WO2020194528A1 - 故障診断システムおよび故障診断方法 - Google Patents

故障診断システムおよび故障診断方法 Download PDF

Info

Publication number
WO2020194528A1
WO2020194528A1 PCT/JP2019/012944 JP2019012944W WO2020194528A1 WO 2020194528 A1 WO2020194528 A1 WO 2020194528A1 JP 2019012944 W JP2019012944 W JP 2019012944W WO 2020194528 A1 WO2020194528 A1 WO 2020194528A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
liquid
pump
failure
Prior art date
Application number
PCT/JP2019/012944
Other languages
English (en)
French (fr)
Inventor
宙潤 丹羽
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2019/012944 priority Critical patent/WO2020194528A1/ja
Priority to JP2021508490A priority patent/JP7360605B2/ja
Publication of WO2020194528A1 publication Critical patent/WO2020194528A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems

Definitions

  • the present invention relates to a failure diagnosis system and a failure diagnosis method for hydraulic devices.
  • a pump is driven by a motor, and the pump discharges the liquid stored in the tank.
  • the operation control valve controls the supply and discharge of liquid to the cylinder.
  • a pressure sensor measures the discharge pressure of the liquid in the pump, and a controller monitors the rotation speed of the motor.
  • the device of Patent Document 1 diagnoses a failure based on the discharge pressure of the pump and the rotation speed of the motor.
  • the value of the pressure sensor becomes low pressure.
  • the operation control valve fails, the liquid flows from the operation control valve to the tank, the liquid cannot be supplied to the cylinder, and the value of the pressure sensor becomes low pressure.
  • the value of the pressure sensor is low, it cannot be determined whether the operation control valve or the pump is out of order. It is necessary to identify the location of the failure, and it takes time to repair.
  • An object of the present invention is to provide a failure diagnosis system and a failure diagnosis method for identifying a failure location of a hydraulic device.
  • the failure diagnosis system and the failure diagnosis method according to the present invention have the following configurations.
  • the failure diagnosis system of the present invention diagnoses a failure of the hydraulic device.
  • the hydraulic device includes a hydraulic cylinder, a tank for storing the liquid, a pump for sending the liquid stored in the tank toward the hydraulic cylinder, and a valve for supplying or discharging the liquid to the hydraulic cylinder.
  • the failure diagnosis system includes a first pressure measuring unit that is provided between the pump and the valve to measure the pressure of the liquid, a throttle unit that is provided between the valve and the tank and reduces the flow rate of the liquid.
  • a drive detection unit that detects the drive state of the pump, and a control unit that determines a failure of the pump or valve from the first pressure measured by the first pressure measurement unit and the drive state of the pump detected by the drive detection unit.
  • the flow reduction step for reducing the flow rate of the liquid between the valve and the tank and the pressure of the liquid are measured by the first pressure measuring unit between the pump and the valve.
  • the throttle portion by providing the throttle portion, it is possible to measure the pressure of the throttle portion with the first pressure measuring unit.
  • the pressure of the liquid in the throttle portion is measured by the first pressure measuring unit.
  • the control unit can determine that the valve is out of order if the pressure in the throttle unit is measured. Further, even though the pump is driven, a failure of the pump can be determined when 0 or a low pressure is measured by the first pressure measuring unit. Unlike the conventional method, it is possible to judge the failure of the valve and the pump.
  • the failure diagnosis system 10 of the present application shown in FIG. 1 diagnoses a failure of the hydraulic pressure device 12.
  • the hydraulic device 12 is used for cargo handling devices such as trucks or forklifts.
  • the cargo handling device 16 of the truck 14 shown in FIG. 2 includes a hydraulic pressure device 12 and a loading platform 18, and the loading platform 18 is moved up and down by the hydraulic pressure device 12.
  • the hydraulic device 12 supplies and discharges the liquid to the hydraulic cylinder 20, the tank 22 for storing the liquid, the pump 24 for sending the liquid stored in the tank 22 toward the hydraulic cylinder 20, and the hydraulic cylinder 20.
  • a valve 26 for controlling is provided.
  • the hydraulic cylinder 20 is a cylinder in which a piston in the cylinder moves linearly by supplying or discharging a liquid (hydraulic oil) therein.
  • a piston rod is attached to the piston, and the linear motion of the piston moves the parts attached to the tip of the piston rod.
  • the load receiving table 18 can be raised and lowered.
  • the pump 24 discharges the liquid stored in the tank 22 toward the hydraulic cylinder 20.
  • the pump 24 is driven by the power of the motor 28.
  • the motor 28 uses a DC brushless motor, but other motors may be used.
  • the first line 30 connects the pump 24 with the hydraulic cylinder 20 and the valve 26.
  • the first line 30 is a pipe through which the liquid discharged from the pump 24 flows.
  • the second line 32 connects the tank 22 and the valve 26.
  • the second line 32 is a pipe for flowing the liquid discharged to the tank 22.
  • the valve 26 includes a directional control valve 34 and a relief valve 36.
  • the directional control valve 34 applies an electric current to the solenoid to switch the valve and control the flow of liquid. If the solenoid is not excited, the check valve (check valve) is selected for the directional control valve 34 shown in FIG. 1, and the valve is opened by exciting the solenoid. Liquid can be supplied to the hydraulic cylinder 20 with the check valve selected.
  • the relief valve 36 is a valve for preventing the valve from being supplied to the hydraulic cylinder 20 in a predetermined amount or more by opening the valve when the pressure of the liquid in the hydraulic cylinder 20 exceeds a certain value.
  • the hydraulic pressure device 12 may be provided with parts such as a check valve 38 and a filter, if necessary.
  • the failure diagnosis system 10 of the present application includes a first pressure measurement unit 40, a throttle unit 42, a drive detection unit 44 of the pump 24, and a control unit 46 for determining a failure.
  • the first pressure measuring unit 40 is connected to the first line 30. That is, the first pressure measuring unit 40 is connected between the pump 24 and the valve 26 or the hydraulic cylinder 20.
  • the first pressure measuring unit 40 measures the pressure of the liquid in the first line 30.
  • the first pressure measuring unit 40 can use a Bourdon tube pressure gauge, a diaphragm type pressure gauge, or the like, but the first pressure measuring unit 40 is not particularly limited as long as the pressure of the liquid can be measured.
  • the pressure of the liquid measured by the first pressure measuring unit 40 is also referred to as a first pressure.
  • the throttle portion 42 is provided between the tank 22 and the valve 26.
  • the second line 32 is branched into the directional control valve 34 and the relief valve 36, but the throttle portion 42 is provided in the non-branched portion of the second line 32.
  • the throttle portion 42 reduces the flow rate of the liquid.
  • a throttle valve can be used for the throttle portion 42.
  • the flow rate of the liquid is reduced by adjusting the opening / closing degree of the throttle valve.
  • the first pressure measured by the first pressure measuring unit 40 is the liquid of the throttle unit 42. It's pressure. Thereby, the failure of the valve 26 can be detected.
  • the throttle portion 42 is not limited to the throttle valve as long as the flow rate of the liquid can be reduced.
  • the diameter of the second line 32 may be narrowed to form the diaphragm portion 42, or as shown in FIG. 4, a plate body 48 provided in the second line 32 may be narrowed in diameter to form the diaphragm portion. May be.
  • the drive detection unit 44 detects that the pump 24 is being driven.
  • Examples of the drive detection unit 44 include a tachometer that measures the rotation speed of the pump 24. The drive of the pump 24 is detected by measuring that the pump 24 is rotating.
  • the drive detection unit 44 may be a video camera that captures the rotation of the pump 24, a microphone that collects the sound when the pump 24 is driven, or a sensor that detects vibration when the pump 24 is driven.
  • a condenser microphone may be used as the microphone and the sensor, and the condenser microphone may detect the sound or vibration when the pump 24 is driven.
  • the control unit 46 determines the failure of the hydraulic pressure device 12 by using the first pressure measured by the first pressure measuring unit 40 and the presence / absence of driving of the pump 24 detected by the drive detecting unit 44.
  • the control unit 46 can be configured by an IC or the like.
  • the part where the failure is determined is the valve 26 or the pump 24. Further, the control unit 46 may control the current supply to the solenoid of the directional control valve 34 or control the drive of the motor 28.
  • the liquid can be supplied from the pump 24 to the hydraulic cylinder 20.
  • the hydraulic cylinder 20 is filled with the liquid and the hydraulic pressure reaches the relief pressure, the liquid that does not enter the hydraulic cylinder 20 is flowed to the tank 22 through the relief valve 36.
  • the first pressure detected by the first pressure measuring unit 40 in this state is the pressure of the liquid (relief pressure) in the hydraulic cylinder 20. In this case, it can be determined that the liquid is supplied to the hydraulic cylinder 20, and the pump 24 and the valve 26 are determined to be normal.
  • the liquid discharged from the pump 24 cannot be supplied to the hydraulic cylinder 20, passes through the failed directional control valve 34 or the relief valve 36, and further throttles 42. It flows through to the tank 22. Since the throttle portion 42 is located in the second line 32, the first pressure detected by the first pressure measuring unit 40 is the pressure of the liquid in the throttle portion 42. This pressure is lower than the relief pressure but higher than 0. If the pressure of the liquid in the throttle unit 42 is detected by the first pressure measuring unit 40, it is determined that the valve 26 is out of order.
  • the first pressure detected by the first pressure measuring unit 40 becomes 0 or low pressure. This low pressure is lower than the pressure of the liquid in the throttle portion 42. When it becomes 0 or low pressure, it can be determined that a predetermined amount of liquid is not discharged from the pump 24. Further, the drive detection unit 44 detects the drive of the pump 24. If the pressure measured by the first pressure measuring unit 40 becomes 0 or low pressure and the pump 24 is driven, it is found that a predetermined amount of liquid cannot be discharged from the pump 24, and it is determined that the pump 24 is out of order. ..
  • the failure of the pump 24 may be determined in association with the drive of the motor 28. If the motor 28 is driven, the control unit 46 determines that the pump 24 is out of order, and if the motor 28 is not driven, determines that the pump 24 is stopped. By controlling the drive of the motor 28 by the control unit 46, it is possible to identify whether or not the motor 28 is driven, and further determine whether the pump 24 has failed or stopped.
  • the failure diagnosis system 10 of the present application is attached to various cargo handling devices including the cargo handling device 16 of the truck 14. Not limited to the cargo handling device, any device that uses the hydraulic pressure device 12 may be provided with the failure diagnosis system 10 of the present application.
  • the pump 24 is driven by driving the motor 28.
  • the directional control valve 34 selects a check valve to supply the liquid to the hydraulic cylinder 20.
  • the hydraulic cylinder 20 is filled with the liquid, the liquid is discharged to the tank 22 via the relief valve 36. Since the throttle portion 42 is provided in the second line 32, the liquid is discharged to the tank 22 while being reduced by the throttle portion 42.
  • the first pressure measuring unit 40 measures the pressure of the liquid, and the drive detecting unit 44 detects the driving of the pump 24.
  • the control unit 46 determines the failure of the valve 26 or the pump 24 based on the presence or absence of detection of the first pressure and the drive of the pump 24. As described above, if the check valve of the directional control valve 34 is selected and the first pressure is the pressure of the throttle portion 42, it is determined that the valve 26 has failed. The drive of the pump 24 is detected, and if the first pressure is 0 or a low pressure, it is determined that the pump 24 has failed. If the drive of the pump 24 cannot be detected, the failure of the pump 24 is determined in association with the drive of the motor 28.
  • the control unit 46 may determine the state of the hydraulic cylinder 20.
  • the flow rate of the liquid discharged from the hydraulic cylinder 20 is obtained from the area of the cross section through which the liquid flows in the throttle unit 42 and the first pressure detected by the first pressure measuring unit 40.
  • the movement of the piston of the hydraulic cylinder 20 is obtained.
  • the piston is moving at a speed different from the predetermined speed, it can be determined that the hydraulic cylinder 20 has failed.
  • the second line 32 connected to the directional control valve 34 and the relief valve 36 may remain divided into two up to the tank 22.
  • a throttle portion 42 is provided between the directional control valve 34 and the tank 22, and between the relief valve 36 and the tank 22, respectively.
  • a flow control valve may be used in addition to the throttle valve described in the first embodiment.
  • the two throttle portions 42 may have different liquid flow rates. Since the flow rate of the liquid in each throttle unit 42 is different, the first pressure detected by the first pressure measuring unit 40 when the direction control valve 34 or the relief valve 36 fails is different. It is possible to determine which of the directional control valve 34 and the relief valve 36 has failed due to the difference in the first pressure detected by the first pressure measuring unit 40.
  • the second pressure measuring units 56a and 56b may be provided on the second line 32, respectively.
  • the second pressure measuring units 56a and 56b measure the pressure of the throttle unit 42 in the second line 32, respectively.
  • the pressure of the liquid measured by the second pressure measuring units 56a and 56b is defined as the second pressure.
  • the second pressure measuring unit 56a and 56b may be any one.
  • the second line 32 connected to the directional control valve 34 is provided with the second pressure measuring unit 56a. If the first pressure of the first pressure measuring unit 40 and the second pressure of the second pressure measuring unit 56a match with the check valve of the directional control valve 34 selected, the directional control valve 34 has failed and the first pressure. If the first pressure of the measuring unit 40 and the second pressure of the second pressure measuring unit 56a do not match, the relief valve 36 has failed.
  • the control unit 46 can determine the failure of the directional control valve 34 and the relief valve 36 from the coincidence or disagreement between the first pressure of the first pressure measurement unit 40 and the second pressure of the second pressure measurement unit 56a.
  • the failure diagnosis system 58 of FIG. 7 uses the second pressure measuring unit 56a connected to the directional control valve 34
  • the second pressure measuring unit 56b connected to the relief valve 36 may be used. If the first pressure of the first pressure measuring unit 40 and the second pressure of the second pressure measuring unit 56b match with the check valve of the directional control valve 34 selected, the relief valve 36 has failed and the first pressure measurement is performed. If the first pressure of the unit 40 and the second pressure of the second pressure measuring unit 56b do not match, the directional control valve 34 is defective.
  • a communication unit 62 for communicating the values detected by the first pressure measurement unit 40 and the drive detection unit 44 may be provided.
  • Examples of the communication unit 62 include a device capable of performing mobile communication via the network 64, a device communicating by WiFi, and the like.
  • Each detected value is transmitted by the communication unit 62 and stored in the storage means of the host computer 66.
  • the host computer 66 may determine the failure performed by the control unit 46.
  • the result determined by the host computer 66 may be displayed on the device used by the operator via the network 64. Further, the result may be transmitted from the host computer 66 to the operator's computer, mobile phone, smartphone, or tablet via the network 64.
  • the number of hydraulic cylinders 20 to which liquid is supplied from one pump 24 is arbitrary.
  • a hydraulic cylinder 70 for storing and pulling out the consignment 18 and a valve 72 for supplying or discharging liquid to the hydraulic cylinder 70 may be provided.
  • the hydraulic device 68 of FIG. 9 has an additional configuration for storing and pulling out the loading platform 18 below the loading platform 74 (FIG. 2) with respect to the hydraulic device 12 of FIG.
  • the valve 72 is composed of two directional control valves 76 and 78.
  • the check valve is opened without exciting the solenoid of the directional control valve 80 provided between the pump 24 and the hydraulic cylinder 20. Select to prevent the liquid from being supplied to the hydraulic cylinder 20.
  • the solenoid of the directional control valve 76 is excited so that the solenoid of the directional control valve 78 is not excited.
  • a liquid path is formed from the tank 22 to one side A of the piston of the hydraulic cylinder 70 via the directional control valve 76.
  • a flow rate control valve may be provided in the middle of the hydraulic cylinder 70 from the pump 24 to adjust the flow rate of the liquid supplied to the hydraulic cylinder 70.
  • the liquid flows into one side A of the piston of the hydraulic cylinder 70, and the liquid on the other side B of the piston is discharged and flows to one side A.
  • the hydraulic cylinder 70 is tilted and arranged, or the load receiving table 18 can be manually pulled out so that the liquid flows to the one side A. It may be.
  • the piston moves, and the loading platform 18 housed under the loading platform 74 is pulled out.
  • the solenoid of the directional control valve 78 is excited so that the solenoid of the directional control valve 76 is not excited.
  • a liquid path is formed from the pump 24 to the other side B of the hydraulic cylinder 70, and further, a liquid path is formed from one side A of the hydraulic cylinder 70 to the tank 22 via the directional control valve 78.
  • the liquid in the tank 22 enters the other side B of the piston of the hydraulic cylinder 70, the liquid on one side A of the piston of the hydraulic cylinder 70 flows into the tank 22 through the directional control valve 78.
  • the valve 84 is a valve for flowing a liquid that does not enter the hydraulic cylinder 70 into the tank 22 after the storage or withdrawal of the load receiving table 18 is completed.
  • the valve 84 is composed of a directional control valve 86 and a relief valve 88.
  • the solenoid of the directional control valve 86 is excited to open the valve so that the relief valve 88 can be driven.
  • the relief valve 88 operates and the liquid flows toward the tank 22.
  • Liquid is discharged from the valves 72 and 84 to the tank 22 through the third line 92.
  • the failure diagnosis system 90 is provided with a throttle portion 42 on the third line 92.
  • the pressure of the throttle portion 42 of the third line 92 is measured by the first pressure measuring unit 40.
  • the third line 92 may be connected to the second line 32.
  • a third line 92 may be connected to each of the valves 78 and 84, and each third line 92 may be connected to the tank 22.
  • a diaphragm portion 42 may be provided for each third line 92.
  • a second pressure measuring unit 56 may be provided for each third line 92.
  • the number of hydraulic cylinders 20, 70 and the number of valves 26, 72, 84 are arbitrary. If the throttle portions 42, 42 are provided in the line for discharging the liquid in the tank 22, and the pressure of the liquid in the throttle portions 42, 42 can be detected when the valves 26, 72, 84 fail, the present application can be applied to various hydraulic devices. It is applicable.
  • the failure diagnosis system of the present application diagnoses a failure of the hydraulic device.
  • the hydraulic device includes a hydraulic cylinder, a tank for storing the liquid, a pump for sending the liquid stored in the tank toward the hydraulic cylinder, and a valve for supplying or discharging the liquid to the hydraulic cylinder.
  • the failure diagnosis system according to one aspect of the present application is provided between the pump and the valve and is provided between the first pressure measuring unit for measuring the pressure of the liquid and the valve and the tank to reduce the flow rate of the liquid. Failure of the pump or valve from the throttle unit to be flowed, the drive detection unit that detects the drive state of the pump, the first pressure measured by the first pressure measurement unit, and the drive state of the pump detected by the drive detection unit. It is provided with a control unit for determining.
  • the pressure of the throttle portion can be measured by the first pressure measurement unit by providing the throttle portion.
  • the pressure of the liquid in the throttle portion is measured by the first pressure measuring unit.
  • the control unit can determine that the valve is out of order if the pressure in the throttle unit is measured.
  • the failure of the pump can be determined by the driving state of the pump. Unlike conventional methods, it is possible to determine valve and pump failures.
  • a second pressure measuring unit is provided between the valve and the throttle unit to measure the pressure of the liquid.
  • the control unit is detected by the first pressure measured by the first pressure measuring unit, the second pressure measured by the second pressure measuring unit, or both the first pressure and the second pressure, and the drive detecting unit. Judge the failure of the pump or valve from the driving state of the pump.
  • the second pressure measuring unit measures the second pressure, and if the first pressure and the second pressure match, it can be determined that the valve has failed.
  • the throttle portion is a portion in which the cross section of the throttle valve, the flow control valve, or the pipe through which the liquid flows is narrowed.
  • the failure diagnosis system described in the third item by making the hydraulic pressure of the throttle portion different from the hydraulic pressure of the hydraulic cylinder, it is possible to identify the faulty part by the pressure measured by the first pressure measuring unit. ..
  • the control unit obtains the flow rate of the liquid discharged from the hydraulic cylinder from the first pressure or the second pressure and the area where the liquid flows in the throttle unit.
  • the operating state of the hydraulic cylinder can be confirmed by obtaining the flow rate of the liquid in the hydraulic cylinder, and if it is not a predetermined operation, it can be judged as a failure.
  • the valve is provided with a directional control valve and a relief valve, and the throttle portion is provided between the directional control valve and the tank and between the relief valve and the tank, respectively, and the flow rate of the liquid in each throttle portion is different. ..
  • the flow rate of the liquid differs depending on the throttle portion, so that the first pressure differs depending on the throttle portion. It is possible to determine whether the directional control valve or the relief valve has failed by the first pressure.
  • the failure diagnosis method is a flow reduction step for reducing the flow rate of liquid between the valve and the tank, and a liquid at the first pressure measuring unit between the pump and the valve.
  • the first pressure measurement step for measuring the pressure of the pump
  • the drive detection step for detecting the drive state of the pump, the first pressure measured in the first pressure measurement step, and the drive state of the pump detected in the drive detection step. It is provided with a failure determination step for determining a failure of the pump or valve from.
  • the failure diagnosis method described in Section 6 by reducing the flow of the liquid before discharging it to the tank, the reduced pressure is measured when the valve fails. Further, if the drive of the pump is detected when the pressure is 0 or low pressure, it can be determined that the pump has failed. It is possible to distinguish between valve and pump failures.
  • a second pressure measurement step for measuring the pressure of the liquid is provided downstream of the valve and at a position until the flow rate of the liquid is reduced.
  • the failure determination step is detected by the first pressure measured in the first pressure measurement step, the second pressure measured in the second pressure measurement step, or both the first pressure and the second pressure, and the drive detection step. Judge a pump or valve failure from the driven state of the pump.
  • the flow rate of the liquid discharged from the hydraulic cylinder is obtained from the first pressure or the second pressure and the area where the fluid flows in the throttle portion, and the failure of the hydraulic cylinder is obtained from the flow rate. To judge.
  • the flow rate of the liquid discharged from the hydraulic cylinder can be obtained, and it can be confirmed that the hydraulic cylinder is operating properly.
  • the valve is provided with a directional control valve and a relief valve, and the throttle portion is provided between the directional control valve and the tank and between the relief valve and the tank, respectively, and the flow rate of the liquid in each throttle portion is different.
  • the failure of the directional control valve or the failure of the relief valve can be determined by the first pressure.
  • the location of the failure can be grasped in detail, and repair preparations can be made accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

【課題】液圧装置の故障箇所を特定するための故障診断システムおよび故障診断方法を提供する。【解決手段】故障診断システム(10)は、ポンプ(24)とバルブ(26)との間に設けられ、液体の圧力を計測する第1圧力計測部(40)、バルブ(26)とタンク(22)の間に設けられ、液体の流量を減流させる絞り部(42)、ポンプ(24)の駆動状態を検知する駆動検知部(44)、第1圧力計測部(40)で計測された第1圧力および駆動検知部(44)で検知されたポンプ(24)の駆動状態からポンプ(24)またはバルブ(26)の故障を判断する制御部(46)を備える。

Description

故障診断システムおよび故障診断方法
 本発明は、液圧装置の故障診断システムおよび故障診断方法に関するものである。
 従来、荷役装置などに液圧装置が利用されており、その液圧装置の故障を診断する装置が開発および開示されている。たとえば、下記の特許文献1の装置は、モーターでポンプを駆動させ、タンクに溜められた液体をポンプが吐出する。作動制御バルブがシリンダへの液体の供給および排出を制御している。特許文献1の装置は、圧力センサーでポンプの液体の吐出圧力を測定し、コントローラでモーターの回転速度を監視している。特許文献1の装置は、ポンプの吐出圧力とモーターの回転数によって故障を診断している。
特開2013-91460号公報
 ポンプが故障し、液体の吐出量が減少すると、圧力センサーの値は低圧になる。作動制御バルブが故障した場合、作動制御バルブからタンクに液体が流れてシリンダに液体を供給できず、圧力センサーの値が低圧になる。圧力センサーの値が低圧の場合、作動制御バルブとポンプのいずれが故障しているかを判断できない。故障箇所を特定する必要があり、修理に時間を要する。
 本発明の目的は、液圧装置の故障箇所を特定するための故障診断システムおよび故障診断方法を提供することにある。
  以上の課題を解決すべく、本発明に係る故障診断システムおよび故障診断方法は、以下に述べるような構成を有する。
 本発明の故障診断システムは、液圧装置の故障を診断する。液圧装置は、液圧シリンダと、液体を貯留するタンクと、前記タンクに貯留されている液体を液圧シリンダに向けて送り出すポンプと、前記液体を液圧シリンダに供給または排出するためのバルブとを備える。故障診断システムは、前記ポンプとバルブとの間に設けられ、液体の圧力を計測する第1圧力計測部と、前記バルブとタンクの間に設けられ、液体の流量を減流させる絞り部と、前記ポンプの駆動状態を検知する駆動検知部と、前記第1圧力計測部で計測された第1圧力および駆動検知部で検知されたポンプの駆動状態からポンプまたはバルブの故障を判断する制御部とを備える。
 上記故障診断システムを使用した故障診断方法は、前記バルブとタンクの間において液体の流量を減流させる減流ステップと、前記ポンプとバルブとの間において第1圧力計測部で液体の圧力を計測する第1圧力計測ステップと、前記ポンプの駆動状態を検知する駆動検知ステップと、前記第1圧力計測ステップで計測された第1圧力および駆動検知ステップで検知されたポンプの駆動状態からポンプまたはバルブの故障を判断する故障判断ステップとを備える。
 本発明によれば、絞り部を設けたことによって第1圧力計測部で絞り部の圧力を計測することが可能になっている。バルブが故障し液圧シリンダに液体が供給できなくなった時に第1圧力計測部で絞り部の液体の圧力が計測される。制御部は絞り部の圧力が計測されればバルブの故障であることを判断できる。また、ポンプが駆動しているにもかかわらず、第1圧力計測部で0または低圧の圧力が計測されたときに、ポンプの故障を判断できる。従来と異なり、バルブとポンプの故障の判断ができる。
本願の故障診断システムの構成を示す図である。 トラックの荷役装置を示す図である。 第2ラインの口径を狭めた絞り部の図である。 第2ラインの中に板体を備えた絞り部の図である。 第2ラインを2本有する液圧装置の故障診断システムの構成を示す図である。 第2ラインで圧力を検知する故障診断システムの構成を示す図である。 2本の第2ラインの中の1本で圧力を検知する故障診断システムの構成を示す図である。 通信手段を使用した故障診断システムの構成を示す図である。 複数の液圧シリンダを有する液圧装置の故障診断システムの構成を示す図である。
 本発明の実施形態に係るその故障診断システムおよび故障診断方法について図面を参照して説明する。複数の実施形態を説明するが、異なる実施形態であっても同じ手段には同一の符号を付して説明を省略する場合がある。
 [実施形態1]
 図1に示す本願の故障診断システム10は、液圧装置12の故障を診断する。液圧装置12は、トラックまたはフォークリフトなどの荷役装置に使用される。たとえば図2に示すトラック14の荷役装置16は液圧装置12と荷受台18を備え、荷受台18が液圧装置12によって昇降させられる。
 [液圧装置]
 液圧装置12は、液圧シリンダ20、液体を貯留するタンク22、そのタンク22に貯留されている液体を液圧シリンダ20に向けて送り出すポンプ24、液圧シリンダ20に対する液体の供給と排出を制御するバルブ26を備える。
 液圧シリンダ20は、その中に液体(作動油)を供給または排出されることでシリンダ内のピストンが直線運動するものである。ピストンにピストンロッドが取り付けられており、ピストンが直線運動することで、ピストンロッドの先端に取り付けられた部品が移動する。たとえば、ピストンロッドの先端に荷受台18を取り付けた場合、荷受台18を昇降させることができる。
 ポンプ24はタンク22に貯留された液体を液圧シリンダ20に向けて吐出する。ポンプ24はモーター28の動力によって駆動する。モーター28は直流ブラシレスモータを使用するが、他のモーターを使用してもよい。
 第1ライン30がポンプ24と液圧シリンダ20およびバルブ26を接続する。第1ライン30はポンプ24から吐出される液体を流す配管である。第2ライン32がタンク22とバルブ26とを接続する。第2ライン32はタンク22に排出される液体を流す配管である。
 バルブ26は方向制御弁34とリリーフ弁36を備える。方向制御弁34はソレノイドに電流を流して弁を切り換え、液体の流れを制御する。図1に示す方向制御弁34はソレノイドを励磁しないとチェック弁(逆止弁)が選択された状態になり、ソレノイドを励磁させることで弁が開いた状態になる。チェック弁が選択された状態で液圧シリンダ20に液体を供給できる。リリーフ弁36は、液圧シリンダ20の液体の圧力が一定値以上になると弁が開いた状態になり、液圧シリンダ20に所定量以上の液体を供給できないようにするための弁である。
 液圧装置12は、必要に応じてチェック弁38およびフィルターなどの部品を備えてもよい。
 [故障診断システム]
 本願の故障診断システム10は、第1圧力計測部40、絞り部42、ポンプ24の駆動検知部44、故障を判断する制御部46を備える。
 [第1圧力計測部]
 第1圧力計測部40は第1ライン30に接続される。すなわち、第1圧力計測部40はポンプ24とバルブ26または液圧シリンダ20との間に接続される。第1圧力計測部40は第1ライン30における液体の圧力を計測する。第1圧力計測部40はブルドン管圧力計またはダイアフラム式圧力計などを使用できるが、液体の圧力が計測できれば第1圧力計測部40は特に限定されない。なお、第1圧力計測部40で計測される液体の圧力を第1圧力とも言う。
 [絞り部]
 絞り部42はタンク22とバルブ26の間に設けられる。第2ライン32は方向制御弁34とリリーフ弁36に分岐しているが、第2ライン32の分岐していない部分に絞り部42を設ける。絞り部42は液体の流量を減流するものである。絞り部42は絞り弁を使用することができる。絞り弁の開閉度を調整することで、液体の流量を減流させる。このように液体を減流させることで、バルブ26を介してタンク22に液体が流れている状態で、第1圧力計測部40で計測される第1圧力は絞り部42の液体の圧力である。
 ポンプ24が正常に駆動しているのにバルブ26が故障し、バルブ26を介してタンク22に液体が流れる場合、第1圧力計測部40で計測される第1圧力は絞り部42の液体の圧力である。これにより、バルブ26の故障を検出することができる。
 絞り部42は液体の流量を減流できれば絞り弁に限定されない。たとえば、図3のように第2ライン32の口径を狭めて絞り部42としてもよいし、図4のように第2ライン32の中に設けられた板体48などで口径を狭めて絞り部としてもよい。
 [駆動検知部]
 駆動検知部44は、ポンプ24が駆動していることを検知する。駆動検知部44は、たとえばポンプ24の回転数を計測する回転計が挙げられる。ポンプ24が回転していることを計測することで、ポンプ24の駆動を検知する。または駆動検知部44はポンプ24の回転を撮影するビデオカメラ、ポンプ24の駆動時の音を集音するマイク、ポンプ24の駆動時の振動を検知するセンサーであってもよい。マイクとセンサーはコンデンサマイクを使用し、コンデンサマイクでポンプ24の駆動時の音または振動を検知してもよい。
 [制御部]
 制御部46は第1圧力計測部40で計測された第1圧力と駆動検知部44で検知されたポンプ24の駆動の有無を用いて液圧装置12の故障を判断する。制御部46はICなどで構成することができる。故障を判断される部分はバルブ26またはポンプ24である。さらに、制御部46は方向制御弁34のソレノイドへの電流供給を制御したり、モーター28の駆動を制御したりしてもよい。
 方向制御弁34のチェック弁が選択されていると、ポンプ24から液圧シリンダ20に液体が供給できる。液圧シリンダ20が液体で満たされ、液圧がリリーフ圧になると、液圧シリンダ20に入らない液体がリリーフ弁36を通してタンク22に流される。この状態で第1圧力計測部40で検出される第1圧力は液圧シリンダ20における液体の圧力(リリーフ圧)である。この場合、液圧シリンダ20に液体が供給されていると判断でき、ポンプ24とバルブ26は正常と判断する。
 方向制御弁34とリリーフ弁36の少なくとも1つが故障した場合、ポンプ24から吐出された液体が液圧シリンダ20に供給できず、故障した方向制御弁34またはリリーフ弁36を通り、さらに絞り部42を通ってタンク22に流れる。第2ライン32に絞り部42があるため、第1圧力計測部40で検知される第1圧力は絞り部42での液体の圧力になる。この圧力は、リリーフ圧よりは低いが0よりは高い圧力である。絞り部42の液体の圧力が第1圧力計測部40で検知されれば、バルブ26が故障していると判断する。
 ポンプ24が故障して液体が吐出されなかったり吐出量が少なくなれば、第1圧力計測部40で検知される第1圧力は0または低圧になる。なお、この低圧は絞り部42の液体の圧力よりも低圧である。0または低圧になれば、ポンプ24から所定量の液体が吐出されていないと判断できる。さらに、駆動検知部44はポンプ24の駆動を検知する。第1圧力計測部40で計測される圧力が0または低圧になり、ポンプ24が駆動していれば、ポンプ24から所定量の液体が吐出できていないことがわかり、ポンプ24の故障と判断する。
 一方、ポンプ24が駆動していなければ、モーター28の駆動と関連付けてポンプ24の故障を判断してもよい。制御部46は、モーター28が駆動していれば、ポンプ24の故障と判断し、モーター28が駆動していなければ、ポンプ24の停止と判断する。制御部46がモーター28の駆動を制御することで、モーター28の駆動の有無を識別でき、さらにポンプ24の故障と停止を判断できる。
 本願の故障診断システム10はトラック14の荷役装置16をはじめとして、種々の荷役装置に取り付けられる。荷役装置に限らず、液圧装置12を使用する装置であれば、その液圧装置12に本願の故障診断システム10を備えてもよい。
 [故障診断方法]
 次に故障診断システム10を使用した故障診断方法について説明する。(1)モーター28が駆動することで、ポンプ24が駆動する。液圧シリンダ20に液体を供給する場合、方向制御弁34はチェック弁を選択して、液圧シリンダ20に液体を供給する。液圧シリンダ20に液体が満たされたら、リリーフ弁36を介して液体がタンク22に排出される。第2ライン32に絞り部42があるため、液体は絞り部42で減流されながらタンク22に排出される。
 (2)第1圧力計測部40で液体の圧力を計測し、駆動検知部44でポンプ24の駆動を検知する。
 (3)制御部46は第1圧力およびポンプ24の駆動の検知の有無によってバルブ26またはポンプ24の故障を判断する。上記したように、方向制御弁34のチェック弁が選択されている状態で、第1圧力が絞り部42の圧力であればバルブ26の故障と判断する。ポンプ24の駆動を検知し、第1圧力が0または低圧であれば、ポンプ24の故障と判断する。ポンプ24の駆動を検知できなければ、モーター28の駆動と関連付けてポンプ24の故障を判断する。
 従来はバルブ26の故障とポンプ24の故障の区別がつけられなかったが、本願は絞り部42および駆動検知部44を備えるため、バルブ26の故障とポンプ24の故障の区別がつけられる。故障箇所を特定でき、修理するときの準備が予めでき、修理しやすくなっている。
 [実施形態2]
 図1の故障診断システム10において、制御部46は液圧シリンダ20の状態を判断してもよい。絞り部42における液体の流れる断面の面積と第1圧力計測部40で検知される第1圧力から液圧シリンダ20から排出される液体の流量を求める。液圧シリンダ20の流量を求めることで、液圧シリンダ20のピストンの動きを求めることになる。所定のスピードと異なるスピードでピストンが動いている場合、液圧シリンダ20の故障と判断できる。
 [実施形態3]
 図5の液圧装置52のように、方向制御弁34とリリーフ弁36に繋がった第2ライン32がタンク22まで2本に分かれたままであってもよい。図5の故障診断システム50は、方向制御弁34とタンク22の間、リリーフ弁36とタンク22の間にそれぞれ絞り部42を設ける。方向制御弁34とタンク22の間の絞り部42は、実施形態1で説明した絞り弁など以外に流量制御弁を用いることもできる。液圧シリンダ20から液体を排出するときに、荷物および荷受台18の重みで一気に液体が排出されることを防止する。
 [実施形態4]
 図5の故障診断システム50において、2つの絞り部42は液体の流量を異ならせてもよい。各絞り部42の液体の流量が異なることで、方向制御弁34またはリリーフ弁36が故障したときに第1圧力計測部40で検知される第1圧力が異なる。第1圧力計測部40が検知した第1圧力の違いで方向制御弁34とリリーフ弁36のいずれが故障したかを判別することが可能になる。
 [実施形態5]
 図6の故障診断システム54のように、図5の液圧装置52において、それぞれの第2ライン32に第2圧力計測部56a、56bを備えてもよい。各第2圧力計測部56a、56bはそれぞれの第2ライン32にある絞り部42の圧力を測定する。第2圧力計測部56a、56bが計測する液体の圧力を第2圧力とする。方向制御弁34またはリリーフ弁36が故障したとき、第1圧力計測部40で測定された第1圧力といずれかの第2圧力計測部56a、56bで測定された第2圧力が同じになる。制御部46が、第1圧力と一致する第2圧力を示す第2圧力計測部56a、56bがいずれであるかを判断することで、方向制御弁34とリリーフ弁36のいずれが故障したかを判断する。
 [実施形態6]
 第2圧力計測部56a、56bはいずれか1つであってもよい。たとえば図7の故障診断システム58のように、方向制御弁34に繋がる第2ライン32に第2圧力計測部56aが備えられるとする。方向制御弁34のチェック弁が選択された状態で第1圧力計測部40の第1圧力と第2圧力計測部56aの第2圧力が一致すれば方向制御弁34の故障であり、第1圧力計測部40の第1圧力と第2圧力計測部56aの第2圧力が一致しなければリリーフ弁36の故障である。制御部46は第1圧力計測部40の第1圧力と第2圧力計測部56aの第2圧力の一致または不一致から方向制御弁34とリリーフ弁36の故障を判断できる。
 図7の故障診断システム58は方向制御弁34に繋がる第2圧力計測部56aを用いたが、リリーフ弁36に繋がる第2圧力計測部56bを使用してもよい。方向制御弁34のチェック弁が選択された状態で第1圧力計測部40の第1圧力と第2圧力計測部56bの第2圧力が一致すればリリーフ弁36の故障であり、第1圧力計測部40の第1圧力と第2圧力計測部56bの第2圧力が一致しなければ方向制御弁34の故障である。
 [実施形態7]
 図8の故障診断システム60のように、第1圧力計測部40および駆動検知部44で検知した値を通信するための通信部62を備えてもよい。通信部62はネットワーク64を介して移動体通信をおこなえる装置、WiFiで通信する装置などが挙げられる。各検知した値を通信部62によって送信し、ホストコンピュータ66の記憶手段で記憶する。また、制御部46がおこなう故障の判断をホストコンピュータ66で行ってもよい。ホストコンピュータ66で判断された結果をネットワーク64を介して操作者が使用する装置で表示してもよい。さらに、ホストコンピュータ66からネットワーク64を介して操作者のコンピュータ、携帯電話、スマートフォン、タブレットに結果を送信してもよい。ホストコンピュータ66に繋がるコンピュータで故障を確認できることで、修理部品の名称を確認できたり、修理部品の手配をすることも可能になる。
 [実施形態8]
 1つのポンプ24から液体を供給される液圧シリンダ20の数は任意である。たとえば、図9の液圧装置68のように、荷受台18を格納および引き出すための液圧シリンダ70、その液圧シリンダ70に液体を供給または排出するためのバルブ72を備えてもよい。図9の液圧装置68は図1の液圧装置12に対して荷受台18を荷台74(図2)の下方に格納および引き出しするための構成が追加されている。
 図9の液圧装置68において、バルブ72は2つの方向制御弁76、78で構成されている。荷受台18を荷台74の下方から引き出す(液圧シリンダ70のピストンを押し出す)場合は、ポンプ24と液圧シリンダ20の間に設けられた方向制御弁80のソレノイドを励磁させずにチェック弁を選択し、液圧シリンダ20に液体が供給されないようにする。その上で、方向制御弁76のソレノイドが励磁され、方向制御弁78のソレノイドが励磁されないようにする。タンク22から方向制御弁76を介して液圧シリンダ70のピストンの一方側Aまでの液体の経路が形成される。ポンプ24から液圧シリンダ70の途中に流量制御弁を設け、液圧シリンダ70へ供給する液体の流量が調整してもよい。液体が液圧シリンダ70のピストンの一方側Aに流入され、ピストンの他方側Bの液体は排出されて一方側Aに流れる。なお、一方側Aと他方側Bの液体の圧力が同じになる場合、液圧シリンダ70を傾斜させて配置させたり、手動で荷受台18を引き出せるようにして、一方側Aに液体が流れるようにしてもよい。ピストンが移動し、荷台74の下方に収納された荷受台18が引き出される。
 荷受台18を荷台74の下方に格納する場合、方向制御弁78のソレノイドが励磁され、方向制御弁76のソレノイドが励磁されないようにする。ポンプ24から液圧シリンダ70の他方側Bまでの液体の経路が形成され、さらに液圧シリンダ70の一方側Aから方向制御弁78を介してタンク22までの液体の経路が形成される。タンク22の液体が液圧シリンダ70のピストンの他方側Bに入ると同時に、液圧シリンダ70のピストンの一方側Aの液体が方向制御弁78を通してタンク22に流れる。
 バルブ84は荷受台18の格納または引き出しが終了した後に液圧シリンダ70に入らない液体をタンク22に流すためのバルブである。バルブ84は方向制御弁86とリリーフ弁88とから構成されている。液圧シリンダ70を駆動させるときは、方向制御弁86のソレノイドを励磁させて弁を開け、リリーフ弁88が駆動できる状態にしておく。液圧シリンダ70に液体が入りきらなくなってリリーフ圧になると、リリーフ弁88が作動し、タンク22に向けて液体が流れる。
 バルブ72、84から第3ライン92を通してタンク22に液体が排出される。故障診断システム90は、この第3ライン92に絞り部42を設ける。バルブ72またはバルブ84が故障したときに第3ライン92の絞り部42の圧力が第1圧力計測部40で測定される。実施形態1と同様にバルブ72、84とポンプ24の故障を判断できる。第3ライン92は第2ライン32と繋げられてもよい。
 図9の液圧装置68は、バルブ78、84ごとに第3ライン92が接続され、それぞれの第3ライン92がタンク22まで繋がっていてもよい。この場合、第3ライン92ごとに絞り部42を設けてもよい。さらに、第3ライン92ごとに第2圧力計測部56を備えるようにしてもよい。いずれの構成であっても、上記した実施形態と同様にバルブ72、84とポンプ24の故障を検知することができる。
 以上のように、本願は液圧シリンダ20、70の数、バルブ26、72、84の数は任意である。タンク22に液体を排出するラインに絞り部42、42を設け、バルブ26、72、84が故障したときにその絞り部42、42の液体の圧力が検知できれば、本願は種々の液圧装置に適用できるものである。
 (第1項)本願の故障診断システムは液圧装置の故障を診断する。液圧装置は、液圧シリンダと、液体を貯留するタンクと、前記タンクに貯留されている液体を液圧シリンダに向けて送り出すポンプと、前記液体を液圧シリンダに供給または排出するためのバルブとを備える。本願の一態様に係る故障診断システムは、前記ポンプとバルブとの間に設けられ、液体の圧力を計測する第1圧力計測部と、前記バルブとタンクの間に設けられ、液体の流量を減流させる絞り部と、前記ポンプの駆動状態を検知する駆動検知部と、前記第1圧力計測部で計測された第1圧力および駆動検知部で検知されたポンプの駆動状態からポンプまたはバルブの故障を判断する制御部とを備える。
 第1項に記載する故障診断システムによると、絞り部を設けたことで第1圧力計測部で絞り部の圧力を計測することが可能になっている。バルブが故障し液圧シリンダに液体が供給できなくなった時に第1圧力計測部で絞り部の液体の圧力が計測される。制御部は絞り部の圧力が計測されればバルブの故障であることを判断できる。また、第1圧力計測部で0または低圧の圧力が計測されたときに、ポンプの駆動状態によってポンプの故障を判断できる。従来と異なり、バルブとポンプの故障の判別ができる。
 (第2項)前記バルブと絞り部の間に設けられ、液体の圧力を計測する第2圧力計測部を備える。前記制御部は、前記第1圧力計測部で計測された第1圧力、第2圧力計測部で計測された第2圧力、または該第1圧力と第2圧力の両方および駆動検知部で検知されたポンプの駆動状態からポンプまたはバルブの故障を判断する。
 第2項に記載する故障診断システムによると、第2圧力計測部が第2圧力を計測することで、第1圧力と第2圧力が一致するとバルブの故障と判断できる。
 (第3項)前記絞り部は、絞り弁、流量制御弁または液体の流れる配管の断面を狭めた部分である。
 第3項に記載する故障診断システムによると、絞り部による液圧を液圧シリンダによる液圧と異ならせることで、第1圧力計測部で計測される圧力によって故障箇所を見分けることが可能になる。
 (第4項)前記制御部は、前記第1圧力または第2圧力と前記絞り部における液体の流れる面積から液圧シリンダから排出される液体の流量を求める。
 第4項に記載する故障診断システムによると、液圧シリンダの液体の流量を求めることで液圧シリンダの動作状態を確認することができ、所定の動作でなければ故障と判断できる。
 (第5項)前記バルブが方向制御弁とリリーフ弁を備え、前記絞り部が方向制御弁とタンクの間およびリリーフ弁とタンクの間にそれぞれ設けられ、それぞれの絞り部における液体の流量が異なる。
 第5項に記載する故障診断システムによると、絞り部によって液体の流量が異なるため、絞り部によって第1圧力が異なる。第1圧力によって方向制御弁またはリリーフ弁のいずれが故障したかを判別することができる。
 (第6項)本願の一態様に係る故障診断方法は、前記バルブとタンクの間において液体の流量を減流させる減流ステップと、前記ポンプとバルブとの間において第1圧力計測部で液体の圧力を計測する第1圧力計測ステップと、前記ポンプの駆動状態を検知する駆動検知ステップと、前記第1圧力計測ステップで計測された第1圧力および駆動検知ステップで検知されたポンプの駆動状態からポンプまたはバルブの故障を判断する故障判断ステップとを備える。
 第6項に記載する故障診断方法によると、液体をタンクに排出する前に減流させることで、バルブが故障したときに減流させた圧力を測定することになる。また、圧力が0または低圧の場合にポンプの駆動を検知していればポンプの故障と判断できる。バルブとポンプの故障を見分けることができる。
 (第7項)前記バルブの下流かつ液体の流量を減流されるまでの位置において、液体の圧力を計測する第2圧力計測ステップを備える。前記故障判断ステップは、前記第1圧力計測ステップで計測された第1圧力、第2圧力計測ステップで計測された第2圧力、または該第1圧力と第2圧力の両方および駆動検知ステップで検知されたポンプの駆動状態からポンプまたはバルブの故障を判断する。
 第7項に記載する故障診断方法によると、第1圧力と第2圧力とが一致することでバルブの故障と判断できる。
 (第8項)前記故障判断ステップは、前記第1圧力または第2圧力と前記絞り部における流体の流れる面積から液圧シリンダから排出される液体の流量を求め、該流量から液圧シリンダの故障を判断する。
 第8項に記載する故障診断方法によると、液圧シリンダから排出される液体の流量を求めることができ、適切に液圧シリンダが動作していることを確認できる。
 (第9項)前記バルブが方向制御弁とリリーフ弁を備え、前記絞り部が方向制御弁とタンクの間およびリリーフ弁とタンクの間にそれぞれ設けられ、それぞれの絞り部における液体の流量が異なり、前記故障判断ステップにおけるバルブの故障を判断した場合に、第1圧力によって方向制御弁またはリリーフ弁のいずれが故障しているかを判別する。
 第9項に記載する故障診断方法によると、第1圧力によって方向制御弁の故障またはリリーフ弁の故障を判別することができる。故障箇所を詳細に把握することができ、修理準備を的確にできる。
 その他、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。
10、50、54、58、60、90:故障診断システム
12、52、68:液圧装置
14:トラック
16:荷役装置
18:荷受台
20、70:液圧シリンダ
22:タンク
24:ポンプ
26、72、84:バルブ
28:モーター
30:第1ライン
32:第2ライン
34、76、78、80、86:方向制御弁
36、88:リリーフ弁
38:チェック弁
40:第1圧力計測部
42:絞り部
44:駆動検知部
46:制御部
48:板体
56a、56b:第2圧力計測部
62:通信部
64:ネットワーク
66:ホストコンピュータ
74:荷台
92:第3ライン

Claims (9)

  1. 液圧シリンダと、
    液体を貯留するタンクと、
    前記タンクに貯留されている液体を液圧シリンダに向けて送り出すポンプと、
    前記液体を液圧シリンダに供給または排出するためのバルブと、
    を備えた液圧装置における故障を診断する故障診断システムであって、
    前記ポンプとバルブとの間に設けられ、液体の圧力を計測する第1圧力計測部と、
    前記バルブとタンクの間に設けられ、液体の流量を減流させる絞り部と、
    前記ポンプの駆動状態を検知する駆動検知部と、
    前記第1圧力計測部で計測された第1圧力および駆動検知部で検知されたポンプの駆動状態からポンプまたはバルブの故障を判断する制御部と、
    を備えた故障診断システム。
  2. 前記バルブと絞り部の間に設けられ、液体の圧力を計測する第2圧力計測部を備え、
    前記制御部は、前記第1圧力計測部で計測された第1圧力、第2圧力計測部で計測された第2圧力、または該第1圧力と第2圧力の両方および駆動検知部で検知されたポンプの駆動状態からポンプまたはバルブの故障を判断する請求項1の故障診断システム。
  3. 前記絞り部が、絞り弁、流量制御弁または液体の流れる管の断面を狭めた部分である請求項2の故障診断システム。
  4. 前記制御部が、前記第1圧力または第2圧力と前記絞り部における液体の流れる面積から液圧シリンダから排出される液体の流量を求める請求項3の故障診断システム。
  5. 前記バルブが方向制御弁とリリーフ弁を備え、
    前記絞り部が方向制御弁とタンクの間およびリリーフ弁とタンクの間にそれぞれ設けられ、それぞれの絞り部における液体の流量が異なる請求項4の故障診断システム。
  6. 液圧シリンダと、
    液体を貯留するタンクと、
    前記タンクに貯留されている液体を液圧シリンダに向けて送り出すポンプと、
    前記液圧シリンダに対する液体の供給と排出を制御するバルブと、
    を備えた液圧装置における故障を診断する故障診断方法であって、
    前記バルブとタンクの間において液体の流量を減流させる減流ステップと、
    前記ポンプとバルブとの間において第1圧力計測部で液体の圧力を計測する第1圧力計測ステップと、
    前記ポンプの駆動状態を検知する駆動検知ステップと、
    前記第1圧力計測ステップで計測された第1圧力および駆動検知ステップで検知されたポンプの駆動状態からポンプまたはバルブの故障を判断する故障判断ステップと、
    を備えた故障診断方法。
  7. 前記バルブの下流かつ液体の流量を減流されるまでの位置において、液体の圧力を計測する第2圧力計測ステップを備え、
    前記故障判断ステップは、前記第1圧力計測ステップで計測された第1圧力、第2圧力計測ステップで計測された第2圧力、または該第1圧力と第2圧力の両方および駆動検知ステップで検知されたポンプの駆動状態からポンプまたはバルブの故障を判断する請求項6の故障診断方法。
  8. 前記故障判断ステップが、前記第1圧力または第2圧力と前記絞り部における流体の流れる面積から液圧シリンダから排出される液体の流量を求める請求項7の故障診断方法。
  9. 前記バルブが方向制御弁とリリーフ弁を備え、
    前記絞り部が方向制御弁とタンクの間およびリリーフ弁とタンクの間にそれぞれ設けられ、それぞれの絞り部における液体の流量が異なり、
    前記故障判断ステップにおけるバルブの故障を判断した場合に、第1圧力によって方向制御弁またはリリーフ弁のいずれが故障しているかを判別する請求項8の故障診断方法。
PCT/JP2019/012944 2019-03-26 2019-03-26 故障診断システムおよび故障診断方法 WO2020194528A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/012944 WO2020194528A1 (ja) 2019-03-26 2019-03-26 故障診断システムおよび故障診断方法
JP2021508490A JP7360605B2 (ja) 2019-03-26 2019-03-26 故障診断システムおよび故障診断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/012944 WO2020194528A1 (ja) 2019-03-26 2019-03-26 故障診断システムおよび故障診断方法

Publications (1)

Publication Number Publication Date
WO2020194528A1 true WO2020194528A1 (ja) 2020-10-01

Family

ID=72609345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012944 WO2020194528A1 (ja) 2019-03-26 2019-03-26 故障診断システムおよび故障診断方法

Country Status (2)

Country Link
JP (1) JP7360605B2 (ja)
WO (1) WO2020194528A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046015A (ja) * 1998-07-28 2000-02-15 Yutani Heavy Ind Ltd 油圧回路の自己診断装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124759B2 (ja) * 2019-02-22 2022-08-24 株式会社島津製作所 異常診断システム、その異常診断システムを備えた荷役装置、および異常診断方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046015A (ja) * 1998-07-28 2000-02-15 Yutani Heavy Ind Ltd 油圧回路の自己診断装置

Also Published As

Publication number Publication date
JPWO2020194528A1 (ja) 2020-10-01
JP7360605B2 (ja) 2023-10-13

Similar Documents

Publication Publication Date Title
US10883662B2 (en) Gas supply device, hydrogen station, and gas supply method
US9810374B2 (en) Gas-filling apparatus and method for filling gas
JP3078818B2 (ja) 航空機用補助燃料移送装置
CN104968544B (zh) 用于对气动式制动助力器提供负压的方法和泵总成
JP3739126B2 (ja) ダンプトラックの故障診断方法及び装置
WO2020194528A1 (ja) 故障診断システムおよび故障診断方法
JP6645796B2 (ja) ガス充填装置
JP2750586B2 (ja) 減圧弁の特性試験装置
JPH10505892A (ja) 液圧装置の機能テスト方法
CN116097079A (zh) 用于监视和测量车辆、尤其是轨道车辆的空气供给系统的特征参数的监视和测量装置以及方法
JP4982422B2 (ja) アキュムレータのガス圧低下検出方法、及び検出装置
JP7369353B2 (ja) 異常診断システムおよび異常診断方法
CN113015599A (zh) 用于在夹持装置上对物体进行着座检测的检测装置
JP3317778B2 (ja) アキュムレータのガス圧自動測定方法
JP7396365B2 (ja) 故障診断システムおよび故障診断方法
EP2209565B1 (en) Monitoring of independent vibrators
JP7124759B2 (ja) 異常診断システム、その異常診断システムを備えた荷役装置、および異常診断方法
JP2004212128A (ja) 油圧装置の異常監視方法
JP6429085B2 (ja) ガス供給装置
JP4395700B2 (ja) 高圧クーラント供給装置
US11959469B2 (en) Method for monitoring the state of a device and device
GB2428745A (en) Motor driven syringe desynchronisation detection
CN113307159B (zh) 甲板起重机的状态判断装置及状态判断方法、甲板起重系统
JP6901441B2 (ja) 油圧駆動装置
WO2021044526A1 (ja) 多連バルブ装置およびその多連バルブ装置を備えた荷役装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922194

Country of ref document: EP

Kind code of ref document: A1