WO2020191933A1 - Oled面板及其制作方法 - Google Patents

Oled面板及其制作方法 Download PDF

Info

Publication number
WO2020191933A1
WO2020191933A1 PCT/CN2019/092888 CN2019092888W WO2020191933A1 WO 2020191933 A1 WO2020191933 A1 WO 2020191933A1 CN 2019092888 W CN2019092888 W CN 2019092888W WO 2020191933 A1 WO2020191933 A1 WO 2020191933A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
area
hybrid
oled panel
inorganic
Prior art date
Application number
PCT/CN2019/092888
Other languages
English (en)
French (fr)
Inventor
彭斯敏
夏存军
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2020191933A1 publication Critical patent/WO2020191933A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks

Definitions

  • This application relates to a display technology, in particular to an OLED panel and a manufacturing method thereof.
  • the OLED light-emitting material layer is extremely sensitive to water and oxygen, and usually requires extremely high water-blocking thin film packaging (Thin Film Encapsulation (TFE) film layer for covering protection.
  • TFE Thin Film Encapsulation
  • Laser cutting will destroy the integrity of the TFE film, causing the OLED light-emitting material layer (such as the cathode, organic passivation layer, etc.) to be exposed at the edge of the hole. After the water and oxygen invade, the entire display device cannot be displayed.
  • the embodiments of the present application provide an OLED panel and a manufacturing method thereof to solve the technical problem that the existing OLED panel damages the integrity of the TFE film layer after digging holes, causing water and oxygen to invade from the edge of the hole, thereby destroying the entire OLED panel.
  • An embodiment of the present application provides an OLED panel, which includes:
  • the display area includes an encapsulation area, the encapsulation area is arranged on the peripheral side of the through hole; the encapsulation area includes a hybrid layer for preventing the intrusion of water and oxygen, and the hybrid layer covers the encapsulation area And the wall of the through hole;
  • the OLED panel includes an organic structure layer; in the encapsulation area, an inorganic substance is formed in the organic structure layer using an atom permeation technique, and the inorganic substance is combined with the organic structure layer to form the hybrid layer.
  • the surface of the organic structure layer located in the encapsulation area is a rough surface
  • An inorganic layer is formed on the hybrid layer, and the inorganic layer and the hybrid layer are integrally formed by the atom permeation technology;
  • the OLED panel includes a pixel definition layer and an organic light-emitting layer disposed on the pixel definition layer;
  • the organic structure layer is a combination of the pixel defining layer and the organic light emitting layer, and in the encapsulation area, the hybrid layer is formed in the organic light emitting layer and the pixel defining layer.
  • grooves are opened on the pixel definition layer in the encapsulation area, and the hybrid layer covers the grooves.
  • the OLED panel further includes an encapsulation structure layer disposed on the organic light-emitting layer, and the encapsulation structure layer includes a first inorganic layer, an organic layer, and a second inorganic layer. Arranged between the first inorganic layer and the second inorganic layer;
  • the first inorganic layer covers the organic light-emitting layer and the hybrid layer.
  • This application also provides an OLED panel, which includes:
  • the display area includes an encapsulation area, the encapsulation area is arranged on the peripheral side of the through hole; the encapsulation area includes a hybrid layer for preventing the intrusion of water and oxygen, and the hybrid layer covers the encapsulation area And the wall of the through hole.
  • the surface of the organic structure layer located in the encapsulation area is a rough surface.
  • the OLED panel includes an organic structure layer; in the encapsulation area, an inorganic substance is formed in the organic structure layer by atom permeation technology, and the inorganic substance and the organic structure layer Combined to form the hybrid layer.
  • an inorganic layer is formed on the hybrid layer, and the inorganic layer and the hybrid layer are integrally formed by the atom permeation technology.
  • the OLED panel includes a pixel definition layer and an organic light-emitting layer disposed on the pixel definition layer;
  • the hybrid layer is formed in the organic light-emitting layer and the pixel definition layer;
  • the hybrid layer is formed in the pixel definition layer.
  • grooves are opened on the pixel definition layer in the encapsulation area, and the hybrid layer covers the grooves.
  • the OLED panel further includes an encapsulation structure layer disposed on the organic light-emitting layer, and the encapsulation structure layer includes a first inorganic layer, an organic layer, and a second inorganic layer. Arranged between the first inorganic layer and the second inorganic layer;
  • the first inorganic layer covers the organic light-emitting layer and the hybrid layer.
  • This application also relates to a manufacturing method of an OLED panel, which includes:
  • a pixel definition layer is formed on the substrate.
  • the pixel definition layer includes a through hole area and a display area.
  • the display area is arranged around the periphery of the through hole area.
  • the display area includes an encapsulation area. Set on the peripheral side of the through hole area;
  • a hybrid layer is formed in the packaging area, and the hybrid layer covers the packaging area and the hole wall of the through hole.
  • the step: forming a hybrid layer in the encapsulation area before the method further includes the step:
  • the surface of the organic structure layer in the encapsulation area is processed into a rough surface.
  • the pixel definition layer and the organic light emitting layer are combined to form the organic structure layer;
  • the forming a hybrid layer in the packaging area includes:
  • an inorganic substance is formed in the organic structure layer using an atom permeation technique, and the inorganic substance is combined with the organic structure layer to form a hybrid layer.
  • the method before forming the hybrid layer, the method includes:
  • the organic light emitting layer is removed.
  • the forming a hybrid layer in the packaging area includes:
  • an inorganic substance is formed in the pixel definition layer by using an atom permeation technology, and the inorganic substance is combined with the pixel definition layer to form a hybrid layer.
  • the atom infiltration technique continues to form an inorganic layer on the hybrid layer.
  • the method before forming the organic light-emitting layer, the method includes:
  • a groove is opened on the pixel definition layer of the packaging area.
  • the method includes:
  • a first inorganic layer, an organic layer, and a second inorganic layer are sequentially formed on the hybrid layer and the organic light-emitting layer, and the first inorganic layer covers the hybrid layer and the organic light-emitting layer.
  • the OLED panel and the manufacturing method of the present application form a hybrid layer on the organic structure layer of the encapsulation area to prevent water and oxygen from entering the organic light-emitting layer, and at the same time enhance the The adhesion of an inorganic layer; solves the technical problem that the existing OLED panel damages the integrity of the TFE film layer after digging holes, causing water and oxygen to invade from the edge of the hole, thereby destroying the entire OLED panel.
  • FIG. 1 is a schematic structural diagram of an OLED panel according to the first embodiment of the application
  • FIG. 2 is a schematic structural diagram of an OLED panel according to a second embodiment of the application.
  • FIG. 3 is a flowchart of the manufacturing method of the OLED panel according to the first embodiment of the application.
  • FIG. 5 is a flowchart of the manufacturing method of the OLED panel according to the second embodiment of the application.
  • FIG. 1 is a schematic structural diagram of an OLED panel according to a first embodiment of the application.
  • the OLED panel 100 of the first embodiment of the present application includes a display area 10a and a through hole 10b.
  • the display area 10a is arranged around the periphery of the through hole 10b.
  • the display area 10a includes an encapsulation area 101.
  • the packaging area 101 is surrounded by the peripheral side of the through hole 10b.
  • the packaging area 101 includes a hybrid layer 111 for preventing water and oxygen from invading.
  • the hybrid layer 111 covers the packaging area 101 and the hole wall of the through hole 10b.
  • a hybrid layer 111 is formed on the organic structure layer 11 of the encapsulation area 101 to prevent water and oxygen from entering the organic light emitting layer 114.
  • the display area 10a further includes a light-emitting area 102, which is located on the peripheral side of the package area 101 facing away from the through hole 10b.
  • the hybrid layer 111 covers the encapsulation area 101 and the hole wall of the through hole 10 b, preventing water and oxygen from entering the encapsulation area 101 from the through hole 10 and then invading the light emitting area 102.
  • the OLED panel 100 includes an organic structure layer 11.
  • an Atomic Layer Infiltration (ALI) technology is used to form an inorganic substance in the organic structure layer 11, and the inorganic substance is combined with the organic structure layer 11 to form a hybrid layer 111.
  • ALI Atomic Layer Infiltration
  • the organic structure layer 11 has an organic polymer structure, and there are free volume pores, that is, holes, in the organic polymer structure.
  • the ALI penetrates the precursor molecules of the target inorganic substance into the holes of the organic structure layer 11 and reacts in the holes to form the target inorganic substance.
  • the target inorganic substance fills the holes and forms a hybrid layer 111 with the organic polymer. Since the inorganic material fills the holes in the organic structure layer 11, the air tightness of the hybrid layer 111 is greatly improved, thereby preventing the intrusion of water and oxygen.
  • the degree of penetration of precursor molecules mainly depends on the precursor vapor pressure, exposure time and temperature. In other words, the thickness of the hybrid layer 111 can be adjusted by adjusting the above three factors.
  • the surface of the organic structure layer 11 located in the encapsulation area 101 is a rough surface.
  • the surface of the organic structure layer 11 located in the encapsulation area 101 is processed by laser to roughen the surface. Due to the roughening of the surface of the organic structure layer 11, the adhesion of the hybrid layer is improved during the ALI process.
  • an inorganic layer 112 is formed on the hybrid layer 111, and the inorganic layer 112 and the hybrid layer 111 are integrally formed by an atom permeation technology.
  • the role of the formation of the inorganic layer 112 is as follows: First, the formation of the inorganic layer 112 indicates that the inorganic material has filled the organic structure layer 11 with a certain depth, so as to avoid the end of the organic structure layer 11 near the outer surface from not forming a hybrid layer.
  • the formation of the inorganic layer 112 enhances the adhesion between the packaging structure layer 115 and the inorganic layer 112, and improves the airtightness of the OLED panel 100 as a whole.
  • the material of the inorganic layer 112 is a metal inorganic substance or a non-metal inorganic layer, such as alumina.
  • the OLED panel 100 includes a pixel definition layer 113, an organic light emitting layer 114 and a hybrid layer 111 disposed on the pixel definition layer 113, and an inorganic layer 112 disposed on the hybrid layer 111.
  • the organic light-emitting layer 114 is located in the light-emitting area 102.
  • the hybrid layer 111 and the inorganic layer 112 are located in the packaging area 101.
  • the OLED panel 100 further includes an array substrate, and the pixel definition layer 113 is disposed on the array substrate. Since the structure of the array substrate of the OLED panel is in the prior art, it will not be repeated.
  • the organic structure layer 11 is a combination of the pixel defining layer 113 and the organic light emitting layer 114.
  • the hybrid layer 111 is formed in the organic light emitting layer 114 and the pixel definition layer 113.
  • the organic light emitting layer 114 covers the pixel defining layer 113, there is no organic light emitting layer 114 in the sidewall direction of the pixel defining layer 113. Therefore, the outer surface of the organic structure layer 11 is formed by the organic light emitting layer 114 and the pixel defining layer 113 together. In order to prevent water and oxygen from invading the light-emitting area 102, a hybrid layer 111 needs to be formed on one side of the outer surface of the organic structure layer 11 in the encapsulation area 101.
  • ALI is used to penetrate the precursor molecules of the target inorganic substance into the organic light-emitting layer 114 and the exposed pixel defining layer 113 to form the target inorganic substance, and the target inorganic substance is formed by combining the organic light-emitting layer 114 and the pixel defining layer 113 Hybridized layer 111.
  • the thickness of the hybrid layer 111 is greater than or equal to the thickness of the organic light emitting layer 114, but it is not limited thereto.
  • a groove 1131 is formed on the pixel definition layer 113 in the packaging area 101.
  • the hybrid layer 111 covers the groove 1131.
  • the arrangement of the groove 1131 enables the hybrid layer 111 to cover the groove 1131, thereby effectively extending the path of water and oxygen intruding from the side, and improving the packaging performance of the OLED panel 100. Therefore, it is obvious that the greater the number of grooves 1131, the better the packaging performance of the OLED panel 100; the greater the depth of the recesses 1131, the better the packaging performance of the OLED panel 100.
  • the depth of the groove 1131 is greater than 1 micron.
  • the OLED panel may not be provided with grooves.
  • the OLED panel 100 further includes a barrier wall 119 provided on the pixel definition layer 113 and an encapsulation structure layer 115 provided on the organic light emitting layer 114.
  • the encapsulation structure layer 115 includes a first inorganic layer 116, an organic layer 117, and a second inorganic layer 118.
  • the organic layer 117 is provided between the first inorganic layer 116 and the second inorganic layer 118.
  • the retaining wall 119 is used to prevent the organic layer 117 from overflowing out of the light emitting area 102.
  • the first inorganic layer 116 covers the organic light emitting layer 114 and the hybrid layer 111. Specifically, the first inorganic layer 116 is formed on the organic light-emitting layer 114 and the inorganic layer 112.
  • packaging structure layer 115, the inorganic layer 112, and the hybrid layer 111 form the packaging structure of the OLED panel 100 to prevent water and oxygen from entering the display area 10a.
  • FIG. 2 is a schematic structural diagram of an OLED panel according to a second embodiment of the application.
  • the OLED panel 200 of the second embodiment includes a through hole 20 b, a pixel definition layer 213, an organic light emitting layer 214, a barrier 219, a hybrid layer 211, an inorganic layer 212, and an encapsulation structure layer 215.
  • the difference between the second embodiment and the first embodiment is that the organic structure layer 21 is a pixel definition layer 213.
  • the hybrid layer 211 is formed in the pixel definition layer 213.
  • FIG. 3 is a flowchart of the manufacturing method of the OLED panel according to the first embodiment of the application
  • FIG. 4 is another flowchart of the manufacturing method of the OLED panel according to the first embodiment of the application.
  • the manufacturing method of the OLED panel 100 of the first embodiment of the present application includes:
  • the pixel definition layer 114 includes a through hole area (not shown in the figure) and a display area 10a, and the display area 10a is surrounded by the The periphery of the through hole area, the display area 10a includes an encapsulation area 101, and the encapsulation area 101 is surrounded by the periphery of the through hole area;
  • a first inorganic layer 116, an organic layer 117, and a second inorganic layer 118 are sequentially formed on the hybrid layer 111 and the organic light-emitting layer 114, and the first inorganic layer 116 covers the hybrid layer 111 and The organic light emitting layer 114.
  • the manufacturing method of the OLED panel 100 of the first embodiment is to form a hybrid layer 111 on the organic structure layer 11 of the encapsulation area 101 to prevent water and oxygen from entering the organic light emitting layer 214.
  • Step S11 forming a pixel definition layer 113 and a retaining wall 119 on the substrate.
  • the pixel definition layer 113 includes a through hole area and a display area 10a.
  • the display area 10a is arranged around the periphery of the through hole area.
  • the display area 10 a includes an encapsulation area 101 and a light emitting area 102.
  • the packaging area 101 is surrounded on the peripheral side of the through hole area.
  • the light emitting area 102 is located on the peripheral side of the package area 101 facing away from the through hole 10b.
  • the pixel definition layer 113 is made of organic material.
  • Step S12 forming a through hole 10b in the through hole area.
  • laser cutting is used to cut the through hole area to form the through hole 10b.
  • the through hole 10b is used to install electronic devices, such as cameras and sensors.
  • Step S13 A groove 1131 is formed on the pixel definition layer 113 of the packaging area 101.
  • the setting of the groove 1131 is used to disconnect the organic light-emitting layer 114 located in the encapsulation area 101 in the subsequent step; on the other hand, it is used to form the hybrid layer 111 covering the groove 1131 in the subsequent step to improve Packaging performance of the OLED panel 100.
  • the depth of the optional groove 1131 is greater than 1 micron.
  • the groove 1131 may be formed by an exposure process or a laser etching process.
  • Step S14 forming an organic light emitting layer 114 on the pixel defining layer 113.
  • the organic light-emitting layer 114 is formed on the pixel defining layer 113 by evaporation.
  • Step S15 processing the surface of the organic structure layer 11 in the encapsulation area 101 into a rough surface.
  • a laser is used to process the surface of the organic structure layer 11 to roughen the surface. Due to the roughening of the surface of the organic structure layer 11, the adhesion of the hybrid layer is improved during the ALI process.
  • Step S16 forming a hybrid layer 111 and an inorganic layer 112 in the packaging area 101, the hybrid layer 111 covering the packaging area 101 and the hole wall of the through hole 10b.
  • the pixel defining layer 113 and the organic light emitting layer 114 are combined to form the organic structure layer 11.
  • Step S16 includes: in the encapsulation area 101, an inorganic substance is formed in the organic structure layer 11 using an atom permeation technique, and the inorganic substance is combined with the organic structure layer 11 to form a hybrid layer 111; after forming the hybrid layer 111, continue to use the atom permeation technique , An inorganic layer 112 is formed on the hybrid layer 111.
  • a mask is used to block the area outside the packaging area 101. Such an arrangement prevents the precursor molecules of inorganic substances from entering the light-emitting region 102.
  • the hybrid layer 111 covers the encapsulation area 101 and the hole wall of the through hole 10 b, preventing water and oxygen from entering the encapsulation area 101 from the through hole 10 and then invading the light emitting area 102.
  • the organic structure layer 11 has an organic polymer structure, and there are free volume pores, that is, holes, in the organic polymer structure.
  • the ALI can penetrate the precursor molecules of the target inorganic substance into the holes of the organic structure layer 11 and react in the holes to form the target inorganic substance.
  • the target inorganic substance fills the holes and the organic polymer forms the hybrid layer 111. Since the inorganic material fills the holes in the organic structure layer 11, the air tightness of the hybrid layer 111 is greatly improved, thereby preventing the intrusion of water and oxygen.
  • the degree of penetration of precursor molecules mainly depends on the precursor vapor pressure, exposure time and temperature. In other words, the thickness of the hybrid layer 111 can be adjusted by adjusting the above three factors.
  • the function of the formation of the inorganic layer 112 is as follows: First, the formation of the inorganic layer 112 indicates that the inorganic material has filled the organic structure layer 11 to a certain depth, and avoids the end of the organic structure layer 11 near the outer surface from not forming a hybrid layer. 111, which further affects the airtightness of the OLED panel 100; secondly, the formation of the inorganic layer 112 enhances the adhesion between the packaging structure layer 115 and the inorganic layer 112, and improves the airtightness of the OLED panel 100 as a whole.
  • the material of the inorganic layer 112 is a metal inorganic substance or a non-metal inorganic layer, such as alumina.
  • the organic light emitting layer 114 covers the pixel defining layer 113, there is no organic light emitting layer 114 in the sidewall direction of the pixel defining layer 113. Therefore, the outer surface of the organic structure layer 11 is formed by the organic light emitting layer 114 and the pixel defining layer 113 together. In order to prevent water and oxygen from invading the light-emitting area 102, a hybrid layer 111 needs to be formed on one side of the outer surface of the organic structure layer 11 in the encapsulation area 101.
  • the thickness of the hybrid layer 111 is greater than or equal to the thickness of the organic light emitting layer 114, but it is not limited thereto.
  • the hybrid layer 111 covers the groove 1131, thereby effectively extending the path of water and oxygen intruding from the side, and improving the packaging performance of the OLED panel 100. Therefore, it is obvious that the greater the number of grooves 1131, the better the packaging performance of the OLED panel 100; the greater the depth of the recesses 1131, the better the packaging performance of the OLED panel 100.
  • Step S17 forming a first inorganic layer 116, an organic layer 117, and a second inorganic layer 118 on the hybrid layer 111 and the organic light emitting layer 114 in sequence, the first inorganic layer 116 covering the hybrid layer 111 and the organic light emitting layer 114.
  • the encapsulation structure layer 115 includes a first inorganic layer 116, an organic layer 117, and a second inorganic layer 118.
  • the organic layer 117 is provided between the first inorganic layer 116 and the second inorganic layer 118.
  • the retaining wall 119 is used to prevent the organic layer 117 from overflowing out of the light emitting area 102.
  • the first inorganic layer 116 is formed on the organic light-emitting layer 114 and the inorganic layer 112. Both the first inorganic layer 116 and the second inorganic layer 118 adopt plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) Technology formation.
  • the organic layer 117 is formed using inkjet printing technology.
  • the first inorganic layer 116 may also adopt atomic layer deposition technology (Atomic layer deposition, ALD) formation.
  • ALD atomic layer deposition
  • the first inorganic layer 116 is a continuous film layer, which enhances the packaging performance.
  • the encapsulation structure layer 115, the inorganic layer 112 and the hybrid layer 111 form the encapsulation structure of the OLED panel 100 to prevent water and oxygen from entering the display area 10a.
  • FIG. 5 is a flowchart of a manufacturing method of an OLED panel according to a second embodiment of the application.
  • the manufacturing method of the OLED panel of the second embodiment of the present application includes:
  • a pixel definition layer is formed on a substrate, the pixel definition layer includes a through hole area and a display area, the display area is arranged around the periphery of the through hole area, the display area includes an encapsulation area, and the encapsulation The area is set on the peripheral side of the through hole area;
  • S27 forming a first inorganic layer, an organic layer, and a second inorganic layer on the hybrid layer and the organic light-emitting layer in sequence, the first inorganic layer covering the hybrid layer and the organic light-emitting layer.
  • the OLED panel of the second embodiment by forming a hybrid layer on the organic structure layer of the encapsulation area, it plays a role of blocking the intrusion of external water and oxygen into the organic light-emitting layer.
  • the manufacturing method of the OLED panel of the second embodiment is different from the manufacturing method of the OLED panel of the first embodiment in that step S25 is added, which results in a difference in the structure of forming a hybrid layer in step S26.
  • Step S25 Remove the organic light emitting layer in the packaging area.
  • a laser is used to remove the organic light-emitting layer located in the encapsulation area.
  • Step S26 forming a hybrid layer and an inorganic layer in the packaging area, the hybrid layer covering the packaging area and the hole wall of the through hole.
  • ALI is used to form an inorganic substance in the pixel defining layer, and the inorganic substance is combined with the pixel defining layer to form a hybrid layer.
  • the OLED panel and the manufacturing method of the present application form a hybrid layer on the organic structure layer of the encapsulation area to prevent water and oxygen from entering the organic light-emitting layer, and at the same time enhance the The adhesion of an inorganic layer; solves the technical problem that the existing OLED panel damages the integrity of the TFE film layer after digging holes, causing water and oxygen to invade from the edge of the hole, thereby destroying the entire OLED panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种OLED面板及其制作方法,OLED面板包括显示区域和通孔,显示区域围设在通孔的周边;显示区域包括封装区,封装区围设在通孔的周侧;封装区包括一用于防止水氧入侵的杂化层,杂化层覆盖封装区和通孔的孔壁。本申请通过在封装区的有机结构层上形成杂化层,起到阻挡外界水氧入侵有机发光层。

Description

OLED面板及其制作方法 技术领域
本申请涉及一种显示技术,特别涉及一种OLED面板及其制作方法。
背景技术
在现有的挖孔的有机发光二极管(Organic Light Emitting Diode,OLED)面板中,OLED发光材料层对水氧极其敏感,通常需要阻水型极高的薄膜封装(Thin Film Encapsulation,TFE)膜层进行覆盖保护。激光切割会破坏TFE膜层的完整性,导致OLED发光材料层(如阴极、有机钝化层等膜层)在孔边缘暴露出来,水氧入侵后导致整个显示器件无法显示。
技术问题
本申请实施例提供一种OLED面板及其制作方法,以解决现有的OLED面板在挖孔后破坏TFE膜层的完整性,导致水氧从孔边缘入侵,进而破坏整个OLED面板的技术问题。
技术解决方案
本申请实施例提供一种OLED面板,其包括:
显示区域和通孔,所述显示区域围设在所述通孔的周边;
所述显示区域包括封装区,所述封装区围设在所述通孔的周侧;所述封装区包括一用于防止水氧入侵的杂化层,所述杂化层覆盖所述封装区和所述通孔的孔壁;
所述OLED面板包括一有机结构层;在所述封装区中,采用原子渗透技术在所述有机结构层中形成无机物,所述无机物与所述有机结构层结合形成所述杂化层。
位于所述封装区的有机结构层的表面为粗糙面;
所述杂化层上形成有一无机层,所述无机层与所述杂化层通过所述原子渗透技术一体形成;
所述OLED面板包括像素定义层和设置在所述像素定义层上的有机发光层;
所述有机结构层为所述像素定义层和所述有机发光层的组合,在所述封装区中,所述杂化层形成在所述有机发光层和所述像素定义层中。
在本申请的OLED面板中,位于所述封装区的像素定义层上开设有凹槽,所述杂化层覆盖所述凹槽。
在本申请的OLED面板中,所述OLED面板还包括设置在所述有机发光层上的封装结构层,所述封装结构层包括第一无机层、有机层和第二无机层,所述有机层设置在所述第一无机层和所述第二无机层之间;
所述第一无机层覆盖所述有机发光层和所述杂化层上。
本申请还提供一种OLED面板,其包括:
显示区域和通孔,所述显示区域围设在所述通孔的周边;
所述显示区域包括封装区,所述封装区围设在所述通孔的周侧;所述封装区包括一用于防止水氧入侵的杂化层,所述杂化层覆盖所述封装区和所述通孔的孔壁。
在本申请的OLED面板中,位于所述封装区的有机结构层的表面为粗糙面。
在本申请的OLED面板中,所述OLED面板包括一有机结构层;在所述封装区中,采用原子渗透技术在所述有机结构层中形成无机物,所述无机物与所述有机结构层结合形成所述杂化层。
在本申请的OLED面板中,所述杂化层上形成有一无机层,所述无机层与所述杂化层通过所述原子渗透技术一体形成。
在本申请的OLED面板中,所述OLED面板包括像素定义层和设置在所述像素定义层上的有机发光层;
当所述有机结构层为所述像素定义层和所述有机发光层的组合时,在所述封装区中,所述杂化层形成在所述有机发光层和所述像素定义层中;
当所述有机结构层为所述像素定义层时,在所述封装区中,所述杂化层形成在所述像素定义层中。
在本申请的OLED面板中,位于所述封装区的像素定义层上开设有凹槽,所述杂化层覆盖所述凹槽。
在本申请的OLED面板中,所述OLED面板还包括设置在所述有机发光层上的封装结构层,所述封装结构层包括第一无机层、有机层和第二无机层,所述有机层设置在所述第一无机层和所述第二无机层之间;
所述第一无机层覆盖所述有机发光层和所述杂化层上。
本申请还涉及一种OLED面板的制作方法,其包括:
在基板上形成像素定义层,所述像素定义层包括一通孔区域和显示区域,所述显示区域围设在所述通孔区域设置的周边,所述显示区域包括封装区,所述封装区围设在所述通孔区域的周侧;
在所述通孔区域上形成通孔;
在所述像素定义层上形成有机发光层;
在位于所述封装区形成杂化层,所述杂化层覆盖所述封装区和所述通孔的孔壁。
在本申请的OLED面板的制作方法中,在步骤:所述在位于所述封装区形成杂化层,之前,所述方法还包括步骤:
将位于所述封装区的有机结构层的表面处理为粗糙面。
在本申请的OLED面板的制作方法中,所述像素定义层和所述有机发光层组合形成所述有机结构层;
所述在位于所述封装区形成杂化层,包括:
在所述封装区中,采用原子渗透技术在所述有机结构层中形成无机物,所述无机物与所述有机结构层结合形成杂化层。
在本申请的OLED面板的制作方法中,在形成所述杂化层之前,所述方法包括:
在所述封装区中,去除所述有机发光层。
在本申请的OLED面板的制作方法中,所述在位于所述封装区形成杂化层,包括:
在所述封装区中,采用原子渗透技术在所述像素定义层中形成无机物,所述无机物与所述像素定义层结合形成杂化层。
在本申请的OLED面板的制作方法中,在所述在位于所述封装区形成杂化层,步骤中;
当采用原子渗透技术形成杂化层后,原子渗透技术继续进行,在所述杂化层上形成一无机层。
在本申请的OLED面板的制作方法中,在形成所述有机发光层之前,所述方法包括:
在所述封装区的像素定义层上开设凹槽。
在本申请的OLED面板的制作方法中,形成所述杂化层之后,所述方法包括:
依次在所述杂化层和所述有机发光层上形成第一无机层、有机层和第二无机层,所述第一无机层覆盖所述杂化层和所述有机发光层。
有益效果
相较于现有技术的OLED面板,本申请的OLED面板及其制作方法通过在封装区的有机结构层上形成杂化层,起到阻挡外界水氧入侵有机发光层的作用,同时增强与第一无机层的粘附力;解决了现有的OLED面板在挖孔后破坏TFE膜层的完整性,导致水氧从孔边缘入侵,进而破坏整个OLED面板的技术问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面对实施例中所需要使用的附图作简单的介绍。下面描述中的附图仅为本申请的部分实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获取其他的附图。
图1为本申请第一实施例的OLED面板的结构示意图;
图2为本申请第二实施例的OLED面板的结构示意图;
图3为本申请第一实施例的OLED面板的制作方法的流程图;
图4为本申请第一实施例的OLED面板的制作方法的另一流程图;
图5为本申请第二实施例的OLED面板的制作方法的流程图。
本发明的实施方式
请参照附图中的图式,其中相同的组件符号代表相同的组件。以下的说明是基于所例示的本申请具体实施例,其不应被视为限制本申请未在此详述的其它具体实施例。
请参照图1,图1为本申请第一实施例的OLED面板的结构示意图。本申请第一实施例的OLED面板100,其包括显示区域10a和通孔10b。显示区域10a围设在通孔10b的周边。
显示区域10a包括封装区101。封装区101围设在通孔10b的周侧。封装区101包括一用于防止水氧入侵的杂化层111。杂化层111覆盖封装区101和通孔10b的孔壁。
本第一实施例的OLED面板100通过在封装区101的有机结构层11上形成杂化层111,起到阻挡外界水氧入侵有机发光层114的作用。
显示区域10a还包括一发光区102,发光区102位于封装区101背向通孔10b的周侧。杂化层111覆盖封装区101和通孔10b的孔壁,避免了水氧从通孔10进入封装区101,进而入侵发光区102。
在本第一实施例的OLED面板100中,OLED面板100包括一有机结构层11。在封装区101中,采用原子渗透技术(Atomic Layer Infiltration,ALI)在有机结构层11中形成无机物,无机物与有机结构层11结合形成杂化层111。
其中,有机结构层11具有有机聚合物结构,且有机聚合物结构中存在有自由体积孔,也就是孔洞。而ALI将目标无机物的前体分子渗透入有机结构层11的孔洞中,并在孔洞中进行反应形成目标无机物,目标无机物填充孔洞并与有机聚合物形成杂化层111。由于无机物填充了有机结构层11中的孔洞,使得杂化层111的气密性大大提高,进而可阻挡水氧入侵。
因此,杂化层111的厚度越大,其防止水氧入侵的效果越好。而前体分子的渗透程度主要取决于前体蒸汽压力、暴露时间和温度。也就是说,可以通过调节上述三个因素,来调整杂化层111的厚度。
在本第一实施例的OLED面板100中,位于封装区101的有机结构层11的表面为粗糙面。具体的,位于封装区101的有机结构层11的表面利用激光进行处理,使其表面粗糙化。由于有机结构层11表面的粗糙化,使得在进行ALI工艺时,提高杂化层的附着力。
在本第一实施例的OLED面板100中,杂化层111上形成有一无机层112,无机层112与杂化层111通过原子渗透技术一体形成。其中无机层112的形成的作用是:第一,无机层112的形成,标示着无机物已经填充满一定深度的有机结构层11,避免有机结构层11的靠近外表面的一端没有形成杂化层111,进而影响OLED面板100的气密性;第二,无机层112的形成,增强了封装结构层115和无机层112的粘附力,提高了OLED面板100整体的气密性。
可选的,无机层112的材料为金属无机物或非金属无机层,比如氧化铝。
具体的,OLED面板100包括像素定义层113、设置在像素定义层113上的有机发光层114和杂化层111、以及设置在杂化层111上的无机层112。其中有机发光层114位于发光区102。杂化层111和无机层112位于封装区101。
本第一实施例中,OLED面板100还包括阵列基板,像素定义层113设置在阵列基板上。由于OLED面板的阵列基板的结构为现有技术,故不再赘述。
其中,有机结构层11为像素定义层113和有机发光层114的组合。在封装区101中,杂化层111形成在有机发光层114和像素定义层113中。
由于有机发光层114覆盖在像素定义层113上,而像素定义层113的侧壁方向没有有机发光层114。因此有机结构层11的外表面由有机发光层114和像素定义层113共同形成。而为了避免水氧入侵发光区102,则需要在封装区101中的有机结构层11的外表面的一侧形成杂化层111。
在封装区101中,采用ALI将目标无机物的前体分子渗透入有机发光层114和裸露在外的像素定义层113形成目标无机物,目标无机物与有机发光层114和像素定义层113结合形成杂化层111。
在本第一实施例中,杂化层111的厚度大于等于有机发光层114的厚度,当并不限于此。
在本第一实施例的OLED面板100中,位于封装区101的像素定义层113上开设有凹槽1131。杂化层111覆盖凹槽1131。凹槽1131的设置,使得杂化层111覆盖凹槽1131,进而可有效延长水氧从侧面入侵的路径,提高了OLED面板100的封装性能。因此,显而易见的是,凹槽1131的数量越多,OLED面板100的封装性能越好;凹槽1131的深度越大,OLED面板100的封装性能越好。可选的,凹槽1131的深度大于1微米。
在一些实施例中,OLED面板也可以不设置凹槽。
在本第一实施例的OLED面板100中,OLED面板100还包括设置在像素定义层113上的挡墙119和设置在有机发光层114上的封装结构层115。封装结构层115包括第一无机层116、有机层117和第二无机层118。有机层117设置在第一无机层116和第二无机层118之间。挡墙119用于防止有机层117溢流出发光区102。
第一无机层116覆盖有机发光层114和杂化层111上。具体的,第一无机层116形成在有机发光层114和无机层112上。
由此可知,封装结构层115、无机层112和杂化层111形成OLED面板100的封装结构,以防止水氧进入显示区10a。
请参照图2,图2为本申请第二实施例的OLED面板的结构示意图。本第二实施例的OLED面板200包括通孔20b、像素定义层213、有机发光层214、挡墙219、杂化层211、无机层212和封装结构层215。本第二实施例和第一实施例的不同之处在于:有机结构层21为像素定义层213。在封装区20b中,杂化层211形成在像素定义层213中。
请参照图3和图4,图3为本申请第一实施例的OLED面板的制作方法的流程图;图4为本申请第一实施例的OLED面板的制作方法的另一流程图。本申请第一实施例的OLED面板100的制作方法,其包括:
S11:在基板(图中未示出)上形成像素定义层114;所述像素定义层114包括一通孔区域(图中未示出)和显示区域10a,所述显示区域10a围设在所述通孔区域设置的周边,所述显示区域10a包括封装区101,所述封装区101围设在所述通孔区域的周侧;
S12:在所述通孔区域上形成通孔10b;
S13:在所述封装区101的像素定义层113上开设凹槽1131;
S14:在所述像素定义层113上形成有机发光层114;
S15:将位于所述封装区101的有机结构层11的表面处理为粗糙面;
S16:在位于所述封装区101形成杂化层111和无机层112,所述杂化层111覆盖所述封装区101和所述通孔10b的孔壁;
S17:依次在所述杂化层111和所述有机发光层114上形成第一无机层116、有机层117和第二无机层118,所述第一无机层116覆盖所述杂化层111和所述有机发光层114。
本第一实施例的OLED面板100的制作方法通过在封装区101的有机结构层11上形成杂化层111,起到阻挡外界水氧入侵有机发光层214的作用。
以下对本第一实施例的OLED面板100的制作方法进行阐述。
步骤S11:在基板上形成像素定义层113和挡墙119。在步骤S11中,像素定义层113包括一通孔区域和显示区域10a。显示区域10a围设在通孔区域设置的周边。显示区域10a包括封装区101和发光区102。封装区101围设在通孔区域的周侧。发光区102位于封装区101背向通孔10b的周侧。像素定义层113为有机材料制成。
步骤S12:在通孔区域上形成通孔10b。在步骤S12中,采用激光切割的方式在通孔区域上,进行切割形成通孔10b。通孔10b用于设置电子器件,比如摄像头和传感器等。
步骤S13:在封装区101的像素定义层113上开设凹槽1131。在步骤S13中,凹槽1131的设置,一方面用于后续步骤中断开位于封装区101的有机发光层114;另一方面用于后续步骤中形成覆盖凹槽1131的杂化层111,提高OLED面板100的封装性能。可选的凹槽1131的深度大于1微米。
凹槽1131可以采用曝光工艺或激光刻蚀工艺形成。
步骤S14:在像素定义层113上形成有机发光层114。在步骤S14中,采用蒸镀的方式,在像素定义层113上形成有机发光层114。
步骤S15:将位于所述封装区101的有机结构层11的表面处理为粗糙面。在该步骤中,利用激光对有机结构层11的表面进行处理,使其表面粗糙化。由于有机结构层11表面的粗糙化,使得在进行ALI工艺时,提高杂化层的附着力。
步骤S16:在位于封装区101形成杂化层111和无机层112,杂化层111覆盖封装区101和通孔10b的孔壁。在步骤S16中,像素定义层113和有机发光层114组合形成有机结构层11。
步骤S16包括:在封装区101中,采用原子渗透技术在有机结构层11中形成无机物,无机物与有机结构层11结合形成杂化层111;形成杂化层111后,继续采用原子渗透技术,在杂化层111上形成一无机层112。
在进行原子渗透技术之前,先用掩模板挡住封装区101以外的区域。这样的设置,避免无机物的前体分子进入发光区102。
杂化层111覆盖封装区101和通孔10b的孔壁,避免了水氧从通孔10进入封装区101,进而入侵发光区102。
其中,有机结构层11具有有机聚合物结构,且有机聚合物结构中存在有自由体积孔,也就是孔洞。而ALI能将目标无机物的前体分子渗透入有机结构层11的孔洞中,并在孔洞中进行反应形成目标无机物,目标无机物填充孔洞并有机聚合物形成杂化层111。由于无机物填充了有机结构层11中的孔洞,使得杂化层111的气密性大大提高,进而可阻挡水氧入侵。
因此,杂化层111的厚度越大,其防止水氧入侵的效果越好。而前体分子的渗透程度主要取决于前体蒸汽压力、暴露时间和温度。也就是说,可以通过调节上述三个因素,来调整杂化层111的厚度。
而无机层112的形成的作用是:第一,无机层112的形成,标示着无机物已经填充满一定深度的有机结构层11,避免有机结构层11的靠近外表面的一端没有形成杂化层111,进而影响OLED面板100的气密性;第二,无机层112的形成,增强了封装结构层115和无机层112的粘附力,提高了OLED面板100整体的气密性。
可选的,无机层112的材料为金属无机物或非金属无机层,比如氧化铝。
由于有机发光层114覆盖在像素定义层113上,而像素定义层113的侧壁方向没有有机发光层114。因此有机结构层11的外表面由有机发光层114和像素定义层113共同形成。而为了避免水氧入侵发光区102,则需要在封装区101中的有机结构层11的外表面的一侧形成杂化层111。
在本第一实施例的方法中,杂化层111的厚度大于等于有机发光层114的厚度,当并不限于此。
另外,杂化层111覆盖凹槽1131,进而可有效延长水氧从侧面入侵的路径,提高了OLED面板100的封装性能。因此,显而易见的是,凹槽1131的数量越多,OLED面板100的封装性能越好;凹槽1131的深度越大,OLED面板100的封装性能越好。
步骤S17:依次在杂化层111和有机发光层114上形成第一无机层116、有机层117和第二无机层118,第一无机层116覆盖杂化层111和有机发光层114。在步骤S17中,封装结构层115包括第一无机层116、有机层117和第二无机层118。有机层117设置在第一无机层116和第二无机层118之间。挡墙119用于防止有机层117溢流出发光区102。
具体的,第一无机层116形成在有机发光层114和无机层112上。第一无机层116和第二无机层118均采用离子体增强化学的气相沉积法(Plasma Enhanced Chemical Vapor Deposition,PECVD) 技术形成。有机层117采用喷墨打印技术形成。
在本第一实施例的方法中,第一无机层116也可以采用原子层沉积技术(Atomic layer deposition,ALD)形成。当第一无机层116采用ALD技术形成时,第一无机层116为连续的膜层,增强了封装性能。
综上所述,封装结构层115、无机层112和杂化层111形成OLED面板100的封装结构,以防止水氧进入显示区10a。
这样便完成了本第一实施例的OLED面板100的制作过程。
请参照图5,图5为本申请第二实施例的OLED面板的制作方法的流程图。本申请第二实施例的OLED面板的制作方法,其包括:
S21:在基板上形成像素定义层,所述像素定义层包括一通孔区域和显示区域,所述显示区域围设在所述通孔区域设置的周边,所述显示区域包括封装区,所述封装区围设在所述通孔区域的周侧;
S22:在所述通孔区域上形成通孔;
S23:在所述封装区的像素定义层上开设凹槽;
S24:在所述像素定义层上形成有机发光层;
S25:在所述封装区中,去除所述有机发光层,并对所述像素定义层的表面进行粗糙化处理;
S26:在位于所述封装区形成杂化层和无机层,所述杂化层覆盖所述封装区和所述通孔的孔壁;
S27:依次在所述杂化层和所述有机发光层上形成第一无机层、有机层和第二无机层,所述第一无机层覆盖所述杂化层和所述有机发光层。
在本第二实施例的OLED面板的制作方法中,通过在封装区的有机结构层上形成杂化层,起到阻挡外界水氧入侵有机发光层的作用。
本第二实施例的OLED面板的制作方法与第一实施例的OLED面板的制作方法的不同之处在于增加了步骤S25,导致步骤S26的形成杂化层结构的不同。
步骤S25:在封装区中,去除有机发光层。在步骤S25中,采用激光去除位于封装区的有机发光层。
步骤S26:在位于封装区形成杂化层和无机层,杂化层覆盖封装区和通孔的孔壁。在步骤S26中,在封装区中,采用ALI在像素定义层中形成无机物,无机物与像素定义层结合形成杂化层。
相较于现有技术的OLED面板,本申请的OLED面板及其制作方法通过在封装区的有机结构层上形成杂化层,起到阻挡外界水氧入侵有机发光层的作用,同时增强与第一无机层的粘附力;解决了现有的OLED面板在挖孔后破坏TFE膜层的完整性,导致水氧从孔边缘入侵,进而破坏整个OLED面板的技术问题。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (18)

  1. 一种OLED面板,其包括:
    显示区域和通孔,所述显示区域围设在所述通孔的周边;
    所述显示区域包括封装区,所述封装区围设在所述通孔的周侧;所述封装区包括一用于防止水氧入侵的杂化层,所述杂化层覆盖所述封装区和所述通孔的孔壁;
    所述OLED面板包括一有机结构层;在所述封装区中,采用原子渗透技术在所述有机结构层中形成无机物,所述无机物与所述有机结构层结合形成所述杂化层。
    位于所述封装区的有机结构层的表面为粗糙面;
    所述杂化层上形成有一无机层,所述无机层与所述杂化层通过所述原子渗透技术一体形成;
    所述OLED面板包括像素定义层和设置在所述像素定义层上的有机发光层;
    所述有机结构层为所述像素定义层和所述有机发光层的组合,在所述封装区中,所述杂化层形成在所述有机发光层和所述像素定义层中。
  2. 根据权利要求1所述的OLED面板,其中,位于所述封装区的像素定义层上开设有凹槽,所述杂化层覆盖所述凹槽。
  3. 根据权利要求2所述的OLED面板,其中,所述OLED面板还包括设置在所述有机发光层上的封装结构层,所述封装结构层包括第一无机层、有机层和第二无机层,所述有机层设置在所述第一无机层和所述第二无机层之间;
    所述第一无机层覆盖所述有机发光层和所述杂化层上。
  4. 一种OLED面板,其包括:
    显示区域和通孔,所述显示区域围设在所述通孔的周边;
    所述显示区域包括封装区,所述封装区围设在所述通孔的周侧;所述封装区包括一用于防止水氧入侵的杂化层,所述杂化层覆盖所述封装区和所述通孔的孔壁。
  5. 根据权利要求4所述的OLED面板,其中,所述OLED面板包括一有机结构层;在所述封装区中,采用原子渗透技术在所述有机结构层中形成无机物,所述无机物与所述有机结构层结合形成所述杂化层。
  6. 根据权利要求5所述的OLED面板,其中,位于所述封装区的有机结构层的表面为粗糙面。
  7. 根据权利要求5所述的OLED面板,其中,所述杂化层上形成有一无机层,所述无机层与所述杂化层通过所述原子渗透技术一体形成。
  8. 根据权利要求5所述的OLED面板,其中,所述OLED面板包括像素定义层和设置在所述像素定义层上的有机发光层;
    当所述有机结构层为所述像素定义层和所述有机发光层的组合时,在所述封装区中,所述杂化层形成在所述有机发光层和所述像素定义层中;
    当所述有机结构层为所述像素定义层时,在所述封装区中,所述杂化层形成在所述像素定义层中。
  9. 根据权利要求8所述的OLED面板,其中,位于所述封装区的像素定义层上开设有凹槽,所述杂化层覆盖所述凹槽。
  10. 根据权利要求8所述的OLED面板,其中,所述OLED面板还包括设置在所述有机发光层上的封装结构层,所述封装结构层包括第一无机层、有机层和第二无机层,所述有机层设置在所述第一无机层和所述第二无机层之间;
    所述第一无机层覆盖所述有机发光层和所述杂化层上。
  11. 一种OLED面板的制作方法,其包括:
    在基板上形成像素定义层,所述像素定义层包括一通孔区域和显示区域,所述显示区域围设在所述通孔区域设置的周边,所述显示区域包括封装区,所述封装区围设在所述通孔区域的周侧;
    在所述通孔区域上形成通孔;
    在所述像素定义层上形成有机发光层;
    在位于所述封装区形成杂化层,所述杂化层覆盖所述封装区和所述通孔的孔壁。
  12. 根据权利要求11所述的OLED面板的制作方法,其中,在步骤:所述在位于所述封装区形成杂化层,之前,所述方法还包括步骤:
    将位于所述封装区的有机结构层的表面处理为粗糙面。
  13. 根据权利要求12所述的OLED面板的制作方法,其中,所述像素定义层和所述有机发光层组合形成所述有机结构层;
    所述在位于所述封装区形成杂化层,包括:
    在所述封装区中,采用原子渗透技术在所述有机结构层中形成无机物,所述无机物与所述有机结构层结合形成杂化层。
  14. 根据权利要求11所述的OLED面板的制作方法,其中,在形成所述杂化层之前,所述方法包括:
    在所述封装区中,去除所述有机发光层。
  15. 根据权利要求14所述的OLED面板的制作方法,其中,所述在位于所述封装区形成杂化层,包括:
    在所述封装区中,采用原子渗透技术在所述像素定义层中形成无机物,所述无机物与所述像素定义层结合形成杂化层。
  16. 根据权利要求11所述的OLED面板的制作方法,其中,在所述在位于所述封装区形成杂化层,步骤中;
    当采用原子渗透技术形成杂化层后,原子渗透技术继续进行,在所述杂化层上形成一无机层。
  17. 根据权利要求11所述的OLED面板的制作方法,其中,在形成所述有机发光层之前,所述方法包括:
    在所述封装区的像素定义层上开设凹槽。
  18. 根据权利要求11所述的OLED面板的制作方法,其中,形成所述杂化层之后,所述方法包括:
    依次在所述杂化层和所述有机发光层上形成第一无机层、有机层和第二无机层,所述第一无机层覆盖所述杂化层和所述有机发光层。
PCT/CN2019/092888 2019-03-25 2019-06-26 Oled面板及其制作方法 WO2020191933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910228104.0 2019-03-25
CN201910228104.0A CN110021643B (zh) 2019-03-25 2019-03-25 Oled面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2020191933A1 true WO2020191933A1 (zh) 2020-10-01

Family

ID=67189939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092888 WO2020191933A1 (zh) 2019-03-25 2019-06-26 Oled面板及其制作方法

Country Status (2)

Country Link
CN (1) CN110021643B (zh)
WO (1) WO2020191933A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491913B (zh) * 2019-07-31 2021-11-02 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN114300637B (zh) * 2021-12-29 2023-12-01 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292072A1 (en) * 2006-06-15 2007-12-20 Ainissa Gweneth Ramirez Solder alloys
CN107195803A (zh) * 2017-07-21 2017-09-22 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN207637803U (zh) * 2017-12-26 2018-07-20 上海和辉光电有限公司 一种显示面板及显示装置
CN108461642A (zh) * 2017-02-17 2018-08-28 上海和辉光电有限公司 一种有机发光二极管器件的薄膜封装构件
CN207966996U (zh) * 2018-03-19 2018-10-12 上海和辉光电有限公司 一种显示面板及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102552272B1 (ko) * 2015-11-20 2023-07-07 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102457252B1 (ko) * 2015-11-20 2022-10-24 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN106384789B (zh) * 2016-10-31 2018-04-03 武汉华星光电技术有限公司 Oled封装结构与oled封装方法
CN107658332A (zh) * 2017-10-25 2018-02-02 京东方科技集团股份有限公司 一种显示面板、显示装置及制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292072A1 (en) * 2006-06-15 2007-12-20 Ainissa Gweneth Ramirez Solder alloys
CN108461642A (zh) * 2017-02-17 2018-08-28 上海和辉光电有限公司 一种有机发光二极管器件的薄膜封装构件
CN107195803A (zh) * 2017-07-21 2017-09-22 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN207637803U (zh) * 2017-12-26 2018-07-20 上海和辉光电有限公司 一种显示面板及显示装置
CN207966996U (zh) * 2018-03-19 2018-10-12 上海和辉光电有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
CN110021643A (zh) 2019-07-16
CN110021643B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN109728196B (zh) 显示面板、其制作方法和显示装置
WO2020200016A1 (zh) 显示面板
US10930886B2 (en) Method for manufacturing OLED display screen and OLED display screen
WO2019165658A1 (zh) 一种oled显示器件
CN108417731B (zh) 一种薄膜封装结构及其封装方法、oled显示装置
WO2020258852A1 (zh) 显示面板的封装方法、显示面板及显示装置
US20220384761A1 (en) Display substrate motherboard, display substrate and manufacturing method therefor, and display apparatus
US11335883B2 (en) Organic light-emitting diode display substrate with a protection layer and manufacturing method thereof, and display device
US20210226139A1 (en) Organic light emitting diode display device
WO2019233495A1 (zh) Oled 显示面板以及显示装置
US11380867B2 (en) Display panel and display device
WO2020191933A1 (zh) Oled面板及其制作方法
WO2015107035A1 (en) Encapsulated semiconductor device and encapsulation method
WO2020211288A1 (zh) 显示面板及显示装置
KR102272883B1 (ko) 박막들을 캡슐화하는 방법 및 구조물, 디스플레이 디바이스
WO2016119381A1 (zh) 掩模板、oled器件封装方法及oled器件
US20160260925A1 (en) Organic electroluminescent device and method for preparing the same, and display apparatus
CN111524949A (zh) 一种显示面板、其制作方法及显示装置
WO2020133848A1 (zh) Oled显示面板
WO2020155347A1 (zh) Oled显示屏及其制备方法
JP4754387B2 (ja) El装置
US20240047378A1 (en) Display panel and mobile terminal
US20230180509A1 (en) Encapsulation structure and encapsulation method for flexible organic light-emitting diode device
TWI548132B (zh) 製造有機電子裝置之方法
KR100623356B1 (ko) 유기 전계 발광 소자 및 이를 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921094

Country of ref document: EP

Kind code of ref document: A1