WO2020063441A1 - 重复传输方法、终端和网络侧设备 - Google Patents

重复传输方法、终端和网络侧设备 Download PDF

Info

Publication number
WO2020063441A1
WO2020063441A1 PCT/CN2019/106666 CN2019106666W WO2020063441A1 WO 2020063441 A1 WO2020063441 A1 WO 2020063441A1 CN 2019106666 W CN2019106666 W CN 2019106666W WO 2020063441 A1 WO2020063441 A1 WO 2020063441A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeated transmission
activated
bwp
signaling
logical channel
Prior art date
Application number
PCT/CN2019/106666
Other languages
English (en)
French (fr)
Inventor
谌丽
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Publication of WO2020063441A1 publication Critical patent/WO2020063441A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a repetitive transmission method, a terminal, and a network-side device.
  • the repeated transmission mechanism may refer to transmitting the same Packet Data Convergence Protocol (PDCP) protocol data unit (PDU) through multiple paths, so as to improve transmission reliability through multi-path transmission gain, and Reduce transmission delay.
  • PDCP Packet Data Convergence Protocol
  • PDU protocol data unit
  • RB radio bearer
  • RLC radio link control
  • Embodiments of the present disclosure provide a repeated transmission method, a terminal, and a network-side device to solve the problem of relatively low resource utilization in a cell.
  • an embodiment of the present disclosure provides a repeated transmission method, including:
  • the terminal receives configuration signaling sent by the network side, where the configuration signaling includes repeated transmission configuration.
  • the repeated transmission configuration includes: one RB is mapped to multiple RLC entities, and different RLC entities are configured with different logical channels, and different Logical channels correspond to different partial bandwidths (Band, Width, Part, BWP);
  • the terminal performs a repeated transmission operation according to the repeated transmission configuration.
  • the repeated transmission configuration includes:
  • each BWP group in the correspondence includes one or more BWPs.
  • the multiple RLC entities include a primary RLC entity, and when repeated transmission is not activated, the RB transmits through the primary RLC entity.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • RRC signaling is activated or RRC signaling is deactivated, wherein the RRC signaling is the configuration signaling
  • MAC Media access control
  • Physical layer signaling is activated or deactivated.
  • the RRC signaling indicates the activated BWP in the repeated transmission configuration, and if there are multiple activated logical channels in the logical channel corresponding to the RB, it indicates that the RB is repeatedly activated for transmission, and the activation An active BWP exists in a BWP corresponding to a logical channel; if an inactive logical channel exists in a corresponding logical channel in the RB, the inactive logical channel cannot be transmitted; or
  • the RRC signaling indicates whether the RB activates repeated transmission, and if activated, all logical channels corresponding to the RB are transmitted; if not activated, data of the RB is transmitted only on the primary logical channel;
  • the RRC signaling respectively indicates whether the logical channel corresponding to the RB is activated for transmission, indicates that the activated logical channel can be transmitted, and indicates that an inactive logical channel cannot be transmitted;
  • the MAC signaling activates or deactivates repeated transmission of a specific RB
  • the MAC signaling activates or deactivates a specific repeated transmission path, wherein the specific repeated transmission path is one or more repeated transmission paths in the repeated transmission configuration, and the repeated transmission path includes a logical channel and / or a BWP; or
  • the physical layer signaling activates or deactivates repeated transmissions of the terminal.
  • the physical layer signaling activates or deactivates repeated transmission carried by a specific BWP or a specific BWP group.
  • the terminal performing a repeated transmission operation according to the repeated transmission configuration includes:
  • data of a logical channel corresponding to the specific BWP group is transmitted on one or more BWPs in the multiple activated BWPs;
  • the data of the logical channel corresponding to the BWP group is subjected to a Hybrid Automatic Repeat Request (HARQ) on the newly activated BWP in the BWP group. pass;
  • HARQ Hybrid Automatic Repeat Request
  • the RLC data is transmitted on any one or more activated BWPs of the terminal.
  • An embodiment of the present disclosure further provides a repeated transmission method, including:
  • the network-side device sends configuration signaling to the terminal.
  • the configuration signaling includes repeated transmission configuration.
  • the repeated transmission configuration includes: one RB is mapped to multiple RLC entities, and different RLC entities are configured with different logical channels, and different Logical channels correspond to different BWPs.
  • the repeated transmission configuration includes:
  • each BWP group in the correspondence includes one or more BWPs.
  • the multiple RLC entities include a primary RLC entity, and when repeated transmission is not activated, the RB transmits through the primary RLC entity.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • RRC signaling is activated or RRC signaling is deactivated, wherein the RRC signaling is the configuration signaling
  • Physical layer signaling is activated or deactivated.
  • the RRC signaling indicates the activated BWP in the repeated transmission configuration, and if there are multiple activated logical channels in the logical channel corresponding to the RB, it indicates that the RB is repeatedly activated for transmission, and the activation An active BWP exists in a BWP corresponding to a logical channel; if an inactive logical channel exists in a corresponding logical channel in the RB, the inactive logical channel cannot be transmitted; or
  • the RRC signaling indicates whether the RB activates repeated transmission, and if activated, all logical channels corresponding to the RB are transmitted; if not activated, data of the RB is transmitted only on the primary logical channel; or
  • the RRC signaling respectively indicates whether the logical channel corresponding to the RB is activated for transmission, indicates that the activated logical channel can be transmitted, and indicates that an inactive logical channel cannot be transmitted;
  • the MAC signaling activates or deactivates repeated transmission of a specific RB
  • the MAC signaling activates or deactivates a specific repeated transmission path, wherein the specific repeated transmission path is one or more repeated transmission paths in the repeated transmission configuration, and the repeated transmission path includes a logical channel and / or a BWP; or
  • the physical layer signaling activates or deactivates repeated transmissions of the terminal.
  • the physical layer signaling activates or deactivates repeated transmission carried by a specific BWP or a specific BWP group.
  • An embodiment of the present disclosure further provides a terminal, including:
  • a receiving module configured to receive configuration signaling sent by a network side, where the configuration signaling includes repeated transmission configuration, where the repeated transmission configuration includes: one RB is mapped to multiple RLC entities, and different RLC entities are configured with different logical channels , And different logical channels correspond to different BWPs;
  • a transmission module configured to perform a repeated transmission operation according to the repeated transmission configuration.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • RRC signaling is activated or RRC signaling is deactivated, wherein the RRC signaling is the configuration signaling
  • Physical layer signaling is activated or deactivated.
  • the terminal performing a repeated transmission operation according to the repeated transmission configuration includes:
  • data of a logical channel corresponding to the specific BWP group is transmitted on one or more BWPs in the multiple activated BWPs;
  • the data of the logical channel corresponding to the BWP group performs a hybrid automatic retransmission request on the newly activated BWP in the BWP group to request HARQ retransmission;
  • the RLC data is transmitted on any one or more activated BWPs of the terminal.
  • An embodiment of the present disclosure further provides a network-side device, including:
  • a sending module configured to send configuration signaling to the terminal, where the configuration signaling includes repeated transmission configuration, the repeated transmission configuration includes: one RB is mapped to multiple RLC entities, and different RLC entities are configured with different logical channels, and Different logical channels correspond to different BWPs.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • RRC signaling is activated or RRC signaling is deactivated, wherein the RRC signaling is the configuration signaling
  • Physical layer signaling is activated or deactivated.
  • An embodiment of the present disclosure further provides a terminal including a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor.
  • the processor controls the transceiver to receive configuration signaling sent by a network side, where the configuration signaling includes a repeated transmission configuration, and the repeated transmission configuration includes: one RB is mapped to multiple RLC entities, and different The RLC entity is configured with different logical channels, and different logical channels correspond to different BWPs;
  • the processor performs a repeated transmission operation according to the repeated transmission configuration.
  • the repeated transmission configuration includes:
  • each BWP group in the correspondence includes one or more BWPs.
  • the multiple RLC entities include a primary RLC entity, and when repeated transmission is not activated, the RB transmits through the primary RLC entity.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • RRC signaling is activated or RRC signaling is deactivated, wherein the RRC signaling is the configuration signaling
  • Physical layer signaling is activated or deactivated.
  • the RRC signaling indicates the activated BWP in the repeated transmission configuration, and if there are multiple activated logical channels in the logical channel corresponding to the RB, it indicates that the RB is repeatedly activated for transmission, and the activation An active BWP exists in a BWP corresponding to a logical channel; if an inactive logical channel exists in a corresponding logical channel in the RB, the inactive logical channel cannot be transmitted; or
  • the RRC signaling indicates whether the RB activates repeated transmission, and if activated, all logical channels corresponding to the RB are transmitted; if not activated, data of the RB is transmitted only on the primary logical channel;
  • the RRC signaling respectively indicates whether the logical channel corresponding to the RB is activated for transmission, indicates that the activated logical channel can be transmitted, and indicates that an inactive logical channel cannot be transmitted;
  • the MAC signaling activates or deactivates repeated transmission of a specific RB
  • the MAC signaling activates or deactivates a specific repeated transmission path, wherein the specific repeated transmission path is one or more repeated transmission paths in the repeated transmission configuration, and the repeated transmission path includes a logical channel and / or a BWP; or
  • the physical layer signaling activates or deactivates repeated transmissions of the terminal.
  • the physical layer signaling activates or deactivates repeated transmission carried by a specific BWP or a specific BWP group.
  • performing the repeated transmission operation according to the repeated transmission configuration includes:
  • data of a logical channel corresponding to the specific BWP group is transmitted on one or more BWPs in the multiple activated BWPs;
  • the data of the logical channel corresponding to the BWP group is subjected to a hybrid automatic retransmission request for HARQ retransmission on the newly activated BWP in the BWP group;
  • the RLC data is transmitted on any one or more activated BWPs of the terminal.
  • An embodiment of the present disclosure further provides a network-side device, including a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor.
  • the processor controls the transceiver to send configuration signaling to the terminal, where the configuration signaling includes repeated transmission configuration, and the repeated transmission configuration includes: one RB is mapped to multiple RLC entities, and different RLC entities Configure different logical channels, and different logical channels correspond to different BWPs.
  • the repeated transmission configuration includes:
  • each BWP group in the correspondence includes one or more BWPs.
  • the multiple RLC entities include a primary RLC entity, and when repeated transmission is not activated, the RB transmits through the primary RLC entity.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • RRC signaling is activated or RRC signaling is deactivated, wherein the RRC signaling is the configuration signaling
  • Physical layer signaling is activated or deactivated.
  • the RRC signaling indicates the activated BWP in the repeated transmission configuration, and if there are multiple activated logical channels in the logical channel corresponding to the RB, it indicates that the RB is repeatedly activated for transmission, and the activation An active BWP exists in a BWP corresponding to a logical channel; if an inactive logical channel exists in a corresponding logical channel in the RB, the inactive logical channel cannot be transmitted; or
  • the RRC signaling indicates whether the RB activates repeated transmission, and if activated, all logical channels corresponding to the RB are transmitted; if not activated, data of the RB is transmitted only on the primary logical channel; or
  • the RRC signaling respectively indicates whether the logical channel corresponding to the RB is activated for transmission, indicates that the activated logical channel can be transmitted, and indicates that an inactive logical channel cannot be transmitted;
  • the MAC signaling activates or deactivates repeated transmission of a specific RB
  • the MAC signaling activates or deactivates a specific repeated transmission path, wherein the specific repeated transmission path is one or more repeated transmission paths in the repeated transmission configuration, and the repeated transmission path includes a logical channel and / or a BWP; or
  • the physical layer signaling activates or deactivates repeated transmissions of the terminal.
  • the physical layer signaling activates or deactivates repeated transmission carried by a specific BWP or a specific BWP group.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a program is stored, wherein the program, when executed by a processor, implements steps in the terminal-side repeated transmission method provided by the embodiment of the present disclosure, or the program When executed by a processor, the steps in the method for repeating transmission on the network side device side provided by the embodiments of the present disclosure are implemented.
  • the terminal receives configuration signaling sent by a network side, where the configuration signaling includes repeated transmission configuration, and the repeated transmission configuration includes: one RB is mapped to multiple RLC entities, and different RLC entity configurations Different logical channels and different logical channels correspond to different partial bandwidth BWPs; the terminal performs repeated transmission operations according to the repeated transmission configuration. In this way, multiple logical channel data corresponding to the RB can be transmitted on different BWPs, thereby improving resource utilization in the cell.
  • FIG. 1 is a schematic diagram of a network structure applicable to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a repeated transmission configuration according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of another repeated transmission method according to an embodiment of the present disclosure.
  • FIG. 5 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 6 is a structural diagram of a network-side device according to an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of another network-side device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of an applicable network structure according to an embodiment of the present disclosure. As shown in FIG. 1, it includes a terminal 11 and a network-side device 12, where the terminal 11 may be a user terminal (User Equipment) or other terminals. Devices, such as: mobile phones, tablet computers, laptop computers, personal digital assistants (PDAs), mobile Internet devices (MID), or wearable devices (Wearable device) and other terminal-side devices, it should be noted that the specific type of the terminal is not limited in the embodiments of the present disclosure.
  • PDAs personal digital assistants
  • MID mobile Internet devices
  • Wiarable device wearable devices
  • the network-side device 12 may be a base station, such as a macro station, LTE eNB, 5G NR, NB, etc .; the network-side device may also be a small station, such as a low power node (LPN: low power node), pico, femto, or other small station, or A network-side device may have an access point (AP, access point); a base station may also be a network node composed of a central unit (CU, central unit) and multiple transmission and reception points (TRP, Transmission Reception Point) that it manages and controls. It should be noted that the specific types of network-side devices are not limited in the embodiments of the present disclosure.
  • FIG. 2 is a flowchart of a repeated transmission method according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes the following steps:
  • Step 201 The terminal receives configuration signaling sent by the network side, where the configuration signaling includes repeated transmission configuration, and the repeated transmission configuration includes: one RB is mapped to multiple RLC entities, and different RLC entities are configured with different logical channels, And different logical channels correspond to different BWPs;
  • Step 202 The terminal performs a repeated transmission operation according to the repeated transmission configuration.
  • the above configuration signaling may be RRC signaling, of course, there is no limitation on this, for example, other signaling that the network-side device can send to the terminal may also be used.
  • the RB may be an RB that is repeatedly transmitted at the PDCP layer.
  • the above repeated transmission configuration may be as shown in FIG. 3, mapping an RB to different RLC entities, and configuring different logical channels for different RLC entities, and each logical channel is configured with a corresponding BWP, for example, as shown in FIG. 3
  • Each logical channel is configured with a BWP group (BWPG), and each BWP group includes two BWPs.
  • BWPG BWP group
  • the repeated transmission configuration shown in FIG. 3 is only an example.
  • different numbers of BWPs can be configured for different logical channels, or the same number of BWPs can be configured for some logical channels, while other logical channels are configured differently.
  • the terminal After the terminal receives the above-mentioned repeated transmission configuration, it can perform corresponding repeated transmission according to the repeated transmission configuration.
  • the multiple BWPs configured for the repetitive transmission and configured as the RB may divide a large bandwidth of a cell into a part of the multiple BWPs.
  • the network-side bandwidth of a cell is very large, such as up to 400 MHz. Therefore, the concept of BWP is introduced in the NR system to divide the large bandwidth of a cell into multiple BWPs.
  • the above method can be used for repeated transmission, so as to obtain the gain of repeated transmission for reducing delay and improving reliability, thereby meeting high-reliability and low-latency communication (Ultra-Reliable and Low Latency (Communications, URLLC) business requirements.
  • the repeated transmission configuration includes:
  • each BWP group in the correspondence includes one or more BWPs.
  • the above-mentioned repeated transmission configuration includes multiple correspondences between the LCID and the BWP index, so that different BWPs can be configured for different logical channels through the correspondence.
  • the network-side device may be configured to indicate one or more BWPs corresponding to different logical channels in the configuration signaling.
  • the above repeated transmission configuration may include a configuration of an uplink logical channel and / or a configuration of a downlink logical channel.
  • the network-side device configures two or more RLC entities corresponding to one RB and the logical channel number corresponding to each RLC entity, and configures each logical channel corresponding to repeated transmission.
  • One or more BWP indexes are two or more RLC entities corresponding to one RB and the logical channel number corresponding to each RLC entity, and configures each logical channel corresponding to repeated transmission.
  • One or more BWP indexes are two or more RLC entities corresponding to one RB and the logical channel number corresponding to each RLC entity, and configures each logical channel corresponding to repeated transmission.
  • the terminal receives the RRC configuration signaling and determines the PDCP repeated transmission configuration of the RB.
  • the configuration includes the corresponding RLC entity and logical channel number, and determines the BWP that the logical channel data can be transmitted through the BWP index corresponding to each repeated transmission logical channel number. .
  • the correspondence between the LCID and the BWP group ID can be used to indicate the BWP group ID corresponding to different logical channels in the repeated transmission configuration. Because the repeated transmission configuration only needs to carry the BWP group Identification, which can reduce transmission overhead.
  • the network-side device may first group BWPs, assign a BWP group identifier, and then associate the LCID with the BWP group identifier (BWPG ID).
  • the network-side device groups the BWPs and assigns different BWPs to different BWP groups, and each BWP group contains one or more BWPs.
  • the network-side device groups the BWPs and assigns different BWPs to different BWP groups, and each BWP group contains one or more BWPs.
  • the terminal receives the RRC signaling configured by the BWP, determines the mapping relationship between the BWP and the BWP group, and receives the RRC configuration signaling of the PDCP repeated transmission, and determines the PDCP repeated transmission configuration of the RB, including the corresponding RLC entity and logical channel number, and the corresponding BWP.
  • the group ID and the mapping relationship between the BWP group ID and the BWP determine the BWP corresponding to each repeated transmission logical channel number.
  • the multiple RLC entities include a primary RLC entity.
  • the RB transmits through the primary RLC entity.
  • an RB under the repeated transmission configuration, an RB can be mapped to two or more RLC entities.
  • One of the RLC entities is defined as the primary RLC entity.
  • the repeated transmission is not activated, the entity of the RB It is transmitted only through the main RLC entity and the corresponding logical channel, and there is no need to perform configuration again, thereby reducing the complexity of implementation.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • the RRC signaling is activated or the RRC signaling is deactivated, wherein the RRC signaling is the configuration signaling.
  • RRC signaling activation or RRC signaling deactivation can be understood as that different types of RRC signaling are used to implement activation and deactivation, but activated RRC signaling and deactivated RRC signaling Both can be the above-mentioned configuration signaling, that is to say, in addition to the above-mentioned repeated transmission configuration, the above-mentioned configuration signaling can also be used to activate or deactivate the above-mentioned repeated transmission configuration, so that when activated or deactivated, no transmission is required Other signaling, thereby reducing transmission overhead.
  • the above-mentioned RRC signaling indicates activation of BWP in the repeated transmission configuration, and if there are multiple activated logical channels in a logical channel corresponding to the RB, it indicates that the RB repeatedly transmits activation. , There is an activated BWP in a BWP corresponding to the activated logical channel; if an inactive logical channel exists in a corresponding logical channel in the RB, the inactive logical channel cannot be transmitted.
  • the activation of the BWP in the repeated transmission configuration may be instructed by using the RRC signaling.
  • the RRC signaling may indicate activation in the BWP group BWP. If the network-side device indicates activation of the BWP in the BWP group, it means that the logical channel corresponding to the BWP group can be transmitted on the activated BWP, and it also indicates that the repeated transmission corresponding to the logical channel is activated.
  • the inactive logical channel may be a corresponding logical channel in which at least one BWP (or BWP group) is not activated in the BWP configuration, for example, the activated BWP in the repeated transmission configuration indicated by the RRC signaling does not include the inactive logical channel.
  • the activated BWP in the repeated transmission configuration indicated by the RRC signaling does not include the inactive logical channel.
  • some of the logical channels corresponding to the RB may be activated, and another logical channel may be deactivated or deactivated.
  • all logical channels corresponding to the RB may be activated, thereby improving repeated transmission. Flexibility.
  • the network-side device may simultaneously configure and activate BWP in RRC signaling that configures the correspondence between the RLC entity and the BWP group.
  • the terminal receives the RRC signaling of the PDCP repeated transmission configuration of the network-side device, and determines the correspondence between the repeated transmission logical channel and the BWP group. If the BWP group corresponding to a logical channel has activated BWP, it means that the repeated transmission logical channel is activated, that is, it can be Repeated data is transmitted in the BWP group; if the BWP configuration is not activated in the BWP group corresponding to a logical channel, it means that the repeated transmission logical channel is not activated, and the PDCP layer will not deliver the repeated transmission data to the logical channel.
  • the RRC signaling indicates whether the RB activates repeated transmission. If activated, all logical channels corresponding to the RB are transmitted. If not activated, the data of the RB is only in the master. Transmission on a logical channel.
  • the primary logical channel may refer to a primary logical channel corresponding to a primary RLC entity of the RB, or it may be understood that the primary logical channel is a logical channel in an activated state and in an activated state.
  • repeated transmission of all logical channels of the RB is activated or deactivated through the RRC signaling.
  • the initial status of the repeated transmission of the RB may be indicated by 1 bit as active or inactive. If it is indicated as inactive, only the primary RLC entity has data transmission, and the BWP group corresponding to other RLC entities (and their logical channels) No duplicate packets are transmitted even if BWP is activated. Because the repeated transmission of the RB is activated or deactivated directly through the RRC signaling, the overhead of the RRC signaling can be saved, and the implementation complexity can be reduced.
  • the network-side device may indicate whether the PDCP repeated transmission is activated in the PDCP repeated transmission configuration command.
  • the terminal receives a PDCP repeated transmission configuration command. If RRC signaling indicates that PDCP repeated transmission is activated, all configured repeated transmission logical channels corresponding to the RB are activated, that is, repeated transmission can be performed in the corresponding BWP group; if RRC signaling indicates PDCP repeated transmission is not activated, so the transmission status of the RB can only be transmitted on the primary RLC entity and its corresponding logical channel. Subsequent activation and deactivation signaling can change this initial state.
  • the RRC signaling respectively indicates whether a logical channel corresponding to the RB is activated for transmission, indicates that an activated logical channel can be transmitted, and indicates that an inactive logical channel cannot be transmitted.
  • the above-mentioned indication that the activated logical channel can be transmitted can be understood as that the terminal can transmit on the logical channel.
  • the RRC signaling is activated or deactivated in units of logical channels, that is, the RRC signaling can activate some or all of the multiple logical channels corresponding to the RBs, thereby indicating Active logical channel for transmission.
  • the RRC signaling can activate some or all of the multiple logical channels corresponding to the RBs, thereby indicating Active logical channel for transmission.
  • This implementation can implement repeated transmission of logical channels, that is, BWP groups activate repeated transmissions.
  • a network-side device configures the correspondence between logical channels and BWP groups, it also instructs the group. Whether the transmission is activated.
  • the data of the RLC entity will not be transmitted, that is, the PDCP layer will not pass the replication packet to the RLC entity. In this implementation manner, the flexibility of repeated transmission can be improved.
  • the network-side device may indicate in the PDCP repeated transmission configuration command when configuring a correspondence between a logical channel and a BWP group, whether the logical channel activates transmission at the same time.
  • the terminal receives the PDCP repeated transmission configuration command. If it is configured to be inactive, the logical channel data is not transmitted even if the BWP group has activated BWP, that is, the PDCP layer will not pass the replication packet to the RLC entity.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • MAC signaling is activated or MAC signaling is deactivated.
  • the above-mentioned MAC signaling activation or MAC signaling deactivation can be understood as that different MAC signaling is used for activation and deactivation.
  • the above MAC signaling may be a MAC Control Element (CE), that is, a MAC CE.
  • CE MAC Control Element
  • the MAC signaling activates or deactivates repeated transmission of a specific RB.
  • the specific RB may be an RB in the repeated transmission configuration.
  • repeated transmission of a specific RB can be activated or deactivated through MAC signaling, where activation indicates activation of all repeated transmission paths, that is, repeated transmission of all RLC entities and logical channels corresponding to the RB; deactivation indicates that only Transmission on the main RLC entity, that is, transmission without duplicate data packets at all.
  • the foregoing MAC signaling activates or deactivates a specific repeated transmission path, wherein the specific repeated transmission path is one or more repeated transmission paths in the repeated transmission configuration, and the repeated transmission path includes logic Channel and / or BWP.
  • MAC signaling can activate or deactivate specific repeated transmission paths, such as repeated transmission of RLC entities and logical channels, and / or repeated transmission of BWP, thereby improving the flexibility of repeated transmissions.
  • the network-side device sends a MAC CE that instructs to activate or deactivate the repeated transmission of a specific RB (MAC CE format 1); or the MAC CE instructs to activate or deactivate a specific repeated transmission path (MAC CE 2 format), that is, Repeated transmission of a specific logical channel.
  • MAC CE format 1 the MAC CE instructs to activate or deactivate the repeated transmission of a specific RB
  • MAC CE 2 format a specific repeated transmission path
  • the terminal receives the activated or deactivated MAC CE sent by the network-side device. If the MAC CE format 1 is used, activation indicates activation of all repeated transmission paths, that is, activation of repeated transmission of all RLC entities and logical channels corresponding to the RB; deactivation indicates that the RB can only be transmitted on the main RLC entity, that is, there is no transmission of duplicate data packets at all. If the MAC CE format 2 is used, the terminal determines whether to activate or deactivate a specific repetitive transmission path according to the MAC CE instruction, and the PDCP layer does not deliver the repetitive transmission packet to the deactivated logical channel.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • Physical layer signaling is activated or deactivated.
  • the physical layer signaling activation or physical layer signaling deactivation can be understood as that different types of physical layer signaling are used for activation and deactivation.
  • the physical layer signaling is a control message carried in a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the physical layer signaling activates or deactivates repeated transmissions of the terminal.
  • the repeated transmission of the terminal may refer to all repeated transmissions of the terminal.
  • all repeated transmissions of the terminal may be activated or deactivated, that is, all RBs of the terminal are activated or deactivated simultaneously.
  • the terminal may temporarily suspend repeated transmissions without changing the RRC configuration and / or the activation state specified by the MAC layer to improve the flexibility of repeated transmissions. For example, when the channel environment is degraded and some BWP groups are unavailable, the terminal may deactivate the repeated transmission.
  • the physical layer signaling activates or deactivates repeated transmission carried by a specific BWP or a specific BWP group.
  • repeated transmissions that can be carried by a part of the BWP or a part of the BWP group can be activated or deactivated through physical layer signaling, so that the logical channels for all the repeated transmission RBs corresponding to the BWP group are valid.
  • a network-side device sends a PDCCH, where the PDCCH carries a control message to instruct repeated transmission activation or deactivation.
  • the control message may be downlink control information (DCI), DCI format 1, activating or deactivating repeated transmission of the terminal; or DCI format 2: indicating activation or deactivation of a part of the BWP or BWP group that can be carried Repeated transmission.
  • DCI downlink control information
  • DCI format 1 activating or deactivating repeated transmission of the terminal
  • DCI format 2 indicating activation or deactivation of a part of the BWP or BWP group that can be carried Repeated transmission.
  • the terminal receives a PDCCH command sent by a network-side device. If DCI format 1 is used, when the terminal indicates activation, the terminal determines to activate the repeated transmission of all RBs configured for the terminal and high-level signaling has instructed activation. When the instruction is deactivated, the terminal deactivates the repeated transmission of all RBs configured with PDCP repeated transmission. If Format 2 is used, the PDCCH instructs to activate or deactivate the repeated transmission logical channels of all the repeated transmission RBs corresponding to the specified BWP or BWP group.
  • the terminal performing a repeated transmission operation according to the repeated transmission configuration includes:
  • data of a logical channel corresponding to the specific BWP group is transmitted on one or more BWPs in the multiple activated BWPs;
  • the data of the logical channel corresponding to the BWP group is HARQ retransmitted on the newly activated BWP in the BWP group;
  • the RLC data is transmitted on any one or more activated BWPs of the terminal.
  • part or all of the activated BWPs can be selected for transmission, thereby improving transmission flexibility and transmission performance.
  • data of the logical channel can be transmitted on one or more BWPs according to scheduling or resource pre-configuration.
  • HARQ retransmission on the newly activated BWP if there is an activation BWP change in the BWP corresponding to a logical channel, thereby improving transmission performance. For example, if there is a change in the activated BWP in the BWP group, the data of the logical channel can be HARQ retransmitted on the newly activated BWP.
  • the RLC data can be transmitted on any one or more activated BWPs, which is no longer restricted by the BWP group at this time, thereby improving transmission performance. For example: if repeated transmission is deactivated, there will be no new data for repeatedly transmitted RLC entities and logical channels, but RLC data that has not been successfully transmitted can be transmitted on any activated BWP (no longer restricted by the BWP group).
  • the terminal receives configuration signaling sent by a network side, where the configuration signaling includes a repeated transmission configuration, and the repeated transmission configuration includes: an RB is mapped to multiple RLC entities, and different RLC entities have different configurations Logical channels, and different logical channels correspond to different partial bandwidth BWPs; the terminal performs repeated transmission operations according to the repeated transmission configuration.
  • the terminal performs repeated transmission operations according to the repeated transmission configuration.
  • FIG. 4 is a flowchart of another repeated transmission method according to an embodiment of the present disclosure. As shown in FIG. 4, the method includes the following steps:
  • a network-side device sends configuration signaling to a terminal, where the configuration signaling includes repeated transmission configuration, where the repeated transmission configuration includes: one RB is mapped to multiple RLC entities, and different RLC entities are configured with different logical channels, and Different logical channels correspond to different BWPs.
  • the repeated transmission configuration includes:
  • each BWP group in the correspondence includes one or more BWPs.
  • the multiple RLC entities include a primary RLC entity, and when repeated transmission is not activated, the RB transmits through the primary RLC entity.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • RRC signaling is activated or RRC signaling is deactivated, wherein the RRC signaling is the configuration signaling
  • Physical layer signaling is activated or deactivated.
  • the RRC signaling indicates the activated BWP in the repeated transmission configuration, and if there are multiple activated logical channels in the logical channel corresponding to the RB, it indicates that the RB is repeatedly activated for transmission, and the activation An active BWP exists in a BWP corresponding to a logical channel; if an inactive logical channel exists in a corresponding logical channel in the RB, the inactive logical channel cannot be transmitted; or
  • the RRC signaling indicates whether the RB activates repeated transmission, and if activated, all logical channels corresponding to the RB are transmitted; if not activated, data of the RB is transmitted only on the primary logical channel; or
  • the RRC signaling respectively indicates whether the logical channel corresponding to the RB is activated for transmission, indicates that the activated logical channel can be transmitted, and indicates that an inactive logical channel cannot be transmitted;
  • the MAC signaling activates or deactivates repeated transmission of a specific RB
  • the MAC signaling activates or deactivates a specific repeated transmission path, wherein the specific repeated transmission path is one or more repeated transmission paths in the repeated transmission configuration, and the repeated transmission path includes a logical channel and / or a BWP; or
  • the physical layer signaling activates or deactivates repeated transmissions of the terminal.
  • the physical layer signaling activates or deactivates repeated transmission carried by a specific BWP or a specific BWP group.
  • this embodiment is an implementation manner of a network-side device corresponding to the embodiment shown in FIG. 2.
  • a specific implementation manner refer to the related description of the embodiment shown in FIG. 2.
  • This embodiment is not repeated here, and the same beneficial effects can also be achieved.
  • FIG. 5 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the terminal 500 includes:
  • the receiving module 501 is configured to receive configuration signaling sent by a network side, where the configuration signaling includes repeated transmission configuration, and the repeated transmission configuration includes: one RB is mapped to multiple RLC entities, and different RLC entities are configured with different logic Channels, and different logical channels correspond to different BWPs;
  • the transmission module 502 is configured to perform a repeated transmission operation according to the repeated transmission configuration.
  • the repeated transmission configuration includes:
  • each BWP group in the correspondence includes one or more BWPs.
  • the multiple RLC entities include a primary RLC entity, and when repeated transmission is not activated, the RB transmits through the primary RLC entity.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • RRC signaling is activated or RRC signaling is deactivated, wherein the RRC signaling is the configuration signaling
  • Physical layer signaling is activated or deactivated.
  • the RRC signaling indicates the activated BWP in the repeated transmission configuration, wherein if there are multiple activated logical channels in a logical channel corresponding to the RB, it indicates that the RB is repeatedly activated for transmission, and the activation An active BWP exists in a BWP corresponding to a logical channel; if an inactive logical channel exists in a corresponding logical channel in the RB, the inactive logical channel cannot be transmitted; or
  • the RRC signaling indicates whether the RB activates repeated transmission, and if activated, all logical channels corresponding to the RB are transmitted; if not activated, data of the RB is transmitted only on the primary logical channel; or
  • the RRC signaling respectively indicates whether the logical channel corresponding to the RB is activated for transmission, indicates that the activated logical channel can be transmitted, and indicates that an inactive logical channel cannot be transmitted;
  • the MAC signaling activates or deactivates repeated transmission of a specific RB
  • the MAC signaling activates or deactivates a specific repeated transmission path, wherein the specific repeated transmission path is one or more repeated transmission paths in the repeated transmission configuration, and the repeated transmission path includes a logical channel and / or a BWP; or
  • the physical layer signaling activates or deactivates repeated transmissions of the terminal.
  • the physical layer signaling activates or deactivates repeated transmission carried by a specific BWP or a specific BWP group.
  • the transmission module 502 is configured to: if the specific BWP group has multiple activated BWPs in the repeated transmission configuration, the data of the logical channel corresponding to the specific BWP group is in one or more of the multiple activated BWPs BWP; or
  • the transmission module 502 is configured to perform a hybrid automatic retransmission request for HARQ retransmission on the newly activated BWP in the BWP group if the BWP change in an activated BWP group occurs in the repeated transmission configuration; or
  • the transmission module 502 is configured to transmit the RLC data on any one or more activated BWPs of the terminal if repeated transmission is deactivated in the repeated transmission configuration, but there is unsuccessful transmission of the RLC data.
  • the terminal 500 in this embodiment may be a terminal of any implementation manner in the method embodiment in this embodiment of the disclosure. Any implementation manner of the terminal in the method implementation in this embodiment of the present disclosure may be adopted by this embodiment.
  • the above terminal 500 implements and achieves the same beneficial effects, which are not repeated here.
  • FIG. 6 is a structural diagram of a network-side device according to an embodiment of the present disclosure.
  • the network-side device 600 includes:
  • a sending module 601 is configured to send configuration signaling to the terminal, where the configuration signaling includes repeated transmission configuration, where the repeated transmission configuration includes: one RB is mapped to multiple RLC entities, and different RLC entities are configured with different logical channels, And different logical channels correspond to different BWPs.
  • the repeated transmission configuration includes:
  • each BWP group in the correspondence includes one or more BWPs.
  • the multiple RLC entities include a primary RLC entity, and when repeated transmission is not activated, the RB transmits through the primary RLC entity.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • RRC signaling is activated or RRC signaling is deactivated, wherein the RRC signaling is the configuration signaling
  • Physical layer signaling is activated or deactivated.
  • the RRC signaling indicates the activated BWP in the repeated transmission configuration, and if there are multiple activated logical channels in the logical channel corresponding to the RB, it indicates that the RB is repeatedly activated for transmission, and the activation An active BWP exists in a BWP corresponding to a logical channel; if an inactive logical channel exists in a corresponding logical channel in the RB, the inactive logical channel cannot be transmitted; or
  • the RRC signaling indicates whether the RB activates repeated transmission, and if activated, all logical channels corresponding to the RB are transmitted; if not activated, data of the RB is transmitted only on the primary logical channel; or
  • the RRC signaling respectively indicates whether the logical channel corresponding to the RB is activated for transmission, indicates that the activated logical channel can be transmitted, and indicates that an inactive logical channel cannot be transmitted;
  • the MAC signaling activates or deactivates repeated transmission of a specific RB
  • the MAC signaling activates or deactivates a specific repeated transmission path, wherein the specific repeated transmission path is one or more repeated transmission paths in the repeated transmission configuration, and the repeated transmission path includes a logical channel and / or a BWP; or
  • the physical layer signaling activates or deactivates repeated transmissions of the terminal.
  • the physical layer signaling activates or deactivates repeated transmission carried by a specific BWP or a specific BWP group.
  • the network-side device 600 in this embodiment may be a network-side device in any of the method embodiments in the embodiments of the present disclosure, and any implementation of the network-side device in the method embodiments in the embodiments of the present disclosure is It can be implemented by the above-mentioned network-side device 600 in this embodiment, and the same beneficial effects are achieved, and details are not described herein again.
  • FIG. 7 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • the terminal includes: a transceiver 710, a memory 720, a processor 700, and stored on the memory 720 A program that can run on the processor 1200, where:
  • the transceiver 710 is configured to receive configuration signaling sent by a network side, where the configuration signaling includes a repeated transmission configuration, and the repeated transmission configuration includes: one RB is mapped to multiple RLC entities, and different RLC entities have different configurations Logical channels, and different logical channels correspond to different BWPs;
  • the repeated transmission operation is performed according to the repeated transmission configuration.
  • the transceiver 710 may be used to receive and send data under the control of the processor 700.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 700 and various circuits of the memory represented by the memory 720 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 710 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 may store data used by the processor 700 when performing operations.
  • the memory 720 is not limited to the terminal, and the memory 720 and the processor 700 may be separated in different geographical locations.
  • the repeated transmission configuration includes:
  • each BWP group in the correspondence includes one or more BWPs.
  • the multiple RLC entities include a primary RLC entity, and when repeated transmission is not activated, the RB transmits through the primary RLC entity.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • RRC signaling is activated or RRC signaling is deactivated, wherein the RRC signaling is the configuration signaling
  • Physical layer signaling is activated or deactivated.
  • the RRC signaling indicates the activated BWP in the repeated transmission configuration, and if there are multiple activated logical channels in the logical channel corresponding to the RB, it indicates that the RB is repeatedly activated for transmission, and the activation An active BWP exists in a BWP corresponding to a logical channel; if an inactive logical channel exists in a corresponding logical channel in the RB, the inactive logical channel cannot be transmitted; or
  • the RRC signaling indicates whether the RB activates repeated transmission, and if activated, all logical channels corresponding to the RB are transmitted; if not activated, data of the RB is transmitted only on the primary logical channel; or
  • the RRC signaling respectively indicates whether the logical channel corresponding to the RB is activated for transmission, indicates that the activated logical channel can be transmitted, and indicates that an inactive logical channel cannot be transmitted;
  • the MAC signaling activates or deactivates repeated transmission of a specific RB
  • the MAC signaling activates or deactivates a specific repeated transmission path, wherein the specific repeated transmission path is one or more repeated transmission paths in the repeated transmission configuration, and the repeated transmission path includes a logical channel and / or a BWP; or
  • the physical layer signaling activates or deactivates repeated transmissions of the terminal.
  • the physical layer signaling activates or deactivates repeated transmission carried by a specific BWP or a specific BWP group.
  • performing the repeated transmission operation according to the repeated transmission configuration includes:
  • data of a logical channel corresponding to the specific BWP group is transmitted on one or more BWPs in the multiple activated BWPs;
  • the data of the logical channel corresponding to the BWP group is subjected to a hybrid automatic retransmission request for HARQ retransmission on the newly activated BWP in the BWP group;
  • the RLC data is transmitted on any one or more activated BWPs of the terminal.
  • the above-mentioned terminal in this embodiment may be a terminal in any implementation manner of the method embodiment in this embodiment of the disclosure, and any implementation manner of the terminal in the method embodiment in this embodiment of the disclosure may be adopted by this embodiment.
  • the above terminal implements and achieves the same beneficial effects, which are not repeated here.
  • FIG. 8 is a structural diagram of another network-side device according to an embodiment of the present disclosure.
  • the network-side device includes a transceiver 810, a memory 820, a processor 800, and a storage device.
  • the transceiver 810 is configured to send configuration signaling to a terminal, where the configuration signaling includes repeated transmission configuration, and the repeated transmission configuration includes: one RB is mapped to multiple RLC entities, and different RLC entities are configured with different logic Channels, and different logical channels correspond to different BWPs.
  • the transceiver 810 may be used to receive and send data under the control of the processor 800.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 800 and various circuits of the memory represented by the memory 820 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 810 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 820 may store data used by the processor 800 when performing operations.
  • the memory 820 is not limited to only the network-side device, and the memory 820 and the processor 800 may be separated in different geographical locations.
  • the repeated transmission configuration includes:
  • each BWP group in the correspondence includes one or more BWPs.
  • the multiple RLC entities include a primary RLC entity, and when repeated transmission is not activated, the RB transmits through the primary RLC entity.
  • the repeated transmission configuration is activated or deactivated in the following manner:
  • RRC signaling is activated or RRC signaling is deactivated, wherein the RRC signaling is the configuration signaling
  • Physical layer signaling is activated or deactivated.
  • the RRC signaling indicates the activated BWP in the repeated transmission configuration, and if there are multiple activated logical channels in the logical channel corresponding to the RB, it indicates that the RB is repeatedly activated for transmission, and the activation An active BWP exists in a BWP corresponding to a logical channel; if an inactive logical channel exists in a corresponding logical channel in the RB, the inactive logical channel cannot be transmitted; or
  • the RRC signaling indicates whether the RB activates repeated transmission, and if activated, all logical channels corresponding to the RB are transmitted; if not activated, data of the RB is transmitted only on the primary logical channel; or
  • the RRC signaling respectively indicates whether the logical channel corresponding to the RB is activated for transmission, indicates that the activated logical channel can be transmitted, and indicates that an inactive logical channel cannot be transmitted;
  • the MAC signaling activates or deactivates repeated transmission of a specific RB
  • the MAC signaling activates or deactivates a specific repeated transmission path, wherein the specific repeated transmission path is one or more repeated transmission paths in the repeated transmission configuration, and the repeated transmission path includes a logical channel and / or a BWP; or
  • the physical layer signaling activates or deactivates repeated transmissions of the terminal.
  • the physical layer signaling activates or deactivates repeated transmission carried by a specific BWP or a specific BWP group.
  • the foregoing network-side device in this embodiment may be a network-side device in any of the method embodiments in the embodiments of the present disclosure, and any implementation of the network-side device in the method embodiments in the embodiments of the present disclosure may It is implemented by the above-mentioned network-side device in this embodiment and achieves the same beneficial effects, and details are not described herein again.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a program is stored, wherein when the program is executed by a processor, the steps in the terminal-side repeated transmission method provided by the embodiment of the present disclosure are implemented, or the program is When executed by a processor, the steps in the method for repetitive transmission on the network side device side provided by the embodiments of the present disclosure are implemented.
  • the disclosed methods and devices may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may be separately physically included, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above integrated unit implemented in the form of a software functional unit may be stored in a computer-readable storage medium.
  • the above software functional unit is stored in a storage medium and includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute a part of a method for processing an information data block according to various embodiments of the present disclosure. step.
  • the foregoing storage media include: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, etc. The medium.

Abstract

本公开实施例提供一种重复传输方法、终端和网络侧设备,该方法包括:所述终端接收网络侧发送的配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个业务承载RB映射到多个无线链路控制RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的部分带宽BWP;所述终端根据所述重复传输配置进行重复传输操作。

Description

重复传输方法、终端和网络侧设备
相关申请的交叉引用
本申请主张在2018年9月28日在中国提交的中国专利申请No.201811141571.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种重复传输方法、终端和网络侧设备。
背景技术
为了支持低时延高可靠业务传输需求,在5G新空口(New Radio,NR)系统中引入了重复传输机制。其中,重复传输机制可以是指通过多个路径传输相同的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)协议数据单元(Protocol Data Unit,PDU),这样通过多路径传输增益提升传输可靠性,并降低传输时延。具体是将PDCP层的一个无线承载(Radio Bearer,RB)(RB也可以称作业务承载)在无线链路控制(Radio Link Control,RLC)层通过多个逻辑信道分别进行传输,其中,一个逻辑信道对应一个RLC实体。然而,目前的重复传输机制中两个逻辑信道的数据需要在不同的小区进行传输,这样导致小区内资源利用率比较低。
发明内容
本公开实施例提供一种重复传输方法、终端和网络侧设备,以解决小区内资源利用率比较低的问题。
为了达到上述目的,本公开实施例提供一种重复传输方法,包括:
终端接收网络侧发送的配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的部分带宽(Band Width Part,BWP);
所述终端根据所述重复传输配置进行重复传输操作。
可选的,所述重复传输配置包括:
逻辑信道号(Logical Channel Identify,LCID)与BWP索引的对应关系,其中,该对应关系中一个LCID对应一个或者多个BWP索引;或者
LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
可选的,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
可选的,所述重复传输配置通过如下方式激活或者去激活:
RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
媒体接入控制(Media Access Control,MAC)信令激活或者MAC信令去激活;
物理层信令激活或者物理层信令去激活。
可选的,所述RRC信令指示所述重复传输配置中的激活BWP,其中,若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示所述RB重复传输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输;或者
所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑信道上传输;或者
所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输;或者
所述MAC信令激活或者去激活特定RB的重复传输;或者
所述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP;或者
所述物理层信令激活或者去激活所述终端的重复传输;或者
所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
可选的,所述终端根据所述重复传输配置进行重复传输操作,包括:
若所述重复传输配置中特定BWP组有多个激活BWP时,在所述特定BWP组对应的逻辑信道的数据在所述多个激活BWP中的一个或者多个BWP上传输;
若所述重复传输配置中一BWP组内发生激活BWP变更,该BWP组对应的逻辑信道的数据在该BWP组中新激活的BWP上进行混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)重传;
若所述重复传输配置中的重复传输去激活,但存在未传输成功的RLC数据,则在所述终端的任意一个或者多个激活BWP上传输该RLC数据。
本公开实施例还提供一种重复传输方法,包括:
网络侧设备向终端发送配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP。
可选的,所述重复传输配置包括:
LCID与BWP索引的对应关系,其中,该对应关系中一个LCID对应一个或者多个BWP索引;或者
LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
可选的,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
可选的,所述重复传输配置通过如下方式激活或者去激活:
RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
MAC信令激活或者MAC信令去激活;
物理层信令激活或者物理层信令去激活。
可选的,所述RRC信令指示所述重复传输配置中的激活BWP,其中,若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示所述RB重复传 输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输;或者
所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑信道上传输;或者
所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输;或者
所述MAC信令激活或者去激活特定RB的重复传输;或者
所述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP;或者
所述物理层信令激活或者去激活所述终端的重复传输;或者
所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
本公开实施例还提供一种终端,包括:
接收模块,用于接收网络侧发送的配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP;
传输模块,用于根据所述重复传输配置进行重复传输操作。
可选的,所述重复传输配置通过如下方式激活或者去激活:
RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
MAC信令激活或者MAC信令去激活;
物理层信令激活或者物理层信令去激活。
可选的,所述终端根据所述重复传输配置进行重复传输操作,包括:
若所述重复传输配置中特定BWP组有多个激活BWP时,在所述特定BWP组对应的逻辑信道的数据在所述多个激活BWP中的一个或者多个BWP上传输;
若所述重复传输配置中一BWP组内发生激活BWP变更,该BWP组对应的逻辑信道的数据在该BWP组中新激活的BWP上进行混合自动重传请求HARQ重传;
若所述重复传输配置中的重复传输去激活,但存在未传输成功的RLC数据,则在所述终端的任意一个或者多个激活BWP上传输该RLC数据。
本公开实施例还提供一种网络侧设备,包括:
发送模块,用于向终端发送配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP。
可选的,所述重复传输配置通过如下方式激活或者去激活:
RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
MAC信令激活或者MAC信令去激活;
物理层信令激活或者物理层信令去激活。
本公开实施例还提供一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述处理器控制所述收发机,用于接收网络侧发送的配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP;
所述处理器根据所述重复传输配置进行重复传输操作。
可选的,所述重复传输配置包括:
LCID与BWP索引的对应关系,其中,该对应关系中一个LCID对应一个或者多个BWP索引;或者
LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
可选的,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
可选的,所述重复传输配置通过如下方式激活或者去激活:
RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
媒体接入控制MAC信令激活或者MAC信令去激活;
物理层信令激活或者物理层信令去激活。
可选的,所述RRC信令指示所述重复传输配置中的激活BWP,其中,若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示所述RB重复传输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输;或者
所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑信道上传输;或者
所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输;或者
所述MAC信令激活或者去激活特定RB的重复传输;或者
所述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP;或者
所述物理层信令激活或者去激活所述终端的重复传输;或者
所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
可选的,所述根据所述重复传输配置进行重复传输操作,包括:
若所述重复传输配置中特定BWP组有多个激活BWP时,在所述特定BWP组对应的逻辑信道的数据在所述多个激活BWP中的一个或者多个BWP上传输;
若所述重复传输配置中一BWP组内发生激活BWP变更,该BWP组对应的逻辑信道的数据在该BWP组中新激活的BWP上进行混合自动重传请求HARQ重传;
若所述重复传输配置中的重复传输去激活,但存在未传输成功的RLC数 据,则在所述终端的任意一个或者多个激活BWP上传输该RLC数据。
本公开实施例还提供一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述处理器控制所述收发机,用于向终端发送配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP。
可选的,所述重复传输配置包括:
LCID与BWP索引的对应关系,其中,该对应关系中一个LCID对应一个或者多个BWP索引;或者
LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
可选的,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
可选的,所述重复传输配置通过如下方式激活或者去激活:
RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
MAC信令激活或者MAC信令去激活;
物理层信令激活或者物理层信令去激活。
可选的,所述RRC信令指示所述重复传输配置中的激活BWP,其中,若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示所述RB重复传输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输;或者
所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑信道上传输;或者
所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输;或者
所述MAC信令激活或者去激活特定RB的重复传输;或者
所述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP;或者
所述物理层信令激活或者去激活所述终端的重复传输;或者
所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
本公开实施例还提供一种计算机可读存储介质,其上存储有程序,其中,该程序被处理器执行时实现如本公开实施例提供的终端侧的重复传输方法中的步骤,或者该程序被处理器执行时实现本公开实施例提供的网络侧设备侧的重复传输方法中的步骤。
本公开实施例中,所述终端接收网络侧发送的配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的部分带宽BWP;所述终端根据所述重复传输配置进行重复传输操作。这样可以实现在将RB对应的多个逻辑信道数据在不同的BWP上传输,从而提高小区内资源利用率。
附图说明
图1是本公开实施例可应用的网络结构示意图;
图2是本公开实施例提供的一种重复传输方法的流程图;
图3是本公开实施例提供的一种重复传输配置的示意图;
图4是本公开实施例提供的另一种重复传输方法的示意图;
图5是本公开实施例提供的一种终端的结构图;
图6是本公开实施例提供的一种网络侧设备的结构图;
图7是本公开实施例提供的另一种终端的结构图;
图8是本公开实施例提供的另一种网络侧设备的结构图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
参见图1,图1是本公开实施例可应用的网络结构示意图,如图1所示,包括终端11和网络侧设备12,其中,终端11可以是用户终端(User Equipment,UE)或者其他终端设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定终端的具体类型。网络侧设备12可以是基站,例如:宏站、LTE eNB、5G NR NB等;网络侧设备也可以是小站,如低功率节点(LPN:low power node)、pico、femto等小站,或者网络侧设备可以接入点(AP,access point);基站也可以是中央单元(CU,central unit)与其管理是和控制的多个传输接收点(TRP,Transmission Reception Point)共同组成的网络节点。需要说明的是,在本公开实施例中并不限定网络侧设备的具体类型。
请参见图2,图2是本公开实施例提供的一种重复传输方法的流程图,如图2所示,包括以下步骤:
步骤201、终端接收网络侧发送的配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP;
步骤202、所述终端根据所述重复传输配置进行重复传输操作。
其中,上述配置信令可以为RRC信令,当然对此不作限定,例如:还可以网络侧设备能够向终端发送的其他信令。
另外,上述RB可以是PDCP层重复传输的RB。上述重复传输配置可以如图3所示,将一个RB映射到不同的RLC实体,并为不同的RLC实体配置不同的逻辑信道,每个逻辑信道配置有对应的BWP,例如:如图3所示,每个逻辑信道配置一个BWP组(BWPG),每个BWP组内包括两个BWP。
需要说明的是,图3所示的重复传输配置仅是一个示意,例如:可以为不同的逻辑信道配置不同数量的BWP,或者为部分逻辑信道配置相同数量的BWP,而另一些逻辑信道配置不同数量的BWP。
当终端接收到上述重复传输配置后,就可以根据该重复传输配置进行相应的重复传输。
需要说明的是,上述重复传输配置为上述RB配置的多个BWP可以是将小区的大带宽划分为多个BWP中的部分BWP。例如:在NR系统中,一个小区的网络侧带宽很大,如可以高达400MHz,因此,在NR系统中引入BWP的概念,将小区的大带宽划分为多个BWP。
通过上述步骤可以实现在将RB对应的多个逻辑信道数据在不同的BWP上传输,从而提高小区内资源利用率。另外,对于终端只有一个大带宽小区可用的情况,采用上述方法可以进行重复传输,从而获得重复传输对降低时延和提高可靠性的增益,进而满足高可靠低时延通信(Ultra-Reliable and Low Latency Communications,URLLC)业务需求。
作为一种可选的实施方式,所述重复传输配置包括:
LCID与BWP索引的对应关系,其中,该对应关系中一个LCID对应一个或者多个BWP索引;或者
LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
其中,上述重复传输配置包括多个LCID与BWP索引(BWP index)的对应关系,这样通过该对应关系可以为不同的逻辑信道配置不同的BWP。该实施方式中,可以实现网络侧设备在配置信令中指示不同逻辑信道对应的一个或多个BWP。另外,上述重复传输配置中可以包括上行逻辑信道的配置,和/或下行逻辑信道的配置。
例如:网络侧设备在对PDCP重复传输的RRC配置信令中,配置对应一个RB的两个或更多RLC实体及每个RLC实体对应的逻辑信道号,并配置每个重复传输逻辑信道对应的一个或多个BWP index。
终端接收RRC配置信令,确定RB的PDCP重复传输配置,该配置包括对应的RLC实体和逻辑信道号,并通过每个重复传输逻辑信道号对应的BWP index确定该逻辑信道数据可以进行传输的BWP。
另外,上述实施方式中,通过上述LCID与BWP组标识(BWPG ID)的对应关系,可以实现在上述重复传输配置中指示不同逻辑信道对应的BWP 组标识,由于重复传输配置中只需要携带BWP组标识,从而可以降低传输开销。另外,在该实施方式中,可以是网络侧设备先将BWP分组,分配BWP组标识,再将LCID与BWP组标识(BWPG ID)对应。
例如:网络侧设备在对终端进行BWP配置的RRC信令中,将BWP进行分组,将不同BWP分配到不同的BWP组,每个BWP组包含一个或多个BWP。之后,在对PDCP重复传输的RRC配置信令中,配置对应一个RB的两个或更多RLC实体及每个RLC实体对应的逻辑信道号,配置每个重复传输逻辑信道对应的BWP组ID。
终端接收BWP配置的RRC信令,确定BWP和BWP组的映射关系;以及接收PDCP重复传输的RRC配置信令,确定RB的PDCP重复传输配置,包括对应的RLC实体和逻辑信道号,对应的BWP组ID,并通过BWP组ID和BWP的映射关系,确定每个重复传输逻辑信道号对应的BWP。
作为一种可选的实施方式,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
该实施方式中,可以实现在重复传输配置下,一个RB可以映射到两个或大于两个RLC实体,其中一个RLC实体定义为主RLC实体,这样在重复传输不激活的时候,该RB的实体只通过主RLC实体,以及对应的逻辑信道传输,而不需要再次进行配置,从而可以降低实现的复杂度。
作为一种可选的实施方式,所述重复传输配置通过如下方式激活或者去激活:
RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令。
需要说明的是,上述RRC信令激活或者RRC信令去激活可以理解为,通过激活和去激活是采用不同的RRC信令来实现的,但激活的RRC信令,以及去激活的RRC信令均可以是上述配置信令,也就是说,上述配置信令除了用于上述重复传输配置之外,还可以用于激活或者去激活上述重复传输配置,这样在激活或者去激活时,不需要传输其他信令,从而降低传输开销。
在一种实现方式中,上述所述RRC信令指示所述重复传输配置中的激活BWP,其中,若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示 所述RB重复传输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输。
该实现方式中,可以通过上述RRC信令指示重复传输配置中的激活BWP,例如:上述重复传输配置中包括RLC实体与BWP组的对应关系时,则该RRC信令可以指示BWP组中的激活BWP。如果网络侧设备指示了BWP组中的激活BWP,则表示该BWP组对应的逻辑信道可以在激活的BWP上传输,也表示该逻辑信道对应的重复传输激活。
另外,上述未激活逻辑信道可以是对应的至少一个BWP(或者BWP组)没有激活BWP配置的逻辑信道,例如:上述RRC信令指示的上述重复传输配置中的激活BWP中没有上述未激活逻辑信道对应至少一个BWP(或者BWP组)中的BWP。这样可以实现如果某逻辑信道对应的BWP组没有激活的BWP配置,则表示该逻辑信道不能进行传输,即PDCP层不会将复制包传递给该RLC实体传输。通过上述RRC信令可以实现激活RB对应的多个逻辑信道中的部分逻辑信道,以及不激活或者去激活另一部分逻辑信道,当然,也可以是激活RB对应的所有逻辑信道,从而可以提高重复传输的灵活性。
例如:网络侧设备可以在配置RLC实体与BWP组的对应关系的RRC信令中,同时配置激活BWP。
终端接收网络侧设备PDCP重复传输配置的RRC信令,确定重复传输逻辑信道与BWP组的对应关系,如果一个逻辑信道对应的BWP组中有激活BWP,则表示激活该重复传输逻辑信道,即可以在该BWP组中传输重复传输的数据;如果一个逻辑信道对应的BWP组中没有激活BWP配置,则表示不激活该重复传输逻辑信道,PDCP层不会将重复传输数据递交给该逻辑信道。
在另一种实现方式中,所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑信道上传输。
其中,上述主逻辑信道可以是指上述RB的主RLC实体对应的主逻辑信道,或者可以理解为上述主逻辑信道为激活状态为激活的逻辑信道。
该实现方式中,通过上述RRC信令激活或者去激活上述RB的所有逻辑信道的重复传输。可选的,可以是用1bit指示该RB的重复传输初始状态为激活或不激活,如果指示为不激活,则只有主RLC实体有数据传输,其他RLC实体(及其逻辑信道)对应的BWP组即使有激活BWP,也不传输重复数据包。由于直接通过上述RRC信令激活或者去激活上述RB的重复传输,从而可以节约RRC信令的开销,以及降低实现的复杂度。
例如:网络侧设备可以在PDCP重复传输配置命令中,同时指示该PDCP重复传输是否激活。
终端接收PDCP重复传输配置命令,如果RRC信令指示PDCP重复传输激活,则该RB对应的所有配置的重复传输逻辑信道都激活,即可以在对应的BWP组中进行重复传输;如果RRC信令指示PDCP重复传输不激活,则该RB的传输状态是只能在主RLC实体及其对应的逻辑信道进行传输。后续的激活去激活信令可以改变这种初始状态。
在另一种实现方式中,所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输。
其中,上述指示激活的逻辑信道能够进行传输可以理解为,终端可以在该逻辑信道进行传输。
该实现方式中,通过上述RRC信令以逻辑信道为单位进行激活或者去激活,也就是说,上述RRC信令可以激活上述RB对应的多个逻辑信道中的部分或者全部逻辑信道,从而在指示激活的逻辑信道进行传输。以逻辑信道与BWP组的对应关系进行举例,该实现方式可以实现针对重复传输逻辑信道,即BWP组激活重复传输,网络侧设备可以在配置逻辑信道与BWP组的对应关系时,同时指示该组传输是否激活,如果配置为不激活,即使该BWP组有激活BWP,也不进行该RLC实体的数据的传输,即PDCP层不会将复制包传递给该RLC实体。该实现方式中,可以提高重复传输的灵活性。
例如:网络侧设备可以在PDCP重复传输配置命令中,在配置逻辑信道与BWP组的对应关系时,同时指示该逻辑信道是否激活传输。
终端接收PDCP重复传输配置命令,如果配置为不激活,即使该BWP 组有激活BWP,也不进行该逻辑信道的数据的传输,即PDCP层不会将复制包传递给该RLC实体。
作为一种可选的实施方式,所述重复传输配置通过如下方式激活或者去激活:
MAC信令激活或者MAC信令去激活。
需要说明的是,上述MAC信令激活或者MAC信令去激活可以理解为,通过激活和去激活是采用不同的MAC信令来实现的。可选的,上述MAC信令可以为MAC控制单元(Control Element,CE),即MAC CE。
一种实现方式中,所述MAC信令激活或者去激活特定RB的重复传输。
其中,上述特定的RB可以是上述重复传输配置中的RB。
该实现方式中,可以实现通过MAC信令激活或者去激活特定RB的重复传输,其中,激活表示激活所有重复传输路径,即RB对应的所有RLC实体及逻辑信道的重复传输;去激活表示只能在主RLC实体上传输,即完全没有重复数据包的传输。
在另一种实现方式中,上述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP。
该实现方式中,可以实现MAC信令激活或去激活特定重复传输路径,如RLC实体和逻辑信道的重复传输,和/或BWP的重复传输,从而提高重复传输的灵活性。
例如:网络侧设备发送MAC CE,该MAC CE指示激活或去激活特定RB的重复传输(MAC CE格式1);或该MAC CE指示激活或去激活特定重复传输路径(MAC CE格式2),即特定逻辑信道的重复传输。
终端接收网络侧设备发送的激活或者去激活的MAC CE,如果采用MAC CE格式1,激活表示激活所有重复传输路径,即激活该RB对应的所有RLC实体及逻辑信道的重复传输;去激活表示该RB只能在主RLC实体上传输,即完全没有重复数据包的传输。如果采用MAC CE格式2,终端根据MAC CE指示确定激活或去激活特定重复传输路径,PDCP层不将重复传输包递交给该去激活的逻辑信道。
作为一种可选的实施方式,所述重复传输配置通过如下方式激活或者去激活:
物理层信令激活或者物理层信令去激活。
需要说明的是,上述物理层信令激活或者物理层信令去激活可以理解为,通过激活和去激活是采用不同的物理层信令来实现的。可选的,上述物理层信令为物理下行控制信道(Physical Downlink Control Channel,PDCCH)携带的控制消息。
一种实现方式中,所述物理层信令激活或者去激活所述终端的重复传输。
其中,上述终端的重复传输可以是指终端的所有重复传输,该实现方式中,可以实现激活或者去激活终端的所有重复传输,即终端的所有RB同时激活或去激活。
需要说明的是,实施方式中,可以是临时挂起该终端的重复传输,而不改变RRC配置和/或MAC层指定的激活状态,以提高重复传输的灵活性。例如:由于信道环境恶化,部分BWP组不可用所致时,可以去激活该终端的重复传输。
另一种实现方式中,所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
该实现方式中,可以实现通过物理层信令激活或者去激活部分BWP或部分BWP组可以承载的重复传输,这样针对该BWP组对应的所有重复传输RB的逻辑信道有效。
例如:网络侧设备发送PDCCH,该PDCCH携带控制消息指示进行重复传输激活或去激活。其中,该控制消息可以是下行控制信息(Downlink Control Information,DCI),DCI格式1,激活或去激活该终端的重复传输;或DCI格式2:指示激活或去激活部分BWP或BWP组可以承载的重复传输。
终端接收网络侧设备发送的PDCCH命令。如果采用DCI格式1,指示激活时,终端确定激活针对该终端配置且高层信令已指示激活的所有RB的重复传输,指示去激活时,终端去激活所有配置了PDCP重复传输的RB的重复传输;如果采用格式2,针对PDCCH指示激活或去激活指定BWP或BWP组对应的所有重复传输RB的重复传输逻辑信道。
需要说明的是,上述介绍的重复传输的多种激活或者去激活的实施方式,步骤202在进行重复传输时,需要结合终端、逻辑信道、BWP等的激活状态进行传输。
作为一种可选的实施方式,所述终端根据所述重复传输配置进行重复传输操作,包括:
若所述重复传输配置中特定BWP组有多个激活BWP时,在所述特定BWP组对应的逻辑信道的数据在所述多个激活BWP中的一个或者多个BWP上传输;或者
若所述重复传输配置中一BWP组内发生激活BWP变更,该BWP组对应的逻辑信道的数据在该BWP组中新激活的BWP上进行HARQ重传;或者
若所述重复传输配置中的重复传输去激活,但存在未传输成功的RLC数据,则在所述终端的任意一个或者多个激活BWP上传输该RLC数据。
该实现方式中,可以实现若逻辑信道对应的BWP组有多个激活BWP时,可以选择部分或者全部激活BWP进行传输,从而提高传输的灵活性,以及传输性能。例如:当一个BWP组有多个BWP激活时,根据调度或资源预配置,该逻辑信道的数据可以在一个或多个BWP上传输。
另外,还可以实现若某一逻辑信道对应的BWP中发生激活BWP变更,则在新激活的BWP上进行HARQ重传,从而提高传输性能。例如:如果BWP组内发生激活BWP变更,该逻辑信道的数据可以在该新激活的BWP上进行HARQ重传。
另外,还可以实现若去激活,但存在未传输成功的RLC数据,则可以在任意一个或者多个激活BWP上传输该RLC数据,此时不再受BWP组限制,从而提高传输性能。例如:如果重复传输去激活,重复传输的RLC实体和逻辑信道不会有新数据,但未传输成功的RLC数据可以在任意一个激活BWP上传输(不再受BWP组限制)。
本公开实施例中,所述终端接收网络侧发送的配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的部分带宽BWP;所述终端根据所述重复传输配置进行重复传输操作。这样可以实 现在将RB对应的多个逻辑信道数据在不同的BWP上传输,从而提高小区内资源利用率。
请参见图4,图4是本公开实施例提供的另一种重复传输方法的流程图,如图4所示,包括以下步骤:
401、网络侧设备向终端发送配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP。
可选的,所述重复传输配置包括:
LCID与BWP索引的对应关系,其中,该对应关系中一个LCID对应一个或者多个BWP索引;或者
LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
可选的,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
可选的,所述重复传输配置通过如下方式激活或者去激活:
RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
MAC信令激活或者MAC信令去激活;
物理层信令激活或者物理层信令去激活。
可选的,所述RRC信令指示所述重复传输配置中的激活BWP,其中,若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示所述RB重复传输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输;或者
所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑信道上传输;或者
所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输;或者
所述MAC信令激活或者去激活特定RB的重复传输;或者
所述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP;或者
所述物理层信令激活或者去激活所述终端的重复传输;或者
所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络侧设备的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
请参见图5,图5是本公开实施例提供的一种终端的结构图,如图5所示,终端500,包括:
接收模块501,用于接收网络侧发送的配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP;
传输模块502,用于根据所述重复传输配置进行重复传输操作。
可选的,所述重复传输配置包括:
LCID与BWP索引的对应关系,其中,该对应关系中一个LCID对应一个或者多个BWP索引;或者
LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
可选的,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
可选的,所述重复传输配置通过如下方式激活或者去激活:
RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
MAC信令激活或者MAC信令去激活;
物理层信令激活或者物理层信令去激活。
可选的,所述RRC信令指示所述重复传输配置中的激活BWP,其中, 若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示所述RB重复传输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输;或者
所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑信道上传输;或者
所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输;或者
所述MAC信令激活或者去激活特定RB的重复传输;或者
所述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP;或者
所述物理层信令激活或者去激活所述终端的重复传输;或者
所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
可选的,传输模块502用于若所述重复传输配置中特定BWP组有多个激活BWP时,在所述特定BWP组对应的逻辑信道的数据在所述多个激活BWP中的一个或者多个BWP上传输;或者
传输模块502用于若所述重复传输配置中一BWP组内发生激活BWP变更,该BWP组对应的逻辑信道的数据在该BWP组中新激活的BWP上进行混合自动重传请求HARQ重传;或者
传输模块502用于若所述重复传输配置中的重复传输去激活,但存在未传输成功的RLC数据,则在所述终端的任意一个或者多个激活BWP上传输该RLC数据。
需要说明的是,本实施例中上述终端500可以是本公开实施例中方法实施例中任意实施方式的终端本公开实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端500所实现,以及达到相同的有益效果,此处不再赘述。
请参见图6,图6是本公开实施例提供的一种网络侧设备的结构图,如图6所示,网络侧设备600包括:
发送模块601,用于向终端发送配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP。
可选的,所述重复传输配置包括:
LCID与BWP索引的对应关系,其中,该对应关系中一个LCID对应一个或者多个BWP索引;或者
LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
可选的,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
可选的,所述重复传输配置通过如下方式激活或者去激活:
RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
MAC信令激活或者MAC信令去激活;
物理层信令激活或者物理层信令去激活。
可选的,所述RRC信令指示所述重复传输配置中的激活BWP,其中,若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示所述RB重复传输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输;或者
所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑信道上传输;或者
所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输;或者
所述MAC信令激活或者去激活特定RB的重复传输;或者
所述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重 复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP;或者
所述物理层信令激活或者去激活所述终端的重复传输;或者
所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
需要说明的是,本实施例中上述网络侧设备600可以是本公开实施例中方法实施例中任意实施方式的网络侧设备,本公开实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备600所实现,以及达到相同的有益效果,此处不再赘述。
请参见图7,图7是本公开实施例提供的另一种终端的结构图,如图7所示,该终端包括:收发机710、存储器720、处理器700及存储在所述存储器720上并可在所述处理器1200上运行的程序,其中:
所述收发机710,用于接收网络侧发送的配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP;
根据所述重复传输配置进行重复传输操作。
其中,收发机710,可以用于在处理器700的控制下接收和发送数据。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机710可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
需要说明的是,存储器720并不限定只在终端上,可以将存储器720和处理器700分离处于不同的地理位置。
可选的,所述重复传输配置包括:
LCID与BWP索引的对应关系,其中,该对应关系中一个LCID对应一 个或者多个BWP索引;或者
LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
可选的,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
可选的,所述重复传输配置通过如下方式激活或者去激活:
RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
MAC信令激活或者MAC信令去激活;
物理层信令激活或者物理层信令去激活。
可选的,所述RRC信令指示所述重复传输配置中的激活BWP,其中,若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示所述RB重复传输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输;或者
所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑信道上传输;或者
所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输;或者
所述MAC信令激活或者去激活特定RB的重复传输;或者
所述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP;或者
所述物理层信令激活或者去激活所述终端的重复传输;或者
所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
可选的,所述根据所述重复传输配置进行重复传输操作,包括:
若所述重复传输配置中特定BWP组有多个激活BWP时,在所述特定 BWP组对应的逻辑信道的数据在所述多个激活BWP中的一个或者多个BWP上传输;或者
若所述重复传输配置中一BWP组内发生激活BWP变更,该BWP组对应的逻辑信道的数据在该BWP组中新激活的BWP上进行混合自动重传请求HARQ重传;或者
若所述重复传输配置中的重复传输去激活,但存在未传输成功的RLC数据,则在所述终端的任意一个或者多个激活BWP上传输该RLC数据。
需要说明的是,本实施例中上述终端可以是本公开实施例中方法实施例中任意实施方式的终端,本公开实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端所实现,以及达到相同的有益效果,此处不再赘述。
请参见图8,图8是本公开实施例提供的另一种网络侧设备的结构图,如图8所示,该网络侧设备包括:收发机810、存储器820、处理器800及存储在所述存储器820上并可在所述处理器上运行的程序,其中:
所述收发机810,用于向终端发送配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP。
其中,收发机810,可以用于在处理器800的控制下接收和发送数据。
在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机810可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器800负责管理总线架构和通常的处理,存储器820可以存储处理器800在执行操作时所使用的数据。
需要说明的是,存储器820并不限定只在网络侧设备上,可以将存储器820和处理器800分离处于不同的地理位置。
可选的,所述重复传输配置包括:
LCID与BWP索引的对应关系,其中,该对应关系中一个LCID对应一个或者多个BWP索引;或者
LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
可选的,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
可选的,所述重复传输配置通过如下方式激活或者去激活:
RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
MAC信令激活或者MAC信令去激活;
物理层信令激活或者物理层信令去激活。
可选的,所述RRC信令指示所述重复传输配置中的激活BWP,其中,若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示所述RB重复传输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输;或者
所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑信道上传输;或者
所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输;或者
所述MAC信令激活或者去激活特定RB的重复传输;或者
所述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP;或者
所述物理层信令激活或者去激活所述终端的重复传输;或者
所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
需要说明的是,本实施例中上述网络侧设备可以是本公开实施例中方法 实施例中任意实施方式的网络侧设备,本公开实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备所实现,以及达到相同的有益效果,此处不再赘述。
本公开实施例还提供一种计算机可读存储介质,其上存储有程序,其中,该程序被处理器执行时实现本公开实施例提供的终端侧的重复传输方法中的步骤,或者该程序被处理器执行时实现本公开实施例提供的网络侧设备侧的重复传输方法中的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述信息数据块的处理方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (28)

  1. 一种重复传输方法,包括:
    终端接收网络侧发送的配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个无线承载RB映射到多个无线链路控制RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的部分带宽BWP;
    所述终端根据所述重复传输配置进行重复传输操作。
  2. 如权利要求1所述的方法,其中,所述重复传输配置包括:
    逻辑信道号LCID与BWP索引的对应关系,其中,该对应关系中一个LCID对应一个或者多个BWP索引;或者
    LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
  3. 如权利要求1所述的方法,其中,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
  4. 如权利要求1所述的方法,其中,所述重复传输配置通过如下方式激活或者去激活:
    RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
    媒体接入控制MAC信令激活或者MAC信令去激活;
    物理层信令激活或者物理层信令去激活。
  5. 如权利要求4所述的方法,其中,所述RRC信令指示所述重复传输配置中的激活BWP,其中,若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示所述RB重复传输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输;或者
    所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑 信道上传输;或者
    所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输;或者
    所述MAC信令激活或者去激活特定RB的重复传输;或者
    所述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP;或者
    所述物理层信令激活或者去激活所述终端的重复传输;或者
    所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
  6. 如权利要求1至5中任一项所述的方法,其中,所述终端根据所述重复传输配置进行重复传输操作,包括:
    若所述重复传输配置中特定BWP组有多个激活BWP时,在所述特定BWP组对应的逻辑信道的数据在所述多个激活BWP中的一个或者多个BWP上传输;或者
    若所述重复传输配置中一BWP组内发生激活BWP变更,该BWP组对应的逻辑信道的数据在该BWP组中新激活的BWP上进行混合自动重传请求HARQ重传;或者
    若所述重复传输配置中的重复传输去激活,但存在未传输成功的RLC数据,则在所述终端的任意一个或者多个激活BWP上传输该RLC数据。
  7. 一种重复传输方法,包括:
    网络侧设备向终端发送配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP。
  8. 如权利要求7所述的方法,其中,所述重复传输配置包括:
    LCID与BWP索引的对应关系,其中,该对应关系中一个LCID对应一个或者多个BWP索引;或者
    LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
  9. 如权利要求7所述的方法,其中,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
  10. 如权利要求7所述的方法,其中,所述重复传输配置通过如下方式激活或者去激活:
    RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
    MAC信令激活或者MAC信令去激活;
    物理层信令激活或者物理层信令去激活。
  11. 如权利要求10所述的方法,其中,所述RRC信令指示所述重复传输配置中的激活BWP,其中,若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示所述RB重复传输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输;或者
    所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑信道上传输;或者
    所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输;或者
    所述MAC信令激活或者去激活特定RB的重复传输;或者
    所述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP;或者
    所述物理层信令激活或者去激活所述终端的重复传输;或者
    所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
  12. 一种终端,包括:
    接收模块,用于接收网络侧发送的配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同 RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP;
    传输模块,用于根据所述重复传输配置进行重复传输操作。
  13. 如权利要求12所述的终端,其中,所述重复传输配置通过如下方式激活或者去激活:
    RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
    MAC信令激活或者MAC信令去激活;
    物理层信令激活或者物理层信令去激活。
  14. 如权利要求12或13所述的终端,其中,所述传输模块用于若所述重复传输配置中特定BWP组有多个激活BWP时,在所述特定BWP组对应的逻辑信道的数据在所述多个激活BWP中的一个或者多个BWP上传输;或者
    所述传输模块用于若所述重复传输配置中一BWP组内发生激活BWP变更,该BWP组对应的逻辑信道的数据在该BWP组中新激活的BWP上进行HARQ重传;或者
    所述传输模块用于若所述重复传输配置中的重复传输去激活,但存在未传输成功的RLC数据,则在所述终端的任意一个或者多个激活BWP上传输该RLC数据。
  15. 一种网络侧设备,包括:
    发送模块,用于向终端发送配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP。
  16. 如权利要求15所述的网络侧设备,其中,所述重复传输配置通过如下方式激活或者去激活:
    RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
    MAC信令激活或者MAC信令去激活;
    物理层信令激活或者物理层信令去激活。
  17. 一种终端,包括:收发机、存储器、处理器及存储在所述存储器上 并可在所述处理器上运行的程序,其中,
    所述处理器控制所述收发机,用于接收网络侧发送的配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP;
    所述处理器根据所述重复传输配置进行重复传输操作。
  18. 如权利要求17所述的终端,其中,所述重复传输配置包括:
    LCID与BWP索引的对应关系,其中,该对应关系中一个LCID对应一个或者多个BWP索引;或者
    LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
  19. 如权利要求17所述的终端,其中,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
  20. 如权利要求17所述的终端,其中,所述重复传输配置通过如下方式激活或者去激活:
    RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
    MAC信令激活或者MAC信令去激活;
    物理层信令激活或者物理层信令去激活。
  21. 如权利要求20所述的终端,其中,所述RRC信令指示所述重复传输配置中的激活BWP,其中,若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示所述RB重复传输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输;或者
    所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑信道上传输;或者
    所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激 活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输;或者
    所述MAC信令激活或者去激活特定RB的重复传输;或者
    所述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP;或者
    所述物理层信令激活或者去激活所述终端的重复传输;或者
    所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
  22. 如权利要求17至21中任一项所述的终端,其中,所述根据所述重复传输配置进行重复传输操作,包括:
    若所述重复传输配置中特定BWP组有多个激活BWP时,在所述特定BWP组对应的逻辑信道的数据在所述多个激活BWP中的一个或者多个BWP上传输;或者
    若所述重复传输配置中一BWP组内发生激活BWP变更,该BWP组对应的逻辑信道的数据在该BWP组中新激活的BWP上进行混合自动重传请求HARQ重传;或者
    若所述重复传输配置中的重复传输去激活,但存在未传输成功的RLC数据,则在所述终端的任意一个或者多个激活BWP上传输该RLC数据。
  23. 一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,
    所述处理器控制所述收发机,用于向终端发送配置信令,所述配置信令包括重复传输配置,所述重复传输配置包括:一个RB映射到多个RLC实体上,且不同RLC实体配置不同的逻辑信道,以及不同的逻辑信道对应不同的BWP。
  24. 如权利要求23所述的网络侧设备,其中,所述重复传输配置包括:
    LCID与BWP索引的对应关系,其中,该对应关系中一个LCID对应一个或者多个BWP索引;或者
    LCID与BWP组标识的对应关系,其中,该对应关系中每个BWP组包括一个或者多个BWP。
  25. 如权利要求23所述的网络侧设备,其中,所述多个RLC实体中包括一个主RLC实体,在重复传输不激活的情况下,所述RB通过所述主RLC实体进行传输。
  26. 如权利要求23所述的网络侧设备,其中,所述重复传输配置通过如下方式激活或者去激活:
    RRC信令激活或者RRC信令去激活,其中,所述RRC信令为所述配置信令;
    MAC信令激活或者MAC信令去激活;
    物理层信令激活或者物理层信令去激活。
  27. 如权利要求26所述的网络侧设备,其中,所述RRC信令指示所述重复传输配置中的激活BWP,其中,若所述RB对应的逻辑信道中存在多个激活逻辑信道,则表示所述RB重复传输激活,所述激活逻辑信道对应的BWP中存在激活BWP;若所述RB中对应的逻辑信道中存在未激活逻辑信道,则所述未激活逻辑信道不能进行传输;或者
    所述RRC信令指示所述RB是否激活重复传输,如果激活,则该RB对应的所有逻辑信道都要进行传输,如果不激活,则该RB的数据只在主逻辑信道上传输;或者
    所述RRC信令分别指示所述RB对应的逻辑信道是否激活传输,指示激活的逻辑信道能够进行传输,指示非激活的逻辑信道不能进行传输;或者
    所述MAC信令激活或者去激活特定RB的重复传输;或者
    所述MAC信令激活或者去激活特定重复传输路径,其中,所述特定重复传输路径为所述重复传输配置中一个或者多个重复传输路径,该重复传输路径包括逻辑信道和/或BWP;或者
    所述物理层信令激活或者去激活所述终端的重复传输;或者
    所述物理层信令激活或者去激活特定BWP或者特定BWP组承载的重复传输。
  28. 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1至6中任一项所述的重复传输方法中的步骤,或者该程序被处理器执行时实现如权利要求7至11中任一项所述的重复 传输方法中的步骤。
PCT/CN2019/106666 2018-09-28 2019-09-19 重复传输方法、终端和网络侧设备 WO2020063441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811141571.1A CN110971349B (zh) 2018-09-28 2018-09-28 一种重复传输方法、终端和网络侧设备
CN201811141571.1 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020063441A1 true WO2020063441A1 (zh) 2020-04-02

Family

ID=69951177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106666 WO2020063441A1 (zh) 2018-09-28 2019-09-19 重复传输方法、终端和网络侧设备

Country Status (2)

Country Link
CN (1) CN110971349B (zh)
WO (1) WO2020063441A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630223A (zh) * 2020-05-08 2021-11-09 夏普株式会社 用户设备及其方法、基站及其方法
CN114070482B (zh) * 2020-07-31 2023-04-07 大唐移动通信设备有限公司 业务传输的处理方法、装置、网络侧设备及终端
CN114727331A (zh) * 2021-01-04 2022-07-08 中国移动通信有限公司研究院 一种数据传输方法、装置、终端及网络设备
CN115189820A (zh) * 2021-04-01 2022-10-14 大唐移动通信设备有限公司 一种降低时延的方法、装置、终端及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342851A (zh) * 2017-06-15 2017-11-10 电信科学技术研究院 一种重复传输的配置及重复传输方法及装置
CN107371267A (zh) * 2016-05-13 2017-11-21 电信科学技术研究院 一种数据传输方法及终端
WO2018084676A1 (ko) * 2016-11-04 2018-05-11 엘지전자 주식회사 무선 통신 시스템에서 기지국의 주파수 대역을 이용한 통신 방법 및 상기 방법을 이용하는 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11563505B2 (en) * 2016-06-01 2023-01-24 Qualcomm Incorporated Time division multiplexing of synchronization channels
CN107241164B (zh) * 2017-05-05 2021-10-22 大唐移动通信设备有限公司 一种无线承载重复传输的处理方法及装置
CN108200605B (zh) * 2017-12-28 2021-09-24 京信网络系统股份有限公司 一种基站的数据传输方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371267A (zh) * 2016-05-13 2017-11-21 电信科学技术研究院 一种数据传输方法及终端
WO2018084676A1 (ko) * 2016-11-04 2018-05-11 엘지전자 주식회사 무선 통신 시스템에서 기지국의 주파수 대역을 이용한 통신 방법 및 상기 방법을 이용하는 장치
CN107342851A (zh) * 2017-06-15 2017-11-10 电信科学技术研究院 一种重复传输的配置及重复传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Packet duplication with implicit SCell deactivation and BWP switching", 3GPP TSG-RAN WG2 NR AD HOC #3 R2-1801281, 26 January 2018 (2018-01-26), XP051386706 *

Also Published As

Publication number Publication date
CN110971349B (zh) 2021-06-08
CN110971349A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
US11184886B2 (en) Method, base station, and user equipment for implementing carrier aggregation
WO2018024128A1 (zh) 一种小区配置方法及装置
WO2020063441A1 (zh) 重复传输方法、终端和网络侧设备
EP3606158B1 (en) Buffer status reporting method, ue, buffer status report processing method, and network-side device
WO2020113996A1 (zh) 配置授权的确认方法、终端和网络侧设备
CN110999388B (zh) 通信装置、方法
EP3751955A1 (en) Method for activating packet data convergence protocol (pdcp) repetition mechanism and node device
US20210385017A1 (en) Apparatus, Method and Computer Program
US11601954B2 (en) Data sending method and apparatus, storage medium, and sending end
WO2018001297A1 (zh) 数据传输的方法及装置
WO2020057362A1 (zh) 一种被用于无线通信节点中的方法和装置
CN111418229B (zh) 数据复制传输功能的配置方法、网络设备及终端设备
CN109644101B (zh) 承载配置方法及终端和网络设备
WO2022218157A1 (zh) 信道处理方法、装置及存储介质
WO2019090829A1 (zh) 控制数据复制的方法及相关设备
CN114301579B (zh) 一种重复传输的激活方法、终端和网络侧设备
WO2019100808A1 (zh) 捆绑大小确定方法、用户终端和网络侧设备
CN113079589B (zh) 一种数据传输方法和通信设备
CN112152764B (zh) 一种重复传输激活状态上报方法、确认方法和相关设备
CN113766660B (zh) Sr发送方法和终端
WO2022206360A1 (zh) 一种降低时延的方法、装置、终端及设备
WO2024066882A1 (zh) 控制面信令传输方法、装置及存储介质
WO2022257774A1 (zh) 一种数据传输方法、装置及可读存储介质
WO2019090828A1 (zh) 数据复制下的处理方法及相关设备
CN113596914A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864484

Country of ref document: EP

Kind code of ref document: A1