WO2020199689A1 - 一种毛细管聚焦的微束x射线衍射仪 - Google Patents

一种毛细管聚焦的微束x射线衍射仪 Download PDF

Info

Publication number
WO2020199689A1
WO2020199689A1 PCT/CN2019/130355 CN2019130355W WO2020199689A1 WO 2020199689 A1 WO2020199689 A1 WO 2020199689A1 CN 2019130355 W CN2019130355 W CN 2019130355W WO 2020199689 A1 WO2020199689 A1 WO 2020199689A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
capillary
goniometer
micro
lens
Prior art date
Application number
PCT/CN2019/130355
Other languages
English (en)
French (fr)
Inventor
程琳
姜其立
段泽明
Original Assignee
北京师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京师范大学 filed Critical 北京师范大学
Publication of WO2020199689A1 publication Critical patent/WO2020199689A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence

Definitions

  • the invention relates to an X-ray diffraction technology and an energy dispersive X-ray fluorescence technology, in particular to a microbeam X-ray diffractometer.
  • X-ray diffraction analysis is a method of material structure analysis using the diffraction effect of X-rays in crystalline materials.
  • the conventional X-ray diffraction experiment device is shown in Figure 1. It consists of X-ray source system 1, monochromator 2, X-ray collimation systems 3 and 4, goniometer and sample holder 5, X-ray detector 6, electronics System 7, computer 8 and other parts.
  • the general X-ray source system 1 consists of an X-ray tube with a power of two kilowatts and a circulating water cooling system; most diffractometers are equipped with graphite bent crystals as the monochromator 2; X-ray collimation systems 3 and 4 generally have a width of 1mm, It is composed of a slit collimator with a height of 15mm; the goniometer and the sample holder 5 are structurally integrated, and the sample is fixed on the sample holder; between the X-ray source system 1 and the sample, the sample and the X-ray detector 6 The space size is larger than 400mm; X-ray detector 6 adopts NaI crystal detector.
  • the current conventional X-ray diffraction experimental equipment has the following defects: (1) X-ray diffraction analysis and two-dimensional continuous scanning of the micro-area cannot be realized; (2) The chemical composition information and the two-dimensional distribution of elements of the sample cannot be detected; (3) Need High-power X-ray source and circulating water cooling system; (4) The equipment is complex and expensive.
  • the present invention is based on the shortcomings of the prior art.
  • the present invention combines X-ray diffraction technology and capillary convergent X-ray lens technology to develop an analysis mode with two analysis modes: micro-area X-ray diffraction analysis and micro-area energy dispersive X-ray fluorescence analysis, which can adapt to Micro-beam X-ray diffractometer for analyzing the phase structure of small samples or sample micro-regions, and can detect phase distribution or element distribution through two-dimensional continuous scanning.
  • a capillary focused microbeam X-ray diffractometer including: X-ray source system, X-ray filter, capillary focusing X-ray lens, receiving slit, three-dimensional sample stage, goniometer, X-ray detector, and electronics system , A control system and a computer; wherein the sample to be tested is placed on the three-dimensional sample stage; the X-ray filter is installed between the X-ray source system and the capillary condenser X-ray lens; the X-ray source The system and the capillary condensing X-ray lens are installed on one side of the goniometer, and the capillary condensing X-ray lens condenses the X-rays from the X-ray source system into micro-beam X-rays.
  • the included angle between the center line of and the surface of the three-dimensional sample stage is ⁇ 1 ; the X-ray detector and the receiving slit are installed on the other side of the goniometer, and the center of the beryllium window of the X-ray detector
  • the line passes through the center of the receiving slit and the included angle with the surface of the three-dimensional sample stage is ⁇ 2 ; the centerline of the microbeam X-ray and the centerline of the X-ray detector beryllium window intersect at the measurement
  • the center of the goniometer, the point to be measured of the sample is located at the center of the goniometer; the X-ray detector is in turn electrically connected to the electronic system and the computer; the control system is respectively connected to the three-dimensional The sample stage, the goniometer and the computer are electrically connected.
  • the X-ray source system includes A micro-focus X-ray tube of 50 microns and a maximum power of 30 watts, a temperature control device and a cooling fan.
  • the receiving slit has a length of 20 mm and a width of 0.1 mm.
  • the X-ray detector is Amptek X-123SDD X-ray detector.
  • the goniometer has a ⁇ - ⁇ structure.
  • the X-ray beam spot irradiated on the sample by the X-ray through the capillary converging X-ray lens is 0.1 mm, and the distance from the point to be measured of the sample to the capillary converging X-ray lens is the capillary converging X-ray lens The back focus.
  • the capillary focused microbeam X-ray diffractometer has two analysis modes: micro-area X-ray diffraction analysis and micro-area energy dispersive X-ray fluorescence analysis.
  • the available micro-zone energy dispersive X-ray fluorescence analysis mode provides reference information of element types for the identification of the phase structure of the sample.
  • Figure 1 is an X-ray diffraction experimental device in the prior art
  • Figure 2 is a schematic diagram of the structure of the present invention
  • X-ray source system Monochromator; 3, 4, X-ray collimation system; 5. Goniometer and sample holder; 6, X-ray detector; 7, electronics system; 8, computer; 9 , X-ray filter; 10, capillary convergent X-ray lens; 11, receiving slit; 12, three-dimensional sample stage; 13, goniometer; 14, control system.
  • the present invention provides a capillary focused microbeam X-ray diffractometer, including an X-ray source system 1, an X-ray filter 9, a capillary converging X-ray lens 10, a receiving slit 11, and a three-dimensional sample stage 12 , Goniometer 13, X-ray detector 6, electronics system 7, control system 14 and computer 8; among them, the X-ray source system 1 consists of A micro-focus X-ray tube of 50 microns and a maximum power of 30 watts, composed of a temperature control device and a cooling fan; the X-ray beam is irradiated on the sample through the capillary X-ray lens 10 with a diameter of 0.1mm, and the sample is to be measured
  • the distance to the capillary condenser X-ray lens is 27.6mm; the length of the receiving slit 11 is 20mm and the width is 0.1mm; the distance from the sample point to be measured to the receiving slit 11 is 62.6mm, and the
  • the present invention adopts the solution shown in Fig. 2 and has two analysis modes: micro-area X-ray diffraction analysis and micro-area energy dispersive X-ray fluorescence analysis: the difference between the two modes is that when in micro-area X-ray diffraction analysis In mode, X-rays first pass through the X-ray filter 9 and then converge into micro-beam X-rays through the capillary condenser X-ray lens 10. The single-channel pulse analyzer in the X-ray detector 6 is working.
  • X-ray fluorescence analysis mode X-rays are directly condensed into micro-beam X-rays through the capillary convergent X-ray lens 10, and the multi-channel pulse analyzer in the X-ray detector 6 is working; the similarity between the two modes is that the sample to be tested Placed on the three-dimensional sample table 12, the X-rays emitted by the X-ray source system 1 are condensed into micro-beam X-rays by the capillary convergent X-ray lens 10 and then irradiated on the sample, and the X-rays diffracted or excited from the sample pass through the receiving slit 11 is collected in the Amptek X-123SDD X-ray detector 6, the signal is processed by the electronic system 7 integrated in the Amptek X-123SDD X-ray detector, and then displayed and stored in the computer 8.
  • the computer 8 can be used to control the control system 14, which is mainly composed of PLC, stepper motor and driver, according to the needs, control the XYZ axis of the three-dimensional sample stage 12, adjust the sample to be measured at the focal spot of the X-ray; control the angle measurement
  • the instrument 13 rotates to change the included angle ⁇ 1 between the centerline of the microbeam X-ray and the surface of the three-dimensional sample stage 12 and the included angle ⁇ 2 between the centerline of the beryllium window of the X-ray detector 6 and the surface of the three-dimensional sample stage 12 to achieve different samples Angle measurement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种毛细管聚焦的微束X射线衍射仪,包括:X射线源系统(1),X射线滤波片(9),毛细管会聚X光透镜(10),接收狭缝(11),三维样品台(12),测角仪(13),X射线探测器(6),电子学系统(7),控制系统(14)和计算机(8);其中,样品置于样品台(12)上;X射线源系统(1),X射线滤波片(9)和毛细管会聚X光透镜(10)位于同一直线上并安装在测角仪(13)一侧;接收狭缝(11)和X射线探测器(6)位于同一直线上并安装在测角仪(13)另一侧;X射线探测器(6)依次与电子学系统(7)、计算机(8)电连接;控制系统(14)分别与三维样品台(12),测角仪(13)和计算机(8)电连接。具备微区X射线衍射分析和微区能量色散X射线荧光分析两种分析模式,可以测量小样品或样品微区的物相结构,能通过二维连续扫描探测物相或元素的分布。

Description

一种毛细管聚焦的微束X射线衍射仪 技术领域
本发明涉及一种X射线衍射技术和能量色散X射线荧光技术,具体涉及一种微束X射线衍射仪。
背景技术
X射线衍射分析是利用X射线在晶体物质中的衍射效应进行物质结构分析的一种方法。其原理是从X射线源(X射线管等)发射出来的X射线经过单色化后,入射到某一晶面间距为d的样品表面上时,在符合布拉格方程2dsinθ=nλ的条件下,X射线探测器接收从样品衍射出来的X射线,根据样品平面与衍射X射线的夹角θ值计算出晶面间距d,从而判别晶体的结构。
常规的X射线衍射实验装置如图1所示,由X射线源系统1、单色器2、X射线准直系统3和4、测角仪与样品架5、X射线探测器6、电子学系统7、计算机8等部分组成。一般X射线源系统1由功率为两千瓦的X射线管和循环水冷却系统组成;多数衍射仪配有石墨弯晶作为单色器2;X射线准直系统3和4一般由宽度为1mm,高度为15mm的狭缝准直器组成;测角仪与样品架5在结构上是一体的,样品固定在样品架上;X射线源系统1与样品、样品与X射线探测器6之间的空间尺寸均大于400mm;X射线探测器6采用NaI晶体探测器。
目前常规的X射线衍射实验装置存在以下缺陷:(1)不能实现微区的X射线衍射分析和二维连续扫描;(2)无法探测样品的化学组成信息和元素二维分布;(3)需要大功率的X射线源和循环水冷却系统;(4)设备复杂和昂贵。
发明内容
本发明基于现有技术的缺点,本发明结合X射线衍射技术以及毛细管会聚X光透镜技术,研发一种具备微区X射线衍射分析和微区能量色散X射线荧光分析两种分析模式,能适应小样品或样品微区物相结构的分析,并且可以通过二维连续扫描探测物相分布或元素分布的微束X射线衍射仪。
本发明是通过以下技术方案实现的:
一种毛细管聚焦的微束X射线衍射仪,包括:X射线源系统,X射线滤波片,毛细管会聚X光透镜,接收狭缝,三维样品台,测角仪,X射线探测器,电子学系统,控制系统和计算机;其中,待测样品置于所述三维样品台上;所述X射线滤波片安装在所述X射线源系统和所述毛细管会聚X光透镜之间;所述X射线源系统和所述毛细管会聚X光透镜安装在所述测角仪一侧,所述毛细管会聚X光透镜将来自所述X射线源系统的X射线会聚成微束X射线,所述微束X射线的中心线与所述三维样品台表面的夹角为θ 1;所述X射线探测器和所述接收狭缝安装在所述测角仪另一侧,所述X射线探测器铍窗的中心线经过所述接收狭缝的中心并与所述三维样品台表面的夹角为θ 2;所述微束X射线的中心线、所述X射线探测器铍窗的中心线交汇于所述测角仪的圆心,所述样品的待测点位于所述测角仪的圆心;所述X射线探测器依次与所述电子学系统,所述计算机电连接;所述控制系统分别与所述三维样品台,所述测角仪和所述计算机电连接。
进一步地,所述X射线源系统包括
Figure PCTCN2019130355-appb-000001
50微米、最大功率30瓦的微焦斑X射线管,温控装置和散热风扇。
进一步地,所述接收狭缝长度为20mm,宽度为0.1mm。
进一步地,所述X射线探测器选用Amptek X-123SDD X射线探测器。
进一步地,所述测角仪为θ-θ结构。
进一步地,X射线经由所述毛细管会聚X光透镜照射在所述样品上的X射线束斑直径为0.1mm,所述样品的待测点到毛细管会聚X光透镜的距离为毛细管会聚X光透镜的后焦距。
进一步地,所述的一种毛细管聚焦的微束X射线衍射仪具备微区X射线衍射分析和微区能量色散X射线荧光分析两种分析模式。
本发明提供技术方案的有益效果是:
1.使用低功率的微焦斑X射线管,降低设备的功耗和成本;
2.利用毛细管会聚X光透镜,提高照射样品的X射线强度和衍射仪的分辨率;
3.实现对小样品或样品微区物相结构的分析和物相分布的二维扫描分析;
4.所具备的微区能量色散X射线荧光分析模式,为样品物相结构的识别提供了元素种类的参考信息。
附图说明
图1是现有技术中的X射线衍射实验装置
图2是本发明结构示意图
主要附图标记说明:
1,X射线源系统;2,单色器;3、4,X射线准直系统;5,测角仪与样品架;6,X射线探测器;7,电子学系统;8,计算机;9,X射线滤波片;10,毛细管会聚X光透镜;11,接收狭缝;12,三维样品台;13,测角仪;14,控制系统。
本发明的较佳实施方式
参见附图2,本发明提供了一种毛细管聚焦的微束X射线衍射仪,包括X射线源系统1,X射线滤波片9,毛细管会聚X光透镜10,接收狭缝11,三维样品台12,测角仪13,X射线探测器6,电子学系统7,控制系统14和计算机8;其中,X射线源系统1由
Figure PCTCN2019130355-appb-000002
50微米、最大功率30瓦的微焦斑X射线管,温控装置和散热风扇组成;X射线经由毛细管会聚X光透镜10照射在样品上的X射线束斑直径为0.1mm,样品待测点到毛细管会聚X光透镜的距离为27.6mm;接收狭缝11长度为20mm,宽度为0.1mm;样品待测点到接收狭缝11的距离为62.6mm,接收狭缝11到X射线探测器6铍窗的距离为7.4mm;测角仪13采用θ-θ结构,θ 1与θ 2可以独立转动;X射线探测器6采用Amptek X-123SDD X射线探测器,其中集成了电子学系统7。
本发明采用如图2所示的解决方案,具备微区X射线衍射分析和微区能量色散X射线荧光分析两种分析模式:两种模式的不同之处是,当处于微区X射线衍射分析模式时,X射线先透过X射线滤波片9再通过毛细管会聚X光透镜10会聚成微束X射线,X射线探测器6中的单道脉冲分析器在工作,当处于微区能量色散X射线荧光分析模式时,X射线直接通过毛细管会聚X光透镜10会聚成微束X射线,X射线探测器6中的多道脉冲分析器在工作;两种模式的相同之处是,待测样品置于三维样品台12上,X射线源系统1发出的X射线被毛细管会聚X光透镜10会聚成微束X射线后照射在样品上,从样品衍射或被激发出来的X射线经过接收狭缝11收集到Amptek X-123SDD X射线探测器6中,信号经过Amptek X-123SDD X射线探测器所集成的电子学系统7处理后,显示并存储在计算机8中。可以根据需求用计算机8控制主要由PLC、步进电机及驱动器等设备构成的控制系统14,控制三维样品台12的XYZ轴,调节样品的待测点位于X射线的焦斑处;控制测角仪13转动,改变微束X射线的中心线与三维样品台12表面的夹角θ 1以及 X射线探测器6铍窗的中心线与三维样品台12表面的夹角θ 2,实现对样品不同角度上的测量。
以上所述,仅为本发明的优选实施方式,但本发明的保护范围并不局限于此,本领域技术人员应该理解,在不脱离由权利要求及其等同物限定其范围的本发明的原理和精神的情况下,可以对这些实施例进行修改和完善,这些修改和完善也应在本发明的保护范围内。

Claims (7)

  1. 一种毛细管聚焦的微束X射线衍射仪,其特征在于,所述衍射仪包括:X射线源系统(1),X射线滤波片(9),毛细管会聚X光透镜(10),接收狭缝(11),三维样品台(12),测角仪(13),X射线探测器(6),电子学系统(7),控制系统(14)和计算机(8);其中,待测样品置于所述三维样品台(12)上;所述X射线滤波片(9)安装在所述X射线源系统(1)和所述毛细管会聚X光透镜(10)之间;所述X射线源系统(1)和所述毛细管会聚X光透镜(10)安装在所述测角仪(13)一侧,所述毛细管会聚X光透镜(10)将来自所述X射线源系统(1)的X射线会聚成微束X射线,所述微束X射线的中心线与所述三维样品台(12)表面的夹角为θ1;所述X射线探测器(6)和所述接收狭缝(11)安装在所述测角仪(13)另一侧,所述X射线探测器(6)铍窗的中心线经过所述接收狭缝(11)的中心并与所述三维样品台(12)表面的夹角为θ2;所述微束X射线的中心线、所述X射线探测器(6)铍窗的中心线交汇于所述测角仪(13)的圆心,所述样品的待测点位于所述测角仪(13)的圆心;所述X射线探测器(6)依次与所述电子学系统(7),所述计算机(8)电连接;所述控制系统(14)分别与所述三维样品台(12),所述测角仪(13)和所述计算机(8)电连接。
  2. 如权利要求1所述的一种毛细管聚焦的微束X射线衍射仪,其特征在于,所述X射线源系统(1)包括
    Figure PCTCN2019130355-appb-100001
    微米、最大功率30瓦的微焦斑X射线管,温控装置和散热风扇。
  3. 如权利要求1所述的一种毛细管聚焦的微束X射线衍射仪,其特征在于,所述接收狭缝(11)长度为20mm,宽度为0.1mm。
  4. 如权利要求1所述的一种毛细管聚焦的微束X射线衍射仪,其特征在于,所述X射线探测器(6)选用Amptek X-123SDD X射线探测器。
  5. 如权利要求1所述的一种毛细管聚焦的微束X射线衍射仪,其特征在于,所述测角仪(13)为θ-θ结构。
  6. 如权利要求1所述的一种毛细管聚焦的微束X射线衍射仪,其特征在于,X射线经由所述毛细管会聚X光透镜(10)照射在所述样品上的X射线束斑直径为0.1mm,所述样品的待测点到毛细管会聚X光透镜(10)的距离为毛细管会聚X光透镜(10)的后焦距。
  7. 如权利要求1所述的一种毛细管聚焦的微束X射线衍射仪,其特征在于,具备微区X射线衍射分析和微区能量色散X射线荧光分析两种分析模 式。
PCT/CN2019/130355 2019-04-04 2019-12-31 一种毛细管聚焦的微束x射线衍射仪 WO2020199689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910269732.3 2019-04-04
CN201910269732.3A CN109991253A (zh) 2019-04-04 2019-04-04 一种毛细管聚焦的微束x射线衍射仪

Publications (1)

Publication Number Publication Date
WO2020199689A1 true WO2020199689A1 (zh) 2020-10-08

Family

ID=67132488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130355 WO2020199689A1 (zh) 2019-04-04 2019-12-31 一种毛细管聚焦的微束x射线衍射仪

Country Status (2)

Country Link
CN (1) CN109991253A (zh)
WO (1) WO2020199689A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991253A (zh) * 2019-04-04 2019-07-09 北京师范大学 一种毛细管聚焦的微束x射线衍射仪
CN110501362A (zh) * 2019-07-31 2019-11-26 中国科学院合肥物质科学研究院 一种强磁场下x-射线的传输装置
CN110763712A (zh) * 2019-11-12 2020-02-07 中国工程物理研究院核物理与化学研究所 一种部件物相成分深度分布无损测量方法
CN111221028A (zh) * 2019-12-04 2020-06-02 中国工程物理研究院材料研究所 一种谱线探测方法、装置、谱线探测仪和谱线探测系统
CN110907483A (zh) * 2019-12-09 2020-03-24 北京师范大学 一种三维共聚焦的微束x射线衍射仪
CN110907484A (zh) * 2019-12-09 2020-03-24 北京师范大学 一种三维共聚焦的微束x射线应力仪
CN113109374B (zh) * 2021-03-30 2022-08-26 中国科学院合肥物质科学研究院 一种长光路能量色散x-射线衍射装置
CN116879335B (zh) * 2023-09-08 2023-11-17 四川大学 一种组合扫描式xrd/xrf综合成像方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504744A (zh) * 2002-12-02 2004-06-16 中国科学技术大学 对组合样品的结构和成分进行测量分析的方法及装置
JP2007309649A (ja) * 2006-05-16 2007-11-29 Shimadzu Corp X線分光装置
CN201368856Y (zh) * 2008-10-20 2009-12-23 北京师范大学 基于毛细管x射线光学器件的微束x射线衍射仪
CN106342216B (zh) * 2005-11-07 2010-11-10 中国原子能科学研究院 能量色散x射线荧光分析系统
CN102135506A (zh) * 2010-01-26 2011-07-27 宝山钢铁股份有限公司 钢板中残余奥氏体在线检测方法
CN108709898A (zh) * 2018-04-23 2018-10-26 浙江工业大学 基于组合x射线毛细管的微束x射线荧光分析系统
CN109991253A (zh) * 2019-04-04 2019-07-09 北京师范大学 一种毛细管聚焦的微束x射线衍射仪

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3982732B2 (ja) * 1999-01-18 2007-09-26 株式会社リガク 蛍光x線測定装置
US8477904B2 (en) * 2010-02-16 2013-07-02 Panalytical B.V. X-ray diffraction and computed tomography
CN105092618A (zh) * 2015-09-18 2015-11-25 北京师范大学 一种微束能量色散的x射线衍射仪及其使用方法
CN106248706A (zh) * 2016-07-13 2016-12-21 北京师范大学 一种微型毛细管x光透镜聚焦同位素放射源的x射线荧光谱仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504744A (zh) * 2002-12-02 2004-06-16 中国科学技术大学 对组合样品的结构和成分进行测量分析的方法及装置
CN106342216B (zh) * 2005-11-07 2010-11-10 中国原子能科学研究院 能量色散x射线荧光分析系统
JP2007309649A (ja) * 2006-05-16 2007-11-29 Shimadzu Corp X線分光装置
CN201368856Y (zh) * 2008-10-20 2009-12-23 北京师范大学 基于毛细管x射线光学器件的微束x射线衍射仪
CN102135506A (zh) * 2010-01-26 2011-07-27 宝山钢铁股份有限公司 钢板中残余奥氏体在线检测方法
CN108709898A (zh) * 2018-04-23 2018-10-26 浙江工业大学 基于组合x射线毛细管的微束x射线荧光分析系统
CN109991253A (zh) * 2019-04-04 2019-07-09 北京师范大学 一种毛细管聚焦的微束x射线衍射仪

Also Published As

Publication number Publication date
CN109991253A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2020199689A1 (zh) 一种毛细管聚焦的微束x射线衍射仪
US9823203B2 (en) X-ray surface analysis and measurement apparatus
CN1829910B (zh) 实现xanes分析的方法和设备
US20150247811A1 (en) X-ray surface analysis and measurement apparatus
JP5525523B2 (ja) X線装置、その使用方法およびx線照射方法
JP5838109B2 (ja) 複合x線分析装置
US8548123B2 (en) Method and apparatus for using an area X-ray detector as a point detector in an X-ray diffractometer
US11105756B2 (en) X-ray diffraction and X-ray spectroscopy method and related apparatus
WO2006005246A1 (fr) Dispositif de mesure destine a la diffraction de rayons x a longueur d'onde courte et procede correspondant
CN110530907B (zh) X射线吸收测量系统
JPH11502025A (ja) 同時x線回折及びx線蛍光測定のための装置
US6751287B1 (en) Method and apparatus for x-ray analysis of particle size (XAPS)
RU137951U1 (ru) Устройство для рентгеновского микроанализа
Straasø et al. The Debye–Scherrer camera at synchrotron sources: a revisit
CN110907483A (zh) 一种三维共聚焦的微束x射线衍射仪
Bortel et al. Measurement of synchrotron-radiation-excited Kossel patterns
JP2002189004A (ja) X線分析装置
JPH06258260A (ja) X線回折装置
Kujala et al. High resolution short focal distance Bent Crystal Laue Analyzer for copper K edge x-ray absorption spectroscopy
JP3519292B2 (ja) 微小部x線回折測定方法及び微小部x線回折装置
JP2012108126A (ja) 回折装置
Nichols et al. An X-Ray Micro-Fluorescence Analysis System With Diffraction Capabilities
JP2000206061A (ja) 蛍光x線測定装置
JP2001235437A (ja) 全反射蛍光x線分析装置
CN112033988B (zh) 一种自适应束斑x射线衍射仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922486

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.05.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19922486

Country of ref document: EP

Kind code of ref document: A1