WO2020194714A1 - 通信システム、通信装置及びプログラム - Google Patents

通信システム、通信装置及びプログラム Download PDF

Info

Publication number
WO2020194714A1
WO2020194714A1 PCT/JP2019/013805 JP2019013805W WO2020194714A1 WO 2020194714 A1 WO2020194714 A1 WO 2020194714A1 JP 2019013805 W JP2019013805 W JP 2019013805W WO 2020194714 A1 WO2020194714 A1 WO 2020194714A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
communication device
communication
unit
data
Prior art date
Application number
PCT/JP2019/013805
Other languages
English (en)
French (fr)
Inventor
智史 荒川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/013805 priority Critical patent/WO2020194714A1/ja
Priority to JP2020504041A priority patent/JP6704548B1/ja
Priority to DE112019006938.1T priority patent/DE112019006938B4/de
Priority to US17/310,220 priority patent/US11310026B2/en
Publication of WO2020194714A1 publication Critical patent/WO2020194714A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0664Clock or time synchronisation among packet nodes using timestamps unidirectional timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G9/00Visual time or date indication means
    • G04G9/0064Visual time or date indication means in which functions not related to time can be displayed
    • G04G9/007Visual time or date indication means in which functions not related to time can be displayed combined with a calculator or computing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/052Linking several PLC's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • H04J3/0694Synchronisation in a TDMA node, e.g. TTP
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • H04J3/0697Synchronisation in a packet node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25479Synchronize controllers using messages, add transmission time afterwards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays

Definitions

  • the present invention relates to communication systems, communication devices and programs.
  • Patent Document 1 discloses a system in which the time for synchronizing a plurality of controllers can be selected from a plurality of methods.
  • the time is synchronized by transmitting time data from the PC (personal computer) to the controller via the network.
  • the time is synchronized by taking the standard time data of GPS (Global Positioning System) from the standard time receiver into the controller via a dedicated cable.
  • GPS Global Positioning System
  • the user of the system that controls the device wants to set the system time that is the reference for operating the system. For example, if the user wants the system time to be stopped while the system is paused, if the system time is set to a time different from the system time, and if the system is managed appropriately. Therefore, when it is desired to return the system time to a past time, there is a request that the user wants to arbitrarily set the time as needed, as represented by.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to improve the convenience of the time used synchronously in the system.
  • the communication system of the present invention is a communication system including a first communication device and a second communication device that share a shared time in which a synchronization error including a communication delay is corrected via a network.
  • the first communication device has an acquisition means for acquiring the set time set by the user, a first setting means for setting the set time to the first system time which is the system time of the first communication device, and a shared time.
  • the second communication device has a time difference data transmitting means for transmitting the time difference data indicating the time difference between the device and the set time to the second communication device, and the second communication device has the time difference data receiving means for receiving the time difference data, the shared time, and the time difference. It has a second setting means for setting the sum of the time difference indicated by the data to the second system time, which is the system time of the second communication device.
  • the first communication device and the second communication device share a shared time via a network, and the first communication device sets a set time set by a user as a first system time.
  • a second communication device has a first setting means and a time difference data transmission means for transmitting time difference data, and the second communication device sets the sum of the shared time and the time difference indicated by the time difference data as the second system time. It has a setting means.
  • FIG. 1 shows a functional configuration of a communication device according to an embodiment.
  • FIG. 2 shows a functional configuration of a communication device according to an embodiment.
  • FIG. 3 shows a functional configuration of a communication device according to an embodiment.
  • sharing and synchronizing the time between a plurality of devices means synchronizing the clocks of the plurality of devices. Clocks of the plurality of devices clock the same time, and if this time is shared by the plurality of devices, the plurality of devices synchronize the time.
  • the communication system 1000 corresponds to a part of the FA system installed in the factory.
  • the communication system 1000 is formed by connecting devices constituting a production system, an inspection system, a processing system, and other systems as an FA system via a communication path.
  • the communication system 1000 has a setting device 101 for setting a time, and PLCs (Programmable Logic Controllers) 100 and 200, which are industrial control devices.
  • PLCs Programmable Logic Controllers
  • the setting device 101 is a computer terminal having a user interface, for example, an IPC (Industrial Personal Computer) or a tablet type terminal.
  • the setting device 101 is connected to the PLC 100 via the transmission line 102.
  • the transmission line 102 may be, for example, a communication line typified by USB (Universal Serial Bus) or a wireless communication line.
  • the PLCs 100 and 200 are used to control devices (not shown).
  • the device controlled by using the PLCs 100 and 200 is, for example, an actuator or a robot.
  • the PLCs 100 and 200 are connected via the network 400 and communicate with each other.
  • the network 400 may be an FA (Factory Automation) network represented by a field network, or may be another network.
  • FA Vectory Automation
  • the PLC 100 has a communication device 10 connected to the network 400, and a plurality of communication devices 30 connected to the communication device 10 via the system bus 401.
  • the communication device 10 corresponds to a network unit or a communication unit constituting the PLC 100, and the communication device 30 is, for example, a CPU (Central Processing Unit) unit, an I / O (Input / Output) unit, and an A / D (Analog /), respectively. Digital) Corresponds to conversion unit and other units.
  • the communication device 10 may be another unit.
  • the communication device 10 may be a CPU unit having a function of connecting to the network 400.
  • the control processing by the PLC 100 is realized by the cooperation of the communication devices 10 and 30.
  • the PLC 200 has a communication device 20 connected to the network 400, and a plurality of communication devices 30 connected to the communication device 20 via the system bus 402.
  • the communication device 20 may correspond to a network unit or a communication unit constituting the PLC 200, or may be a CPU unit having a function of connecting to the network 400.
  • the control processing by the PLC 200 is realized by the cooperation of the communication devices 20 and 30.
  • the communication devices 10 and 20 synchronize the time as shown in FIG. 2 via the network 400.
  • the communication device 10 shares the time with the communication device 20 by a time synchronization protocol.
  • the time synchronization protocol is a protocol for synchronizing the time of a device on a communication network with high accuracy.
  • An example of such a protocol is IEEE 802.1AS, which synchronizes the time of a device on a LAN (Local Area Network) with high accuracy on the order of nanoseconds.
  • this time synchronization protocol is simply referred to as a time synchronization protocol.
  • the grand master distributes a highly accurate reference clock over the network, and the slave receives the reference clock on a regular basis. As a result, devices on the network can synchronize the time with high accuracy.
  • the communication delay is measured by reciprocating the data between the ground master and the slave, and the slave obtains the reference clock corrected for this communication delay.
  • the grand master repeatedly distributes the reference clock with a short cycle time of several tens of microseconds.
  • the grand master and the slave share the time when the communication delay is corrected as described above.
  • the time synchronization protocol even if the time managed by the grand master and the slave deviates as represented by the frequency deviation described later, this deviation is corrected by the reference clock.
  • the time synchronization protocol corrects the synchronization error including the communication delay, and synchronizes the time.
  • the time shared between devices that is synchronized by the time synchronization protocol will be referred to as the shared time.
  • the shared time managed by each of the communication devices 10 and 20 is synchronized with high accuracy on the order of nanoseconds.
  • the maximum shared time error is, for example, 1 millisecond, 100 nanoseconds, or 10 nanoseconds.
  • the shared time is not directly used in the control process by the communication system 1000, and a system time different from the shared time is a reference for the communication system 1000 to operate.
  • the device constituting the communication system 1000 records the system time when executing the logging process.
  • the shared time serves as a reference for obtaining the system time.
  • the time obtained by adding a certain time difference from the shared time corresponds to the system time. This time difference may be positive, negative or zero.
  • the communication device 10 receives a set time which is a set value of the system time set in the setting device 101.
  • This set value is, for example, a parameter including a value indicating one time point in the system time and a trigger for starting this value.
  • the trigger may be that the set value is acquired by the setting device 101 or the communication device 10, another event, or the timing specified by using the shared time.
  • the communication device 10 calculates the time difference between the system time and the shared time indicated by the set value, and thereafter obtains the system time as the sum of the shared time and the time difference. Further, the communication device 10 transmits data indicating the calculated time difference to the communication device 20.
  • the communication device 20 obtains the system time as the sum of the shared time and the time difference indicated by the data received from the communication device 10.
  • the system times obtained by the communication devices 10 and 20, respectively, are synchronized with the same accuracy as the shared time.
  • the communication devices 10 and 30 share the system time as shown in FIG. 3 via the system bus 401.
  • the communication device 10 repeatedly notifies the communication device 30 of the current value of the system time. This notification is executed periodically, and the notification cycle is, for example, 1 millisecond, 100 milliseconds, or 1 minute.
  • the communication device 30 measures the system time using the built-in clock element from the time when the system time is obtained by the first notification. After that, when a new system time is obtained by the second notification, the communication device 30 compares the timed system time with the notified system time, and calculates the difference between these system times as a time deviation. Then, the communication device 30 continues the time measurement while correcting the system time based on the calculated time deviation.
  • the communication device 30 reduces the time deviation between the system time obtained by future notifications after the second notification and the system time continuously clocked by adjusting the speed of timing. ..
  • the time deviation between the system time adjusted by the communication device 30 and the system time notified from the communication device 10 becomes small, and the time is synchronized.
  • the communication device 40 shown in FIG. 4 is a general term for the communication devices 10, 20, and 30.
  • the communication device 40 has a processor 41, a main storage unit 42, an auxiliary storage unit 43, a clock unit 44, an input unit 45, an output unit 46, and a communication unit 47 as its hardware configuration.
  • the main storage unit 42, the auxiliary storage unit 43, the clock unit 44, the input unit 45, the output unit 46, and the communication unit 47 are all connected to the processor 41 via the internal bus 49.
  • the processor 41 includes a CPU (Central Processing Unit).
  • the processor 41 realizes various functions of the communication device 40 by executing the program P1 stored in the auxiliary storage unit 43, and executes the processing described later.
  • the main storage unit 42 includes a RAM (RandomAccessMemory).
  • the program P1 is loaded into the main storage unit 42 from the auxiliary storage unit 43. Then, the main storage unit 42 is used as a work area of the processor 41.
  • the auxiliary storage unit 43 includes a non-volatile memory represented by an EEPROM (Electrically Erasable Programmable Read-Only Memory) and an HDD (Hard Disk Drive). In addition to the program P1, the auxiliary storage unit 43 stores various data used in the processing of the processor 41. The auxiliary storage unit 43 supplies the data used by the processor 41 to the processor 41 according to the instruction of the processor 41, and stores the data supplied from the processor 41.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • HDD Hard Disk Drive
  • the clock unit 44 includes a clock generation circuit having a crystal oscillator.
  • the clock unit 44 generates and outputs a clock signal based on the number of oscillations of the crystal oscillator.
  • the clock signal includes a clock pulse, and is used, for example, for the processor 41 to measure the time by counting the number of rises of the clock pulse.
  • the input unit 45 includes an input key and an input device represented by a pointing device.
  • the input unit 45 acquires the information input by the user of the communication device 40, and notifies the processor 41 of the acquired information.
  • the output unit 46 includes an output device typified by an LCD (Liquid Crystal Display) and a speaker.
  • the output unit 46 presents various information to the user according to the instruction of the processor 41.
  • the communication unit 47 includes a network interface circuit for communicating with an external device.
  • the communication unit 47 receives a signal from the outside and outputs the data indicated by this signal to the processor 41. Further, the communication unit 47 transmits a signal indicating the data output from the processor 41 to an external device.
  • one communication unit 47 is shown as a representative, but the communication device 10 includes a communication unit 47 for connecting to the transmission line 102, a communication unit 47 for connecting to the network 400, and the communication unit 47.
  • the communication unit 47 for connecting to the system bus 401 may be individually provided, and the communication device 20 may have a communication unit 47 for connecting to the network 400 and a communication unit 47 for connecting to the system bus 402. 47 and may be individually provided.
  • the communication device 40 exhibits various functions by cooperating with the hardware configurations shown in FIG. Specifically, as shown in FIG. 5, the communication device 10 has, as its function, a set time acquisition unit 11 that acquires a set time from the setting device 101 via a transmission line 102, and a set time and a shared time. A time difference calculation unit 12 for calculating the time difference, a storage unit 13 for storing various data, and a time difference data transmission unit 14 for transmitting the time difference data 131 indicating the time difference to the network 400 via the network I / F (Interface) 191.
  • a synchronization unit 15 for synchronizing the shared time with the communication device 20 via the network 400, a setting unit 16 for setting the sum of the shared time and the time difference as the system time and measuring the system time, and the system time are used.
  • the set time acquisition unit 11 is realized mainly in cooperation with the processor 41 and the communication unit 47 of the communication device 10.
  • the set time acquisition unit 11 is an example of acquisition means for acquiring the set time set by the user in the communication device 10.
  • the set time acquisition unit 11 acquires the setting information indicating the set time from the setting device 101 via the transmission line 102.
  • This setting information is information that associates the system time setting value with the trigger indicating the timing to apply the setting value, as shown in FIG. 6, for example.
  • the trigger in FIG. 6 indicates that the set value is immediately applied as the current time.
  • the trigger may be omitted from the information acquired by the set time acquisition unit 11.
  • the predetermined timing is, for example, the current time, that is, immediate.
  • the set time acquisition unit 11 sends information indicating the acquired set time to the time difference calculation unit 12.
  • the time difference calculation unit 12 is mainly realized by the processor 41 of the communication device 10.
  • the time difference calculation unit 12 acquires the information indicating the set time sent from the set time acquisition unit 11, reads the shared time data 132 indicating the shared time from the storage unit 13, and at the timing when the set time is applied. , Calculate the time difference between this set time and the shared time. In other words, the time difference calculation unit 12 calculates the difference obtained by subtracting the shared time from the set time as the time difference.
  • the time difference calculation unit 12 immediately reads the shared time from the storage unit 13 and subtracts the shared time from the set time.
  • the read time is set to "December 25, 2018 15:40” in FIG.
  • a time difference of "5.11 seconds” that is, 5111 milliseconds is calculated.
  • the time difference calculation unit 12 writes the time difference data 131 indicating the calculated time difference in the storage unit 13. If the timing at which the set value is applied is different from the current time, the time difference may be calculated and the time difference data may be written at this timing. Further, if this timing is a time that can be calculated, a time difference may be obtained by calculating the shared time at this timing.
  • the storage unit 13 is mainly realized by at least one of a register, a main storage unit 42, and an auxiliary storage unit 43 constituting the processor 41 of the communication device 10.
  • the storage unit 13 stores the time difference data 131, the shared time data 132 indicating the current value of the shared time, and the system time data 133 indicating the current value of the system time.
  • the shared time data 132 is updated by the synchronization unit 15, and the system time data 133 is updated by the setting unit 16.
  • the time difference data transmission unit 14 is mainly realized by the processor 41 of the communication device 10.
  • the time difference data transmission unit 14 is an example of a time difference data transmission means for transmitting the time difference data 131 indicating the time difference between the shared time and the set time to the communication device 20 in the communication device 10.
  • the time difference data transmission unit 14 reads the time difference data 131 from the storage unit 13 and transmits the time difference data 131 to the communication device 20 via the network I / F 191 and the network 400. ..
  • the synchronization unit 15 is realized mainly by the cooperation of the processor 41 and the clock unit 44 of the communication device 10.
  • the synchronization unit 15 synchronizes the shared time with the communication device 20 via the network I / F 191 and the network 400.
  • the synchronization by the synchronization unit 15 is performed according to the time synchronization protocol, but is not limited to this, and may be performed according to another time synchronization protocol.
  • the communication device 10 having the synchronization unit 15 according to the time synchronization protocol may correspond to the grand master or the slave. Then, the synchronization unit 15 updates the shared time data 132 stored in the storage unit 13 to one indicating the current value.
  • the setting unit 16 is realized mainly by the cooperation of the processor 41 and the clock unit 44 of the communication device 10.
  • the setting unit 16 is an example of the first setting means for setting the set time to the system time of the communication device 10.
  • the setting unit 16 reads the shared time data 132 and the time difference data 131 from the storage unit 13 and calculates the sum of the shared time indicated by the shared time data 132 and the time difference indicated by the time difference data 131, thereby calculating the system.
  • Set the time Specifically, the setting unit 16 periodically reads and adds the shared time and the time difference, and updates the system time data 133 stored in the storage unit 13 to one indicating the value obtained by the addition.
  • the cycle for executing the addition is determined in consideration of the calculation load associated with the addition for obtaining the system time. This period is, for example, 10 milliseconds, or 1 second. Then, within this cycle, the setting unit 16 updates the system time data 133 based on the count of the clock pulses of the clock unit 44.
  • the control unit 17 is mainly realized by the processor 41 of the communication device 10.
  • the control unit 17 reads the system time data 133 from the storage unit 13 and executes various processes using the system time. For example, the control unit 17 may execute a logging process for sequentially recording a record indicating an event type associated with the system time, or may wait until the system time reaches a predetermined value and then perform a scheduled process. May be executed.
  • the time data transmission unit 18 is mainly realized by the processor 41 of the communication device 10.
  • the time data transmission unit 18 is an example of a time data transmission means for repeatedly transmitting time data indicating the system time to the communication device 30 via the system bus 401.
  • the time data transmission unit 18 monitors the system time data 133 stored in the storage unit 13, and periodically indicates the current value of the system time based on the time indicated by the system time data 133. Is transmitted to the communication device 30 via the system bus I / F192 and the system bus 401.
  • the transmission cycle may be the same as or different from the addition cycle by the setting unit 16.
  • the network I / F191 and the system bus I / F192 are mainly realized by the communication unit 47 of the communication device 10.
  • the communication device 20 has a function equivalent to a part of the functions of the communication device 10, but is different from the communication device 10 in that it has a configuration for acquiring a time difference from the communication device 10.
  • the communication device 20 is via a storage unit 23 that stores various data, a time difference data receiving unit 24 that receives time difference data 131 from the communication device 10, and a network 400.
  • the time data transmission unit 28 that transmits the system time data 233 indicating the time to the system bus 402 via the system bus I / F 292, the network I / F 291 for communicating via the network 400, and the system bus 402. It has a system bus I / F 292 for communication.
  • the storage unit 23 is mainly realized by at least one of a register, a main storage unit 42, and an auxiliary storage unit 43 constituting the processor 41 of the communication device 20.
  • the storage unit 23 stores the time difference data 231, the shared time data 232 indicating the current value of the shared time, and the system time data 233 indicating the current value of the system time.
  • the shared time data 232 is updated by the synchronization unit 25, and the system time data 233 is updated by the setting unit 26.
  • the time difference data receiving unit 24 is mainly realized by the processor 41 of the communication device 20.
  • the time difference data receiving unit 24 is an example of the time difference data receiving means for receiving the time difference data 131 transmitted from the communication device 10 in the communication device 20.
  • the time difference data receiving unit 24 receives the time difference data 131 from the communication device 10 via the network 400 and the network I / F 291, the time difference data receiving unit 24 writes the time difference data 131 in the storage unit 23 as the time difference data 231.
  • the synchronization unit 25 is realized mainly by the cooperation of the processor 41 and the clock unit 44 of the communication device 20.
  • the synchronization unit 25 synchronizes the shared time with the communication device 10 by communicating with the communication device 10 according to the time synchronization protocol.
  • the communication device 20 having the synchronization unit 25 may correspond to a ground master or a slave. Both communication devices 10 and 20 may correspond to slaves. Then, the synchronization unit 25 updates the shared time data 232 stored in the storage unit 23 to one indicating the current value.
  • the setting unit 26 is realized mainly by the cooperation of the processor 41 and the clock unit 44 of the communication device 20.
  • the setting unit 26 is an example of a second setting means for setting the sum of the shared time and the time difference indicated by the time difference data 131 received by the time difference data receiving unit 24 in the communication device 20 to the system time of the communication device 20.
  • the setting unit 26 Similar to the setting unit 16 of the communication device 10, the setting unit 26 reads the shared time data 232 and the time difference data 231 from the storage unit 23, and the shared time indicated by the shared time data 232 and the time difference indicated by the time difference data 231. The system time is set by calculating the sum of and. Once the time difference data 231 is acquired, the setting unit 26 monitors the shared time data 232 and obtains the system time data 233 stored in the storage unit 23 by adding the time difference to the current value of the shared time. Update to what is shown.
  • the control unit 27 is mainly realized by the processor 41 of the communication device 20.
  • the control unit 27 reads the system time data 233 from the storage unit 23 and executes various processes using the system time.
  • the time data transmission unit 28 is mainly realized by the processor 41 of the communication device 20.
  • the time data transmission unit 28 is an example of a time data transmission means that repeatedly transmits time data indicating the system time to the communication device 30 via the system bus 402. Similar to the time data transmission unit 18 of the communication device 10, the time data transmission unit 28 monitors the system time data 233 stored in the storage unit 23, and periodically based on the time indicated by the system time data 233.
  • the system time data 233 indicating the current value of the system time is transmitted to the communication device 30 via the system bus I / F 292 and the system bus 402.
  • the network I / F291 and the system bus I / F292 are mainly realized by the communication unit 47 of the communication device 20.
  • the communication device 30 that constitutes the PLC 100 together with the communication device 10 has the same configuration as the communication device 30 that constitutes the PLC 200 together with the communication device 20.
  • the configuration of the communication device 30 constituting the PLC 100 will be described as an example.
  • the communication device 30 does not have a configuration for synchronizing the shared time and a configuration for obtaining the system time based on the time difference.
  • the communication device 30 measures the system time using the built-in clock element based on the system time periodically notified from the communication device 10.
  • the communication device 30 includes a setting unit 31 for setting the system time, a storage unit 33 for storing various data, and a time data receiving unit 34 for receiving the system time data 133 from the communication device 10.
  • a control unit 37 that executes control processing using the system time, and a system bus I / F 39 for communicating via the system bus 401.
  • the setting unit 31 is realized mainly by the cooperation of the processor 41 and the clock unit 44 of the communication device 30.
  • the setting unit 31 is an example of a third setting means for setting the system time indicated by the system time data 133 received by the time data receiving unit 34 in the communication device 30 to the system time managed by the communication device 30 itself. ..
  • the setting unit 31 measures the system time by counting the clock pulse of the clock signal, and uses the system time data 333 as the counting result. Update to data showing the current time based on.
  • the setting unit 31 can measure the accurate system time.
  • the setting unit 31 starts timing the system time by counting the clock pulse, the system time measured by the setting unit 31 at the time when the current value of the system time is newly notified from the communication device 10. A time deviation may occur between the and the notified system time.
  • the setting unit 31 corrects the timed system time based on the received time data to reduce such a time deviation.
  • the setting unit 31 has an adjusting unit 311 that adjusts the speed of time counting by the setting unit 31 in order to reduce the time deviation.
  • the adjusting unit 311 compares the value of the system time clocked by the setting unit 31 with the current value of the system time notified from the communication device 10. More specifically, the adjusting unit 311 calculates the time deviation obtained by subtracting the current value of the notified system time from the timed system time value.
  • the adjusting unit 311 stores the time deviation data 334 indicating the time deviation in the storage unit 33. Then, the adjustment unit 311 adjusts the speed of timekeeping based on the time deviation data 334 to minimize the time deviation when the next system time is notified.
  • the storage unit 33 is mainly realized by at least one of a register, a main storage unit 42, and an auxiliary storage unit 43 that constitute the processor 41 of the communication device 30.
  • the storage unit 33 stores the system time data 333 indicating the current value of the system time and the time deviation data 334 indicating the time deviation.
  • the system time data 333 is updated by the setting unit 31, and the time deviation data 334 is updated by the time data receiving unit 34 and used by the adjusting unit 311.
  • the time data receiving unit 34 is mainly realized by the processor 41 of the communication device 30.
  • the time data receiving unit 34 is an example of the time data receiving means for receiving the system time data 133 from the communication device 10 in the communication device 30.
  • the time data receiving unit 34 writes the system time data 133 received from the communication device 10 via the system bus 401 and the system bus I / F 39 into the storage unit 33 as the system time data 333.
  • the control unit 37 is mainly realized by the processor 41 of the communication device 30.
  • the control unit 37 reads the system time data 233 from the storage unit 33 and executes various processes using the system time.
  • the system bus I / F 39 is mainly realized by the communication unit 47 of the communication device 30.
  • the first process shown in FIG. 9 starts when the power of the communication device 10 is turned on.
  • the first process is executed in parallel with the synchronized process of the shared time by the synchronization unit 15.
  • the communication device 10 determines whether or not the set time has been acquired from the setting device 101 (step S11).
  • the set time acquisition unit 11 determines whether or not the set value of the system time has been acquired from the setting device 101.
  • step S11 If it is determined that the set time has not been acquired (step S11; No), the communication device 10 repeats the determination in step S11 and waits until the set time is acquired. On the other hand, when it is determined that the set time has been acquired (step S11; Yes), the communication device 10 calculates the time difference between the shared time and the set time and stores the time difference data 131 (step S12). Specifically, the time difference calculation unit 12 subtracts the shared time from the system time indicated by the set time determined in step S11, and stores the time difference data 131 indicating the time difference obtained by this subtraction. Store in.
  • FIG. 10 shows the relationship between the shared time and the system time.
  • the horizontal axis corresponds to the actual elapsed time, which is the actual elapsed time
  • the vertical axis corresponds to the timed time of the shared time and the system time.
  • the line L1 shown by the solid line shows the transition of the shared time
  • the line L2 shown by the broken line shows the transition of the system time.
  • the time difference 51 between the system time and the shared time is always a constant value.
  • the communication device 10 transmits the time difference data 131 via the network 400 (step S13). Specifically, the time difference data transmission unit 14 transmits the time difference data 131 indicating the time difference calculated in step S12 to the communication device 20.
  • the communication device 10 calculates the current value of the system time from the current value of the shared time and the time difference, and updates the system time (step S14). Specifically, the setting unit 16 calculates the latest value of the system time as the sum of the shared time and the time difference calculated in step S12, and the latest value of the calculation result is used as the system time of the storage unit 13. Data 133 is updated.
  • the communication device 10 notifies the system time via the system bus 401 (step S15). Specifically, the time data transmission unit 18 transmits the system time data 133 indicating the system time updated in step S14 to the communication device 30.
  • the communication device 10 determines whether or not the current value of the shared time has been corrected by the synchronization unit 15 (step S16). Specifically, the synchronization unit 15 determines whether or not the shared time data 132 has been updated by the ground master delivering the reference clock.
  • step S16 When it is determined that the current value of the shared time has been corrected by the synchronization unit 15 (step S16; Yes), the communication device 10 repeats the processes after step S14. As a result, immediately after the shared time is corrected, the system time is updated based on the corrected shared time. On the other hand, when it is determined that the current value of the shared time has not been corrected by the synchronization unit 15 (step S16; No), the communication device 10 waits for a certain period of time while updating the system time based on the clock signal (step S16; No). S17). Specifically, the setting unit 16 updates the system time using the clock unit 44.
  • the communication device 10 determines whether or not a new set time has been acquired from the setting device 101 (step S18). Specifically, the set time acquisition unit 11 determines whether or not a new set value of the system time has been transmitted from the setting device 101.
  • step S18 When it is determined that the new set time has not been acquired from the setting device 101 (step S18; No), the communication device 10 repeats the processes after step S14. As a result, the calculation of the system time in step S14 and the notification of the system time in step S15 are repeatedly executed at a cycle equal to the fixed time waited in step S17.
  • the update of the system time in step S17 is performed based on the count result of the clock pulse.
  • the oscillation period of the crystal unit for generating this clock pulse may include a frequency deviation as described above. Therefore, the system time updated in step S17 does not always deviate from the shared time by a certain time difference 51 as shown in FIG. 10, and is shown by lines L3 and L4 in FIG.
  • the time can be measured at a speed different from that of the line L1 corresponding to the shared time.
  • the update of the system time in step S14 is periodically executed as in the timings T1, T2, and T3 in FIG. 11, the time difference between the system time and the shared time is corrected at this timing, and the initial time is corrected. It does not deviate significantly from the value. As a result, the accuracy of the system time can be kept high to some extent.
  • step S18 when it is determined in step S18 that a new set time has been acquired from the setting device 101 (step S18; Yes), the communication device 10 repeats the processes after step S12. As a result, the system time is updated again with a time difference based on the new set value.
  • the second process by the communication device 20 starts when the power of the communication device 20 is turned on.
  • the second process is executed in parallel with the synchronized process of the shared time by the synchronization unit 25.
  • the communication device 20 determines whether or not the time difference data 131 has been received via the network 400 (step S21).
  • the time difference data receiving unit 24 determines whether or not the time difference data 131 transmitted from the communication device 10 has been received via the network 400.
  • step S21 When it is determined that the time difference data 131 has not been received (step S21; No), the communication device 20 repeats the determination in step S21 and waits until the time difference data 131 is received. On the other hand, when it is determined that the time difference data 131 has been received (step S21; Yes), the communication device 20 stores the time difference data 131 (step S22). Specifically, the time difference data receiving unit 24 stores the time difference data 131 determined to have been acquired in step S21 as the time difference data 231 in the storage unit 13.
  • the communication device 20 calculates the current value of the system time from the current value of the shared time and the time difference, and updates the system time (step S23). Specifically, the setting unit 26 calculates the latest value of the system time as the sum of the shared time and the time difference stored in step S22, and the system time of the storage unit 23 is the latest value as the calculation result. Update data 233.
  • the communication device 20 notifies the system time via the system bus 402 (step S24). Specifically, the time data transmission unit 28 transmits the system time data 233 indicating the system time updated in step S23 to the communication device 30.
  • the communication device 20 determines whether or not the current value of the shared time has been corrected by the synchronization unit 25 (step S25). Specifically, the synchronization unit 25 determines whether or not the shared time data 132 has been updated by the ground master delivering the reference clock.
  • step S25; Yes When it is determined that the current value of the shared time has been corrected by the synchronization unit 25 (step S25; Yes), the communication device 20 repeats the processes after step S23. On the other hand, when it is determined that the current value of the shared time has not been corrected by the synchronization unit 25 (step S25; No), the communication device 20 waits for a certain period of time while updating the system time based on the clock signal (step S25; No). S26). Specifically, the setting unit 26 updates the system time using the clock unit 44.
  • the communication device 20 determines whether or not the time difference data 131 is newly received from the communication device 10 (step S27). Specifically, the time difference data receiving unit 24 determines whether or not the time difference data 131 indicating a new time difference has been transmitted from the communication device 10.
  • step S27 When it is determined that the time difference data 131 is not newly received (step S27; No), the communication device 20 repeats the processes after step S23. Therefore, the calculation of the system time in step S23 and the notification of the system time in step S24 are repeatedly executed at a cycle equal to the fixed time waited in step S26. As a result, as shown in FIG. 11, the system time is repeatedly corrected, and the accuracy of the system time can be kept high to some extent.
  • step S27 when it is determined that the time difference data 131 is newly received (step S27; Yes), the communication device 20 repeats the processes after step S22. As a result, the system time is updated again with a new time difference.
  • the third process by the communication device 30 will be described with reference to FIG.
  • the third process shown in FIG. 13 is executed by the communication device 30 constituting the PLC 100.
  • the communication device 30 constituting the PLC 200 executes the same process as the third process.
  • the third process starts when the power of the communication device 30 is turned on.
  • the communication device 30 determines whether or not the system time has been notified via the system bus 401 (step S31). Specifically, the time data receiving unit 34 determines whether or not the system time data 133 indicating the current value of the system time has been received from the communication device 10.
  • step S31 If it is determined that the system time has not been notified (step S31; No), the communication device 30 repeats the determination in step S31 and waits until the system time is notified. On the other hand, when it is determined that the system time has been notified (step S31; Yes), the communication device 30 stores the system time data 333 (step S32). Specifically, the time data receiving unit 34 stores the system time data 333 indicating the system time determined to have been notified in step S31 in the storage unit 33.
  • the communication device 30 updates the current value of the system time using the time deviation data 334 (step S33). Specifically, the setting unit 31 counts the clock pulse based on the time deviation data 334, and updates the system time data 333 to one indicating the current value of the system time based on the count result. However, when step S33 is executed for the first time, since the time deviation data 334 is the initial data that does not include substantial information, the setting unit 31 simply counts the clock pulses and bases the system time data. Update 333. At this time, the adjustment of the time counting speed by the adjusting unit 311 is not substantially executed.
  • the communication device 30 determines whether or not the system time has been newly notified (step S34). If it is determined that the system time has not been notified (step S34; No), the communication device 30 repeats the processes after step S33. As a result, the system time data 333 is updated based on the clock signal.
  • the communication device 30 when it is determined that the system time has been notified (step S34; Yes), the communication device 30 generates time deviation data 334 from the difference between the current value of the system time managed by the own device and the notified system time. And memorize (step S35). Specifically, the time data receiving unit 34 compares the value of the system time data 333 stored in the storage unit 33 with the newly notified system time value, and shows the difference between the times. The time deviation data 334 is stored in the storage unit 33.
  • the time deviation data 334 may be information that simply associates the time deviation with the cycle in which the system time is notified, or may be information indicating a value obtained by dividing this deviation by the cycle, or the adjusting unit 311. May be other information that indicates the information needed to adjust the speed of timekeeping.
  • step S33 the speed at which the clock pulse is counted is adjusted by the adjusting unit 311.
  • FIG. 14 schematically shows a specific example of adjusting the timekeeping speed by the adjusting unit 311.
  • the line L31 indicated by the solid line in FIG. 14 is the system time measured by the communication device 10, and the periodic sample value of the line L31 is notified to the communication device 30.
  • the line L32 shows the result of the setting unit 31 of the communication device 30 counting the clock pulses. As can be seen by comparing the lines L31 and L32, the line L32 deviates from the line L31 by one count every three counts. Therefore, as the actual time elapses, the time deviation due to the frequency deviation increases.
  • the adjusting unit 311 adjusts the speed of timing so that such a deviation does not occur.
  • the adjusting unit 311 skips the count of the clock pulse every time the clock pulse appears three times.
  • the counting result after the adjustment by the adjusting unit 311 substantially coincides with the system time to be notified from the communication device 10.
  • the communication devices 10 and 20 synchronize the shared time via the network 400, and the communication device 10 has the time difference data with the setting unit 16 that sets the set time set by the user as the system time.
  • the communication device 20 has a time difference data transmission unit 14 for transmitting 131, and the communication device 20 has a setting unit 26 for setting the sum of the shared time and the time difference indicated by the time difference data 231 as the system time.
  • the user arbitrarily sets the system time as needed, and the set system time is synchronized with the communication devices 10 and 20. Therefore, it is possible to improve the convenience of the time used in synchronization in the system.
  • time difference data 131 is transmitted between the communication devices 10 and 20, and the data indicating the current time is not transmitted except for the data necessary for synchronizing the shared time. Therefore, if the synchronization of the shared time is achieved, the synchronization error due to the communication delay does not occur. Therefore, the system time can be synchronized with high accuracy.
  • the communication device 10 does not directly obtain the system time from the set time, but once calculates the time difference, and then obtains the system time as the sum of the time difference and the shared time. That is, there may be a case where the communication device 10 measures the system time based only on the set time of the system time without using the shared time.
  • the communication device 10 according to the present embodiment uses the shared time to obtain the system time by the same procedure as that of the communication device 20 when measuring the system time. Therefore, the communication device 10 can measure the system time with high accuracy in the same manner as the communication device 20. Further, since the communication devices 10 and 20 time the system time according to the same procedure, it becomes easy to form the communication system 1000 for synchronizing the system time, and the system time is synchronized between the communication devices 10 and 20 with high accuracy. Will be done.
  • the communication device 20 repeatedly corrected the system time as shown in FIG. 11 by calculating the system time as the sum of the shared time and the time difference indicated by the received time difference data. Therefore, the communication device 20 can measure the system time after that by acquiring the time difference once, while synchronizing with the communication device 10. Therefore, it is not necessary to transmit data between the communication devices 10 and 20 each time the communication device 20 corrects the system time to synchronize with the communication device 10. For example, if the time difference data is transmitted to the communication device 20 only when the system time is set in the communication device 10, it is not necessary to transmit the time difference data between the communication devices 10 and 20 thereafter. As a result, the communication load between the communication devices 10 and 20 can be reduced. Further, when the communication device 20 repeatedly corrects the system time, the system time is clocked at the same speed as the shared time as described with reference to FIG. 11, and the error of the synchronized system time is expanded. Can be prevented.
  • the communication device 30 corrects the system time being clocked based on the time data transmitted from either one of the communication devices 10 and 20. Therefore, the communication device 30 can synchronize the system time with the communication devices 10 and 20 with high accuracy.
  • the communication device 30 adjusted the timing speed to reduce the time deviation between the system time measured by the own machine and the system time indicated by the time data. As a result, the communication device 30 can synchronize the system time with the communication devices 10 and 20 with high accuracy even during the period from the reception of the time data to the reception of the next time data.
  • the number of communication devices 40 and the numbers of PLCs 100 and 200 are not limited to the numbers illustrated in FIG. 1, and may be arbitrarily changed.
  • the communication system 1000 may configure a monitoring system that collects and records information output from the sensor.
  • shared time data 132 and 232 indicating the current value of the shared time is stored in the storage units 13 and 23
  • the present invention is not limited to this.
  • the shared time data 132 and 232 are not constantly updated, and the storage units 13 and 23 store the shared time data 132 and 232 updated at a specific timing, and there is an external request.
  • data indicating the current value of the shared time may be generated and output based on the stored data.
  • system time data 133, 233, 333 indicating the current value of the system time is stored in the storage units 13, 23, 33 has been described, but the present invention is not limited thereto.
  • the storage units 13, 23, and 33 may generate and output data indicating the current value of the system time in response to an external request.
  • the set time acquisition unit 11 may acquire the set time from the NTP (Network Time Protocol) server, may acquire the set time from the communication device 30 via the system bus 401, or has a PLC200 having a user interface. You may get the set time from.
  • NTP Network Time Protocol
  • the time difference data is not transmitted between the communication devices 10 and 20.
  • the communication devices 20 and 30 transmit data indicating an event represented by an error log in association with the shared time at which the event occurred to the communication device 10, and the communication device 10 receives the received data.
  • the system time at which the event occurred may be calculated from the shared time indicated by the above and the time difference, and the calculated system time may be associated with the information of the event and provided to the user.
  • the communication device 10 can associate the information of the event occurring in the communication devices 20 and 30 with the system time. ..
  • the time difference value indicated by the time difference data is the difference obtained by subtracting the shared time from the system time
  • the present invention is not limited to this.
  • the difference obtained by subtracting the system time from the shared time may be used as the time difference.
  • the functional configuration of the communication device 10 shown in FIG. 5 may be shared by the units constituting the PLC 100, or the functional configuration of the communication device 20 shown in FIG. 7 may be shared by the units constituting the PLC 200. May be shared. That is, the PLC 100 may exhibit the same function as the communication device 10, or the PLC 200 may exhibit the same function as the communication device 20.
  • the function of the communication device 40 can be realized by dedicated hardware or by a normal computer system.
  • the program P1 executed by the processor 41 is stored in a non-temporary recording medium readable by a computer and distributed, and the program P1 is installed in the computer to configure an apparatus for executing the above-mentioned processing.
  • a recording medium for example, a flexible disk, a CD-ROM (Compact Disc Read-Only Memory), a DVD (Digital Versatile Disc), and an MO (Magneto-Optical Disc) can be considered.
  • the program P1 may be stored in a disk device of a server device on a communication network represented by the Internet, superposed on a carrier wave, and downloaded to a computer, for example.
  • the above process can also be achieved by starting and executing the program P1 while transferring it via the communication network.
  • processing can also be achieved by executing all or a part of the program P1 on the server device and executing the program while the computer sends and receives information on the processing via the communication network.
  • the means for realizing the function of the communication device 40 is not limited to software, and a part or all thereof may be realized by dedicated hardware including a circuit.
  • the present invention is suitable for time synchronization via a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electric Clocks (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Programmable Controllers (AREA)
  • Computer And Data Communications (AREA)

Abstract

通信システム(1000)は、通信遅延を含む同期誤差が補正された共有時刻を、ネットワーク(400)を介して共有する通信装置(10,20)を備える。通信装置(10)は、ユーザによって設定された設定時刻を取得する設定時刻取得部と、設定時刻を、通信装置(10)のシステム時刻である第1システム時刻に設定する設定部と、共有時刻と設定時刻との時間差を示す時間差データを通信装置(20)に送信する時間差データ送信部と、を有する。通信装置(20)は、時間差データを受信する時間差データ受信部と、共有時刻と、時間差データにより示される時間差と、の和を、通信装置(20)のシステム時刻である第2システム時刻に設定する設定部と、を有する。

Description

通信システム、通信装置及びプログラム
 本発明は、通信システム、通信装置及びプログラムに関する。
 工場に代表される施設では、通信ネットワークを介して複数の機器を制御するシステムが運用されている。このようなシステムには、正確に複数の機器を協働させることが求められる。そこで、通信ネットワーク上の機器の時刻を同期するための技術が提案されている(例えば、特許文献1を参照)。
 特許文献1には、複数のコントローラが同期するための時刻を複数の方式から選択可能としたシステムが開示されている。第1の方式では、PC(パーソナルコンピュータ)からネットワークを介してコントローラへ時刻データが送信されることで時刻が同期される。第2の方式では、GPS(Global Positioning System)の標準時刻データが、標準時刻レシーバから専用ケーブルを介してコントローラに取り込まれることで時刻が同期される。このシステムによれば、コントローラはそれぞれ、PCからの時刻と、高精度な標準時刻と、を選択することができる。
特開2006-276958号公報
 機器を制御するシステムのユーザが、当該システムを稼働させるための基準となるシステム時刻を設定したいという要望がある。例えば、ユーザが、システムの一時停止中にはシステム時刻の計時も停止させることを所望する場合、システム時刻とは異なる時刻にシステム時刻を合わせることを所望する場合、及び、システムを適切に管理するためにシステム時刻を過去の時刻に戻すことを所望する場合、に代表されるように、ユーザが必要に応じて時刻を任意に設定したいという要望がある。
 特許文献1の技術においては、GPSの標準時刻を変更することができないため、ユーザは任意の時刻をPCから設定することができる。しかしながら、PCからの時刻は、標準時刻に比べて精度が低く、精度が求められる場合には、ユーザが時刻を設定する余地がなかった。このため、システムにおいて同期されて用いられる時刻の利便性を向上させる余地があった。
 本発明は、上記の事情に鑑みてなされたものであり、システムにおいて同期されて用いられる時刻の利便性を向上させることを目的とする。
 上記目的を達成するため、本発明の通信システムは、通信遅延を含む同期誤差が補正された共有時刻を、ネットワークを介して共有する第1通信装置と第2通信装置とを備える通信システムであって、第1通信装置は、ユーザによって設定された設定時刻を取得する取得手段と、設定時刻を、第1通信装置のシステム時刻である第1システム時刻に設定する第1設定手段と、共有時刻と設定時刻との時間差を示す時間差データを第2通信装置に送信する時間差データ送信手段と、を有し、第2通信装置は、時間差データを受信する時間差データ受信手段と、共有時刻と、時間差データにより示される時間差と、の和を、第2通信装置のシステム時刻である第2システム時刻に設定する第2設定手段と、を有する。
 本発明によれば、第1通信装置と第2通信装置とは、ネットワークを介して共有時刻を共有し、第1通信装置は、ユーザによって設定された設定時刻を第1システム時刻に設定する第1設定手段と、時間差データを送信する時間差データ送信手段と、を有し、第2通信装置は、共有時刻と、時間差データにより示される時間差と、の和を第2システム時刻に設定する第2設定手段を有する。これにより、ユーザが必要に応じて設定時刻を任意に設定し、設定時刻に基づいて設定される第1通信装置の第1システム時刻と第2通信装置の第2システム時刻とが同期する。したがって、システムにおいて同期されて用いられる時刻の利便性を向上させることができる。
本発明の実施の形態に係る通信システムの構成を示す図 実施の形態に係るネットワークを介した時刻の同期について説明するための図 実施の形態に係るシステムバスを介した時刻の同期について説明するための図 実施の形態に係る通信装置のハードウェア構成を示す図 実施の形態に係る通信装置の機能的な構成を示す第1の図 実施の形態に係る設定値を含む情報の一例を示す図 実施の形態に係る通信装置の機能的な構成を示す第2の図 実施の形態に係る通信装置の機能的な構成を示す第3の図 実施の形態に係る第1処理を示すフローチャート 実施の形態に係る共有時刻とシステム時刻との関係を示す図 実施の形態に係るシステム時刻の計時について説明するための図 実施の形態に係る第2処理を示すフローチャート 実施の形態に係る第3処理を示すフローチャート 実施の形態に係る計時の速さの調整について説明するための図
 以下、本発明の実施の形態に係る通信システム1000について、図面を参照しつつ詳細に説明する。なお、複数の装置が時刻を共有すること及び同期することは、複数の装置それぞれが有する時計を同期することを意味する。複数の装置それぞれが有する時計が同等の時刻を計時することで、この時刻が複数の装置において共有されていれば、複数の装置が時刻を同期することとなる。
 実施の形態
 本実施の形態に係る通信システム1000は、工場に設置されるFAシステムの一部に相当する。通信システム1000は、FAシステムとしての生産システム、検査システム、加工システム、その他のシステムを構成する機器同士を、通信路を介して接続することで形成される。図1に示されるように、通信システム1000は、時刻を設定するための設定装置101と、産業用の制御装置であるPLC(Programmable Logic Controller)100,200と、を有する。
 設定装置101は、ユーザインタフェースを有するコンピュータ端末であって、例えば、IPC(Industrial Personal Computer)又はタブレット型の端末である。設定装置101は、PLC100と伝送路102を介して接続される。伝送路102は、例えば、USB(Universal Serial Bus)に代表される通信線であってもよいし、無線の通信路であってもよい。
 PLC100,200は、不図示の機器を制御するために利用される。PLC100,200を利用して制御される機器は、例えば、アクチュエータ又はロボットである。PLC100,200は、ネットワーク400を介して接続されて互いに通信する。ネットワーク400は、フィールドネットワークに代表されるFA(Factory Automation)ネットワークであってもよいし、他のネットワークであってもよい。
 PLC100は、ネットワーク400に接続される通信装置10と、この通信装置10にシステムバス401を介して接続される複数の通信装置30と、を有する。通信装置10は、PLC100を構成するネットワークユニット又は通信ユニットに相当し、通信装置30はそれぞれ、例えば、CPU(Central Processing Unit)ユニット、I/O(Input/Output)ユニット、A/D(Analog/Digital)変換ユニット、その他のユニットに相当する。ただし、通信装置10は、他のユニットであってもよい。例えば、通信装置10は、ネットワーク400に接続する機能を有するCPUユニットであってもよい。通信装置10,30が協働することで、PLC100による制御処理が実現される。
 PLC200は、ネットワーク400に接続される通信装置20と、この通信装置20にシステムバス402を介して接続される複数の通信装置30と、を有する。通信装置20は、PLC200を構成するネットワークユニット又は通信ユニットに相当してもよいし、ネットワーク400に接続する機能を有するCPUユニットであってもよい。通信装置20,30が協働することで、PLC200による制御処理が実現される。
 通信装置10,20は、ネットワーク400を介して、図2に示されるように時刻を同期する。詳細には、通信装置10は、通信装置20と時刻同期プロトコルにより時刻を共有する。時刻同期プロトコルは、通信ネットワーク上の機器の時刻を高精度に同期するためのプロトコルである。このようなプロトコルの一例に、LAN(Local Area Network)上の機器の時刻をナノ秒オーダで高精度に同期させるIEEE802.1ASが挙げられる。以下では、この時刻同期プロトコルを単に時刻同期プロトコルと表記する。時刻同期プロトコルによれば、グランドマスタが、ネットワーク経由で高精度な基準クロックを配信し、スレーブが基準クロックを定期的に受け取る。これにより、ネットワーク上の機器が時刻を高精度に同期することができる。
 詳細には、グランドマスタとスレーブとの間でデータを往復させることで通信遅延が計測され、スレーブは、この通信遅延を補正した基準クロックを得る。また、グランドマスタは、基準クロックを数十マイクロ秒の短いサイクルタイムで繰り返し配信する。グランドマスタ及びスレーブは、以上により通信遅延が補正された時刻を共有する。さらに、時刻同期プロトコルでは、グランドマスタとスレーブとがそれぞれ管理する時刻が、後述の周波数偏差に代表されるようにズレた場合にも、このズレを基準クロックにより補正する。以上のように、時刻同期プロトコルにより、通信遅延を含む同期誤差が補正されて、時刻が同期する。
 以下では、時刻同期プロトコルにより同期されて、装置間で共有される時刻を共有時刻と表記する。通信装置10,20それぞれによって管理される共有時刻は、ナノ秒オーダで高精度に同期する。換言すると、共有時刻の誤差の最大値は、例えば1ミリ秒、100ナノ秒、又は10ナノ秒である。
 共有時刻は、通信システム1000による制御処理において直接用いられることはなく、共有時刻とは異なるシステム時刻が、通信システム1000が稼働するための基準となる。例えば、通信システム1000を構成する装置が、ロギング処理を実行する際にシステム時刻を記録する。ただし、共有時刻は、システム時刻を得るための基準となる。詳細には、共有時刻から一定の時間差が加算された時刻がシステム時刻に相当する。この時間差は、正値、負値又はゼロであってもよい。
 通信装置10は、設定装置101に設定されたシステム時刻の設定値である設定時刻を受け付ける。この設定値は、例えば、システム時刻の一の時点を示す値と、この値を開始するトリガーと、を含むパラメータである。トリガーは、設定値が設定装置101又は通信装置10によって取得されることであってもよいし、他のイベントであってもよいし、共有時刻を用いて指定されたタイミングであってもよい。そして、通信装置10は、設定値により示されるシステム時刻と共有時刻との時間差を算出し、その後は、共有時刻と時間差との和としてシステム時刻を得る。また、通信装置10は、算出した時間差を示すデータを通信装置20に送信する。通信装置20は、共有時刻と、通信装置10から受信したデータにより示される時間差と、の和としてシステム時刻を得る。通信装置10,20がそれぞれ得るシステム時刻は、共有時刻と同等の精度で同期することとなる。
 また、通信装置10,30は、システムバス401を介して、図3に示されるようにシステム時刻を共有する。詳細には、通信装置10が、システム時刻の現在値を通信装置30に繰り返し通知する。この通知は、周期的に実行され、通知の周期は、例えば、1ミリ秒、100ミリ秒、又は1分である。通信装置30は、第1の通知によりシステム時刻を得たときから、内蔵のクロック素子を用いてシステム時刻を計時する。その後、通信装置30は、第2の通知により新たなシステム時刻を得ると、計時したシステム時刻と、通知されたシステム時刻とを比較して、これらのシステム時刻の差を時刻偏差として算出する。そして、通信装置30は、算出した時刻偏差に基づいてシステム時刻を補正しつつ計時を続行する。より詳細には、通信装置30は、計時の速さを調整することにより、第2の通知以降の将来の通知により得るシステム時刻と、続行して計時するシステム時刻と、の時刻偏差を減少させる。通信装置30によって計時の速さが調整されたシステム時刻と、通信装置10から通知されるシステム時刻とは、その時刻偏差が小さくなり、同期することとなる。
 続いて、通信装置10,20,30のハードウェア構成について、図4を参照して説明する。図4に示される通信装置40は、通信装置10,20,30の総称である。通信装置40は、そのハードウェア構成として、プロセッサ41と、主記憶部42と、補助記憶部43と、クロック部44と、入力部45と、出力部46と、通信部47と、を有する。主記憶部42、補助記憶部43、クロック部44、入力部45、出力部46及び通信部47はいずれも、内部バス49を介してプロセッサ41に接続される。
 プロセッサ41は、CPU(Central Processing Unit)を含む。プロセッサ41は、補助記憶部43に記憶されるプログラムP1を実行することにより、通信装置40の種々の機能を実現して、後述の処理を実行する。
 主記憶部42は、RAM(Random Access Memory)を含む。主記憶部42には、補助記憶部43からプログラムP1がロードされる。そして、主記憶部42は、プロセッサ41の作業領域として用いられる。
 補助記憶部43は、EEPROM(Electrically Erasable Programmable Read-Only Memory)及びHDD(Hard Disk Drive)に代表される不揮発性メモリを含む。補助記憶部43は、プログラムP1の他に、プロセッサ41の処理に用いられる種々のデータを記憶する。補助記憶部43は、プロセッサ41の指示に従って、プロセッサ41によって利用されるデータをプロセッサ41に供給し、プロセッサ41から供給されたデータを記憶する。
 クロック部44は、水晶振動子を有するクロック発生回路を含む。クロック部44は、水晶振動子の発振回数に基づいてクロック信号を生成して出力する。クロック信号は、クロックパルスを含み、例えばプロセッサ41がクロックパルスの立ち上がり回数をカウントすることで時刻を計時するために利用される。
 入力部45は、入力キー及びポインティングデバイスに代表される入力デバイスを含む。入力部45は、通信装置40のユーザによって入力された情報を取得して、取得した情報をプロセッサ41に通知する。
 出力部46は、LCD(Liquid Crystal Display)及びスピーカに代表される出力デバイスを含む。出力部46は、プロセッサ41の指示に従って、種々の情報をユーザに提示する。
 通信部47は、外部の装置と通信するためのネットワークインタフェース回路を含む。通信部47は、外部から信号を受信して、この信号により示されるデータをプロセッサ41へ出力する。また、通信部47は、プロセッサ41から出力されたデータを示す信号を外部の装置へ送信する。なお、図4では、1つの通信部47が代表として示されているが、通信装置10は、伝送路102に接続するための通信部47と、ネットワーク400に接続するための通信部47と、システムバス401に接続するための通信部47と、を個別に有してもよいし、通信装置20は、ネットワーク400に接続するための通信部47と、システムバス402に接続するための通信部47と、を個別に有してもよい。
 図4に示されるハードウェア構成が協働することで、通信装置40は、種々の機能を発揮する。詳細には、通信装置10は、図5に示されるように、その機能として、設定装置101から伝送路102を介して設定時刻を取得する設定時刻取得部11と、設定時刻と共有時刻との時間差を算出する時間差算出部12と、種々のデータを記憶する記憶部13と、時間差を示す時間差データ131をネットワークI/F(Interface)191を介してネットワーク400へ送信する時間差データ送信部14と、ネットワーク400を介して通信装置20と共有時刻を同期させるための同期部15と、共有時刻と時間差との和をシステム時刻に設定してシステム時刻を計時する設定部16と、システム時刻を利用した制御処理を実行する制御部17と、システム時刻を示すシステム時刻データ133をシステムバスI/F192を介してシステムバス401へ送信する時刻データ送信部18と、ネットワーク400を介して通信するためのネットワークI/F191と、システムバス401を介して通信するためのシステムバスI/F192と、を有する。
 設定時刻取得部11は、主として通信装置10のプロセッサ41及び通信部47との協働により実現される。設定時刻取得部11は、通信装置10においてユーザによって設定された設定時刻を取得する取得手段の一例である。設定時刻取得部11は、設定時刻を示す設定情報を、伝送路102を介して設定装置101から取得する。この設定情報は、例えば図6に示されるように、システム時刻の設定値と、この設定値を適用するタイミングを示すトリガーと、を関連付ける情報である。図6におけるトリガーは、設定値を現在時刻として即座に適用することを示している。なお、設定時刻取得部11によって取得される情報からは、トリガーが省略されてもよい。トリガーが省略される場合には、設定時刻を適用するタイミングが予め規定される。予め規定されるタイミングは、例えば現在時刻、すなわち即時である。図5に戻り、設定時刻取得部11は、取得した設定時刻を示す情報を時間差算出部12に送出する。
 時間差算出部12は、主として通信装置10のプロセッサ41により実現される。時間差算出部12は、設定時刻取得部11から送出された設定時刻を示す情報を取得するとともに、共有時刻を示す共有時刻データ132を記憶部13から読み出して、この設定時刻が適用されるタイミングにおける、この設定時刻と共有時刻との時間差を算出する。換言すると、時間差算出部12は、設定時刻から共有時刻を減じて得る差を時間差として算出する。図6に示される情報が設定時刻取得部11によって取得された場合には、時間差算出部12は、即座に、記憶部13から共有時刻を読み出して、設定時刻から共有時刻を減算する。この場合において、例えば、「2018年12月25日15時40分45.678秒」という共有時刻が読み出されたときには、読み出した時刻を図6中の「2018年12月25日15時40分50.789秒」から減算することで「5.111秒」すなわち5111ミリ秒という時間差が算出される。そして、時間差算出部12は、算出した時間差を示す時間差データ131を記憶部13に書き込む。なお、設定値が適用されるタイミングが現在時刻とは異なる場合には、このタイミングにおいて時間差の算出及び時間差データの書き込みが実行されればよい。また、このタイミングが演算可能な時刻であれば、このタイミングにおける共有時刻を算出することで時間差を得てもよい。
 記憶部13は、主として通信装置10のプロセッサ41を構成するレジスタ、主記憶部42、及び補助記憶部43のうち少なくとも1つにより実現される。記憶部13は、時間差データ131と、共有時刻の現在値を示す共有時刻データ132と、システム時刻の現在値を示すシステム時刻データ133と、を記憶する。共有時刻データ132は、同期部15によって更新され、システム時刻データ133は、設定部16によって更新される。
 時間差データ送信部14は、主として通信装置10のプロセッサ41により実現される。時間差データ送信部14は、通信装置10において共有時刻と設定時刻との時間差を示す時間差データ131を通信装置20に送信する時間差データ送信手段の一例である。時間差データ送信部14は、時間差データ131が記憶部13に書き込まれると、記憶部13から時間差データ131を読み出して、ネットワークI/F191及びネットワーク400を介して時間差データ131を通信装置20へ送信する。
 同期部15は、主として通信装置10のプロセッサ41及びクロック部44の協働により実現される。同期部15は、ネットワークI/F191及びネットワーク400を介して通信装置20と共有時刻を同期する。同期部15による同期は、時刻同期プロトコルに従ってなされるが、これに限定されず、他の時刻同期プロトコルに従ってなされてもよい。また、時刻同期プロトコルに従う同期部15を有する通信装置10は、グランドマスタに相当してもよいし、スレーブに相当してもよい。そして、同期部15は、記憶部13に格納されている共有時刻データ132を、現在値を示すものに更新する。
 設定部16は、主として通信装置10のプロセッサ41及びクロック部44の協働により実現される。設定部16は、設定時刻を通信装置10のシステム時刻に設定する第1設定手段の一例である。設定部16は、記憶部13から共有時刻データ132及び時間差データ131を読み出して、共有時刻データ132により示される共有時刻と、時間差データ131により示される時間差と、の和を算出することにより、システム時刻を設定する。詳細には、設定部16は、共有時刻と時間差とを定期的に読み込んで加算して、記憶部13に格納されているシステム時刻データ133を、加算により得た値を示すものに更新する。なお、システム時刻を得るための加算に伴う演算負荷を考慮して、加算を実行する周期が定められる。この周期は、例えば、10ミリ秒、又は1秒である。そして、この周期内では、設定部16は、クロック部44のクロックパルスのカウントに基づいてシステム時刻データ133を更新する。
 制御部17は、主として通信装置10のプロセッサ41によって実現される。制御部17は、記憶部13からシステム時刻データ133を読み出して、システム時刻を利用した種々の処理を実行する。例えば、制御部17は、システム時刻と関連付けたイベント種別を示すレコードを逐次記録するロギング処理を実行してもよいし、システム時刻が予め定められた値となるまで待機してから予定された処理を実行してもよい。
 時刻データ送信部18は、主として通信装置10のプロセッサ41によって実現される。時刻データ送信部18は、システム時刻を示す時刻データを、システムバス401を介して通信装置30に繰り返し送信する時刻データ送信手段の一例である。時刻データ送信部18は、記憶部13に格納されているシステム時刻データ133を監視して、システム時刻データ133により示される時刻に基づいて定期的に、システム時刻の現在値を示すシステム時刻データ133を、システムバスI/F192及びシステムバス401を介して通信装置30へ送信する。この送信の周期は、設定部16による加算の周期と同等であってもよいし、異なってもよい。
 ネットワークI/F191及びシステムバスI/F192は、主として通信装置10の通信部47によって実現される。
 続いて、通信装置20の機能的な構成について、図7を参照して説明する。通信装置20は、通信装置10の一部の機能と同等の機能を有するが、通信装置10から時間差を取得する構成を備える点で通信装置10とは異なっている。詳細には、通信装置20は、図7に示されるように、種々のデータを記憶する記憶部23と、通信装置10から時間差データ131を受信する時間差データ受信部24と、ネットワーク400を介して通信装置10と共有時刻を同期させるための同期部25と、共有時刻と時間差との和をシステム時刻に設定する設定部26と、システム時刻を利用した制御処理を実行する制御部27と、システム時刻を示すシステム時刻データ233をシステムバスI/F292を介してシステムバス402へ送信する時刻データ送信部28と、ネットワーク400を介して通信するためのネットワークI/F291と、システムバス402を介して通信するためのシステムバスI/F292と、を有する。
 記憶部23は、主として通信装置20のプロセッサ41を構成するレジスタ、主記憶部42、及び補助記憶部43のうち少なくとも1つにより実現される。記憶部23は、時間差データ231と、共有時刻の現在値を示す共有時刻データ232と、システム時刻の現在値を示すシステム時刻データ233と、を記憶する。共有時刻データ232は、同期部25によって更新され、システム時刻データ233は、設定部26によって更新される。
 時間差データ受信部24は、主として通信装置20のプロセッサ41によって実現される。時間差データ受信部24は、通信装置20において、通信装置10から送信された時間差データ131を受信する時間差データ受信手段の一例である。時間差データ受信部24は、通信装置10からの時間差データ131を、ネットワーク400及びネットワークI/F291を介して受信すると、この時間差データ131を記憶部23に時間差データ231として書き込む。
 同期部25は、主として通信装置20のプロセッサ41及びクロック部44の協働により実現される。同期部25は、通信装置10との時刻同期プロトコルに従った通信により共有時刻を通信装置10との間で同期する。同期部25を有する通信装置20は、グランドマスタに相当してもよいし、スレーブに相当してもよい。なお、通信装置10,20の双方がスレーブに相当してもよい。そして、同期部25は、記憶部23に格納されている共有時刻データ232を、現在値を示すものに更新する。
 設定部26は、主として通信装置20のプロセッサ41及びクロック部44の協働により実現される。設定部26は、通信装置20において、共有時刻と、時間差データ受信部24によって受信された時間差データ131により示される時間差と、の和を通信装置20のシステム時刻に設定する第2設定手段の一例である。設定部26は、通信装置10の設定部16と同様に、記憶部23から共有時刻データ232及び時間差データ231を読み出して、共有時刻データ232により示される共有時刻と、時間差データ231により示される時間差と、の和を算出することにより、システム時刻を設定する。設定部26は、時間差データ231を一旦取得すると、共有時刻データ232を監視して、記憶部23に格納されているシステム時刻データ233を、共有時刻の現在値に時間差を加算して得る値を示すものに更新する。
 制御部27は、主として通信装置20のプロセッサ41によって実現される。制御部27は、記憶部23からシステム時刻データ233を読み出して、システム時刻を利用した種々の処理を実行する。
 時刻データ送信部28は、主として通信装置20のプロセッサ41によって実現される。時刻データ送信部28は、システム時刻を示す時刻データを、システムバス402を介して通信装置30に繰り返し送信する時刻データ送信手段の一例である。時刻データ送信部28は、通信装置10の時刻データ送信部18と同様に、記憶部23に格納されているシステム時刻データ233を監視して、システム時刻データ233により示される時刻に基づいて定期的に、システム時刻の現在値を示すシステム時刻データ233を、システムバスI/F292及びシステムバス402を介して通信装置30へ送信する。
 ネットワークI/F291及びシステムバスI/F292は、主として通信装置20の通信部47によって実現される。
 続いて、通信装置30の機能的な構成について図8を参照して説明する。通信装置10と共にPLC100を構成する通信装置30は、通信装置20と共にPLC200を構成する通信装置30と同等の構成を有する。以下では、PLC100を構成する通信装置30を例として、その構成について説明する。
 通信装置30は、共有時刻を同期するための構成、及び、時間差に基づいてシステム時刻を得るための構成を有しない。通信装置30は、通信装置10から定期的に通知されるシステム時刻に基づいて、内蔵のクロック素子を利用してシステム時刻を計時する。通信装置30は、図8に示されるように、システム時刻を設定する設定部31と、種々のデータを記憶する記憶部33と、通信装置10からシステム時刻データ133を受信する時刻データ受信部34と、システム時刻を利用した制御処理を実行する制御部37と、システムバス401を介して通信するためのシステムバスI/F39と、を有する。
 設定部31は、主として通信装置30のプロセッサ41及びクロック部44の協働により実現される。設定部31は、通信装置30において、時刻データ受信部34によって受信されたシステム時刻データ133により示されるシステム時刻を、通信装置30自体が管理するシステム時刻に設定する第3設定手段の一例である。設定部31は、時刻データ受信部34によって記憶部33のシステム時刻データ333が更新されると、クロック信号のクロックパルスをカウントすることでシステム時刻を計時し、システム時刻データ333を、カウント結果に基づく現在時刻を示すデータに更新する。
 ここで、通信装置30のクロック部44によって生成されるクロック信号が正確であれば、設定部31は、正確なシステム時刻を計時することができる。しかしながら、水晶振動子の発振周波数にはわずかな誤差があり、通信装置30の水晶振動子と他の装置の水晶振動子との間には、周波数偏差が生じ得る。このため、設定部31がクロックパルスのカウントによりシステム時刻の計時を開始してから、新たに通信装置10からシステム時刻の現在値が通知された時点において、設定部31が計時しているシステム時刻と、通知されたシステム時刻と、の間には、時刻偏差が生じ得る。
 設定部31は、受信した時刻データに基づいて、計時しているシステム時刻を補正して、このような時刻偏差を減少させる。詳細には、設定部31は、時刻偏差を減少させるために設定部31による計時の速さを調整する調整部311を有する。調整部311は、設定部31が計時したシステム時刻の値と、通信装置10から通知されたシステム時刻の現在値と、を比較する。より詳細には、調整部311は、計時されたシステム時刻の値から、通知されたシステム時刻の現在値を減じて得た時刻偏差を算出する。調整部311は、この時刻偏差を示す時刻偏差データ334を記憶部33に格納する。そして、調整部311は、時刻偏差データ334に基づいて、計時の速さを調整して、次回のシステム時刻が通知される際における時刻偏差を極力小さくする。
 記憶部33は、主として通信装置30のプロセッサ41を構成するレジスタ、主記憶部42、及び補助記憶部43のうち少なくとも1つにより実現される。記憶部33は、システム時刻の現在値を示すシステム時刻データ333と、時刻偏差を示す時刻偏差データ334と、を記憶する。システム時刻データ333は、設定部31によって更新され、時刻偏差データ334は、時刻データ受信部34によって更新されて調整部311によって利用される。
 時刻データ受信部34は、主として通信装置30のプロセッサ41によって実現される。時刻データ受信部34は、通信装置30において、通信装置10からシステム時刻データ133を受信する時刻データ受信手段の一例である。時刻データ受信部34は、通信装置10からシステムバス401及びシステムバスI/F39を介して受信したシステム時刻データ133を、システム時刻データ333として記憶部33に書き込む。
 制御部37は、主として通信装置30のプロセッサ41によって実現される。制御部37は、記憶部33からシステム時刻データ233を読み出して、システム時刻を利用した種々の処理を実行する。システムバスI/F39は、主として通信装置30の通信部47によって実現される。
 続いて、通信装置10によって実行される第1処理、通信装置20によって実行される第2処理、及び、通信装置30によって実行される第3処理について、順に説明する。
 図9に示される第1処理は、通信装置10の電源が投入されることで開始する。なお、第1処理は、同期部15による共有時刻の同期処理とは並列に実行される。第1処理では、通信装置10は、設定装置101から設定時刻を取得したか否かを判定する(ステップS11)。具体的には、設定時刻取得部11が、システム時刻の設定値を設定装置101から取得したか否かを判定する。
 設定時刻を取得していないと判定した場合(ステップS11;No)、通信装置10は、ステップS11の判定を繰り返して、設定時刻を取得するまで待機する。一方、設定時刻を取得したと判定した場合(ステップS11;Yes)、通信装置10は、共有時刻と設定時刻との時間差を算出して、時間差データ131を記憶する(ステップS12)。具体的には、時間差算出部12が、ステップS11にて取得したと判定された設定時刻により示されるシステム時刻から共有時刻を減算し、この減算により得た時間差を示す時間差データ131を記憶部13に格納する。
 図10には、共有時刻とシステム時刻との関係が示されている。図10において横軸は、実際の経過時間である実時間に対応し、縦軸は、共有時刻及びシステム時刻の計時された時刻に対応する。実線で示される線L1は、共有時刻の推移を示し、破線で示される線L2は、システム時刻の推移を示す。図10に示されるように、システム時刻と共有時刻との時間差51は、常に一定の値である。
 図9に戻り、ステップS12に続いて、通信装置10は、ネットワーク400を介して時間差データ131を送信する(ステップS13)。具体的には、時間差データ送信部14が、ステップS12にて算出された時間差を示す時間差データ131を通信装置20へ送信する。
 次に、通信装置10は、共有時刻の現在値と時間差とからシステム時刻の現在値を算出して、システム時刻を更新する(ステップS14)。具体的には、設定部16が、共有時刻とステップS12にて算出された時間差との和としてシステム時刻の最新の値を演算して、演算結果である最新の値で記憶部13のシステム時刻データ133を更新する。
 次に、通信装置10は、システムバス401を介してシステム時刻を通知する(ステップS15)。具体的には、時刻データ送信部18が、ステップS14にて更新されたシステム時刻を示すシステム時刻データ133を通信装置30へ送信する。
 次に、通信装置10は、共有時刻の現在値が同期部15により補正されたか否かを判定する(ステップS16)。具体的には、同期部15が、グランドマスタが基準クロックを配信することによって共有時刻データ132が更新されたか否かを判定する。
 共有時刻の現在値が同期部15により補正されたと判定した場合(ステップS16;Yes)、通信装置10は、ステップS14以降の処理を繰り返す。これにより、共有時刻が補正された直後には、補正された共有時刻に基づいてシステム時刻が更新される。一方、共有時刻の現在値が同期部15により補正されてはいないと判定した場合(ステップS16;No)、通信装置10は、クロック信号に基づいてシステム時刻を更新しながら一定時間待機する(ステップS17)。具体的には、設定部16が、クロック部44を利用してシステム時刻を更新する。
 次に、通信装置10は、設定装置101から新たな設定時刻を取得したか否かを判定する(ステップS18)。具体的には、設定時刻取得部11が、システム時刻の新たな設定値が設定装置101から送信されたか否かを判定する。
 設定装置101から新たな設定時刻を取得していないと判定した場合(ステップS18;No)、通信装置10は、ステップS14以降の処理を繰り返す。これにより、ステップS14におけるシステム時刻の算出、及びステップS15におけるシステム時刻の通知が、ステップS17で待機した一定時間に等しい周期で繰り返し実行される。
 ここで、ステップS17におけるシステム時刻の更新は、クロックパルスのカウント結果に基づいて行われる。しかしながら、このクロックパルスを生成するための水晶振動子の発振周期には、上述したように周波数偏差が含まれ得る。このため、ステップS17において更新されるシステム時刻は、図10に示されるように共有時刻から常に一定の時間差51だけズレた時刻になるとは限らず、図11中の線L3,L4に示されるように、共有時刻に対応する線L1とは異なる速さで計時され得る。しかしながら、ステップS14におけるシステム時刻の更新が、図11中のタイミングT1,T2,T3のように定期的に実行されるため、システム時刻と共有時刻との時間差が、このタイミングで補正され、当初の値から大きく離れることがない。これにより、システム時刻の精度をある程度高く保つことができる。
 図9に戻り、ステップS18にて、設定装置101から新たな設定時刻を取得したと判定した場合(ステップS18;Yes)、通信装置10は、ステップS12以降の処理を繰り返す。これにより、新たな設定値に基づく時間差でシステム時刻の更新が再度実行される。
 続いて、通信装置20による第2処理について、図12を参照して説明する。図12に示される第2処理は、通信装置20の電源が投入されることで開始する。なお、第2処理は、同期部25による共有時刻の同期処理とは並列に実行される。第2処理では、通信装置20は、ネットワーク400を介して時間差データ131を受信したか否かを判定する(ステップS21)。具体的には、時間差データ受信部24が、通信装置10から送信された時間差データ131を、ネットワーク400を介して受信したか否かを判定する。
 時間差データ131を受信していないと判定した場合(ステップS21;No)、通信装置20は、ステップS21の判定を繰り返して、時間差データ131を受信するまで待機する。一方、時間差データ131を受信したと判定した場合(ステップS21;Yes)、通信装置20は、時間差データ131を記憶する(ステップS22)。具体的には、時間差データ受信部24が、ステップS21にて取得したと判定された時間差データ131を、時間差データ231として記憶部13に格納する。
 次に、通信装置20は、共有時刻の現在値と時間差とからシステム時刻の現在値を算出して、システム時刻を更新する(ステップS23)。具体的には、設定部26が、共有時刻とステップS22にて記憶された時間差との和としてシステム時刻の最新の値を演算して、演算結果である最新の値で記憶部23のシステム時刻データ233を更新する。
 次に、通信装置20は、システムバス402を介してシステム時刻を通知する(ステップS24)。具体的には、時刻データ送信部28が、ステップS23にて更新されたシステム時刻を示すシステム時刻データ233を通信装置30へ送信する。
 次に、通信装置20は、共有時刻の現在値が同期部25により補正されたか否かを判定する(ステップS25)。具体的には、同期部25が、グランドマスタが基準クロックを配信することによって共有時刻データ132が更新されたか否かを判定する。
 共有時刻の現在値が同期部25により補正されたと判定した場合(ステップS25;Yes)、通信装置20は、ステップS23以降の処理を繰り返す。一方、共有時刻の現在値が同期部25により補正されてはいないと判定した場合(ステップS25;No)、通信装置20は、クロック信号に基づいてシステム時刻を更新しながら一定時間待機する(ステップS26)。具体的には、設定部26が、クロック部44を利用してシステム時刻を更新する。
 次に、通信装置20は、通信装置10から時間差データ131を新たに受信したか否かを判定する(ステップS27)。具体的には、時間差データ受信部24が、新たな時間差を示す時間差データ131が通信装置10から送信されたか否かを判定する。
 時間差データ131を新たに受信していないと判定した場合(ステップS27;No)、通信装置20は、ステップS23以降の処理を繰り返す。このため、ステップS23におけるシステム時刻の算出、及びステップS24におけるシステム時刻の通知が、ステップS26で待機した一定時間に等しい周期で繰り返し実行される。これにより、図11に示されるように、システム時刻が繰り返し補正されて、システム時刻の精度をある程度高く保つことができる。
 一方、時間差データ131を新たに受信したと判定した場合(ステップS27;Yes)、通信装置20は、ステップS22以降の処理を繰り返す。これにより、新たな時間差でシステム時刻の更新が再度実行される。
 続いて、通信装置30による第3処理について、図13を参照して説明する。図13に示される第3処理は、PLC100を構成する通信装置30によって実行される。なお、PLC200を構成する通信装置30は、第3処理と同等の処理を実行する。第3処理は、通信装置30の電源が投入されることで開始する。
 第3処理では、通信装置30は、システムバス401を介してシステム時刻が通知されたか否かを判定する(ステップS31)。具体的には、時刻データ受信部34が、システム時刻の現在値を示すシステム時刻データ133を通信装置10から受信したか否かを判定する。
 システム時刻が通知されていないと判定した場合(ステップS31;No)、通信装置30は、ステップS31の判定を繰り返して、システム時刻が通知されるまで待機する。一方、システム時刻が通知されたと判定した場合(ステップS31;Yes)、通信装置30は、システム時刻データ333を記憶する(ステップS32)。具体的には、時刻データ受信部34が、ステップS31にて通知されたと判定されたシステム時刻を示すシステム時刻データ333を記憶部33に格納する。
 次に、通信装置30は、時刻偏差データ334を用いてシステム時刻の現在値を更新する(ステップS33)。具体的には、設定部31が、時刻偏差データ334に基づいてクロックパルスをカウントし、このカウント結果に基づいてシステム時刻データ333をシステム時刻の現在値を示すものに更新する。ただし、ステップS33が初めて実行されるときには、時刻偏差データ334が実質的な情報を含まない初期データとされているため、設定部31は、クロックパルスを単純にカウントした結果に基づいてシステム時刻データ333を更新する。このときには、調整部311による計時の速さの調整は実質的に実行されない。
 次に、通信装置30は、新たにシステム時刻が通知されたか否かを判定する(ステップS34)。システム時刻が通知されていないと判定した場合(ステップS34;No)、通信装置30は、ステップS33以降の処理を繰り返す。これにより、クロック信号に基づいてシステム時刻データ333が更新される。
 一方、システム時刻が通知されたと判定した場合(ステップS34;Yes)、通信装置30は、自機が管理するシステム時刻の現在値と、通知されたシステム時刻との差から時刻偏差データ334を生成して記憶する(ステップS35)。具体的には、時刻データ受信部34が、記憶部33に格納されているシステム時刻データ333の値と、新たに通知されたシステム時刻の値とを比較して、それらの時刻の差を示す時刻偏差データ334を記憶部33に格納する。時刻偏差データ334は、単に時刻の偏差とともにシステム時刻が通知される周期を関連付けた情報であってもよいし、この偏差を周期で除した値を示す情報であってもよいし、調整部311が計時の速さを調整するために必要な情報を示す他の情報であってもよい。
 次に、通信装置30は、ステップS32以降の処理を繰り返す。これにより、ステップS33が再度実行される際には、クロックパルスをカウントする速さが、調整部311によって調整される。
 図14には、調整部311による計時の速さの調整の具体例が模式的に示されている。図14中の実線で示される線L31は、通信装置10によって計時されているシステム時刻であり、この線L31のうち、定期的なサンプル値が通信装置30に通知される。また、線L32は、通信装置30の設定部31がクロックパルスをカウントした結果を示す。線L31,L32を比較するとわかるように、線L32は、3回のカウント毎に1カウントずつ線L31とズレている。このため、実時間が経過するほど、周波数偏差に起因する時刻の偏差が拡大する。
 調整部311は、このような偏差が生じないように、計時の速さを調整する。図14の例では、調整部311は、クロックパルスが3回現れるたびに、このクロックパルスのカウントをスキップする。これにより、調整部311による調整後のカウント結果は、通信装置10から通知されるべきシステム時刻とほぼ一致することとなる。
 以上、説明したように、通信装置10,20は、ネットワーク400を介して共有時刻を同期し、通信装置10は、ユーザによって設定された設定時刻をシステム時刻に設定する設定部16と、時間差データ131を送信する時間差データ送信部14と、を有し、通信装置20は、共有時刻と、時間差データ231により示される時間差と、の和をシステム時刻に設定する設定部26を有する。これにより、ユーザが必要に応じてシステム時刻を任意に設定し、設定されたシステム時刻が通信装置10,20で同期される。したがって、システムにおいて同期されて用いられる時刻の利便性を向上させることができる。
 また、通信装置10,20との間では時間差データ131が伝送され、共有時刻の同期に必要なデータを除いて、現在時刻を示すようなデータは伝送されない。このため、共有時刻の同期が達成されていれば、通信遅延に起因する同期誤差が生じない。したがって、システム時刻を高精度に同期することができる。
 また、通信装置10は、設定時刻からシステム時刻を直接的に得ることなく、一旦時間差を算出してから、この時間差と共有時刻の和としてシステム時刻を得た。すなわち、通信装置10が共有時刻を利用することなく、システム時刻の設定時刻のみに基づいてシステム時刻を計時するような場合も考えられる。しかしながら、本実施の形態に係る通信装置10は、システム時刻を計時する際に、共有時刻を利用して、通信装置20と同様の手順によりシステム時刻を得た。このため、通信装置10は、通信装置20と同様に、システム時刻を高精度に計時することができる。また、通信装置10,20が同様の手順によりシステム時刻を計時するため、システム時刻を同期するための通信システム1000の形成が容易になるとともに通信装置10,20間でシステム時刻が高精度に同期される。
 また、通信装置20は、共有時刻と受信した時間差データにより示される時間差との和としてシステム時刻を算出することで図11に示されるようにシステム時刻を繰り返し補正した。このため、通信装置20は、時間差を一旦取得するだけで、その後のシステム時刻を、通信装置10と同期しつつ計時することができる。したがって、通信装置20がシステム時刻を通信装置10と同期するための補正をする度に通信装置10,20間でデータを伝送する必要はない。例えば、通信装置10にシステム時刻が設定されたときのみに時間差データが通信装置20へ伝送されれば、以降は通信装置10,20間で時間差データを伝送する必要はない。これにより、通信装置10,20間における通信負荷を軽減することができる。また、通信装置20がシステム時刻の補正を繰り返し実行することにより、図11を用いて説明したように、システム時刻が共有時刻と同等の速さで計時され、同期されたシステム時刻の誤差の拡大を防ぐことができる。
 また、通信装置30は、通信装置10,20のいずれか一方から送信された時刻データに基づいて、計時しているシステム時刻を補正した。このため、通信装置30は、通信装置10,20とシステム時刻を高精度に同期させることができる。
 詳細には、通信装置30は、計時の速さを調整して、自機において計時されるシステム時刻と、時刻データにより示されるシステム時刻と、の時刻偏差を減少させた。これにより、通信装置30は、時刻データを受信してから次の時刻データを受信するまでの期間においても、通信装置10,20とシステム時刻を高精度に同期させることができる。
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態によって限定されるものではない。
 例えば、通信装置40の数、及びPLC100,200の数は、図1に例示した数に限られず、任意に変更してもよい。
 また、通信システム1000が機器を制御するFAシステムを構成する例について説明したが、これには限定されない。例えば、通信システム1000は、センサから出力された情報を収集して記録する監視システムを構成してもよい。
 また、記憶部13,23に共有時刻の現在値を示す共有時刻データ132,232が記憶される例について説明したが、これには限定されない。例えば、共有時刻データ132,232が常時更新されることはなく、記憶部13,23は、特定のタイミングで更新された共有時刻データ132,232を記憶しておいて、外部からの要求があるときに、記憶するデータに基づいて共有時刻の現在値を示すデータを生成して出力してもよい。同様に、記憶部13,23,33にシステム時刻の現在値を示すシステム時刻データ133,233,333が記憶される例について説明したが、これには限定されない。記憶部13,23,33が、外部からの要求に応じてシステム時刻の現在値を示すデータを生成して出力してもよい。
 また、設定時刻取得部11が、設定装置101からの設定時刻を取得する例について説明したが、これには限定されない。設定時刻取得部11は、NTP(Network Time Protocol)サーバから設定時刻を取得してもよいし、システムバス401を介して通信装置30から設定時刻を取得してもよいし、ユーザインタフェースを備えるPLC200から設定時刻を取得してもよい。
 また、通信装置10,20間で時間差データが伝送されないケースも考えられる。例えば、通信装置20,30が、エラーログに代表されるイベントを示す情報と当該イベントが発生した共有時刻とを関連付けて示すデータを通信装置10へ送信して、通信装置10は、受信したデータにより示される共有時刻と、時間差と、から上記イベントが発生したシステム時刻を算出し、算出したシステム時刻に上記イベントの情報を関連付けてユーザに提供してもよい。これにより、通信装置20,30が、システム時刻を管理することなく共有時刻を管理する場合においても、通信装置20,30において生じたイベントの情報とシステム時刻とを通信装置10で関連付けることができる。
 また、時間差データにより示される時間差の値が、システム時刻から共有時刻を減じて得る差である例について説明したが、これには限定されない。例えば、共有時刻からシステム時刻を減じて得る差を、時間差としてもよい。
 また、図5に示される通信装置10の機能的な構成を、PLC100を構成するユニットが分担してもよいし、図7に示される通信装置20の機能的な構成を、PLC200を構成するユニットが分担してもよい。すなわち、通信装置10と同等の機能をPLC100が発揮してもよいし、通信装置20と同等の機能をPLC200が発揮してもよい。
 また、通信装置40の機能は、専用のハードウェアによっても、また、通常のコンピュータシステムによっても実現することができる。
 例えば、プロセッサ41によって実行されるプログラムP1を、コンピュータ読み取り可能な非一時的な記録媒体に格納して配布し、そのプログラムP1をコンピュータにインストールすることにより、上述の処理を実行する装置を構成することができる。このような記録媒体としては、例えばフレキシブルディスク、CD-ROM(Compact Disc Read-Only Memory)、DVD(Digital Versatile Disc)、MO(Magneto-Optical Disc)が考えられる。
 また、プログラムP1をインターネットに代表される通信ネットワーク上のサーバ装置が有するディスク装置に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロードするようにしてもよい。
 また、通信ネットワークを介してプログラムP1を転送しながら起動実行することによっても、上述の処理を達成することができる。
 さらに、プログラムP1の全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラムを実行することによっても、上述の処理を達成することができる。
 なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみを媒体に格納して配布してもよく、また、コンピュータにダウンロードしてもよい。
 また、通信装置40の機能を実現する手段は、ソフトウェアに限られず、その一部又は全部を、回路を含む専用のハードウェアによって実現してもよい。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本発明は、ネットワークを介した時刻の同期に適している。
 1000 通信システム、 10,20,30,40 通信装置、 11 設定時刻取得部、 12 時間差算出部、 13 記憶部、 131 時間差データ、 132 共有時刻データ、 133 システム時刻データ、 14 時間差データ送信部、 15 同期部、 16 設定部、 17 制御部、 18 時刻データ送信部、 191 ネットワークI/F、 192 システムバスI/F、 23 記憶部、 231 時間差データ、 232 共有時刻データ、 233 システム時刻データ、 24 時間差データ受信部、 25 同期部、 26 設定部、 27 制御部、 28 時刻データ送信部、 291 ネットワークI/F、 292 システムバスI/F、 31 設定部、 311 調整部、 33 記憶部、 333 システム時刻データ、 334 時刻偏差データ、 34 時刻データ受信部、 37 制御部、 39 システムバスI/F、 41 プロセッサ、 42 主記憶部、 43 補助記憶部、 44 クロック部、 45 入力部、 46 出力部、 47 通信部、 49 内部バス、 100,200 PLC、 101 設定装置、 102 伝送路、 400 ネットワーク、 401,402 システムバス、 L1~L4,L31,L32 線、 P1 プログラム。

Claims (7)

  1.  通信遅延を含む同期誤差が補正された共有時刻を、ネットワークを介して共有する第1通信装置と第2通信装置とを備える通信システムであって、
     前記第1通信装置は、
     ユーザによって設定された設定時刻を取得する取得手段と、
     前記設定時刻を、前記第1通信装置のシステム時刻である第1システム時刻に設定する第1設定手段と、
     前記共有時刻と前記設定時刻との時間差を示す時間差データを前記第2通信装置に送信する時間差データ送信手段と、を有し、
     前記第2通信装置は、
     前記時間差データを受信する時間差データ受信手段と、
     前記共有時刻と、前記時間差データにより示される前記時間差と、の和を、前記第2通信装置のシステム時刻である第2システム時刻に設定する第2設定手段と、を有する、通信システム。
  2.  前記第1設定手段は、前記共有時刻と前記時間差との和を前記第1システム時刻に設定する、
     請求項1に記載の通信システム。
  3.  前記第2設定手段は、前記共有時刻と、前記時間差データ受信手段によって受信された前記時間差データにより示される前記時間差と、の和を算出することによる前記第2システム時刻の補正を繰り返し実行する、
     請求項2に記載の通信システム。
  4.  前記第1通信装置及び前記第2通信装置のいずれか一方の通信装置にバスを介して接続される第3通信装置を備える通信システムであって、
     前記第1通信装置及び前記第2通信装置のいずれか一方の通信装置は、システム時刻を示す時刻データを、前記バスを介して前記第3通信装置に送信する時刻データ送信手段、をさらに有し、
     前記第3通信装置は、
     前記時刻データを受信する時刻データ受信手段と、
     前記時刻データにより示されるシステム時刻を、前記第3通信装置のシステム時刻である第3システム時刻に設定する第3設定手段と、を有し、
     前記第3設定手段は、前記時刻データ受信手段によって受信された前記時刻データに基づいて、計時している前記第3システム時刻を補正する、
     請求項1から3のいずれか一項に記載の通信システム。
  5.  前記第3設定手段は、前記第3システム時刻を計時する速さを調整することにより、計時される前記第3システム時刻と、前記時刻データ受信手段によって将来において受信される前記時刻データにより示されるシステム時刻と、の偏差を減少させる、
     請求項4に記載の通信システム。
  6.  通信遅延を含む同期誤差が補正された共有時刻を、ネットワークを介して他の通信装置と共有する通信装置であって、
     前記共有時刻とユーザによって設定された設定時刻との時間差を示す時間差データを前記他の通信装置から受信する時間差データ受信手段と、
     前記共有時刻と、前記時間差データにより示される前記時間差と、の和を、通信装置のシステム時刻に設定する設定手段と、
     を備える通信装置。
  7.  通信遅延を含む同期誤差が補正された共有時刻を、ネットワークを介して第1通信装置と共有する第2通信装置を、
     前記共有時刻とユーザによって設定された設定時刻との時間差を示す時間差データを前記第1通信装置から受信する時間差データ受信手段、
     前記共有時刻と、前記時間差データにより示される前記時間差と、の和を、前記第2通信装置のシステム時刻に設定する設定手段、
     として機能させるためのプログラム。
PCT/JP2019/013805 2019-03-28 2019-03-28 通信システム、通信装置及びプログラム WO2020194714A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/013805 WO2020194714A1 (ja) 2019-03-28 2019-03-28 通信システム、通信装置及びプログラム
JP2020504041A JP6704548B1 (ja) 2019-03-28 2019-03-28 通信システム、通信装置及びプログラム
DE112019006938.1T DE112019006938B4 (de) 2019-03-28 2019-03-28 Kommunikationssystem, Kommunikationsgerät und Programm
US17/310,220 US11310026B2 (en) 2019-03-28 2019-03-28 Communication system, communication device, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013805 WO2020194714A1 (ja) 2019-03-28 2019-03-28 通信システム、通信装置及びプログラム

Publications (1)

Publication Number Publication Date
WO2020194714A1 true WO2020194714A1 (ja) 2020-10-01

Family

ID=70858217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013805 WO2020194714A1 (ja) 2019-03-28 2019-03-28 通信システム、通信装置及びプログラム

Country Status (4)

Country Link
US (1) US11310026B2 (ja)
JP (1) JP6704548B1 (ja)
DE (1) DE112019006938B4 (ja)
WO (1) WO2020194714A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6999861B1 (ja) * 2020-12-17 2022-01-19 三菱電機株式会社 制御装置、画像記録方法及びプログラム
JP2022131336A (ja) * 2021-02-26 2022-09-07 株式会社安川電機 コントローラ、機器制御システム、時刻同期方法、および時刻同期プログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115297364B (zh) * 2022-07-27 2024-01-23 北京奇艺世纪科技有限公司 一种云游戏视频传输时延的确定方法、系统及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189703A (ja) * 1989-12-19 1991-08-19 Mitsubishi Electric Corp 時刻自動修正機能付き総合計装制御システム
JP2000235406A (ja) * 1999-02-15 2000-08-29 Koyo Seiko Co Ltd シーケンス制御装置
JP2003066170A (ja) * 2001-08-29 2003-03-05 Nec Corp Cpuボードの時刻管理装置及びその方法
JP2006276958A (ja) * 2005-03-28 2006-10-12 Yokogawa Electric Corp プロセスシステム
JP2011216085A (ja) * 2010-03-15 2011-10-27 Omron Corp プログラマブルコントローラ
JP2018022947A (ja) * 2016-08-01 2018-02-08 株式会社東芝 ゲートウェイ装置、時刻設定システム、時刻設定プログラム、及び時刻設定方法
JP2018157462A (ja) * 2017-03-21 2018-10-04 株式会社明電舎 ログ保存方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370805C (zh) 2005-05-23 2008-02-20 华为技术有限公司 广播电视业务的接收端与源端同步的实现方法及系统
US11039408B2 (en) * 2012-06-07 2021-06-15 Apple Inc. Methods and apparatus for synchronization among integrated circuits within a wireless network
EP3834513A1 (en) * 2018-08-08 2021-06-16 Nokia Technologies Oy Time synchronization enhancement for a group of ue
US10887038B2 (en) * 2018-09-28 2021-01-05 Samsung Electronics Co., Ltd. GNSS-based multi-modal clock correction
US20200259896A1 (en) * 2019-02-13 2020-08-13 Telefonaktiebolaget Lm Ericsson (Publ) Industrial Automation with 5G and Beyond

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189703A (ja) * 1989-12-19 1991-08-19 Mitsubishi Electric Corp 時刻自動修正機能付き総合計装制御システム
JP2000235406A (ja) * 1999-02-15 2000-08-29 Koyo Seiko Co Ltd シーケンス制御装置
JP2003066170A (ja) * 2001-08-29 2003-03-05 Nec Corp Cpuボードの時刻管理装置及びその方法
JP2006276958A (ja) * 2005-03-28 2006-10-12 Yokogawa Electric Corp プロセスシステム
JP2011216085A (ja) * 2010-03-15 2011-10-27 Omron Corp プログラマブルコントローラ
JP2018022947A (ja) * 2016-08-01 2018-02-08 株式会社東芝 ゲートウェイ装置、時刻設定システム、時刻設定プログラム、及び時刻設定方法
JP2018157462A (ja) * 2017-03-21 2018-10-04 株式会社明電舎 ログ保存方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6999861B1 (ja) * 2020-12-17 2022-01-19 三菱電機株式会社 制御装置、画像記録方法及びプログラム
WO2022130589A1 (ja) * 2020-12-17 2022-06-23 三菱電機株式会社 制御装置、画像記録方法及びプログラム
JP2022131336A (ja) * 2021-02-26 2022-09-07 株式会社安川電機 コントローラ、機器制御システム、時刻同期方法、および時刻同期プログラム
JP7382980B2 (ja) 2021-02-26 2023-11-17 株式会社安川電機 コントローラ、機器制御システム、時刻同期方法、および時刻同期プログラム
US12120211B2 (en) 2021-02-26 2024-10-15 Kabushiki Kaisha Yaskawa Denki Time synchronization of local device

Also Published As

Publication number Publication date
US20220085968A1 (en) 2022-03-17
JP6704548B1 (ja) 2020-06-03
US11310026B2 (en) 2022-04-19
JPWO2020194714A1 (ja) 2021-04-08
DE112019006938B4 (de) 2022-12-29
DE112019006938T5 (de) 2021-11-25

Similar Documents

Publication Publication Date Title
JP4185926B2 (ja) ロボット協調制御方法及びシステム
WO2020194714A1 (ja) 通信システム、通信装置及びプログラム
JP5141972B2 (ja) 産業用コントローラ
JP6399136B1 (ja) 制御装置、制御プログラム、および制御システム
KR102278867B1 (ko) 네트워크 디바이스들의 클록들을 동기화하는 방법
JP7484912B2 (ja) 制御システム
JP2018064219A (ja) 制御装置および通信装置
JP2015179999A (ja) 時刻同期装置並びにそのためのバックアップ装置および時刻同期システム
WO2019107022A1 (ja) 制御装置および制御方法
CN113711511B (zh) 支持多时间同步协议的工业设备
JPH0715421A (ja) 通信網内の時計同期装置
US12105551B2 (en) Control system
WO2023026431A1 (ja) 通信制御装置、通信制御方法及びプログラム
JP6854991B1 (ja) 通信装置、通信システム、通信方法及びプログラム
JP2002196991A (ja) ネットワークの時刻合わせ方法
JP2022131336A (ja) コントローラ、機器制御システム、時刻同期方法、および時刻同期プログラム
JP2013069236A (ja) 情報伝達システムおよび情報伝達方法
JP2006107050A (ja) 複数ロボットの協調動作制御装置
KR101977014B1 (ko) 그랜드 마스터 클럭간 경쟁을 통해 정밀성을 개선한 클럭 동기 시스템
JP6907684B2 (ja) 時刻同期装置、時刻同期方法及び時刻同期プログラム
JP7008894B1 (ja) 時刻同期従属装置、時刻共有システム、時刻共有方法及びプログラム
US12052093B2 (en) Clock calibration in a computing system using temperature sensors
JP6999861B1 (ja) 制御装置、画像記録方法及びプログラム
CN114884602B (zh) 时钟同步控制方法及系统
JP2024109258A (ja) 制御装置、制御システム、方法およびプログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020504041

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921957

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19921957

Country of ref document: EP

Kind code of ref document: A1