WO2020194433A1 - 半導体装置の製造方法、基板処理装置及びプログラム - Google Patents

半導体装置の製造方法、基板処理装置及びプログラム Download PDF

Info

Publication number
WO2020194433A1
WO2020194433A1 PCT/JP2019/012442 JP2019012442W WO2020194433A1 WO 2020194433 A1 WO2020194433 A1 WO 2020194433A1 JP 2019012442 W JP2019012442 W JP 2019012442W WO 2020194433 A1 WO2020194433 A1 WO 2020194433A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
loading direction
substrate loading
nozzle
flow rate
Prior art date
Application number
PCT/JP2019/012442
Other languages
English (en)
French (fr)
Inventor
一樹 野々村
竹林 雄二
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2019/012442 priority Critical patent/WO2020194433A1/ja
Priority to JP2021508410A priority patent/JP7204889B2/ja
Priority to KR1020217029794A priority patent/KR20210127743A/ko
Priority to CN201980094512.XA priority patent/CN113614881A/zh
Publication of WO2020194433A1 publication Critical patent/WO2020194433A1/ja
Priority to US17/477,170 priority patent/US20220002873A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67346Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders characterized by being specially adapted for supporting a single substrate or by comprising a stack of such individual supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2

Definitions

  • the present disclosure relates to a semiconductor device manufacturing method, a substrate processing device, and a program.
  • Patent Document 1 When gas is supplied to the substrate using a porous nozzle to form a film with a vertical film forming apparatus, the difference between the film thickness on the substrate loaded on the upper side of the boat and the film thickness on the substrate loaded on the lower side of the boat May occur and the film thickness uniformity between the substrates may deteriorate (Patent Document 1 and the like).
  • An object of the present disclosure is to provide a technique capable of adjusting the film thickness balance between the surfaces of a plurality of substrates loaded in a processing chamber.
  • a first nozzle provided in the processing chamber along the substrate loading direction of the plurality of substrates, and the flow rate of the gas supplied from the upper part is larger than the flow rate of the gas supplied from the lower part in the substrate loading direction, and the processing.
  • From the second nozzle provided in the room along the substrate loading direction and the flow rate of the gas supplied from the lower part is larger than the flow rate of the gas supplied from the upper part in the substrate loading direction to the plurality of substrates.
  • Nozzles 410a in the second embodiment of the present disclosure is a diagram for explaining the TiCl 4 gas and the nozzle 420a to be supplied to the 410b, the adjustment of the flow rate of N 2 gas supplied to 420b that effect.
  • the substrate processing device 10 is configured as an example of a device used in the manufacturing process of a semiconductor device.
  • the substrate processing device 10 includes a processing furnace 202 provided with a heater 207 as a heating means (heating mechanism, heating system).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • an outer tube 203 forming a reaction vessel is arranged concentrically with the heater 207.
  • the outer tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open.
  • a manifold (inlet flange) 209 is arranged concentrically with the outer tube 203.
  • the manifold 209 is made of a metal such as stainless steel (SUS), and is formed in a cylindrical shape with open upper and lower ends.
  • An O-ring 220a as a sealing member is provided between the upper end portion of the manifold 209 and the outer tube 203.
  • the inner tube 204 constituting the reaction vessel is arranged inside the outer tube 203.
  • the inner tube 204 is made of a heat-resistant material such as quartz) or SiC, and is formed in a cylindrical shape with the upper end closed and the lower end open.
  • the processing container (reaction container) is mainly composed of the outer tube 203, the inner tube 204, and the manifold 209.
  • a processing chamber 201 is formed in the hollow portion of the processing container (inside the inner tube 204).
  • the processing chamber 201 is configured to accommodate the wafer 200 as a substrate in a state of being arranged in multiple stages in the vertical direction in a horizontal posture by a boat 217 described later.
  • nozzles 410a first nozzle
  • 410b second nozzle
  • 420a third nozzle
  • Gas supply pipes 310a, 310b, 320a as gas supply lines are connected to the nozzles 410a, 410b, 420a, respectively.
  • the substrate processing apparatus 10 is provided with three nozzles 410a, 410b, 420a and three gas supply pipes 310a, 310b, 320a, and supplies a plurality of types of gas into the processing chamber 201. It is configured to be able to.
  • the processing furnace 202 of the present embodiment is not limited to the above-described embodiment.
  • the gas supply pipes 310a, 310b, 320a have mass flow controllers (MFCs) 312a, 312b, 322a which are flow rate controllers (flow control units) and valves 314a which are on-off valves in order from the upstream side. , 324b, 324a, respectively.
  • gas supply pipes 510a, 510b, 520a for supplying the inert gas are connected to the downstream side of the valves 314a, 314b, 324a of the gas supply pipes 310a, 310b, 320a, respectively.
  • the gas supply pipes 510a, 510b, 520a are provided with MFCs 512a, 512b, 522a and valves 514a, 514b, 524a, respectively, in this order from the upstream side.
  • Nozzles 410a, 410b, 420a are connected to the tips of the gas supply pipes 310a, 310b, 320a, respectively.
  • the nozzles 410a, 410b, 420a are configured as L-shaped nozzles, and their horizontal portions are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the vertical portions of the nozzles 410a, 410b, 420a are provided inside the channel-shaped (groove-shaped) spare chamber 201a formed so as to project outward in the radial direction of the inner tube 204 and extend in the vertical direction. It is provided in the reserve chamber 201a toward the upper side (upper in the arrangement direction of the wafer 200) along the inner wall of the inner tube 204.
  • the nozzles 410a, 410b, 420a are provided so as to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 411a, 411b, 421a are provided at positions facing the wafer 200, respectively. Is provided.
  • the processing gas is supplied to the wafer 200 from the gas supply holes (supply ports) 411a, 411b, 421a of the nozzles 410a, 410b, 420a, respectively.
  • a plurality of gas supply holes 421a are provided from the lower part to the upper part of the inner tube 204, each having the same opening area, and further provided with the same opening pitch.
  • the gas supply hole 421a is not limited to the above-mentioned form.
  • the opening area may be gradually increased from the lower part to the upper part of the inner tube 204. This makes it possible to make the flow rate of the gas supplied from the gas supply hole 421a more uniform.
  • the configuration of the gas supply hole 411a of the nozzle 410a will be described in detail below with reference to FIG. 3, and the configuration of the gas supply hole 411b of the nozzle 410b will be described in detail with reference to FIG.
  • the lower part (upstream side) of the nozzles 410a, 410b, 420a is the lower side (upstream side) of the nozzles 410a, 410b, 420a erected in the processing chamber 201 along the loading direction (board loading direction) of the wafer 200, and the nozzles 410a, It means the side that is the source of the processing gas to the 410b, 420a, or the upstream side of the flow of the processing gas in the nozzles 410a, 410b, 420a.
  • the upper part (downstream side) of the nozzles 410a, 410b, 420a is the upper side (downstream side) of the nozzles 410a, 410b, 420a erected in the processing chamber 201 along the loading direction of the wafer 200, or the nozzles 410a, 410b, 420a. It means the downstream side of the flow of processing gas inside.
  • a plurality of gas supply holes 411a provided in the nozzle 410a are provided at positions facing the wafer 200 from the lower portion (upstream side) of the nozzle 410a to the upper portion (downstream side) of the nozzle 410a.
  • the hole diameter ⁇ (opening area) of the plurality of gas supply holes 411a provided in the nozzle 410a has a small hole diameter at the lower part (upstream side) and a large hole diameter at the upper part (downstream side). That is, the hole diameters of the plurality of gas supply holes 411a provided in the nozzle 410a have an opening area that increases from the upstream side to the downstream side of the nozzle 410a.
  • the regions Y are the region Y (1) and the region Y (downstream side) from the lower portion (upstream side) to the upper portion (downstream side). 2), region Y (3), ..., Region Y (n-1), and region Y (n).
  • the region Y (1) is provided with gas supply holes 411a having a hole diameter ⁇ of A (1) mm, a pitch of X mm, and a number Y (1).
  • the region Y (2) is provided with gas supply holes 411a having a hole diameter ⁇ of A (2) mm, a pitch of X mm, and a number Y (2).
  • the region Y (3) is provided with gas supply holes 411a having a hole diameter ⁇ of A (3) mm, a pitch of X mm, and a number Y (3).
  • the region Y (n-1) is provided with gas supply holes 411a having a hole diameter ⁇ of A (n-1) mm, a pitch of X mm, and a number Y (n-1).
  • the region Y (n) is provided with gas supply holes 411a having a hole diameter ⁇ of A (n) mm, a pitch of X mm, and a number of Y (n).
  • the relationship of the hole diameter ⁇ of the gas supply holes 411a provided in each region (Y1), ..., Y (n) is represented by the following. ⁇ : A (n)> A (1), A (2), A (3), ..., A (n-1)
  • ⁇ : A (n)> A (1), A (2), A (3), ..., A (n-1) For example, when the absolute value of the hole diameter ⁇ is in the range of 0.5 mm to 3.0 mm, the relative ratio of A (n) and A (1) is in the range of 1: 1.01-1: 6. Is good.
  • the hole diameter of the gas supply hole 411a is set so that the flow rate of the gas from the gas supply hole 411a increases from the upstream side to the downstream side.
  • a plurality of gas supply holes 411b provided in the nozzle 410b are provided at positions facing the wafer 200 from the lower portion (upstream side) of the nozzle 410b to the upper portion (downstream side) of the nozzle 410b.
  • the hole diameter ⁇ (opening area) of the plurality of gas supply holes 411b provided in the nozzle 410b has a large hole diameter at the lower part (upstream side) and a small hole diameter at the upper part (downstream side). That is, the hole diameters of the plurality of gas supply holes 411b provided in the nozzle 410b have an opening area that increases from the downstream side to the upstream side of the nozzle 410b.
  • the regions Y are the region Y (1) and the region Y (downstream side) from the lower portion (upstream side) to the upper portion (downstream side). 2), region Y (3), ..., Region Y (n-1), and region Y (n).
  • the region Y (1) is provided with gas supply holes 411b having a hole diameter ⁇ of B (1) mm, a pitch of X mm, and a number Y (1).
  • the region Y (2) is provided with gas supply holes 411b having a hole diameter ⁇ of B (2) mm, a pitch of X mm, and a number Y (2).
  • the region Y (3) is provided with gas supply holes 411b having a hole diameter ⁇ of B (3) mm, a pitch of X mm, and a number Y (3).
  • the region Y (n-1) is provided with gas supply holes 411b having a hole diameter ⁇ of B (n-1) mm, a pitch of X mm, and a number Y (n-1).
  • the region Y (n) is provided with gas supply holes 411b having a hole diameter ⁇ of B (n) mm, a pitch of X mm, and a number of Y (n).
  • the relationship of the hole diameter ⁇ of the gas supply holes 411b provided in each region (Y1), ..., Y (n) is represented by the following. ⁇ : B (1)> B (2), B (3), ..., B (n-1), B (n)
  • B (1) and B (n) are in the range of 1: 1.01-1: 6. Is good.
  • the hole diameter of the gas supply hole 411b is set so that the flow rate of the gas from the gas supply hole 411b increases from the downstream side to the upstream side.
  • the partial pressure balance of the processing gas in the processing chamber 201 can be adjusted by adjusting the flow rate of the processing gas supplied into the processing chamber 201 from the gas supply holes 411a and 411b of the nozzles 410a and 410b. Can be adjusted so as to have a desired partial pressure balance value.
  • a plurality of gas supply holes 411a, 411b, 421a of the nozzles 410a, 410b, 420a are provided at height positions from the lower part to the upper part of the boat 217, which will be described later. Therefore, the processing gas supplied into the processing chamber 201 from the gas supply holes 411a, 411b, 421a of the nozzles 410a, 410b, 420a is accommodated in the wafer 200 accommodated from the lower part to the upper part of the boat 217, that is, the boat 217. It is supplied to the entire area of the wafer 200.
  • the nozzles 410a, 410b, 420a may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but are preferably provided so as to extend to the vicinity of the ceiling of the boat 217.
  • the raw material gas containing the first metal element (the first metal-containing gas and the first raw material gas) is MFC 312a, 312b, the valve 314a, 314b, and the nozzle 410a, respectively, as the processing gas. , 410b and is supplied into the processing chamber 201.
  • the raw material for example, titanium tetrachloride (TiCl 4 ) containing titanium (Ti) as the first metal element and as a halogen-based raw material (also referred to as a halide or a halogen-based titanium raw material) is used.
  • a reaction gas (a reaction gas having a molecular structure (chemical structure) different from that of the raw material gas) is supplied into the processing chamber 201 as a processing gas via the MFC 322a, the valve 324a, and the nozzle 420a.
  • the reaction gas for example, ammonia (NH 3 ) gas as an N-containing gas containing nitrogen (N) can be used.
  • NH 3 acts as a nitriding / reducing agent (nitriding / reducing gas).
  • nitrogen (N 2 ) gas as an inert gas is introduced into the processing chamber via MFC512a, 512b, 522a, valves 514a, 514b, 524a, and nozzles 410a, 410b, 420a, respectively. It is supplied in 201.
  • N 2 gas is used as the inert gas.
  • the inert gas for example, argon (Ar) gas, helium (He) gas, neon (Ne) gas, in addition to N 2 gas, will be described.
  • Xenon (Xe) gas and other rare gases may be used.
  • the processing gas supply system is mainly composed of gas supply pipes 310a, 310b, 320a, MFC 312a, 312b, 322a, valves 314a, 314b, 324a, nozzles 410a, 410b, 420a, but only nozzles 410a, 410b, 420a. It may be considered as a processing gas supply system.
  • the treated gas supply system can also be simply referred to as a gas supply system.
  • the raw material gas supply system is mainly composed of the gas supply pipes 310a and 310b, the MFC 312a and 312b, and the valves 314a and 314b, and the nozzles 410a and 410b supply the raw material gas. You may consider including it in the system. Further, the raw material gas supply system can also be referred to as a raw material supply system. When a metal-containing raw material gas is used as the raw material gas, the raw material gas supply system can also be referred to as a metal-containing raw material gas supply system.
  • the reaction gas supply system is mainly composed of the gas supply pipe 320a, the MFC 322a, and the valve 324a, but the nozzle 420a may be included in the reaction gas supply system.
  • the reaction gas supply system can also be referred to as a nitrogen-containing gas supply system.
  • the inert gas supply system is mainly composed of gas supply pipes 510a, 510b, 520a, MFC512a, 512b, 522a, and valves 514a, 514b, 524a.
  • the inert gas supply system can also be referred to as a purge gas supply system, a dilution gas supply system, or a carrier gas supply system.
  • the method of gas supply in the present embodiment is in the annular vertically long space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200, that is, in the spare chamber 201a in the cylindrical space.
  • the gas is conveyed via the nozzles 410a, 410b, 420a arranged in.
  • gas is ejected into the inner tube 204 from a plurality of gas supply holes 411a, 411b, 421a provided at positions facing the wafers of the nozzles 410a, 410b, 420a.
  • the gas supply holes 411a and 411b of the nozzles 410a and 410b and the gas supply holes 421a of the nozzle 420a eject a processing gas such as a raw material gas in a direction parallel to the surface of the wafer 200, that is, in a horizontal direction. There is.
  • the exhaust hole (exhaust port) 204a is a through hole formed on the side wall of the inner tube 204 at a position facing the nozzles 410a, 410b, 420a, that is, at a position 180 degrees opposite to the spare chamber 201a, for example. , A slit-shaped through hole that is elongated in the vertical direction. Therefore, the gas supplied into the processing chamber 201 from the gas supply holes 411a, 411b, 421a of the nozzles 410a, 410b, 420a and flowing on the surface of the wafer 200, that is, the residual gas (residual gas) is the exhaust hole 204a.
  • the gas flows into the exhaust passage 206 formed by the gap formed between the inner tube 204 and the outer tube 203. Then, the gas that has flowed into the exhaust passage 206 flows into the exhaust pipe 231 and is discharged to the outside of the processing furnace 202.
  • the exhaust holes 204a are provided at positions facing the plurality of wafers 200 (preferably at positions facing the upper to lower parts of the boat 217), and the gas supply holes 411a, 411b, 421a of the wafers 200 in the processing chamber 201 are provided.
  • the gas supplied in the vicinity flows in the horizontal direction, that is, in the direction parallel to the surface of the wafer 200, and then flows into the exhaust passage 206 through the exhaust hole 204a. That is, the gas remaining in the processing chamber 201 is exhausted in parallel with the main surface of the wafer 200 through the exhaust hole 204a.
  • the exhaust hole 204a is not limited to the case where it is configured as a slit-shaped through hole, and may be configured by a plurality of holes.
  • the manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201
  • an APC (Auto Pressure Controller) valve 243 and a vacuum pump as a vacuum exhaust device. 246 is connected.
  • the APC valve 243 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, the valve with the vacuum pump 246 operating. By adjusting the opening degree, the pressure in the processing chamber 201 can be adjusted.
  • the exhaust system that is, the exhaust line is mainly composed of the exhaust hole 204a, the exhaust passage 206, the exhaust pipe 2311, the APC valve 243, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209.
  • the seal cap 219 is configured to come into contact with the lower end of the manifold 209 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • An O-ring 220b as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219.
  • a rotation mechanism 267 for rotating the boat 217 accommodating the wafer 200 is installed on the opposite side of the processing chamber 201 in the seal cap 219.
  • the rotating shaft 255 of the rotating mechanism 267 penetrates the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as a raising and lowering mechanism vertically installed outside the outer tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by raising and lowering the seal cap 219.
  • the boat elevator 115 is configured as a transport device (convey mechanism) for transporting the wafers 200 housed in the boat 217 and the boat 217 into and out of the processing chamber 201.
  • the boat 217 as a substrate support supports a plurality of wafers, for example, 25 to 200 wafers, in a horizontal position and in a vertically aligned state so as to support them in multiple stages. It is configured to be arranged at intervals.
  • the boat 217 is made of a heat resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in a horizontal posture in multiple stages (not shown). With this configuration, the heat from the heater 207 is less likely to be transferred to the seal cap 219 side.
  • this embodiment is not limited to the above-described embodiment.
  • a heat insulating cylinder configured as a tubular member made of a heat-resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and the amount of electricity supplied to the heater 207 is adjusted based on the temperature information detected by the temperature sensor 263.
  • the temperature in the processing chamber 201 is configured to have a desired temperature distribution.
  • the temperature sensor 263 is L-shaped like the nozzles 410a, 410b and 420a, and is provided along the inner wall of the inner tube 204.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus.
  • An input / output device 122 configured as, for example, a touch panel is connected to the controller 121.
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing device, a process recipe in which procedures and conditions of a method for manufacturing a semiconductor device to be described later are described, and the like are readablely stored.
  • the process recipes are combined so that the controller 121 can execute each step (each step) in the method for manufacturing a semiconductor device described later and obtain a predetermined result, and functions as a program.
  • the process recipe, control program, etc. are collectively referred to as a program.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
  • the I / O port 121d includes the above-mentioned MFC 312a, 312b, 322a, 512a, 512b, 522a, valve 314a, 314b, 324a, 514a, 514b, 524a, pressure sensor 245, APC valve 243, vacuum pump 246, heater 207, temperature. It is connected to the sensor 263, the rotation mechanism 267, the boat elevator 115, and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe or the like from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFC 312a, 312b, 322a, 512a, 512b, 522a, opens and closes the valves 314a, 314b, 324a, 514a, 514b, 524a, and the APC valve according to the contents of the read recipe.
  • the controller 121 is stored in an external storage device (for example, magnetic tape, magnetic disk such as flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card) 123.
  • the above-mentioned program can be configured by installing it on a computer.
  • the storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
  • the recording medium may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • Substrate processing process (deposition process) An example of a step of forming a metal film on the wafer 200 as one step of the manufacturing process of the semiconductor device (device) will be described with reference to FIG. 7.
  • the step of forming the metal film is performed using the processing furnace 202 of the substrate processing apparatus 10 described above. In the following description, the operation of each part constituting the substrate processing apparatus 10 is controlled by the controller 121.
  • wafer When the word “wafer” is used in the present specification, it may mean the wafer itself or a laminate of a wafer and a predetermined layer or film formed on the surface thereof.
  • wafer surface When the term “wafer surface” is used in the present specification, it may mean the surface of the wafer itself or the surface of a predetermined layer or the like formed on the wafer.
  • a predetermined layer when it is described that "a predetermined layer is formed on a wafer”, it means that a predetermined layer is directly formed on the surface of the wafer itself, or a layer formed on the wafer or the like. It may mean forming a predetermined layer on top of it.
  • board in the present specification is also synonymous with the use of the term "wafer”.
  • the inside of the processing chamber 201 is evacuated by the vacuum pump 246 so as to have a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 is always kept in operation until at least the processing on the wafer 200 is completed. Further, the inside of the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the amount of electricity supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). The heating in the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
  • TiN layer forming step Subsequently, a step of forming a TiN layer, which is, for example, a metal nitride layer as the first metal layer is executed.
  • TiCl 4 gas supply (step S10))
  • the valve 314a is opened, and TiCl 4 gas, which is a raw material gas, flows into the gas supply pipe 310a.
  • the flow rate of the TiCl 4 gas is adjusted by the MFC 312a, 312b so that the partial pressure balance of the TiCl 4 gas becomes a predetermined value along the loading direction of the wafer 200, and the flow rate is adjusted from the gas supply holes 411a, 411b of the nozzles 410a, 410b to the inside of the processing chamber 201.
  • the valves 514a and 514b are opened at the same time, and an inert gas such as N 2 gas is flowed into the gas supply pipes 510a and 510b.
  • the flow rate of the N 2 gas flowing through the gas supply pipes 510a and 510b is adjusted by the MFC 512a and 512b, is supplied into the processing chamber 201 together with the TiCl 4 gas, and is exhausted from the exhaust pipe 231.
  • opening the valve 524a flow the N 2 gas into the gas supply pipe 520a.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipe 320a and the nozzle 420a, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, a pressure in the range of 0.1 to 6650 Pa.
  • the supply flow rate of the TiCl 4 gas controlled by the MFC 312a and 312b is, for example, a flow rate within the range of 0.1 to 2 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512a, 512b, and 522a is, for example, a flow rate within the range of 0.1 to 30 slm.
  • the time for supplying the TiCl 4 gas to the wafer 200 is, for example, a time in the range of 0.01 to 20 seconds.
  • the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 is in the range of, for example, 250 to 550 ° C.
  • the numerical value is described as 0.1 to 6650 Pa, it means 0.1 Pa or more and 6650 Pa or less. That is, the numerical range includes 0.1 Pa and 6650 Pa. The same applies not only to pressure but also to all numerical values described in the present specification such as flow rate, time and temperature.
  • the only gases flowing in the processing chamber 201 are TiCl 4 gas and N 2 gas, and by supplying the TiCl 4 gas, for example, from less than one atomic layer to several atomic layers on the wafer 200 (surface base film). A thick Ti-containing layer is formed.
  • valves 314a and 314b are closed to stop the supply of TiCl 4 gas.
  • the processing chamber TiCl 4 after contributing to not react or Ti-containing layer formed remaining in the 201 Exhaust the gas from the processing chamber 201.
  • the valves 514a, 514b, and 524a are left open to maintain the supply of the N 2 gas into the processing chamber 201.
  • the N 2 gas acts as a purge gas, and can enhance the effect of removing the unreacted or TiCl 4 gas remaining in the treatment chamber 201 after contributing to the formation of the Ti-containing layer from the treatment chamber 201.
  • NH 3 gas supply (NH 3 gas supply (step S12))
  • the valve 324a is opened, and NH 3 gas, which is an N-containing gas, is flowed into the gas supply pipe 320a as a reaction gas.
  • the flow rate of the NH 3 gas is adjusted by the MFC 322a, is supplied into the processing chamber 201 from the gas supply hole 421a of the nozzle 420a, and is exhausted from the exhaust pipe 231.
  • the valve 524a is kept closed so that the N 2 gas is not supplied into the processing chamber 201 together with the NH 3 gas.
  • the NH 3 gas is supplied into the processing chamber 201 without being diluted with the N 2 gas, and is exhausted from the exhaust pipe 231.
  • the valves 514a and 514b are opened and the N 2 gas flows into the gas supply pipes 510a and 510b.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 310a and 310b and the nozzles 410a and 410b, and is exhausted from the exhaust pipe 231.
  • the reaction gas (NH 3 gas) is supplied into the processing chamber 201 without being diluted with N 2 gas, it is possible to improve the film formation rate of the TiN layer.
  • the atmospheric concentration of N 2 gas in the vicinity of the wafer 200 can also be adjusted.
  • the APC valve 243 When flowing NH 3 gas, the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 0.1 to 6650 Pa.
  • the supply flow rate of the NH 3 gas controlled by the MFC 322a is, for example, a flow rate in the range of 0.1 to 20 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512a is, for example, a flow rate within the range of 0.1 to 30 slm.
  • the time for supplying the NH 3 gas to the wafer 200 is, for example, a time in the range of 0.01 to 30 seconds.
  • the temperature of the heater 207 at this time is set to the same temperature as that of the TiCl 4 gas supply step.
  • the only gases flowing in the processing chamber 201 are NH 3 gas and N 2 gas.
  • the NH 3 gas undergoes a substitution reaction with at least a part of the Ti-containing layer formed on the wafer 200 in the TiCl 4 gas supply step.
  • substitution reaction by bonding with N contained in the Ti and NH 3 gas contained in the Ti-containing layer, TiN layer containing Ti and N on the wafer 200 is formed.
  • step S13 Removal of residual gas (step S13)) After forming the TiN layer, by closing the valve 324a, to stop the supply of the NH 3 gas. Then, by the same procedure as step S11, eliminating NH 3 gas and reaction by-products after contributing to the formation of unreacted or TiN layer remaining from the process chamber 201 into the process chamber 201.
  • a TiN layer having a predetermined thickness (for example, 0.1 to 2 nm) is formed on the wafer 200 by performing the cycle of performing the steps S10 to S13 in order one or more times (predetermined number of times (n times)). ..
  • the above cycle is preferably repeated a plurality of times, for example, preferably about 10 to 80 times, and more preferably about 10 to 15 times.
  • Gas supply pipe 510a, 510b, supplied from each of 520a N 2 gas into the process chamber 201 is evacuated through the exhaust pipe 231.
  • the N 2 gas acts as a purge gas, whereby the inside of the treatment chamber 201 is purged with the inert gas, and the gas and by-products remaining in the treatment chamber 201 are removed from the inside of the treatment chamber 201 (after-purge).
  • the atmosphere in the treatment chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to normal pressure (return to atmospheric pressure).
  • the seal cap 219 is lowered by the boat elevator 115 to open the lower end of the outer tube 203. Then, the processed wafer 200 is carried out (boat unloading) from the lower end of the outer tube 203 to the outside of the outer tube 203 while being supported by the boat 217. After that, the processed wafer 200 is taken out from the boat 217 (wafer discharge).
  • step S10 adjustment of the flow rate of the TiCl 4 gas supplied to the nozzles 410a and 410b and its effect will be described with reference to FIGS. 8 and 9.
  • FIG. 8A shows a process when the flow rate of the SiCl 4 gas to the nozzle 410a is relatively large (1.5) and the flow rate of the SiCl 4 gas to the nozzle 410b is relatively small (0.5).
  • the gas flow in chamber 201 is conceptually shown.
  • FIG. 8B conceptually shows the gas flow in the processing chamber 201 when the flow rate of the SiCl 4 gas to the nozzle 410a and the flow rate of the SiCl 4 gas to the nozzle 410b are the same amount (1.0).
  • FIG. 8C shows a process when the flow rate of the SiCl 4 gas to the nozzle 410a is relatively small (0.5) and the flow rate of the SiCl 4 gas to the nozzle 410b is relatively large (1.5).
  • the gas flow in chamber 201 is conceptually shown.
  • the flow rate and partial pressure of the TiCl 4 gas in the lower region of the nozzles 410a and 410b are smaller than the flow rate and partial pressure of the TiCl 4 gas in the upper region of the nozzles 410a and 410b. .. That is, it is possible to create a partial pressure balance in which the amount of TiCl 4 gas supplied in the upper region is larger than that in the lower region, and the partial pressure of the TiCl 4 gas in the upper region is higher than that in the lower region. Therefore, the film thickness of the TiN layer formed on the wafer 200 located in the lower region can be reduced, and the film thickness of the TiN layer formed on the wafer 200 located in the upper region can be increased.
  • the flow rate and partial pressure of TiCl 4 gas in the lower region of the nozzles 410a and 410b are similar to the flow rate and partial pressure of the TiCl 4 gas in the upper region of the nozzles 410a and 410b. .. That is, it is possible to create a partial pressure balance in which the amount of TiCl 4 gas supplied in the upper region is about the same as that in the lower region, and the partial pressure of the TiCl 4 gas in the upper region is about the same as that in the lower region. Therefore, the film thickness of the TiN layer formed on the wafer 200 located in the lower region and the film thickness of the TiN layer formed on the wafer 200 located in the upper region can be formed to the same extent.
  • the flow rate and partial pressure of the TiCl 4 gas in the lower region of the nozzles 410a and 410b are larger than the flow rate and the partial pressure of the TiCl 4 gas in the upper region of the nozzles 410a and 410b. .. That is, it is possible to create a partial pressure balance in which the supply amount of the TiCl 4 gas in the lower region is larger than that in the upper region, and the partial pressure of the TiCl 4 gas in the lower region is higher than that in the upper region. Therefore, the film thickness of the TiN layer formed on the wafer 200 located in the upper region can be reduced, and the film thickness of the TiN layer formed on the wafer 200 located in the lower region can be increased.
  • 9 (a) is a nozzle 410a, a flow rate of TiCl 4 gas to 410b, the processing in the case of a nozzle 410a, flow rate and the same amount of TiCl 4 gas to 410b in FIG. 8 (b) (1.0)
  • the gas flow in chamber 201 is conceptually shown.
  • 9 (b) shows a case where the flow rate of the SiCl 4 gas to the nozzles 420a and 420b is twice the flow rate (2.0) of the TiCl 4 gas to the nozzles 410a and 410b of FIG. 8 (b).
  • the gas flow in the processing chamber 201 is conceptually shown.
  • the flow rate and partial pressure of the TiCl 4 gas in the upper region and the lower region of the nozzles 410a and 410b are compared with the flow rate and the partial pressure of the TiCl 4 gas in the central region of the nozzles 410a and 410b. Therefore, the flow rate and partial pressure are larger than those in the example of FIG. 8 (b). That is, the TiCl 4 gas supply amount in the upper region and the lower region is larger than that in the central region, and the partial pressure balance of the TiCl 4 gas in the upper region and the lower region is higher than that in the central region. be able to.
  • the film thickness of the TiN layer formed on the wafer 200 located in the central region is thin, and the film thickness of the TiN layer formed on the wafer 200 located in the upper region and the lower region is thick, as shown in FIG. 8 (b). Also, the thickness of the TiN layer formed on the wafer 200 can be increased.
  • the flow rate and partial pressure of the TiCl 4 gas in the upper region and the lower region of the nozzles 410a and 410b are compared with the flow rate and the partial pressure of the TiCl 4 gas in the central region of the nozzles 410a and 410b. Therefore, the flow rate and partial pressure are smaller than those in the example of FIG. 8 (b). That is, the TiCl 4 gas supply amount in the upper region and the lower region is larger than that in the central region, and the partial pressure balance of the TiCl 4 gas in the upper region and the lower region is higher than that in the central region. be able to.
  • the film thickness of the TiN layer formed on the wafer 200 located in the central region is thin, and the film thickness of the TiN layer formed on the wafer 200 located in the upper region and the lower region is thick, as shown in FIG. 8 (b). Also, the thickness of the TiN layer formed on the wafer 200 can be made thin.
  • the nozzles It is possible to adjust the partial pressure balance of the processing gas supplied into the processing chamber 201 from the gas supply holes 411a and 411b of 410a and 410b so as to have a desired partial pressure balance value. This makes it possible to improve the uniformity of the film thickness of the TiN layer between the wafers 200 loaded in the processing chamber 201.
  • the hole diameters of the nozzle 410a and the plurality of gas supply holes 411b having an opening area in which the hole diameters of the plurality of gas supply holes 411a increase from the upstream side to the downstream side increase from the downstream side to the upstream side.
  • a nozzle 410b comprising widens the opening area, the raw material gas supplied nozzle 410a, to 410b by adjusting the flow rate of (TiCl 4 gas), the raw material gas in the processing chamber 201 (TiCl 4 gas) It becomes possible to adjust the partial pressure balance of.
  • the same raw material gas as in the first embodiment is supplied from the gas supply pipe 320a into the processing chamber 201 via the MFC 322a, the valve 324a, and the nozzle 420a.
  • the same reaction gas as in the first embodiment is supplied into the processing chamber 201 as the processing gas via the MFC 312a, 312b, the valves 314a, 314b, and the nozzles 410a, 410b.
  • a nozzle 410b for the nozzles 410a and 4 of Figure 3 by adjusting the flow rate of the nozzle 410a, the process gas supplied to 410b (NH 3 gas), nozzles 410a, 410b It is possible to adjust the partial pressure balance of the processing gas supplied from the gas supply holes 411a and 411b into the processing chamber 201 so as to have a desired partial pressure balance value. This makes it possible to improve the uniformity of the film thickness of the TiN layer between the wafers 200 loaded in the processing chamber 201.
  • the nozzle 410a by adjusting the flow rate of the purge gas (N 2 gas) supplied to the 410b, the partial pressure balance of the purge gas supplied nozzle 410a, the gas supply holes 411a of 410b, from 411b to the processing chamber 201 Can be adjusted so as to have a desired partial pressure balance value.
  • nozzles 410a (first nozzle), 410b (second nozzle), 420a (third nozzle), 420b (fourth nozzle) are included in the manifold 209. It is provided so as to penetrate the side wall and the inner tube 204.
  • Gas supply pipes 310a, 310b, 320a, 320b as gas supply lines are connected to the nozzles 410a, 410b, 420a, 420b, respectively.
  • the substrate processing apparatus 10 is provided with four nozzles 410a, 410b, 420a, 420b and four gas supply pipes 310a, 310b, 320a, 320b, and is provided in the processing chamber 201. It is configured to be able to supply multiple types of gas to.
  • the processing furnace 202 of the present embodiment is not limited to the above-described embodiment.
  • the gas supply pipes 310a, 310b, 320a, 320b are provided with MFC 312a, 312b, 322a, 322b and valves 314a, 324b, 324a, 324b, respectively, from the upstream side.
  • gas supply pipes 510a, 510b, 520a, 520b for supplying the inert gas are connected to the downstream side of the valves 314a, 314b, 324a, 324b of the gas supply pipes 310a310b, 320a, 320b, respectively.
  • the gas supply pipes 510a 510b, 520a, and 520b are provided with MFC 512a 512b, 522a, 522b and valves 514a, 514b, 524a, 524b, respectively, in this order from the upstream side.
  • nozzles 410a, 410b, 420a, 420b are connected to the tips of the gas supply pipes 310a, 310b, 320a, 320b, respectively.
  • the nozzles 410a, 410b, 420a, 420b are configured as L-shaped nozzles, and their horizontal portions are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the vertical portions of the nozzles 410a, 410b, 420a, 420b are inside the channel-shaped (groove-shaped) spare chamber 201a formed so as to project outward in the radial direction of the inner tube 204 and extend in the vertical direction. It is provided, and is provided upward along the inner wall of the inner tube 204 in the spare chamber 201a.
  • the nozzles 410a, 410b, 420a, 420b are provided so as to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 411a, 411b are provided at positions facing the wafer 200, respectively. , 421a and 422b are provided. As a result, the processing gas is supplied to the wafer 200 from the gas supply holes 411a, 411b, 421a, and 422b of the nozzles 410a, 410b, 420a, and 420b, respectively.
  • the configurations of the gas supply holes 411a and 421a of the nozzles 410a and 420a are the same as those of the gas supply holes 411a of the nozzle 410a of FIG. 3, and the configurations of the gas supply holes 411b and 421b of the nozzles 410b and 420b are the nozzles 410b of FIG.
  • the gas supply hole 411b of the above has the same configuration.
  • the same raw material gas as in the first embodiment is supplied into the processing chamber 201 via the MFC 312a, 312b, the valves 314a, 314b, and the nozzles 410a, 410b.
  • the same reaction gas as in the first embodiment is supplied into the processing chamber 201 via the MFC 322a, 322b, the valves 324a, 324b, and the nozzles 420a, 420b.
  • the same gases as those in the first embodiment are MFC512a, 512b, 522a, 522b, valves 514a, 514b, 524a, 524b, nozzles 410a, respectively. It is supplied into the processing chamber 201 via 410b, 420a, 420b.
  • step S10 (Second embodiment: TiCl 4 gas supply (step S10))
  • the valves 314a and 314b are opened, and the TiCl 4 gas, which is a raw material gas, flows into the gas supply pipes 310a and 310b.
  • the flow rate of the TiCl 4 gas is adjusted by the MFC 312a and 312b, is supplied into the processing chamber 201 from the gas supply holes 411a and 411b410a of the nozzles 410a and 410b, and is exhausted from the exhaust pipe 231. At this time, the TiCl 4 gas is supplied to the wafer 200.
  • the valves 514a and 514b are opened at the same time, and an inert gas such as N 2 gas is flowed into the gas supply pipes 510a and 510b.
  • the flow rate of the N 2 gas flowing through the gas supply pipes 510a and 510b is adjusted by the MFC 512a and 512b, is supplied into the processing chamber 201 together with the TiCl 4 gas, and is exhausted from the exhaust pipe 231.
  • the valves 524a and 524b are opened and the N 2 gas is contained in the gas supply pipes 520a and 520b. Shed.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 320a and 320b and the nozzles 420a and 420b, and is exhausted from the exhaust pipe 231.
  • NH 3 gas supply (Second embodiment: NH 3 gas supply (step S12))
  • the valve 324a, Open 324b, the gas supply pipe 320a, in 320b flow NH 3 gas is N-containing gas as a reaction gas.
  • the flow rate of the NH 3 gas is adjusted by the MFC 322a and 322b so that the partial pressure balance of the NH 3 gas becomes a predetermined value along the loading direction of the wafer 200, and the gas supply holes 421a and 421b of the nozzles 420a and 420b enter the processing chamber 201.
  • valves 524a and 524b are kept closed so that the N 2 gas is not supplied to the processing chamber 201 together with the NH 3 gas. That is, the NH 3 gas is supplied into the processing chamber 201 without being diluted with the N 2 gas, and is exhausted from the exhaust pipe 231. At this time, in order to prevent the intrusion of NH 3 gas into the nozzles 410a and 410b and to adjust the concentration distribution of the reaction gas, the valves 514a and 514b are opened and the N 2 gas flows into the gas supply pipes 510a and 510b. ..
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 310a and 310b and the nozzles 410a and 410b, and is exhausted from the exhaust pipe 231.
  • the reaction gas (NH 3 gas) is supplied into the processing chamber 201 without being diluted with N 2 gas, it is possible to improve the film formation rate of the TiN layer.
  • the atmospheric concentration of N 2 gas in the vicinity of the wafer 200 can also be adjusted.
  • step S10 of the second embodiment described above the adjustment of the flow rate of the N 2 gas supplied to the nozzles 420a and 420b and its effect will be described with reference to FIG.
  • the TiCl 4 gas is supplied into the processing chamber 201 from the nozzles 410a and 410b, and the N 2 gas is supplied into the processing chamber 201 from the nozzles 420a and 420b. Further, in FIG. 12, gas flows from the nozzle to the right, and the length of the straight line indicates the partial pressure of gas or the flow rate or concentration distribution of gas.
  • the nozzles 410a and 410b are collectively referred to as a nozzle 410, and the nozzles 420a and 420b are collectively referred to as a nozzle 420.
  • FIG. 12 (a) shows the processing chamber when the flow rates of the nozzles 410a and 410b are the same as those of FIG. 10 (a) and the flow rate of the N 2 gas to the nozzles 420a and 420b is the same as that of FIG. 10 (b).
  • the gas flow of 201 is conceptually shown.
  • the gas flow of 201 is conceptually shown.
  • the flow rate and partial pressure of N 2 gas in the upper region and the lower region of the nozzles 420a and 420b are compared with the flow rate and partial pressure of N 2 gas in the central region of the nozzles 420a and 420b. And get bigger. That is, as shown at the right end of the figure, it is possible to create a concentration distribution in which the concentration of TiCl 4 gas in the central region is higher than that in the upper region and the lower region. In this case, the change in the concentration distribution is gradual as compared with the first embodiment. Therefore, the film thickness of the TiN layer formed on the wafer 200 located in the upper region and the lower region can be made thin, and the film thickness of the TiN layer formed on the wafer 200 located in the central region can be made thick.
  • the flow rate and partial pressure of the SiCl 4 gas in the upper region and the lower region of the nozzles 410a and 410b are compared with the flow rate and the partial pressure of the SiCl 4 gas in the central region of the nozzles 410a and 410b. And get bigger. That is, as shown at the right end of the figure, it is possible to create a concentration distribution in which the concentration of TiCl 4 gas in the upper region and the lower region is higher than that in the central region. In this case, the change in the concentration distribution is gradual as compared with the first embodiment. Therefore, the film thickness of the TiN layer formed on the wafer 200 located in the upper region and the lower region can be increased, and the film thickness of the TiN layer formed on the wafer 200 located in the central region can be reduced.
  • step S12 of the second embodiment described above the adjustment of the flow rate of the N 2 gas supplied to the nozzles 410a and 410b can create a concentration distribution of the NH 3 gas as described in FIG.
  • the present disclosure is applicable to all film types and gas types formed or used in the vertical film forming apparatus.
  • the film formation process may be performed in the same manner as in the first embodiment or the modified example of the first embodiment by closing the valves 324b and 524b so as not to supply the processing gas and the inert gas to the nozzle 420b.
  • the number of nozzles having different blowing characteristics is not limited to two, as long as the same type of gas can be supplied and the amount of blowing amount and the gas concentration balance between the surfaces can be adjusted, and there may be three or more nozzles.
  • Substrate processing device 200 Wafer (board) 201 ... Processing chamber 410a ... Nozzle (first nozzle) 410b ... Nozzle (second nozzle) 420a ... Nozzle (third nozzle)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

処理室内に複数の基板を積載して収容する工程と、処理室内に複数の基板の基板積載方向に沿って設けられ、基板積載方向の下部から供給するガスの流量よりも上部から供給するガスの流量が多い第1のノズルと、処理室内に基板積載方向に沿って設けられ、基板積載方向の上部から供給するガスの流量よりも下部から供給するガスの流量が多い第2のノズルとから、複数の基板に対して原料ガスを供給する工程と、複数の基板に対して反応ガスを供給する工程と、を有する技術が提供される。

Description

半導体装置の製造方法、基板処理装置及びプログラム
 本開示は、半導体装置の製造方法、基板処理装置及びプログラムに関する。
 縦型成膜装置で、多孔ノズルを用いて基板にガス供給し成膜した場合、ボート上部側に装填された基板上の膜厚と、ボート下部側に装填された基板上の膜厚に差が生じ、基板間における膜厚均一性が悪化することがある(特許文献1等)。
特開2017-54925号公報
 本開示は、処理室内に積載された複数の基板において、各基板の面間の膜厚バランスを調整することが可能な技術を提供することを目的とする。
 本開示の一態様によれば、
 処理室内に複数の基板を積載して収容する工程と、
 前記処理室内に前記複数の基板の基板積載方向に沿って設けられ、前記基板積載方向の下部から供給するガスの流量よりも上部から供給する前記ガスの流量が多い第1のノズルと、前記処理室内に前記基板積載方向に沿って設けられ、前記基板積載方向の上部から供給する前記ガスの流量よりも下部から供給する前記ガスの流量が多い第2のノズルとから、前記複数の基板に対して原料ガスを供給する工程と、前記複数の基板に対して反応ガスを供給する工程と、
 を有する技術が提供される。
 本開示によれば、処理室内に積載された複数の基板において、各基板の面間の膜厚バランスを調整することが可能である。
本開示の第1の実施形態における基板処理装置の縦型処理炉の概略を示す縦断面図である。 本開示の第1の実施形態におけるガス供給系の概略構成図である。 本開示の第1の実施形態におけるノズル410aのガス供給孔411aの構成を概念的に示す図である。 本開示の第1の実施形態におけるノズル410bのガス供給孔411bの構成を概念的に示す図である。 図1におけるA-A線概略横断面図である。 本開示の第1の実施形態における基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本開示の第1の実施形態における基板処理装置の動作を示すフロー図である。 本開示の第1の実施形態におけるノズル410a,410bに供給されるTiClガスの流量の調整とその効果を説明するための図である。 本開示の第1の実施形態におけるノズル410a,410bに供給されるTiClガスの流量の調整とその効果を説明するための図である。 本開示の第2の実施形態におけるガス供給系の概略構成図である。 図1におけるA-A線概略横断面図である。 本開示の第2の実施形態におけるノズル410a,410bに供給されるTiClガスおよびノズル420a,420bに供給されるNガスの流量の調整とその効果を説明するための図である。
 <第1の実施形態>
 以下、本開示の第1の実施形態について、図1~図7を参照しながら説明する。基板処理装置10は半導体装置の製造工程において使用される装置の一例として構成されている。
 (1)基板処理装置の構成
 基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成するアウタチューブ203が配設されている。アウタチューブ203は、例えば石英(SiO)、炭化シリコン(SiC)などの耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。アウタチューブ203の下方には、アウタチューブ203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)などの金属により構成され、上端及び下端が開口した円筒形状に形成されている。マニホールド209の上端部と、アウタチューブ203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、アウタチューブ203は垂直に据え付けられた状態となる。
 アウタチューブ203の内側には、反応容器を構成するインナチューブ204が配設されている。インナチューブ204は、例えば石英)、SiCなどの耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。主に、アウタチューブ203と、インナチューブ204と、マニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部(インナチューブ204の内側)には処理室201が形成されている。
 処理室201は、基板としてのウエハ200を後述するボート217によって水平姿勢で鉛直方向に多段に配列した状態で収容可能に構成されている。図4に示すように、処理室201内には、ノズル410a(第1のノズル),410b(第2のノズル),420a(第3のノズル)がマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410a,410b,420aには、ガス供給ラインとしてのガス供給管310a,310b,320aが、それぞれ接続されている。このように、基板処理装置10には3本のノズル410a,410b,420aと、3本のガス供給管310a,310b,320aとが設けられており、処理室201内へ複数種類のガスを供給することができるように構成されている。ただし、本実施形態の処理炉202は上述の形態に限定されない。
 図1、2に示すように、ガス供給管310a,310b,320aには上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)312a,312b,322a及び開閉弁であるバルブ314a,324b,324aがそれぞれ設けられている。また、ガス供給管310a,310b,320aのバルブ314a,314b,324aの下流側には、不活性ガスを供給するガス供給管510a,510b,520aがそれぞれ接続されている。ガス供給管510a,510b,520aには、上流側から順に、MFC512a,512b,522a及びバルブ514a,514b,524aがそれぞれ設けられている。
 ガス供給管310a,310b,320aの先端部にはノズル410a,410b,420aがそれぞれ連結接続されている。ノズル410a,410b,420aは、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410a,410b,420aの垂直部は、インナチューブ204の径方向外向きに突出し、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室201aの内部に設けられており、予備室201a内にてインナチューブ204の内壁に沿って上方(ウエハ200の配列方向上方)に向かって設けられている。
 ノズル410a,410b,420aは、処理室201の下部領域から処理室201の上部領域まで延在するように設けられており、ウエハ200と対向する位置にそれぞれ複数のガス供給孔411a,411b,421aが設けられている。これにより、ノズル410a,410b,420aのガス供給孔(供給口)411a,411b,421aからそれぞれウエハ200に処理ガスを供給する。このガス供給孔421aは、インナチューブ204の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同一の開口ピッチで設けられている。ただし、ガス供給孔421aは上述の形態に限定されない。例えば、インナチューブ204の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔421aから供給されるガスの流量をより均一化することが可能となる。ノズル410aのガス供給孔411aの構成については図3を用いて、ノズル410bのガス供給孔411bの構成については図4を用いて、以下に、詳細に説明する。
 ノズル410a,410b,420aの下部(上流側)とは、処理室201内にウエハ200の積載方向(基板積載方向)に沿って立設されたノズル410a,410b,420aの下部側、ノズル410a,410b,420aへの処理ガスの供給元とされる側、または、ノズル410a,410b,420a内における処理ガスの流れの上流側を意味する。ノズル410a,410b,420aの上部(下流側)とは、処理室201内にウエハ200の積載方向に沿って立設されたノズル410a,410b,420aの上部側、または、ノズル410a,410b,420a内における処理ガスの流れの下流側を意味する。
 ノズル410aに設けられる複数のガス供給孔411aは、ウエハ200と対向する位置に、ノズル410aの下部(上流側)からノズル410aの上部(下流側)にわたって複数設けられる。ノズル410aに設けられる複数のガス供給孔411aの孔径φ(開口面積)は、下部(上流側)の孔径が小さく、上部(下流側)の孔径が大きくされている。すなわち、ノズル410aに設けられる複数のガス供給孔411aの孔径は、ノズル410aの上流側から下流側へ向かって、広くなる開口面積を備えている。
 ノズル410aの複数のガス供給孔411aが設けられている領域を、Yとした場合、領域Yは、下部(上流側)から上部(下流側)に向かって、領域Y(1)、領域Y(2)、領域Y(3)、・・・、領域Y(n-1)、および、領域Y(n)を有する。領域Y(1)には、孔径φがA(1)mm、ピッチがXmm、個数Y(1)のガス供給孔411aが設けられる。領域Y(2)には、孔径φがA(2)mm、ピッチがXmm、個数Y(2)のガス供給孔411aが設けられる。領域Y(3)には、孔径φがA(3)mm、ピッチがXmm、個数Y(3)のガス供給孔411aが設けられる。同様に、領域Y(n-1)には、孔径φがA(n-1)mm、ピッチがXmm、個数Y(n-1)のガス供給孔411aが設けられる。領域Y(n)には、孔径φがA(n)mm、ピッチがXmm、個数Y(n)のガス供給孔411aが設けられる。
 各領域(Y1)、・・・、Y(n)に設けられるガス供給孔411aの孔径φの関係は、以下で表される。
   φ:A(n)>A(1)、A(2)、A(3)、・・・、A(n-1)
 例えば、孔径φの絶対値が、0.5mmから3.0mmの範囲において、A(n)とA(1)との相対的な比率は、1:1.01-1:6の範囲とするのが良い。ガス供給孔411a,の孔径はガス供給孔411aからのガスの流量が上流側から下流側へ向かうにつれて大きくなるように設定される。
 ノズル410bに設けられる複数のガス供給孔411bは、ウエハ200と対向する位置に、ノズル410bの下部(上流側)からノズル410bの上部(下流側)にわたって複数設けられる。ノズル410bに設けられる複数のガス供給孔411bの孔径φ(開口面積)は、下部(上流側)の孔径が大きく、上部(下流側)の孔径が小さくされている。すなわち、ノズル410bに設けられる複数のガス供給孔411bの孔径は、ノズル410bの下流側から上流側へ向かって、広くなる開口面積を備えている。
 ノズル410bの複数のガス供給孔411bが設けられている領域を、Yとした場合、領域Yは、下部(上流側)から上部(下流側)に向かって、領域Y(1)、領域Y(2)、領域Y(3)、・・・、領域Y(n-1)、および、領域Y(n)を有する。領域Y(1)には、孔径φがB(1)mm、ピッチがXmm、個数Y(1)のガス供給孔411bが設けられる。領域Y(2)には、孔径φがB(2)mm、ピッチがXmm、個数Y(2)のガス供給孔411bが設けられる。領域Y(3)には、孔径φがB(3)mm、ピッチがXmm、個数Y(3)のガス供給孔411bが設けられる。同様に、領域Y(n-1)には、孔径φがB(n-1)mm、ピッチがXmm、個数Y(n-1)のガス供給孔411bが設けられる。領域Y(n)には、孔径φがB(n)mm、ピッチがXmm、個数Y(n)のガス供給孔411bが設けられる。
 各領域(Y1)、・・・、Y(n)に設けられるガス供給孔411bの孔径φの関係は、以下で表される。
   φ:B(1)>B(2)、B(3)、・・・、B(n-1)、B(n)
 例えば、孔径φの絶対値が、0.5mmから3.0mmの範囲において、B(1)とB(n)との相対的な比率は、1:1.01-1:6の範囲とするのが良い。ガス供給孔411bの孔径はガス供給孔411bからのガスの流量が下流側から上流側へ向かうにつれて大きくなるように設定される。
 以上の構成とすることにより、ノズル410a,410bの各ガス供給孔411a,411bから処理室201内に供給される処理ガスの流量を調整することで、処理室201内における処理ガスの分圧バランスが所望の分圧バランスの値となる様に調整可能になる。
 ノズル410a,410b,420aのガス供給孔411a,411b,421aは、後述するボート217の下部から上部までの高さの位置に複数設けられている。そのため、ノズル410a,410b,420aのガス供給孔411a,411b,421aから処理室201内に供給された処理ガスは、ボート217の下部から上部までに収容されたウエハ200、すなわちボート217に収容されたウエハ200の全域に供給される。ノズル410a,410b,420aは、処理室201の下部領域から上部領域まで延在するように設けられていればよいが、ボート217の天井付近まで延在するように設けられていることが好ましい。
 ガス供給管310a,310bからは、処理ガスとして、第1の金属元素を含む原料ガス(第1の金属含有ガス、第1の原料ガス)が、それぞれMFC312a,312b、バルブ314a,314b、ノズル410a,410bを介して処理室201内に供給される。原料としては、例えば第1の金属元素としてのチタン(Ti)を含み、ハロゲン系原料(ハロゲン化物、ハロゲン系チタン原料とも称する)としての四塩化チタン(TiCl)が用いられる。
 ガス供給管320aからは、処理ガスとして、反応ガス(原料ガスとは分子構造(化学構造)が異なる反応ガス)が、MFC322a、バルブ324a、ノズル420aを介して処理室201内に供給される。反応ガスとしては、例えば窒素(N)を含むN含有ガスとしての例えばアンモニア(NH)ガスを用いることができる。NHは窒化・還元剤(窒化・還元ガス)として作用する。
 ガス供給管510a,510b,520aからは、不活性ガスとして、例えば窒素(N)ガスが、それぞれMFC512a,512b,522a、バルブ514a,514b,524a、ノズル410a,410b,420aを介して処理室201内に供給される。なお、以下、不活性ガスとしてNガスを用いる例について説明するが、不活性ガスとしては、Nガス以外に、例えば、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いてもよい。
 主に、ガス供給管310a,310b,320a、MFC312a,312b,322a、バルブ314a,314b,324a、ノズル410a,410b,420aにより処理ガス供給系が構成されるが、ノズル410a,410b,420aのみを処理ガス供給系と考えてもよい。処理ガス供給系を、単に、ガス供給系と称することもできる。ガス供給管310a,310bから原料ガスを流す場合、主に、ガス供給管310a,310b、MFC312a,312b、バルブ314a,314bにより原料ガス供給系が構成されるが、ノズル410a,410bを原料ガス供給系に含めて考えてもよい。また、原料ガス供給系を原料供給系と称することもできる。原料ガスとして金属含有原料ガスを用いる場合、原料ガス供給系を金属含有原料ガス供給系と称することもできる。ガス供給管320aから反応ガスを流す場合、主に、ガス供給管320a、MFC322a、バルブ324aにより反応ガス供給系が構成されるが、ノズル420aを反応ガス供給系に含めて考えてもよい。ガス供給管320aから反応ガスとして窒素含有ガスを供給する場合、反応ガス供給系を窒素含有ガス供給系と称することもできる。また、主に、ガス供給管510a,510b,520a、MFC512a,512b,522a,バルブ514a,514b,524aにより不活性ガス供給系が構成される。不活性ガス供給系を、パージガス供給系、希釈ガス供給系、或いは、キャリアガス供給系と称することもできる。
 本実施形態におけるガス供給の方法は、インナチューブ204の内壁と、複数枚のウエハ200の端部とで定義される円環状の縦長の空間内、すなわち、円筒状の空間内の予備室201a内に配置したノズル410a,410b,420aを経由してガスを搬送している。そして、ノズル410a,410b,420aのウエハと対向する位置に設けられた複数のガス供給孔411a,411b,421aからインナチューブ204内にガスを噴出させている。より詳細には、ノズル410a,410bのガス供給孔411a,411b、ノズル420aのガス供給孔421aにより、ウエハ200の表面と平行方向、すなわち水平方向に向かって原料ガス等の処理ガスを噴出させている。
 排気孔(排気口)204aは、インナチューブ204の側壁であってノズル410a,410b,420aに対向した位置、すなわち予備室201aとは180度反対側の位置に形成された貫通孔であり、例えば、鉛直方向に細長く開設されたスリット状の貫通孔である。そのため、ノズル410a,410b,420aのガス供給孔411a,411b,421aから処理室201内に供給され、ウエハ200の表面上を流れたガス、すなわち、残留するガス(残ガス)は、排気孔204aを介してインナチューブ204とアウタチューブ203との間に形成された隙間により構成される排気路206内に流れる。そして、排気路206内へと流れたガスは、排気管231内に流れ、処理炉202外へと排出される。
 排気孔204aは、複数のウエハ200と対向する位置(好ましくはボート217の上部から下部と対向する位置)に設けられており、ガス供給孔411a,411b,421aから処理室201内のウエハ200の近傍に供給されたガスは、水平方向、すなわちウエハ200の表面と平行方向に向かって流れた後、排気孔204aを介して排気路206内へと流れる。すなわち、処理室201に残留するガスは、排気孔204aを介してウエハ200の主面に対して平行に排気される。なお、排気孔204aはスリット状の貫通孔として構成される場合に限らず、複数個の孔により構成されていてもよい。
 マニホールド209には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、上流側から順に、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245,APC(Auto Pressure Controller)バルブ243,真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気及び真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができる。主に、排気孔204a,排気路206,排気管231,APCバルブ243及び圧力センサ245により、排気系すなわち排気ラインが構成される。なお、真空ポンプ246を排気系に含めて考えてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に鉛直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219における処理室201の反対側には、ウエハ200を収容するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、アウタチューブ203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって鉛直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入及び搬出することが可能なように構成されている。ボートエレベータ115は、ボート217及びボート217に収容されたウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で鉛直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が水平姿勢で多段(図示せず)に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。ただし、本実施形態は上述の形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料により構成される筒状の部材として構成された断熱筒を設けてもよい。
 図5に示すように、インナチューブ204内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410a,410bおよび420aと同様にL字型に構成されており、インナチューブ204の内壁に沿って設けられている。
 図6に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a,RAM(Random Access Memory)121b,記憶装置121c,I/Oポート121dを備えたコンピュータとして構成されている。RAM121b,記憶装置121c,I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラム、後述する半導体装置の製造方法の手順や条件などが記載されたプロセスレシピなどが、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法における各工程(各ステップ)をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピ、制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、プロセスレシピ及び制御プログラムの組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC312a,312b,322a,512a,512b,522a、バルブ314a,314b,324a,514a,514b,524a、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピ等を読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC312a,312b,322a,512a,512b,522aによる各種ガスの流量調整動作、バルブ314a,314b,324a,514a,514b,524aの開閉動作、APCバルブ243の開閉動作及びAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動及び停止、回転機構267によるボート217の回転及び回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、ボート217へのウエハ200の収容動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
 (2)基板処理工程(成膜工程)
 半導体装置(デバイス)の製造工程の一工程として、ウエハ200上に、金属膜を形成する工程の一例について、図7を用いて説明する。金属膜を形成する工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
 (ウエハ搬入)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介してアウタチューブ203の下端開口を閉塞した状態となる。
 (圧力調整および温度調整)
 処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
 [TiN層形成工程]
 続いて、第1の金属層として例えば金属窒化層であるTiN層を形成するステップを実行する。
 (TiClガス供給(ステップS10))
 バルブ314aを開き、ガス供給管310a内に原料ガスであるTiClガスを流す。TiClガスは、MFC312a,312bによりTiClガスの分圧バランスがウエハ200の積載方向に沿って所定値となるよう流量調整され、ノズル410a,410bのガス供給孔411a,411bから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してTiClガスが供給されることとなる。このとき同時にバルブ514a,514bを開き、ガス供給管510a,510b内にNガス等の不活性ガスを流す。ガス供給管510a,510b内を流れたNガスは、MFC512a,512bにより流量調整され、TiClガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル420a内へのTiClガスの侵入を防止するために、バルブ524aを開き、ガス供給管520a内にNガスを流す。Nガスは、ガス供給管320a、ノズル420aを介して処理室201内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば0.1~6650Paの範囲内の圧力とする。MFC312a,312bで制御するTiClガスの供給流量は、例えば0.1~2slmの範囲内の流量とする。MFC512a,512b,522aで制御するNガスの供給流量は、それぞれ例えば0.1~30slmの範囲内の流量とする。TiClガスをウエハ200に対して供給する時間は、例えば0.01~20秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば250~550℃の範囲内の温度となるような温度に設定する。なお、本明細書では、数値の範囲として、例えば、0.1~6650Paと記載した場合は、0.1Pa以上6650Pa以下を意味する。すなわち、数値の範囲には0.1Paおよび6650Paが含まれる。圧力のみにならず、流量、時間、温度等、本明細書に記載されるすべての数値についても同様である。
 処理室201内に流しているガスはTiClガスとNガスのみであり、TiClガスの供給により、ウエハ200(表面の下地膜)上に、例えば1原子層未満から数原子層程度の厚さのTi含有層が形成される。
 (残留ガス除去(ステップS11))
 Ti含有層が形成された後、バルブ314a,314bを閉じ、TiClガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはTi含有層形成に寄与した後のTiClガスを処理室201内から排除する。このときバルブ514a,514b,524aは開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、処理室201内に残留する未反応もしくはTi含有層形成に寄与した後のTiClガスを処理室201内から排除する効果を高めることができる。
 (NHガス供給(ステップS12))
 処理室201内の残留ガスを除去した後、バルブ324aを開き、ガス供給管320a内に、反応ガスとしてN含有ガスであるNHガスを流す。NHガスは、MFC322aにより流量調整され、ノズル420aのガス供給孔421aから処理室201内に供給され、排気管231から排気される。このときウエハ200に対して、NHガスが供給されることとなる。このとき、バルブ524aは閉じた状態として、NガスがNHガスと一緒に処理室201内に供給されないようにする。すなわち、NHガスはNガスで希釈されることなく、処理室201内に供給され、排気管231から排気される。このとき、ノズル410a,410b内へのNHガスの侵入を防止するために、バルブ514a,514bを開き、ガス供給管510a,510b内にNガスを流す。Nガスは、ガス供給管310a,310b、ノズル410a,410bを介して処理室201内に供給され、排気管231から排気される。この場合、反応ガス(NHガス)を、Nガスで希釈することなく、処理室201内へ供給するので、TiN層の成膜レートを向上させることが可能である。なお、ウエハ200近傍におけるNガスの雰囲気濃度も調整可能である。
 NHガスを流すときは、APCバルブ243を調整して、処理室201内の圧力を、例えば0.1~6650Paの範囲内の圧力とする。MFC322aで制御するNHガスの供給流量は、例えば0.1~20slmの範囲内の流量とする。MFC512aで制御するNガスの供給流量は、それぞれ例えば0.1~30slmの範囲内の流量とする。NHガスをウエハ200に対して供給する時間は、例えば0.01~30秒の範囲内の時間とする。このときのヒータ207の温度は、TiClガス供給ステップと同様の温度に設定する。
 このとき処理室201内に流しているガスは、NHガスとNガスのみである。NHガスは、TiClガス供給ステップでウエハ200上に形成されたTi含有層の少なくとも一部と置換反応する。置換反応の際には、Ti含有層に含まれるTiとNHガスに含まれるNとが結合して、ウエハ200上にTiとNとを含むTiN層が形成される。
 (残留ガス除去(ステップS13))
 TiN層を形成した後、バルブ324aを閉じて、NHガスの供給を停止する。そして、ステップS11と同様の処理手順により、処理室201内に残留する未反応もしくはTiN層の形成に寄与した後のNHガスや反応副生成物を処理室201内から排除する。
 (所定回数実施)
 上記したステップS10~ステップS13を順に行うサイクルを1回以上(所定回数(n回))行うことにより、ウエハ200上に、所定の厚さ(例えば0.1~2nm)のTiN層を形成する。上述のサイクルは、複数回繰り返すのが好ましく、例えば10~80回ほど行うことが好ましく、より好ましくは10~15回ほど行う。
 (アフターパージおよび大気圧復帰)
 ガス供給管510a,510b,520aのそれぞれからNガスを処理室201内へ供給し、排気管231から排気する。Nガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
 (ウエハ搬出)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、アウタチューブ203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態でアウタチューブ203の下端からアウタチューブ203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
 次に、上述したステップS10において、ノズル410a,410bに供給されるTiClガスの流量の調整とその効果とを、図8及び図9を用いて説明する。
 図8及び図9において、ノズル410a,410bからTiClガスが処理室201内に供給されている場合である。また、図8及び図9において、ノズルから右の方向へガスが流れ、直線の長さはガスの分圧またはガスの流量を示すものとする。
 図8(a)は、ノズル410aへのTiClガスの流量を比較的多量(1.5)とし、ノズル410bへのTiClガスの流量を比較的少量(0.5)とした場合の処理室201のガスの流れを概念的に示している。図8(b)は、ノズル410aへのTiClガスの流量とノズル410bへのTiClガスの流量とを同量(1.0)とした場合の処理室201のガスの流れを概念的に示している。図8(c)は、ノズル410aへのTiClガスの流量を比較的少量(0.5)とし、ノズル410bへのTiClガスの流量を比較的多量(1.5)とした場合の処理室201のガスの流れを概念的に示している。
 図8(a)の例では、ノズル410a,410bの下部領域のTiClガスの流量および分圧が、ノズル410a,410bの上部領域のTiClガスの流量および分圧と比較して、少なくなる。つまり、上部領域のTiClガス供給量が下部領域のそれより多くなり、それに伴い上部領域のTiClガスの分圧が下部領域より高くなる分圧バランスを作り込むことができる。したがって、下部領域に位置するウエハ200に形成されるTiN層の膜厚を薄く、上部領域に位置するウエハ200に形成されるTiN層の膜厚を厚く形成させることができる。
 図8(b)の例では、ノズル410a,410bの下部領域のTiClガスの流量および分圧と、ノズル410a,410bの上部領域のTiClガスの流量および分圧と、が同程度になる。つまり、上部領域のTiClガス供給量が下部領域のそれと同程度なり、それに伴い上部領域のTiClガスの分圧が下部領域と同程度となる分圧バランスを作り込むことができる。したがって、下部領域に位置するウエハ200に形成されるTiN層の膜厚と、上部領域に位置するウエハ200に形成されるTiN層の膜厚と、を同程度に形成させることができる。
 図8(c)の例では、ノズル410a,410bの下部領域のTiClガスの流量および分圧が、ノズル410a,410bの上部領域のTiClガスの流量および分圧と比較して、大きくなる。つまり、下部領域のTiClガスの供給量が上部領域のそれより多くなり、それに伴い下部領域のTiClガスの分圧が上部領域より高くなる分圧バランスを作り込むことができる。したがって、上部領域に位置するウエハ200に形成されるTiN層の膜厚を薄く、下部領域に位置するウエハ200に形成されるTiN層の膜厚を厚く形成させることができる。
 図9(a)は、ノズル410a,410bへのTiClガスの流量を、図8(b)のノズル410a,410bへのTiClガスの流量と同量(1.0)とした場合の処理室201のガスの流れを概念的に示している。図9(b)は、ノズル420a,420bへのTiClガスの流量を図8(b)のノズル410a,410bへのTiClガスの流量の2倍の量(2.0)とした場合の処理室201のガスの流れを概念的に示している。図9(c)は、ノズル410a,410bへのTiClガスの流量を図8(b)のノズル410a,410bへのTiClガスの流量の1/2の量(0.5)とした場合の処理室201のガスの流れを概念的に示している。
 図9(b)の例では、ノズル410a,410bの上部領域および下部領域のTiClガスの流量および分圧が、ノズル410a,410bの中央部領域のTiClガスの流量および分圧と比較して、大きくなり、また、図8(b)の例よりも流量および分圧が大きくなる。つまり、上部領域および下部領域のTiClガス供給量が中央部領域のそれより多くなり、それに伴い上部領域および下部領域のTiClガスの分圧が中央部領域より高くなる分圧バランスを作り込むことができる。したがって、中央部領域に位置するウエハ200に形成されるTiN層の膜厚を薄く、上部領域および下部領域に位置するウエハ200に形成されるTiN層の膜厚を厚く、図8(b)よりもウエハ200に形成されるTiN層の膜厚を厚く形成させることができる。
 図9(c)の例では、ノズル410a,410bの上部領域および下部領域のTiClガスの流量および分圧が、ノズル410a,410bの中央部領域のTiClガスの流量および分圧と比較して、大きくなり、また、図8(b)の例よりも流量および分圧が少なくなる。つまり、上部領域および下部領域のTiClガス供給量が中央部領域のそれより多くなり、それに伴い上部領域および下部領域のTiClガスの分圧が中央部領域より高くなる分圧バランスを作り込むことができる。したがって、中央部領域に位置するウエハ200に形成されるTiN層の膜厚を薄く、上部領域および下部領域に位置するウエハ200に形成されるTiN層の膜厚を厚く、図8(b)よりもウエハ200に形成されるTiN層の膜厚を薄く形成させることができる。
 図8及び図9から理解されるように、図3のノズル410aおよび図4のノズル410bを用い、ノズル410a,410bへ供給される処理ガス(TiClガス)の流量を調整することで、ノズル410a,410bの各ガス供給孔411a,411bから処理室201内に供給される処理ガスの分圧バランスが所望の分圧バランスの値となる様に調整することが可能である。これにより、処理室201内に積載されたウエハ200間のTiN層の膜厚の均一性を向上させることが可能となる。
 以上で説明した第1の実施形態によれば、以下の1つまたは複数の効果を得ることができる。
 1)図3に示される様な、複数のガス供給孔411aの孔径が上流側から下流側へ向かって、広くなる開口面積を備えるノズル410aおよび複数のガス供給孔411bの孔径が下流側から上流側へ向かって、広くなる開口面積を備えるノズル410bを用い、ノズル410a,410bへ供給する原料ガス(TiClガス)の流量を調整することにより、処理室201内の原料ガス(TiClガス)の分圧バランスを調整することが可能になる。
 2)上記1)により、処理室内に積載された複数の基板において、各基板の面間の膜厚バランスを調整することが可能になる。
 <第1の実施形態の変形例>
 上述の第1の実施形態では、吹き出し特性が異なる2本のノズルに原料ガスを供給し、1本のノズルに反応ガスを供給する例を示した。第1の実施形態の変形例では、吹き出し特性が異なる2本のノズルに反応ガスを供給し、1本のノズルに原料ガスを供給する。以下、第1の実施形態との相違点を中心に説明する。
 第1の実施形態の変形例では、ガス供給管320aからは、処理ガスとして、第1の実施形態と同様の原料ガスが、MFC322a、バルブ324a、ノズル420aを介して処理室201内に供給される。
 ガス供給管310a,310bからは、処理ガスとして、第1の実施形態と同様の反応ガスが、MFC312a,312b、バルブ314a,314b、ノズル410a,410bを介して処理室201内に供給される。
 第1の実施形態と同様に、図3のノズル410aおよび図4のノズル410bを用い、ノズル410a,410bへ供給される処理ガス(NHガス)の流量を調整することで、ノズル410a,410bの各ガス供給孔411a,411bから処理室201内に供給される処理ガスの分圧バランスが所望の分圧バランスの値となる様に調整することが可能である。これにより、処理室201内に積載されたウエハ200間のTiN層の膜厚の均一性を向上させることが可能となる。なお、ノズル410a,410bへ供給されるパージガス(Nガス)の流量を調整することで、ノズル410a,410bの各ガス供給孔411a,411bから処理室201内に供給されるパージガスの分圧バランスが所望の分圧バランスの値となる様に調整することも可能である。
 <第2の実施形態>
 上述の第1の実施形態では、同種の処理ガスを供給される吹き出し特性が異なる2本のノズルと、別の処理ガスを供給する1本のノズルと、を設ける例を示した。第2の実施形態では、同種のガスを供給し吹き出し特性が異なる2本のノズルを2組設ける。以下、第1の実施形態との相違点を中心に説明する。
 図12に示すように、処理室201内には、ノズル410a(第1のノズル),410b(第2のノズル),420a(第3のノズル),420b(第4のノズル)がマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410a,410b,420a,420bには、ガス供給ラインとしてのガス供給管310a,310b,320a,320bが、それぞれ接続されている。図11に示すように、基板処理装置10には4本のノズル410a,410b,420a,420bと、4本のガス供給管310a,310b,320a,320bとが設けられており、処理室201内へ複数種類のガスを供給することができるように構成されている。ただし、本実施形態の処理炉202は上述の形態に限定されない。
 図1、10に示すように、ガス供給管310a,310b,320a,320bには上流側から順にMFC312a,312b,322a,322b及びバルブ314a,324b,324a,324bがそれぞれ設けられている。また、ガス供給管310a310b,320a,320bのバルブ314a,314b,324a,324bの下流側には、不活性ガスを供給するガス供給管510a,510b,520a,520bがそれぞれ接続されている。ガス供給管510a510b,520a,520bには、上流側から順に、MFC512a512b,522a,522b及びバルブ514a,514b,524a,524bがそれぞれ設けられている。
 図11に示すように、ガス供給管310a,310b,320a,320bの先端部にはノズル410a,410b,420a,420bがそれぞれ連結接続されている。ノズル410a,410b,420a,420bは、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410a,410b,420a,420bの垂直部は、インナチューブ204の径方向外向きに突出し、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室201aの内部に設けられており、予備室201a内にてインナチューブ204の内壁に沿って上方に向かって設けられている。
 ノズル410a,410b,420a,420bは、処理室201の下部領域から処理室201の上部領域まで延在するように設けられており、ウエハ200と対向する位置にそれぞれ複数のガス供給孔411a,411b,421a,422bが設けられている。これにより、ノズル410a,410b,420a,420bのガス供給孔411a,411b,421a,422bからそれぞれウエハ200に処理ガスを供給する。ノズル410a,420aのガス供給孔411a,421aの構成は図3のノズル410aのガス供給孔411aと同様な構成であり、ノズル410b,420bのガス供給孔411b,421bの構成は図4のノズル410bのガス供給孔411b同様な構成である。
 ガス供給管310a,310bからは、処理ガスとして、第1の実施形態と同様の原料ガスが、MFC312a,312b、バルブ314a,314b、ノズル410a,410bを介して処理室201内に供給される。
 ガス供給管320a,320bからは、処理ガスとして、第1の実施形態と同様の反応ガスが、MFC322a,322b、バルブ324a,324b、ノズル420a,420bを介して処理室201内に供給される。
 ガス供給管510a,510b,520a,520bからは、不活性ガスとして、第1の実施形態と同様のガスが、それぞれMFC512a,512b,522a,522b、バルブ514a,514b,524a,524b、ノズル410a,410b,420a,420bを介して処理室201内に供給される。
 (第2の実施形態:TiClガス供給(ステップS10))
 バルブ314a,314bを開き、ガス供給管310a,310b内に原料ガスであるTiClガスを流す。TiClガスは、MFC312a,312bにより流量調整され、ノズル410a,410bのガス供給孔411a,411b410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してTiClガスが供給されることとなる。このとき同時にバルブ514a,514bを開き、ガス供給管510a,510b内にNガス等の不活性ガスを流す。ガス供給管510a,510b内を流れたNガスは、MFC512a,512bにより流量調整され、TiClガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル420a,420b内へのTiClガスの侵入を防止すると共に処理ガスの濃度分布を調整するために、バルブ524a,524bを開き、ガス供給管520a,520b内にNガスを流す。Nガスは、ガス供給管320a,320b、ノズル420a,420bを介して処理室201内に供給され、排気管231から排気される。
 (第2の実施形態:NHガス供給(ステップS12))
 処理室201内の残留ガスを除去した後、バルブ324a,324bを開き、ガス供給管320a,320b内に、反応ガスとしてN含有ガスであるNHガスを流す。NHガスは、MFC322a,322bによりNHガスの分圧バランスがウエハ200の積載方向に沿って所定値となるよう流量調整され、ノズル420a,420bのガス供給孔421a,421bから処理室201内に供給され、排気管231から排気される。このときウエハ200に対して、NHガスが供給されることとなる。このとき、バルブ524a,524bは閉じた状態として、NガスがNHガスと一緒に処理室201内に供給されないようにする。すなわち、NHガスはNガスで希釈されることなく、処理室201内に供給され、排気管231から排気される。このとき、ノズル410a,410b内へのNHガスの侵入を防止すると共に反応ガスの濃度分布を調整するために、バルブ514a,514bを開き、ガス供給管510a,510b内にNガスを流す。Nガスは、ガス供給管310a,310b、ノズル410a,410bを介して処理室201内に供給され、排気管231から排気される。この場合、反応ガス(NHガス)を、Nガスで希釈することなく、処理室201内へ供給するので、TiN層の成膜レートを向上させることが可能である。なお、ウエハ200近傍におけるNガスの雰囲気濃度も調整可能である。
 次に、上述した第2の実施形態のステップS10において、ノズル420a,420bに供給されるNガスの流量の調整とその効果を、図12を用いて説明する。
 図12において、ノズル410a,410bからTiClガスが処理室201内に供給され、ノズル420a,420bからNガスが処理室201内に供給されている場合である。また、図12において、ノズルから右の方向へガスが流れ、直線の長さはガスの分圧またはガスの流量または濃度分布を示すものとする。ノズル410a,410bを合わせてノズル410と表し、ノズル420a,420bを合わせてノズル420と表している。
 図12(a)は、ノズル410a,410bの流量を図10(a)と同量とし、ノズル420a,420bへのNガスの流量を図10(b)と同量とした場合の処理室201のガスの流れを概念的に示している。図10(b)は、ノズル410a,410bの流量を図10(b)と同量とし、ノズル420a,420bへのNガスの流量を図10(a)と同量とした場合の処理室201のガスの流れを概念的に示している。
 図12(a)の例では、ノズル420a,420bの上部領域および下部領域のNガスの流量および分圧が、ノズル420a,420bの中央部領域のNガスの流量および分圧と比較して、大きくなる。つまり、図の右端に示すように、中央部領域のTiClガスの濃度が上部領域および下部領域のそれより高くなる濃度分布を作り込むことができる。この場合、第1の実施形態と比較して濃度分布の変化は緩やかである。したがって、上部領域および下部領域に位置するウエハ200に形成されるTiN層の膜厚を薄く、中央部領域に位置するウエハ200に形成されるTiN層の膜厚を厚く形成させることができる。
 図12(b)の例では、ノズル410a,410bの上部領域および下部領域のTiClガスの流量および分圧が、ノズル410a,410bの中央部領域のTiClガスの流量および分圧と比較して、大きくなる。つまり、図の右端に示すように、上部領域および下部領域のTiClガスの濃度が中央部領域のそれより高くなる濃度分布を作り込むことができる。この場合、第1の実施形態と比較して濃度分布の変化は緩やかである。したがって、上部領域および下部領域に位置するウエハ200に形成されるTiN層の膜厚を厚く、中央部領域に位置するウエハ200に形成されるTiN層の膜厚を薄く形成させることができる。
 上述した第2の実施形態のステップS12において、ノズル410a,410bに供給されるNガスの流量の調整は図12の説明と同様にNHガスの濃度分布を作り込むことができる。
 第2の実施形態によれば、以下の効果を得ることが出来る。
 1)ノズル410a,410bへ供給する原料ガス(TiClガス)の流量を調整し、ノズル420a,420bへ供給する反応ガス(NHガス)の流量を調整することにより、処理室201内の原料ガス(TiClガス)および反応ガス(NHガス)の分圧バランスを調整することが可能になる。
 2)ノズル410a,410bへ供給する原料ガス(TiClガス)の流量を調整し、ノズル420a,420bへ供給する逆流防止用のNガスの流量を調整することにより、処理室201内の原料ガス(TiClガス)の濃度分布を調整することが可能になる。
 3)ノズル420a,420bへ供給する反応ガス(NHガス)の流量を調整し、ノズル410a,410bへ供給する逆流防止用のNガスの流量を調整することにより、処理室201内の反応ガス(NHガス)の濃度分布を調整することが可能になる。
 4)上記1)~3)の何れかにより、処理室内に積載された複数の基板において、各基板の面間の膜厚バランスを調整することが可能になる。
 本開示の実施形態および変形例を説明してきたが、本開示は縦型成膜装置で形成ないし使用されるすべての膜種、ガス種に適用可能である。
 以上、本開示の種々の典型的な実施形態及び変形例を説明してきたが、本開示はそれらの実施形態及び変形例に限定されず、適宜組み合わせて用いることもできる。
 バルブ324b,524bを閉じてノズル420bに処理ガスおよび不活性ガスを供給しないようにして、第1の実施形態または第1の実施形態の変形例と同様に成膜処理を行ってもよい。
 上述の第1および第2の実施形態では、ガスを供給するノズルにおいて吹き出し特性が異なるノズルを2本設ける例を示した。しかし、吹き出し特性が異なるノズルは2本に限定されるものではなく、同種ガスを供給し面間の吹き出し量・ガス濃度バランスを調整可能であればよく、ノズルは3本以上あってもよい。
10・・・基板処理装置
200・・・ウエハ(基板)
201・・・処理室
410a・・・ノズル(第1のノズル)
410b・・・ノズル(第2のノズル)
420a・・・ノズル(第3のノズル)

Claims (18)

  1.  処理室内に複数の基板を積載して収容する工程と、
     前記処理室内に前記複数の基板の基板積載方向に沿って設けられ、前記基板積載方向の下部から供給するガスの流量よりも上部から供給する前記ガスの流量が多い第1のノズルと、前記処理室内に前記基板積載方向に沿って設けられ、前記基板積載方向の上部から供給する前記ガスの流量よりも下部から供給する前記ガスの流量が多い第2のノズルとから、前記複数の基板に対して原料ガスを供給する工程と、
     前記複数の基板に対して反応ガスを供給する工程と、
     を有する半導体装置の製造方法。
  2.  前記原料ガスを供給する工程では、前記基板積載方向の下部から上部へ向かって広くなる開口面積を有する複数の供給口を備える前記第1のノズルの前記複数の供給口および前記基板積載方向の上部から下部へ向かって広くなる開口面積を有する複数の供給口を備える前記第2のノズルの前記複数の供給口から、前記原料ガスの分圧バランスを前記基板積載方向に沿って所定の分圧バランスとなるように調整しつつ前記原料ガスを供給する請求項1に記載の半導体装置の製造方法。
  3.  前記反応ガスを供給する工程では、前記処理室に前記基板積載方向に沿って設けられる第3のノズルから前記複数の基板に対して前記反応ガスを供給する請求項1に記載の半導体装置の製造方法。
  4.  前記反応ガスを供給する工程では、前記基板積載方向の下部から供給するガスの流量よりも上部から供給する前記ガスの流量が多い前記第3のノズルおよび前記処理室内に前記基板積載方向に沿って設けられ、前記基板積載方向の上部から供給する前記ガスの流量よりも下部から供給する前記ガスの流量が多い第4のノズルから前記複数の基板に対して前記反応ガスを供給する請求項3に記載の半導体装置の製造方法。
  5.  前記反応ガスを供給する工程では、前記基板積載方向の下部から上部へ向かって広くなる開口面積を有する複数の供給口を備える前記第3のノズルの前記複数の供給孔および前記基板積載方向の上部から下部へ向かって広くなる開口面積を有する複数の供給口を備える前記第4のノズルの前記複数の供給孔から、前記反応ガスの分圧バランスを前記基板積載方向に沿って所定の分圧バランスとなるように調整しつつ前記反応ガスを供給する請求項4に記載の半導体装置の製造方法。
  6.  複数の基板を積載して収容する処理室と、
     前記処理室内に前記複数の基板の基板積載方向に沿って設けられ、前記基板積載方向の下部から供給するガスの流量よりも上部から供給するガスの流量が多い第1のノズルと、前記処理室内に前記基板積載方向に沿って設けられ、前記基板積載方向の上部から供給する前記ガスの流量よりも下部から供給する前記ガスの流量が多い第2のノズルと、を備え、前記複数の基板に対して原料ガスを供給する原料ガス供給系と、
     前記複数の基板に対して反応ガスを供給する反応ガス供給系と、
     を有する基板処理装置。
  7.  前記処理室内の前記複数の基板に対して、前記第1のノズルおよび前記第2のノズルから供給する前記原料ガスの分圧バランスを前記基板積載方向に沿って所定の分圧バランスとなるよう調整しつつ前記原料ガスを供給する処理を行うことが可能なように、前記原料ガス供給系を制御するよう構成される制御部を有する請求項6に記載の基板処理装置。
  8.  前記第1のノズルは前記基板積載方向の下部から上部へ向かって広くなる開口面積を有する複数の供給口を備え、前記第2のノズルは前記基板積載方向の上部から下部へ向かって広くなる開口面積を有する複数の供給口を備える請求項6に記載の基板処理装置。
  9.  前記反応ガス供給系は、前記処理室内に前記基板積載方向に沿って設けられ、前記複数の基板に対して前記反応ガスを供給する第3のノズルを有する請求項6に記載の基板処理装置。
  10.  前記反応ガス供給系は、前記処理室内に前記基板積載方向に沿って設けられ、前記複数の基板に対して前記反応ガスを供給する第4のノズルを更に備え、
     前記第3のノズルは、前記基板積載方向の下部から供給するガスの流量よりも上部から供給する前記ガスの流量が多いノズルであり、前記第4のノズルは、前記基板積載方向の上部から供給する前記ガスの流量よりも下部から供給する前記ガスの流量が多いノズルである請求項9に記載の基板処理装置。
  11.  前記処理室内の前記複数の基板に対して、前記第3のノズルおよび前記第4のノズルから供給する前記反応ガスの分圧バランスを前記基板積載方向に沿って所定の分圧バランスとなるよう調整しつつ前記反応ガスを供給する処理を行うことが可能なように、前記反応ガス供給系を制御するよう構成される制御部を有する請求項10に記載の基板処理装置。
  12.  前記第3のノズルは前記基板積載方向の下部から上部へ向かって広くなる開口面積を有する複数の供給口を備え、前記第4のノズルは前記基板積載方向の上部から前記下部へ向かって広くなる開口面積を有する複数の供給口を備える請求項10に記載の基板処理装置。
  13.  複数の基板を積載して収容する処理室と、
     前記複数の基板に対して処理ガスを供給する処理ガス供給系と、
     前記処理室内に前記複数の基板の基板積載方向に沿って設けられ、前記基板積載方向の下部から供給するガスの流量よりも上部から供給するガスの流量が多い第1のノズルと、前記処理室内に前記基板積載方向に沿って設けられ、前記基板積載方向の上部から供給する前記ガスの流量よりも下部から供給する前記ガスの流量が多い第2のノズルと、を備え、前記複数の基板に対して不活性ガスを供給する不活性ガス供給系と、
    前記第1のノズルおよび前記第2のノズルから供給される不活性ガスにより、前記処理ガスの濃度分布を前記基板積載方向に沿って所定の濃度分布となるように、前記処理ガス供給系および前記不活性ガス供給系とを制御することが可能なよう構成される制御部と、
     を有する基板処理装置。
  14.  基板処理装置の処理室内に複数の基板を積載して収容する手順と、
     前記処理室内に前記複数の基板の基板積載方向に沿って設けられ、前記基板積載方向の下部から供給するガスの流量よりも上部から供給する前記ガスの流量が多い第1のノズルと、前記処理室内に前記基板積載方向に沿って設けられ、前記基板積載方向の上部から供給する前記ガスの流量よりも下部から供給する前記ガスの流量が多い第2のノズルとから、前記複数の基板に対して原料ガスを供給する手順と、
     前記複数の基板に対して反応ガスを供給する手順と、
     をコンピュータによって前記基板処理装置に実行させるプログラム。
  15.  前記原料ガスを供給する手順では、前記基板積載方向の下部から上部へ向かって広くなる開口面積を有する複数の供給口を備える前記第1のノズルの前記複数の供給孔および前記基板積載方向の上部から下部に向かって広くなる開口面積を有する複数の供給口を備える前記第2のノズルの前記複数の供給孔から、前記前記原料ガスの分圧バランスを前記基板積載方向に沿って所定の分圧バランスとなるように調整しつつ前記原料ガスを供給する請求項14に記載のプログラム。
  16.  前記反応ガスを供給する手順では、前記処理室内に前記基板積載方向に沿って設けられる第3のノズルから前記複数の基板に対して前記反応ガスを供給する請求項14に記載のプログラム。
  17.  前記反応ガスを供給する手順では、前記基板積載方向の下部から供給するガスの流量よりも上部から供給する前記ガスの流量が多い前記第3のノズルおよび前記処理室内に前記基板積載方向に沿って設けられ、前記基板積載方向の上部から供給する前記ガスの流量よりも下部から供給する前記ガスの流量が多い第4のノズルから前記複数の基板に対して前記反応ガスを供給する請求項16に記載のプログラム。
  18.  前記反応ガスを供給する手順では、前記基板積載方向の下部から上部へ向かって広くなる開口面積を有する複数の供給口を備える前記第3のノズルの前記複数の供給孔および前記基板積載方向の上部から下部へ向かって広くなる開口面積を有する複数の供給口を備える前記第4のノズルの前記複数の供給孔から、前記反応ガスの分圧バランスを前記基板積載方向に沿って所定の分圧バランスとなるように調整しつつ前記反応ガスを供給する請求項17に記載のプログラム。
PCT/JP2019/012442 2019-03-25 2019-03-25 半導体装置の製造方法、基板処理装置及びプログラム WO2020194433A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/012442 WO2020194433A1 (ja) 2019-03-25 2019-03-25 半導体装置の製造方法、基板処理装置及びプログラム
JP2021508410A JP7204889B2 (ja) 2019-03-25 2019-03-25 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
KR1020217029794A KR20210127743A (ko) 2019-03-25 2019-03-25 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
CN201980094512.XA CN113614881A (zh) 2019-03-25 2019-03-25 半导体装置的制造方法、基板处理装置以及程序
US17/477,170 US20220002873A1 (en) 2019-03-25 2021-09-16 Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/012442 WO2020194433A1 (ja) 2019-03-25 2019-03-25 半導体装置の製造方法、基板処理装置及びプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/477,170 Continuation US20220002873A1 (en) 2019-03-25 2021-09-16 Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2020194433A1 true WO2020194433A1 (ja) 2020-10-01

Family

ID=72608516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012442 WO2020194433A1 (ja) 2019-03-25 2019-03-25 半導体装置の製造方法、基板処理装置及びプログラム

Country Status (5)

Country Link
US (1) US20220002873A1 (ja)
JP (1) JP7204889B2 (ja)
KR (1) KR20210127743A (ja)
CN (1) CN113614881A (ja)
WO (1) WO2020194433A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240055666A1 (en) 2021-09-28 2024-02-15 Lg Energy Solution, Ltd. Battery cell, battery module, and method for manufacturing battery cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228757A (ja) * 1993-02-05 1994-08-16 Kokusai Electric Co Ltd 縦型cvd装置
JP2011071412A (ja) * 2009-09-28 2011-04-07 Hitachi Kokusai Electric Inc 基板処理装置
JP2014236129A (ja) * 2013-06-03 2014-12-15 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム
WO2015045137A1 (ja) * 2013-09-30 2015-04-02 株式会社日立国際電気 基板処理装置、基板処理方法および半導体装置の製造方法
JP2017147262A (ja) * 2016-02-15 2017-08-24 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304328B2 (en) * 2006-03-20 2012-11-06 Hitachi Kokusai Electric Inc. Manufacturing method of semiconductor device and substrate processing apparatus
JP5963456B2 (ja) * 2011-02-18 2016-08-03 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、及び基板処理方法
JP5801374B2 (ja) * 2013-12-27 2015-10-28 株式会社日立国際電気 半導体装置の製造方法、プログラム、及び基板処理装置
JP6448502B2 (ja) 2015-09-09 2019-01-09 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228757A (ja) * 1993-02-05 1994-08-16 Kokusai Electric Co Ltd 縦型cvd装置
JP2011071412A (ja) * 2009-09-28 2011-04-07 Hitachi Kokusai Electric Inc 基板処理装置
JP2014236129A (ja) * 2013-06-03 2014-12-15 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム
WO2015045137A1 (ja) * 2013-09-30 2015-04-02 株式会社日立国際電気 基板処理装置、基板処理方法および半導体装置の製造方法
JP2017147262A (ja) * 2016-02-15 2017-08-24 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム

Also Published As

Publication number Publication date
JPWO2020194433A1 (ja) 2021-12-16
US20220002873A1 (en) 2022-01-06
JP7204889B2 (ja) 2023-01-16
KR20210127743A (ko) 2021-10-22
CN113614881A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
JP6647260B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
WO2020016914A1 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
US20210242026A1 (en) Method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
US20210388487A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
WO2020194433A1 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
US20180286725A1 (en) Substrate retrainer and substrate processing apparatus
WO2022064549A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
US20220093392A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
WO2022064550A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
JP7016920B2 (ja) 基板処理装置、基板支持具、半導体装置の製造方法および基板処理方法
KR20200107762A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
JP7387685B2 (ja) 半導体装置の製造方法、基板処理方法、プログラム、および基板処理装置
WO2019188128A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
WO2023188465A1 (ja) 基板処理装置、ガス供給システム、基板処理方法、半導体装置の製造方法及びプログラム
WO2023175740A1 (ja) 基板処理装置、基板処理方法、半導体装置の製造方法、プログラム及びガス供給ユニット
WO2022059170A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
WO2024034172A1 (ja) 基板処理装置、基板支持具、基板処理方法、半導体装置の製造方法及びプログラム
WO2023188014A1 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
WO2023037452A1 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体
KR20230021615A (ko) 기판 처리 방법, 기판 처리 장치, 프로그램 및 반도체 장치의 제조 방법
KR20240034774A (ko) 코팅 방법, 처리 장치, 프로그램, 기판 처리 방법 및 반도체 장치의 제조 방법
JPWO2020188632A1 (ja) 半導体装置の製造方法、基板処理方法、プログラムおよび基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508410

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217029794

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922057

Country of ref document: EP

Kind code of ref document: A1