2020-11-13 中兴通讯股份有限公司 数据传输方法、装置、设备和存储介质
US20240098731A1 (en) * 2020-12-11 2024-03-21 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method and apparatus, and storage medium
CN115333704A (zh) * 2021-05-10 2022-11-11 维沃移动通信有限公司 传输控制方法、装置、终端及可读存储介质
CN115334661A (zh) * 2021-05-11 2022-11-11 中兴通讯股份有限公司 通信方法、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301772A (zh) * 2008-12-23 2011-12-28 Abb研究有限公司 多网络管理器、方法和系统
WO2017016588A1 (en) * 2015-07-27 2017-02-02 Telefonaktiebolaget Lm Ericsson (Publ) Blanking pattern indication for resource utilization in cellular radio communication
CN108207032A (zh) * 2016-12-16 2018-06-26 华硕电脑股份有限公司 在无线通信系统中处置上行链路资源冲突的方法和设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8848620B2 (en) * 2008-02-04 2014-09-30 Qualcomm Incorporated Simultaneous transmission of acknowledgement, channel quality indicator and scheduling request
CN102368759B (zh) * 2011-11-04 2018-04-27 中兴通讯股份有限公司 下行控制信道的发送方法及装置
US10116482B2 (en) * 2014-09-12 2018-10-30 Samsung Electronics Co., Ltd. Symbol transmission method and apparatus for use in filter bank multicarrier system
CN106160971B (zh) * 2015-04-07 2019-05-28 电信科学技术研究院 一种数据传输、接收信号检测的方法和设备
JP6750029B2 (ja) * 2016-03-30 2020-09-02 アイディーエーシー ホールディングス インコーポレイテッド ロングタームエボリューション支援nrフレキシブル無線アクセス
CN112087761B (zh) * 2017-01-05 2023-10-03 华为技术有限公司 资源映射方法及用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301772A (zh) * 2008-12-23 2011-12-28 Abb研究有限公司 多网络管理器、方法和系统
WO2017016588A1 (en) * 2015-07-27 2017-02-02 Telefonaktiebolaget Lm Ericsson (Publ) Blanking pattern indication for resource utilization in cellular radio communication
CN108207032A (zh) * 2016-12-16 2018-06-26 华硕电脑股份有限公司 在无线通信系统中处置上行链路资源冲突的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL: "Scheduling of Multiple Transport Blocks", 3GPP DRAFT; R1-1811322, 12 October 2018 (2018-10-12), Chengdu, P. R. China, pages 1 - 2, XP051518725 *

Also Published As

Publication number Publication date
CN111130727B (zh) 2021-05-18
CN111130727A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2018196550A1 (zh) 传输反馈信息的方法和装置
US11533150B2 (en) Feedback information transmission method and communication device
WO2020088088A1 (zh) 一种数据传输方法及终端设备
US11889513B2 (en) Communication method and apparatus
US9521669B2 (en) HARQ for dynamic change of the TDD UL/DL configuration in LTE TDD systems
US10554794B2 (en) Information transmission method and apparatus in TDD system
WO2018028510A1 (zh) 上行传输方法、网络侧设备及终端
US10779284B2 (en) Data transmission method, user equipment, and base station
WO2020216130A1 (zh) 一种通信方法及装置
WO2018233695A1 (zh) 信息传输方法及相关设备
US20200295900A1 (en) Information transmission apparatus, method, and system
WO2020227868A1 (zh) 传输数据的方法、终端设备和网络设备
WO2019192500A1 (zh) 通信方法和通信装置
WO2019191999A1 (zh) 一种资源确定方法、指示方法及装置
WO2021017848A1 (zh) 用于链路失败恢复的方法和装置
WO2018076326A1 (zh) 用于上行载波聚合的通信方法和装置
WO2018072062A1 (zh) 信息传输方法和装置
WO2021026844A1 (zh) 数据传输方法、终端设备、网络设备及存储介质
WO2019137405A1 (zh) 一种信息传输方法、装置以及计算机可读存储介质
WO2021204275A1 (zh) 一种反馈信息的发送方法及装置
WO2020199769A1 (zh) 控制信息的传输方法和装置
EP4192155A1 (en) Information transmission method and communication apparatus
US10938522B2 (en) Low latency service feedback
WO2021226972A1 (zh) 边链路反馈信息的发送和接收方法以及装置
WO2019033392A1 (zh) 信号传输的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877642

Country of ref document: EP

Kind code of ref document: A1