WO2020196034A1 - 撮像処理回路、撮像システム、撮像処理方法及びプログラム - Google Patents

撮像処理回路、撮像システム、撮像処理方法及びプログラム Download PDF

Info

Publication number
WO2020196034A1
WO2020196034A1 PCT/JP2020/011475 JP2020011475W WO2020196034A1 WO 2020196034 A1 WO2020196034 A1 WO 2020196034A1 JP 2020011475 W JP2020011475 W JP 2020011475W WO 2020196034 A1 WO2020196034 A1 WO 2020196034A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion rate
photoelectric conversion
output signal
unit
voltage
Prior art date
Application number
PCT/JP2020/011475
Other languages
English (en)
French (fr)
Inventor
征二 山平
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080022226.5A priority Critical patent/CN113614930A/zh
Priority to JP2021509095A priority patent/JP7165873B2/ja
Publication of WO2020196034A1 publication Critical patent/WO2020196034A1/ja
Priority to US17/484,549 priority patent/US20220014704A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Definitions

  • the present disclosure relates to an imaging processing circuit, an imaging system, an imaging processing method and a program, and more specifically, an imaging processing circuit used together with a photoelectric conversion unit having a variable conversion rate from a photon to an electric charge, and an imaging including the imaging processing circuit.
  • an imaging processing circuit used together with a photoelectric conversion unit having a variable conversion rate from a photon to an electric charge, and an imaging including the imaging processing circuit.
  • the photodetector described in Patent Document 1 includes a plurality of unit pixel cells.
  • the unit pixel cell includes an optical sensor, a signal detection circuit connected to a vertical signal line, an address transistor connected to the signal detection circuit, a capacitor, and a transfer transistor.
  • the capacitor and the transfer transistor are connected between the optical sensor and the address transistor.
  • An object of the present disclosure is to provide an image pickup processing circuit, an image pickup system, an image pickup processing method, and a program capable of improving the reading speed of an output signal.
  • the imaging processing circuit includes a limiting unit.
  • the limiting unit limits at least one of a maximum value and a minimum value for the output signal of the photoelectric conversion unit, which converts photons into electric charges and has a variable conversion rate from photons to electric charges.
  • the limiting unit determines the difference between the maximum value and the minimum value of the output signal of the photoelectric conversion unit when the conversion rate is the first conversion rate, and the photoelectric conversion when the conversion rate is the second conversion rate. Make it smaller than the difference between the maximum value and the minimum value of the output signal of the unit.
  • the second conversion rate is smaller than that of the first conversion rate.
  • the imaging system includes the imaging processing circuit and the photoelectric conversion unit.
  • the imaging processing method includes limiting processing.
  • the limiting process limits at least one of the maximum value and the minimum value of the output signal of the photoelectric conversion unit that converts photons into electric charges and the conversion rate from photons to electric charges is variable.
  • the difference between the maximum value and the minimum value of the output signal of the photoelectric conversion unit when the conversion rate is the first conversion rate is converted into the photoelectric conversion when the conversion rate is the second conversion rate. Make it smaller than the difference between the maximum value and the minimum value of the output signal of the unit.
  • the second conversion rate is smaller than that of the first conversion rate.
  • the program according to one aspect of the present disclosure causes one or more processors to execute the image pickup processing method.
  • FIG. 1 is a block diagram of an imaging system according to an embodiment.
  • FIG. 2 is a time chart showing an operation example of the same imaging system.
  • FIG. 3 is a block diagram of an imaging system according to a comparative example.
  • FIG. 4A is a time chart showing an operation example of the imaging system according to the embodiment.
  • FIG. 4B is a time chart showing an operation example of the imaging system according to the comparative example.
  • FIG. 5 is a block diagram of a pixel circuit of the imaging system according to the first modification.
  • FIG. 6 is a block diagram of an offset circuit of the imaging system according to the second modification.
  • the imaging system 1 of the present embodiment is used as a two-dimensional image sensor such as a CCD (Charge Coupled Devices) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor.
  • the imaging system 1 includes a plurality of (four in FIG. 1) pixel circuits 3, a plurality of offset circuits 4 (two in FIG. 1), and a plurality of (two in FIG. 1) vertical. It includes a signal line 51, a voltage supply circuit 71, a vertical scanning circuit 72, and an offset control unit 73.
  • the imaging system 1 includes a plurality of (two in FIG. 1) correlated double sampling circuits 81 and a plurality of (two in FIG. 1) amplifier circuits 82.
  • the imaging system 1 includes a microcontroller that controls the operation of the entire imaging system 1.
  • the plurality of pixel circuits 3 are arranged in a two-dimensional array. Of the plurality of pixel circuits 3, two or more pixel circuits 3 belonging to the same row are electrically connected to a common vertical signal line 51. Each of the plurality of pixel circuits 3 has a photoelectric conversion unit 2.
  • the photoelectric conversion unit 2 converts photons into electric charges. The electric charge converted from the photon by the photoelectric conversion unit 2 is output to the vertical signal line 51 as an output signal Vo1 in the form of a voltage.
  • the output signal Vo1 is read out to an external device of the imaging system 1 via the vertical signal line 51.
  • the plurality of offset circuits 4 correspond one-to-one with a plurality of vertical signal lines 51.
  • a corresponding offset circuit 4 is electrically connected to each vertical signal line 51.
  • the offset circuit 4 outputs an offset voltage to the corresponding vertical signal line 51.
  • the offset circuit 4 limits the minimum value of the output signal Vo1. In other words, the minimum value of the output signal Vo1 is determined by the magnitude of the offset voltage output from the offset circuit 4 to the vertical signal line 51.
  • the image pickup processing circuit 10 includes at least one offset circuit 4 (restriction unit).
  • the image pickup processing circuit 10 refers to a configuration in which each of the plurality of pixel circuits 3 includes a configuration other than the photoelectric conversion unit 2 and a plurality of offset circuits 4. That is, the image pickup system 1 includes an image pickup processing circuit 10 and a plurality of photoelectric conversion units 2.
  • the photoelectric conversion unit 2 includes an avalanche photodiode (Avalanche Photo Diode).
  • the photoelectric conversion unit 2 includes only an avalanche photodiode.
  • the conversion rate from photons to electric charges is variable. That is, when a reverse voltage equal to or higher than a predetermined value (avalanche breakdown voltage) is applied to the avalanche photodiode, the conversion rate from photons to electric charges increases remarkably due to the avalanche breakdown phenomenon. That is, the photoelectric conversion unit 2 has a function of multiplying the electric charge.
  • the conversion of photons to electric charges when the avalanche breakdown phenomenon occurs is called avalanche multiplication.
  • the conversion rate from photons to electric charges when the photoelectric conversion unit 2 is multiplying the electric charges is referred to as a first conversion rate.
  • the conversion rate from photons to charges when the photoelectric conversion unit 2 does not multiply the charges is referred to as a second conversion rate. That is, the conversion rate of photons to electric charges in the photoelectric conversion unit 2 is variable between the first conversion rate and the second conversion rate. The second conversion rate is smaller than that of the first conversion rate.
  • the output signal Vo1 when the photoelectric conversion unit 2 is irradiated with light when the conversion rate of the photoelectric conversion unit 2 is the first conversion rate, the output signal Vo1 is limited by the offset circuit 4 regardless of the intensity of the light. It drops to the minimum value that is set. Further, when the photoelectric conversion unit 2 is no longer irradiated with light, or when the exposure of the photoelectric conversion unit 2 is stopped, the output signal Vo1 rises to the maximum value limited by the amplification element 33 described later. ..
  • the photoelectric conversion unit 2 multiplies the charge, so that light can be detected with high sensitivity. At this time, the presence or absence of light can be represented by two values based on the output signal Vo1.
  • the conversion rate of the photoelectric conversion unit 2 is the second conversion rate
  • the magnitude of the output signal Vo1 changes between the maximum value and the minimum value according to the amount of light incident on the photoelectric conversion unit 2. Therefore, the amount of light incident on the photoelectric conversion unit 2 can be measured based on the output signal Vo1. That is, when the conversion rate of the photoelectric conversion unit 2 is the second conversion rate, the amount of light can be expressed more finely than the binary value.
  • the offset circuit 4 limits at least one of the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2.
  • the offset circuit 4 sets the difference between the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 when the conversion rate is the first conversion rate, and the photoelectric conversion unit 2 when the conversion rate is the second conversion rate. It is made smaller than the difference between the maximum value and the minimum value of the output signal Vo1 of.
  • the offset voltage when the conversion rate of the photoelectric conversion unit 2 is the first conversion rate is higher than the offset voltage when the conversion rate of the photoelectric conversion unit 2 is the second conversion rate. ,Enlarge.
  • the minimum value of the output signal Vo1 output to the vertical signal line 51 is equal to the offset voltage.
  • the offset circuit 4 limits the offset voltage corresponding to the minimum value of the voltage of the vertical signal line 51.
  • the offset circuit 4 sets the minimum value of the output signal Vo1 when the conversion rate of the photoelectric conversion unit 2 is the first conversion rate, and the conversion rate is the second conversion rate. Make it larger than the minimum value of the output signal Vo1.
  • the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 is limited by the vertical signal line 51. That is, when the output signal Vo1 is lower than the minimum value (offset voltage) of the voltage of the vertical signal line 51 limited by the offset circuit 4, the magnitude of the electric charge output from the photoelectric conversion unit 2 does not change, but the vertical signal line.
  • the output signal Vo1 output to 51 is raised to the minimum value.
  • one offset circuit 4 (restriction unit) has at least one of the maximum value and the minimum value (only the minimum value in the present embodiment) with respect to the output signal Vo1 of the two or more photoelectric conversion units 2. ) Is restricted. That is, each offset circuit 4 limits the minimum value of the output signal Vo1 of the two or more photoelectric conversion units 2 electrically connected to itself via the vertical signal line 51. In the present embodiment, a plurality of sets of such an offset circuit 4 and two or more photoelectric conversion units 2 are provided. Each offset circuit 4 limits at least one of the maximum value and the minimum value of the voltage of the vertical signal line 51, thereby limiting at least one of the maximum value and the minimum value of the output signal Vo1.
  • the output signal is compared with the case where the conversion rate of the photoelectric conversion unit 2 is the second conversion rate.
  • the difference between the maximum value and the minimum value of Vo1 is small. Therefore, when the output signal Vo1 changes from the maximum value or the minimum value as the starting point, the amount of change becomes small, so that the time required for the change becomes short. Further, when the output signal Vo1 changes from the intermediate value between the maximum value and the minimum value to the maximum value or the minimum value, the amount of change becomes small, so that the time required for the change becomes short. As a result, it is possible to improve the reading speed of the output signal Vo1 when the conversion rate of the photoelectric conversion unit 2 is the first conversion rate.
  • the difference between the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 is that the conversion rate of the photoelectric conversion unit 2 is the first conversion rate. It is larger than the difference between the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 at the time of. Therefore, the reading speed of the output signal Vo1 when the conversion rate is the first conversion rate is improved without reducing the gradation of light that can be measured when the conversion rate of the photoelectric conversion unit 2 is the second conversion rate. Can be done.
  • the conversion rate of the photoelectric conversion unit 2 is the first conversion rate
  • the difference between the maximum value and the minimum value of the output signal Vo1 is relatively small, so that the current consumption of the imaging system 1 can be reduced. it can.
  • an offset circuit 4 which is a circuit that limits at least one of the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 is provided outside the pixel circuit 3. Therefore, with respect to the output signal Vo1, each pixel circuit 3 can be miniaturized as compared with the case where the pixel circuit 3 includes a circuit that limits at least one of the maximum value and the minimum value. ..
  • the timing at which the offset circuit 4 limits the maximum value or the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 is not limited to the timing exemplified in this embodiment.
  • a method of limiting the maximum value or the minimum value of the output signal Vo1 may be adopted from a certain period before the timing when the photon is input to the photoelectric conversion unit 2 and the output signal Vo1 is read out from the pixel circuit 3.
  • the pixel circuit 3 includes three transistors of a reset element 32, an amplification element 33, and a selection element 34, the output signal Vo1 is read for a certain period of time after the output signal Vo1 is read.
  • a method of limiting the maximum value or the minimum value is also possible.
  • the output signal Vo1 of the photoelectric conversion unit 2 generated by the incident light has a voltage value larger than the initial value.
  • the pixel circuit 3 is a P-type transistor.
  • the voltage value of the output signal Vo1 of the photoelectric conversion unit 2 generated by the incident light is smaller than the initial value.
  • a configuration that limits the maximum value or the minimum value of the output signal Vo1 is effective.
  • the plurality of pixel circuits 3 are arranged in a two-dimensional array. Two or more pixel circuits 3 belonging to the same row are electrically connected to the voltage supply circuit 71 by feed wiring. Two or more pixel circuits 3 belonging to the same row are electrically connected to the vertical scanning circuit 72 by feed wiring.
  • the plurality of columns of the plurality of pixel circuits 3 have a one-to-one correspondence with the plurality of correlated double sampling circuits 81.
  • Two or more pixel circuits 3 belonging to the same row are electrically connected to a common, corresponding correlated double sampling circuit 81 by feed wiring.
  • Each correlated double sampling circuit 81 is electrically connected to an amplifier circuit 82.
  • the pixel circuit 3 includes a photoelectric conversion unit 2, a transfer element 31, a reset element 32, an amplification element 33, a selection element 34, and a wiring that electrically connects them.
  • the transfer element 31, the reset element 32, the amplification element 33, and the selection element 34 are semiconductor switching elements such as an n-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor), respectively.
  • the anode of the photoelectric conversion unit 2 (avalanche photodiode) is electrically connected to the voltage supply circuit 71.
  • the cathode of the photoelectric conversion unit 2 is electrically connected to the source terminal of the transfer element 31.
  • the drain terminal of the transfer element 31 is electrically connected to the source terminal of the reset element 32 and the gate terminal of the amplification element 33 via the node 35.
  • the node 35 is a point on the wiring included in the pixel circuit 3.
  • the source terminal of the amplification element 33 is electrically connected to the drain terminal of the selection element 34.
  • the source terminal of the selection element 34 is electrically connected to the vertical signal line 51.
  • the voltage supply circuit 71 (adjustment unit) has a first mode and a second mode as operation modes.
  • the voltage supply circuit 71 applies a counter electromotive voltage equal to or higher than the avalanche breakdown voltage to the photoelectric conversion unit 2.
  • the voltage supply circuit 71 sets the conversion rate of the photoelectric conversion unit 2 to the first conversion rate in the first mode. That is, in the first mode, the voltage supply circuit 71 causes the photoelectric conversion unit 2 to multiply the charge.
  • the voltage supply circuit 71 applies a counter electromotive voltage lower than the avalanche breakdown voltage to the photoelectric conversion unit 2.
  • the voltage supply circuit 71 sets the conversion rate of the photoelectric conversion unit 2 to the second conversion rate in the second mode. That is, changing the magnitude of the counter electromotive voltage applied to the photoelectric conversion unit 2 corresponds to switching the operation mode of the voltage supply circuit 71.
  • the imaging system 1 can detect light with higher sensitivity in the first mode than in the second mode, and can measure the amount of light in the second mode more finely than in the first mode. That is, the imaging system 1 can be used for these two purposes by switching the operation mode of the voltage supply circuit 71.
  • a voltage signal is input from the vertical scanning circuit 72 to each gate terminal of the transfer element 31, the reset element 32, and the selection element 34. As a result, each of the transfer element 31, the reset element 32, and the selection element 34 is switched on and off.
  • the transfer element 31 is turned on, the electric charge generated by the photoelectric conversion unit 2 is transferred to the node 35.
  • a reset voltage of a predetermined magnitude is applied to the drain terminal of the reset element 32 from the voltage supply circuit 71.
  • the reset element 32 is turned on, the voltage of the node 35 becomes equal to the reset voltage. That is, the voltage of the node 35 is reset.
  • a power supply voltage is applied to the drain terminal of the amplification element 33 from the voltage supply circuit 71.
  • the amplification element 33 adjusts the voltage of the node 35 and outputs the voltage to the selection element 34. Specifically, the amplification (adjustment) element 33 outputs a voltage obtained by amplifying or attenuating the voltage of the node 35 or a voltage equal to the voltage of the node 35 to the selection element 34.
  • the selection element 34 is turned on, the voltage adjusted by the amplification element 33 is output to the vertical signal line 51 as the output signal Vo1.
  • the maximum value of the output signal Vo1 output to the vertical signal line 51 is limited by the drain voltage of the amplification element 33. In other words, the maximum value of the output signal Vo1 is determined by the magnitude of the drain voltage of the amplification element 33.
  • the offset circuit 4 has a first DC current source 41, a second DC current source 42, a switch element 43, a switch element 44, and wiring for electrically connecting them.
  • the positive terminal of the first DC current source 41 is electrically connected to the ground.
  • the negative terminal of the first DC current source 41 is electrically connected to the vertical signal line 51 via the switch element 43 and the connection point 45.
  • the connection point 45 is a point on the wiring included in the offset circuit 4.
  • a voltage of a predetermined magnitude is applied to the positive terminal of the second DC current source 42 from the offset control unit 73.
  • the negative terminal of the second DC current source 42 is electrically connected to the vertical signal line 51 via the switch element 44 and the connection point 45.
  • the first DC current source 41 outputs a current having the same magnitude as that of the second DC current source 42.
  • Each of the switch elements 43 and 44 is a semiconductor switching element such as an n-channel MOSFET.
  • a control signal is input from the offset control unit 73 to each of the gate terminals of the switch elements 43 and 44. As a result, the on / off of each of the switch elements 43 and 44 is switched.
  • the control signal output from the offset control unit 73 is input to the switch element 43 as it is, and the signal obtained by inverting the high level and the low level of the control signal is input to the switch element 44. Therefore, when one of the switch elements 43 and 44 is turned on, the offset control unit 73 turns off the other.
  • the offset voltage (approximately 0V) of the vertical signal line 51 when the offset control unit 73 turns off the switch element 43 and turns on the switch element 44 is such that the offset control unit 73 turns on the switch element 43 and turns off the switch element 44. It is smaller than the offset voltage when it is set to. The difference is equal to the voltage applied from the offset control unit 73 to the second DC current source 42.
  • the offset circuit 4 limits at least one of the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 according to the operation mode of the voltage supply circuit 71 (adjustment unit).
  • the offset circuit 4 of the present embodiment limits the minimum value of the output signal Vo1 of the photoelectric conversion unit 2. That is, when the operation mode of the voltage supply circuit 71 is the first mode, the offset control unit 73 turns on the switch element 43 and turns off the switch element 44. On the other hand, when the operation mode of the voltage supply circuit 71 is the second mode, the offset control unit 73 turns off the switch element 43 and turns on the switch element 44.
  • the offset circuit 4 sets the minimum value of the output signal Vo1 when the operation mode of the voltage supply circuit 71 is the first mode, and the output signal Vo1 when the operation mode of the voltage supply circuit 71 is the second mode. Make it larger than the minimum value.
  • the operation mode of the voltage supply circuit 71 will be described as switching between the first mode and the second mode at regular intervals. Specifically, between the time points T1 and T6, the voltage supply circuit 71 operates in the second mode, and between the time points T7 and T12, the voltage supply circuit 71 operates in the first mode.
  • the imaging system 1 reads out the output signal Vo1 in a time division manner for the plurality of pixel circuits 3. That is, the output signal Vo1 is output at different timings for each row of the plurality of pixel circuits 3 arranged in a two-dimensional array.
  • one pixel circuit 3 will be focused on and described.
  • the voltage (vapd1) applied to the photoelectric conversion unit 2 is a negative value, which is larger than a predetermined value corresponding to the avalanche breakdown voltage.
  • the operation mode of the voltage supply circuit 71 is the second mode. Since the operation mode of the voltage supply circuit 71 is the second mode, the offset control unit 73 sends a low level signal (sigsel) for turning on the switch element 43 and turning off the switch element 44 to the offset circuit 4. It is outputting.
  • the minimum value of the voltage (bl1) of the vertical signal line 51 is "vss”. That is, the minimum value of the output signal Vo1 output from the pixel circuit 3 to the vertical signal line 51 is “vss”.
  • the gate voltage (sight1) of the transfer element 31 is at a low level between the time points T1 and T2, the electric charge generated by the photoelectric conversion unit 2 is accumulated. Further, since the gate voltage (sigr1) of the reset element 32 is at a high level, the voltage (FD1) of the node 35 is fixed to the reset voltage (vrst). Further, since the gate voltage (sigs1) of the selection element 34 is at a high level, a reset voltage is output to the vertical signal line 51. Strictly speaking, the voltage (bl1) of the vertical signal line 51 is a value obtained by subtracting the threshold voltage dt between the gate and source of the amplification element 33 from the reset voltage (vrst). However, the amplification factor of the amplification element 33 was assumed to be 1. The voltage (bl1) of the vertical signal line 51 is input to the correlation double sampling circuit 81.
  • the gate voltage (sigr1) of the reset element 32 is set to a low level. After that, since the gate voltage (sight1) of the transfer element 31 is at a high level between the time points T3 and T4, the electric charge generated by the photoelectric conversion unit 2 is transferred to the node 35 and passed through the amplification element 33 and the selection element 34. It is output to the vertical signal line 51 as the output signal Vo1. Therefore, when the photoelectric conversion unit 2 is irradiated with light, the voltage (bl1) of the vertical signal line 51 is a threshold voltage from the voltage (vfds) of the node 35 according to the amount of light irradiated to the photoelectric conversion unit 2.
  • the voltage (bl1) of the vertical signal line 51 is a value obtained by subtracting the threshold voltage pt from the voltage (vfdb) corresponding to the dark current of the photoelectric conversion unit 2. (Indicated by a broken line between T3 and T4 at the time point in FIG. 2).
  • the correlation double sampling circuit 81 calculates the difference voltage (vsn) between the voltage input from the vertical signal line 51 between the time points T1 and T2 and the voltage input from the vertical signal line 51 between the time points T3 and T4. ..
  • the amplifier circuit 82 amplifies the signal (s 72t1) output from the correlation double sampling circuit 81.
  • This signal (s 72t1) includes information on the differential voltage (vsn).
  • the gate voltage (sight1) of the transfer element 31 and the gate voltage (sigr1) of the reset element 32 are set to high levels. As a result, the photoelectric conversion unit 2 (avalanche photodiode) is depleted. After that, at the time points T5 and T6, the gate voltage (sight1) of the transfer element 31 is set to a low level.
  • the voltage (vapd1) applied to the photoelectric conversion unit 2 is reduced.
  • the voltage (vapd1) applied to the photoelectric conversion unit 2 is a negative value, which is smaller than a predetermined value corresponding to the avalanche breakdown voltage.
  • the counter electromotive voltage applied to the photoelectric conversion unit 2 is larger than the avalanche breakdown voltage. Therefore, the operation mode of the voltage supply circuit 71 is the first mode. Since the operation mode of the voltage supply circuit 71 is the first mode, the offset control unit 73 sets a high level signal (sigsel) for turning off the switch element 43 and turning on the switch element 44.
  • the minimum value of the voltage (bl1) of the vertical signal line 51 is "vcs”. That is, the minimum value of the output signal Vo1 output from the pixel circuit 3 to the vertical signal line 51 is “vcs”. “Vcs” is larger than “vss”, which is the minimum value of the voltage (bl1) of the vertical signal line 51 when the operation mode of the voltage supply circuit 71 is the second mode.
  • the operation between the time points T7 and T9 is the same as the operation between the time points T1 and T3, so the description thereof will be omitted.
  • the gate voltage (sight1) of the transfer element 31 is at a high level between the time points T9 and T10 as in the time points T3 and T4, the charge generated by the photoelectric conversion unit 2 is transferred to the node 35, and the amplification element 33 and the selection It is output to the vertical signal line 51 as an output signal Vo1 via the element 34.
  • a counter electromotive voltage equal to or higher than the avalanche breakdown voltage is applied to the photoelectric conversion unit 2 (avalanche photodiode) when the photoelectric conversion unit 2 is irradiated with light, the voltage of the vertical signal line 51 is applied.
  • (Bl1) is the minimum value (vcs) limited by the offset circuit 4 (indicated by a solid line between T9 and T10 at the time of FIG. 2).
  • the voltage (bl1) of the vertical signal line 51 is a value obtained by subtracting the threshold voltage pt from the voltage (vfdb) corresponding to the dark current of the photoelectric conversion unit 2. (Indicated by a broken line between T9 and T10 at the time of FIG. 2).
  • the correlated double sampling circuit 81 calculates the difference voltage (vsa) between the voltage input from the vertical signal line 51 between the time points T7 and T8 and the voltage input from the vertical signal line 51 between the time points T9 and T10. .
  • the differential voltage (vsa) is defined by the voltage (vcsel) applied from the offset control unit 73 to the second DC current source 42 of the offset circuit 4. It becomes a constant value.
  • the amplifier circuit 82 amplifies the signal (s 72t1) output from the correlation double sampling circuit 81.
  • This signal (s 72t1) includes information on the differential voltage (vsa).
  • the operation between the time points T10 and T12 is the same as the operation between the time points T4 and T6, so the description thereof will be omitted.
  • the voltage (vapd1) applied to the photoelectric conversion unit 2 is increased. After that, it returns to the time point T0.
  • the negative voltage (vapd1) applied to the photoelectric conversion unit 2 exceeds a predetermined value corresponding to the avalanche breakdown voltage. In other words, the counter electromotive voltage applied to the photoelectric conversion unit 2 is lower than the avalanche breakdown voltage. Therefore, the operation mode of the voltage supply circuit 71 is the second mode.
  • the operation mode of the voltage supply circuit 71 is switched between the first mode and the second mode at regular intervals, but the operation mode of the voltage supply circuit 71 is different. It may be fixed to the first mode. Further, the first mode or the second mode may be selected by an operation from the outside.
  • FIG. 3 shows a block diagram of the imaging system 1P according to the comparative example.
  • the same components as those of the imaging system 1 of the embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the configuration of the offset circuit 4P is different from that of the offset circuit 4 of the embodiment. That is, the offset circuit 4P has only the first DC current source 41. Therefore, the offset voltage output from the offset circuit 4P to the vertical signal line 51 is always constant.
  • FIG. 4B shows an operation example of the imaging system 1P according to the comparative example.
  • the gate voltage of each of the transfer element 31, the reset element 32, and the selection element 34 is switched between high and low at the same timing as in FIG. 2 (embodiment).
  • the voltage (bl1) of the vertical signal line 51 can change to a lower voltage (vss) than in the case of FIG. 2 (FIG. 4A).
  • the minimum value of the output signal Vo1 output to the vertical signal line 51 is the value obtained by subtracting the threshold voltage vt from the voltage (vfda) corresponding to the saturated light amount of the photoelectric conversion unit 2. It becomes.
  • the relationship of vss ⁇ vfda-vt is established.
  • the minimum value of the output signal Vo1 is shown between the time points T9 and T10 in FIG. Is limited to a voltage higher than "vss". Therefore, when the output signal Vo1 changes to the minimum value, the amount of change becomes small, so that the time required for the change becomes short. As a result, in the embodiment, the reading speed of the output signal Vo1 can be improved as compared with the comparative example.
  • the present modification 1 relates to the configuration of the pixel circuit 3A instead of the pixel circuit 3 of the embodiment.
  • the pixel circuit 3A has a clamp circuit 36 in addition to the configuration of the pixel circuit 3.
  • the clamp circuit 36 includes, for example, a diode 361 and a switch element 362.
  • the switch element 362 is, for example, a semiconductor switching element such as an n-channel MOSFET.
  • the anode of the diode 361 is electrically connected to the node 35.
  • the cathode of the diode 361 is electrically connected to the source terminal of the switch element 362.
  • a voltage is applied to the drain terminal of the switch element 362 from the voltage supply circuit 71.
  • the gate terminal of the switch element 362 is electrically connected to the vertical scanning circuit 72.
  • the voltage of the node 35 is clamped by the drain voltage of the switch element 362.
  • the maximum value of the voltage of the node 35 is the sum of the drain voltage of the switch element 362 and the forward voltage of the diode 361.
  • the maximum value of the output signal Vo1 output from the pixel circuit 3A to the vertical signal line 51 is limited (clamped) by the clamp circuit 36. That is, when the electric charge output from the photoelectric conversion unit 2 is sufficiently large, the voltage corresponding to this electric charge is reduced to the maximum value of the voltage of the node 35, so that the output signal Vo1 is reduced.
  • the clamp circuit 36 (restriction unit) sets the maximum value of the output signal Vo1 when the conversion rate of the photoelectric conversion unit 2 is the first conversion rate, and the conversion rate is the second. It is made smaller than the maximum value of the output signal Vo1 at the conversion rate of.
  • the clamp circuit 36 turns on the switch element 362.
  • the clamp circuit 36 turns off the switch element 362.
  • the clamp circuit 36 sets the maximum value of the output signal Vo1 when the operation mode of the voltage supply circuit 71 is the first mode, and the output signal Vo1 when the operation mode of the voltage supply circuit 71 is the second mode. Make it larger than the maximum value.
  • the maximum value of the output signal Vo1 is limited, so that the maximum value of the output signal Vo1 is set.
  • the difference from the minimum value becomes small. Therefore, when the output signal Vo1 changes from the maximum value or the minimum value as the starting point, the amount of change becomes small, so that the time required for the change becomes short. Further, when the output signal Vo1 changes from an intermediate value between the maximum value and the minimum value to the maximum value or the minimum value, the amount of change becomes small, so that the time required for the change becomes short. As a result, it is possible to improve the reading speed of the output signal Vo1 when the conversion rate of the photoelectric conversion unit 2 is the first conversion rate.
  • the magnitude of the offset voltage output from the offset circuit 4 to the vertical signal line 51 may be constant. That is, as in the comparative example shown in FIG. 3, the offset circuit 4 may have at least the first DC current source 41. At least one of the offset circuit 4 and the clamp circuit 36 may limit at least one of the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2. That is, in order to improve the reading speed of the output signal Vo1, at least one of the maximum value and the minimum value of the output signal Vo1 may be limited.
  • the second modification relates to the configuration of the offset circuit 4B instead of the offset circuit 4 of the embodiment.
  • the offset circuit 4B has a first DC current source 41 but does not have a second DC current source 42.
  • the offset circuit 4B has a switch element 43 and a switch element 44 in addition to the first direct current current source 41.
  • the offset circuit 4B switches the magnitude of the offset voltage output to the vertical signal line 51 by turning on / off the switch elements 43 and 44.
  • the first end of the switch element 43 is electrically connected to the positive terminal of the first DC current source 41.
  • the second end of the switch element 43 is electrically connected to the ground.
  • the first end of the switch element 44 is electrically connected to the positive terminal of the first DC current source 41.
  • a voltage (vcsel) of a predetermined magnitude is applied from the offset control unit 73 to the second end of the switch element 44.
  • the negative terminal of the first DC current source 41 is electrically connected to the vertical signal line 51.
  • the offset control unit 73 When one of the switch elements 43 and 44 is on, the offset control unit 73 turns off the other.
  • the offset voltage of the vertical signal line 51 when the offset control unit 73 turns off the switch element 43 and turns on the switch element 44 is when the offset control unit 73 turns on the switch element 43 and turns off the switch element 44. Is smaller than the offset voltage of. The difference is equal to the voltage applied from the offset control unit 73 to the second end of the switch element 44.
  • the offset control unit 73 When the operation mode of the voltage supply circuit 71 is the first mode, the offset control unit 73 turns on the switch element 43 and turns off the switch element 44. On the other hand, when the operation mode of the voltage supply circuit 71 is the second mode, the offset control unit 73 turns off the switch element 43 and turns on the switch element 44. As a result, the offset circuit 4B sets the minimum value of the output signal Vo1 when the operation mode of the voltage supply circuit 71 is the first mode, and the output signal Vo1 when the operation mode of the voltage supply circuit 71 is the second mode. Make it larger than the minimum value.
  • the offset circuit 4B further includes a switch element 46 and a switch element 47.
  • the offset circuit 4B can change the magnitude of the offset voltage output to the vertical signal line 51 by at least one of switching the switch elements 43 and 44 on and off and switching the switch elements 46 and 47 on and off. it can.
  • the first DC current source 41 When the switch element 46 is on and the switch element 47 is off, the first DC current source 41 is supplied with the first voltage (vba) via the switch element 46. Further, when the switch element 46 is off and the switch element 47 is on, a second voltage (vbb) is supplied to the first DC current source 41 via the switch element 47.
  • the first DC current source 41 changes the magnitude of the offset voltage output to the vertical signal line 51 by changing the magnitude of the output current according to the magnitude of the supplied voltage. Therefore, the offset circuit 4B can change the magnitude of the offset voltage in four ways by combining the on / off combination of the switch elements 43 and 44 and the on / off combination of the switch elements 46 and 47.
  • the same function as that of the imaging system 1 may be realized by an imaging processing method, a (computer) program, a non-temporary recording medium on which the program is recorded, or the like.
  • the imaging processing method includes limiting processing.
  • the limiting process limits at least one of the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 that converts photons into electric charges and the conversion rate from photons to electric charges is variable.
  • the limiting process is the difference between the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 when the conversion rate is the first conversion rate, and the photoelectric conversion unit 2 when the conversion rate is the second conversion rate. Make it smaller than the difference between the maximum value and the minimum value of the output signal Vo1.
  • the second conversion rate is smaller than that of the first conversion rate.
  • the program according to one aspect is a program for causing one or more processors to execute the above imaging processing method.
  • the imaging system 1 in the present disclosure includes a computer system.
  • the main configuration of a computer system is a processor and memory as hardware.
  • the processor executes the program recorded in the memory of the computer system, the function as the imaging system 1 in the present disclosure is realized.
  • the program may be pre-recorded in the memory of the computer system, may be provided through a telecommunications line, and may be recorded on a non-temporary recording medium such as a memory card, optical disk, or hard disk drive that can be read by the computer system. May be provided.
  • a processor in a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
  • IC semiconductor integrated circuit
  • LSI large scale integrated circuit
  • the integrated circuit such as IC or LSI referred to here has a different name depending on the degree of integration, and includes an integrated circuit called a system LSI, a VLSI (Very Large Scale Integration), or a ULSI (Ultra Large Scale Integration). Further, an FPGA (Field-Programmable Gate Array) programmed after the LSI is manufactured, or a logical device capable of reconfiguring the junction relationship inside the LSI or reconfiguring the circuit partition inside the LSI should also be adopted as a processor. Can be done.
  • a plurality of electronic circuits may be integrated on one chip, or may be distributed on a plurality of chips. The plurality of chips may be integrated in one device, or may be distributed in a plurality of devices.
  • the computer system referred to here includes a microcontroller having one or more processors and one or more memories. Therefore, the microcontroller is also composed of one or more electronic circuits including a semiconductor integrated circuit or a large-scale integrated circuit.
  • the imaging system 1 it is not an essential configuration for the imaging system 1 that a plurality of functions in the imaging system 1 are integrated in one housing, and the components of the imaging system 1 are distributed and provided in the plurality of housings. You may be. Further, at least a part of the functions of the imaging system 1 may be realized by a cloud (cloud computing) or the like.
  • At least a part of the functions of the imaging system 1 distributed in a plurality of devices may be integrated in one housing.
  • the photoelectric conversion unit 2 is not limited to a configuration including an avalanche photodiode.
  • the photoelectric conversion unit 2 may be configured by combining, for example, a magnification type element such as a Zener diode and a photoelectric conversion element such as a photodiode, a photoresistor, or a photoresistor.
  • the configuration of the photoelectric conversion unit 2 is not limited to a configuration in which the output signal Vo1 changes between two values when the electric charge is multiplied, and may be a configuration in which the output signal Vo1 changes between three or more values. ..
  • the output signal Vo1 when the electric charge is multiplied, the output signal Vo1 becomes the first value (maximum value) when no photon is incident, and the output signal Vo1 becomes the first value (maximum value) when one photon is incident.
  • the value may be 2
  • the output signal Vo1 may be a third value (minimum value) when two or more photons are incident.
  • the photoelectric conversion unit 2 is not limited to a configuration in which the conversion rate from photons to electric charges changes in two ways, that is, a first conversion rate and a second conversion rate, and may be configured in three or more ways. ..
  • a configuration in which the conversion rate from photons to electric charges changes in three or more ways may be realized.
  • the voltage supply circuit 71 sets the conversion rate of the photoelectric conversion unit 2 to a conversion rate different from that of the first conversion rate and the second conversion rate. May have one or more.
  • An element such as a capacitor that stores electric charge may be electrically connected to the node 35.
  • the plurality of pixel circuits 3 of the embodiment are arranged so as to form rows and columns, the plurality of pixel circuits 3 may not be arranged in a straight line in each row and each column.
  • At least a part of the configuration of the imaging system 1 may be formed on a semiconductor substrate or the like by using MEMS (Micro Electro Mechanical Systems) technology.
  • MEMS Micro Electro Mechanical Systems
  • the imaging processing circuit 10 includes a limiting unit (offset circuits 4, 4B or clamp circuit 36).
  • the limiting unit limits at least one of the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 that converts photons into electric charges and the conversion rate from photons to electric charges is variable.
  • the limiting unit is the difference between the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 when the conversion rate is the first conversion rate, and the photoelectric conversion unit 2 when the conversion rate is the second conversion rate. Make it smaller than the difference between the maximum value and the minimum value of the output signal Vo1.
  • the second conversion rate is smaller than that of the first conversion rate.
  • the output of the photoelectric conversion unit 2 is compared with the case where the conversion rate of the photoelectric conversion unit 2 is the second conversion rate.
  • the rate of change increases. That is, the conversion rate of the photoelectric conversion unit 2 is first as compared with the case where the difference between the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 is constant regardless of the conversion rate of the photoelectric conversion unit 2. The reading speed of the output signal Vo1 at the time of conversion rate can be improved.
  • the imaging processing circuit 10 includes at least one limiting unit (offset circuits 4, 4B) in the first aspect.
  • a plurality of photoelectric conversion units 2 are provided.
  • One limiting unit limits at least one of the maximum value and the minimum value of the output signal Vo1 of two or more photoelectric conversion units 2 among the plurality of photoelectric conversion units 2.
  • the output signals Vo1 of two or more photoelectric conversion units 2 can be limited by one limiting unit (offset circuits 4, 4B). Therefore, when each photoelectric conversion unit 2 is individually provided with a limiting unit. In comparison, the number of limiting portions can be reduced.
  • the limiting unit (offset circuits 4, 4B) is connected to the vertical signal line 51 and the vertical signal line 51 among the plurality of photoelectric conversion units 2. With respect to the pair with two or more photoelectric conversion units 2 that output the output signal Vo1, at least one of the maximum value and the minimum value of the voltage of the vertical signal line 51 is limited.
  • the limiting unit (offset circuits 4, 4B) can collectively limit the output signal Vo1 output to the vertical signal line 51 from the two or more photoelectric conversion units 2 in the vertical signal line 51. ..
  • the limiting unit is a photoelectric when the conversion rate is the first conversion rate.
  • the minimum value of the output signal Vo1 of the conversion unit 2 is made larger than the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 when the conversion rate is the second conversion rate.
  • the limiting unit (clamp circuit 36) is a photoelectric conversion unit when the conversion rate is the first conversion rate.
  • the maximum value of the output signal Vo1 of 2 is made smaller than the maximum value of the output signal Vo1 of the photoelectric conversion unit 2 when the conversion rate is the second conversion rate.
  • the limiting portion increases the conversion rate to photoelectric conversion. The difference between the maximum value and the minimum value of the output signal Vo1 of the unit 2 is reduced.
  • the imaging processing circuit 10 further includes an adjusting unit (voltage supply circuit 71) for adjusting the conversion rate in any one of the first to sixth aspects.
  • the adjusting unit has, as an operation mode, a first mode in which the conversion rate is set to the first conversion rate and a second mode in which the conversion rate is set to the second conversion rate.
  • the limiting unit limits at least one of the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 according to the operation mode of the adjusting unit.
  • the image processing circuit 10 can be used to detect light with higher sensitivity in the first mode than in the second mode, and the amount of light in the second mode is higher than that in the first mode. It can be measured in detail. That is, the imaging processing circuit 10 can be used for these two purposes by switching the operation mode of the voltage supply circuit 71.
  • the photoelectric conversion unit 2 includes an avalanche photodiode.
  • the first conversion rate is the conversion rate when an avalanche breakdown voltage is applied to the avalanche photodiode.
  • the rate of change of the output signal Vo1 can be increased when the avalanche photodiode yields.
  • Configurations other than the first aspect are not essential configurations for the imaging processing circuit 10, and can be omitted as appropriate.
  • the image pickup system 1 includes an image pickup processing circuit 10 according to any one of the first to eighth aspects, and a photoelectric conversion unit 2.
  • the imaging processing method includes limiting processing.
  • the limiting process limits at least one of the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 that converts photons into electric charges and the conversion rate from photons to electric charges is variable.
  • the limiting process is the difference between the maximum value and the minimum value of the output signal Vo1 of the photoelectric conversion unit 2 when the conversion rate is the first conversion rate, and the photoelectric conversion unit 2 when the conversion rate is the second conversion rate. Make it smaller than the difference between the maximum value and the minimum value of the output signal Vo1.
  • the second conversion rate is smaller than that of the first conversion rate.
  • the program according to the eleventh aspect causes one or more processors to execute the imaging processing method according to the tenth aspect.
  • various configurations (including modified examples) of the imaging system 1 according to the embodiment can be embodied by an imaging processing method and a program.
  • Imaging system 10 Imaging processing circuit 2
  • Photoelectric conversion unit 36 Clamp circuit 4, 4B Offset circuit (restriction unit)
  • Vertical signal line 71 Voltage supply circuit (adjustment unit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本開示は、出力信号の読出速度を向上させることができる撮像処理回路、撮像システム、撮像処理方法及びプログラムを提供することを目的とする。撮像処理回路(10)は、制限部(オフセット回路(4))を備える。制限部は、光子を電荷に変換し光子から電荷への変換率が可変である光電変換部(2)の出力信号(Vo1)について、最大値と最小値とのうち少なくとも一方を制限する。制限部は、変換率が第1の変換率の際の光電変換部(2)の出力信号(Vo1)の最大値と最小値との差分を、変換率が第2の変換率の際の光電変換部(2)の出力信号(Vo1)の最大値と最小値との差分よりも小さくする。第2の変換率は、第1の変換率と比較して小さい。

Description

撮像処理回路、撮像システム、撮像処理方法及びプログラム
 本開示は撮像処理回路、撮像システム、撮像処理方法及びプログラムに関し、より詳細には、光子から電荷への変換率が可変である光電変換部と共に用いられる撮像処理回路、この撮像処理回路を備える撮像システム、撮像処理方法及びプログラムに関する。
 従来、光電変換部を用いた光検出装置(撮像システム)が知られている(例えば、特許文献1)。特許文献1記載の光検出装置は、複数の単位画素セルを含む。単位画素セルは、光センサと、垂直信号線に接続された信号検出回路と、信号検出回路に接続されたアドレストランジスタと、キャパシタ及び転送トランジスタとを有する。キャパシタ及び転送トランジスタは、光センサとアドレストランジスタとの間に接続されている。アドレストランジスタをオフとした状態で、ある期間において転送トランジスタをオンとすると、その期間において光センサに入射した光量を反映した量の電荷がキャパシタに転送される。その後、転送トランジスタがオフの状態でアドレストランジスタをオンとすれば、電荷が転送トランジスタを介して転送され、キャパシタに蓄積された電荷量に対応する信号電圧(出力信号)が垂直信号線に読み出される。
特開2017-216459号公報
 本開示は、出力信号の読出速度を向上させることができる撮像処理回路、撮像システム、撮像処理方法及びプログラムを提供することを目的とする。
 本開示の一態様に係る撮像処理回路は、制限部を備える。前記制限部は、光子を電荷に変換し光子から電荷への変換率が可変である光電変換部の出力信号について、最大値と最小値とのうち少なくとも一方を制限する。前記制限部は、前記変換率が第1の変換率の際の前記光電変換部の出力信号の最大値と最小値との差分を、前記変換率が第2の変換率の際の前記光電変換部の出力信号の最大値と最小値との差分よりも小さくする。前記第2の変換率は、前記第1の変換率と比較して小さい。
 本開示の一態様に係る撮像システムは、前記撮像処理回路と、前記光電変換部と、を備える。
 本開示の一態様に係る撮像処理方法は、制限処理を備える。前記制限処理は、光子を電荷に変換し光子から電荷への変換率が可変である光電変換部の出力信号について、最大値と最小値とのうち少なくとも一方を制限する。前記制限処理は、前記変換率が第1の変換率の際の前記光電変換部の出力信号の最大値と最小値との差分を、前記変換率が第2の変換率の際の前記光電変換部の出力信号の最大値と最小値との差分よりも小さくする。前記第2の変換率は、前記第1の変換率と比較して小さい。
 本開示の一態様に係るプログラムは、前記撮像処理方法を、1以上のプロセッサに実行させる。
図1は、一実施形態に係る撮像システムのブロック図である。 図2は、同上の撮像システムの動作例を示すタイムチャートである。 図3は、比較例に係る撮像システムのブロック図である。 図4Aは、一実施形態に係る撮像システムの動作例を示すタイムチャートである。図4Bは、比較例に係る撮像システムの動作例を示すタイムチャートである。 図5は、変形例1に係る撮像システムの画素回路のブロック図である。 図6は、変形例2に係る撮像システムのオフセット回路のブロック図である。
 以下、実施形態に係る撮像処理回路及び撮像システムについて、図面を用いて説明する。ただし、下記の実施形態は、本開示の様々な実施形態の1つに過ぎない。下記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
 (概要)
 本実施形態の撮像システム1は、CCD(Charge Coupled Devices)イメージセンサ、又はCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の二次元イメージセンサとして用いられる。図1に示すように、撮像システム1は、複数(図1では4つ)の画素回路3と、複数(図1では2つ)のオフセット回路4と、複数(図1では2つ)の垂直信号線51と、電圧供給回路71と、垂直走査回路72と、オフセット制御部73とを備えている。また、撮像システム1は、複数(図1では2つ)の相関二重サンプリング回路81と、複数(図1では2つ)の増幅回路82とを備えている。さらに、撮像システム1は、撮像システム1全体の動作を制御するマイクロコントローラを備えている。
 複数の画素回路3は、2次元アレイ状に配置されている。複数の画素回路3のうち、同じ列に属する2つ以上の画素回路3は、共通の垂直信号線51に電気的に接続されている。複数の画素回路3の各々は、光電変換部2を有している。光電変換部2は、光子を電荷に変換する。光電変換部2で光子から変換された電荷は、電圧の形で、出力信号Vo1として垂直信号線51へ出力される。出力信号Vo1は、垂直信号線51を介して、撮像システム1の外部の装置へと読み出される。
 複数のオフセット回路4は、複数の垂直信号線51と一対一で対応している。各垂直信号線51には、対応するオフセット回路4が電気的に接続されている。オフセット回路4は、対応する垂直信号線51にオフセット電圧を出力する。これにより、オフセット回路4は、出力信号Vo1の最小値を制限する。言い換えると、オフセット回路4から垂直信号線51に出力されるオフセット電圧の大きさにより、出力信号Vo1の最小値が決まる。
 撮像処理回路10は、少なくとも1つのオフセット回路4(制限部)を含む。本実施形態では、撮像処理回路10とは、複数の画素回路3の各々のうち光電変換部2以外の構成と、複数のオフセット回路4とを含む構成を指す。すなわち、撮像システム1は、撮像処理回路10と、複数の光電変換部2と、を備える。
 光電変換部2は、アバランシェフォトダイオード(Avalanche Photo Diode)を含む。本実施形態では、光電変換部2は、アバランシェフォトダイオードのみからなる。光電変換部2では、光子から電荷への変換率が可変である。すなわち、アバランシェフォトダイオードに所定値(アバランシェ降伏電圧)以上の逆電圧が印加されると、アバランシェ降伏現象により、光子から電荷への変換率が著しく増加する。つまり、光電変換部2は、電荷を増倍させる機能を有している。なお、アバランシェフォトダイオードにおいて、アバランシェ降伏現象が発生している場合の光子から電荷への変換は、アバランシェ増倍と称される。
 以下では、光電変換部2が電荷を増倍させている際の光子から電荷への変換率を、第1の変換率と称す。また、光電変換部2が電荷を増倍させていない際の光子から電荷への変換率を、第2の変換率と称す。すなわち、光電変換部2における光子から電荷への変換率は、第1の変換率と第2の変換率との間で可変である。第2の変換率は、第1の変換率と比較して小さい。
 本実施形態では、光電変換部2の変換率が第1の変換率の際に光電変換部2に光が照射されると、光の強弱に関係なく、出力信号Vo1は、オフセット回路4により制限されている最小値まで低下する。また、光電変換部2に光が照射されなくなった場合、又は、光電変換部2の露光を止めた場合には、出力信号Vo1は、後述する増幅素子33により制限されている最大値まで上昇する。
 光電変換部2の変換率が第1の変換率の際には、光電変換部2が電荷を増倍させるので、光を高感度で検出できる。この際、出力信号Vo1に基づいて、光の有無を2値で表すことができる。一方で、光電変換部2の変換率が第2の変換率の際には、光電変換部2に入射する光量に応じて出力信号Vo1の大きさが最大値と最小値との間で変化するので、出力信号Vo1に基づいて、光電変換部2に入射する光量を測定可能である。つまり、光電変換部2の変換率が第2の変換率の際には、光量を2値よりも細かく表すことができる。
 オフセット回路4(制限部)は、光電変換部2の出力信号Vo1について、最大値と最小値とのうち少なくとも一方を制限する。オフセット回路4は、変換率が第1の変換率の際の光電変換部2の出力信号Vo1の最大値と最小値との差分を、変換率が第2の変換率の際の光電変換部2の出力信号Vo1の最大値と最小値との差分よりも小さくする。具体的には、オフセット回路4は、光電変換部2の変換率が第1の変換率の際のオフセット電圧を、光電変換部2の変換率が第2の変換率の際のオフセット電圧よりも、大きくする。垂直信号線51に出力された出力信号Vo1の最小値は、オフセット電圧に等しくなる。すなわち、オフセット回路4(制限部)は、垂直信号線51の電圧の最小値に相当するオフセット電圧を制限する。オフセット回路4(制限部)は、オフセット電圧を調整することで、光電変換部2の変換率が第1の変換率の際の出力信号Vo1の最小値を、変換率が第2の変換率の際の出力信号Vo1の最小値よりも大きくする。
 このように、オフセット回路4(制限部)は、光電変換部2の変換率が大きいほど、光電変換部2の出力信号Vo1の最大値と最小値との差分を小さくする。
 光電変換部2の出力信号Vo1の最小値は、垂直信号線51において制限される。つまり、オフセット回路4により制限された垂直信号線51の電圧の最小値(オフセット電圧)を出力信号Vo1が下回る場合、光電変換部2から出力される電荷の大きさは変化しないが、垂直信号線51に出力される出力信号Vo1が最小値まで引き上げられる。
 また、上記のように、1つのオフセット回路4(制限部)が、2つ以上の光電変換部2の出力信号Vo1について、最大値と最小値とのうち少なくとも一方(本実施形態では最小値のみ)を制限する。つまり、各オフセット回路4は、垂直信号線51を介して自身と電気的に接続された2つ以上の光電変換部2の出力信号Vo1の最小値を制限する。本実施形態では、このようなオフセット回路4と2つ以上の光電変換部2との組が、複数組設けられている。各オフセット回路4は、垂直信号線51の電圧の最大値と最小値とのうち少なくとも一方を制限することで、出力信号Vo1の最大値と最小値とのうち少なくとも一方を制限する。
 本実施形態の撮像システム1によれば、光電変換部2の変換率が第1の変換率の際は、光電変換部2の変換率が第2の変換率の際と比較して、出力信号Vo1の最大値と最小値との差分が小さい。そのため、出力信号Vo1が最大値又は最小値を始点として変化する場合の変化量が小さくなるので、変化に要する時間が短くなる。また、出力信号Vo1が最大値と最小値との中間値から最大値又は最小値まで変化する場合も、変化量が小さくなるので、変化に要する時間が短くなる。結果として、光電変換部2の変換率が第1の変換率の際の出力信号Vo1の読出速度を向上させることができる。
 また、光電変換部2の変換率が第2の変換率の際の光電変換部2の出力信号Vo1の最大値と最小値との差分は、光電変換部2の変換率が第1の変換率の際の光電変換部2の出力信号Vo1の最大値と最小値との差分よりも大きい。そのため、光電変換部2の変換率が第2の変換率の際に測定できる光の階調を減らすことなく、変換率が第1の変換率の際の出力信号Vo1の読出速度を向上させることができる。
 また、光電変換部2の変換率が第1の変換率の際には、出力信号Vo1の最大値と最小値との差分が比較的小さいので、撮像システム1の消費電流の低減を図ることができる。
 また、撮像システム1では、光電変換部2の出力信号Vo1について、最大値と最小値とのうち少なくとも一方を制限する回路であるオフセット回路4が、画素回路3の外に設けられている。そのため、出力信号Vo1について、最大値と最小値とのうち少なくとも一方を制限する回路が画素回路3に含まれている場合と比較して、1つ1つの画素回路3を小型化することができる。
 オフセット回路4が光電変換部2の出力信号Vo1の最大値又は最小値を制限するタイミングは、本実施形態に例示されたタイミングに限らない。例えば、光電変換部2に光子が入力されて、画素回路3より出力信号Vo1が読み出されるタイミングの一定期間前から出力信号Vo1の最大値又は最小値を制限する方式を採用してもよい。また、画素回路3がリセット素子32と、増幅素子33と、選択素子34との3つのトランジスタを有して構成される方式等によれば、出力信号Vo1を読み出した後に一定期間出力信号Vo1の最大値又は最小値を制限する方式も可能となる。
 また、本実施形態では、光が入射されることで生成される光電変換部2の出力信号Vo1は、初期値に対して電圧値が大きくなっているが、例えば、画素回路3をP型トランジスタで構成した場合などにおいては、光が入射されることで生成される光電変換部2の出力信号Vo1は、初期値に対して電圧値が小さくなる。この際にも、画素回路3の出力信号Vo1の最大値と最小値との差分を小さくする手段として、出力信号Vo1の最大値又は最小値を制限する構成は有効である。
 (構成)
 複数の画素回路3は、2次元アレイ状に配置されている。同じ行に属する2つ以上の画素回路3は、送り配線により電圧供給回路71に電気的に接続されている。同じ行に属する2つ以上の画素回路3は、送り配線により垂直走査回路72に電気的に接続されている。複数の画素回路3の複数の列は、複数の相関二重サンプリング回路81と一対一で対応している。同じ列に属する2つ以上の画素回路3は、送り配線により共通の、対応する相関二重サンプリング回路81に電気的に接続されている。各相関二重サンプリング回路81は、増幅回路82に電気的に接続されている。
 以下では、特に断りの無い限り、複数の画素回路3のうち、1つの画素回路3に着目して説明する。
 画素回路3は、光電変換部2と、転送素子31と、リセット素子32と、増幅素子33と、選択素子34と、これらを電気的に接続している配線とを含む。転送素子31、リセット素子32、増幅素子33及び選択素子34はそれぞれ、nチャネルMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の半導体スイッチング素子である。
 光電変換部2(アバランシェフォトダイオード)のアノードは、電圧供給回路71に電気的に接続されている。光電変換部2のカソードは、転送素子31のソース端子に電気的に接続されている。転送素子31のドレイン端子は、ノード35を介して、リセット素子32のソース端子と、増幅素子33のゲート端子とに電気的に接続されている。ここで、ノード35は、画素回路3に含まれる配線上の点である。増幅素子33のソース端子は、選択素子34のドレイン端子に電気的に接続されている。選択素子34のソース端子は、垂直信号線51に電気的に接続されている。
 電圧供給回路71(調整部)は、動作モードとして、第1のモードと、第2のモードと、を有している。電圧供給回路71は、第1のモードでは、光電変換部2にアバランシェ降伏電圧以上の逆起電圧を印加する。これにより、電圧供給回路71は、第1のモードでは、光電変換部2の変換率を第1の変換率にする。つまり、電圧供給回路71は、第1のモードでは、光電変換部2に電荷を増倍させる。一方で、電圧供給回路71は、第2のモードでは、光電変換部2にアバランシェ降伏電圧未満の逆起電圧を印加する。これにより、電圧供給回路71は、第2のモードでは、光電変換部2の変換率を第2の変換率にする。つまり、光電変換部2に印加する逆起電圧の大きさを変更することが、電圧供給回路71の動作モードの切替えに相当する。
 撮像システム1は、第1のモードでは第2のモードよりも光を高感度で検出することができ、第2のモードでは光量を第1のモードよりも細かく測定することができる。すなわち、電圧供給回路71の動作モードを切り替えることで、撮像システム1をこの2つの用途に用いることができる。
 転送素子31、リセット素子32及び選択素子34の各々のゲート端子には、垂直走査回路72から電圧信号が入力される。これにより、転送素子31、リセット素子32及び選択素子34の各々のオンオフが切り替わる。転送素子31がオンになると、光電変換部2で発生した電荷がノード35に転送される。リセット素子32のドレイン端子には、電圧供給回路71から所定の大きさのリセット電圧が印加されている。リセット素子32がオンになると、ノード35の電圧がリセット電圧に等しくなる。すなわち、ノード35の電圧がリセットされる。増幅素子33のドレイン端子には、電圧供給回路71から電源電圧が印加されている。増幅素子33がオンになると、増幅素子33は、ノード35の電圧を調整して選択素子34へ出力する。具体的には、増幅(調整)素子33は、ノード35の電圧を増幅若しくは減衰させた電圧、又は、ノード35の電圧と等しい電圧を、選択素子34へ出力する。選択素子34がオンになると、増幅素子33で調整された電圧が出力信号Vo1として垂直信号線51に出力される。
 垂直信号線51に出力される出力信号Vo1の最大値は、増幅素子33のドレイン電圧により制限されている。言い換えると、増幅素子33のドレイン電圧の大きさにより、出力信号Vo1の最大値が決まる。
 オフセット回路4は、第1の直流電流源41と、第2の直流電流源42と、スイッチ素子43と、スイッチ素子44と、これらを電気的に接続する配線とを有している。第1の直流電流源41のプラス端子は、グラウンドに電気的に接続されている。第1の直流電流源41のマイナス端子は、スイッチ素子43と接続点45とを介して垂直信号線51に電気的に接続されている。ここで、接続点45は、オフセット回路4に含まれる配線上の点である。第2の直流電流源42のプラス端子には、オフセット制御部73から所定の大きさの電圧が印加されている。第2の直流電流源42のマイナス端子は、スイッチ素子44と接続点45とを介して垂直信号線51に電気的に接続されている。第1の直流電流源41は、第2の直流電流源42と同じ大きさの電流を出力する。
 スイッチ素子43、44の各々は、例えば、nチャネルMOSFET等の半導体スイッチング素子である。スイッチ素子43、44の各々のゲート端子には、オフセット制御部73から制御信号が入力される。これにより、スイッチ素子43、44の各々のオンオフが切り替わる。
 ここで、スイッチ素子43には、オフセット制御部73から出力された制御信号がそのまま入力され、スイッチ素子44には、上記制御信号のハイレベルとローレベルとを反転させた信号が入力される。そのため、オフセット制御部73は、スイッチ素子43、44のうち一方をオンにしているとき、他方をオフにしている。オフセット制御部73がスイッチ素子43をオフにしスイッチ素子44をオンにしているときの垂直信号線51のオフセット電圧(略0V)は、オフセット制御部73がスイッチ素子43をオンにしスイッチ素子44をオフにしているときのオフセット電圧よりも小さい。その差分は、オフセット制御部73から第2の直流電流源42に印加されている電圧に等しい。
 オフセット回路4(制限部)は、電圧供給回路71(調整部)の動作モードに応じて、光電変換部2の出力信号Vo1の最大値と最小値とのうち少なくとも一方を制限する。本実施形態のオフセット回路4は、光電変換部2の出力信号Vo1の最小値を制限する。すなわち、電圧供給回路71の動作モードが第1のモードのとき、オフセット制御部73は、スイッチ素子43をオンにしスイッチ素子44をオフにする。一方で、電圧供給回路71の動作モードが第2のモードのとき、オフセット制御部73は、スイッチ素子43をオフにしスイッチ素子44をオンにする。これにより、オフセット回路4は、電圧供給回路71の動作モードが第1のモードのときの出力信号Vo1の最小値を、電圧供給回路71の動作モードが第2のモードのときの出力信号Vo1の最小値よりも大きくする。
 (動作例)
 以下、図2を参照して、撮像システム1の動作例を説明する。図2のグラフの左に付された符号vrd1、vrst1、vapd1、sigs1、sigr1、sigt1、vcsel、sigsel、FD1、bl1、sоt1はそれぞれ、図1に同じ符号が付された箇所の電圧を表す。
 以下では、電圧供給回路71の動作モードが第1のモードと第2のモードとの間で一定周期で切り替わるとして説明する。具体的には、時点T1、T6の間では、電圧供給回路71は第2のモードで動作し、時点T7、T12の間では、電圧供給回路71は第1のモードで動作する。
 撮像システム1は、出力信号Vo1の読み出しを、複数の画素回路3について時分割で行う。すなわち、2次元アレイ状に配置された複数の画素回路3について、行ごとに異なるタイミングで出力信号Vo1を出力させる。ここでは、1つの画素回路3に着目して説明する。
 時点T1、T6間では、光電変換部2に印加されている電圧(vapd1)は、負の値であって、アバランシェ降伏電圧に対応する所定値よりも大きい。言い換えると、時点T1、T6間では、光電変換部2に印加されている逆起電圧は、アバランシェ降伏電圧よりも小さい。そのため、電圧供給回路71の動作モードは第2のモードである。そして、電圧供給回路71の動作モードが第2のモードであることからオフセット制御部73は、スイッチ素子43をオンにしスイッチ素子44をオフにするためのローレベル信号(sigsel)をオフセット回路4に出力している。これにより、垂直信号線51の電圧(bl1)の最小値は、「vss」となっている。つまり、画素回路3から垂直信号線51に出力された出力信号Vo1の最小値は、「vss」となっている。
 時点T1、T2間では、転送素子31のゲート電圧(sigt1)がローレベルなので、光電変換部2で発生した電荷は蓄積される。また、リセット素子32のゲート電圧(sigr1)がハイレベルなので、ノード35の電圧(FD1)はリセット電圧(vrst)に固定されている。また、選択素子34のゲート電圧(sigs1)がハイレベルなので、垂直信号線51には、リセット電圧が出力される。厳密には、垂直信号線51の電圧(bl1)は、リセット電圧(vrst)から、増幅素子33のゲート・ソース間の閾値電圧vtを引いた値となる。ただし、増幅素子33の増幅率を1と仮定した。垂直信号線51の電圧(bl1)は、相関二重サンプリング回路81に入力される。
 時点T2、T3間では、リセット素子32のゲート電圧(sigr1)がローレベルにされる。その後、時点T3、T4間では、転送素子31のゲート電圧(sigt1)がハイレベルなので、光電変換部2で発生した電荷がノード35へ転送され、増幅素子33及び選択素子34を経由して、出力信号Vo1として垂直信号線51に出力される。そのため、光電変換部2に光が照射されている場合は、垂直信号線51の電圧(bl1)は、光電変換部2に照射された光量に応じたノード35の電圧(vfds)から、閾値電圧vtを引いた値となる(図2の時点T3、T4間では、実線で示している)。また、光電変換部2に光が照射されていない場合は、垂直信号線51の電圧(bl1)は、光電変換部2の暗電流に相当する電圧(vfdb)から、閾値電圧vtを引いた値となる(図2の時点T3、T4間では、破線で示している)。
 相関二重サンプリング回路81は、時点T1、T2間で垂直信号線51から入力された電圧と、時点T3、T4間で垂直信号線51から入力された電圧との差分電圧(vsn)を算出する。光電変換部2に入射する光量が大きいほど、差分電圧(vsn)が大きくなる。より詳細には、差分電圧(vsn)は、光電変換部2に入射する光量に比例する。
 増幅回路82は、相関二重サンプリング回路81から出力された信号(sоt1)を増幅する。この信号(sоt1)は、差分電圧(vsn)の情報を含む。
 時点T4、T5間では、転送素子31のゲート電圧(sigt1)と、リセット素子32のゲート電圧(sigr1)とがハイレベルにされる。これにより、光電変換部2(アバランシェフォトダイオード)が空乏化される。その後、時点T5、T6では、転送素子31のゲート電圧(sigt1)がローレベルにされる。
 時点T6、T7間では、光電変換部2に印加されている電圧(vapd1)が低下させられる。その結果、時点T7、T12間では、光電変換部2に印加されている電圧(vapd1)は、負の値であって、アバランシェ降伏電圧に対応する所定値よりも小さい。言い換えると、時点T7、T12間では、光電変換部2に印加されている逆起電圧は、アバランシェ降伏電圧よりも大きい。そのため、電圧供給回路71の動作モードは第1のモードである。そして、電圧供給回路71の動作モードが第1のモードであることから、オフセット制御部73は、スイッチ素子43をオフにしスイッチ素子44をオンにするためのハイレベル信号(sigsel)をオフセット回路4に出力している。これにより、垂直信号線51の電圧(bl1)の最小値は、「vcs」となっている。つまり、画素回路3から垂直信号線51に出力された出力信号Vo1の最小値は、「vcs」となっている。「vcs」は、電圧供給回路71の動作モードが第2のモードのときの垂直信号線51の電圧(bl1)の最小値である「vss」よりも大きい。
 時点T7、T12間では、時点T1、T6間と同様に、転送素子31、リセット素子32及び選択素子34の各々のゲート電圧のハイとローとが切り替えられる。以下、より詳細に説明する。
 時点T7、T9間の動作は、時点T1、T3間の動作と同じなので説明を省略する。
 時点T9、T10間では、時点T3、T4間と同様に、転送素子31のゲート電圧(sigt1)がハイレベルなので、光電変換部2で発生した電荷がノード35へ転送され、増幅素子33及び選択素子34を経由して、出力信号Vo1として垂直信号線51に出力される。ここで、光電変換部2(アバランシェフォトダイオード)には、アバランシェ降伏電圧以上の逆起電圧が印加されているので、光電変換部2に光が照射されている場合は、垂直信号線51の電圧(bl1)は、オフセット回路4により制限された最小値(vcs)となる(図2の時点T9、T10間では、実線で示している)。また、光電変換部2に光が照射されていない場合は、垂直信号線51の電圧(bl1)は、光電変換部2の暗電流に相当する電圧(vfdb)から、閾値電圧vtを引いた値となる(図2の時点T9、T10間では、破線で示している)。
 相関二重サンプリング回路81は、時点T7、T8間で垂直信号線51から入力された電圧と、時点T9、T10間で垂直信号線51から入力された電圧との差分電圧(vsa)を算出する。光電変換部2に光が入射している場合は、差分電圧(vsa)は、オフセット制御部73からオフセット回路4の第2の直流電流源42に印加されている電圧(vcsel)により規定された一定値となる。
 増幅回路82は、相関二重サンプリング回路81から出力された信号(sоt1)を増幅する。この信号(sоt1)は、差分電圧(vsa)の情報を含む。
 時点T10、T12間の動作は、時点T4、T6間の動作と同じなので説明を省略する。
 時点T12、T13間では、光電変換部2に印加されている電圧(vapd1)が増加させられる。その後、時点T0に戻る。時点T1になるまでに、光電変換部2に印加されている負の電圧(vapd1)は、アバランシェ降伏電圧に対応する所定値を超える。言い換えると、光電変換部2に印加されている逆起電圧は、アバランシェ降伏電圧を下回る。そのため、電圧供給回路71の動作モードは第2のモードとなる。
 なお、ここでは、図2を参照して、電圧供給回路71の動作モードが第1のモードと第2のモードとの間で一定周期で切り替わるとして説明したが、電圧供給回路71の動作モードが第1のモードに固定されていてもよい。また、外部からの操作により、第1のモード又は第2のモードが選択されてもよい。
 (比較例)
 図3に、比較例に係る撮像システム1Pのブロック図を図示する。実施形態の撮像システム1と同様の構成については、同一の符号を付して説明を省略する。
 撮像システム1Pでは、オフセット回路4Pの構成が実施形態のオフセット回路4と相違する。すなわち、オフセット回路4Pは、第1の直流電流源41のみを有している。そのため、オフセット回路4Pから垂直信号線51に出力されるオフセット電圧は、常に一定である。
 図4Aに、図2の一部を再掲する。図4Bに、比較例に係る撮像システム1Pの動作例を示す。図4Bに示す動作例では、図2(実施形態)と同じタイミングで、転送素子31、リセット素子32及び選択素子34の各々のゲート電圧のハイとローとが切り替えられる。
 図4Bの時点T7、T13間を参照すると、垂直信号線51の電圧(bl1)は、図2(図4A)の場合よりも低い電圧(vss)まで変化し得る。その結果、時点T9、T10間を参照すると、垂直信号線51に出力される出力信号Vo1の最小値は、光電変換部2の飽和光量に対応する電圧(vfda)から閾値電圧vtを引いた値となる。ここで、vss<vfda-vtの関係が成り立つ。
 実施形態の撮像システム1では、光電変換部2が電荷を増倍させている場合(第1のモード時)に、図2の時点T9、T10間に示されるように、出力信号Vo1の最小値が「vss」よりも高い電圧に制限される。そのため、出力信号Vo1が最小値まで変化する場合の変化量が小さくなるので、変化に要する時間が短くなる。結果として、実施形態では、比較例と比較して、出力信号Vo1の読出速度を向上させることができる。
 (変形例1)
 次に、実施形態の変形例1について、図5を用いて説明する。実施形態と同様の構成については、同一の符号を付して説明を省略する。
 本変形例1は、実施形態の画素回路3に代えての画素回路3Aの構成に関する。画素回路3Aは、画素回路3の構成に加えて、クランプ回路36を有している。
 クランプ回路36は、例えば、ダイオード361と、スイッチ素子362とを含む。スイッチ素子362は、例えば、nチャネルMOSFET等の半導体スイッチング素子である。ダイオード361のアノードは、ノード35に電気的に接続されている。ダイオード361のカソードは、スイッチ素子362のソース端子に電気的に接続されている。スイッチ素子362のドレイン端子には、電圧供給回路71から電圧が印加されている。スイッチ素子362のゲート端子は、垂直走査回路72に電気的に接続されている。
 垂直走査回路72からの制御信号により、ゲート電圧がハイレベルになり、スイッチ素子362のドレイン・ソース間が導通すると、ノード35の電圧は、スイッチ素子362のドレイン電圧によりクランプされる。要するに、ノード35の電圧の最大値は、スイッチ素子362のドレイン電圧とダイオード361の順方向電圧との和となる。結果として、画素回路3Aから垂直信号線51に出力される出力信号Vo1の最大値が、クランプ回路36により制限される(クランプされる)。つまり、光電変換部2から出力される電荷が十分大きい場合、この電荷に応じた電圧が、ノード35の電圧の最大値まで引き下げられることにより、出力信号Vo1が引き下げられる。
 ゲート電圧がローレベルになると、スイッチ素子362のドレイン・ソース間が導通しないので、ノード35の電圧はクランプされなくなる。
 クランプ回路36(制限部)は、垂直走査回路72からの制御信号に基づいて、光電変換部2の変換率が第1の変換率の際の出力信号Vo1の最大値を、変換率が第2の変換率の際の出力信号Vo1の最大値よりも小さくする。電圧供給回路71の動作モードが第1のモードのとき、クランプ回路36は、スイッチ素子362をオンにする。一方で、電圧供給回路71の動作モードが第2のモードのとき、クランプ回路36は、スイッチ素子362をオフにする。これにより、クランプ回路36は、電圧供給回路71の動作モードが第1のモードのときの出力信号Vo1の最大値を、電圧供給回路71の動作モードが第2のモードのときの出力信号Vo1の最大値よりも大きくする。
 電圧供給回路71の動作モードが第1のモードで光電変換部2の変換率が第1の変換率の際に、出力信号Vo1の最大値が制限されることで、出力信号Vo1の最大値と最小値との差分が小さくなる。そのため、出力信号Vo1が最大値又は最小値を始点として変化する場合の変化量が小さくなるので、変化に要する時間が短くなる。また、出力信号Vo1が最大値と最小値との間の中間値から最大値又は最小値まで変化する場合も、変化量が小さくなるので、変化に要する時間が短くなる。結果として、光電変換部2の変換率が第1の変換率の際の出力信号Vo1の読出速度を向上させることができる。
 なお、本変形例1では、オフセット回路4から垂直信号線51に出力されるオフセット電圧の大きさは、一定であってもよい。つまり、図3に示した比較例のように、オフセット回路4は、少なくとも第1の直流電流源41を有していればよい。オフセット回路4とクランプ回路36とのうち少なくとも一方が、光電変換部2の出力信号Vo1の最大値と最小値とのうち少なくとも一方を制限すればよい。すなわち、出力信号Vo1の読出速度を向上させるためには、出力信号Vo1の最大値及び最小値の少なくとも一方を制限すればよい。
 (変形例2)
 次に、実施形態の変形例2について、図6を用いて説明する。実施形態と同様の構成については、同一の符号を付して説明を省略する。
 本変形例2は、実施形態のオフセット回路4に代えてのオフセット回路4Bの構成に関する。オフセット回路4Bは、第1の直流電流源41を有しているが、第2の直流電流源42を有していない。オフセット回路4Bは、第1の直流電流源41に加えて、スイッチ素子43と、スイッチ素子44とを有している。オフセット回路4Bは、スイッチ素子43、44をオンオフすることによって、垂直信号線51に出力されるオフセット電圧の大きさを切り替える。
 スイッチ素子43の第1端は、第1の直流電流源41のプラス端子に電気的に接続されている。スイッチ素子43の第2端は、グラウンドに電気的に接続されている。スイッチ素子44の第1端は、第1の直流電流源41のプラス端子に電気的に接続されている。スイッチ素子44の第2端には、オフセット制御部73から所定の大きさの電圧(vcsel)が印加されている。第1の直流電流源41のマイナス端子は、垂直信号線51に電気的に接続されている。
 オフセット制御部73は、スイッチ素子43、44のうち一方をオンにしているとき、他方をオフにしている。オフセット制御部73がスイッチ素子43をオフにしスイッチ素子44をオンにしているときの垂直信号線51のオフセット電圧は、オフセット制御部73がスイッチ素子43をオンにしスイッチ素子44をオフにしているときのオフセット電圧よりも小さくなる。その差分は、オフセット制御部73からスイッチ素子44の第2端に印加されている電圧に等しい。
 電圧供給回路71の動作モードが第1のモードのとき、オフセット制御部73は、スイッチ素子43をオンにしスイッチ素子44をオフにする。一方で、電圧供給回路71の動作モードが第2のモードのとき、オフセット制御部73は、スイッチ素子43をオフにしスイッチ素子44をオンにする。これにより、オフセット回路4Bは、電圧供給回路71の動作モードが第1のモードのときの出力信号Vo1の最小値を、電圧供給回路71の動作モードが第2のモードのときの出力信号Vo1の最小値よりも大きくする。
 また、オフセット回路4Bは、スイッチ素子46と、スイッチ素子47とを更に有している。オフセット回路4Bは、スイッチ素子43、44のオンオフを切り替えることと、スイッチ素子46、47のオンオフを切り替えることとのうち少なくとも一方により、垂直信号線51へ出力するオフセット電圧の大きさを変えることができる。
 第1の直流電流源41には、スイッチ素子46がオンでスイッチ素子47がオフのときは、スイッチ素子46を介して第1の電圧(vba)が供給される。また、第1の直流電流源41には、スイッチ素子46がオフでスイッチ素子47がオンのときは、スイッチ素子47を介して第2の電圧(vbb)が供給される。第1の直流電流源41は、供給される電圧の大きさに応じて、出力する電流の大きさを変化させることにより、垂直信号線51へ出力するオフセット電圧の大きさを変える。そのため、オフセット回路4Bは、スイッチ素子43、44のオンオフの組み合わせと、スイッチ素子46、47のオンオフの組み合わせとにより、オフセット電圧の大きさを4通りに変えることができる。
 本変形例2によれば、第2の直流電流源42を用いることなく、出力信号Vo1の最小値を調整可能な構成(オフセット回路4B)を実現できる。
 (実施形態のその他の変形例)
 以下、実施形態のその他の変形例を列挙する。以下の変形例は、適宜組み合わせて実現されてもよい。
 撮像システム1と同様の機能は、撮像処理方法、(コンピュータ)プログラム、又はプログラムを記録した非一時的記録媒体等で具現化されてもよい。
 一態様に係る撮像処理方法は、制限処理を備える。制限処理は、光子を電荷に変換し光子から電荷への変換率が可変である光電変換部2の出力信号Vo1について、最大値と最小値とのうち少なくとも一方を制限する。制限処理は、変換率が第1の変換率の際の光電変換部2の出力信号Vo1の最大値と最小値との差分を、変換率が第2の変換率の際の光電変換部2の出力信号Vo1の最大値と最小値との差分よりも小さくする。第2の変換率は、第1の変換率と比較して小さい。
 一態様に係るプログラムは、上記の撮像処理方法を1以上のプロセッサに実行させるためのプログラムである。
 本開示における撮像システム1は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における撮像システム1としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。
 また、撮像システム1における複数の機能が、1つの筐体内に集約されていることは撮像システム1に必須の構成ではなく、撮像システム1の構成要素は、複数の筐体に分散して設けられていてもよい。さらに、撮像システム1の少なくとも一部の機能がクラウド(クラウドコンピューティング)等によって実現されてもよい。
 反対に、実施形態において、複数の装置に分散されている撮像システム1の少なくとも一部の機能が、1つの筐体内に集約されていてもよい。
 光電変換部2は、アバランシェフォトダイオードを含む構成に限定されない。光電変換部2は、例えば、ツェナーダイオード等の増倍型の素子と、フォトダイオード、フォトトランジスタ、又はフォトレジスタ(photoregistor)等の光電変換素子とを組み合わせて構成されていてもよい。
 光電変換部2の構成は、電荷を増倍させる場合に出力信号Vo1が2値の間で変化する構成に限定されず、出力信号Vo1が3値以上の間で変化する構成であってもよい。例えば、光電変換部2は、電荷を増倍させる場合に、光子が入射していない際に出力信号Vo1が第1の値(最大値)となり、1個の光子が入射すると出力信号Vo1が第2の値となり、2個以上の光子が入射すると出力信号Vo1が第3の値(最小値)となる構成であってもよい。
 光電変換部2は、光子から電荷への変換率が第1の変換率と第2の変換率との2通りに変化する構成に限定されず、3通り以上に変化する構成であってもよい。例えば、複数のアバランシェフォトダイオードの組み合わせを光電変換部2として用いることにより、光子から電荷への変換率が3通り以上に変化する構成を実現してもよい。電圧供給回路71(調整部)は、第1のモードと第2のモードとに加えて、光電変換部2の変換率を第1の変換率とも第2の変換率とも異なる変換率にするモードを1つ以上有していてもよい。
 ノード35には、電荷を蓄えるコンデンサ等の素子が電気的に接続されていてもよい。
 実施形態の複数の画素回路3は、行と列とをなすように並んでいるが、各行と各列とにおいて、複数の画素回路3は、直線状に並んでいなくてもよい。
 撮像システム1の少なくとも一部の構成は、MEMS(Micro Electro Mechanical Systems)技術を用いて半導体基板上等に形成されてもよい。
 (まとめ)
 以上説明した実施形態等から、以下の態様が開示されている。
 第1の態様に係る撮像処理回路10は、制限部(オフセット回路4、4B又はクランプ回路36)を備える。制限部は、光子を電荷に変換し光子から電荷への変換率が可変である光電変換部2の出力信号Vo1について、最大値と最小値とのうち少なくとも一方を制限する。制限部は、変換率が第1の変換率の際の光電変換部2の出力信号Vo1の最大値と最小値との差分を、変換率が第2の変換率の際の光電変換部2の出力信号Vo1の最大値と最小値との差分よりも小さくする。第2の変換率は、第1の変換率と比較して小さい。
 上記の構成によれば、光電変換部2の変換率が第1の変換率の際は、光電変換部2の変換率が第2の変換率の際と比較して、光電変換部2の出力信号Vo1が変化する場合の変化速度が大きくなる。すなわち、光電変換部2の変換率に関わらず光電変換部2の出力信号Vo1の最大値と最小値との差分が一定である場合と比較して、光電変換部2の変換率が第1の変換率の際の出力信号Vo1の読出速度を向上させることができる。
 また、第2の態様に係る撮像処理回路10は、第1の態様において、制限部(オフセット回路4、4B)を少なくとも1つ備える。光電変換部2は、複数設けられる。1つの制限部は、複数の光電変換部2のうち2つ以上の光電変換部2の出力信号Vo1について、最大値と最小値とのうち少なくとも一方を制限する。
 上記の構成によれば、1つの制限部(オフセット回路4、4B)により2つ以上の光電変換部2の出力信号Vo1を制限できるので、各光電変換部2に個別に制限部を設ける場合と比較して、制限部の個数を減らせる。
 また、第3の態様に係る撮像処理回路10では、第2の態様において、制限部(オフセット回路4、4B)は、垂直信号線51と、複数の光電変換部2のうち垂直信号線51に出力信号Vo1を出力する2つ以上の光電変換部2との組に関して、垂直信号線51の電圧の最大値と最小値とのうち少なくとも一方を制限する。
 上記の構成によれば、制限部(オフセット回路4、4B)は、2つ以上の光電変換部2から垂直信号線51に出力された出力信号Vo1を、垂直信号線51において一括して制限できる。
 また、第4の態様に係る撮像処理回路10では、第1~3の態様のいずれか1つにおいて、制限部(オフセット回路4、4B)は、変換率が第1の変換率の際の光電変換部2の出力信号Vo1の最小値を、変換率が第2の変換率の際の光電変換部2の出力信号Vo1の最小値よりも大きくする。
 上記の構成によれば、光電変換部2の変換率が第1の変換率の際の出力信号Vo1の読出速度を向上させることができる。
 また、第5の態様に係る撮像処理回路10では、第1~4の態様のいずれか1つにおいて、制限部(クランプ回路36)は、変換率が第1の変換率の際の光電変換部2の出力信号Vo1の最大値を、変換率が第2の変換率の際の光電変換部2の出力信号Vo1の最大値よりも小さくする。
 上記の構成によれば、光電変換部2の変換率が第1の変換率の際の出力信号Vo1の読出速度を向上させることができる。
 また、第6の態様に係る撮像処理回路10では、第1~5の態様のいずれか1つにおいて、制限部(オフセット回路4、4B又はクランプ回路36)は、変換率が大きいほど、光電変換部2の出力信号Vo1の最大値と最小値との差分を小さくする。
 上記の構成によれば、光電変換部2の変換率が比較的大きい場合に、出力信号Vo1の読出速度を向上させることができる。
 また、第7の態様に係る撮像処理回路10は、第1~6の態様のいずれか1つにおいて、変換率を調整する調整部(電圧供給回路71)を更に備える。調整部は、動作モードとして、変換率を第1の変換率にする第1のモードと、変換率を第2の変換率にする第2のモードと、を有する。制限部(オフセット回路4、4B又はクランプ回路36)は、調整部の動作モードに応じて、光電変換部2の出力信号Vo1の最大値と最小値とのうち少なくとも一方を制限する。
 上記の構成によれば、撮像処理回路10を用いて、第1のモードでは第2のモードよりも光を高感度で検出することができ、第2のモードでは光量を第1のモードよりも細かく測定することができる。すなわち、電圧供給回路71の動作モードを切り替えることで、撮像処理回路10をこの2つの用途に用いることができる。
 また、第8の態様に係る撮像処理回路10では、第1~7の態様のいずれか1つにおいて、光電変換部2は、アバランシェフォトダイオードを含む。第1の変換率は、アバランシェフォトダイオードにアバランシェ降伏電圧が印加されている際の変換率である。
 上記の構成によれば、アバランシェフォトダイオードがアバランシェ降伏する場合の、出力信号Vo1の変化速度を大きくできる。
 第1の態様以外の構成については、撮像処理回路10に必須の構成ではなく、適宜省略可能である。
 また、第9の態様に係る撮像システム1は、第1~8の態様のいずれか1つに係る撮像処理回路10と、光電変換部2と、を備える。
 上記の構成によれば、光電変換部2の変換率が第1の変換率の際の出力信号Vo1の読出速度を向上させることができる。
 また、第10の態様に係る撮像処理方法は、制限処理を備える。制限処理は、光子を電荷に変換し光子から電荷への変換率が可変である光電変換部2の出力信号Vo1について、最大値と最小値とのうち少なくとも一方を制限する。制限処理は、変換率が第1の変換率の際の光電変換部2の出力信号Vo1の最大値と最小値との差分を、変換率が第2の変換率の際の光電変換部2の出力信号Vo1の最大値と最小値との差分よりも小さくする。第2の変換率は、第1の変換率と比較して小さい。
 上記の構成によれば、光電変換部2の変換率が第1の変換率の際の出力信号Vo1の読出速度を向上させることができる。
 また、第11の態様に係るプログラムは、第10の態様に係る撮像処理方法を、1以上のプロセッサに実行させる。
 上記の構成によれば、光電変換部2の変換率が第1の変換率の際の出力信号Vo1の読出速度を向上させることができる。
 上記態様に限らず、実施形態に係る撮像システム1の種々の構成(変形例を含む)は、撮像処理方法及びプログラムにて具現化可能である。
1 撮像システム
10 撮像処理回路
2 光電変換部
36 クランプ回路
4、4B オフセット回路(制限部)
51 垂直信号線
71 電圧供給回路(調整部)
Vo1 出力信号

Claims (11)

  1.  光子を電荷に変換し光子から電荷への変換率が可変である光電変換部の出力信号について、最大値と最小値とのうち少なくとも一方を制限する制限部を備え、
     前記制限部は、前記変換率が第1の変換率の際の前記光電変換部の出力信号の最大値と最小値との差分を、前記変換率が前記第1の変換率と比較して小さい第2の変換率の際の前記光電変換部の出力信号の最大値と最小値との差分よりも小さくする、
     撮像処理回路。
  2.  前記制限部を少なくとも1つ備え、
     前記光電変換部は、複数設けられ、
     1つの前記制限部は、前記複数の光電変換部のうち2つ以上の光電変換部の出力信号について、最大値と最小値とのうち少なくとも一方を制限する、
     請求項1に記載の撮像処理回路。
  3.  前記制限部は、垂直信号線と、前記複数の光電変換部のうち前記垂直信号線に出力信号を出力する2つ以上の光電変換部との組に関して、前記垂直信号線の電圧の最大値と最小値とのうち少なくとも一方を制限する、
     請求項2に記載の撮像処理回路。
  4.  前記制限部は、前記変換率が前記第1の変換率の際の前記光電変換部の出力信号の最小値を、前記変換率が前記第2の変換率の際の前記光電変換部の出力信号の最小値よりも大きくする、
     請求項1~3のいずれか一項に記載の撮像処理回路。
  5.  前記制限部は、前記変換率が前記第1の変換率の際の前記光電変換部の出力信号の最大値を、前記変換率が前記第2の変換率の際の前記光電変換部の出力信号の最大値よりも小さくする、
     請求項1~4のいずれか一項に記載の撮像処理回路。
  6.  前記制限部は、前記変換率が大きいほど、前記光電変換部の出力信号の最大値と最小値との差分を小さくする、
     請求項1~5のいずれか一項に記載の撮像処理回路。
  7.  前記変換率を調整する調整部を更に備え、
     前記調整部は、動作モードとして、前記変換率を前記第1の変換率にする第1のモードと、前記変換率を前記第2の変換率にする第2のモードと、を有し、
     前記制限部は、前記調整部の前記動作モードに応じて、前記光電変換部の出力信号の最大値と最小値とのうち少なくとも一方を制限する、
     請求項1~6のいずれか一項に記載の撮像処理回路。
  8.  前記光電変換部は、アバランシェフォトダイオードを含み、
     前記第1の変換率は、前記アバランシェフォトダイオードにアバランシェ降伏電圧が印加されている際の前記変換率である、
     請求項1~7のいずれか一項に記載の撮像処理回路。
  9.  請求項1~8のいずれか一項に記載の撮像処理回路と、
     前記光電変換部と、を備える、
     撮像システム。
  10.  光子を電荷に変換し光子から電荷への変換率が可変である光電変換部の出力信号について、最大値と最小値とのうち少なくとも一方を制限する制限処理を備え、
     前記制限処理は、前記変換率が第1の変換率の際の前記光電変換部の出力信号の最大値と最小値との差分を、前記変換率が前記第1の変換率と比較して小さい第2の変換率の際の前記光電変換部の出力信号の最大値と最小値との差分よりも小さくする、
     撮像処理方法。
  11.  請求項10に記載の撮像処理方法を、1以上のプロセッサに実行させるための、
     プログラム。
PCT/JP2020/011475 2019-03-26 2020-03-16 撮像処理回路、撮像システム、撮像処理方法及びプログラム WO2020196034A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080022226.5A CN113614930A (zh) 2019-03-26 2020-03-16 成像处理电路、成像系统、成像处理方法以及程序
JP2021509095A JP7165873B2 (ja) 2019-03-26 2020-03-16 撮像処理回路、撮像システム、撮像処理方法及びプログラム
US17/484,549 US20220014704A1 (en) 2019-03-26 2021-09-24 Imaging processing circuit, imaging system, imaging processing method, and non-transitory storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019059467 2019-03-26
JP2019-059467 2019-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/484,549 Continuation US20220014704A1 (en) 2019-03-26 2021-09-24 Imaging processing circuit, imaging system, imaging processing method, and non-transitory storage medium

Publications (1)

Publication Number Publication Date
WO2020196034A1 true WO2020196034A1 (ja) 2020-10-01

Family

ID=72611489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011475 WO2020196034A1 (ja) 2019-03-26 2020-03-16 撮像処理回路、撮像システム、撮像処理方法及びプログラム

Country Status (4)

Country Link
US (1) US20220014704A1 (ja)
JP (1) JP7165873B2 (ja)
CN (1) CN113614930A (ja)
WO (1) WO2020196034A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044778A (ja) * 2019-09-13 2021-03-18 キヤノン株式会社 撮像装置およびその制御方法
WO2024180928A1 (ja) * 2023-02-28 2024-09-06 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306245A (ja) * 2006-05-10 2007-11-22 Matsushita Electric Ind Co Ltd Ccd撮像素子の垂直レジスタ駆動装置
JP2013247289A (ja) * 2012-05-28 2013-12-09 Denso Corp 固体撮像素子
WO2017183451A1 (ja) * 2016-04-21 2017-10-26 パナソニックIpマネジメント株式会社 撮像装置及びそれを備えたカメラシステム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2487958A (en) * 2011-02-10 2012-08-15 St Microelectronics Res & Dev A multi-mode photodetector pixel
JP7451188B2 (ja) * 2020-01-24 2024-03-18 三星電子株式会社 イメージセンサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306245A (ja) * 2006-05-10 2007-11-22 Matsushita Electric Ind Co Ltd Ccd撮像素子の垂直レジスタ駆動装置
JP2013247289A (ja) * 2012-05-28 2013-12-09 Denso Corp 固体撮像素子
WO2017183451A1 (ja) * 2016-04-21 2017-10-26 パナソニックIpマネジメント株式会社 撮像装置及びそれを備えたカメラシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044778A (ja) * 2019-09-13 2021-03-18 キヤノン株式会社 撮像装置およびその制御方法
JP7328842B2 (ja) 2019-09-13 2023-08-17 キヤノン株式会社 撮像装置およびその制御方法
WO2024180928A1 (ja) * 2023-02-28 2024-09-06 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子

Also Published As

Publication number Publication date
US20220014704A1 (en) 2022-01-13
CN113614930A (zh) 2021-11-05
JPWO2020196034A1 (ja) 2020-10-01
JP7165873B2 (ja) 2022-11-07

Similar Documents

Publication Publication Date Title
US10616518B2 (en) Amplifier, and analog-to-digital conversion circuit and image sensor including the same
KR100660193B1 (ko) 자기-보상 상관 이중 샘플링 회로
JP4685120B2 (ja) 光電変換装置及び撮像システム
US7852393B2 (en) Photoelectric conversion apparatus and image sensing system using the same
US8537259B2 (en) Photoelectric conversion circuit and solid state imaging device including same
JP6321182B2 (ja) 一定の電圧でバイアスされたフォトダイオードを有する画素回路及び関連する撮像方法
EP2360912B1 (en) Solid-state image pickup apparatus and driving method therefor
US10785437B2 (en) Area and power efficient multi-voltage row driver circuitry for image sensors
CN101102423A (zh) 光电转换电路以及使用其的固态图像传感装置
US11006062B2 (en) Pixel sensing circuit and driving method thereof, image sensor and electronic device
US9848145B2 (en) Imaging device including pixels
WO2020196034A1 (ja) 撮像処理回路、撮像システム、撮像処理方法及びプログラム
JP4654046B2 (ja) Cmosイメージセンサのクランプ回路
US9257459B2 (en) Image pickup apparatus with pixels that include an amplifier and method for driving the same
JPWO2007066762A1 (ja) 固体撮像装置
US8446181B2 (en) Sampling circuit and image signal amplifying circuit each including feedback clamp block and image sensor including the image signal amplifying circuit
US20160301889A1 (en) Photoelectric conversion apparatus, method of driving the photoelectric conversion apparatus, focus detection sensor, and imaging system
KR102345809B1 (ko) 이미지 센서
KR20160121996A (ko) 전류 제어 기능을 가지는 픽셀 바이어싱 장치 및 그에 따른 씨모스 이미지 센서
KR20150130186A (ko) 이미지 센서 및 그 적층 구조
KR20170094832A (ko) 단위 픽셀 장치 및 그 동작 방법과 그를 이용한 씨모스 이미지 센서
KR100977834B1 (ko) 넓은 동적 범위을 갖는 씨모스 이미지 센서
CN100421459C (zh) Cmos图像传感器
CN103686002B (zh) 光电转换装置、光电转换装置的驱动方法和成像系统
JP2016015651A (ja) 撮像装置、撮像システム、撮像装置の駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509095

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776892

Country of ref document: EP

Kind code of ref document: A1